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Abstract. Multivariate splines are effective tools in numerical analysis and
approximation theory. Despite an extensive literature on the subject, there
remain open questions in finding their dimension, constructing local bases,
and determining their approximation power. Much of what is currently known
was developed by numerical analysts, using classical methods, in particu-
lar the so-called Bernstein-Bézier techniques. Due to their many interest-
ing structural properties, splines have become of keen interest to researchers
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nately, these communities have not collaborated much. The purpose of the
half-size workshop is to intensify the interaction between the different groups
by bringing them together. This could lead to essential breakthroughs on

several of the above problems
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Introduction by the Organisers

The workshop Multivariate Splines and Algebraic Geometry, was attended by 26
researchers interested in multivariate splines, polynomial approximation and al-
gebraic geometry. A key problem in both pure and applied mathematics is to
construct finite dimensional spaces of functions that are capable of approximat-
ing complicated or unknown functions well. Such spaces are especially important
for scientific computing, where they are used in computer-aided geometric design,
data fitting, and the solution of partial differential equations by the finite-element
method. Historically, polynomials have played the central role, but more recently
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it has been recognized that spaces of piecewise polynomials are much more ef-
ficient and effective. A Cr-differentiable piecewise polynomial function on a d-
dimensional simplicial complex ∆ ⊆ Rd is called a spline. Let Sr

k(∆) denote the
vector space of Cr splines on a fixed ∆, where each individual polynomial has
degree at most k. But before we can use spline spaces, we need to solve several
basic problems such as finding their dimension, constructing local bases, and deter-
mining their approximation power. Despite an extensive literature on the subject,
there remain open questions in all of these areas. Much of what is currently known
was developed by approximation theorists, using methods of classical analysis, in
particular the so-called Bernstein-Bézier techniques. However, due to their many
interesting structural properties, splines have also become of keen interest to re-
searchers in commutative and homological algebra, geometry, combinatorics, and
topology. Unfortunately, these various communities had not collaborated much.
The main purpose of the workshop was to intensify the interaction between the
different groups. We believe that the workshop brought together the two com-
munities and fostered fruitful collaborations between individual researchers. We
expect that such collaborations and the combined use of tools from the various
mathematical fields will lead to essential breakthroughs on several of the above
problems.

The workshop began with a pair of introductory lecture series: Algebraic geom-
etry for approximators and Approximation theory for geometers. These lectures
established a firm grounding in common language and tools. We also held two open
problems sessions that took place in the evenings. They highlighted the key con-
jectures as well. Several exciting new areas were discussed, such as T-Splines and
the study of splines on polyhedral (rather than simplicial) complexes. We believe
that the workshop generated strong ties between the two communities, and also
emphasized to the younger participants the need for interdisciplinary techniques.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Multivariate splines and the Bernstein-Bézier form of a polynomial

Peter Alfeld

The book [1] by Lai and Schumaker provides a comprehensive statement of the
state of the art of the subject addressed in this talk. The reader should refer to
that book for a detailed discussion of specific results, techniques, and concepts,
the history of the subject, and an extensive list of references. I will omit most
details in this abstract, and in particular to save space, and to avoid offense by
omission, I will not attribute specific results to specific people.

Splines are smooth (at least continuous, usually at least once differentiable)
piecewise polynomial functions defined on the partition of an underlying domain.
The domain of a univariate spline is an interval, the domain of a multivariate
spline is a (usually compact and simply connected) subset of IRk where k > 1. In
most applications k = 2 (bivariate splines), sometimes k = 3 (trivariate splines),
and only rarely is k > 3.

In one variable, an interval Ω = [a, b] is partitioned into subintervals Ii =
[xi−1, xi], i = 1, . . .N , where a = x0 < x1 < . . . < xN = b and the relevant spline
space is

Sr
d(Ω) =

{
s ∈ Cr(Ω) : s

∣∣
Ii
∈ Pd, i = 1, . . . , N

}

where Pd is the set of polynomials of degree d in one variable.
In what follows, r will always denote the degree of smoothness, d the polyno-

mial degree, k the dimension of the domain, and N the number of regions in the
partition.

In two or more variables, (k > 1), various types of partitions are possible and
have been investigated. The focus in this talk is on splines defined on triangulations
of a polygonal region in IR2. Let ∆i, i = 1, 2, . . . , N denote the triangles in the
triangulation of Ω. Then the relevant spline space is defined similarly as in the
univariate case:

Sr
d(Ω) =

{
s ∈ Cr(Ω) : s

∣∣
∆i
∈ Pd, i = 1, . . . , N

}

where Pd is now the space of polynomials of degree d in two variables.
The sets Sr

d(Ω) are linear spaces, and as such have a (finite) dimension. In
the case k = 1, the dimension of Sr

d can be computed using only first semester
Calculus and is given by

dimSr
d = (d+ 1) + (N − 1)(d− r) = N(d− r) + r + 1. (k = 1)

Note that in particular the dimension of Sr
d depends only on the number

of subintervals in the partition, and not on the lengths of those subintervals.
For multivariate splines, the situation is very different. The dimension of Sr

d

(and a number of other properties such as the solvability of certain interpolation
problems) depends not only on the combinatorics and topology of the underlying
triangulation, but also on its geometry, i.e., the precise location of the vertices.
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This fact is the source of the vastly increased complexity of multivariate splines
as compared to the simplicity of univariate splines.

To understand the issues better we need to introduce a new tool. Progress in
bivariate spline spaces for the past 40 years or so has benefited in a central and
essential way from expressing a bivariate polynomial in its Bernstein-Bézier form.
Suppose ∆ is a triangle with non-zero area and vertices v1, v2 and v3, and x is a
point in IR2. Then the barycentric coordinates b1, b2, b3 of x with respect to ∆ are
defined by the equations

x = b1v1 + b2v2 + b3v3 where b1 + b2 + b3 = 1.

Then it is easy to see that any bivariate polynomial p of degree d can be written
uniquely in its Bernstein-Bézier-form as

p(x) =
∑

i+j+k=d

d!

i!j!k!
cijkb

i
1b

j
2b

k
3 .

The cijk are the Bézier ordinates, or simply coefficients, of p. The integers d!
i!j!k!

are convenient normalizing constants. Associated with each coefficient cijk is a
domain point

Pijk =
iv1 + jv2 + kv3

d
∈ ∆

and a control point

Cijk = (Pijk, cijk) ∈ IR3.

The source of the power of the Bernstein-Bézier-form stems from its ability to
express algebraic issues, such as differentiability across a common edge of two tri-
angles, geometrically, e.g., as the requirement that certain quadrilaterals of control
points be contained in a plane. Space constraints prohibit a detailed description
and illustration of the connection between algebra and geometry in this abstract.
Instead I give a list of the points that were made, and argued in terms of the
Bernstein-Bézier-form, in the talk, and that will be discussed more fully in a
forthcoming survey paper.
1. The smoothness conditions in terms of the Bernstein-Bézier-form, and hence
for example the dimension of Sr

d , are affinely invariant.
2. The control points at the vertices of a triangle lie on the graph of the polynomial.
3. A control point at a vertex and its two neighbors on the two attached edges
define the tangent plane at the vertex.
4. For continuity across a common edge the two sets of control points along the
edge, from the two triangles, must coincide.
5. For first order differentiability across a common edge, the d quadrilaterals along
edge, formed by the control points on the edge, and the rows adjacent to the edge,
must each be planar. Similar criteria apply for higher order smoothness
6. A set of domain points is a determining set if setting the corresponding co-
efficients to zero forces all other coefficients to be zero. A determining set is a
minimal determining set if it contains no smaller determining set. The cardinality
of a minimal determining set is unique and equals the dimension of Sr

d .
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7. The unique minimal determining set for S0
d is the set of all domain points. For

d > 1 the dimension of S0
d equals V +(d− 1)E+(d− 2)(d− 3)N/2 where V is the

number of vertices, E is the number of edges, and N is the number of triangles.
(Of course, for d = 1 the dimension is V , and for d = 0 the dimension is 1.)
8. A major technique in spline analysis consists of thinking of a spline space as a
subspace of a larger but simpler space, such as S0

d, and analyzing the smoothness
conditions that define the subspace.
9. The simplest case where the dimension of Sr

d depends on the geometry is the
case of an interior vertex of degree 4. If the four interior edges form two parallel
pairs then (and only then) the vertex is called a singular vertex, and the dimension
of S1

2 is 8. If the vertex is not singular then the dimension is only 7.
10. The dimension of S1

d , including its dependence on the geometry, is completely
understood on all stars of interior vertices, for all values of r and all values of d.
11. However, there are triangulations with more than one interior vertex where
the dimension changes with the geometry, in such a way that the change disap-
pears if the size of the triangulation is reduced. Let us call such a triangulation
sensitive (with respect to r and d). The earliest known, and smallest, example of
a sensitive triangulation is the so-called Morgan-Scott split. This is a partic-
ular triangulation of a triangular domain, with 7 triangles. If that triangulation
is “symmetric”, the dimension of S1

2 is 7, otherwise it is only 6. Larger sensitive
triangulations are known, and I conjecture that the size of sensitive triangulations
is unbounded.
12. Consider a vertex star of degree 6. The dimension of S1

2 on that space is 9.
However, one cannot interpolate to function values at the 7 vertices if the union of
the triangles forms a regular hexagon, or a projective transformation of a regular
hexagon. One can interpolate otherwise. The issue was discussed in complete
detail in Alexei Kolesnikov’s talk.
13. Consider a sensitive triangulation and move the vertices, without changing
the way the triangles are connected. The dimension of Sr

d depends on the precise
location of the vertices, and there is a minimum value of the dimension. This value
is referred to as the generic dimension. If the dimension of Sr

d is greater than that
generic value then there is an arbitrarily small perturbation of the location of the
vertices that will cause the dimension to assume the generic value.
14. The dimension is known in the case that r = 1 and d = 4, and, for all r if
d ≥ 3r + 2. It is (of course) also known for all d if r = 0, or when d ≤ r. The
generic dimension is known for all r > 0 if d = 3r + 1.
15. It is known that dimS1

3 ≥ 3VB + 2VI + 1 + σ where VB is the number of
boundary vertices, VI is the number of interior vertices, and σ is the number of
singular vertices. No case is know where the dimension exceeds the lower bound.
I (and everybody in the field whose opinion I know) conjectures that the lower
bound always equals the dimension. However, so far a proof of the conjecture has
been elusive. The problem has been recognized for about 40 years, and constitutes
the best known open problem in multivariate splines. It is very challenging.
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16. It is unknown whether it is always possible to interpolate to the function
values at the vertices of the triangulation with a spline in S1

3 . I conjecture it is.
17. The dimension of S1

4 in general equals 6V − 3 + σ. The proof of this fact
is quite complicated. However, one can see very easily that the dimension equals
6V − 3 if there are no parallel pairs of edges meeting at any vertex. In that case it
is also true that one can interpolate to function and gradient values at the vertices.
18. In general, however, it is unknown if such interpolation is always possible. I
conjecture that it is not.
19. The dimension analysis becomes easier as the polynomial degree increases
relative to r because the domain points can be divided into sets that can be
analyzed locally and independently. Full separation occurs when d > 4r.
20. Similar issues as those discussed here occur for trivariate splines. There is,
however, one additional major fact. In two variables one can fully analyze the
dimension problem if d is sufficiently large relative to r. In the case of trivariate
splines defined on general tetrahedral decompositions, however, one can analyze
the dimension problem for arbitrarily large values of d only after analyzing the
corresponding bivariate problem for all values of d. This can be shown by a
process called coning which for any planar triangulation constructs a particular
trivariate space that is the direct sum of a set of bivariate spaces on the given
triangulation. In other words, no general dimension statement for trivariate spaces
can be given until the bivariate space S1

3—and the even more difficult space S1
2—is

understood.
21. It is clear from the preceding discussion that the original spline spaces Sr

d are
quite difficult to use for applications, although there have been many attempts in
that direction. A major technique to make them more usable consists of consider-
ing subspaces of Sr

d defined by adding specific additional smoothness conditions, or
superspaces obtained by subdividing each triangle (or tetrahedron, or simplex). In
this way one obtains what are called macro-elements in the approximation theory
community, and finite elements in the numerical differential equation community.
This is a large area of past and current research.

References

[1] Ming-Jun Lai and Larry L. Schumaker, Spline Functions on Triangulations, Cambridge
University Press, 2007, ISBN 0-521-87592-7.

Splines with prescribed values along algebraic curves

Oleg Davydov

(joint work with Abid Saeed)

Motivation. Spaces of multivariate piecewise polynomial splines are usually de-
fined on triangulated polyhedral domains without imposing any boundary condi-
tions. However, applications such as the finite element method require at least the
ability to prescribe zero values on parts of the boundary. Fitting data with curved
discontinuities of the derivatives is another situation where the interpolation of
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Figure 1. A triangulation of a curved domain with ordinary tri-
angles (green), pie-shaped triangles (pink) and buffer triangles
(blue), with the sets of domain points Dd,T , D

∗
d−1,T , D

0
d+1,T for

d = 2 shown on one triangle of each type.

prescribed values along an algebraic surface is highly desirable. It turns out that
such conditions make the otherwise well understood spaces of e.g. bivariate C1

macro-elements on triangulations significantly more complex. Even in the sim-
plest case of polygonal domain, the dimension of the space of splines vanishing on
the boundary is dependent on its geometry, with consequences for the construction
of stable bases (or stable minimal determining sets) [1, 2]. We report on recent
and ongoing research on bivariate splines with prescribed values along a piecewise
conic boundary.

Continuous splines. Let Ω ⊂ R
2 be a bounded curvilinear polygonal domain

with Γ = ∂Ω =
⋃m

j=1 Γj , where each Γj is an open arc of an algebraic curve

qj(x) = 0 of at most second order (i.e., either a straight line or a conic). Let
△ = △0 ∪ △1 be a triangulation of Ω, where each triangle T ∈ △1 = △B ∪ △P

either has one edge replaced with a curved segment of the boundary (pie-shaped
triangle in △P ), or has a common edge with a pie-shaped triangle (buffer triangle
in △B), while the remaining ordinary triangles T ∈ △0 have all straight edges,
see Figure 1. We assume that there is at least one triangle T ∈ △B attached to
the common boundary vertex z of Γj ,Γj+1 if qj/qj−1 6= const and at least one of
qj , qj−1 is of order 2.

For any d ≥ 1 we set Sd := {s ∈ C0(Ω)s|T ∈ Pd+i, T ∈ △i, i = 0, 1},
Sd,0 := {s ∈ Sd(△)s|Γ = 0}, where Pn denotes the space of bivariate polynomials
of degree at most n. By Bézout theorem Sd,0|T = Pdqj , for each T ∈ △P with a
curved side Γj . Therefore, in addition to the standard sets of domain points Dd,T

for all T ∈ △0, we consider for any T ∈ △P the set D∗
d−1,T := Dd−1,T∗ , where T ∗

denotes the triangle obtained by joining the boundary vertices of T by a straight
line, and each ξ ∈ D∗

d−1,T represents a dual functional for Pd−1q which picks the
coefficient cξ in the expansion

p =
∑

ξ∈D∗

d−1,T

cξB
d−1
ξ q, p ∈ Pd−1q.

Finally, for all T ∈ △B we consider D0
d+1,T := Dd+1,T \ ∂T .
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Figure 2. MDS for C1 quintic macro-elements vanishing on a
curved boundary. Circles, diamonds: usual MDS points for C1

quintics on ordinary triangles. Squares: points of degree 4 on
curved triangles. Triangles: points of degree 6 on buffer triangles.

Theorem 1. Let

M0 :=
⋃

T∈△0

Dd,T ∪
⋃

T∈△P

D∗
d−1,T ∪

⋃

T∈△B

D0
d+1,T .

Then M0 is a stable local minimal determining set for the space Sd,0.

Numerical experiments in [3, 5] confirm the effectiveness of the high order finite
element method based on these MDS for the approximation of elliptic boundary
value problems on domains enclosed by piecewise conics.

C1 splines. A similar construction is suggested in [4, 5] for the spaces of C1

quintic macro-elements that vanish on a piecewise conic boundary. Figure 2 gives
an example of a stable MDS in this case. Note that in contrast to the standard
parametric patching approach to finite elements on curved domains, our splines
are C1 everywhere in the domain rather than only inside the patches. This allows
to employ our spaces in Bhmer’s finite element method for elliptic fully nonlinear
equations [6, 2], which is confirmed by the numerical experiments in [4, 5].
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Piecewise polynomials and regularity

Michael DiPasquale

Let P be a subdivision of a region in Rn by convex polytopes. Cr(P) denotes
the set of piecewise polynomial functions (splines) on P that are continuously
differentiable of order r. Splines are a fundamental tool in approximation theory
and numerical analysis [6]; recently they have also been recognized in a geometric
context as the equivariant cohomology ring of algebraic varieties with a torus action
[17]. Practical applications include surface modelling, computer-aided design, and
computer graphics [6].

One of the fundamental questions in spline theory is to determine the dimension
of the vector space Cr

d(P) of splines of degree at most d. In the bivariate, simplicial
case, a signature result of Alfeld-Schumaker using Bernstein-Bezier techniques is
a formula for dimCr

d(∆) when d ≥ 3r + 1 and ∆ ⊂ R2 is a generic simplicial
complex [2]. For ∆ ⊂ R2 simplicial and nongeneric, Hong [13] and Ibrahim-
Schumaker [14] derive a formula for dimCr

d(∆) when d ≥ 3r + 2 as a byproduct
of constructing local bases for these spaces.

An algebraic approach to the dimension question was pioneered by Billera [4] us-
ing homological and commutative algebra. In [5], Billera-Rose show that Cr

d(P)
∼=

Cr(P̂)d, the dth graded piece of the algebra Cr(P̂) of splines on the cone P̂ over

P . The function HF (Cr(P̂), d) = dimR Cr(P̂)d is known as the Hilbert function

of Cr(P̂) in commutative algebra, and a standard result is that the values of the

Hilbert function eventually agree with the Hilbert polynomial HP (Cr(P̂), d) of

Cr(P̂). An important invariant of Cr(P̂) is the postulation number ℘(Cr(P̂)),

which is the largest integer d so that HP (Cr(P̂), d) 6= HF (Cr(P̂), d).
This talk is on the paper [9], where we provide upper bounds on the postulation

number ℘(Cα(P)) for central polytopal complexes P ⊂ Rn+1, Cα(P) being the
algebra of mixed splines over P . A central polytopal complex is one in which the
intersection of all interior faces is nonempty; if P is central then splines on P are a
graded algebra. Mixed splines are splines in which different smoothness conditions
are imposed across codimension one faces.

The main reason for bounding ℘(Cα(P)) is that the Hilbert polynomial of
Cα(P) has been computed in situations where there are no known bounds on
℘(Cα(P)), rendering these formulas impractical. Currently, bounds which do not
make heavy restrictions on the complex P are known only in the simplicial case.
These bounds are recorded in Table 1. In particular classes of complexes (e.g.
cross-cut partitions) better and sometimes exact bounds are known. For brevity,

we denote ℘(Cr(∆̂)) by ℘r in Table 1.
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Analytic Methods
Bound Context Computed by
℘r ≤ 3r generic simplicial ∆ ⊂ R2 Alfeld-Schumaker [2]
℘r ≤ 3r + 1 all simplicial ∆ ⊂ R2 Hong [13]

Ibrahim-Schumaker [14]
℘1 ≤ 3 all simplicial ∆ ⊂ R2 Alfeld-Piper-Schumaker [1]
℘1 ≤ 7 generic simplicial ∆ ⊂ R3 Alfeld-Schumaker-Whiteley [3]

Homological Methods
Bound Context Computed by
℘r ≤ 4r all simplicial ∆ ⊂ R2 Mourrain-Villamizar [16]
℘1 ≤ 1 generic simplicial ∆ ⊂ R2 Billera [4]

Table 1. Bounds on ℘r = ℘(Cr(∆̂))

In contrast, the Hilbert polynomial HP (Cα(P), d) has been computed for all
central polytopal complexes P ⊂ R3. This is done in the simplicial case with mixed
smoothness by Schenck-Geramita [10], in the polytopal case with uniform smooth-
ness by Schenck-McDonald [15], and in the polytopal case with mixed smoothness
and boundary conditions in [8]. In this paper we provide the first bound on
℘(Cα(P)) for all central polytopal complexes P ⊂ R

3. Specifically, given smooth-
ness parameters α(τ) associated to each codimension one face τ ∈ P , our first
result is the following.

Theorem 1 Let P ⊂ R3 be a central, pure, hereditary three-dimensional polytopal
complex. Set

e(P) = max
τ∈P0

2

{
∑

γ∈(st(τ))2

(α(γ) + 1)},

where st(τ) denotes the star of τ and (st(τ))2 denotes the 2-faces of st(τ). Then

℘(Cα(P)) ≤ e(P)− 3.

In particular, HP (Cα(P), d) = dimR Cα(P)d for d ≥ e(P)− 2.

From an algebraic perspective, another reason for bounding ℘(Cα(P)) is that
almost all existing bounds, including most in Table 1, have been computed using
analytic techniques. There are a few instances where algebraic techniques are

applied to bound ℘(Cα(P)). In [4], Billera proves ℘(C1(∆̂)) ≤ 1 for generic
simplicial complexes. The most general bound produced by homological techniques
to date is by Mourrain-Villamizar [16]; building on work of Schenck-Stillman [19]

they prove that ℘(Cr(∆̂)) ≤ 4r for ∆ a planar simplicial complex, recovering an
earlier result of Alfeld-Schumaker. Our second result is the following.

Theorem 2 Let ∆ ⊂ R3 be a central, pure, hereditary three-dimensional simplicial
complex. For a 2-face τ ∈ ∆0

2, set

M(τ) = (α(τ) + 1) + max{(α(γ1) + 1) + (α(γ2) + 1)|γ1 6= γ2 ∈ (st(τ))2}.
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Then

℘(Cα(∆)) ≤ max
τ∈∆0

2

{M(τ)} − 2.

In particular, HP (Cα(∆), d) = dimR Cr(∆)d for d ≥ max
τ∈∆0

2

{M(τ)} − 1.

Setting α(τ) = r for all τ ∈ ∆0
2 in Theorem 2, we recover that HP (Cr(∆̂), d) =

dimCr(∆̂)d for d ≥ 3r + 2. This was originally proved via constructing local
bases by Hong [13] and Ibrahim-Schumaker [14], and is the best bound valid for
all planar simplicial complexes recorded in Table 1.

A key tool we use to prove these results is the Castelnuovo-Mumford regularity of
Cα(P), denoted reg(Cα(P)). This invariant is also used by Schenck-Stiller in [18].
Our particular way of using regularity is inspired by an observation used in the
Gruson-Lazarsfeld-Peskine theorem bounding the regularity of curves in projective
space [11]. In the context of splines this observation is roughly that, if we are lucky,
we can bound reg(Cα(P)) by the regularity of a ‘bad’ approximation. We take
as our approximation certain locally-supported subalgebras of splines introduced
in [7]. This could be viewed as an algebraic analogue of locally-supported bases
used in [13, 14].
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Three topics in multivariate spline theory

Simon Foucart

This report highlights some interactions between multivariate spline theory and
other areas of mathematics. Firstly, we show that a concept from spline theory is
pertinent in polytope geometry by revealing that Dehn–Sommerville equations are
nothing but a count of domain points. Secondly, we point out that the concept of
Hilbert series can be exploited in spline theory to generate dimension formulas for
fixed simplicial partitions. Thirdly, we show how a conjecture emanating in spline
theory can be reformulated in a language close to Algebraic Geometry in the hope
to stimulate an attack from this direction.

A low-tech approach to Dehn–Sommerville equations: Given a polytope
P in Rn, let fi(P ) be the number of i-dimensional faces of P , i ∈ {0, 1, . . . , n− 1}.
Euler–Poincaré equation states that

(1)

n−1∑

i=0

(−1)ifi(P ) = 1 + (−1)n−1.

In the case of a simplicial polytope S in Rn, this relation is complemented by the
Dehn–Sommerville equations, namely

(2)

n−1∑

i=k

(−1)i
(
i+ 1

k + 1

)
fi(S) = (−1)n−1fk(S), k ∈ {0, 1, . . . , n− 1}.

We reveal a connection with multivariate spline theory that leads to an elementary
proof of Dehn–Sommerville equations. It shares a similarity with the proof of [4]
by making an indirect use of a generalization

(3)
n−1∑

i=0

(−1)ifi(P, F ) = (−1)n−1

of the Euler–Poincaré equation in which F is an arbitrary face of a polytope P
in Rn and fi(P, F ) denote the number of i-dimensional faces of P containing F ,
see [4, Theorem 8.3.1]. Spline theory brings to the table the concept of d-domain

points relative to an n-simplex. There are
(
d+n
n

)
such d-domain points. If k

faces of the n-simplex are removed, then
(
d−k+n

n

)
of the d-domain points are left.

In particular, the number of interior d-domain points is
(
d−1
n

)
. We equip each

facet of S with its d-domain points. Dehn–Sommerville equations simply follow
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from counting the domain points in two different ways (in fact, the equations (2)
are equivalent to the twofold count below because the subsequent arguments are
completely reversible). Precisely, we have
Fact: For d ≥ 1, the total number of domain points is

ud =

n−1∑

k=0

fk(S)

(
d− 1

k

)
=

n∑

ℓ=1

(−1)ℓ−1fn−ℓ(S)

(
d+ n− ℓ

n− ℓ

)
.

The justification of (2) follows from this fact by calculating the generating
function G(z) =

∑
d≥1 udz

d in two different ways to obtain

G(z) =

n−1∑

k=0

fk
zk+1

(1 − z)k+1
=

n∑

ℓ=1

(−1)ℓ−1fn−ℓ

1

(1− z)n−ℓ+1
− (1 + (−1)n−1)f−1.

Rearranging, setting x = z/(z− 1), and changing a summation index, we arrive at

n−1∑

k=−1

(−1)k+1fkx
k+1 = (−1)n

n−1∑

i=−1

fi(x − 1)i+1.

We now simply look at the coefficient of xk+1 to deduce (2).
The technique just outlined allows us to also retrieve the connection with the

shelling parameters (α0, α1, . . . , αn) of S (aka its h-vector when α0 = 1). It starts
from a third way of counting the domain points, namely

ud =
n∑

k=0

αk

(
d− k + n− 1

n− 1

)
.

Generating dimension formulas for spline spaces: Let ∆n represent a
simplicial partition of a domain Ω ⊆ Rn. The space of Cr splines of degree ≤ d
over ∆n is denoted by

Srd(∆n) :=
{
s ∈ Cr(Ω) : s|T n-variate polynomial of degree ≤ d, all T ∈ ∆n

}
.

We are interested in the dimension of this space. Although finding a general
formula is a notoriously difficult problem, we take a different viewpoint, in that
we specify a fixed simplicial partition ∆n and we want to produce a formula for
dimSrd(∆n) in a somewhat automated fashion. We recall the method of [5], which
was based on the use of Alfeld’s applet [1] to compute dimSrd(∆n) for fixed d and
r and on a fundamental fact from Algebraic Geometry to infer a special form of
the general formula. We also explain how the fundamental fact (i.e., the form of
the Hilbert series) can be obtained from Bernstein–Bézier techniques alone, and
also how the additional information from [3] can be derived from the results of
[2]. We highlight some of the formulas conjectured in [5] and pinpoint the ones for
octahedra (regular and generic) in the case n = 3. As an aside, we draw attention
to a method proposed by P. Clarke based on some conversion to Commutative
Algebra and implemented in SAGE as a package called SplineDim (downloadable
on the author’s webpage).
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Reformulations of Schumaker’s partial interpolation conjecture: Given
a triangle T with vertices v1,v2,v3 ∈ R2 and given an integer d ≥ 1, let

D :=

{
ξi,j,k :=

i

d
v1 +

j

d
v2 +

k

d
v3 : i ≥ 0, j ≥ 0, k ≥ 0, i+ j + k = d

}

D′ :=

{
ξi,j,k :=

i

d
v1 +

j

d
v2 +

k

d
v3 : i ≥ 1, j ≥ 1, k ≥ 1, i+ j + k = d

}

be the set of
(
d+2
2

)
domain points and of

(
d−1
2

)
interior domain points, respectively,

relative to T and d. Associated to each domain point, there is a bivariate Bernstein
polynomial defined for v ∈ T by

Bξi,j,k(v) =
d!

i!j!k!
xiyjzk,

where (x, y, z) are the barycentric coordinates of v, so that v = xv1 + y v2 + z v3

with x ≥ 0, y ≥ 0, z ≥ 0, and x + y + z = 1. Schumaker’s conjecture (see [7,
Conjecture 2.22]) states, in its weak form:

(4) Is BΓ,Γ := [Bξ(η)]η,ξ∈Γ an invertible matrix for any Γ ⊆ D?

and, in its strong form:

(5) Is det (BΓ,Γ) > 0 for any Γ ⊆ D?

We observe numerically that the strong form holds at least up to d = 17 (this
observation was also made in [6]), that its trivariate version holds at least up to
d = 16, and that its quadrivariate version holds at least up to d = 14 (see the
matlab reproducible file available on the author’s webpage). Finally, we show
that Schumaker’s conjecture has the following equivalent formulations.

• The strong version (5) can be phrased as a linear complementarity prob-
lem:
Does there exist, for every q ∈ Rn, an x ∈ Rn such that x ≥ 0, Mx+q ≥
0, and 〈Mx + q,x〉 = 0? Here M = BD,D, n =

(
d+2
2

)
, or M = BD′,D′ ,

n =
(
d−1
2

)
.

• The weak version (4) can be phrased in terms of the space Pd of polyno-
mials of degree d in two variables u and v:
Does

{
[d− i(1− u)− j(1− v)]d, (i, j) ∈ Λ

}
∪
{
uivj , (i, j) ∈ I \ Λ

}
form a

basis for the space Pd whatever the subset Λ of I := {(i, j) : i ≥ 0, j ≥
0, i+ j ≤ d}?
• The strong version (5) can be phrased in terms of a bivariate Vandermonde
matrix at points (xi,j , yi,j) ∈ R2, (i, j) ∈ I, located at the intersections of
three families of d+ 1 lines:
Is det

[
xµ
i,jy

ν
i,j

]
(i,j),(µ,ν)∈Λ

> 0 for any Λ ⊆ I, where xi,j := i/(d− i − j)

and yi,j := j/(d− i− j)?

We hope that these three reformulations can stimulate new attempts to settle
Schumaker’s conjecture by offering new angles of attack.
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Multivariate toric Bézier patches

Luis David Garcia-Puente

Bézier patches and multi-sided patches. Bézier curves, triangular and rect-
angular Bézier patches are the fundamental units in geometric modeling. While
the classical Bézier patches are widely used, special applications require more flex-
ible multi-sided patches. In the last two decades, several control point schemes
for multi-sided patches have been introduced and studied in the geometric mod-
eling community. These include the S-patches of Loop and DeRose [6], Warren’s
hexagon [7], and the toric Bézier patches of Krasauskas [5]. The latter patches
have received significant attention since they provide a natural generalization of
Bézier patches to arbitrary lattice polygons.

The widespread adoption of Bézier patches is due in part to their possessing
many useful mathematical properties. Some, such as affine invariance, end-point
interpolation and the convex hull property, are built into their definitions and also
hold for toric Bézier patches. In this talk, we will discuss some advances in a long-
term project aimed at using and developing methods in computational algebraic
geometry to elucidate which other properties are satisfied by toric Bézier patches
[2, 1, 3]. In particular, we will focus on linear precision for toric Bézier patches.
Toric Bézier patches. Toric Bézier patches are based upon toric varieties
from algebraic geometry and their shape may be any polytope with integer ver-
tices. Toric Bézier patches begin with the finite set A = {a0, a1, . . . , an} ⊂ Z2

of lattice points inside a given polygon ∆ and a vector of nonnegative weights
w = (w0, . . . , wn) ∈ R

n+1
> . This data defines a map ϕ∆,w : (C×)2 → P

n via

ϕ∆,w(x, y) := [w0x
a01ya02 , w1x

a11ya12 , . . . , wnx
an1yan2 ] .

The closure of the image ϕ∆,w((C
×)2) is called the (translated) toric variety X∆,w.

The closure of ϕ∆,w(R
2
>) is the positive part X+

∆,w of X∆,w (the points of X∆,w

with nonnegative coordinates). A toric patch of shape ∆, denoted by Y∆,w,B, is
the image of a parametrization
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(1) F (x) : ∆ −→ R
3, x 7−→

∑

a∈A

waβa(x)ba,

obtained by composing an arbitrary parametrization ∆→ X+
A,w given by a set

of basis functions {βa(x) : ∆ → R | a ∈ A} with a linear projection πb given by
control points B = {ba | a ∈ A} ⊂ R3 (Figure 1).

Figure 1. Toric Bézier patches

A canonical parametrization of a toric Bézier patch can be obtained by the
following procedure. An r-sided polygon ∆ with integer vertices is defined by its
facet inequalities.

∆ =
{
(s, t) ∈ R

2 | hi(s, t) ≥ 0, i = 1, . . . , r
}
,

where hi(s, t) = vi · (s, t) + ci with inward pointing primitive normal vector vi.
For each lattice point a ∈ A := ∆ ∩ Z2, there is a toric Bézier basis function

βa(s, t) := h1(s, t)
h1(a)h2(s, t)

h2(a) · · ·hr(s, t)
hr(a).

Let w = {wa | a ∈ A} be a set of positive weights and B = {ba ∈ R3 | a ∈ A}
be a set of control points in R3 indexed by A. The toric Bézier patch Y∆,w,B of
shape ∆ is parametrized by

∑
a∈Awaβa(s, t)ba∑
a∈A waβa(s, t)

: ∆ −→ R
3.

In particular, given the polygons in Figure 2, and a fixed set of weights and
control points, we obtain the following parametrizations of a triangular toric Bézier
surface patch and a rectangular toric Bézier surface patch.

F (s, t) =
∑

k,l

(
n
kl

)
sktl(n− s− t)n−k−l

nn
bkl,

F (s, t) =
∑

k,l

(
m
k

)(
n
l

)
sk(m− s)m−ktl(n− t)n−l

mmnn
bkl.
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(0,0) (n,0)• •

•

t

s

(0,n)

•
(k,l)

  L
  M n ! s ! t

(0,0) (m,0)• •

• •

m ! s

n ! t

t

s

(0,n) (m,n)

•
(k,l)

  L
  M

Figure 2. Polygons with three and four sides.

These formulas are linear reparametrizations of the usual rational Bézier tri-
angle and rational Bézier rectangle whose images are depicted in Figure 1, along
with an hexagonal toric patch.
Linear Precision. The ability of a patch to replicate affine functions is an im-
portant property of Bézier patches known as linear precision. More precisely,
a patch parametrized by Equation 1 has linear precision if the tautological map
τ :=

∑
a∈A waβa(x)a is the identity function on ∆.

An important problem is to classify which toric Bézier patches have linear pre-
cision. In [2], we showed that every toric patch has a unique reparametrization
with linear precision, namely the inverse of the moment map µ−1

∆ . The moment
map µ∆ : X∆,w → C

2 is defined by

X∆,w ∋ z = [z0, z1, . . . , zn] 7−→ µ∆(z) :=

∑n
i=0 aizi∑n
i=0 zi

.

Of practical and theoretical interest is the classification of the toric surface
patches whose unique reparametrization with linear precision is a rational function.
The following result, proved in [2], is the cornerstone in the classification of the
toric surface patches with rational linear precision obtained in [4].

Theorem 1. Given a toric patch of shape (∆, w), let f = f∆,w be the homogeneous
polynomial whose dehomogenization is the sum of monomials with exponents A and
coefficients w. The toric patch admits a rational reparametrization with linear
precision if and only if the toric differential

Dtoricf :=
[
x ∂
∂x

f : y ∂
∂y

f : z ∂
∂z
f
]
: CP

2 −−→ CP
2

defines a birational isomorphism.

Theorem 2 (Graf Von Bothmer-Ranestad-Sottile). There are only three shapes
of toric surface patches with rational linear precision: Bézier triangles, Bézier
rectangles, and toric surface patches of trapezoidal shape defined by the integer
lattice points in the trapezoid with corners (0, 0), (0, n), (m,n), and (m+ dn, 0).

Future Work. It is an interesting and difficult problem to classify the toric Bézier
volumes that have rational linear precision. The result about surface patches
used the classification of birational maps of the projective plane P2. Very little is
known in general about birational maps of projective space P3, despite the fact
that this is a central problem in classical algebraic geometry. So treating this case,
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which is important for high-dimensional modeling, will require the difficult task of
advancing the theory about such birational maps.
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Blossoming approach for determining the dimension of the bivariate
spline space S1

n
(△)

Gašper Jaklič

(joint work with Jernej Kozak)

In the last 30 years the problem of determining the dimension of the bivariate
spline space has received a considerable attention. For a given triangulation △
of a polygonal region Ω ⊂ R2 with N triangles Ωi, the bivariate spline space of
degree n and smoothness r is defined as

Sr
n(△) := {f ∈ Cr(Ω); f |Ωi

∈ Πn(R
2), i = 1, 2, . . . , N},

where Πn(R
2) denotes the space of bivariate polynomials of total degree ≤ n.

In contrast to the univariate case, the bivariate spline space has a much more
complex structure and even such basic problems as determining its dimension or
construction of its basis are surprisingly hard to tackle. Even more surprising
is the fact that the “simplest” spaces of splines of the lowest degrees are the
most complex. For example, for the most interesting case - the space of cubic C1

splines S1
3(△), quite frequently used in practical applications, the dimension is still

unknown in general, even though a great deal of research has been done on the
topic. But it is essential that the dimension is known in advance in some important
applications, in particular for Lagrange interpolation by bivariate splines.

In general, the problem has been solved for a spline space of degree n and
smoothness r over a regular triangulation △, S1

n(△), where the degree n is large
in comparison to the smoothness r (n ≥ 3r + 2 ([5]), n = 4, r = 1 ([1])). Recall
that a triangulation is regular, if two adjacent triangles Ωi,Ωj can have only one
vertex or the whole edge in common.
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The dimension of the spline space S1
3(△) is known for particular classes of tri-

angulations only [8, 9, 4, 6, 2, 12], etc. It has been conjectured that the dimension
is equal to Schumaker’s lower bound ([8, 9])

(1) dimS1
3(△) ≥ 3VB(△) + 2VI(△) + σ(△) + 1,

where VB(△) denotes the number of boundary vertices, VI(△) the number of

internal vertices, and σ(△) =
∑VI (△)

i=1 σi,

σi =

{
1, if vertex is singular,
0, otherwise.

A vertex is singular if it is obtained as an intersection of exactly two lines.
Suppose that a triangulation △ consists of a set of triangles that all have one

common vertex v. Suppose every triangle in △ has at least one neighbour with
which it shares a common edge. Then we call △ a cell. If v is an interior vertex,
then △ is an interior cell, otherwise it is a boundary cell (see [10]).

The main obstacle in the study of the dimension problem is the fact that the
dimension depends not only on the topology of the triangulation △ but also on
its geometry. It has been conjectured (see [11]) that the dimension is equal to
Schumaker’s lower bound for n ≥ 2r+1 and that the dimension jump occurs only
for singular vertices.

In this paper, the blossoming approach is used (see [3, 6]). The idea is to study
the smoothness conditions between polynomial patches, written as their blossoms
([7]). This is a dual approach to the well known classical approach (see [10], e.g.)
and brings a new insight to the dimension problem. An overview of cell reduction
at the boundary of the triangulation is given. Thus sufficient conditions for an
inductive approach for determining whether the dimension of S1

n(△), n ≥ 3 is equal
to Schumaker’s lower bound for a large class of triangulations△ are obtained. It is
shown that inner cells of degrees k = 4, 5, . . . , 8 can be tackled, but the reduction
can be applied only in the case k = 4 and for special cases for k = 5. For
k = 6, 7, 8, a negative result is proven. Furthermore, inner cells with more than 2
free boundary edges are studied. Since it is possible to reduce most of the cases
by methods for boundary cells, we focus the study to the cases with collinearities.
It is proven that a cell of degree 4 with 1 common edge and a cell of degree 5 with
2 common edges with the rest of the triangulation can be reduced. An algorithm
that extends the results of [6] is presented, and it is proven that the results can be
generalized to S1

n(△).
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Completeness of hierarchical Zwart-Powell box splines

Bert Jüttler

(joint work with Dominik Mokrǐs and Urška Zore)

1. Introduction

Hierarchical splines [2, 4] have been introduced in order to eliminate the limita-
tions caused by tensor-product constructions for multivariate splines with respect
to adaptive refinement. They have been successfully used, e.g., in isogeometric
analysis [7] and reverse engineering [3]. Recently, the completeness question, i.e.,
whether they span the full space of piecewise polynomials, has attracted some
attention ([5], [6]). Sufficient conditions for completeness have been identified.

Zwart-Powell box splines are a well-studied type of bivariate box splines (see
[1]) on type II-triangulations. In order to perform adaptive refinement, it appears
to be a promising idea to introduce a hierarchy of finer grids, analogously to the
case of hierarchical tensor-product splines. The aim of this talk is to analyze
the completeness in this case. Additional complications, which are not present in
the tensor-product case, are introduced by the presence of linear dependencies.
We modify the resulting hierarchical generating system by introducing additional
functions in order to obtain a convenient system of linear dependency relations.
The resulting system spans the full space of quadratic C1-smooth polynomials on
the hierarchical criss-cross grid if the domain hierarchy satisfies certain criteria.
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2. Completeness on multicell domains

Firstly we extend the existing completeness results to the class of multicell do-
mains. We consider a type II-triangulation on the integer grid Z

2, see Fig. 1,
left.

A union of cells (i.e., of unit squares in the grid) is called a multicell domain
and will be denoted by a calligraphic letter. Its partition into the elementary cells
(triangles of the grid) shall be denoted by the same letter in the straight font.

The Zwart-Powell box splines are piecewise quadratic C1-smooth functions de-
fined by the Bernstein-Bézier coefficients as shown in Figure 1, left.

For the partition M of a multicell domainM into elementary cells, we denote
with

S
r
d(M) = {s ∈ Cr(M) | ∀e ∈M : s|e ∈ Pd|e}

the space of all Cr–smooth spline functions of degree d, where Pd|e is the space of
polynomials of degree d restricted to the elementary cell e.
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Figure 1. Left: Bernstein-Bézier coefficients defining a Zwart-
Powell element. Right: The multicell domain from Example 1.

Proposition 1. Any multicell domain M that is a union of mutually disjoint
simply connected components is ZP-complete, i.e.,

span{ζi|M | i ∈ IM} = S
1
2(M),

if its intersections with the supports of all Zwart-Powell box spline are connected.

Note that the functions ζi|M with i ∈ IM do not form a basis, as they are
linearly dependent. Also the assumption of simply connected domains is necessary,
as the next example shows.

Example 1. The dimension of the spline space S12 on the multicell domain in
Figure 1, right, is equal to 36. However, there are only 36 Zwart-Powell box splines
with supports intersecting the multicell domain. They do not span the entire spline
space due to the built-in linear dependency.
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Figure 2. Hierarchy of nested domains (left) and the hierarchical
grid defined by it (right).

3. Hierarchical generating systems

Now we proceed to the case of hierarchical generating systems. We consider Zwart-
Powell box splines of level ℓ, which are defined on the scaled grid with vertices
2−ℓZ2. The set of these box splines is denoted by Zℓ. The spaces spanned by
these box splines are nested.

In addition, we consider a given hierarchy of nested domains

Ω0 ⊇ · · · ⊇ ΩN−1 ⊇ ΩN = ∅.

with the property that each of them is a multicell domain with respect to the grid
of level ℓ− 1 (except for Ω0, which is a multicell domain with respect to the grid

of level 0). Furthermore, we use the notation Mℓ = Ω0 \ Ωℓ+1. Each Mℓ is a
multicell domain with respect to the grid of level ℓ, see Fig. 2.

Now we recall an analogue to Kraft’s selection mechanism [4], which was intro-
duced in [8].

Definition 2. The Kraft generating system is defined by

(1) K =

N−1⋃

ℓ=0

{ζℓi ∈ Zℓ | supp ζℓi ∩M
ℓ 6= ∅ and supp ζℓi ∩M

ℓ−1 = ∅}.

Furthermore, we define the partial chessboard pattern

πℓ
k(x) =

∑

i∈Z
2,

supp ζℓ
i
∩Mℓ−1

k
6=∅

χiζ
ℓ
i
(x),

whereMℓ−1
k is the k-th connected component ofMℓ−1 and χi is the chessboard

pattern, χi = (−1)i1+i2 . If we add these functions to the Kraft generating system,
we obtain the enriched Kraft generating system.

We may also introduce decoupling (see [5]) in order to relax the assumption
required for our proofs of completeness. Each function ζℓ

i
∈ Zℓ can be expressed

as a linear combination of functions from Zℓ+1; for each connected component of
supp ζ ∩Mℓ we sum all the refined functions multiplied with their coefficients and
thus obtain the decoupled functions from ζℓ

i
.
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The enriched decoupled Kraft generating system D is formed similarly to the
Kraft generating system but the functions ζℓ

i
in (1) are replaced by their decoupled

versions.

4. Completeness of hierarchical generating systems

The multilevel spline space H is given by

H = {s : Ω0 → R | ∀ℓ : s|Mℓ ∈ S
1
2(M

ℓ)}.

It is the space of all C1 smooth quadratic spline functions on the hierarchical grid
that is defined by the nested subdomains, cf. Fig. 2. We derive conditions which
imply that the enriched (decoupled) Kraft generating system is complete, i.e., it
spans the entire multilevel spline space.

Theorem 3. The enriched Kraft generating system spans H if eachMℓ is a union
of mutually disjoint simply connected domains with the property that their offsets
in distance 2−ℓ−1 do neither intersect each other nor possess self-intersections.

The enriched decoupled hierarchical Kraft generating system spans H if each
Mℓ is a union of mutually disjoint simply connected domains.

In addition to these results it is possible to control the number of linear depen-
dencies, and this leads to the following result: If the assumptions of the previous
theorem are satisfied, then

dimH = |D| − n,

where n is the number of connected components of Ω0.

5. Closure

We presented several generating systems for the space of piecewise quadratic C1–
smooth splines on a hierarchical criss-cross grid. Their completeness is guaranteed
under certain assumptions on the domain configuration. The enriched decoupled
Kraft generating system requires very few assumptions and covers a wide range of
hierarchical meshes. The number of linear dependencies, which are present in it,
can be analyzed.
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Interpolation properties of C1 quadratic splines on hexagonal cells

Alexei Kolesnikov

(joint work with L. Allen, K. Borst, B. Claiborne, K. Pilewski)

Let ∆ be a hexagonal cell with the interior vertex v0 and exterior vertices v1, . . . , v6.
Let S1

2(∆) be the vector space of all C1 quadratic splines on ∆. The dimension of
the vector space is 9. However, it was observed by Alfeld, Piper, and Schumaker
in [1] that, for some hexagonal cells ∆, every spline in S1

2(∆) that vanishes on 5 of
the 6 exterior vertices will vanish at the 6th exterior vertex as well. This means
that the exterior vertices cannot be contained in any interpolation set for S1

2(∆)
for such cells ∆; we say in this case that S1

2(∆) does not interpolate at the exterior
vertices. The authors of [1] asked for a characterization of all the cells ∆ such that
S1
2(∆) does not interpolate at the exterior vertices. The question was posed again

by Peter Alfeld during a seminar talk at Towson University. This talk presents the
results of a student research project that addressed the question. The project was
directed by the speaker during 2014 Summer Undergraduate Applied Mathematics
Institute at Carnegie Mellon University.

We start by obtaining an explicit basis for the vector space S1
2(∆) (in fact, the

bases are obtained not only for hexagonal cells, but for all cells with at least 5
exterior vertices). After a basis is fixed, for any s ∈ S1

2(∆) and any v ∈ R2, the
condition s(v) = 0 gives a linear equation for the coefficients of s in the given basis.
Thus, the question whether S1

2(∆) interpolates at the exterior vertices reduces to
the problem of whether the conditions s(vi) = 0, i = 1, . . . , 6 result in linearly
independent equations. We note that, for polynomial functions, such questions
have been classically studied (see, for example [2]).

A key observation is that, for the chosen basis, the linear independence of the
above equations can be reformulated in purely geometric terms. In the case when
the diagonals of ∆ intersect at the interior vertex, the resulting characterization
is particularly easy to state: S1

2(∆) does not interpolate at the exterior vertices if
and only if the hexagon formed by the exterior vertices is regular up to a projective
transformation. Previously, the only known example of a hexagonal cell ∆ such
that S1

2(∆) does not interpolate at the exterior vertices was that of a regular, up
to an affine transformation, cell. Thus, the above characterization results in a
wider class “non-interpolation” cells. We do obtain a geometric characterization
(in terms of certain cross-ratios) of the cells ∆ such that S1

2(∆) does not interpolate
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at exterior vertices, but a complete description of the class of all such cells still
remains out of reach.
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Polygonal spline spaces, dimensions, and their numerical solution of
the Poisson equation

Ming-Jun Lai

(joint work with Michael Floater)

My talk is based on a recent joint work with Michael S. Floater. I shall use gen-
eralized barycentric coordinates (GBCs) to form Bernstein-Bézierpolynomial-like
functions over a polygon with any number of sides and then explain the dimension
of the linear span of these Bernstein-Bézierfunctions for any fixed polygon. Next
I shall explain how to use these functions to form a continuous polygonal spline
space of order d over a partition consisting of polygons. An algebraic geometry ap-
proach to define such a polygonal space is presented. In particular, I shall explain a
polygonal spline space which is able to reproduce all polynomials of degree d. This
spline space consists of serendipity elements. Dimension of this polygonal spline
space is given. Locally supported basis functions (polygonal finite elements) for
the space are constructed for order d = 2 using any GBC and for d ≥ 3 using Wach-
spress GBC. Our quadratic elements are simpler than the ‘serendipity’ elements
that have appeared in the recent literature. Also, the basis functions are fewer
than those of the virtual element method for d ≥ 2. We use these polygonal splines
to solve Poisson equations. Mainly we implement them for the numerical solution
of the Poisson equation on two special types of non-triangular partitions to present
a proof of concept for solving the equation over mixed partitions. Numerical so-
lutions based on quadrangulations and pentagonal partitions are demonstrated to
show the efficiency and effectiveness of these polygonal splines. They appear to
better (using less degrees of freedom to find a more accurate solution) than the
traditional continuous polynomial finite element method. Many open problems are
proposed. After my presentation, a few audience pointed out that the first result I
reported was proved in an earlier literature using algebraic geometry method. We
discussed how to interpret the notation and see the dimension formula reported in
my talk agrees with the formula in the published work. I am very happy to know
a part of my research on approximation theory has also been studied in algebraic
geometry. During this week I have learned a lot of basic concepts and ideas in al-
gebraic geometry and geometry/topology. This made me to be able to explain my
work using algebraic geometry language. The ideas of super splines and serendip-
ity elements from approximation theory may challenge algebraic geometers how
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to interpret and introduce new concepts for algebraic geometry study. Anyway, I
find this workshop is extremely fruitful and useful.

Simplex spline bases on the Powell-Sabin 12-split: part I

Tom Lyche and Georg Muntingh

(joint work with Elaine Cohen, Richard Riesenfeld)

Piecewise polynomials or splines defined over triangulations form an indispensable
tool in the sciences, with applications ranging from scattered data fitting to finding
numerical solutions to partial differential equations. In applications like geometric
modeling and solving PDEs by isogeometric methods one often desires a low degree
spline with C1, C2 or C3 smoothness. For a general triangulation, it is known that
the minimal degree of a triangular Cr element is 4r + 1, e.g., degrees 5, 9, 13 for
the classes C1, C2 or C3. To obtain smooth splines of lower degree one can split
each triangle in the triangulation into several subtriangles. One such split that we
consider here is the Powell-Sabin 12-split of a triangle.

1 2

3

4

56

7 8

9

10

The 12-split with numbering of vertices.

Once a space is chosen one determines its dimension. The spaces S12 ( ) and

S35 ( ) of C1 quadratics and C3 quintics on the 12-split of a single triangle
have dimension 12 and 39, respectively. Over a general triangulation T of a polyg-
onal domain we can 12-split each triangle in T to obtain a triangulation T12. The
dimensions of the corresponding C1 quadratic and C2 quintic spaces (the latter
with C3 supersmoothness at the vertices and the interior edges of each macro
triangle) are 3|V| + |E| and 10|V| + 3|E|, respectively, where |V| and |E| are the
number of vertices and edges in T . Moreover, in addition to giving C1 and C2

spaces on any triangulation these spaces are suitable for multiresolution analysis,
see for example [2].

To compute with these spaces one needs a suitable basis. In the univariate
case the B-spline basis is an obvious choice. In this talk we consider a bivariate
generalization known as simplex splines. We review the construction and a few
properties shown in [1] of the S-basis consisting of C1 quadratic simplex splines in

S12 ( ). We also introduce some concepts needed in Part II of this talk given by
Georg Muntingh.
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A short background on simplex splines. Let K = {v1 · · ·vd+s+1} ⊂ IRs be

a finite multiset. Consider a simplex σ = [v1, . . . ,vd+s+1] ⊂ IRd+s together with
a projection π : σ −→ IRs satisfying π(vi) = vi. We define the simplex spline
B[K](x) = vold

(
σ ∩ π−1(x)

)
/vold+s(σ). For instance, three knots in IR1 define a

linear B-spline, four knots in IR1 define a quadratic B-spline, and four knots in IR2

define a linear bivariate simplex spline:

v1 v2v3

v1

v2

v3

v1

v1

v2

v2

v3

v3

v4

v4

Simplex splines have all the usual properties of univariate B-splines. This in-
cludes continuity which can be controlled locally, a recurrence relation, and dif-
ferentiation and knot insertion formulas. The support of a simplex spline is the
convex hull of its knots, and in IR2 the collection of knotlines is obtained by con-
necting each knot to all other knots (the complete graph). A simplex spline with
d+3 knots in IR2 has d−m+1 continuous derivatives across a knot line containing
m knots counting multiplicites.

Simplex splines on the 12-split. Since the knotlines form a complete graph
the simplex splines are natural candidates for a Cr basis on this split. A simplex
spline on the 12-split will have a knotset of the form K = {vm1

1 · · ·v
m10
10 }, where

v1, . . . ,v10 are the vertices numbered as above, and mi ≥ 0 is the multiplicity of
vi, i.e., the number of repetitions of vi in the multiset. A convenient scaling is the
(area normalized) simplex spline Q[K] : IR2 −→ IR, recursively defined by

Q[K](x) :=





0 if area([K]) = 0,

1[K)(x)
area( )
area([K]) if area([K]) 6= 0 and |K| = 3,∑10

j=1 βjQ[K\vj ](x) if area([K]) 6= 0 and |K| > 3,

with x = β1v1 + · · ·+ β10v10, β1 + · · ·+ β10 = 1, and βi = 0 whenever mi = 0.
By Theorem 4 in [4] this definition is independent of the choice of the βj .

Whenever m7 = m8 = m9 = m10 = 0, we use the graphical notation

i j

k

l
mn := Q[vi

1v
j
2v

k
3v

l
4v

m
5 vn

6 ].

B-splines on the boundary. It is useful for the simplex splines to restrict to
consecutive univariate B-splines on the boundary. For example, on [v1,v2] the

quadratic simplex splines 1
4 3 1

1 , 1
2 2 11

1 , 12 1 21
1 , 1

4 31
1 restrict to:
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0.5 1

B[v3
1,v4], B[v2

1,v4,v2], B[v1,v4,v
2
2], B[v4,v

3
2]

Symmetries. Identifying a triangle with an equilateral triangle, its symmetries

1 2

3

2 3

1

3 1

2

1 3

2

3 2

1

2 1

3

form a group S3 that acts on the simplex splines by permuting knots. We write

[B]S3 := {Q[σ(K)] : Q[K] ∈ B, σ ∈ S3}

for the set of simplex splines related to B by a symmetry in S3. Let

c4 :=
c1 + c2

2
, c5 :=

c2 + c3
2

, c6 :=
c1 + c3

2
,

c7 :=
c4 + c6

2
, c8 :=

c4 + c5
2

, c9 :=
c5 + c6

2
, c10 :=

c1 + c2 + c3
3

.

Via the identification ci ↔ vi with the vertices of , the group S3 acts on
polynomials in c1, . . . , c10 and simplex splines, or combinations of these, e.g.,

[
c4c10

1 11
11

]

S3

=

{
c4c10

1 11
11 , c5c10

1

1

1
11 , c6c10

1

1

1
11

}
.

The quadratic S-basis. It is given by

[
1

4 3 1
1 ,

1

2 2 11
1 ,

3

4 1 11
11

]

S3

=

{
1

4 3 1
1 ,

1

4 31
1 ,

1

4

3
11 , . . . ,

3

4 1

1

1
11 ,

3

4 1 11
11

}

and is the unique simplex spline basis for S12 ( ) with local linear independence.
Moreover, it is symmetric, reduces to B-splines on the boundary, can be computed
by a pyramidal scheme, and has Bézier-like smoothness conditions across adjacent
macro triangles. Furthermore, it has a barycentric Marsden identity

(
∑[

c1
2 1

1
]

S3

)2

=
∑[

1

4
c21 3 1

1

]

S3

∪

[
3

4
c4c10

1 11
11

]

S3

∪

[
1

2
c1c4

2 11
1

]

S3

,

which yields polynomial reproduction, explicit dual functionals and a simple quasi-
interpolant. These show that the S-basis is stable independently of the geometry,
which implies an h2 bound on the distance between a spline and its control surface.
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Stuttgart, 1979, 211–248.

Simplex spline bases on the Powell-Sabin 12-split: part II

Tom Lyche and Georg Muntingh

Analogous to the C1 quadratic simplex spline basis from [1], we derive C3 quintic

simplex spline bases on the Powell-Sabin 12-split of a triangle [3]. The
resulting computations are implemented in a Sage worksheet, which can be down-
loaded and tried out online in SageMathCloud [4]. We follow the notation in
Part I.

A case-by-case analysis of the possible knot multiplicities yields:

Theorem 1. With one representative for each S3 equivalence class, these are the

C3 quintic simplex splines on that reduce to a B-spline on the boundary of :

6 1
1

5 2
1

5

1

2 4 11
2

4 12
1

3 22
1

2 22
11

4 2

2

3 3

2

4 1

2

1

3 2

2

1 1 4

1

1
1

1 3

2

1
1

2 2

2

1
1

2 2

1

1
11

4 1

1

2 3 2

1

2 1 3

1

2
1

2 2

1

2
1

1 2

1

2
11

We first create a large list of potential bases for the space S35 ( ) of C3 quintics
on the 12-split. Using the macro-element from [2], we then narrow this down to a
short list with good properties:

Theorem 2. There are precisely six sets B = Ba,Bb,Bc,Bd,Be,Bf satisfying:

(1) B is a basis of S35 ( ) consisting of simplex splines.
(2) B is S3-invariant.
(3) B reduces to a B-spline basis on the boundary.
(4) B has a positive partition of unity and a Marsden identity, for which the

dual polynomials have only real linear factors.

(5) B has all its domain points inside the macro triangle , with precisely 8

domain points on each edge of .

For instance, the basis Bc = {Sj}
39
j=1 is

[
1

4 6 1
1 ,

1

4 5 2
1 ,

1

2 4 12
1 ,

1

2 3 22
1 ,

3

4 2 22
11 ,

1 4

1

1
1 ,

1

2 1 3

1

2
1 ,

3

4 1 2

1

2
11

]

S3
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and satisfies the barycentric Marsden identity

(
c1

2 1

1
+ c2

1 2

1
+ c3

1 1

2
)5

=

∑[
1

4
c51 6 1

1

]

S3

∪

[
1

4
c41c4 5 2

1

]

S3

∪

[
1

2
c21c2c

2
4 3 22

1

]

S3

∪

[
3

4
c1c2c4c5c10

1 2

1

2
11

]

S3

∪

[
1

2
c31c

2
4 4 12

1

]

S3

∪

[
1

2
c1c

2
2c4c5 1 3

1

2
1

]

S3

∪

[
3

4
c1c2c

2
4c10 2 22

11

]

S3

∪

[
c32c4c5 1 4

1

1
1

]

S3

Factoring the dual polynomials and replacing ‘ci’ by ‘vi’, one obtains 39 sets
{p∗

j,r}
5
r=1, j = 1, . . . , 39, of dual points. Taking the average of each set one arrives

at the domain points {ξj}
39
j=1. To preserve the symmetry of , the domain points

are forced to form a hybrid mesh with triangles, quadrilaterals, and a hexagon in
the center. This mesh is shown below on two adjacent macro triangles, together
with an ordering of the domain points.
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The collocation matrix {Sj(ξi}
39
i,j=1 is nonsingular, showing that {ξi}

39
i=1 is uni-

solvent for S35 ( ), i.e., there is a unique Lagrange interpolant at the domain
points. Moreover, it was previously shown that there is a unique Hermite in-

terpolant for the space S35 ( ) based on values and derivatives at the corners,
midpoints, and quarterpoints [2]. Finally, the Marsden identity yields that

Q(f) :=

39∑

j=1

Sj

5∑

k=1

1

5!
k5(−1)k−1

∑

1≤r1<···<rk≤5

f

(
p∗
j,r1

+ · · ·+ p∗
j,rk

k

)

is a quasi-interpolant that reproduces all polynomials up to degree 5 and has ap-
proximation order 6. Moreover, using the Lagrange interpolant we show that the
six bases are stable in the L∞ norm with a condition number bounded indepen-
dently of the geometry. As a consequence we obtain an h2 bound of the distance
between the Bézier ordinates and the values of the spline at the corresponding
domain points.
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As in the above figure, let := [v1,v2,v3] and
˜

:= [v1,v2, ṽ3] be triangles
sharing the edge [v1,v2]. Imposing a smooth join along [v1,v2] of

f(v) :=

39∑

i=1

ciSi(v), v ∈ , f̃(v) :=

39∑

i=1

c̃iS̃i(v), v ∈
˜

translates into linear relations among the Bézier ordinates ci and c̃i.

Theorem 3. Let (β1, β2, β3) be the barycentric coordinates of ṽ3 with respect to

the triangle . Then f and f̃ meet with
C0 smoothness if and only if c̃i = ci, for i = 1, . . . , 8;
C1 smoothness if and only if in addition

c̃9 = β1c1 + β2c2 + β3c9, c̃11 = β1(2c3 − c2) + β2c4 + β3c11,
c̃10 = β1c2 + β2c3 + β3c10, c̃12 = β1

2c4+c5
3 + β2

c4+2c5
3 + β3c12,

and analogous conditions for c̃13, c̃14, and c̃15;
C2 smoothness if and only if in addition

c̃16 = β2
1c1 + 2β1β2c2 + β2

2c3 + 2β1β3c9 + 2β2β3c10 + β2
3c16,

c̃17 = β2
1c2 + β2

2c4 + β2
3c17 + 2β1β2

3c3−c2
2 + 2β1β3

3c10−c2
2 + 2β2β3

c10+2c11−c3
2 ,

c̃18 = β2
1
2c3+2c4−c2

3 + β2
2
c4+2c5

3 + β2
3c18 + 2β1β2

c2−2c3+6c4+c5
6

+2β1β3
c2−2c3+2c4−c5+3c11+3c12

6 + 2β2β3
9c12−2c5−c11

6 ,
and analogous conditions for c̃19, c̃20, and c̃21.

Whenever the domain points follow the shape of the macro triangles, we recover
the classical Bézier conditions. All conditions are valid for the domain points as
well, so that they also hold for the control points. Although conditions for C3

smoothness can also be derived, one of these involves only (β1, β2, β3) and the
Bézier ordinates on one triangle, showing that this element cannot be used to
obtain C3 smoothness on a general triangulation.

One can easily convert between Bc and the Hermite nodal basis from [2]. For
instance, the nodal function corresponding to the point evaluation at v1 is

ε∗
v1

=
1

4 6 1
1 +

1

4

(

5 2
1 +

5 1
2

)
+

1

2

(

4 12
1 +

4

1

1
2

)
+

4 1

1

1
1

+
1

2

(

3 1

1

2
1 +

3 1

1

1
2

)
+

1

2

(

3 22
1 +

3

2

1
2

)
+

9

16

(

2 1

1

2
11 +

2 1

1

1
12

)

+
3

8

(

2 22
11 +

2

2

1
12

)
+

3

16

(

1 1

2

1
12 +

1 2

1

2
11

)

which, on a regular hexagon split at its barycenter, has the graph and wireframe
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Almost polynomial splines over planar T-meshes

Carla Manni

(joint work with Cesare Bracco, Tom Lyche, Fabio Roman, Hendrik Speleers)

Almost polynomial (generalized) splines are smooth piecewise functions with sec-
tions in spaces of the form (see [4]):

P
U,V
p := 〈1, t, . . . , tp−2, U(t), V (t)〉, t ∈ [a, b], 2 ≤ p ∈ N.

Classical polynomial splines are obtained by taking the functions U, V equal to
tp−1, tp. In such a case, the space PU,V

p is the space of algebraic polynomials
of degree p, denoted by Pp. Other interesting examples are trigonometric or
exponential generalized splines for which U, V are taken as cos(αt), sin(αt), or
cosh(αt), sinh(αt), respectively.

Under suitable conditions on U, V , the space PU,V
p has the same structural

properties as Pp. Similarly, generalized splines possess all the desirable properties
of polynomial splines. In particular, they admit a representation in terms of basis
functions that are a natural extension of the polynomial B-splines. Moreover,
classical algorithms (like degree elevation, knot insertion, differentiation formulas,
etc.) can be explicitly rephrased for them. Such basis functions are referred to as
generalized B-splines (GB-splines).

Generalized splines are popular tools in the computer aided geometric design
community. Besides their theoretical interest, generalized spline spaces offer the
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possibility of controlling the shape of their elements by means of some shape pa-
rameters (the value α in the case of trigonometric and exponential generalized
splines mentioned above), see [8]. Moreover, they are an interesting alternative
to non-uniform rational B-splines (NURBS), see [4, 10] and references therein. In
particular, trigonometric and exponential generalized splines allow for an exact
representation of conic sections as well as some transcendental curves (helix, cy-
cloid, etc.) and are attractive from the geometrical point of view. For example,
in contrast with NURBS, they are able to provide parameterizations of conic sec-
tions with respect to the arc length so that equally spaced points in the parameter
domain correspond to equally spaced points on the described curve.

Thanks to the above properties, tensor-products of generalized B-splines are
also an interesting problem-dependent alternative to tensor-product (polynomial)
B-splines and NURBS.

Adaptive local refinement is fundamental in applications. Unfortunately, any
tensor-product structure lacks adequate local refinement, and this drawback trig-
gered the interest in alternative spline structures. Confining the discussion to local
tensor-product structures, we mention T-splines [15], hierarchical splines [6, 7], and
locally refined (LR-) splines [5].

T-splines, hierarchical splines and LR-splines can be seen as special instances
of splines over T-meshes, see [13, 14]. A complete understanding of these spline
spaces requires the knowledge of the dimension of the spline space defined on a
prescribed T-mesh for a given degree and smoothness, see [9, 13] and references
therein. Among the various techniques to tackle this difficult problem, one can use
the homological approach proposed in [12], where the technique presented in [1]
for splines on triangulations has been fine-tuned for splines on planar T-meshes.

As mentioned above, generalized splines enjoy the fundamental properties of
polynomial splines, including the behavior with respect to local refinement. In
particular, GB-splines support (locally refined) hierarchical structures in the same
way as (polynomial) B-splines, see [11]. T-spline structures based on trigonometric
GB-splines have been addressed in [2]. Results on the dimension of generalized
spline spaces over T-meshes have been provided in [3] by extending the approach
based on so-called determining sets, see [13].

In this talk we deepen the parallelism between polynomial splines and gener-
alized splines over planar T-meshes. In particular, we extend the homological
approach of [12] to generalized splines, in order to address the problem of deter-
mining the dimension of a generalized spline space on a prescribed T-mesh for a
given degree and smoothness.
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Spline spaces on T-meshes

Bernard Mourrain

Standard parametrisations of surfaces in CAGD are based on tensor product B-
spline functions, defined from a grid of nodes over a rectangular domain. These
models are easy to control but their refinment has some drawback. Inserting a
node in one direction implies the insertion of several control points in the other
directions of the parameter space. If for instance, regions along the diagonal
of the parameter domain need to be refined, this will create a fine grid with
a significant part of the parameter domain which is refined for no reason. To
avoid this problem, while extending the standard tensor product representation of
CAGD, functions attached to subdivisions with T-junctions instead a grid, have
recently been analyzed. Such a T-subdivision is a partition of an axis-aligned box
Ω (e.g., the unit square) into smaller axis–aligned boxes, called the cells of the
subdivision.

A first family of T-splines has been introduced in [6]. Their construction involves
functions which are piecewise rational functions, defined as blending functions
over the T-mesh. There is no proof linear independency of these functions. More
recently other types of splines on T-meshes have been proposed [2], [3]. They
are piecewise polynomial functions of given regularity and bi-degree on the T-
subdivision.
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Computing the dimension and bases of these vector spaces of spline functions
on T-subdivisions is an important but non-trivial issue. It has a direct impact in
approximation problems such as surface reconstruction or isogeometric analysis,
where controlling the space of functions used to approximate a solution is critical.
In geometric design, it can also have some importance by providing more freedom
to control a shape.

In this talk, we give a formula [4] for the dimension of the space Sr,r
′

m,m′(T ) of

bivariate functions that are piecewise polynomial of bidegree (m,m′) and class

Cr,r′ over a planar T-subdivision T . We exploit the homological techniques de-
veloped in [1] and [5]. By extending them to T-subdivisions, we show how to
relate this dimension to the number of nodes on the maximal interior segments
of the subdivision. We show that for m ≥ 2r + 1 and m′ ≥ 2r′ + 1, the dimen-
sion depends directly on the number of faces, interior edges and interior points, It
yields lower and upper bounds on the dimension of these spline spaces for general
T-subdivisions.
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Multivariate interpolation and approximation with polynomials and
splines

Ulrich Reif

Understanding the approximation properties of polynomial and piecewise poly-
nomial functions is a basic task in approximation theory. Amazingly, some fun-
damental questions in that respect could only be answered recently, and others
are still open today. In this talk, we report on recent progress and identify some
current challenges.

While univariate interpolation with polynomials is easily understood, the multi-
variate case is much more complicated and leads to some unexpected phenomena,
even in the simplest case of interpolation by tensor product polynomials on a
tensor product grid of nodes. The following results can be found in [5]. Let Pn

denote the space of d-variate polynomials of coordinate order n = [n1, . . . , nd],
and let Γ = Γ1 × · · · × Γd ⊂ Ω := [0, 1]d be a regular grid of interpolation nodes
of according size. Given a continuous function f : Ω → IR, there exists a unique
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polynomial p = If ∈ Pn with f(Γ) = p(Γ). Writing the error operator E = Id−I
as

E = −
∑

αi∈{0,1}

(−Ed)
αd · · · (−E1)

α1 ,

it can be shown that the interpolation error is bounded by

‖f − p‖∞,Ω ≤
∑

αi∈{0,ni}

1

α!
‖∂αf‖∞,Ω.

Estimates in terms of the pure partial derivatives alone can be obtained if the
spacing of nodes is taken into account. To this end, let

δ[m] := [δ[m1], . . . , δ[md]], δ[mk] := min
i

γk
i+mk+1 − γk

i ,

denote the vector of least distances when skipping mk nodes in the kth coordinate
direction. Then, as a consequence of an embedding theorem in anisotropic Sobolev
spaces, one obtains the estimate

‖f − p‖∞,Ω ≤ C(δ[m])
d∑

k=1

‖∂nk

k f‖∞,Ω

for vectors m satisfying
∑

k mk/nk < 1. Examples show that the dependence of
the constant C on δ[m] is unavoidable.

An even more fundamental question concerns the approximability of functions
by polynomials in Sobolev spaces. With Pn the space of polynomials of total order
n, the famous Bramble-Hilbert Lemma [1] states that

inf
π∈Pn

‖f − π‖p,Ω ≤ C
∑

|α|=n

‖∂αf‖p,Ω

if the domain Ω is bounded by Lipschitz graphs. Subsequent research aimed at
enlarging the set of domains, and at providing specific values for the constant C,
see, for instance, [2, 3, 4, 8]. For the approximation by tensor product polynomials
in anisotropic Sobolev spaces, it was shown in [6] that

inf
π∈Pn

‖f − π‖p,Ω ≤ C(Ω, n)

d∑

k=1

‖∂nk

k f‖p,Ω

if Ω is bounded by axis-aligned graphs. The dependence of the constant on the
shape of the domain is given explicitly. When admitting also mixed partial deriva-
tives on the right hand side, the estimate can be generalized to domains which are
bounded by a finite set of diffeomorphic images of graphs of continuous functions,
thus enlarging the set of domains significantly.

When approximating functions by tensor product splines of coordinate order n
with knots T = T1×· · ·×Td, known results concerning approximation in anisotropic
Sobolev spaces contain constants which depend on the aspect ratio of grid cells.
Examples show that in dimensions d ≥ 3 this phenomenon is unavoidable, but
the bivariate case is different: Here, the dependence if the constant on the aspect
ratio is only due to B-splines whose support in Ω is not connected. The concept
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of diversification, as introduced in [7], enlarges the spline space by providing a
separate copy of each B-spline for every connected component of supp bi ∩Ω. For
the resulting space Sn it can be shown that

min
s∈Sn

‖f − s‖p,Ω ≤ C(Ω, n)
d∑

k=1

‖∂nk

k f‖p,Ω

if Ω is bounded by a finite set of axis-aligned Lipschitz graphs. Here, the constant
C depends on the shape of the domain and the order, but not on the aspect ratio.

A major challenge for future research concerns estimates in higher-dimensional
cases. In particular, the dependence of the constant on the shape of the domain
and the aspect ratio needs to be clarified.
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Prony’s method in several variables

Tomas Sauer

In 1795, R. Prony [3] gave an ingenious trick to recover a function of the form

(1) f(x) =
∑

ω∈Ω

fωe
ωTx, Ω ⊂ C

s, #Ω <∞,

from integer samples by noting that if p =
∑

α pα(·)α is a polynomial, then
∑

β∈Zs

f(α+ β) pβ =
∑

ω∈Ω

fω eω
Tα p(eω), α ∈ N

s
0.

This shows that any polynomial from the zero dimensional ideal

IΩ := {f ∈ Π : f(eω) = 0, ω ∈ Ω}

of total degree ≤ n belongs to the kernel of the Hankel matrix

Fn = [f(α+ β) : |α|, |β| ≤ n]



1178 Oberwolfach Report 21/2015

for large enough n. Indeed, if we use Πn ⊂ C[x] = C[x1, . . . , xs] to denote the
polynomials of total degree ≤ n in s variables, we have the following result.

Theorem 1. If n is sufficiently large, then a polynomial p =
∑

pα(·)
α belongs to

IΩ ∩ Πn if and only if the vector p = [pα : |α| ≤ n] satisfies Fnp = 0.

This observation is the starting point to recover the frequencies Ω and the
coefficients fω, ω ∈ Ω. With the a priori knowledge of #Ω, one could build the
matrix Fn for n = #Ω whose kernel defines a system of polynomial system whose
solutions are exactly the common zeros of IΩ, hence eΩ = {eω : ω ∈ Ω}.

Unfortunately, this naive approach is not feasible as the size of the matrix Fn

grows exponentially in the number of variables. A more suitable approach uses
homogeneous H–bases. Recall that an H–basis H of an ideal I is a finite subset of
I such that

f ∈ I ⇔ f =
∑

h∈H

fh h, deg f ≥ deg fh + deg h, h ∈ H.

Although any Gröbner basis with respect to a graded term order, i.e., a term order
“≺” such that α ≺ β whenever |α| < |β|, is also an H–basis, such bases can be
constructed by means of orthogonal projections in a way that does not use any
term order at all and only works on homogeneous components.

As shown in [4], such an H–basis allows for an algorithmically computable
decomposition

(2) f =
∑

h∈H

fh h+ r

where the remainder r depends only on the ideal 〈H〉 and an inner product on
Π and thus forms a normal form modulo ideal. The image of the normal form
map ν : f → r with the decomposition in (2) gives the finite dimensional degree
reducing interpolation space ν(Π) whose maximal degree,

deg ν(Π) := max{deg p : p ∈ ν(Π)}

is the lower bound for Fn. More precisely: Theorem 1 holds for n > deg deg ν(Π).
With a proper guess of n > deg deg ν(Π) which replaces the n = #Ω from the

univariate case, one can successively build the matrices

Fn,k =

[
f(α+ β) :

|α| ≤ n
|β| ≤ k

]
, k = 0, 1, 2, . . .

from which it is possible to construct orthonormal bases for ν(Π)∩Πk and IΩ∩Πk

with the positive side effect that as soon as k ≥ deg deg ν(Π), the ideal basis is an
H–basis for IΩ. Knowing this basis and the basis of the normal form space, one
can use reduction, again by means of Linear Algebra, to compute s multiplication
tables of (modest) size #Ω×#Ω whose eigenvalues are the components of the zeros
eΩ, cf. [5]. Once the frequencies are known, the coefficients fω can be determined
by solving a linear system.
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The advantage of using homogeneous, term order free H–bases lies in the fact
that all computations are based on well–understood and well–implemented meth-
ods of numerical Linear Algebra: in addition to a singular value decomposition for
numerical rank computations, some QR decompositions are needed to determine
orthogonal projections and complements. All this can be very easily realized in
Matlab or Octave, [1], and it turns out that the method works very well for generic
configurations where the points eΩ do not lie on a low degree algebraic variety. It
works especially well in the trigonometric situation when all the frequencies are
purely imaginary, i.e., when Ω ⊂ iIRs. Moreover, as is not uncommon in multi-
variate polynomials, the numerical behavior depends mostly on the total degree
of the polynomials to be considered and therefore the performance of the method
even improves if the number of variables increases while the number of frequencies
remains constant.

In addition, the method can be easily extended to the recovery of oligonomials
or fewnomials, i.e., sparse (multivariate) polynomials of the form

(3) f(x) =
∑

α∈A

fαx
α, A ⊂ N

s
0,

where A is again a set of small cardinality whose elements can nevertheless be
quite large. By considering the matrix

[
f
(
eΞ(α+β)

)
: |α|, |β| ≤ n

]
, Ξ ∈ IRs×s

with an arbitrary nonsingular matrix Ξ, the problem (3) is easily reduced to (1)
with Ω = ΞA.
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Algebraic methods in approximation theory

Hal Schenck

This survey talk gave an overview of several fundamental algebraic constructions
which arise in the study of splines. Splines play a key role in approximation
theory, geometric modeling, and numerical analysis; their properties depend on
combinatorics, topology, and geometry of a simplicial or polyhedral subdivision of
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a region in R
k, and are often quite subtle. We describe four algebraic techniques

which are useful in the study of splines: homology, graded algebra, localization,
and inverse systems. Our goal is to give a hands-on introduction to the methods,
and illustrate them with concrete examples in the context of splines. We highlight
progress made with these methods, such as a formula for the third coefficient of
the polynomial giving the dimension of the spline space in high degree. A talk by
Stillman later in the conference showed how to use a package in the Macaulay2

software system to compute the algebraic objects described in the talk.

1. Introduction

2. Homology and chain complexes

2.1. Algebraic setting

2.2. Topological motivation

2.3. Splines and homology

3. Graded algebra

3.1. Rings and modules, Hilbert polynomial and series

3.2. Free resolutions

3.3. Grading in the spline setting

4. Localization

4.1. Basics of the construction

4.2. Application: polyhedral splines

4.3. Application: vanishing of homology

5. Inverse systems and powers of linear forms

5.1. Powers of linear forms and fatpoints

5.2. Application: planar splines of mixed smoothness

5.3. A conjecture in algebraic geometry

6. Open questions

6.1. Higher dimensions

6.2. Polyhedral complexes

6.3. Supersmoothness
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On one class of ideal projectors

Boris Shekhtman

Ideal projectors where introduced by G. Birkhoff (cf. [1]) as an elegant generaliza-
tion of Hermite interpolation to several variables:

Definition 1. A linear idempotent operator P on C [x1, . . . , xd] is called an ideal
projector if kerP is an ideal in C [x1, . . . , xd].

In one variable the set of non-trivial ideal projectors coincides with the set of all
Hermite interpolation projectors and contains the set of all Lagrange interpolation
projectors. The latter can be characterized as projectors whose kernels are radical
ideals.

It is well known and easy to see that for any ideal projector P from C[x] onto an
N -dimensional subspace G ⊂ C[x] there exist a sequence of Lagrange projectors
Pn onto G such that Pnf → Pf , for all f ∈ C[x] i.e., P is a limit of Lagrange
projectors. Here I will address the extension of this property to ideal projectors
in several variables and introduce a few classes of ideal projectors where such
extension is and is not possible.

Definition 2. An ideal projector P on C [x1, . . . , xd] is called Hermite projector
if there exists a sequence Pn of Lagrange projectors onto ran P such Pnf → Pf
for all f ∈ C [x1, . . . , xd].

Problem 1 (C. de Boor, [2]). What finite-dimensional ideal projectors are Hermite
projectors?

Due to the nature of this question we will reserve the term “ideal projectors”
only to the projectors with finite-dimensional range, i.e., to the projectors with
zero-dimensional kernel. Let us mention that the property of being Hermite has
nothing to do with the range of ideal projector and depends entirely on its kernel.

Theorem 3. Let P be an ideal projector onto an N -dimensional subspace G ⊂
C [x1, . . . , xd]. The following are equivalent:

(i) P is Hermite
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(ii) The commuting sequence (Mj)j=1,...,d of operators

(1)
Mj : C [x1, . . . , xd] / kerP → C [x1, . . . , xd] / kerP

[f ] → [xjf ]

is a limit of simultaneously diagonalizable sequence of commuting operators
on C [x1, . . . , xd] / kerP .

(iii) The ideal kerP is smoothable.

The equivalence of (i) and (ii) was shown in [3] while the equivalence of (i) and
(iii) was shown in [7]. More on smoothable ideals can be found in [4].

In one and two variables every ideal projector is Hermite (cf. [6]). In three or
more variables there are non-Hermite ideal projectors (cf. [5, 6]).

So what classes of ideal projectors are Hermite:

Theorem 4. Let P be an ideal projector on onto an N -dimensional subspace
G ⊂ C [x1, . . . , xd]. Then P is Hermite if

(i) kerP is curvilinear, i.e., C [x1, . . . , xd] / kerP ≃ C[s]/J for some ideal
J ⊂ C[s].

(ii) kerP is curvisurfaced, i.e., C [x1, . . . , xd] / kerP ≃ C[s, t]/J for some ideal
J ⊂ C[s, t].

(iii) kerP is a monomial ideal.
(iv) kerP is Gorenstein and d = 3.
(v) N ≤ 7.

A complete description of Hermite projectors for d = 4 and N = 8 is given in
[4]. An algorithmic description of Hermite projectors for arbitrary d is given in
[7].

The main object of this talk is to investigate the properties of ideal projectors
whose kernel is a complete intersection. There are several definitions of the term
“complete intersection” in the literature. We will stick to the following one:

Definition 5. A zero-dimensional ideal J ⊂ C [x1, . . . , xd] is a complete intersec-
tion if J can be generated by precisely d polynomials.

Conjecture 1. If P is an ideal projector whose kernel is a complete intersection
then P is Hermite.

Here is a partial result supporting this conjecture (cf. [8]):

Theorem 6. Let P be an ideal projector, kerP = 〈f1, . . . , fd〉 and f := (f1, . . . , fd) :
Cd → Cd has no roots at infinity. Then P is Hermite.

An answer to the next question may help resolve the conjecture:

Problem 2. What is a characterization of complete intersection in terms of com-
muting matrices defined by (1)?
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Dimension of trivariate C1 splines on bipyramid cells

Tatyana Sorokina

(joint work with Julien Colvin, Devan DiMatteo)

We study dimension of trivariate C1 splines on bipyramid cells, that is, cells with
n + 2 boundary vertices, n of which are coplanar with the interior vertex. We
fix a terminological error in the earlier lower bound on the dimension given by J.
Shan. Moreover, we derive a new upper bound which in many cases is equal to the
known lower bound. In the remaining cases, where our upper bound differs from
the known lower bound, we conjecture that the dimension coincides with the upper
bound. We use tools from both algebraic geometry and Bernstein-Bézier analysis.

A bipyramid cell is a tetrahedral partition ∆ such that:

• there is exactly one interior vertex v0;
• n boundary vertices v1 through vn are coplanar along with v0, and form
a polygon surrounding v0 in the base plane B := [v1, . . . , vn];
• each vertex vi, i = 1, . . . , n, is connected to v0 by the interior edges [v0, vi];
• two boundary vertices vn+1 and vn+2 lie outside the base plane B, are on
opposite sides of B, and are connected to v0 by the interior edges [v0, vn+1]
and [v0, vn+2]; and
• vertices vn+1 and vn+2 each connect to the boundary vertices vi, i =
1, . . . , n.

Our goal is to find the dimension of the spline space S1
d(∆). The next lemma

summarizes several immediately obvious facts about ∆.

Proposition 1. In a bipyramid cell the following holds:

(1) there are 2n tetrahedra, 3n interior triangular faces, and n + 2 interior
edges;
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Figure 1. Collinear (left) and coplanar II (right) cases

(2) the number of different slopes m formed by the coplanar interior edges
[v0, vi], i = 1, . . . , n, in the base plane satisfies 2 ≤ ⌈n2 ⌉ ≤ m ≤ n; and

(3) the number of distinct planes h containing the interior triangular faces is
as follows:

Case 1 (Generic): vn+1 and vn+2 are not collinear with v0, and the
plane containing vn+1, vn+2 and v0 does not contain any other vi. Then
h = 2m+ 1;

Case 2 (Coplanar): vn+1 and vn+2 are not collinear with v0, and the
plane containing vn+1, vn+2 and v0 contains at least one other vi, i =
1, . . . , n. Then h = 2m;

Case 3 (Collinear): vn+1 and vn+2 are collinear with v0. Then h =
m+ 1.

For further investigation, we split the coplanar case into two subcases as follows:

• Coplanar Case I: vn+1 and vn+2 are not collinear with v0, and the plane
containing vn+1, vn+2 and v0 contains exactly one other vi, i = 1, . . . , n.
• Coplanar Case II: vn+1 and vn+2 are not collinear with v0, and the plane
containing vn+1, vn+2 and v0 contains exactly two other vi, i = 1, . . . , n.

Figure (left) shows an example of the collinear case; Figure (right) shows an
example of the coplanar case II, where vertices v0, v2, v4, v7, v8 lie in the same
plane (shaded). Using results in [1] and [2], we compute an improved lower bound
on the dimension of S1

d(∆). We show that there is a notational error in [2] and
we fix it. We prove that splines on bypyramid cells have additional smoothness
across certain faces, and using this fact combined with the results in [3], we prove
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a new upper bound on the dimension of S1
d(∆). Comparing the bounds yields the

following dimension and bounds.

Theorem 1. Let ∆ be a bipyramid cell. In the collinear case, for d ≥ 2, the
following holds

dimS1
d(∆) =

{
8
(
d
3

)
+ 12(d− 1) + (3− d)+, if m = 2,

2n
(
d
3

)
+ n(d− 1) + 6d− 4, if m ≥ 3.

Theorem 2. Let ∆ be a bipyramid cell. In the coplanar case I, for d ≥ 2, the
following holds

dimS1
d(∆) = 2n

(
d

3

)
+ 7d− 3.

Theorem 3. Let ∆ be a bipyramid cell. In the coplanar case II, for d ≥ 2, the
following holds

dimS1
d(∆) =

{
8
(
d
3

)
+ 10d− 8, if m = 2,

2n
(
d
3

)
+ 8d− 4, if m ≥ 3.

Theorem 4. Let ∆ be a bipyramid cell. In the generic case, for d ≥ 2, and m ≥ 3,
the following bounds hold

2n

(
d

3

)
+ 6d− 2 ≤ dimS1

d(∆) ≤ 2n

(
d

3

)
+ 6d− 1 + (4−m)+.

Moreover, for m = 2, dim S1
2(∆) = 11, and for d ≥ 3, the following bounds hold

8

(
d

3

)
+ 8d− 5 ≤ dimS1

d(∆) ≤ 8

(
d

3

)
+ 8d− 3− (4− d)+.
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Smooth Powell-Sabin splines: from the construction of B-splines to
quasi-interpolation

Hendrik Speleers

Smooth (finite element) spline spaces defined over triangulations have been studied
extensively and applied in different contexts (see, e.g., [2] and references quoted
therein). Typically, such spline spaces provide good approximation properties
and possess a small dimension which can be expressed in terms of geometrically
interesting characteristics of the triangulation (like the number of vertices, edges
and/or triangles). In addition, a stable basis representation is often required for
practical purposes.

For the construction of smooth splines with a low polynomial degree, one often
considers triangulations with a particular macro-structure. Each triangle in the
triangulation is then split into a number of subtriangles. The Clough-Tocher split
(into three subtriangles) and the Powell-Sabin 6-split (into six subtriangles) are
commonly used splits; see [2].

In this talk we focus on a specific family of bivariate spline spaces Sr(∆PS),
r ≥ 1, defined on any given triangulation ∆ endowed with a Powell-Sabin 6-split
∆PS . They have polynomial degree d = 3r − 1 for a given global smoothness of
order r and local supersmoothness of order ρ = 2r − 1 around certain points and
edges. We refer to [5] for details on the spaces S

r(∆PS). They have a simple
dimension formula, namely

dim S
r(∆PS) = nv N(2r − 1) + nt N(r − 2),

with nv and nt the number of vertices and triangles in ∆, and N(k) := (k+1)(k+
2)/2. The most known member of this family is the C1 quadratic space [3].

In the first part, we show how a suitable B-spline representation can be con-
structed for this family of spline spaces. Dierckx presented in [1] a geometric
approach to construct a normalized B-spline basis for the C1 quadratic space. Re-
cently, a suitable normalized B-spline basis for the C2 quintic space was proposed
in [4], and the approach was generalized for the family of spline spaces Sr(∆PS) in
[5]. The presented basis functions have a local support, they are nonnegative, and
they form a partition of unity. The B-spline representation allows for a natural
definition of control points, which can be useful for geometric modelling of smooth
surfaces. A spline in such a representation can also be evaluated in a stable way
using a sequence of simple convex combinations.

In the second part, we discuss a general recipe [6] to construct quasi-interpolants
of arbitrary smoothness based on such Powell-Sabin B-splines. This will enable
us to produce various local approximation schemes that can be tailored to special
requests by a given data set or function. We first derive a Marsden-like identity
representing polynomials of at most degree 3r − 1 in terms of Powell-Sabin B-
splines of smoothness r. We provide an elegant construction and proof based on
blossoming. We then use this identity to develop quasi-interpolants with good ap-
proximation properties. More precisely, the coefficients of such quasi-interpolating
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splines are computed by evaluating the blossom values at some particular points
of a chosen local operator that approximates local portions of the data.
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Splines in geometry and topology

Julianna Tymoczko

The goal of this survey is to describe how splines arise in geometry and topology
and to discuss what kinds of questions matter in the geometric and topological
context.

Cohomology is a ring associated to a geometric objectX that encodes geometric
properties of X like the dimension, the number of connected components, whether
X is singular, and so on. Equivariant cohomology is an enhanced version of co-
homology defined in the case when X carries an “appropriate” action of a torus
T = C

∗ × C
∗ × · · ·C∗. On the one hand, equivariant cohomology carries strictly

more information than ordinary cohomology. On the other hand, Goresky, Kot-
twitz, and MacPherson established the principle that in many cases equivariant
cohomology is actually easier to compute than ordinary cohomology [8].

There are three conditions that Goresky, Kottwitz, and MacPherson require the
T -action on X to satisfy:

(1) X must have a finite number of T -fixed points.
(2) X must have a finite number of one-dimensional T -orbits.
(3) X must be equivariantly formal with respect to the T -action.

Equivariant formality is a technical condition that is typically verified by one of
many easier conditions that imply it. The first two conditions can be encoded
more concisely in an edge-labeled graph GX that is often called either the moment
graph or the GKM graph of X .

• The vertices of GX correspond bijectively to the T -fixed points in X .
• The edges uv of GX correspond bijectively to the one-dimensional T -orbits
in X , each of which rather miraculously has precisely two T -fixed points
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u and v in its closure. (In fact the closure of each one-dimensional T -
orbit is homeomorphic to a 2-dimensional sphere and the T -fixed points
correspond to the north and south poles.)
• Each edge uv in GX is labeled by the weight of the T -action on the corre-
sponding one-dimensional orbit in X . This weight is a homogenous linear
form and essentially records the direction of the one-dimensional orbit.

Goresky, Kottwitz, and MacPherson’s result says the following [8].

Theorem 1 (Goresky, Kottwitz, MacPherson). If X is a compact complex mani-
fold that carries the action of a torus T satisfying Conditions (1)–(3) above, then
the equivariant cohomology of X can be described as

H∗

T (X) ∼=

{

p ∈ C[t1, . . . , tn]
k :

for each edge uv in GX the difference pu − pv
is a multiple of the label on the edge uv in GX

}

where n is the number of copies of C∗ in T and k is the number of vertices in
GX .

Goresky, Kottwitz, and MacPherson’s theorem developed out of a considerable
amount of earlier work on localizing equivariant cohomology at T -fixed points,
including results of Atiyah and Bott [2], Guillemin and Sternberg [9], Kirwan
[10], Cheng-Skjelbred [6], and many others. Later and somewhat independently,
algebraic geometers and topologists like Payne [11] and Bahri, Franz, and Ray [3]
gave a similar construction of equivariant cohomology except they described it in
terms of piecewise polynomials on a polytope dual to the graph GX .

The point is that these constructions of equivariant cohomology in fact give
the ring of splines S0

∞(GX) though none of the previous authors use that name.
Goresky, Kottwitz, and MacPherson’s perspective is dual to the classical analytic
perspective: if we started with a triangulation then GX would be its dual graph,
an approach used first by Billera and Rose [4]. Other differences are smaller, for
instance that the polynomials are taken with complex coefficients rather than real
coefficients. Geometers/topologists have not yet used other parameters d and r
in the splines Sd

r (GX), nor is there an immediate cohomological interpretation for
d—though this would be interesting to pursue.

In the remainder of the talk we elaborate further on the following topics:

• We describe classical results on the equivariant cohomology of specific
families that are important in geometric applications, including projec-
tive space, the Grassmannian of k-dimensional subspaces of a fixed vector
space Cn, and flag varieties, and say where the Alfeld split fits into these
examples.
• We sketch existing formulae for equivariant cohomology bases, especially
the formula of Andersen-Jantzen-Soergel [1] and Billey [5] for bases when
X is a partial flag variety, and sketch the most common geometric ap-
proaches to constructing bases (especially flow-up bases and symmetrized
bases).
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• We discuss applications to geometric representation theory, which arise
especially when graph automorphisms of GX also induce actions on the
collection of splines over GX .
• Gilbert, Polster, and Tymoczko generalized the definition of splines to
arbitrary rings R and graphs G = (V,E) as follows [7]. Choose a function
α : E → { ideals in R}. Then the ring of generalized splines RG,α is
defined as

RG,α =
{
p ∈ R|V | : for each edge uv in E the difference pu − pv ∈ α(uv)

}

We summarize recent work of various authors when the ring of coefficients
R is the integers or the integers mod m rather than a polynomial ring.
• The key difference between how geometers and topologists think of splines
and how analysts think of splines is that (equivariant) cohomology forms a
ring: in other words, we can multiply cohomology classes and the products
carry important geometric information. For splines with a fixed, known
basis, we ask for multiplication tables with respect to this basis. We
summarize some of what is known and not known in classical geometric
examples and for generalized splines when R is the integers or the integers
mod m.
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Bounds on the dimension of spline spaces on triangulations

Nelly Villamizar

(joint work with Bernard Mourrain)

The problem of finding the dimension of a spline space on a given triangulation,
or on a simplicial partition in IRn, was first formally formulated by Strang [8].
Serious difficulties already begin to arise in the planar case, and depending on
the embedding of the triangulation in IR2, the dimension of the space is usually
larger than the formula conjectured by Strang. The classical methods to compute
the dimension of a spline space include the construction of nodal bases and the
Bernstein–Bézier representation of the polynomials [9].

In 1988, L. Billera introduced the use of homological algebra and some algebraic
machinery to study splines [2]. By means of this approach, he was able to prove the
dimension for the space of C1 bivariate splines for triangulations whose edges are
in sufficiently general position, for any fixed polynomial degree. The homological
construction was continued by Schenck and Stillman in [13], and studied in [6, 12,
13, 14]. We follow this approach and prove a formula for an upper bound on the
dimension of bivariate spline spaces, and new lower and upper bounds for trivariate
spline spaces. The formulas we present include terms that take into account the
geometry of the faces surrounding the interior faces of the partition and, having
no restriction on the orderings of the faces, these bounds improve previous results
[15, 9]. Furthermore, the approach leads to connections between the dimension
problem on spline spaces and classical problems in algebraic geometry.

The construction is as follows. For a connected, finite n-dimensional simplicial
complex, supported on on |∆| ⊂ R

n, let us denote by Sr
d(∆) the space of splines

of degree less than or equal to d defined on ∆, with global order of smoothness r
(≥ 0). We assume that ∆ and all its links are pseudomanifolds, we could think of ∆

as the triangulation of a (topological) n-ball. It was proved that Sr(∆̂)d ∼= Sr
d(∆)

as IR-vector spaces [3], where ∆̂ is the cone with vertex at the origen obtained by
embedding ∆ in the hyperplane {xn+1 = 1} ⊂ R

n+1. Thus, in particular, for a

fixed d, dimSr
d(∆) = dimSr(∆̂)d, which are the splines on ∆̂ of degree exactly d.

We denote by ∆0 the set of interior faces of ∆, and for i = 0, . . . , d− 1 let ∆0
i

be the set of i-dimensional interior faces of ∆ whose support is not contained in
the boundary ∂∆ of |∆|. With ∆0

d we denote the set of all maximal d-faces of ∆,
and f0

i will be the cardinality of ∆0
i , for i = 0, . . . , d.

If R := IR[x1, . . . , xd+1] is the polynomial ring in d+1 variables, let us consider

the constant (chain) complex R on ∆ i.e., Ri = Rf0
i for i = 0, . . . , d, where the

boundary maps ∂i are induced by the usual simplicial boundary maps ∂̄i used to
compute the relative homology of (∆, ∂∆) with coefficients in R. For the facets
τ ∈ ∆0

n−1, let ℓτ be the linear form that vanishes on τ̂ , and for every interior face

β ∈ ∆0 we consider the ideal J (β) = (ℓr+1
τ )τ∋β. These ideals define a complex J
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of ideals, and the quotient R/J , given by

0
∂d+1
−−−−→

⊕

σ∈∆0
d

R
∂d−−→

⊕

τ∈∆0
d−1

R/J (τ)
∂d−1
−−−→ · · ·

∂1−−−→
⊕

β∈∆0
0

R/J (γ)
∂0−−→ 0

where ∂i are the induced relative (module ∂∆) simplicial boundary maps, is such

that its top homology module is isomorphic to the spline space Sr(∆̂) [2]. There-
fore, the Euler characteristic equation applied to R/J , leads us to the formula

(1) dimSr
d(∆) =

n∑

i=0

(−1)i
∑

β∈∆0
n−i

dimR/J (β)d −
n∑

i=1

(−1)i dim Hn−i(R/J )d,

where the subindex d indicates the d-th part of the graded module. Thus, in order
to study the dimension of a spline space we need to analyze ideals generated by
powers of linear forms in two, three,. . . and n-variables.

Since J (β) = 0 for all maximal faces β of ∆, then

⊕

β∈∆0
d

R/J (β)k =
⊕

β∈∆0
d

Rk and hence dim
⊕

β∈∆0
d

Rk = f0
d ·

(
k + d

d

)
.

Similarly, for the facets since J (τ) is generated by only one power of a linear form,
namely ℓτ , then a formula for dimR/J (τ)d can be easily deduced.

For a specific face β ∈ ∆0
i for some 0 ≤ i < d − 1, let us observe that we may

make an affine change of coordinates and assume that the linear forms in J (β)
involve only the variables x1, . . . , xd−i,

R/J (β) ∼= R[xn+1−i, . . . , xd+1]⊗R R[x1, . . . , xn−i]/J (β).

In the case of a triangulation of a region in the plane, the formula (1) reduces to

dimSr
d(∆) =

∑

σ∈∆0
2

dimRd −
∑

τ∈∆0
1

dimR/J (τ )d +
∑

γ∈∆0
0

dimR/J (γ)d + dimH0(J )d.

In order to have an explicit formula for the dimension, the only terms that re-
main to be computed are the dimension of the ideals J (γ), which are generated
by linear forms in two variables, and the homology term. A formula for dimJ (γ)d
was proved in [13], and in [6] by using inverse systems of fat points this result
was extended so that the powers can be different; this in terms of splines cor-
responds to have allow different order of smoothness across the different edges.
Since dimH0(J )d ≥ 0, then a lower bound formula for dimSr

d(∆) can be directly
derived. By establishing a numbering on the interior vertices, we prove an upper
bound on dimSr

d(∆) by finding the dimension of a spline space on a partition
constructed from the initial triangulation, and whose homology term is zero.

More precisely, we have the following result. Given a numbering on ∆0
0, let t̃i

be the number of edges with different slopes attaching the vertex γi to vertices
on the boundary or of lower index. Consider the ideals generated by these forms,
the socle degree of such an ideal is Ω̃i − 1, with Ω̃i =

⌊
t̃i r/t̃i − 1

⌋
+ 1, and the

multiplicity of the syzygies are ãi = t̃i (r + 1) + (1 − t̃i) Ω̃i, and b̃i = t̃i − 1 − ãi.
Then, the dimension of the spline space on the triangulation ∆ is bounded by
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dimSr
d(∆) ≤

(
d+ 2

2

)
+ f0

1

(
d+ 2− (r + 1)

2

)
−

f0
0∑

i, t̃i=1

(
d+ 2− (r + 1)

2

)

−

f0
0∑

i=1,t̃i≥2

[
t̃i

(
d+ 2− (r + 1)

2

)
− b̃i

(
d+ 2− Ω̃i

2

)
− ãi

(
d+ 2− (Ω̃i + 1)

2

)]
.

We adopt the convention that integers m < u the binomial coefficient
(
m
u

)
= 0. In

the upper bound from [15], the vertices must be numbered in such a way that the
vertex i+ 1 is in a triangle having as a corner at least one the previous i vertices.
For example, in Fig. 1, the numbering in (1) or (2), but not the one in (3).

(1)

b

b

b

b

b
14

5

2
3

dimS
1
2(∆) ≤ 13

(2)

b

b

b

b

b
41

3

2
5

dimS
1
2(∆) ≤ 12

(3)

b

b

b

b

b
31

2

5
4

10 ≤ dimS
1
2(∆) ≤ 10

Figure 1. Effect of the numbering on the upper bound.

On the other hand, the formula for the upper bound given above can be applied
to any numbering, and that leads to find the dimension of the space in many cases,
as it is the case for S1

2(∆) in the one in the example.
The computation of the dimension of splines spaces on simplicial complexes

in higher dimension involves the study of ideals generated by powers of linear
forms in three or more variables. In general, the dimension of such ideals is an
open problem in algebraic geometry, known as the Froberg’s conjecture [5]. This
conjecture has been proved true for several cases, in particular for ideals in three
variables [1], which is the case we need for studying trivariate splines. Thus, for
splines on tetrahedral partitions, by using Froberg’s formula we get a bound on
dimR/J (γi), for γi ∈ ∆0

0. In the case of H1(J ) = H0(J ) = 0, this directly yields
an upper bound on the dimension of the spline space. For general partitions,
analogously as in the bivariate case, by fixing a numbering on the edges and on
the vertices we prove a lower and an upper bound for the spline space, respectively.

The proofs of these results and additional references can be found in [10, 11].
The further study of ideals generated by powers of linear forms in three variables,
and related topics, such as inverse systems of fat points, the Segre-Harbourne-
Gimigliano-Hirschowitz’s conjecture [4], or the Weak Lefschetz Property, would
yield better bounds on the dimension of spaces of trivariate splines. We plan to
continue exploring this connections and improve the bounds we have presented.
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Rees Algebras and Powers of Ideals

Gwyneth R. Whieldon

1. Bigraded algebra of spline modules

Let ∆ be a subdivided domain of Rn, and Sr
d(∆) be spline space of smoothness r

and degree d as in [5],

Sr
d(∆) := {f ∈ Cr : f |σ is polynomial on σ ∈ ∆, deg(f |σ) ≤ d}.

One possible approach for calculating the dimension of these spline spaces,

H∆(d, r) := dimk (S
r
d(∆)) ,

is to construct a module that somehow includes the algebraic data for all Sr
d .

One way to do this is to create a semigroup graded algebra with homogeneous
components corresponding to each spline space.
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Definition 1 (Semigroup Graded Modules, [6]). Let A be a semigroup and M a
module. M is said to be A-graded if it permits a direct sum decomposition M =
⊕a∈AMa where each Ma is an additive subgroup of M such that Ma1Ma2 ⊆Ma1a2

for all a1, a2 ∈ A.

We may create a semigroup-graded module of all spline spaces of ∆ over semi-
group A = Zmin × Z, with addition given by (r, d) + (r′, d′) := (min(r, r′), d+ d′),
via

R(∆) :=
⊕

(r,d)∈A

Sr
d(∆)trsd.

The semigroup A provides a natural grading for R(∆), as a product of two

splines f ∈ Sr
d(∆) and g ∈ Sr′

d′ will be in S
min(r,r′)
d+d′ .

Computing a presentation of R(∆) is nontrivial. However, if we were able
to obtain such a presentation, finding asymptotic behaviors of H∆(d, r). In the
remainder of this abstract, we show the utility of finding a presentation of this
module with an application to powers of ideals. In particular, a presentation of
(and free resolution for) R(∆) would provide a bound on how large d must be for
the dimension of Sr

d(∆) to stabilize.

2. Rees Algebras of Equigenerated Ideals

2.1. Rees Algebras and Degree Restrictions. Let I ⊆ R = k[x1, ..., xn] be a
homogeneous ideal generated by forms of degree r. To calculate many invariants
of powers Inof an ideal I, we pass to the Rees algebra of I. The Rees algebra R(I)
of an ideal I is a bigraded (Z2-graded) module which contains the ideal I and all
of its powers:

Definition 2. Let I = (f0, f1, ..., fk) ⊆ R = k[x1, ..., xN ]. The Rees algebra R(I)
of I is

R(I) = R ⊕ It⊕ I2t2 ⊕ I3t3 ⊕ · · · ⊕ Intn ⊕ · · · .

Here we present R(I) as a quotient module of the ring S = R[w0, w1, ..., wk] =
k[x1, ..., xN , w0, w1, ..., wk].

Proposition 1 (Presentation of Rees algebras, [10]). Let I = (f1, ..., fk) ⊆ R =
k[x1, ..., xN ] and let R(I) be its Rees algebra. Then R(I) = R[w1, ..., wk]/L =
k[x1, ..., xN , w0, w1, ..., wk]/L, with presentation ideal

L = (fi − wit : 1 ≤ i ≤ k)S[t] ∩ S.

If S = k[x1, ..., xN , w1, ..., wk], and R(I) = S/L, then L is the Rees ideal of I.

2.2. Resolutions and Bigradings of Rees Algebras. Taking a free resolution
F (with an appropriately chosen bigrading) of L gives resolutions of all powers of
L, and can be used to bound or explicitly compute Betti numbers

βi,j(I
n) = dim

(
TorRi (k, I

n)
)
j

for all n.
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We will assume throughout this abstract that I = (f0, f1, ..., fk) is an equigen-
erated ideal of degree r in R = k[x1, ..., xN ]. We set R(I) = S/L with L the Rees
ideal of I and S = k[x1, ..., xN , w0, w1, ..., wk] as our notation throughout.

We bigrade R(I) by deg(xi) = (1, 0) and deg(wi) = (0, 1) and take the minimal
graded free resolution of R(I) with respect to this grading.

F : R(I)←S ←
⊕

(j,m)

S(−j,−m)β1,(j,m) ← · · ·

· · · ←
⊕

(j,m)

S(−j,−m)βp,(j,m) ← 0.

Restricting to the strand (∗, d), we obtain a (possibly nonminimal) resolution of
Id:

Fd : Id ←S(∗,d) ←
⊕

(j,m)

S(−j,−m)
β1,(j,m)

(∗,d) ← · · ·

· · · ←
⊕

(j,m)

S(−j,m)
βp,(j,m)

(∗,d) ← 0.

Tensoring this resolution with k and taking the homology of the maps gives us
dimTorRi (k, I

d)j+rd = βi,j+rd(I
d). This shift in the indices of βi,j+rd(I

d) accounts
for the shift in grading to agree with that of R while viewing Id as an R module.

Alternately, we could have first tensored with S/M for M = (x1, ..., xN ), taken
homology of our maps, then restricted in degrees. This will give us modules
TorSi (S/M,R(I))j , and as these two actions commute, we have that

TorSi (S/M,R(I))(j,d) = TorRi (S/M, Id)j+rd

= TorRi (k, I
d)j+rd,

where the second equality follows from S/M ∼= k as an R-module.
Hence we have that all Betti numbers of higher powers can be written in terms

of the dimensions of the bigraded modules TorSi (S/M,R(I)), as

βi,j+rd(I
d) = dimTorSi (S/M,R(I))(j,d).

In particular, using this we can be show that the shapes of the Betti tables
of the ideals Id stabilize, in the sense that there exists some D such that for all
d ≥ D, βi,j+rd(I

d) 6= 0⇔ βi,j+rD(ID) 6= 0. Using x-regularity of the Rees algebra,
presented as a quotient module, bigraded by Z2, we can find an upper bound for
this degree D. [11]

Not much is known about equivalent stabilization results or regularity for mod-
ules graded over monoids other than Z or Zn, so identifying similar regular-
ity tools as those used here (the x-regularity of a Rees algebra) may provide
insight into the behavior of the dimensions of spline spaces Sr

d(∆), given by
H∆(d, r)) = dimkR(∆)(d,r).
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[7] T. Römer, Homological properties of bigraded algebras, Illinois J. Math. 45(4) (2001),
1361–1376.

[8] B. Sturmfels, Four counterexamples in combinatorial algebraic geometry, Journal of Algebra
230 (2000), 282–294.

[9] I. Swanson, Powers of ideals, Primary decompositions, Artin-Rees lemma and regularity,
Math. Ann. 307(2) (1997) 299–313.

[10] W. V. Vasconcelos, Arithmetic of blowup algebras, 195 of London Mathematical Society
Lecture Note Series. Cambridge University Press, Cambridge, 1994.

[11] G. Whieldon, Stabilization of Betti tables, Journal of Commutative Algebra 6(1) (2014)
113-126.

Reporter: Tatyana Sorokina



1198 Oberwolfach Report 21/2015

Participants

Prof. Dr. Peter Alfeld

Department of Mathematics
University of Utah
155 South 1400 East
Salt Lake City, UT 84112-0090
UNITED STATES

Prof. Dr. Oleg Davydov

Mathematisches Institut
Justus-Liebig-Universität Giessen
Arndtstrasse 2
35392 Giessen
GERMANY

Michael Robert DiPasquale

Department of Mathematics
University of Illinois Urbana-Champaign
Urbana, IL 61801
UNITED STATES

Prof. Dr. Simon Foucart

Department of Mathematics
University of Georgia
Athens, GA 30602-7403
UNITED STATES

Prof. Dr. Luis D. Garcia-Puente

Department of Mathematics and
Statistics
Sam Houston State University
Huntsville TX 77341-2206
UNITED STATES

Prof. Dr. Gasper Jaklic

F G G
University of Ljubljana
Jamova 2
1000 Ljubljana
SLOVENIA

Prof. Dr. Bert Jüttler
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