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Abstract. The water-wave problem is the study of the two- and three-
dimensional flow of a perfect fluid bounded above by a free surface subject to
the forces of gravity and surface tension. From a mathematical viewpoint, the
water-wave equations pose surprisingly deep and subtle challenges for mathe-
matical analysis. The governing equations are widely accepted and there has
been substantial research into their validity and limitations. However, a rig-
orous theory of their solutions is extremely complex due not only to the fact
that the water-wave problem is a classical free-boundary problem (where the
problem domain, specifically the water surface, is one of the unknowns), but
also because the boundary conditions (and, in some cases, the equations) are
strongly nonlinear. In contrast to other meetings on water waves, which usu-
ally focus upon modelling and numerical issues, this workshop was devoted
to the rigorous mathematical theory for the exact hydrodynamic equations.

Mathematics Subject Classification (2010): 76B15.

Introduction by the Organisers

Although attempts at a theory for water waves were made in the later middle
ages, it was not until the middle of the nineteenth century that the modern theory
(incorporating nonlinear effects) appeared in the work of Stokes, who first wrote
down the governing equations in their modern form. The nineteenth century also
saw Scott Russell’s discovery of solitary waves, the emergence of model equations
for water waves (Korteweg-deVries, Boussinesq), Gerstner’s explicit solutions for
rotational waves and the Kelvin-Helmholtz instability. With the emergence of
modern mathematics in the early twentieth century, significant progress was made
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in the theory of steady-wave solutions to the exact equations. The early results
in the mathematical theory of two-dimensional steady gravity waves (local and
global bifurcation theory, proof of Stokes’s conjecture on the existence of a wave
with a corner of angle 2π/3) now form the classical mathematical theory of the
subject. The last quarter of the twentieth century saw a new surge of interest
in the mathematical theory of water waves, mainly in the areas of steady water
waves with surface tension (local bifurcation theory for solitary waves and three-
dimensional doubly periodic waves) and time-dependent water waves (Hamilton-
ian formulations, local well-posedness theory, justification of the Boussinesq and
Korteweg-deVries scaling limits, Nash-Moser theory for standing waves).

The vigorous activity in water waves in the last decade of the twentieth century
prompted the organisation of a mini-workshop in 2001 and a half-workshop in 2006
at the Mathematical Research Institute at Oberwolfach. The meetings were very
successul, bringing together many leading figures in the analysis of water waves
and leading to great progress on a range of outstanding problems in water waves.
Several other significant programmes on the analysis of water waves have also taken
place in the last ten years (Surface Water Waves (Isaac Newton Institute, 2001),
Workshop on Free Surface Water Waves (Fields Institute, 2004), Wave Motion
(Mittag-Leffler Institute, 2005), Nonlinear Water Waves (Schrödinger Institute,
2011), Theory of Water Waves (Isaac Newton Institute, 2015)). Taken together,
these events have inspired new and increasing interest in the mathematical theory
of water waves and in particular the arrival of a whole new generation of young
researchers in this field. Significant progress has been made in particular in the
theory of waves with vorticity, local and global well-posedness, the mathematical
justification of various model equations and stability results.

In view of the dramatic new developments of the last ten years it appeared
timely to hold another half-workshop at Oberwolfach. Its aims were to review the
state of the art and stimulate research in major open problems in the following
themes.

• The initial-value problem and time-dependent water waves;
• Mathematical justification of model equations;
• New existence theories for steady water waves;
• Stability of steady water waves;
• Waves with vorticity;
• Qualitative properties of waves.

Significant new results in these areas were reported at the conference and are sum-
marised in the extended abstracts below. The workshop was attended by twenty-
four participants from ten countries; there was a good mix of senior and junior
researchers. Nineteen lectures were held in a friendly and informal atmosphere
and many collaborative discussions took place.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Ill-posedness of some water wave models

Jerry L. Bona

1. Précis of the Lecture

This lecture dealt with model equations for surface waves in both shallow and deep
water. The evolution of disturbances on the surface of a large body of water, such
as an ocean or a lake, is reasonably well approximated by the Euler system for
ideal, free–surface fluid mechanics under the influence of gravity. The origins of
this theory lie in the 18th century. Well–posedness results for initial-value problems
for these equations has a distinguished, but more modern pedigree. We know now
that solutions exist, are unique, and depend continuously upon initial data in
various function–space contexts. This theory is subtle and the design of stable,
accurate, numerical schemes is likewise challenging.

Starting already in the 19th century, when concrete issues have arisen concerning
wave propagation, attention has been turned to model equations which formally
approximate the full, Euler system. This latter thrust, which also has a long
history, has been a mainstay of developments in oceanography and theoretical
fluid mechanics in the 19th and 20th centuries.

Depending upon the wave regime in question, there are many different approxi-
mate models that can be formally derived from the Euler equations. As the Euler
system is known to be well posed, it seems appropriate that associated approxi-
mate models should also have this property. Indeed, without well-posedness, the
model is probably useless for practical application. Certain approximations of
the Euler equations are known to be well posed. However, we will indicate here
that there are naturally occuring classes of weakly nonlinear models for which well
posedness does not in fact obtain.

One widely used, modern method of deriving model systems was introduced by
Craig and Sulem [7]. They start by writing the water wave evolution equations in
the Zakharov formulation [10], which involves the Dirichlet-to-Neumann operator
for the fluid domain. Appealing to a result of Coifman and Meyer, one is able
to expand the Dirichlet-to-Neumann operator as a series. Craig and Sulem make
such an expansion, truncate the relevant series, and use the resulting equations
for simulations and study of the water wave problem.

In the deep water situation, if such an expansion is truncated at quadratic order,
the resulting model is seen to be

ηt = Λξ − ∂x {[H, η]Λξ} ,(1a)

ξt = −gη + 1

2
(Λξ)2 − 1

2
(ξx)

2 ,(1b)

whereH and Λ are Fourier multiplier operators; indeed, H is the Hilbert transform,
Λ = H∂x, [A,B] is the commutator of A and B while g is the gravity constant.
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The dependent variable η(x, t) is the deviation of the free surface from its rest
position at the spatial point represented by x at time t while ξ is the velocity
potential at the free surface at x at time t.

In [2], the authors considered this weakly nonlinear, quadratic approximation
of the Euler equations supplemented with an artificial viscosity. These models
combine two primary ingredients: The method of operator expansions of Craig
and Sulem and the artificial viscosity ideas put forward by Dias, Dyachenko, and
Zakharov [8]. In [2], it was established that if artificial viscosity effects are included,
then the resulting model system is indeed globally well–posed in a reasonable range
of function classes. However, the constants in the relevant a priori energy-type
estimates depend in an unfortunate way upon the ‘viscosity’ parameter. This is
not surprising. However, it was troubling that more detailed analysis did not yield
bounds which can be controlled as the viscosity vanishes. We then considered the
possibility that inviscid models, constructed in the spirit of Craig and Sulem, may
not actually be well–posed.

It turns out that indeed, this system, and even the system obtained by going
to third order, are both ill–posed in the standard L2–based Sobolev spaces. The
lecture sketched theory, joint with Ambrose and Nicholls [3], and later Dai [4],
showing that this is in fact the case.

Attention was then turned to shallow-water models. The long-wavelength
Boussinesq regime was considered. For long-crested waves in this regime, there is
a class of models derived in [5] that have the form

(2)

{
∂tη + ∂xw + ∂x(wη) + a∂3xw − b∂2x∂tη = 0,

∂tw + ∂xη + w∂xw + c∂3xη − d∂2x∂tw = 0.

Here, η is as above, the deviation of the free surface from its rest postion and w
is the horizontal velocity at a particular height above the bottom. (Since the flow
is assumed irrotational and incompressible, the velocity potential is harmonic and
hence knowledge of u and η suffices to infer the velocity field everywhere in the
flow domain.) While the abcd-systems appear to depend upon four parameters,
these are not in fact independent. In particular, in the standard scaling for this
problem, it must be the case that a+ b+ c+ d = 1

3 (for more details see [5]).
The question raised in this shallow-water regime has to do with a well known

member of the abcd-systems that was shown already in [5] to be linearly ill-posed.
Choosing the constants as a = 1

3 and b = c = d = 0, which is admissible within
the detailed formulas for the values of these constants, yields the Kaup system,

(3)

{
ηt + wx + (wη)x + 1

3wxxx = 0,

wt + ηx + wwx = 0.

This system was derived by Kaup in [9] as an early example of a coupled system
of equations that admits an inverse-scattering formalism. The system has been
the object of a number of studies connected with inverse scattering theory.

Despite its attractiveness due to its inverse scattering formalism, it transpires
that this model, too, is ill-posed in L2–based Sobolev spaces. The remainder of the
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lecture was spent providing an indication of how this is established. The details
will appear in [1].
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Phase dynamics and water waves

Thomas J. Bridges

Phase dynamics had its earliest appearance in wave equations with geometrical
optics for high frequency solutions of inhomogeneous linear wave equations (e.g.
§7.7 of [8]). Geometrical optics later played a prominent role in water wave theory,
for example, in ray theory for shoaling and refraction of waves approaching a beach.
However, it was the introduction of Whitham modulation theory (WMT), exactly
50 years ago this June [7], that showed the importance of “phase dynamics” in the
theory of water waves.

The talk started by discussing WMT in its simplest context, starting with a
Lagrangian formulation of field equations, introducing a basic state, averaging,
and deriving the Whitham modulation equations. By introducing slow time and
space scales: T = εt and X = εx, and taking (ω, k) in a neighborhood of some
fixed TW parameters,

(1) ω 7→ ω + εΩ(X,T, ε) and k 7→ k + εq(X,T, ε) ,

it was shown that, to leading order, q and Ω satisfy

(2) qT = ΩX and AωΩT + AkqT + BωΩX + BkqX = 0 .
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With (ω, k) fixed, this equation is linear and, with the assumption Aω 6= 0, the
linear WMEs can be written in the standard form

(3)

(
q
Ω

)

T

+A(ω, k)

(
q
Ω

)

X

=

(
0
0

)
,

with

(4) A(ω, k) =
1

Aω

[
0 −Aω

Bk Ak + Bω

]
.

The WMEs (3) are hyperbolic if the eigenvalues of A(ω, k) are real and elliptic if
the eigenvalues of A(ω, k) are complex. Ellipticity is an indication that the basic
state is unstable to long wave modulational instability.

This form of the WMEs is linear, in contrast to most applications of WMT.
The linearity arises due to the scaling of (ω, k) in (1).

The talk then discussed the role of singularities in producing new natural scaling
and different modulation equations. The primary example was the morphing of
conservation of wave action into the KdV equation near a singularity. Suppose that
the linear system (3) has a codimension one singularity: simple zero characteristic
speed: Aω 6= 0 but Bk = 0.

With Bk = 0, expand B(ω + εΩ, k + εq)X to the next order

AωΩT + (Ak + Bω)qT + εBkkqqX + · · · = 0 .

Change scales X = εx and T = ε3t and q ∼ ε2 (KdV scaling). Then conservation
of waves requires Ω ∼ ε4. With this new scaling conservation of wave action
morphs into

Aω ΩT︸︷︷︸
ε7

+(Aω + Bk) qT︸︷︷︸
ε5

+Bkk qqX︸︷︷︸
ε5

+K qXXX︸ ︷︷ ︸
ε5︸ ︷︷ ︸

leading order terms

+ · · · = 0 .

To leading order the KdV equation emerges. It remains to show why the qXXX

term should appear, and the details of the argument are given in [1]. An example
of the theory is the reduction of defocussing NLS to KdV and that example is
treated in [1].

Although the classic emergence of the KdV equation in shallow water would
seem to arise through a different mechanism, it in fact emerges via a similar mod-
ulation argument, and that argument extends to the KP equation [2]. The con-
nection between modulation in the above sense and WMT is discussed in [3]. The
modulation strategy leads to new equations. Validity is generally done indepen-
dently. For example, [4] give a validity proof for the reduction from defocussing
NLS to KdV.

The talk also discussed connections with dissipative phase modulation (e.g.
Burgers’ equation, Cross-Newell, Kuramoto, Kopell-Howard, Haragus-Scheel,
Kuramoto-Sivashinsky, etc: see [5] and references therein), and the emerging field
of dislocations of water waves (e.g. [6] and references therein).
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Existence of fully localised water waves with weak surface tension

Boris Buffoni

Let the free upper surface of a three-dimensional layer of fluid be parametrised by
y = η(x, z, t), where the variables x and z are for the two horizontal directions.
At time t, the fluid fills the domain Ωt = {(x, y, z) ∈ R3 : 0 < y < 1 + η(x, z, t)},
its asymptotic depth being equal to 1 and η(·, t) ∈ H3(R2,R) (totally localised
waves). The velocity field is of the form ~v(x, y, z, t) = ∇ϕ(x, y, z, t), where the
gradient is with respect to (x, y, z), ϕ(·, t) ∈ H1

loc(Ωt) and ∇ϕ(·, t) ∈ L2(Ωt). The
flow is therefore irrotational. Assuming in addition that the density is constant
and the flow divergence free, we get the classical water-wave equation:




∆ϕ = 0 on Ωt,
ϕy = 0 if y = 0,
ηt = ϕy − ηxϕx − ηzϕz if y = 1 + η,

ϕt = − 1
2 |∇ϕ|2 − gη + β

[
ηx√

1+η2
x+η2

z

]

x

+ β

[
ηz√

1+η2
x+η2

z

]

z

if y = 1 + η,

with g = 1 (gravity) and where β > 0 measures the strength of the surface tension.
A travelling wave of speed c > 0 is of the form

ϕ(x, y, z, t) = ϕ̃(x+ ct, y, z) and η(x, z, t) = η̃(x+ ct, z),

the moving domain Ω̃ being defined by Ω̃ = {(x, y, z) ∈ R3 : 0 < y < 1 + η̃(x, z)}.
In [4], M. D. Groves and S.-M. Sun proved the existence of a fully localised

travelling water wave when the surface tension is strong, that is, β > 1/3. See also
the minimisation approach in [2]. The aim of the talk is to report on a joint work
in progress with M. D. Groves and E. Wahlén extending that existence result to
the case 0 < β < 1/3 as follows:
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Theorem 1. There exists Λ ∈ (0, 1) such that, for all small ε > 0, there exists
(η̃ε, η̃ε) such that

• it gives rise to a non-trivial solution with c =
√
Λ(1− ε2),

• η̃ε ∈ H3(R2,R), ϕ̃ε ∈ H1
loc(Ω̃) and ∇ϕ̃ε ∈ L2(Ω̃),

• lim
ε→0

||η̃ε||W 1,∞(R2) = 0.

We refer for example to the works [5, 6, 7] for numerical simulations and to the
model equation by Davey and Stewartson (see e.g. [3]).

The energy and the so called total horizontal momentum are preserved:

E(η, ϕ) =
∫

R2

{
1

2

∫ 1+η(x,z,t)

0

|∇ϕ|2dy + 1

2
η2 + β[

√
1 + η2x + η2z − 1]

}
dxdz,

I(η, ϕ) =
∫

R2

ηxϕ|y=1+ηdxdz.

At a formal level, it is well known that travelling waves can be obtained as critical
points of a “Lagrangian” functional (see e.g. [1]):

δ
(
E(η̃, ϕ̃)− cI(η̃, ϕ̃)

)
= 0.

From now on, we only deal with travelling waves and thus we omit the tildes.
For given η ∈ H3(R2,R), we minimise with respect to ϕ, which gives a minimizer

ϕη, and we set c =
√
Λ(1− ε2). This leads to the reduced Lagrangian

E(η, ϕη)− cI(η, ϕη) = K(η) − (1− ε2)L(η) := J (η)

with

K(η) =

∫

R2

{
1

2
η2 + β[

√
1 + η2x + η2z − 1]

}
dxdz

and the quadratic part of L given by

L2(η) =
Λ

2

∫

R2

k21
|k|2

|k| cosh |k|
sinh |k| |η̂(k)|2dk1dk2.

Clearly the quadratic part of K is given by

K2(η) =
1

2

∫

R2

(
η2 + βη2x + βη2z

)
dxdz.

The parameter Λ ∈ (0, 1) is chosen such that

1 + βs2 − Λ
s cosh s

sinh s
≥ 0 with equality at ± ω 6= 0.

Such Λ and ω > 0 exist and are unique because β ∈ (0, 1/3). This implies that
K2 − (1− ε2)L2 is positive definite for all ε > 0 small enough.
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Further reduction. Let 0 < δ < ω/3 and

χ(k) =

{
1 if (|k1| − ω)2 + k22 ≤ δ2,
0 if not.

We set

η = η1 + η2, η̂1 = χη̂, η̂2 = (1− χ)η̂

and H3(R2) = X1 + X2 accordingly.
For fixed η1, we solve

∀v2 ∈ X2 J ′(η1 + η2)v2 = 0,

which gives η2 = η2(η1). We then introduce a new function φ : R2 → C defined by

η̂1(k) = b(k)ζ̂(k), ζ(x, z) = Re
(
εφ(εx, εz)eiωx

)
,

where b, 1b : R2 → R are bounded and smooth. The new reduced functional reads
as

J̃ε(φ) = ε−2J (η1 + η2(η1)) =
∫
R2{a1|φx|2 + a2|φz |2 + a3|φ|2}dxdz

−C1

∫
R2

k2
1

(1−Λ)k2
1+k2

2

∣∣∣|̂φ|2
∣∣∣
2

dk1dk2 − C2

∫
R2 |φ|4dk1dk2 + ε1/2Rε(φ),

where a1, a2, a3, C1, C2 > 0 and Rε is an error term that can be estimated accu-
rately together with its two first derivatives. Hence we are lead to a perturbed
Davey-Stewartson functional and a non-trivial critical point is then obtained by
minimisation on a Nehari constraint (any vector space of complex-valued functions
being regarded as a real vector space).
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Splash singularities for the free boundary Navier-Stokes equations

Angel Castro

The free boundary Navier-Stokes equations model the motion of and incompress-
ible and viscous fluid in vacuum. These equations can be written in the following
way

∂tu+ u · ∇u = −∇p+ ν∆u in Ω(t)

∇ · u = 0 in Ω(t)

u(x, 0) = u0(x),

where u : R2 → R2 is the velocity of the fluid (we will work in dimension 2),
p : R → R is the pressure and ν is the viscosity.

The domain Ω(t), where we solve the system, is transported by the flow. That
means that if we define the trajectories X(α, t) by solving the equation

d

dt
X(α, t) = u(X(α, t), t) in Ω0(1)

X(α, 0) = α α ∈ Ω0

then the domain Ω(t) is given by

Ω(t) = X(Ω0, t).

Also the following boundary conditions are imposed for the velocity and the
pressure

(pI− ν(∇u +∇u∗)n = patmn on Ω(t).

Here n is the normal unit vector to ∂Ω(t), pointing out Ω(t).
These system has been extensively studied. For example is well know the local

in time existence of solutions and there are also several works dealing with the
long time behaviour for small initial data. However there are no previous result
concerning the existence of singularities.

The initial domain Ω0 is assumed to be open, bounded, simply connected and
with an smooth boundary that satisfies the chord-arc condition, i.e., there is no
self-intersections. We will say that the Navier-Stokes system develops a splash
singularity if at some finite time T > 0 the boundary of the domain Ω(t) touch
itself in a point. In our resent work we show that this kind of singularities can be
formed for free boundary N-S.

The existence of splash singularities has been already proven in [1] for the water
waves problem, i.e.,

∂tu+ u · ∇u = −∇p− (0, g) in Ω(t)

∇ · u = 0 in Ω(t)

∇⊥ · u = 0 in Ω(t)

u(x, 0) = u0(x).

The domain Ω(t) is again given by (1).
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Two of the main ingredients in the proof of the splash singularities for the water
waves problem are the following:

• One can take a transformation of the equations in such a way that the
new equations do not see the singularity.

• The water waves system has a symmetry under time reversal and then it
can be solved backwards in time.

The Navier-Stokes system has not this symmetry anymore and a different ar-
gument has to be carried out. Instead to solve the equations backwards in time,
the existence of a splash singularity is shown by solving the transformed equations
forward and then proving stability under small perturbation.
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Validity of the KdV and the NLS approximation of the water wave

problem

Wolf-Patrick Düll

We consider the two-dimensional water wave problem for waves over an incom-
pressible and inviscid fluid in an infinitely long canal of finite depth both with
and without surface tension. We additionally assume that the flow is irrotational.
Then the velocity field is the gradient field of a harmonic potential and the vertical
component v2 of the velocity is uniquely determined by the horizontal component
v1, more precisely, there exists an operator K depending on the height η of the
free top surface Γ such that v2 = Kv1. Consequently, the water wave problem can
be completely described by the evolution equations for η and for v1 restricted on
Γ. Using Eulerian coordinates, we have

ηt = Kv1 − v1ηx at Γ(t),(1)

(v1)t = −gηx − 1
2 (v

2
1 + (Kv1)2)x + bgh2

(
ηx√
1+η2

x

)

xx

at Γ(t),(2)

where g is the constant of gravity, h is the depth of the canal, b is the Bond
number, which is proportional to the strength of the surface tension, and κ is the
curvature of Γ.

Despite this simplification the water wave problem still remains so complicated
that a qualitative understanding of the solutions to the above equations being
usable for practical applications does not seem within reach for the near future,
neither analytically nor numerically. Therefore, it is reasonable to approximate the
water wave problem in various parameter regimes by appropriate reduced models
whose qualitative properties are more easily accessible. To understand to which
extent these reduced models yield correct predictions of the behavior of the original
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problem it is important to justify the validity of these approximations by estimates
of the approximation errors in the typical length and time scales.

In this talk, we discuss mathematically rigorous justifications of the approxi-
mations of the water wave problem by the Korteweg-de Vries equation and the
Nonlinear Schrödinger equation.

The Korteweg-de Vries (KdV) equation can be derived as an approximation equa-
tion for small and slow modulations of the trivial solution η = v1 = 0. Inserting
the long-wave ansatz

(
η
v1

)
(x, t) = ε2A

(
ε(x± t), ε3t

)( 1
∓1

)
+O(ε3)

with A : R2 → R and a small perturbation parameter ε > 0 into (1)–(2) and
equating the terms with the lowest power of ε one can derive that A has to satisfy
in lowest order with respect to ε the KdV equation

(3) Aτ = ±
(1
6
− b

2

)
Aξξξ ±

3

2
AAξ

with τ = ε3t and ξ = ε(x± t). For b = 1
3 +2νε2 one obtains, by making the ansatz

(
η
v1

)
(x, t) = ε4A

(
ε(x± t), ε5t

)( 1
∓1

)
+O(ε5)

with A : R2 → R the Kawahara equation

(4) ∂τA = ∓ν∂3ξA± 1

90
∂5ξA± 3

2
A∂ξA

with τ = ε5t and ξ = ε(x± t) as an approximation equation.
The Nonlinear Schrödinger (NLS) equation can be derived as an approximation

equation for small and slow modulations of an oscillating wave packet. The solution
of the NLS equation describes the evolution of the envelope of the wave packet.
Inserting the ansatz

(
η
v1

)
(x, t) = εA

(
ε(x− cgt), ε

2t
)
ei(k0x−ω(k0)t)ϕ(k0) + c.c.+O(ε2) ,

where ω(k) = sign(k)
√
k tanh(k), cg = ∂kω(k0) and ϕ(k0) ∈ C2 in (1)–(2) yields

in the case b = 0 at leading order in ε the NLS equation

Aτ = iν1Aξξ + iν2A|A|2(5)

with τ = ε2t, ξ = ε(x− cgt) and νj = νj(k0) ∈ R.

We justify the validity of the KdV approximation by the following approxima-
tion theorem.

Theorem 1. For all b0, C0, τ0 > 0 there exist an ε0 > 0 such that for all ε ∈ R

with 0 < ε ≤ ε0 and all b ∈ R \ { 1
3} with 0 ≤ b ≤ b0 the following is true. Let

η|t=0(x) = ε2Φ1(εx), v1|t=0(x) = ε2Φ2(εx)
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with max {‖(Φ1(·),Φ2(·))‖Hs+8

ξ
, ‖(ρkΦ1(·), ρkΦ2(·))‖Hs+3

ξ
} ≤ C0ε

l, where ξ = εx,

s ≥ 7, k > 1, l ≥ 0 and ρ(ξ) = (1 + ξ2)1/2. Split the initial conditions into

A1|τ=0 =
1

2
(Φ1 + Φ2), A2|τ=0 =

1

2
(Φ1 − Φ2)

and let the amplitudes A1 = A1(ξ, τ) and A2 = A2(ξ, τ) satisfy

(A1)τ =
( b
2
− 1

6

)
(A1)ξξξ −

3

2
A1(A1)ξ, (A2)τ =

(1
6
− b

2

)
(A2)ξξξ +

3

2
A2(A2)ξ.

Then there exists a unique solution of the 2-D water wave problem (1)–(2) with
the above initial conditions satisfying

sup
t∈[0,τ0/ε3]

∥∥∥∥
(
η
v1

)
(·, t)− ψ(·, t)

∥∥∥∥
Hs

ξ×H
s−1/2
ξ

. ε4+l

where

ψ(x, t) = ε2A1

(
ε(x− t), ε3t

)(1
1

)
+ ε2A2

(
ε(x+ t), ε3t

)( 1
−1

)
.

We prove the theorem by using the arc length formulation of the water wave
problem, where the top surface is parametrized by arc length and the velocity on
the top surface is decomposed into its tangential and its normal component. In this
formulation, the term b (ηx(1 + η2x)

−1/2)xx becomes linear, which allows to prove
error estimates being uniform with respect to b as b and ε go to 0. Consequently,
the cases with and without surface tension can be handled together in one proof.
The error estimates are proven with the help of a suitably constructed energy.

For the Kawahara approximation there is a similar approximation theorem
which can be proven analogously to Theorem 1.

The validity of the NLS approximation is justified by the following approxima-
tion theorem.

Theorem 2. Let b = 0 and s ≥ 7. Then for all k0 > 0 and for all C1, τ0 > 0
there exist τ1 > 0 and ε0 > 0 such that for all solutions A ∈ C([0, τ0], H

s(R,C))
of the NLS equation (5) with

sup
τ∈[0,τ0]

‖A(·, τ)‖Hs(R,C) ≤ C1

the following holds. For all ε ∈ (0, ε0) there exists a solution

(η, v1) ∈ C([0, τ1/ε
2], (Hs(R,R))2)

of the 2-D water wave problem (1)–(2) which satisfies

sup
t∈[0,τ1/ε2]

∥∥∥∥
(
η

v1

)
(·, t)− ψ(·, t)

∥∥∥∥
(Hs(R,R))2

. ε3/2

where

ψ(x, t) = εA
(
ε(x− cgt), ε

2t
)
ei(k0x−ω(k0)t)ϕ(k0) + c.c. .
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We prove the theorem by using Lagrangian coordinates. We eliminate all terms
of order O(ε) in the error equations by a suitable normal-form transform which
can be constructed although the error equations possess non-trivial resonances.
Even though the normal-form transform loses regularity the structure of the er-
ror equations allow to invert the normal-form transform. Having performed the
normal-form transform the error can be estimated by using an appropriate time
dependent analytic norm to overcome the loss of regularity in the error equations.
The use of an analytic norm is possible because the approximation function is com-
pactly supported in Fourier space up to an error of order O(ε3/2) in (Hs(R,R))2.
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On Whitham’s conjecture of a highest cusped wave for a nonlocal

shallow water wave equation

Mats Ehrnström

The main aim of this report is to present the existence of a highest, cusped, periodic
travelling-wave solution for the Whitham equation, thereby positively resolving the

Whitham conjecture. For m(ξ) = ( tanh(ξ)ξ )1/2, let

K(x) =
1√
2π

∫ ∞

−∞

m(ξ) exp(−ixξ) dξ

denote the Fourier transform Fm of the function m at a point x ∈ R. The function
m is smooth with decay rate O(|ξ|−1/2) as |x| → ∞, so that (Fm)(x) = O(|x|−k)
as |x| → ∞, for all k ∈ N. Our normalisation of F is

(Ff)(x) = 1√
2π

∫ ∞

−∞

f(ξ) exp(−ixξ) dx, for f ∈ S,

which makes F a unitary operator on L2(R). Since m is even and real-valued,
so is the kernel K. It is furthermore smooth for all x 6= 0 and all its derivates
have rapid decay. As made precise below, it is singular at the origin. If we denote
by L : f 7→ K ∗ f the action by convolution with the kernel K, the Whitham
equation is the nonlinear, nonlocal evolution equation ut + (u2 + Lu)x = 0. In
steady variables ϕ(x) = u(x− µt) it takes the form

(1) −µϕ+ Lϕ+ ϕ2 = 0,

where we have integrated the equation once and used Galilean invariance to nor-
malise the constant of integration to zero. The equation (1) models waves travel-
ling right-ward with a permanent form and a normalised wave speed µ. With a
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solution of the steady Whitham equation we denote a real-valued, bounded and
continuous function ϕ that satisfies (1) pointwise. Our first result is the following.

The singularity of K. The Whitham kernel K satisfies K(x) ∼ |x|−1/2 and
−K ′(x) ∼ 1

2 sgn (x)|x|−3/2 as |x| → 0.

To see the difficulty involved in handling derivatives of K away from the origin,
consider first the formal equality

DxK(x) = − 2

π

∫ ∞

0

(ξ tanh(ξ))1/2 sin(xξ) dξ,

obtained by differentiating under the integral sign. Since ξ 7→ (ξ tanh(ξ))1/2 is
monotone increasing on (0,∞), the integral in the right-hand side is not well
defined. To circumvent this difficulty, we consider instead of DxK(x) the product
−xDxK(x). This is an element of S′, and we show that its Fourier transform is
positive definite. Hence, xDxK(x) is (almost) everywhere negative:

Global form of K. The Fourier transform of (m(ξ))
2α

is positive and one-sided
monotone for all α ∈ (0, 1]. In addition, the Whitham kernel K is strictly convex
for all x 6= 0.

We now introduce the periodised Whitham kernel,

KP (x) :=
∑

n∈N

K(x+ nP ),

for P ∈ (0,∞). It follows from the above that for any P > 0 the periodised
Whitham kernel KP is strictly decreasing in the interval (0, P/2). The operator L
is furthermore strictly monotone, parity-preserving, and Lf(x) > 0 on (−P/2, 0)
for f odd and continuous with f  0 on (−P/2, 0). One of the essential ingredients
of the proof of the highest wave is preservation of the nodal pattern along the main
bifurcation branch.

Nodal pattern. Any non-constant and even solution ϕ ∈ C1(R) of the steady
Whitham equation (1) which is non-decreasing on (−P/2, 0) satisfies

ϕ′ > 0, ϕ <
µ

2
on (−P/2, 0).

If ϕ ∈ C2(R), then ϕ < µ
2 everywhere, with ϕ′′(0) < 0. For P < ∞ one further-

more has ϕ′′(±P/2) > 0.

To formulate the main regularity result, define C1/2+(R) = ∪α∈( 1
2
,1)C

α(R) and

C1/2−(R) = ∩α∈(0, 1
2
)C

α(R). We shall say that a solution ϕ is Hölder continuous

of regularity α ∈ (0, 1) at a point x ∈ R if suph>0 |ϕ(x + h) − ϕ(x)|/hα < ∞. If
ϕ is Hölder continuous of regularity β at a point x for all β < α ≤ 1, we similarly
say that ϕ is of Hölder regularity α− at that point. Part two of the subsequent
result proves that a limiting wave is cusped.

Regularity of solutions. Let ϕ ≤ µ
2 be a solution of the steady Whitham equa-

tion.
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(i) If ϕ < µ
2 , uniformly on R, then ϕ ∈ C∞(R).

(ii) If ϕ is even, non-constant, and non-decreasing on (−P/2, 0) with ϕ(0) =
µ
2 , then ϕ ∈ C1/2−(R) \ C1/2+(R) with Hölder regularity 1− wherever

ϕ(x) 6= µ
2 , and Hölder regularity (12 )

− at x = 0.

We now fix α ∈ (12 , 1), and consider Cα
even(S), the space of even and α-Hölder

continuous real-valued functions on the unit circle S. Let furthermore F : Cα
even(S)×

R → Cα
even(S) be the operator defined by

F (ϕ, µ) := µϕ− Lϕ− ϕ2,

With U := {(ϕ, µ) ∈ Cα
even(S)× R : ϕ < µ/2}, we let

S := {(ϕ, µ) ∈ U : F (ϕ, µ) = 0}
be our set of solutions.

Global bifurcation. For each integer k ≥ 1, there exist µk := (tanh(k)/k)
1/2

and a local, analytic curve

ε 7→ (ϕ(ε), µ(ε)) ∈ Cα
even(S)× (0, 1)

of nontrivial 2π/k-periodic Whitham solutions with Dεϕ(0) = cos(kx) that bifur-
cates from the trivial solution curve µ 7→ (0, µ) at (ϕ(0), µ(0)) = (0, µk). The
local curves extend to global continuous curves of solutions R≥0 → S. One of the
following alternatives holds:

(i) ‖(ϕ(ε), µ(ε))‖Cα(S)×R → ∞ as ε→ ∞.
(ii) The pair (ϕ(ε), µ(ε)) approaches the boundary of S as ε→ ∞.
(iii) The function ε 7→ (ϕ(ε), µ(ε)) is T -periodic, for some T ∈ (0,∞).

One can prove that any sequence of Whitham solutions (ϕn, µn) ∈ S has a
subsequence which converges uniformly to a solution ϕ ∈ Cα(S), with α ∈ (0, 12 )
arbitrary. Since furthermore alternative (i) in the above bifurcation result can
happen only if

lim inf
ε→∞

inf
x∈R

(
µ(ε)

2
− ϕ(x; ε)

)
= 0,

alternative (i) implies alternative (ii). The alternative (iii) is ruled out using
preservation of the nodal pattern along the main bifurcation branch. One can
show the the only remaining alternative, (i), implies the existence of a limiting
wave peaking at ϕ(0) = µ

2 with µ ∈ [0, 1]. Finally, the following result excludes
the limiting wave from being trivial.

Uniform lower bound of the size of solutions. Let ϕ be an even, non-
constant C1-solution of the steady Whitham equation (1) with ϕ < µ

2 and ϕ′ ≥ 0
in (−P/2, 0). Then there exists a universal constant λK,P > 0, depending only on
the kernel K and the period P , such that

µ
2 − ϕ(P2 ) ≥ λK,P .

More generally, µ
2 − ϕ(x) &K,P |x0|1/2, uniformly for all x ∈ [−P/2, x0], with

x0 < 0.
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Spatial dynamics methods for axisymmetric solitary waves on a

ferrofluid jet

Mark D. Groves

We consider the irrotational flow of an incompressible, inviscid ferrofluid of con-
stant density ρ surrounding a metal wire in a vaccum. In terms of cylindrical
polar coordinates (r, θ, z), where z is aligned with the wire, the fluid domain is
{(r, θ, z) : 0 < r < R+ ζ(θ, z)} (see Figure 1). We examine whether the magnetic
force in the ferrofluid induced by a current J flowing in the wire can, together with
surface tension, support axisymmetric solitary waves on its free surface.

Figure 1. A ferrofluid jet surrounding a metal wire in a vac-
uum. The current J in the wire generates a magnetic field
H = Jeθ/(2πr) which is unchanged by axisymmetric flows.

An axisymmetric solitary-wave flow is described by a scalar velocity potential
φ(r, z − ct) which satisfies the equations

φrr +
1

r
φr + φzz = 0, r < 1 + ζ,(1)

ζz + φr − φzζz = 0, r = 1 + ζ,(2)

−φz +
1

2
(φ2r + φ2z)− α

(
ν
(

1
1+ζ

)
− ν(1)

)

+β

(
(1 + ζ2z )

− 1
2

(1 + ζ)
− ζzz

(1 + ζ2z )
− 1

2

− 1

)
= 0, r = 1 + ζ(3)

and asymptotic conditions ζ, φr, φz → 0 as z → ∞ (see Blyth & Parau [1]). Here
dimensionless variables have been introduced, the dimensionless parameters α and
β are given by the formulae

α =
µ0J

2

4π2R2c2
, β =

σ

Rc2
,

in which µ0 is the magnetic permeability in a vacuum and σ is the coefficient of
surface tension, and

ν(s) =

∫ s

0

|M(t)| dt,
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where M(|H|) is the magnetic force in the fluid generated by a magnetic field H.
Note that (1)-(3) follow from the formal variational principle

δ

∫ {∫ 1+ζ

0

(
−rφz +

1

2
(rφ2r + rφ2z)

)
dr

− αT (ζ) + β(1 + ζ)(1 + ζ2z )
1
2 − 1

2β(1 + ζ)2
}

dz = 0,(4)

where

T (ζ) =

∫ ζ

0

(
ν
(

1
1+s

)
− ν(1)

)
(1 + s) ds.

Solitary-wave solutions to (1)–(3) can be found by adapting the results avail-
able in the literature on the classical water-wave problem. A complete Hamiltonian
spatial dynamics theory for small-amplitude solitary gravity-capillary water waves
with a general distribution of vorticity was given by Groves & Wahlén [4], and
applying their theory to the present problem yields analogous results. The phrase
‘Hamiltonian spatial dynamics’ refers to an approach where a system of partial dif-
ferential equations arising from a variational principle is formulated (by means of
an appropriately constructed Legendre transform) as a (typically ill-posed) Hamil-
tonian evolutionary equation

(5) uξ = L(u) +N(u),

in which an unbounded spatial coordinate ξ plays the role of the time-like variable.

43 CC

C2 C1

β

I
II

III

γ = α−β

1/4

2

Figure 2. Bifurcation curves in the (γ, α)-plane; homoclinic bi-
furcation is detected in the shaded regions.
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We study (1)–(3) using spatial dynamics by formulating this problem as an evo-
lutionary equation of the form (5) with ξ = z in an infinite-dimensional phase space
consisting of functions of the radial coordinate r. Solutions of (5) are found using
centre-manifold reduction (Mielke [7]). The equation admits a finite-dimensional
invariant manifold called the centre manifold which contains all its small, bounded
solutions; the dimension of the centre manifold is given by the number of purely
imaginary eigenvalues of L, and the reduced flow on the centre manifold is deter-
mined by a reversible Hamiltonian system with finitely many degrees of freedom.

The reduction procedure is especially helpful in detecting bifurcations which
are associated with a change in the number of purely imaginary eigenvalues. In
the present problem there are three critical curves C2, C3, C4 in the (β, γ) param-
eter plane at which the number of purely imaginary eigenvalues of L changes (see
Figure 2), together with a fourth curve C1 at which the number of real eigenval-
ues changes; an explicit parametrisation of each of these curves is available. We
introduce a bifurcation parameter ε by perturbing β and γ around fixed reference
values, and the reduction procedure delivers an ε-dependent manifold which cap-
tures the small-amplitude dynamics for small values of this parameter. Homoclinic
solutions to the reduced system correspond to solitary ferrofluid waves.

Region I: A Hamiltonian 02-resonance takes place at C4, that is two imaginary
eigenvalues collide at the origin and become real as one crosses the curve from
below. The flow on the two-dimensional centre manifold is controlled by the
reversible, Hamiltonian equation

uzz = u+
3

2
u2 +O(δ1/2),

where 0 < δ ≪ 1 is the bifurcation parameter γ − 2. This equation admits a
homoclinic solution which corresponds to a solitary wave of depression whose tail
decays exponentially and monotonically (cf. Kirchgässner [6]) (Figure 3(a) and 4).

Region II lies on the ‘complex side’ of the curve C1, at points of which two
pairs of small-magnitude real eigenvalues collide and become complex. The centre
manifold is four-dimensional, and it the flow on the centre manifold is controlled
by the reversible, Hamiltonian equation

(6) uzzzz − 2(1 + δ)uzz + u− u2 = 0(µ),

where 0 < µ ≪ 1 measures the distance from the point (14 , 2) and 0 < δ ≪ 1
is the bifurcation parameter (measuring the distance from C1). This equation
has an infinite family of multipulse homoclinic solutions which make several large
excursions away from the origin (cf. Buffoni, Groves & Toland [3]). The cor-
responding ferrofluid waves are solitary waves of depression with 2, 3, 4, . . . large
troughs separated by 2, 3, . . . small oscillations; their tails are oscillatory and decay
exponentially (Figures 3(b) and 5).
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Region III: A Hamiltonian-Hopf bifurcation takes place at C2 (two pairs of
purely imaginary eigenvalues collide at non-zero points ±iq and become complex).
The two-degree-of-freedom reduced Hamiltonian system is conveniently studied
using complex coordinates (A,B) and a normal-form transformation. Introducing
a bifurcation parameter δ so that positive values of δ correspond to points on the
‘complex’ side C2, one obtains the reduced Hamiltonian system

Az =
∂H

∂B̄
, Bz = −∂H

∂Ā
,

H = iq(AB̄ − ĀB) + |B|2 +HNF(|A|2, i(AB̄ − ĀB), δ) +O(|(A,B)|2|(δ, A,B)|n0),

where HNF is a real polynomial which satisfies HNF(0, 0, δ) = 0; it contains the
terms of order 3, . . . , n0 + 1 in the Taylor expansion of H . Supposing that the
coefficients of certain terms in HNF have the correct sign (a condition which can
be explicitly verified in the present context), one finds two ‘basic’ symmetric ho-
moclinic solutions (Iooss & Pérouème [5]) and a family of geometrically distinct
homoclinic solutions which generically resemble multiple copies of one of the basic
homoclinic solutions (Buffoni & Groves [2]). The corresponding ferrofluid waves
are symmetric solitary waves which take the form of periodic wave trains modu-
lated by exponentially decaying envelopes (Figure 3(c)).
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(a) A symmetric solitary wave of depression is found in region I.

(b) Region II contains an infinite family of multi-troughed solitary waves which
decay in an oscillatory fashion.

(c) Symmetric unipulse modulated solitary waves (left and centre) co-exist with
an infinite family of multipulse modulated solitary waves (right) in region III.

Figure 3. Sketches of the function ζ for the solitary waves found
by centre-manifold reduction and homoclinic bifurcation theory.
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Figure 4. The ferrofluid solitary wave in region I.

Figure 5. Multipulse ferrofluid solitary waves in region II.

Instabilities in the Whitham equation for shallow water waves

Vera Hur

As Whitham said in his celebrated treatise on linear and nonlinear waves, “the
breaking phenomenon is one of the most intriguing long-standing problems of water
wave theory.” The shallow water equations

(1)
∂th+ d∂xu+ ∂x(uh) = 0,

∂tu+ g∂xh+ u∂xu = 0

approximate the water wave problem when waves are long compared to the fluid
depth, and furthermore, they explain wave breaking – the solution remains bounded
but its slope becomes unbounded in finite time. Here, t ∈ R denotes the temporal
variable, x ∈ R is the spatial variable; h = h(x, t) represents the surface displace-
ment from the undisturbed depth d, and u = u(x, t) is the horizontal velocity of a
fluid particle at the free surface. Moreover g denotes the constant of gravitational
acceleration.

But the shallow water theory goes too far. It predicts that all waves carrying
an increase of elevation break. Observations have been long since established
that some waves do not break. Clearly, the neglected dispersion effects inhibit
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breaking. Note that the phase speed of a plane wave with the wave number k near
the quintessential state of water is

c(k) =

√
g tanh(kd)

k
=
√
gd
(
1− 1

6
k2d2

)
+ O(k4d4)

as kd→ 0. Note moreover that solutions of the linear part of (1) translate at the
speed

√
gd, regardless of their wave number.

But a simple theory including some of dispersion effects, namely the Korteweg-
de Vries (KdV) equation,

(2) ∂th+
√
gd
(
1 +

1

6
d2∂2x

)
∂xh+

3

2

√
g

d
h∂xh = 0,

in turn, goes too far and predicts that no waves break.
One concludes that some dispersion is necessary to explain wave breaking1 but

the dispersion of the KdV equation is too strong (for short wavelengths). It is
intriguing to find a simple mathematical equation that could capture breaking.

Whitham therefore put forward

(3) ∂th+M∂xh+
3

2

√
g

d
h∂xh = 0,

where

M̂f(k) = c(k)f̂(k) =

√
g tanh(kd)

k
f̂(k),

as an alternative to the KdV equation, combining the dispersion relation of surface
water waves and the nonlinearity of the shallow water equations, and he advocated
that (3) would explain breaking. The kernel associated with the integral represen-
tation of M is difficult to handle. Nevertheless, recently in [1], wave breaking for
(3) was analytically confirmed, provided that the initial datum is sufficiently steep.
The proof is based upon ordinary differential equations along characteristics with
nonlocal forcing terms and their asymptotic behavior near zero.

Furthermore in [2], a 2π/k-periodic traveling wave of (3) with a sufficiently small
amplitude was shown to be spectrally unstable with respect to long wavelengths
perturbations if kd > 1.145 . . . . The proof involves a spectral perturbation of
the associated linearized operator with respect to the Floquet exponent and the
small amplitude parameter. Incidentally Benjamin and Feir and, independently,
Whitham in the mid 1960’s formally argued that a 2π/k-periodic traveling wave in
water would be unstable, leading to sidebands growth, namely the Benjamin-Feir
instability, provided that kd > 1.363 . . . .

1When gradients are no longer small, the long wavelengths assumption under which (1) and
(2) are derived is no longer valid. Yet breaking does occur and in some circumstances does not
seem to be too far away from what (1) describes.
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Solvability of the initial value problem to a model system for water

waves

Tatsuo Iguchi

The water wave problem is mathematically formulated as a free boundary prob-
lem for an irrotational flow of an inviscid and incompressible fluid under the
gravitational field. The basic equations for water waves are complicated due to
the nonlinearity of the equations together with the presence of an unknown free
surface. Therefore, until now many approximate equations have been proposed
and analyzed to understand natural phenomena for water waves. Famous exam-
ples of such approximate equations are the shallow water equations, the Green–
Naghdi equations, Boussinesq type equations, the Korteweg–de Vries equation,
the Kadomtsev–Petviashvili equation, the Benjamin–Bona–Mahony equation, the
Camassa–Holm equation, the Benjamin–Ono equations, and so on. All of them
are derived from the water wave problem under the shallowness assumption of the
water waves, which means that the mean depth of the water is sufficiently small
compared to the typical wavelength of the water surface.

On the other hand, it is well-known that the water wave problem has a varia-
tional structure. In fact, J. C. Luke [6] gave a Lagrangian in terms of the velocity
potential and the surface variation, and showed that the corresponding Euler–
Lagrange equations are the basic equations for water waves. M. Isobe [1, 2] and
T. Kakinuma [3, 4, 5] derived model equations for water waves without any shal-
lowness assumption. The model equations are the Euler–Lagrange equations to
an approximated Lagrangian, which is obtained by approximating the velocity po-
tential in Luke’s Lagrangian. I would like to talk on the initial value problem to
one of the model equations




ηt +∇ ·
(
H∇φ0 + 1

3
H3∇φ1 −H2φ1∇b

)
= 0,

H2ηt +∇ ·
(1
3
H3∇φ0 + 1

5
H5∇φ1 − 1

2
H4φ1∇b

)

+H2∇b · ∇φ0 + 1

2
H4∇b · ∇φ1 − 4

3
H3(1 + |∇b|2)φ1 = 0,

φ0t +H2φ1t + gη +
1

2
|∇φ0|2 + 1

2
H4|∇φ1|2

+H2∇φ0 · ∇φ1−2Hφ1∇b · ∇φ0−2H3φ1∇b · ∇φ1+2H2(1 + |∇b|2)(φ1)2=0

under the initial conditions

(η, φ0, φ1) = (η0, φ
0
0, φ

1
0) at t = 0,
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where η = η(x, t) is the surface elevation, b = b(x) represents the bottom to-
pography, φ0 = φ0(x, t) and φ1 = φ1(x, t) are related to the velocity potential
Φ = Φ(x, z, t) of the water by an approximate formula Φ(x, z, t) = φ0(x, t) + (z −
b(x))2φ1(x, t) and H = H(x, t) is the depth of water and is given by H(x, t) =
h + η(x, t) − b(x). Here, g is the gravitational constant and h is the mean depth
of the water. t is the time, x = (x1, x2, . . . , xn) ∈ Rn is the horizontal spatial
coordinates, and z is the vertical spatial coordinate.

The model is a nonlinear dispersive system, in fact, the linear dispersion relation
is given by (6h2|ξ|2 + 15)ω2 − gh|ξ|2(h2|ξ|2 + 15) = 0, where ξ ∈ Rn is the wave
vector and ω ∈ C is the angular frequency. Therefore, the phase speed cIK(ξ) is
given by

(
cIK(ξ)

)2
= gh

1 + 1
15h

2|ξ|2
1 + 2

5h
2|ξ|2 ,

which is the [2/2] Padé approximant of (cWW (ξ))2, where cWW (ξ) = ±
√

g tanh(h|ξ|)
|ξ|

is the phase speed of the linear water waves. Since the square of the phase speed
of the Green–Naghdi equations (cGN (ξ))2 = gh 1

1+ 1
3
h2|ξ|2

is the [0/2] Padé approx-

imant of (cWW (ξ))2, the model gives a better approximation than the Green–
Naghdi equations in the shallow water regime h|ξ| ≪ 1, at least, in the linear level
and in the case of a flat bottom.

As in the case of the full water wave problem, the model has a conserved energy

E(t) :=
1

2

∫

Rn

{∫ h+η(x,t)

b(x)

∣∣∇X

(
φ0(x, t)+(z−b(x))2φ1(x, t)

)∣∣2dz+g
(
η(x, t)

)2
}
dx,

where ∇X = (∇, ∂z). In fact, the energy function E(t) is a conserved quantity in
time for any smooth solution (η, φ0, φ1) of the model system.

A severe drawback of the model is the fact that the hypersurface t = 0 in
the space-time Rn × R is characteristic for the model, so that the initial value
problem to the model is not solvable in general. In fact, if the problem has a
solution (η, φ0, φ1), then by eliminating the time derivative ηt from the first two
equations in the model, we see that the solution has to satisfy the relation

H2∇ ·
(
H∇φ0 + 1

3
H3∇φ1 −H2φ1∇b

)

= ∇ ·
(1
3
H3∇φ0 + 1

5
H5∇φ1 − 1

2
H4φ1∇b

)

+H2∇b · ∇φ0 + 1

2
H4∇b · ∇φ1 − 4

3
H3(1 + |∇b|2)φ1.

Therefore, as a necessary condition the initial date (η0, φ
0
0, φ

1
0) and the bottom

topography b have to satisfy the above relation for the existence of the solution.
In this talk, we report that if the initial data and the bottom topography satisfy

the above condition together with the so-called Rayleigh–Taylor sign condition,
then the initial value problem for the model has a unique solution locally in time.
We refer to [7] for the details.
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Mechanical balance laws in long wave models

Henrik Kalisch

Consider wave motion at the surface of an inviscid incompressible fluid of unit den-
sity in the absence of capillarity. Suppose the depth of the fluid in the undisturbed
state is given by h0, and gravity is denoted by g. For waves which respect an ap-
proximate relationship α ∼ β between the nondimensional amplitude α = a/h0
and the long-wave parameter β = h20/λ

2, there are a variety of Boussinesq-type
equations which may be used to describe the wave motion for waves which have
sufficiently long wavelength λ when compared to the undisturbed depth h0.

The derivation of such systems is well understood [14], and there exist a large
number of systems with various requisite properties. For instance, the systems
may be optimized with respect to the description of shorter waves, or with respect
to smoothing properties, or amenability to numerical study. An overview is given
in [11]. Here we focus on a class of models derived and studied in [4, 5]. Denote
the limiting long-wave speed by c0 =

√
gh0, and define non-dimensional variables

by

x̃ =
x

λ
, z̃ =

z + h0
h0

, η̃ =
η

a
, t̃ =

c0t

λ
, φ̃ =

c0φ

gaλ
.

Assuming irrotaional fluid motion, expanding the velocity potential φ in an asymp-
totic series, and substituting into the governing Euler equations and free-surface
boundary conditions yields

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ − 1
2

(
θ2 − 1

3

)
βη̃x̃x̃t̃ = O(αβ, β2),(1)

w̃t̃ + η̃x̃ + αw̃w̃x̃ − 1
2

(
1− θ2

)
βw̃x̃x̃t̃ = O(αβ, β2).(2)

From these relations it appears that if α and β are sufficiently small, terms of
order O(αβ, β2) can be disregarded, and one may use the following system as
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approximate equations of motion:

ηt + h0wx + (ηw)x − bηxxt = 0,

wt + gηx + wwx − dwxxt = 0.
(3)

Here η(x, t) represents the excursion of the free surface at a spatial point x and
at time t, while w(x, t) represents the horizontal velocity at a given height h0θ in
the fluid column. The parameters b and d are given in terms of 0 ≤ θ ≤ 1 by

b = 1
2

(
θ2 − 1

3

)
h20, d = 1

2

(
1− θ2

)
h20.

This point of view can also be made rigorous by proving that solutions of the
free-surface problem based on the Euler equations converge to solutions of (3) in
an appropriate sense on a certain time scale [6, 11].

Since the system (3) was obtained by a procedure which is not based on the
conservation of mass and momentum (such as the derivation of the shallow-water
system for example), one may ask whether the system (3) allows the conservation
of mass, momentum, or indeed conservation of energy. As it happens, if θ2 = 2

3 ,
the system takes the form

ηt + h0wx + (ηw)x − h2
0

6 ηxxt = 0,

wt + gηx + wwx − h2
0

6 wxxt = 0,
(4)

and in this case, the system is Hamiltonian with Hamiltonian function

H =

∫ ∞

−∞

{
g
2η

2 + h0

2 w
2 + 1

2ηw
2
}
dx.

However, since the derivation of (4) was not based on preserving the Hamiltonian
structure, it remains to be shown that this functional represents the total mechan-
ical energy due to the wave motion. Moreover, the question also arises how to
express the energy of the wave motion in the more general system (3).

While in the study of system of this type, the prevailing point of view is to
consider conservation of functionals usually interpreted as total excess mass, mo-
mentum and energy1 a different way to proceed is to focus on approximate local
conservation. As explained in [2], this approach entails substituting the expan-
sion for the velocity potential into the conservation equations based on the Euler
description of the flow, and requiring the approximate balance law

∂

∂t̃
Ẽ(η̃, w̃) +

∂

∂x̃
q̃E(η̃, w̃) = O(α2, αβ, β2),

which defines the energy density E and energy flux qE .
In the case of (3), the dimensional versions of the energy density and energy

flux are obtained in the form

Eθ = g
2η

2 + h0

2 w
2 + 1

2w
2η +

h3
0

2

(
θ2 − 1

3

)
wwxx +

h3
0

6 w
2
x(5)

1The general system (3) features conservation of total excess mass through the conserved
integral

∫
∞

−∞
η dx. Moreover, for the system (4) the integral

∫
∞

−∞
ηw+ bηxwx dx is also formally

conserved. However, it is not clear if this last integral has any physical significance.
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h0

η( x,t)g

x

z

x2x1

Figure 1. Geometric setup of the problem. The undisturbed water
depth is h0, and the x-axis is aligned with the free surface at rest.
The free surface is described by a function η(x, t). The figure shows a
control interval delimited by x1 and x2 on the abscissa.

and

qEθ
= h0

2 w
3 + c20ηw +

c20h
2
0

2

(
θ2 − 1

3

)
ηwxx − h3

0

3 wwxt +
c20
h0
wη2.(6)

In particular, qEθ
(x, t) gives the energy flux and work done by the pressure force

due to the wave motion at a point x and a time t. Integrating Eθ(x, t) over an
interval [x1, x2] yields the energy due to the wave motion in the control interval
shown in Figure 1 at a time t, and to the same order of approximation as the
system (3) is valid.

If the surface disturbance is localized, so that η and w decay to zero at infinity,
and the integration of E is taken over the entire real line, then the Hamiltonian
of (4) is recovered in the case when θ2 = 2/3: H =

∫∞

−∞Eθ dx.
Similar approximate balance laws can be sought for the mass density and flux,

and for the momentum density and flux. Since it was already decided that the
system (3) is the governing system in the current description, these balance laws
will generally not hold exactly, but only up to some order in β and α.

One application of the analysis detailed above has been used to understand the
energy budget in an undular bore as approximated by different model equations
[1, 9].

Similar considerations can be applied to the KdV equation

(7) ηt + c0ηx + 3
2
c0
h0
ηηx +

c0h
2
0

6 ηxxx = 0,

which is a unidirectional model for surface waves. In this case, it was found in [3]
that the energy density and flux are given by

E = c20

(
1
h0
η2 + 1

4h2
0

η3 + h0

6 ηηxx + h0

6 η
2
x

)
,

and

(8) qE = c30

(
1
h0
η2 + 5

4h2
0

η3 + h0

2 ηηxx

)
.

One interesting application where these quantities can be put to use concerns the
the shoaling of periodic wavetrains and solitary waves. Consider a wave which
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experiences a decrease in depth over a gentle slope with no variation in the trans-
verse direction. From a practical point of view, the waveheight of the shoaling
waves is of particular interest, and one may use the conservation of energy flux
in an adiabatic setting to obtain a first approximation for the waveheight. The
linear theory is well known [7], and there have also been many studies making use
of cnoidal wave solutions of (7) for periodic shoaling.

However, there is a deep-water limit beyond which cnoidal solutions of the the
KdV equation cannot be used to describe periodic wave trains. Because of this
limitation, it is necessary in the shoaling problem to compute the initial transition
from deep water to intermediate depths by linear wave theory [12].

However, one problem which the authors of [12] faced was that at the point
where linear and cnoidal theory were to be matched, a discontinuity in waveheight
appeared in the shoaling curve. This problem was overcome later in [13] by impos-
ing continuity in waveheight directly, but at the cost of incurring a discontinuity
in the energy flux. Using the nonlinearly defined energy flux qE in the shoaling
equation

(9)

∫ T

0

qEA dt =

∫ T

0

qE dt,

eliminates the problem of discontinuities in waveheight or energy flux at the match-
ing point between linear and cnoidal theory [10].

A comparison between the shoaling computations based on (9) and the numer-
ical results for the full water-wave problem [8] is shown in Figure 2 for a wave
of initial wavelength L0 and waveheight H0. It can be seen that the waveheight
increases initially more slowly than predicted by Green’s law, but the shoaling
curve then turns up, and reaches a slope similar to Boussinesq’s law. The curve
based on (9) matches the curve obtained in [8] rather well. One aspect in which
the comparison is not favorable is the termination of the shoaling curve based on
(9) before the breaking point. This issue has not been investigated further so far.
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Figure 2. Left panel: definition sketch for h0, h, H0 and H . Center
panel: incident wave profile with L0

h0
= 14.5, H0

h0
= 0.4. Right panel:

b: shoaling curve after Grilli et al., black solid curve: shoaling curve
based on (8) and (9), G: Green’s law and B: Boussinesq’s law.
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Water waves with vorticity and asymptotic models

David Lannes

Motivated by the study of nonlinear wave-current interactions (such as rip-currents)
we study the influence of vorticity on surface water waves. We first derive a gen-
eralization of the classical hamiltonian Zakharov-Craig-Sulem formulation of ir-
rotational water waves that takes into account the effects of the vorticity. The
canonical variables for this formally Hamiltonian generalization are the surface el-
evation, the ?gradient component? of the horizontal component of the tangential
vector field, and the vorticity. It allows therefore to keep track of the influence of
vorticity on the flow. We show that this formulation is formally Hamiltonian and
that it is well-posed. We also establish the stability of the lifes pan with respect
to shallow water limits and provide some bounds on the solution. These results
can be found in [1].

Based on the bounds thus obtained, we turn to derive shallow water asymptotic
models. The big difference with irrotational flows is that the dynamics of the
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vorticity is fully three dimensional, while shallow water models are typically two-
dimensional (through vertical averaging). We show however that the vorticity
contribution can be reduced to two-dimensional equations; the idea, based on an
analogy with turbulence theory, is that the vorticity contributes to the averaged
momentum equation through a Reynolds-like tensor. A cascade of equations is
then derived for this tensor, but contrary to standard turbulence theory, closure
of the equations is obtained after a finite number of steps. The models thus
obtained generalize the classical Green-Naghdi equation in the sense that there are
additional terms in the momentum equation that take into account the presence
of vorticity. The evolution of these additional terms is essentially an advection at
the mean velocity. These results can be found in [2].

The structure of these extended equations allow for numerical simulations based
on a finite volume scheme; we present some preliminary result that will appear in
[3], and we also analyze the equations in the 1d case. We prove in particular that
there exist solitary waves of maximal amplitude with an angle at the crest that
depend on the vorticity.
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Non-existence of solitary waves of depression in the presence of

vorticity

Evgeniy Lokharu

Statement of the problem. Let an open channel of uniform rectangular cross-
section be bounded below by a horizontal rigid bottom and let water occupying
the channel be bounded above by a free surface not touching the bottom. In ap-
propriate Cartesian coordinates (x, y), the bottom coincides with the x-axis and
gravity acts in the negative y-direction. We use the non-dimensional variables pro-
posed by Keady and Norbury [2] (see also Appendix A in [3] for details of scaling);
namely, lengths and velocities are scaled to (Q2/g)1/3 and (Qg)1/3 respectively.
Here Q and g are the dimensional quantities for the rate of flow and the gravity
acceleration respectively, whereas (Q2/g)1/3 is the depth of the critical uniform
stream in the irrotational case.

The steady water motion is supposed to be two-dimensional and rotational; the
surface tension is neglected on the free surface of the water, where the pressure
is constant. These assumptions and the fact that water is incompressible allow
us to seek the velocity field in the form (ψy,−ψx), where ψ(x, y) is referred to as
the stream function. The vorticity distribution ω is supposed to be a prescribed
continuous function depending on ψ.
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We choose the frame of reference so that the velocity field is time-independent as
well as the unknown free-surface profile. The latter is assumed to be the graph of
y = η(x), x ∈ R, where η is a positive continuous function, and so the longitudinal
section of the water domain is D = {x ∈ R, 0 < y < η(x)}. The following free-
boundary problem for ψ and η which describes all kinds of waves has long been
known (cf. [2]):

ψxx + ψyy + ω(ψ) = 0, (x, y) ∈ D;(1)

ψ(x, 0) = 0, x ∈ R;(2)

ψ(x, η(x)) = 1, x ∈ R;(3)

|∇ψ(x, η(x))|2 + 2η(x) = 3r, x ∈ R.(4)

In condition (4) (Bernoulli’s equation), r is a constant considered as the problem’s
parameter and referred to as Bernoulli’s constant/the total head. In what follows,
we suppose that ψ is a strictly monotonic function of y, say

(5) ψy(x, y) > 0 for all (x, y) ∈ D̄,

which means that the flows we are going to study are unidirectional.
By a stream (shear-flow) solution we mean a pair (u(y), d) determining a solu-

tion for the problem (1)-(4), where u stands for the stream function instead of ψ
and the constant depth of flow d replaces the wave profile η.

Solitary waves. In 1834 a remarkable phenomena was observed by John Scott
Russell. During his experiments with a boat in a rectangular water channel he
generated a wave of special form moving with a constant speed and shape. The
wave surface had only one crest and was monotone around the crest (see the picture
below).

Such waves are now known as solitary waves of elevation. The first rigorous
proof of the existence for irrotational solitary waves was given by Lavrentiev in
1954, where a solitary wave was constructed as a limit of periodic waves. Since
that time a lot of research has been done, however there are many open questions
left, especially for waves with vorticity and surface tension. In 2007 appeared
paper [1] by Mark Groves and Erik Wahlén on small-amplitude waves with surface
tension. Using methods of spacial dynamics they constructed solitary type waves
of more complicated geometry. In particular, solitary waves of depression were
obtained (see the picture below).

Note, that in the irrotational case, it is well known that only solitary waves
of elevation exist. However, for rotational waves without surface tension it is
still unclear, if solitary waves of depression exist or not. Our goal is to answer
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this question. We prove that in the class of unidirectional waves only waves of
elevation exist. A precise statement is given in the from of the following theorem:

Theorem 1 (Kozlov, Kuznetsov, Lokharu, 2015). Let (Ψ, η) be a solution of the
problem (1)-(4) such that η(x) ≤ d for all x ∈ R and limx→+∞ η(x) = d for some
d > 0. Assume, moreover, that Ψy > δ in D for some δ > 0. Then (Ψ, η) is a
stream solution with depth d.

With similar methods we can also prove the absence of solitary type waves with
profiles that oscillate around a certain level and approach it as x→ ∞.
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Asymptotic stability of solitary waves in a water wave model with

indefinite variational structure

Robert L. Pego

We study asymptotic stability properties for solitary waves in the Benney-Luke
model equation for water waves. One feature that this model shares with the full
water wave problem is that solitary wave profiles are critical points of an energy-
momentum functional that is infinitely indefinite and not useful for estimates.

In one space dimension, the Benney-Luke equation takes the form

(1) ∂2t ϕ− ∂2xϕ+ a∂4xϕ− b∂2x∂
2
t ϕ+ (∂tϕ)(∂

2
xϕ) + 2(∂xϕ)(∂x∂tϕ) = 0.

This is the one-dimensional version of an equation originally derived by Benney and
Luke [1] as an isotropic model for three-dimensional water waves, formally valid
as an approximation for describing small-amplitude, long water waves in water of
finite depth. We take the parameters a, b > 0 to be such that a− b = τ̂ − 1

3 < 0,
where τ̂ is the inverse Bond number. This corresponds to the case of small or
zero surface tension. We remark that (1) is an approximation formally valid for
describing two-way water wave propagation, in contrast to one-way equations such
as the KdV, BBM, or KP equations.

We write evolution equations for the system in terms of

u =

(
q
r

)
=

(
∂xϕ
∂tϕ

)
, A = 1− a∂2x, B = 1− b∂2x.

The system takes the form

∂tu = Lu+ f(u), L =

(
0 ∂x

B−1A∂x 0

)
, f(u) =

(
0

−B−1(r∂xq + 2q∂xr)

)
.
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There is a two-parameter family of solitary waves (q, r) = (qc, rc)(x− ct−x0) with

qc(x) =
c2 − 1

c
sech2

(
1

2
αcx

)
, rc = −cqc, αc =

√
c2 − 1

bc2 − a
.

There are about 19 short steps involved in our stability analysis of these waves.
These are organized roughly as follows.

• Description of solitary waves and linearization. Hamiltonian structure.
Zero modes.

• Spectral stability implies linear stability: Fourier symbol estimate with
weights eax. Reduction of resolvent to scalar form. Verify the Gearhart-
Prüss stability criterion using compactness.

• Spectral stability in the KdV limit: KdV scaling of the reduced resol-
vent. Bundle convergence theorem (Uniform symbol estimates. KdV limit
of Fourier multipliers: low-frequency Taylor expansions, high-frequency
bounds. Commutator estimates). Null multiplicity (using the Gohberg-
Sigal-Rouché theorem).

• Linear implies nonlinear stability: Mizumachi’s wave-background decom-
position. Speed/phase modulation equations. Linear estimates via re-
centering. Hamiltonian energy estimate. Virial estimate (on nonlinear
transport). Stability proof (A priori estimates. Continuation. Rate esti-
mates.)

We study linear stability in a space L2
α with an exponential weight eαx designed

to discount energy transport that is slower than the solitary wave, having group
velocity that is negative with respect to the co-moving frame:

‖g‖L2
α
=

(∫

R

|eαxg(x)|2 dx
)1/2

.

The linear analysis goes like our work [2] for water waves. The linearized equations
in the co-moving frame take the form

∂tu = Lcu, Lc =

(
c∂ ∂

−B−1(−A∂ + rc∂ + 2r′c) c∂ − B−1(2qc∂ + q′c)

)
.

Perhaps the main theorem worth featuring here is the following. (The spectral
stability condition on Lc0 is known to hold for sufficiently small waves.)

Theorem 1 (Spectral stability implies nonlinear stability). Suppose c0 > σ > 1
and 0 < α < 1

2αc0 , and assume that in L2
α, Lc0 has no nonzero eigenvalue λ

satisfying ℜλ ≥ 0. Then there exists δ > 0 satisfying the following: If u0(x) =
uc0(x − x0) + v0(x) where x0 ∈ R and ‖v0‖H1 < δ, then there exist c⋆ > 1 and a
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C1-function x(t) such that

lim
t→∞

x′(t) = c⋆,(2)

|c⋆ − c0|+ sup
t>0

|x′(t)− c0| = O(‖v0‖H1),(3)

sup
t≥0

‖u(t, ·)− uc0(· − x(t))‖2H1 = O(‖v0‖H1),(4)

lim
t→∞

‖u(t, ·)− uc⋆(· − x(t))‖H1(x≥σt) = 0.(5)

If one makes stronger assumptions on the decay of the perturbation v0, so that
it is square-integrable against a weight with sufficient polynomial growth, one can
prove a polynomial rate of convergence for the phase difference x(t) − c⋆t.
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Multi-solitons and related constructions for the water-waves system

Frédéric Rousset

We consider the motion of an irrotational, incompressible fluid with constant den-
sity in the situation where the fluid domain is a strip with a rigid bottom and a
free surface:

Ωt = {Y = (X, z) ∈ Rd+1 : −H < z < η(t,X)},
where t is the time, d = 1, 2 is the horizontal dimension, H is a parameter defining
the fixed bottom z = −H and z = η(t,X) is the equation of the unknown free
surface at time t. We shall say that we are in the one dimensional case when
X = x ∈ R and in the two-dimensional case when X = (x, y) ∈ R2. We denote
by u the speed of the fluid, since the motion is irrotational, it is given by u =
∇Y Φ = (∇XΦ, ∂zΦ) for some scalar function Φ and hence we find that inside the
fluid domain Ωt,

(1) ∇Y · u = ∆Y Φ = (∆X + ∂2z )Φ = 0 .

On the boundaries of Ωt, we make the usual assumption that no fluid particles
cross the boundary. At the bottom of the fluid this reads

(2) ∂zΦ(t,X,−H) = 0

and on the free surface, this yields the kinematic condition

(3) ∂tη(t,X) +∇XΦ(t,X, η(t,X)) · ∇Xη(t,X)− ∂zΦ(t,X, η(t,X)) = 0 .

On the free surface, we also need to impose the pressure, taking into account the
surface tension and using the Bernouilli law to eliminate the pressure, we find that:
(4)

∂tΦ(t,X, η(t,X))+
1

2
|∇Y Φ(t,X, η(t,X))|2+gη(t,X) = b∇X · ∇Xη(t,X)√

1 + |∇Xη(t,X)|2
.
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The number b is the surface tension coefficient and g is the gravitational constant.
The term gη(t,X) is the trace of the gravitational force gz on the free surface.

It is classical to rewrite the system (1), (3), (4) as a system involving unknowns
defined on the free surface only [20]. For that purpose, let us define the following
Dirichlet-Neumann operator: for given η(X) ϕ(X), we define Φ(X, z) as the (well-
defined) solution of the elliptic boundary value problem

(∆X + ∂2z )Φ = 0, in {(X, z) : −H < z < η(X)},
Φ(X, η(X)) = ϕ(X), ∂zΦ(X,−H) = 0,

and we define the Dirichlet-Neumann operator as

(G[η]ϕ)(X) := (∂zΦ−∇Xη · ∇XΦ)|z=η(X)

=
√
1 + |∇Xη|2(∇X,zΦ · n)|z=η(X),

where n is the unit outward normal vector on the free surface at the point z =
η(X).

This allows to rewrite the system only in terms of the unknowns

(η(t,X), ϕ(t,X)) := (η(t,X),Φ(t,X, η(t,X))) .

In the one-dimensional case, the 1D water-wave problem can thus be written as

(5)





∂tη = G[η]ϕ

∂tϕ = −1

2
|∂xϕ|2 +

1

2

(G[η]ϕ + ∂xϕ∂xη)
2

1 + |∂xη|2
− gη + b∂x

( ∂xη√
1 + |∂xη|2

)

By introducing the notations U = (η, ϕ)t and

F(U) =
(
G[η]ϕ, −1

2
|∂xϕ|2 +

1

2

(G[η]ϕ + ∂xϕ∂xη)
2

1 + |∂xη|2
− gη+ b∂x

( ∂xη√
1 + |∂xη|2

))t
,

we shall write the water-wave system (5) in the abstract form

(6) ∂tU = F(U).

We know from [1] that for suitable parameters g, b and h, there exist solitary
wave solutions Qc(x− ct) = (ηc(x− ct), ϕc(x− ct))t at speed c ∼

√
gH.

Theorem 1 (Amick-Kirchgässner [1]). Suppose that

(7)
gH

c2
= 1 + ε2,

b

Hc2
>

1

3
.

Then there exists ε0 such that for every ε ∈ (0, ε0) (which fixes the speed) there is
a solution of (5) under the form

Qc(x− ct) =
(
ηc(x− ct), ϕc(x− ct)

)t
=
(
Hηε(H

−1(x− ct)), cHϕε(H
−1(x− ct))

)t

with
ηε(x) = ε2Θ1(εx, ε), ϕε(x) = εΘ2(εx, ε),

where Θ1 and Θ2 satisfy:

∃ d > 0, ∀α ≥ 0, ∃Cα > 0, ∀ (x, ε) ∈ R×(0, ε0), |(∂αxΘ1)(x, ε)| ≤ Cαe
−d|x|
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and

∃ d > 0, ∀α ≥ 1, ∃Cα > 0, ∀ (x, ε) ∈ R×(0, ε0), |(∂αxΘ2)(x, ε)| ≤ Cαe
−d|x| .

Moreover Θ1 is even and Θ2 is odd.

We thus consider two solitons Qc1(x − c1t) and Qc2(x − h − c2t) of (5) with
c1 < c2. We suppose that c1 and c2 satisfy (7) with suitable choices of the small
parameters ε1,2. We also suppose that h > 0 is large enough. We define

(8) M(t, x) := Qc1(x − c1t) +Qc2(x − h− c2t)

as the two-soliton function. We will focus on the case where each solitary wave
is stable in the following sense. Under our assumptions (7) on the speed c of
a solitary wave, it was proven in [15] that for sufficiently small corresponding
parameter ε, the solitary wave Qc is stable in the sense that the second derivative
of the Hamiltonian at the solitary wave restricted to a natural co-dimension 2
subspace is positive. We shall assume that the speeds c1, c2 are such that this
property is verified. Our main result reads:

Theorem 2. Let us fix s ≥ 0. Suppose that the speeds c1 < c2 satisfy (7) with
parameters ε1, ε2. Define M by (8). Then there exists ε∗ such that for ε1, ε2 ∈
(0, ε∗] and h sufficiently large, we have that there exists a (semi) global solution
U(t) = (η, ϕ)t, t ≥ 0 to the water-wave system (5) satisfying

U −M ∈ Cb([0,∞); Hs(R)×Hs(R))

and

lim
t→+∞

‖U(t)−M(t)‖Hs×Hs = 0.

We have focused on water waves with surface tension, nevertheless, since the
existence of solitary waves is also known (see [7], [6], [10] for example) and since
some of them are linearly stable, [17] it could be possible to perform a related
construction for water waves without surface tension.

Finally, let us point out that the assumption that h is sufficiently large is only
used in order to get a solution on [0,+∞[, an equivalent statement would be to
take h = 0 and to get a multi-soliton solution on the interval [T0,+∞[ with T0
sufficiently large.

The main arguments that are used to prove Theorem 2 can also be used in
order to sharpen the transverse instability result proven in [18] and construct for
the two-dimensional water-waves system that is to say when the fluid domain is

Ωt = {(X, z) ∈ R3, −H < z < η(t,X)},
a solution on [0,+∞) of the system which is different from the solitary wave (and
all its translates) and converge to the solitary wave as time goes to infinity. The
result that we shall prove is the following.

Theorem 3. Let us fix s ≥ 0. Suppose that c satisfies (7). For ε sufficiently small
there exists a global solution U of the 2-D water waves system with initial data U0



1068 Oberwolfach Report 19/2015

satisfying U −Qc ∈ Cb([0,∞);Hs(R2)×Hs(R2)). Moreover, one has

(9) ∂yU0 6= 0

and

lim
t→+∞

‖U(t, x, y)−Qc(x − ct)‖Hs×Hs = 0 .

Remark 1. By the remark after [19, Theorem 1.5] this result implies the transverse
instability of the solitary wave.

This result can be compared to classical results about the existence of strongly
stable manifolds for ordinary differential equations or semilinear partial differential
equations. Results as in Theorem 3 were in particular obtained for semilinear
partial differential equations in [5, 2] for example and in [19] for the KP-I equation
(see also [11]). The proof of Theorem 3 also relies on the construction of a well-
chosen approximate solution and of a remainder that solves a nonlinear system.

References

[1] C.J. Amick and K. Kirchgassner. A theory of solitary water-waves in the presence of surface
tension. Arch. Rat. Mech. Anal 105, 1–49 (1989).

[2] V. Combet. Construction and characterization of solutions converging to solitons for super-
critical gKdV equations. Differential Integral Equations 23, 513–568 (2010).

[3] R. Côte and S. Le Coz. High-speed excited multi-solitons in nonlinear Schrödinger equations.
J. Math. Pures Appl. 96, 135-166 (2011).
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Approximation results for amplitude equations describing water wave

problem like dispersive systems

Guido Schneider

We are interested in the valdity of various amplitude equations for dispersive
wave systems which have the following properties with the water wave problem in
common, namely two curves of eigenvalues vanishing at the wave number k = 0
and associated nonlinear terms which do the same. Famous examples which fall
into this class are the FPU system and the polyatomic FPU system. Among
the amplitude equations which can be derived via a multiple scaling perturbation
ansatz are the KdV equation, the NLS equation, the TWI system, the FWI system,
and the Whitham system. Except for the TWI approximation the proof of the
approximation results in general is non-trivial since solutions of order O(εα) have
to be approximated on an O(ε−(1+α)) time scale where 0 < ε ≪ 1 is the small
perturbation parameter. Herein, α = 2 for the KdV approximation, α = 1 for the
NLS and FWI approximation, and α = 0 for the Whitham approximation. Here
we are especially interested in approximation results for dispersive wave systems
with spatially periodic coefficients with non-small contrast.

We refrain from giving a complete overview about the existing literature and
restrict ourselves to the ones which we think are most fundamental. Error esti-
mates that these approximations predict the dynamics of solutions of the original
system correctly can be found for the KdV approximation in [7, 16, 17, 3, 10]
via energy estimates and in [13] with the explanations from [15] with a Cauchy-
Kowalevskaya like approach. For the NLS approximation such estimates can be
found in [8, 18, 20, 21, 11]. In [19] a counterexample for the failure of the NLS
approximation for water wave problem with surface tension in certain situations
has been constructed. The proof of the NLS approximation results are based on
normal form transformations.

Systems with spatially periodic coefficients can serve as a toy model for the
water problem over a periodic bottom or as a toy problem for the modulations
of spatially periodic wave trains. KdV justification results for the water wave
problem with a long wave small amplitude periodic perturbations of the bottom
can be found in [12, 6]. KDV justification results for modulations of periodic wave
trains in the NLS equation can be found in [2, 5] using energy estimates in Sobolev
spaces and in [9] for the Whitham approximation using the Cauchy-Kowalevskaya
like approach. We explain that for the Boussinesq equation

∂2t u = ∂x(a∂xu)− ∂2x(b∂
2
xu) + ∂x(c∂x(u

2))
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with spatially periodic coefficient functions a, b, and c, an energy can be found
which allows us to prove the required estimates for the KdV and Whitham ap-
proximation [1]. We explain that this approach surprisingly allows to get rid of
oscillatory quadratic terms without normal form transforms and of a number of
resonances. For the derivation of the approximations we use Bloch wave analysis.
We explain that for the NLS approximation of standing waves the Klein-Gordon-
Zakharov system can serve as a toy model. NLS approximation results for this
system can be found for instance in [14]. See also [4].

References

[1] R. Bauer. The KdV and Whitham limit for a spatially periodic Boussinesq model. PhD
Thesis, Universität Stuttgart 2015. In preparation.

[2] F. Bethuel, P. Gravejat, J.-C. Saut and D. Smets. On the Korteweg-de Vries long-wave ap-
proximation of the Gross-Pitaevskii equation. I. Int. Math. Res. Not. 14, 2700–2748 (2009).

[3] J. Bona, T. Colin and D. Lannes. Long wave approximations for water waves. Arch. Ration.
Mech. Anal., 178, (2005), 373–410.

[4] K. Busch, G. Schneider, L. Tkeshelashvili and H. Uecker. Justification of the Nonlinear
Schrödinger equation in spatially periodic media. ZAMP, 57, 1–35 (2006).

[5] D. Chiron and F. Rousset. The KdV/KP-I limit of the nonlinear Schrdinger equation. SIAM
J. Math. Anal. 42, 64–96 (2010).

[6] F. Chazel. On the Korteweg-de Vries approximation for uneven bottoms. Eur. J. Mech. B
Fluids 28, 234–252 (2009).

[7] W. Craig. An existence theory for water waves and the Boussinesq and Korteweg-de Vries
scaling limits. Comm. PDE, 10, 787–1003 (1985).
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[11] W.-P. Düll, G. Schneider and C.E. Wayne. Justification of the Nonlinear Schrödinger equa-
tion for the evolution of gravity driven 2D surface water waves in a canal of finite depth.
Preprint (2014).

[12] T. Iguchi. A long wave approximation for capillary-gravity waves and an effect of the bottom.
Comm. PDE 32, 37–85 (2007).

[13] T. Kano and T. Nishida. A mathematical justification for Korteweg-de Vries equation and
Boussinesq equation of water surface waves. Osaka J. Math. 23, 389–413 (1986).

[14] N. Masmoudi and K. Nakanishi. From nonlinear Klein-Gordon equation to a system of
coupled nonlinear Schrödinger equations. Math. Ann. 324, 359–389 (2002).

[15] G. Schneider. Limits for the Korteweg-de Vries-approximation. ZAMM 76, Suppl. 2, 341–
344 (1996).

[16] G. Schneider, C.E. Wayne. The long-wave limit for the water wave problem. I. The case of
zero surface tension. Comm. Pure Appl. Math. 53, 1475–1535 (2000).

[17] G. Schneider and C. Eugene Wayne. The rigorous approximation of long-wavelength
capillary-gravity waves. Arch. Rat. Mech. Anal. 162, 247–285 (2002).

[18] G. Schneider. Bounds for the Nonlinear Schrödinger approximation of the Fermi-Pasta-
Ulam-system. Applicable Analysis 89, 1523–1540 (2010)

[19] G. Schneider, D.A. Sunny and D. Zimmermann. The NLS approximation makes wrong
predictions for the water wave problem in case of small surface tension and spatially periodic
boundary conditions. Journal of Dynamics and Differential Equations, published online
2014.



Mathematical Theory of Water Waves 1071

[20] N. Totz and S. Wu. A rigorous justification of the modulation approximation to the 2D full
water wave problem. Comm. Math. Phys. 310, 817–883 (2012).

[21] N. Totz. A justification of the modulation approximation to the 3D full water wave problem.
Comm. Math. Phys. 335, 369–443 (2015).

Two-hump surface waves for water-wave problems

Shu-Ming Sun

The problem concerns two-dimensional surface waves on water of finite depth with
surface tension. Let the wave propagate with a constant speed c in the horizontal
direction (denoted as x-axis) on an inviscid and incompressible fluid of constant
density (usually called water) subject to the forces of gravity and surface tension
on the free surface. The fluid is bounded above by a free surface and below by
a horizontal rigid bottom. The existence of traveling waves is determined by
two non-dimensional constants: the Froude number F = c/

√
gh (non-dimensional

wave speed) and the Bond number τ = T/ρhc2 (non-dimensional surface tension),
where g is the gravity constant, h is the depth of the fluid at infinity, T is the
surface tension coefficient on the free surface, and ρ is the density of the fluid.

When F is near its critical value 1 with usual long-wave assumption, the model
equation to describe the motion of the surface wave is the KdV equation,

2ηt + ληx + 3ηηx + (1/3− τ)ηxxx = 0

where the free surface is approximately determined by h + hεη(ε1/2hx, ε3/2ct/h)
with F−2 = 1+λε and ε > 0 a small constant. The KdV equation has a traveling-
wave solution

η(x, t) = (2a− λ)sech2
(√

(τ − 1/3)(λ− 2a)(x− at)/2
)
,

which is called solitary-wave solution, if the expression in the square root is pos-
itive. The validation of the solitary-wave solution was proved using the exact
governing equations of the fluid flow with zero surface tension by Lavrentiev,
Friedrichs and Hyers, and Beale.

The existence of two-hump waves on water with surface tension has not been
studied. Notice that the time independent KdV equation has no two-hump solu-
tions and it was proved by Craig and Sternberg that the exact equations for water
waves without surface tension have no two-hump solutions, either. Therefore, it is
necessary to include the surface tension in the equations when two-hump solutions
are considered. Moreover, it is conceivable that the multi-hump waves exist in the
real world (here, we are not talking about the solitons) since two-hump waves can
be generated in laboratories if the time gap between producing two equal solitary
waves is large enough.

To make the problem simper, we study approximate model equations. For
water-wave problems, if τ is near 1/3, the KdV equation is not valid and the
following fifth-order KdV equation can be derived,

ηt + ληx + τ0ηxxx − (3/2)ηηx + (1/45)ηxxxxx = 0
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where τ0 > 0 corresponds to τ > 1/3 and τ0 < 0 for τ < 1/3. For the time-
independent case, the equation is

λη + τ0ηxx − (3/4)η2 + (1/45)ηxxxx = 0 .

By change of variables, the time-independent equation can be transformed to

u′′′′ + Pu′′ ± u− u2 = 0

where P is a real constant. The case with + sign was studied by Buffoni, Champ-
neys, Groves, Toland and many others. It was shown that for P < −2, the equation
has a unique solitary-wave solution (up to translation). For P ∈ (−2, 2), there are
single- and multi-hump solutions with decaying oscillatory tails at infinity. Each
multi-hump solution is formed approximately by patching several copies of the
single-hump solution together. Intuitively, existence of such multi-hump solutions
depends on the oscillatory behavior of the single-hump solution at infinity.

For the equation with − sign, we only consider the case

εu′′′′ + u′′ − u− u2 = 0

where ε > 0 is small (or the fifth-order KdV equation, i.e., if ε = 0, it becomes the
KdV equation). This equation has been studied extensively in the past. It can be
shown that there are no solutions decaying to zero at infinity (proved by Amick and
McLeod, and many others). Also, it was proved that for small ε > 0 the equation
has solitary-wave solutions with small non-decaying oscillations at infinity (called
generalized solitary-wave solutions). The amplitude of the oscillations at infinity
can be either algebraically small (i.e., of order εn) or exponentially small (i.e.,

of order e−δε−1/2

). Note that since these generalized solitary-wave solutions have
oscillations at infinity, it is very reasonable to expect that multi-hump solutions
with oscillations at infinity exist for the equation.

When τ < 1/3 and F near 1, similar to the derivation of the KdV equation, it
can be obtained that up to the order ε, the approximate time-independent model
equation is

λη − (3/4)η2 − (1/2)
(
(1/3)− τ + (ε/2)τλ

)
ηxx + (ε/24)

(
3η3

− (10− 15τ)ηηxx − ((13 + 3τ)/2)η2x − ((19/15)− 3τ)ηxxxx

)
= 0 .

Note that the coefficients of ηxx and ηxxxx have negative sign and to have solitary-
wave solution for ε = 0, it is required that λ > 0.

To prove the existence of generalized solitary-wave solutions, consider a more
general equation

εηxxxx + ηxx − λη + βηk = εP [ε, η, ηx, ηxx] ,(1)

where ε > 0 is a small parameter, P is a polynomial with respect to its variables
for η and its derivatives satisfying that

P [ε, α1, α2, α3] = P [ε, α1,−α2, α3] with P [ε, 0, 0, 0] = 0 ,
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and P is at most linear in α3 and quadratic in α2 (an example of such an equation
is given above for water-wave problem). For ε = 0, if k ≥ 2, λ > 0 (β > 0 if k is
odd), there is a solitary-wave solution

S(x) =
(
(k + 1)λ/2β

)1/(k−1)

sech2/(k−1)
(
(k − 1)λ1/2x/2

)
.

Then, for ε > 0, the following theorem holds [1].

Theorem 1. Let σ(x) be even and C∞(R) with σ(x) = 0 for |x| ≤ 1/2 and

σ(x) = 1 for |x| ≥ 1 and r̂2 =
(
(
√
1 + 4λε+ 1)/(2ε)

)1/2
. For small ε > 0 and

A = aε(n+2)/2 with an integer n ≥ 2 and a fixed constant a 6= 0, there are two
constants γ and δ and two functions R0(x) and R+(x) such that

η(x) =S(x) + εR0(x) +Aσ(x)
(
cos(r̂2x

√
1− γε− δ) +AR+(r̂2x

√
1− γε− δ)

)

for x ≥ 0 (evenly extended to x ≤ 0) is a solution of equation (1), where |γ| ≤ C|A|,
δ = c0ε

1/2 +O(ε) for some constant c0, and R0(x) and R
+(x) are bounded, even,

and differentiable functions in x satisfying R0(x) = O(exp(−d|x|)) and |R+(x)| ≤
C as x → +∞ with some small constant d > 0. R+(x) is periodic with period 2π
and C is a generic constant independent of ε.

The existence result of two-hump solutions is the following [1].

Theorem 2. Let k = 2 and P = 0 in (1). For small ε > 0 and A+ = aε(n+2)/2

with an integer n ≥ 2 and a fixed constant a 6= 0, there exist two constants x0 > 0
and A− with |x0| ∼ C ln(1/ε) and |A− −A+| ≤ Cε2n+1 such that the equation (1)
has an even solution η(x) respect to x = −x0 satisfying that for x ≥ 0, η(x) =
w(x), where

w(x) =S(x) + εR0(x) +A+σ(x)
(
cos(r̂2x

√
1− γε− δ)

+A+R+(r̂2x
√

1− γε− δ)
)
= w0(x;A

+, δ)

for x ≥ 0 obtained similarly as the solution in Theorem 1 and η(x) = w0(x;A
−,−δ)

for −x0 ≤ x ≤ 0. Thus, the equation has a two-hump solution with small oscilla-
tions at infinity and two peaks at x = 0,−2x0.

A similar existence result of two-hump solutions can be proved for the stationary
Swift-Hohenberg equation

cw − (∂2x + k20)
2w − w3 = 0,

where c > 0 and k20 > 0 are parameters satisfying the relationship, k20 =
√
c − ε

with ε > 0 a small parameter [2].
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Singularities of steady free surface water flows under gravity

Eugen Varvaruca

We present our recent results [4], [5], [6], which provide a characterization, by
means of geometric analysis methods, of all possible singularities of the free sur-
face in two related free-boundary problems concerning steady water flows under
gravity: that of two-dimensional travelling waves, and that of three-dimensional
axisymmetric flows without swirl. In the two-dimensional problem, which had
been extensively studied, we have given a new proof of the well known Stokes con-
jecture, that at a stagnation point the free surface necessarily has lateral tangents
enclosing a symmetric angle of 120◦ and the velocity field has an asymptotic profile
described by the so-called Stokes corner flow. In this talk we concentrate on de-
scribing the new results we have obtained for the three-dimensional axisymmetric
problem, which had been much less studied previously.

We consider a steady axisymmetric solution of the Euler equations describing
the irrotational flow without swirl of an incompressible inviscid fluid acted on
by gravity and with a free surface. Using cylindrical coordinates and the Stokes
stream function Ψ to describe the flow, we obtain in a subset of the half-plane
{(x1, x2) : x1 ≥ 0} the free-boundary problem

div

(
1

x1
∇Ψ(x1, x2)

)
= 0 in the water phase {Ψ > 0},

1

x21
|∇Ψ(x1, x2)|2 = −x2 on the free surface ∂{Ψ > 0},

where the gravitational constant g has been normalized by scaling. For such a
flow, the velocity field in three-dimensional space is given by

V (X,Y, Z) =

(
− 1

x1
∂2Ψcosϕ,− 1

x1
∂2Ψsinϕ,

1

x1
∂1Ψ

)
,

where (X,Y, Z) = (x1 cosϕ, x1 sinϕ, x2). (Note that the equations above describe,
apart from a steady flow, also the case of a traveling wave moving at constant speed
along the direction of the axis of symmetry, in which situation the flow is steady
with respect to the moving frame.)

In [1] Garabedian gave an example of an explicit solution of the above problem
in which Ψ is a homogeneous function of degree 5/2, while the water domain
is above the air domain and occupies, in the half-plane {(x1, x2) : x1 ≥ 0}, a
cone with vertex at the origin and of opening angle approximately 114.799◦; this
explicit solution has been reexamined in [2]. In [3] it has been suggested, by means
of formal asymptotic expansions supported by numerical computations, that at a
point on {x2 = 0} different from the origin, the free boundary has lateral tangents
making an angle of 120◦ while the velocity field is described asymptotically by the
Stokes corner flow.
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Here we focus on precisely the degenerate sets {x1 = 0} (the axis of symmetry)
and {x2 = 0} (containing all stagnation points) and rigorously analyze the possible
profiles of the velocity field and of the free boundary close to points in those sets.
The degeneracy of the free-boundary condition

|∇Ψ(x1, x2)|2 = −x21x2
at points x0 = (x01, x

0
2) with x

0
1x

0
2 = 0, enables us to identify four (almost) invariant

scalings of the problem,

Ψ(x0 + rx)

r
in the case x01 6= 0 and x02 6= 0,

Ψ(x0 + rx)

r3/2
in the case x01 6= 0 and x02 = 0,

Ψ(x0 + rx)

r2
in the case x01 = 0 and x02 6= 0,

Ψ(x0 + rx)

r5/2
in the case x01 = x02 = 0,

which suggest the appropriate form of the blow-up sequences to be considered.
We first determine the asymptotic profile of the rescaled solutions as r → 0. In

the case x01 6= 0 and x02 6= 0 the only nontrivial asymptotics possible is constant
velocity flow parallel to the free surface. In the case x01 6= 0 and x02 = 0 the only
nontrivial asymptotics possible is the Stokes corner flow. Due to the perturbed
nature of the equation, the situation is actually not unlike the two-dimensional
steady free-surface water-wave problem in the presence of vorticity, see [5]. In the
case x01 = 0 and x02 6= 0 the only nontrivial asymptotics possible is constant velocity
flow in the gravity direction. This suggests the possibility of air cusps pointing
in the gravity direction. In the case x01 = x02 = 0 the only nontrivial asymptotics
possible is the Garabedian pointed bubble solution with water above air. This means
that there is no nontrivial asymptotic profile at all with air above water and with
the invariant scaling. However there remains at this stage the possibility that the
solution has a higher growth than that suggested by the invariant scaling. The
key ingredient in the above analysis is a new monotonicity formula, which implies
that the blow-up limits are homogeneous functions.

We then analyze the possible shapes of the free surface close to stagnation
points and close to points on the axis of symmetry. Assuming that the free surface
is given by an injective curve and assuming also a strong Bernstein inequality
(corresponding to a Rayleigh-Taylor condition) we obtain the following result:

In the case x01 6= 0 and x02 = 0 the only asymptotics possible are the well-known
Stokes corner (an angle of opening 120◦ in the direction of the axis of symmetry),
and a horizontal point.

In the case x01 = 0 and x02 6= 0 the only asymptotics possible are cusps in the
direction of the axis of symmetry.

In the case x01 = x02 = 0 the only asymptotics possible are the Garabedian
pointed bubble asymptotics, and a horizontal point.
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A finer analysis of the velocity profile in the last case (x01 = x02 = 0 and a
horizontal point) is then given in the case of air above water. We prove that the

velocity field scales almost like
√
X2 + Y 2 + Z2 and is asymptotically given by

V (X,Y, Z) = c0(X,Y,−2Z),

where c0 is a nonzero constant. The main tool is a new nonlinear frequency for-
mula (which is not merely a perturbation of Almgren’s frequency formula), valid
at each point of highest density. In combination with a concentration compact-
ness result for the axially symmetric Euler equations by Delort, this leads to the
already mentioned profile for the velocity field. Note that while the concentration
compactness result alone does not lead to strong convergence in general, we prove
the convergence to the limiting velocity field to be strong in our application.

References

[1] P. R. Garabedian. A remark about pointed bubbles. Comm. Pure Appl. Math. 38, 609–612
(1985).

[2] P. Milewski, J.-M. Vanden-Broeck and J.B. Keller. Singularities on free surfaces of fluid
flows. Stud. Appl. Math. 100, 245–267 (1998)

[3] J.-M. Vanden-Broeck and J.B. Keller. An axisymmetric free surface with a 120 degree angle
along a circle. J. Fluid Mech. 342, 403–409 (1997).

[4] E. Varvaruca and G.S. Weiss. A geometric approach to generalized Stokes conjectures. Acta
Math. 206, 363–403 (2011).

[5] E. Varvaruca and G.S. Weiss. The Stokes conjecture for waves with vorticity. Ann. Inst. H.
Poincar Anal. Non Linaire 29, 861–885 (2012).

[6] E. Varvaruca and G.S. Weiss. Singularities of steady axisymmetric free surface flows with
gravity. Comm. Pure Appl. Math. 67, 1263–1306 (2014).

Continuous dependence on the density for stratified steady water

waves

Samuel Walsh

An important property of ocean waves is stratification — a heterogeneity in the
density distribution caused by salinity in the water or heating from the sun. Even
small amounts of stratification may have profound effects on the dynamics, e.g.,
giving rise to so-called internal waves that can propagate for hundreds of kilometers
beneath the surface.

We are interested specifically in traveling waves, which means that by shifting
to a moving reference, we can eliminate time dependence from the system. Say
then that the water occupies a domain

Ω = {(x, y) ∈ R2 : −d < y < η(x)}.
Here η is (an a priori unknown) free surface profile. We are considering the two-
dimensional case and coordinates have been fixed so that the wave propagates in
the positive x-direction with speed c > 0 and the ocean depth is d > 0. The
flow is described mathematically by a velocity field (u, v) : Ω → R2, a pressure
P : Ω → R, and a density ̺ : Ω → R+. Assume that the wave is periodic, i.e., u,
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v, P , ̺, and η are periodic in x. For (u, v, ̺, P, η) to represent a water wave, they
must satisfy the free boundary steady Euler equations.

In the actual ocean, the waves one observes are usually structured as large
regions of nearly constant density separated by thin transition layers where the
density may vary sharply. A very common practice among applied scientists is
to simply collapse these transition layers to material lines, i.e., to imagine these
waves as consisting of two or more immiscible layers. The density in each layer is
assumed to be smooth (say, constant) and a jump discontinuity is permitted over
the interfaces.

This distinguishes two separate regimes: a wave is said to be continuously
stratified provided that ̺ is continuous throughout the entire fluid domain, and
layer-wise smooth if Ω can be partitioned into finitely many immiscible fluid regions

Ω =

N⋃

i=1

Ωi,

where each Ωi ⊂ Ω is an open set with smooth boundary, and the restriction ̺|Ωi

is smooth. Note that in both regimes, the governing equations are the steady free
surface Euler problem. For layer-wise smooth waves, however, the solutions are
weak and the internal interfaces ∂Ωi ∩ ∂Ωi+1 are additional free boundaries that
must be determined.

The goal of this work is to quantify the degree to which a continuously stratified
water wave can be approximated by a layer-wise smooth wave. Our main result
states that, in a certain small-amplitude regime, the wave depends continuously on
the stratification. That is, if one fixes a continuously stratified wave of this type,
there exists nearby many-layered traveling waves that converge to the smooth wave
as the number of layers is taken to infinity. In fact, these layer-wise smooth waves
are parameterized by the density in a Lipschitz continuous fashion.

To make sense of this, recall that the steady Euler system can be recast in terms
of the (pseudo) relative stream function, which is a scalar function ψ : Ω → R

satisfying

(1) ∂xψ = −√
̺v, ∂yψ =

√
̺(u− c) in Ω.

The level sets of ψ, called the streamlines, are the integral curves of the relative
velocity field. Note that these include the ocean bed and all of the free surfaces in
the system. For the unidirectional waves that we consider, the streamlines must
be simple curves extending from x = −∞ to x = +∞.

By the conservation of mass, the density ̺ is in fact constant along streamlines.
That is, there exists some streamline density function ρ such that

̺(x, y) = ρ(−ψ(x, y)), in Ω.

We view ρ as an infinite-dimensonal parameter for the problem; the continuity
result we obtain is a continuous dependence of the solutions on ρ.

Informal statement of results. Fix a Hölder exponent α ∈ (0, 1), and put
r := 2/(1 − α). Let ρ∗ ∈ C1,α be a stably stratified streamline density function,
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and suppose that (u∗, v∗, ̺∗, P∗, η∗) is a traveling wave with streamline density
function ρ∗. Assume further that (i) its Bernoulli function is the same as for
a solitary wave with uniform velocity in the far field, (ii) its wave speed c∗ is
supercritical, (iii) it is a wave of strict elevation, and (iv) it is sufficiently small-
amplitude. Then the following statements hold.

(A1) Existence of nearby many-layered solutions. There is a neighborhood U
of ρ∗ in L∞([−p0, 0]) such that, for any ρ ∈ U that is non-increasing and
piecewise smooth, there exists a solution (u, v, ̺, P, η) to the steady Euler
equations with streamline density function ρ, period L, and wave speed c.
Moreover, u and η are even in x, while v is odd in x.

Observe that since U is an open set in L∞, it contains streamline densities
functions with arbitrarily many jump discontinuities.

(A2) Convergence of the height function and wave speed. For each (q, p) ∈ R :=
R × [p0, 0], let h∗(q, p) denote the height above the bed {y = −d} of the
point with x-coordinate q that lies on the streamline {ψ∗ = −p} for the
wave with velocity field (u∗, v∗); let h designate the corresponding height
for the wave furnished by statement (A1). Then

h∗ = h+O(‖ρ− ρ∗‖L∞) in W 1,r
per(R) ⊂ C0,α

per (R).

Likewise, the wave speed c satisfies

c∗ = c+O(‖ρ− ρ∗‖L∞).

In fact, (A1) and (A2) are a form of continuity result. Let D denote the set of
bounded, layer-wise smooth, stable streamline density functions; D can be viewed
as a convex subset of L∞([p0, 0]). Then (A1) proves that there exists a mapping
ρ ∈ D ∩ U 7→ h ∈ W 1,r

per(R), and (A2) follows from the fact that this mapping is
Lipschitz continuous.

Away from the internal interfaces, the solutions enjoy improved regularity:

(B) Improved regularity. Let I ⊂⊂ [p0, 0] \ {p1, . . . , pN−1} be a connected set
for which ρ ∈ C1,α(I). Then

‖h− h∗‖C1,α
per (R×I) ≤ C1

(
‖ρ− ρ∗‖L∞([p0,0]) + ‖ρ− ρ∗‖C1,α(I)

)
,

where C1 > 0 depends on the length of I, ρ∗, and h∗.

In general, C1 will increase as the length of I decreases. One consequence of (B)
is that, if ρ∗ is constant in some region, then the approximation by a layer-wise
constant density stratification converges in a higher regularity norm there.

Lastly, we prove a result on the convergence of the pressure. This is specifically
aimed at the surface reconstruction problem (cf. [2]).

(C) Convergence of the pressure. Let a connected set I ⊂⊂ [p0, 0] \ {p1, . . . ,
pN−1} be given with p0 ∈ I, and assume that ρ ∈ C1,α(I). Denote by
Pb the trace of the pressure on the ocean bed for the traveling wave with
density ρ, and let Pb∗ be the trace of P∗ on the bed. Then

‖Pb − Pb∗‖C0,α
per (R)

≤ C2

(
‖ρ− ρ∗‖L∞([p0,0]) + ‖ρ− ρ∗‖C1,α(I)

)
,
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where C2 > 0 depends on the length of I, ρ∗, and h∗.

The proof is based on an implicit function argument, supplemented with a
(fairly intricate) penalization scheme in the spirit of Turner [3]. For more details,
see [1].
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Bounds on the slope of steady water waves with vorticity

Miles H. Wheeler

We consider the angle θ between the free surface of a steady two-dimensional water
wave and the horizontal. The famous “extreme Stokes wave” has a corner at its
crest with θ = 30◦, but McLeod [4] proved that nearly extreme waves in fact have
larger angles θ > 30◦ at points near their (rounded) crests. Earlier numerical work
suggests that the largest possible angle is 30.37◦ [5, 3, 2], while Amick [1] proved
the remarkable upper bound θ < 31.15◦ for all steady irrotational waves.

In the presence of adverse vorticity (positive vorticity in our formulation), Am-
ick’s bound fails dramatically: there are explicit Gerstner waves with 90◦ cusps at
their crests, and there is also numerical evidence for the existence of steady waves
with overturning free surfaces [7]. In this talk, we instead focus on a large class of
waves with favorable vorticity (for instance constant negative vorticity), for which
we prove the upper bound θ < 45◦ [6].

Working in a frame moving with the wave, we denote the velocity by (u, v), the
vorticity by ω, and the stream function by ψ. We assume that u < 0. This rules
out stagnation points where u = v = 0, and also guarantees that the vorticity ω is
a function of the stream function ψ alone. An informal version of our main result
is as follows, where by a streamline we mean a level curve of ψ and by a trivial
wave we mean a shear flow with a flat free surface.

Theorem 1. Let C be a connected set (containing a trivial wave) of symmetric
periodic finite-depth water waves with a single crest and trough per period for which
u < 0 (non-stagnation) and for which the streamlines are strictly decreasing from
crest to trough. We assume that the vorticity ω satisfies

ω ≤ 0,
dω

dψ
≤ 0,

d2ω

dψ2
≤ 0.

At least until uω = g at the troughs, the waves in C that bifurcate from a trivial
wave have angle strictly less than 45◦. (The trivial wave has uω < g everywhere.)

The same statement is true for symmetric solitary waves (instead of periodic
waves) at least until limx→∞(uω)(x, η(x)) = g.
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Our argument is somewhat related to Amick’s proof in [1] of the weaker bound
θ < 38.2◦. This proof hinges on the function

fα = Re[(−u+ iv)α] = [u2 + v2]α/2 cos(αθ),

together with its derivative along streamlines,

Wα =
u∂x + v∂y
u2 + v2

fα.

For a given α ≥ 1, if Wα has the appropriate sign in each half-period, then an
easy argument shows that fα > 0 and hence |θ| < π/α. Because the flow is
irrotational, both fα and Wα are the real parts of analytic functions of z = x+ iy
and hence harmonic. By combining maximum principle arguments for Wα with a
continuation in α, Amick eventually shows that |θ| < π/α for 1 ≤ α ≤ β where

β = (9 +
√
97)/8 > 38.2◦.

There are many difficulties with generalizing even this first part of Amick’s
argument to include vorticity. The complex analysis methods and Nekrasov for-
mulation that he relies on are no longer available, and, more seriously, the function
Wα is no longer harmonic. Indeed, for general α, it does not seem possible to ap-
ply maximum principle arguments toWα. Nevertheless, we are able to make some
progress in the special case α = 2 where formulas are simpler. Under our as-
sumptions on ω, we obtain several inequalities by applying the Hopf lemma to
the quotients ux/u and v/u. We then replace Amick’s continuation in α with
a continuation along the connected set of solutions C , and in this final step the
quantity g − uω plays an important role.

Finally, we return to the overhanging waves mentioned at the start of the talk,
and show that, in the absence of stagnation points on the free surface, every
overturning wave (periodic or solitary) must have a pressure sink.
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