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Introduction by the Organisers

The workshop “Copulae: On the Crossroads of Mathematics and Economics”,
organized by Xiaohong Chen (Yale University, New Haven, CT), Wolfgang Karl
Härdle (Humboldt-Universität zu Berlin), Piotr Jaworski (University of Warsaw)
and Johanna G. Nešlehová (McGill University, Montréal, QC), was held 12–18
April, 2015. The meeting was very well attended with 26 participants and broad
representation from Europe, North America and Asia, as well as varied back-
ground including statistics, probability, econometrics, financial mathematics and
uncertainty modelling. In total, 23 research talks of varying length were delivered
by both leading experts and young researchers in the field. In addition, an in-
troductory lecture on copula-based dependence modelling was given by Christian
Genest at a joint session with the parallel workshop on “Mathematical Theory of
Water Waves”. A summary of this talk will be available within the Oberwolfach
snapshot series (http://www.mfo.de/math-in-public/snapshots).

http://www.mfo.de/math-in-public/snapshots
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The central focus of the workshop was copula theory and its applications to
multivariate stochastic modelling. Copulas are mathematical objects that capture
the dependence structure among random variables and offer great flexibility in
building multivariate stochastic models. Since their discovery in the early 1950’s,
copulas have led to a much better understanding of stochastic dependence; they
have also allowed modellers to break away from the multivariate Gaussian dis-
tribution, which generally underestimates the probability of joint extreme risks.
Copula-based dependence models are rapidly gaining popularity and are becoming
indispensable tools, e.g., in biostatistics, econometrics, hydrology, finance, insur-
ance, and risk management. For example, they are well suited for the modelling
of market, credit and operational risk, for risk aggregation and portfolio selection.

The aim of the workshop was to bring together researchers in mathematical sta-
tistics, probability, econometrics, actuarial science, and risk management to discuss
recent developments and to address challenges in the field. The programme was
intrinsically interdisciplinary and represented areas with much recent progress; the
themes of the talks centred around the construction, estimation and applications
of copulas to multivariate modelling in finance, insurance and other fields. The
meeting generated an intensive exchange of ideas and lively discussions. Smaller
groups of participants often formed during the breaks and in the evenings for ad-
ditional deliberations. A number of important research contacts were made which
will no doubt spark new collaborative research projects in the near future.

The excellent scientific programme was spiced up by two scheduled social ac-
tivities. On Wednesday afternoon, good use was made of the splendid weather for
a hike to St. Roman and the traditional Black Forest Cake. The second activity
was the Friday afternoon visit to the Museum for Minerals and Mathematics in
Oberwolfach Kirche. Many participants were on their first visit to Oberwolfach
and left very impressed with the experience. There was a strong consensus that
the workshop on “Copulae: On the Crossroads of Mathematics and Economics”
should become a regular Oberwolfach event.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Copulas in financial risk management

Alexander J. McNeil

In my contribution to the workshop I give an overview of the main applications of
copulas in the area of quantitative financial risk management. I begin with a sum-
mary of some basic concepts in copula modelling, including shared frailty models,
Archimedean copulas and factor copulas, before going on to identify three main
applications: copulas in portfolio credit risk models; copulas in risk aggregation;
copulas in econometric models of financial returns for market risk modelling. I
argue that the ideas for these applications came in many instances from actuar-
ial science where there is a longer tradition of using copulas to model dependent
lifetimes and dependent multi-line insurance losses.

I devote the majority of the talk to credit risk where I distinguish between mod-
els for calculating measures of portfolio credit risk like VaR (Value-at-Risk) under
the real-world probability measure P and models for valuing portfolio credit risk
products (such as CDOs) under a risk-neutral measure Q. I show how the for-
mer models descend from a multivariate version of Merton’s model, which implies
a Gaussian copula for the latent variables that drive credit risk. I then discuss
how standard industry calibration approaches are subject to considerable model
risk due to uncertainty about the “true underlying copula”. This observation was
made by Frey, McNeil & Nyeler [1] some years before the 2007-09 financial crisis.

I go on to discuss the approach proposed by Li [2] to valuing CDOs that became
extremely popular before the crisis. Inspired by actuarial models of correlated lifes
and the so-called broken-heart syndrome, Li suggested the use of the Gaussian
copula to model correlated times to default under Q. The disastrous consequences
of the widespread adoption of this approach and the neglect of the model risk
involved have been well documented.

The aggregation problem is a classic example of the use of the converse of Sklar’s
theorem to build joint models of risk across an enterprise from marginal models
and copulas; the resulting models are used for capital calculation and allocation.
The great difficulty lies in selecting and calibrating an appropriate copula, par-
ticularly when data are scarce. I highlight a method by Arbenz, Hummel and
Mainik [4] which attempts to aggregate capital over a tree structure when mar-
ginal information is fully specified but the dependence is only specified through
copulas at branching nodes of the tree.

Finally I show how popular econometric models for financial returns such as
the DCC model of Engle [3] are actually models with a time-varying conditional
Gaussian copula, Student t or other normal variance-mixture copula. The pa-
rameters that vary with time are the correlation parameters of the copula. This
precludes, for example, a time-varying degree-of-freedom parameter in the t cop-
ula. I survey literature that tries to extend the class of econometric models to
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allow dynamic behaviour of further parameters of the copula; see, for example,
Fan and Patton [5].
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Vine copulas: Introduction and recent advances

Claudia Czado

(joint work with K. Aas, E.C. Brechmann, L. Gruber, K. Hendrich, O. Kähm, M.
Killiches and T. Nagler)

General dependency modeling is now a days often facilitated using a copula ap-
proach. Therefore different marginal distributions can be combined with a copula
to form a joint distribution. The classes of multivariate copulas in more than two
dimensions was limited to the class of elliptical and Archimedean copulas before the
arrival of vine copulas. These pair copula constructions (PCC) combine bivariate
copulas together with conditioning arguments to give a multivariate copula ([2]).
A PCC consists out of a vine tree structure identifying the conditioning variables,
the pair copula families for each edge in the vine tree structure and the associ-
ated pair copulas. These building blocks can be chosen arbitrary and separately,
thus allowing for enormous modeling flexibility. This was realized in [1]. A first
introduction can be found [4] including stepwise parameter estimation procedures.
Choosing the vine tree structure is a challenging problem and current approaches
are sumarized in [5]. The PCC approach is illustrated in a recent application to
systemic risk stress testing where the stressing involved a single company ([3]) or
multiple companies ([6]).

Recent advances include non simplified vines, truncated vines, vines with cross
serial dependence, time varying/regime switching vines, discrete and discrete/con-
tinuous vines, non Gaussian DAG’s using pair copula constructions, vines with
non parametric copulas, acceleration of MCMC algorithms using vines, factor
copula models, high dimensional goodness of fit for vines and spatial and spa-
tial/temporal vines. The corresponding references can be found on the web page
vine-copula.org as well as a multitude of applications in financial risk man-
agement, hydrology, machine learning, health, environmental science, chemistry,
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energy and marketing. As examples of these advances the finite sample block max-
ima of vines ([7]) and multivariate kernel density estimation based on simplified
vines ([8]) were illustrated.
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Copula calibration

Johanna Ziegel

(joint work with Tilmann Gneiting)

Probabilistic predictions of a future event Y ∈ Rd are predictions that specify the
entire distribution H of Y. Calibration of such predictions refers to the statistical
compatibility of the realized values y1, . . . ,yn with the predictions H1, . . . , Hn.
For probabilistic forecasts F of a univariate quantity Y ∈ R, various types of
calibration have been established [4]. In particular, a forecast is probabilistically
calibrated if its probability integral transform (PIT) is uniformly distributed. The
PIT ZF is given by

ZF = F (Y−) + V (F (Y )− F (Y−)),

where V is an independent standard uniform random variable, and the forecast F
is given in terms of its cumulative distribution function (CDF). Empirical checks
for the uniformity of histograms of PIT values have formed a cornerstone of density
forecast evaluation [1, 2, 3].

In this work, we provided notions of calibration for predictions of multivariate
outcomesY ∈ Rd, that naturally generalize the univariate quantities. In the paper
[7], we also proposed tools for empirical calibration checks and illustrated them in
various simulation studies. They were applied to compare raw numerical model
and statistically postprocessed ensemble forecasts of bivariate wind vectors.
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We work in the prediction space setting introduced by [4]. Let (Ω,A ,Q) be
some probability space, Y : Ω → Rd a random vector, and H a CDF-valued
random quantity that is measurable with respect to some sub-σ-algebra A0 ⊂ A ,
which is understood to encode the information of the forecaster predicting the
distribution H . Furthermore, let V be a standard uniform random variable which
is independent of Y and A0. The predictive distribution H is called ideal with
respect to A0, if H = L (Y | A0), that is, H is the conditional law of Y given A0.

In the prediction space setting, we define the copula probability integral trans-
form (CopPIT) of H as

UH = KH{H(Y)−}+ V [KH{H(Y)} − KH{H(Y)−}],

where KH , denotes the Kendall distribution of the CDF H , that is, the CDF of
the random variable H(X) where X ∼ H . In the univariate case, a forecast F in
the prediction space setting is called probabilistically calibrated if ZF is standard
uniformly distributed. We generalize this notion to higher dimensions by calling
H probabilistically copula calibrated if its CopPIT UH is standard uniformly dis-
tributed. If the marginal distributions of H are probabilistically calibrated then
probabilistic copula calibration of H only depends on the copula of H , which ex-
plains the name. Probabilistic copula calibration can be assessed empirically by
considering the histogram of realized CopPIT values.

The CopPIT histogram generalizes the multivariate rank histogram for ensem-
ble forecasts which as introduced in [5] to general probabilistic forecasts, hence,
in particular also to density forecasts. Ensemble forecasts correspond to the sit-
uation where the probabilistic forecast H is an empirical CDF usually supported
in a small number of points {x1, . . . ,xm−1}. Ensemble forecasts are particularly
relevant in weather and climate predictions.

The authors of [6] propose to generalize the multivariate rank histogram of [5]
considering the following general procedure. Let S = {x1, . . . ,xm} be an ensemble
with verifying observation xm = y.

(1) Calculate a univariate pre-rank ρ(x) for each x ∈ S.
(2) The rank R of y is the rank of ρ(xm) = ρ(y) in {ρ(x1), . . . , ρ(xm)} with

ties resolved at random.

If the elements of S are realizations of iid random variables, then R is uniformly
distributed on {1, . . . ,m}. Examples of possible pre-rank functions are

ρ(x) =

m∑

i=1

d∏

k=1

1{rank(xik) ≤ rank(xk)}

for the multivariate rank histogram of [5] ,

ρ(x) =
1

d

d∑

k=1

rank(xk)
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for the average rank histogram, and

ρ(x) =
1

d

d∑

k=1

(
m− rank(xk)

)(
rank(xk)− 1

)
+ (m− 1)

for the band depth histogram. The last two examples have been proposed by
[6]. Multivariate rank histograms have little power when the dimension d is large
relative to the ensemble size m (for example, d = 20 and m = 8), that is, they are
essentially flat no matter how miscalibrated the ensemble is. Perhaps surprisingly,
the authors of [6] show that their proposed alternatives, the average rank histogram
and the band depth histogram, do not suffer from this problem. However, in their
current formulation, they are only applicable to ensemble forecasts.

Analogously to the generalization of the multivariate rank histogram to the
CopPIT histogram, the general two-step procedure based on pre-ranks described
above, can considered for arbitrary predictive distributions H as follows.

Let F1, . . . , Fd be the marginal CDFs of H . Define

ZH(Y) := (ZF1
, . . . , ZFd

),

where ZFi
is the univariate PIT of the i-th component of Y. This amounts to

taking componentwise ranks (up to scaling) in case of H being an empirical dis-
tribution function. Let T : [0, 1]d → [0, 1] be a mapping. The quantity T(ZH(Y))
corresponds to the pre-rank of the observation with respect to the ensemble mem-
bers. Note that T may, or may not depend on the copula C of H .

Let U ∼ C, and let KT
C be the distribution function of T(U). Then, if X ∼

H , for some deterministic CDF H , we obtain that KT
C(T(ZH(X))) is standard

uniformly distributed, which motivates to define uniformity of KT
C(T(ZH(Y))) as

a notion of calibration in the prediction space setting.
For the multivariate rank histogram, we have T = C, andKT

C is the Kendall dis-
tribution function of C, which yields the notion of probabilistic copula calibration.
For the average rank histogram, T is defined as

T : [0, 1]d → [0, 1], u 7→ 1

d

d∑

i=1

ui =
‖u‖ℓ1
d

,

and for the band depth histogram, we have

T : [0, 1]d → [0, 1], u 7→ 4

d

(
‖u‖ℓ1 − ‖u‖2ℓ2)

if the ensemble sizem is large. One would hope that this newly proposed viewpoint
on the different notions of calibration for multivariate probabilistic predictions
might shed some light on their differences, advantages and disadvantages.
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Dynamic asset correlations based on Vines

Jean-David Fermanian

(joint work with Benjamin Poignard)

We propose a new way of generating dynamics of vectors of asset returns, staying
inside the family of Multivariate Garch models (see [2]). In such an approach, we
specify the first two moments of vectors of returns conditional on their past (and
current market information possibly), i.e. we specify their conditional mean and
their conditional variance-covariance matrix. Once this is done, some assumed
vectors of innovations close the model specification.

Here, a vector of N asset returns rt is decomposed as rt = µt + ǫt, where µt
denotes the vector of expected returns conditional on all information at time t,
and ǫt has a (conditional) zero mean. While the financial literature about asset
return predictability tends to focus on the modeling of µt, the modeling of time-
varying covariances or correlations concentrates on the conditional variance Ht of
ǫt, which is the “detrended” asset return.

Univariate GARCH dynamics are chosen to get the conditional variance process of
(ǫt). By stacking these instantaneous conditional variances, we get a sequence of
diagonal matrices (Dt). Then, after having specified the ǫt-conditional correlation

matrices (Rt), we obtain Ht by Ht = D
1/2
t RtD

1/2
t . This was the method proposed

by Engle [5] with the Dynamic Conditional Correlation (DCC). But in a DCC-type
model, one has to rely on intricate normalizations to the ǫt-correlation matrices.
This makes the interpretation of the (Rt) dynamics not intuitive, because it is
deduced from another intermediate process, not directly from data.

We develop an alternative methodology which ensures both parsimony and posi-
tive definiteness without relying on any normalization. Basically, the idea relies on
the modeling of a set of partial correlations, enabling to parameterize any corre-
lation matrix. We choose first a regular vine arbitrarily (see [3]. Then, we obtain
an associated set of partial correlations. And a one-to-one mapping between these
N(N − 1)/2 partial correlations and the N(N − 1)/2 “usual” correlations allows
the calculation of Rt. Partial correlations are stacked in a vector Pct and the usual
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correlations are the coefficients of Rt. We order partial correlations lexicograph-
ically, from the shortest to the longest sets of indices. Our proposed correlation
dynamics are

Ψ (Pct) = Ω + ΞΨ (Pct−1) + Λζ̂t−1, Rt = vechof
(
Fvine

(
Ψ−1(Pct)

))
,

where

• vechof(·) denotes the operator “devectorization”, that transforms a vector
into a symmetric matrix.

• Ξ and Λ are N(N − 1)/2 × N(N − 1)/2 squared matrices of unknown
parameters, and Ω is an N(N − 1)/2 unknown vector.

• The vector Pct is the “partial correlation vector” deduced from a given
R-vine structure.

• The vector ζ̂t consists of a relevant function of the t-“innovations”.

• Ψ is a function from ]−1, 1[
N(N−1)/2

to RN(N−1)/2, defined by

Ψ (Pct) =
(
tan (πρ1,2,t/2) , · · · , tan

(
πρN,N−1|LN,N−1,t/2

))′
.

• The function Fvine is the one-to-one mapping from the vector of partial
correlations Pct to correlations (in Rt) by using a recursive algorithm
(see [10]). By this way, any arbitrary process of partial correlations (whose
indices are given by any R-vine), here (Pct), generates automatically a
process of true correlation matrices (Rt).

The vector ζ̂t has to be specified: for any L ⊂ {1, . . . , N} and k /∈ L, define υk|L,t
by

υk|L,t =
ǫk,t − E [ǫk,t|ǫL,t]√

hk|L,t
,

where ǫL,t = (ǫi,t)i∈L, and E [ǫk,t|ǫL,t] corresponds to the orthogonal projection
of the variable ǫk,t on the space spanned by the vector ǫL,t. The variance of the
“residual” ǫk,t−E [ǫk,t|ǫL,t] is denoted by hk|L,t. The variables υk|L,t are not really
observable, but we can evaluate E [ǫk,t|ǫL,t] and hk|L,t easily, at least under the
conditionally Gaussian assumption. Then, are able to get υ̂k|L,t, an approximated

value of υk|L,t. Then, the N(N − 1)/2-sized vector of “innovations” ζ̂t stacks the
variables υ̂i|L,tυ̂j|L,t, when (i, j|L) is an edge of the underlying vine. The order of
these edges in ζt will be the same as for Pct.

We estimate the latter model by a Gaussian Quasi-Maximum Likehood method-
ology (full estimation and/or sequentially). We evaluate the performances of such
specifications by simulation. Such vine-Garch models behave significantly better
than scalar DCC-type models, studying a large number of randomly generated 5-
dimensional portfolios. Finally, we estimate the asset returns dynamics of several
real portfolios based on the MSCI stock indices.
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Open problems in risk aggregation under dependence modelling

Valeria Bignozzi

Let (Ω,F ,P) be an atomless probability space and L0 := L0(Ω,F ,P) be the space
of all measurable random variables. A law-invariant risk measure is a functional ρ
that assigns to every financial lossX in a given set X ⊆ L0 a real number (possibly
±∞), ρ : X 7→ ρ(X). Such a number, that depends uniquely on the probability
distribution of X , is used for regulatory purposes or for internal risk management.
The evaluation of ρ(X) is mainly a numerical issue once the distribution of X
has been chosen or statistically evaluated. When the distribution is unknown, the
risk measure is subject to model uncertainty. This is typically the case with the
risk measurement of high dimensional portfolios and has recently gathered a lot
of interest in the actuarial and financial literature. We assume that a financial
institution holds a d-dimensional risk portfolio, represented by a random vector
X = (X1, . . . , Xd), Xi ∈ X , 1 ≤ i ≤ d. The total loss exposure associated with
X is given by the sum

X+
d = X1 + · · ·+Xd.

Using a risk measure ρ, the aggregate random position X+
d is mapped into the

real value ρ(X+
d ). Estimating the multivariate distribution for X is a challenging

task which is usually performed in two steps: first, d individual models Fi for
the marginal loss exposures Xi are independently developed. Then, the marginal
distributions are merged into a joint distribution using a dependence structure.
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It is in general reasonable to assume that the marginal distributions F1, . . . , Fd
are known, while FX , the joint distribution of X, varies in Fd(F1, . . . , Fd), the
Fréchet class of all possible joint distributions having the fixed marginal models
F1, . . . , Fd. The choice of a single distribution in Fd(F1, . . . , Fd) can lead to the
miscalculation of the reserve ρ(X+

d ). The implied model risk is referred to as
dependence uncertainty.

A natural way to measure dependence uncertainty consists in finding the mini-
mum and maximum possible values of the risk measure ρ evaluated over the class
of candidate models. In our framework, we define the smallest and largest capitals
to be

(1) ρ(X+
d ) = inf

{
ρ(X+

d );FX ∈ Fd(F1, . . . , Fd)
}
,

and

(2) ρ(X+
d ) = sup

{
ρ(X+

d );FX ∈ Fd(F1, . . . , Fd)
}
.

Computing the bounds in (1) and (2) if often a difficult task and only partial
analytical results are available. There is a wide recent literature that has focused
on the computations of these bounds, we refer the interested reader to [4, 1, 6, 9, 3]
among many others and to [5] for an overview of the recent developments in this
field.

For risk measures that satisfies the subadditivity property, that is

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for any X,Y ∈ X

a natural upper bound for a portfolio of risks is given by:

ρ(X+
d ) ≤

d∑

i=1

ρ(Xi).

Hence a possible measure of model uncertainty is the worst superadditivity ratio

(1) ∆d = sup

{
ρ(X+

d )

ρ(X1) + . . .+ ρ(Xd)
;FX ∈ Fd(F1, . . . , Fd)

}
.

We investigate the worst superadditivity ratio in (1) in the context of homogeneous
portfolios, F1 = . . . = Fd = F . Since this ratio depends on the size of the portfolio
d, we introduce the notion of the extreme superadditivity ratio

∆F = sup
d∈N

sup
{
ρ(X+

d );Xi ∼ F, 1 ≤ i ≤ d
}

nρ(X1)
=

1

ρ(X1)
sup
d∈N

{
ρ(X+

d )

n

}
.

From a mathematical perspective it suffices to focus on the quantity Γρ(F ) :=

supd∈N

{
ρ(X+

d
)

n

}
. We show that Γρ is a law-invariant risk measure itself which

inherits several interesting properties from ρ. For the class of distortion risk
measures, Γρ corresponds to the smallest coherent distortion risk measure that
dominates ρ.

The results presented in this talk as well as many progresses in the field of
dependence modelling are partially based on the recently introduced notions of
complete and joint mixability of a set of distribution functions.
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Definition 1 ([11]). The distribution functions F1, . . . , Fd are said to be jointly
mixable if there exist d random variables X1, . . . , Xd such that Xi ∼ Fi, 1 ≤ i ≤ d,
and

(2) P (X1 + · · ·+Xd = C) = 1,

for some C ∈ R. Any such C is called a center of the jointly mixable distributions
and any random vector (X1, . . . , Xd) satisfying (2) is called a joint mix. If (2)
holds with Fi = F, 1 ≤ i ≤ d, the distribution F is said to be d-completely mixable
and the random vector (X1, . . . , Xd) a complete mix.

The notions of complete and joint mixability are related to some questions of
interest in quantitative risk management as for instance: the existence of a least
element with respect to the convex order within the set consisting of all sums of
random variables with given marginal distributions F1, . . . , Fd; the computation
of bounds on the expected value of a supermodular function; the computation of
upper and lower sharp bounds on the VaR of a sum of random variables. In the
paper Studying mixability with supermodular aggregating functions [2] we extend
these concepts to supermodular aggregating functions different from the sum.

Definition 2. Let φ : Rd → R be a measurable function. The distribution func-
tions F1, . . . , Fd are said to be φ-jointly mixable if there exist d random variables
X1, . . . , Xd such that Xi ∼ Fi, 1 ≤ i ≤ d, and

(3) P (φ(X1, . . . , Xd) = C) = 1,

for some C ∈ R. Any such C is called a center of the φ-jointly mixable distributions
and any random vector (X1, . . . , Xd) satisfying (3) is called a joint φ-mix. If (3)
holds with Fi = F, 1 ≤ i ≤ d, the distribution F is said to be φ-completely mixable
with index d and the random vector (X1, . . . , Xd) a complete φ-mix.

The concepts of complete/joint/φ-joint mixability still present several interest-
ing open questions. We list here some of them, a more detailed treatment of these
open problems can be found in [7] and [8]:

(1) Let F be an n-completely mixable distribution, what is a possible copula
for an n-complete mix with margins F?

(2) The center of a joint mix is known to be unique under certain assump-
tions, for instance for bounded distributions. For distributions that are
unbounded and with infinite mean, is the center unique?

(3) Proofs on the sufficient conditions for a set of distributions to be mix-
able are generally long, based on combinatorics and discretizations of the
distributions. Is there a more elegant (analytic) proof?
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Extreme value copula estimation based on block maxima of a

multivariate stationary time series

Johan Segers

(joint work with Axel Bücher)

The core of the classical block maxima method consists of fitting an extreme value
distribution to a sample of maxima over blocks extracted from an underlying se-
ries. In asymptotic theory, it is usually postulated that the block maxima are an
independent random sample of an extreme value distribution. In practice however,
block sizes are finite, so that the extreme value postulate will only hold approx-
imately. A more accurate asymptotic framework is that of a triangular array of
block maxima, the block size depending on the size of the underlying sample in
such a way that both the block size and the number of blocks within that sample
tend to infinity.

The copula of the vector of componentwise maxima in a block is assumed to
converge to a limit, which, under mild conditions, is then necessarily an extreme
value copula, as proved in [2] and [3]. Under this setting and for absolutely regular
stationary sequences, the empirical copula of the sample of vectors of block maxima
is shown in [4] to be a consistent and asymptotically normal estimator for the
limiting extreme value copula. Moreover, the empirical copula serves as a basis
for rank-based, nonparametric estimation of the Pickands dependence function of
the extreme value copula, see for instance [1].

The limit distributions of the estimators are the same as if the block maxima
had been sampled independently from a distribution whose copula is the limit
extreme value copula. The impact of serial dependence is felt rather in the limit
copula, which may be different from the extremal attractor of the copula of the
stationary distribution of the underlying time series.
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The results are illustrated by theoretical examples and a Monte Carlo simulation
study.
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de la Société Frana̧ise de Statistique 154 , 116–137.

[2] Hsing, T. (1989). Extreme value theory for multivariate stationary sequences. Journal of
Multivariate Analysis 29 (2), 274–291.
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Recent developments in statistical inference for conditional copulas

and association measures

Irène Gijbels

(joint work with Marek Omelka, Noël Veraverbeke)

When modeling the dependence structure between two random variables, given
a covariate, a conditional copula function is a useful quantity. In this paper we
briefly discuss recent developments in nonparametric estimation of a conditional
copula under various (general and restricted) settings.

1. Conditional copulas

The interest is in revealing how the dependence structure between random vari-
ables Y1 and Y2, varies with a given value of a covariate X . Denoting the condi-
tional joint distribution function of (Y1, Y2) given X = x by

Hx(y1, y2) = P{Y1 ≤ y1, Y2 ≤ y2|X = x}
and the conditional marginal distribution functions by

F1x(y1) = P{Y1 ≤ y1|X = x} and F2x(y2) = P{Y2 ≤ y2|X = x}
the conditional copula function couples the conditional joint distribution function
with the conditional marginals, i.e.

(1) Hx(y1, y2) = Cx (F1x(y1), F2x(y2)) .

See [3] and [4], among others. If the conditional distributions F1x and F2x are
continuous, then the conditional copula function Cx is unique.

Important is to note that the dependence on the value x in (1) comes in at two
levels: on the level of the copula function Cx and on the level of the marginals F1x

and F2x. In applications it is often assumed that Cx = C, i.e. that the dependence
on x only comes in through the marginals. Obviously, wrongly assuming this
assumption can lead to wrong conclusions. On the other hand, if the assumption
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holds, a more efficient estimation should be possible, exploiting this knowledge.
This assumption, called the simplifying assumption, leads to the setting

(2) Hx(y1, y2) = C (F1x(y1), F2x(y2)) .

Let (Y11, Y21, X1), . . . , (Y1n, Y2n, Xn) be an i.i.d. sample of size n from the
random vector (Y1, Y2, X). The interest is then in nonparametric estimation of
the copula function Cx in the general setting, and the function C in the restricted
setting. Nonparametric estimators for the conditional copula function Cx, and
conditional association measures, have been studied in [5] and [2].

In this short note we discuss nonparametric estimation of the copula function
C in the simplified setting (2). We highlight the differences with the nonpara-
metric estimator for Cx, and briefly comment on some asymptotic properties of
nonparametric estimators for C in (2). A detailed study is to be found in [1].

2. Nonparametric estimation under the simplifying assumption

Denote by Uj = FjX (Yj), for j = 1, 2. Then, under (2),

P{U1 ≤ u1, U2 ≤ u2|X) = P{Y1 ≤ F−1
1X (u1), Y2 ≤ F−1

2X (u2)|X} = C(u1, u2).

If one would know F1x and F2x one would consider the ‘observations’

U1i = F1Xi
(Y1i) and U2i = F2Xi

(Y2i) , i = 1, . . . , n ,

and simply build the empirical version of the above probability

Gn(u1, u2) =
1

n

n∑

i=1

I{U1i ≤ u1, U2i ≤ u2}

resulting in an estimator for the function C

C(or)
n (u1, u2) = Gn

(
G−1

1n (u1), G
−1
2n (u2)

)
,

where Gjn, for j = 1, 2 are the marginal distributions obtained from Gn.

If F1x and F2x are unknown, one first obtains estimators F̂1x and F̂2x. From
these the ‘pseudo-observations’

Ũ1i = F̂1Xi
(Y1i) and Ũ2i = F̂2Xi

(Y2i) , i = 1, . . . , n ,

are obtained and instead of starting from Gn(u1, u2) one uses

(3) G̃n(u1, u2) =
1

n

n∑

i=1

I{Ũ1i ≤ u1, Ũ2i ≤ u2}

leading to a nonparametric estimator for C:

Cn(u1, u2) = G̃n

(
G̃−1

1n (u1), G̃
−1
2n (u2)

)
.

This estimator is studied in detail in [1].
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The main difference with the nonparametric estimator for Cx (in the general
setting), is that in that case the conditional joint distribution depends on x, re-
quiring an extra smoothing operation in the X-domain, leading to working with

G̃xh(u1, u2) =

n∑

i=1

wni(x, hn)I{Ũ1i ≤ u1, Ũ2i ≤ u2}

where the weights wni(·, hn) involve a bandwidth parametric h = hn > 0. Instead
of the constant weight 1/n in (3), in the simplified setting, one now has weights
wni(x, hn) appearing in the sum.

A crucial issue in the above is how to estimate the marginal distributions F1x

and F2x and which impact this has on the asymptotic behaviour of the final esti-
mator. Various estimation approaches are possible. A very interesting setting is
that of assuming location-scale models for Y1 and Y2:

Y1 = m1(X) + σ1(X) ε1, Y2 = m2(X) + σ2(X) ε2

where m1,m2, σ1, σ2 are either known up to some unknown parameters (i.e. are
parametrically specified functions), or fully unknown. The error terms ε1 and ε2
are independent of X , with unknown distribution functions F1ε and F2ε.

Under such general location-scale models: for j = 1, 2

Fjx(yj) = Fjε

(
yj−mj(x)
σj(x)

)

and

Uji = FjXi
(Yji) = Fjε

(
Yji−mj(Xi)
σj(Xi)

)
.

Given estimates m̂1, m̂2, σ̂1 and σ̂2 of m1, m2, σ1 and σ2 one then obtains

F̂jx(z) = F̂jε̂
( z−m̂j(x)

σ̂j(x)

)

where

F̂jε̂(z) =
1

n

n∑

i=1

I
{
ε̂ji ≤ z

}
, with ε̂ji =

Yji−m̂j(Xi)
σ̂j(Xi)

and subsequently the estimator C̃n is given by

C̃n(u1, u2) =
1

n

n∑

i=1

I

{
F̂1ε̂(ε̂1i) ≤ u1, F̂2ε̂(ε̂2i) ≤ u2

}
.

When parametric or nonparametric location-scale models for the marginal dis-
tributions can be assumed, the discussed estimators perform as well as if the
marginals are entirely known. More precisely, the resulting estimators have the
same (first-order) asymptotic behaviour as the oracle estimator (case of known
marginals). If however the assumption of the parametric/nonparametric location-
scale models does not hold (case of misspecification) then these estimators are not
consistent.
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If one has no idea about appropriateness of location-scale models for the mar-
ginals then another, fully nonparametric approach, is to estimate F1x and F2x

nonparametrically, for example via

F̂1xg1(y) =

n∑

k=1

wnk(x, g1n) I{Y1k ≤ y} F̂2xg2(y) =

n∑

k=1

wnk(x, g2n) I{Y2k ≤ y}

where additional bandwidth sequences {g1n} and {g2n} are needed. In contrast to
the above approach of a location-scale marginal setting, this estimator is the only
(guaranteed) consistent estimator in the simplified setting.

An important issue of further research is to develop nonparametric tests for
testing for the simplifying assumption.
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Weak convergence of the empirical copula process with respect to

weighted metrics

Axel Bücher

(joint work with Betina Berghaus, Stanislav Volgushev)

The empirical copula process plays a central role in the asymptotic analysis of
many statistical procedures which are based on copulas or ranks. Among other
applications, results regarding its weak convergence can be used to develop asymp-
totic theory for estimators of dependence measures or copula densities, they allow
to derive tests for stochastic independence or specific copula structures, or they
may serve as a fundamental tool for the analysis of multivariate rank statistics.

In this talk, we present a weak convergence result for the empirical copula
process with respect to weighted supremum distances. For classical empirical
processes, such results are well known. For example, the standard 2-dimensional
empirical process Fn(u) =

√
n{Fn(u) − F (u)} with F having standard uniform
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marginals, converges weakly with respect to the metric induced by the weighted
supremum norm

‖G‖ω = sup
u∈[0,1]2

∣∣∣∣
G(u)

{g(u)}ω
∣∣∣∣ , g(u) =

( 2
min
j=1

uj
)
∧
(
1−

2
min
j=1

uj
)
,

ω ∈ (0, 1/2); see, e.g., [2]. For the rank-based empirical copula process Cn =√
n(Ĉn − C), with the empirical copula Ĉn, we present a uniform approximation

and a weak convergence result with respect to the metric induced by the weighted
supremum norm

‖G‖ω = sup
u∈[0,1]2

∣∣∣∣
G(u)

{g̃(u)}ω
∣∣∣∣ , g̃(u) =

( 2
min
j=1

uj
)
∧
( 2
min
j=1

{1− uj}
)
,

for any ω ∈ (0, 1/2). The induced distance is stronger than the one based on the
function g above.

The usefulness of the result is illustrated by an application to the Pickands
estimator for the Pickands dependence function arising in bivariate extreme-value
theory. Moreover, extensions of the results to the case of serially dependent time
series observations are presented.

All results are taken from [1].
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Conditional copula models with multiple covariates

Elif Acar

Conditional copula models provide a flexible framework to study covariate effects
on dependence structures. A number of nonparametric estimation techniques have
been recently proposed for these models in the case of a single covariate. See
for instance, [3, 6] for a fully nonparametric conditional copula estimation, and
[1, 2] for a semiparametric treatment of the problem. These approaches, however,
are not directly extendible to, or become impractical in, settings with multiple
covariates.

This work proposes a nonparametric modelling strategy that can accommodate
multiple covariates in conditional copula models. Let Y1 and Y2 denote two con-
tinuous response variables, and X1, X2, . . .XD be the covariates that may affect
the strength of dependence between Y1 and Y2. The influence of the covariates on
the dependence structure can then be modelled by a semiparametric conditional
copula model in which the copula is parametric and its parameter varies with
covariates. This model is given by

(U1, U2) | X1, X2, . . . , XD ∼ C{u1, u2 | θ(x1, x2, . . . , xD) }
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where Uk ≡ Fk|X1,X2,...,XD
(Yk|x1, x2, . . . , xD) is the conditional marginal distri-

bution of Yk given X1 = x1, X2 = x2, . . . XD = xD, for k = 1, 2, and C is the
conditional copula whose parameter depends on the covariate values. Typically,
inference for θ involves high-dimensional function estimation, which would be im-
practical due to the curse of dimensionality. One way to alleviate this issue is to
use additive models [4] and formulate the copula parameter function as

θ(X1, X2, . . .XD) = g−1(η(X1, X2, . . .XD)) = g−1(η0 + η1(X1) + . . .+ ηD(XD)),

where g−1 : R → Θ is a pre-specified inverse link function that ensures that the
copula parameter has the correct range, and η is the calibration function that
has an additive structure. The intercept term η0 is typically included to avoid
non-identifiability problems. However, this is not sufficient; the calibration com-
ponents ηk, k = 1, . . . , D, should be properly centred around zero to guarantee
identifiability.

Following [5], we study general identifiability restrictions and empirical ways
of centering additive calibration components in conditional copula models. To
estimate smooth component functions associated with each covariate, we propose
a local likelihood backfitting algorithm, which consists of one-step plug-in esti-
mation followed by mean centering of the resulting estimates. The finite sample
performance of the proposed estimator is assessed using simulated data for the
cases with two- and five-dimensional covariates. Even with small samples, the
backfitting algorithm is able to detect nonlinear/ non constant patterns in the
calibration components. We applied the proposed method in a subset of Matched
Multiple Births dataset to study the impact of gestational age and mother’s age on
the dependence between twin birth weights. The results suggest that the strength
of dependence changes with both covariates in a nonlinear fashion.

This methodology naturally extends to settings where interest lies in the in-
terdependencies or time-dependent dynamics in multivariate data. One possible
extension is via pair copula constructions, which leads to very flexible dependence
models for high-dimensional data.

References

[1] Abegaz, F., Gijbels, I. and Veraverbeke, N. [2012] Semiparametric estimation in copula
models, Journal of Multivariate Analysis, 110, 43–73.

[2] Acar, E. F. , Craiu, R. V. and Yao, F. [2011] Dependence calibration in conditional copulas:
A nonparametric approach, Biometrics, 67, No 2, 445–453.

[3] Gijbels, I., Veraverbeke, N. and Omelka, M. [2011] Conditional conditional copulas, associa-
tion measures and their application, Computational Statistics Data Analysis, 55, 1919–1932.

[4] Hastie T. and Tibshirani R. [1990] Generalized Additive Models, Chapman & Hall / CRC.
[5] Kauerman, G. and Opsomer, J.D. [2003] Local likelihood estimation in generalized additive

models, Scandinavian Journal of Statistics, 30, 317–337.
[6] Veraverbeke, N., Omelka, M. and Gijbels, I. [2011] Estimation of a conditional copula and

association measures, Scandinavian Journal of Statistics, 38, 766–780.



1106 Oberwolfach Report 20/2015

Efficient iterative maximum likelihood estimation

Alexander Ristig

(joint work with Nikolaus Hautsch, Ostap Okhrin)

Statistical inference for models including many parameters is of growing interest
in various fields in statistics and econometrics. Such models are mostly estimated
using multi-step approaches constructed from parts of the log-likelihood, resulting
in inefficient estimators. Prominent examples are the classical two-stage maximum
likelihood (ML) estimation procedure according to [3] and the inference functions
for margins method to estimate the parameters of multivariate distribution func-
tions, see [2]. In the latter framework, the parameters of the marginal distribution
functions are estimated under the assumption of independence in the first stage,
whereas the dependence parameter, e.g., a correlation coefficient, is estimated in
the second stage.

We address the problem of efficiently estimating a possibly large number of
parameters of a complicated log-likelihood function ℓ(ϑ). The ML estimator ϑn is
typically obtained as solution of numerical optimization procedures as closed-form
expressions for ML estimators are rarely available. Pure derivative-based maxi-
mization methods require, on the one hand, the first and frequently the second
derivative of the log-likelihood function. While analytical derivatives are often
difficult to derive because of non-linearities, numerical derivatives are eventually
an inaccurate alternative as the approximations might be too rough for non-linear
models. In addition to the increasing computational costs based on numerical
derivatives, especially if the number of parameters is high, Newton-type optimiza-
tion procedures suffer from a large number of parameters hampering the inversion
of the Hessian. On the other hand, global stochastic optimization routines, like
simulated annealing, do not need derivatives, but finding an adequate solution
depends on the fine-tuning of the algorithm such as the annealing schedule and
acceptance probability. Beyond the fact that convergence can only be obtained, if
the algorithm is tuned to be slow, the idea of simulated annealing is not suitable for
functions with a lot of arguments, e.g., like non-stochastic hill climbing algorithms.
All in all, pure derivative-based as well as pure derivative-free optimization tools
might be inappropriate for the one-step maximization of the log-likelihood.

We propose an iterative procedure in the spirit of a Gauß-Seidel algorithm which
leads to an asymptotically efficient estimator. The idea is to split the estimation
problem into G computationally tractable sub-problems. The approach rests on
the assumption of the existence of a consistent but inefficient estimator of a vec-
tor of parameters ϑ1n. The log-likelihood function is maximized in an iterative
procedure where in each sub-step of an iteration, maximization is performed for
a sub-vector only while keeping constant the remaining parameters. By iterating
through all groups g and successively updating all parameters, we obtain the fol-
lowing algorithm:
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Iteration h > 1 :

(g) ϑhg,n = arg max
ϑg

ℓ(ϑh1,n, . . . , ϑ
h
g−1,n, ϑg, ϑ

h−1
g+1,n, . . . , ϑ

h−1
G,n )

The asymptotic distribution of the resulting estimator ϑhn is derived in depen-
dence of the number of underlying iterations h. We moreover show the estimator’s
asymptotic efficiency as n → ∞, h → ∞ and provide a rule of thumb to approxi-
mate the number of iterations h until the procedure comes sufficiently close to the
ordinary ML estimator.

Computationally tractable sub-problems are constructed by decomposing the
parameter vector ϑ into G sub-vectors ϑ1, . . . , ϑG, and ℓ(·) is step-by-step maxi-
mized with respect to ϑg, g = 1, . . . , G, holding fixed all other iteratively updated
parameters. The important advantage compared to pure derivative-based and
derivative-free optimization techniques is that each sub-maximization of the log-
likelihood can be based on an optimization tool specifically suitable for ϑg keeping
the other sub-vectors fixed, g = 1, . . . , G. For example, first and second derivatives
of the log-likelihood function might be difficult to derive for the entire parameter
vector ϑ, but relatively easy with respect to some parameters holding the remaining
parameters fixed. This combination of different maximization methods makes our
procedure tractable even if the underlying model is complex.

Our major focus is on time series models where the number of parameters rela-
tive to the number of observations is high (but fixed) and thus it is computationally
challenging or virtually impossible to optimize the entire log-likelihood in one step.
The proposed algorithm and the corresponding asymptotic theory, however, can
also be applied to other estimation and inference problems. We illustrate an ap-
plication of our procedure and theory to establish the asymptotic properties of the
multi-step feasible generalized least squares (FGLS) estimator. Moreover, we show
possibilities for efficiently estimating the parameter vector of the DCC model, the
multivariate probit model and the stochastic volatility model.

The finite-sample performance of the proposed algorithm is analyzed in two
comprehensive simulation studies. The first one investigates the properties of the
estimator for a 5-dimensional VARMA model including 17 parameters based on
100 observations. In the second study, we analyze the algorithm’s performance to
estimate a 15-dimensional Vine-copula containing 105 parameters based on 250
observations. For instance, in the d-dimensional setting of [1], d(d − 1)/2 stages
are required for the Vine-copula. We illustrate that the procedure significantly
simplifies the underlying estimation problem and performs sufficiently well.
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Multivariate Archimax copulas

Anne-Laure Fougères

(joint work with Arthur Charpentier, Christian Genest, Johanna G. Nešlehová)

This talk is a presentation of our joint paper published in 2014 in the Journal of
Multivariate Analysis [1].

A d-variate copula is the joint cumulative distribution function of a vector (U1, . . . ,
Ud) of random variables each having a uniform distribution on the interval (0, 1).
Following [2], a bivariate copula is said to be Archimax if it can be written, for all
u1, u2 ∈ (0, 1), in the form

(1) Cψ,A(u1, u2) = ψ

[
{ψ−1(u1) + ψ−1(u2)}A

{
ψ−1(u1)

ψ−1(u1) + ψ−1(u2)

}]
,

using maps A : [0, 1] → [1/2, 1] and ψ : [0,∞) → [0, 1] such that

(i) A is convex and, for all t ∈ [0, 1], max(t, 1− t) ≤ A(t) ≤ 1;
(ii) ψ is convex, decreasing and such that ψ(0) = 1 and limx→∞ ψ(x) = 0,

with the convention that ψ−1(0) = inf{x ≥ 0 : ψ(x) = 0}.
The term Archimax was chosen by [2] to reflect the fact that if A ≡ 1, Cψ,A

reduces to an Archimedean copula, viz.

Cψ(u1, u2) = ψ{ψ−1(u1) + ψ−1(u2)}
while if ψ(t) = e−t for all t ∈ [0,∞), Cψ,A is an extreme-value copula, viz.

CA(u1, u2) = exp

[
ln(u1u2)A

{
ln(u1)

ln(u1u2)

}]
.

In [2], Archimax copulas are presented as a tool for constructing bivariate distri-
bution functions in the maximum domain of attraction of an extreme-value copula
CA⋆ where, for all t ∈ (0, 1),

(2) A⋆(t) = {t1/α + (1− t)1/α}αAα
{

t1/α

t1/α + (1− t)1/α

}

when the map t 7→ ψ−1(1 − 1/t) is regularly varying at infinity of degree −1/α
with α ∈ (0, 1]; see, e.g., p. 13 in [3] for a definition of regular variation. Bivariate
Archimax copulas have been further studied and found to be useful in various
contexts since their introduction; see, e.g., [4] for applications in hydrology and
www.math.sk/wiki/bacigal for a library of R programs.

Recently, [5] and [6] proposed an extension of the family (1) to arbitrary di-
mension d ≥ 3. Their generalization involves the notion of stable tail dependence
function originally due to [7]. A function ℓ : [0,∞)d → [0,∞) is called a d-variate
stable tail dependence function if there exists a d-variate extreme-value copula D
such that, for all x1, . . . , xd ∈ [0,∞),

ℓ(x1, . . . , xd) = − ln{D(e−x1, . . . , e−xd)}.
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Let ψ : [0,∞) → [0, 1] be the generator of a d-variate Archimedean copula Cψ
defined, for all u1, . . . , ud ∈ (0, 1), by

Cψ(u1, . . . , ud) = ψ{ψ−1(u1) + · · ·+ ψ−1(ud)}.
As shown by [8], this occurs if and only if the map ψ : [0,∞) → [0, 1] satisfies
ψ(0) = 1, limx→∞ ψ(x) = 0 and is d-monotone. The latter property means that ψ
has d− 2 derivatives on (0,∞) and, for all j ∈ {0, . . . , d− 2}, (−1)jψ(j) ≥ 0 with
(−1)d−2ψ(d−2) being non-increasing and convex on (0,∞).

Mesiar & Jágr [6] suggest that a suitable d-variate extension of the notion of
Archimax copula would be obtained by setting, for all u1, . . . , ud ∈ (0, 1),

(3) Cψ,ℓ(u1, . . . , ud) = ψ ◦ ℓ{ψ−1(u1), . . . , ψ
−1(ud)}.

This is indeed reasonable, as when d = 2, one recovers Equation (1) by setting
A(t) = ℓ(t, 1− t) for all t ∈ [0, 1]. While expression (3) appears as formula (18) in
[6], these authors merely conjecture that Cψ,ℓ is a copula for any choice of ψ and
ℓ. This is their Open Problem 4.1.

In joint paper [1], we solve this problem by showing that Cψ,ℓ as defined above
is indeed a copula for any combination of d-variate Archimedean generator ψ and
d-variate stable tail dependence function ℓ. This result is established by combining
a composition theorem of [9], a characterization of d-variate Archimedean gener-
ators popularized by [8], and a recent characterization of stable tail dependence
functions due to [10]. Two different stochastic representations of multivariate
Archimax copulas are then provided which shed light on their properties and fa-
cilitate simulation; it is also emphasized there that for some d-variate stable tail
dependence functions ℓ, the condition on ψ is not necessary for (3) to be a copula.
Algorithms for generating observations from this new class of copulas are presented
and illustrated. The maximum and minimum attractors of multivariate Archimax
copula families are then derived. Finally, a few remaining challenges are outlined,
where partial results are offered on the level of dependence that can be achieved
by multivariate Archimax copulas.
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Copulae based factor model for credit risk analysis

Cathy Yi-Hsuan Chen

(joint work with Meng-Jou Lu, Wolfgang Karl Härdle)

Quantitative methods are important for practical credit risk management. A stan-
dard way to access credit risk employs a factor model based on joint multivariate
normal distribution properties. A consequent weakness is a thin tail of the risk
factors and constant dependence structure. We extend a one-factor Gaussian cop-
ula model to make a more accurate forecast of a default probability model. We
propose to incorporate state-dependent recovery rate into the conditional factor
loading, and model them by sharing a unique common factor. The common fac-
tor governs the default rate and recovery rate simultaneously, and creates their
association implicitly. Based on Basel III, we also provide the evidence of oblig-
ors’ behaviors influenced by systematic risk than idiosyncratic risk when period is
hectic. Thus, in order to identify the role of the random factor loading and state-
dependent recovery rate, we develop four models to evaluate the performance on
the default prediction. In addition, we refine the joint Gaussian distribution by a
copula based on: The common factor is modeled via a generalized extreme value
distribution to determine the performance of forecasting. For robustness test-
ing, we also show the result of sensitivity analysis to the parameters of common
factor. Among the models considered, the one with random factor loading and
state-dependent recovery rate turns out to be superior.

The main goal behind Basel III is to highlight the importance of systematic risk.
First, appropriate capital requirements are important from the perspective of sta-
bility of the whole system. Second, [2] states that procyclicality destabilizes the
whole systematic risk through amplifying financial shocks. However, since Basel
II focused on minimizing the default probability of individuals, this accord failed
to guarantee a stable financial system due to a lack of concern for systematic risk.
Note that if financial institutions overlook the higher contribution of systematic
risk to each firm’s value in the bad market situation than idiosyncratic risk, the fi-
nancial imbalance will be even worse. Especially, systematic risk contributes more
to firm’s credit risk in a market downturn than in a tranquil market.

Our default’s data analysis contains 2008 and 2009, as collected Moody’s report.
For this period, we employ a state-dependent concept in order to capture an asym-
metric impact from the common risk factor. Consequently, we achieve that both
conditional factor loading and state-dependent recovery rates improved calibra-
tion of our default prediction. In FC model, it overestimates the weight of sys-
tematic risk in quiet period. On the other hand, it underestimates the correlation
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when market in downturn. We find that incorporation of factor loading into state-
dependent recovery rate sharing one unique factor improves the accuracy of default
prediction. This result is coherent with goal of Basel III which considers the whole
systematic risk rather than the idiosyncratic risk leading to an increase in overall
financial stability.

The work presented was:

(1) Conditional Default Model: The systematic latent factor, Z, represent-
ing the economic condition that characterizes the systematic credit risk,
is of course influencing the default probability Pi(t) and the recovery rate
Ri = 1−Gi. So given Z, one may write the conditional default probability
Pi(Z|S = H,Q) and conditional LGD, Gi(Z|S = H,Q) as a function of
Z. Given the conditional factor loading which proposed by [3], αH , αQ,
the conditional default model is defined as following,

Ui|S=H = αHi Z +
√
1− (αHi )2εi

Ui|S=Q = αQi Z +

√
1− (αQi )

2εi

P (τi < t|S) = F

[
F−1{Pi(t)} − αSi Z√

1− (αSi )
2

]
= Pi(Z|S) S ∈ {H,Q}

(2) State-dependent recovery rate: The recovery rate is governed by the state
of economy. More specifically, we follow [1] incorporate a conditional cor-
relation structure into this model. Accordingly, we set Ri(Z|S = H,Q),
of obligor i, in relation to the common factor Z and the marginal default
probability Pi as:

Gi(Z|S=H) = (1 − R̄i)
F
[
{F−1

(
P i

)
− αHi Z}/

√
1− (αHi )2

]

F
[
{F−1 (Pi)− αHi Z}/

√
1− (αHi )2

]

Gi(Z|S=Q) = (1 − R̄i)

F

[
{F−1

(
P i

)
− αQi Z}/

√
1− (αQi )

2

]

F

[
{F−1 (Pi)− αQi Z}/

√
1− (αQi )

2

]

(3) Based on these specifications, conditional default probability Pi(Z|S=H,Q)
and conditional LGD, Gi(Z|S=H,Q), conditional expected loss, therefore,
are

E(Li|Z) = ωGi(Z|S=H)Pi(Z|S=H) + (1 − ω)Gi(Z|S=Q)Pi(Z|S=Q)
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Copula based spectral analysis

Holger Dette

(joint work with Marc Hallin, Tobias Kley, Stefan Skowronek, Stanislav
Volgushev)

Quantile- and copula-related spectral concepts recently have been considered by
various authors. Those spectra, in their most general form, provide a full charac-
terization of the copulas associated with the pairs (Xt, Xt−k) in a process (Xt)t∈Z,
and account for important dynamic features, such as changes in the conditional
shape (skewness, kurtosis), time-irreversibility, or dependence in the extremes,
that their traditional counterpart (based on auto-covariances) cannot capture.

In this talk we present results regarding consistency and weak convergence for
some of the corresponding estimators proposed in the literature. In particular a
detailed asymptotic analysis of a class of smoothed rank-based cross-periodograms
associated with the copula spectral density kernels is presented. In the second part
of the talk the results are extended to relax the assumption of stationarity into
much weaker local stationarity conditions, which have been developed for a vari-
ety of time-series models. In particular we introduce time-varying versions of the
copula spectra and periodograms along with a new definition of strict local sta-
tionarity that allows us to handle completely general non-linear processes without
any moment assumptions, thus accommodating our copula based-based concepts
and methods. We establish the consistency of our methods, and illustrate their
power by means of simulations and an empirical study of the Standard & Poor’s
500 series. This empirical study brings evidence of important variations in serial
dependence structures both across time (crises and quiet periods exhibit quite dif-
ferent dependence structures) and across quantiles (dependencies between extreme
quantiles are not the same as in the “median” range of the series). Such varia-
tions remain completely undetected, and are actually undetectable, via classical
covariance-based spectral methods.
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Algebraic properties of the star–product of copulas

Carlo Sempi

(joint work with Francesco Catino)

Denote by C2 the set of (bivariate) copulas. A copula C ∈ C2 is increasing in each
variable, viz., for every s ∈ I := [0, 1] the functions t 7→ C(t, s) and t 7→ C(s, t) are
increasing, and, hence, differentiable a.e.. Where they exist, the partial derivatives

∂1C(s, t) :=
∂C(s,t)
∂s and ∂2C(s, t) :=

∂C(s,t)
∂t satisfy

0 ≤ ∂1C ≤ 1 , 0 ≤ ∂2C ≤ 1 .

Darsow et al. [1] have introduced a binary operation on C2: For every pair of

copulas A and B in C2, define the mapping ∗ : C2 × C2 → RI
2

+ via

(AB)(u, v) = (A ∗B)(u, v) :=

∫ 1

0

∂2A(u, t) ∂1B(t, v) dt .

The operation thus defined is called the ∗–product or the Markov product of A
and B. It has the following properties:

(a) A ∗B is a copula: ∗ : C2 × C2 → C2;
(b) the Markov product is associative A (BC) = (AB)C;
(c) M2(u, v) := min{u, v} is the unit of the product: CM2 = M2C = C for

every C ∈ C2;
(d) Π2(u, v) := uv is the zero of the product: CΠ2 = Π2C = Π2 for every

C ∈ C2.

Thus (C2, ∗) is a monoid (=semigroup with unit), endowed with a zero, but
it is not commutative; moreover, the Markov product is both right– and left–
distributive over convex combinations. It is our goal to study the algebraic prop-
erties of the semigroup (C2, ∗).

A Markov operator T : L1(I) → L1(I) is a linear operator such that

(a) it is positive, f ≥ 0 =⇒ Tf ≥ 0;
(b) it preserves expectations, E(Tf) = E(f);
(c) T1 = 1.

There exists a one–to–one correspondence between copulas and Markov opera-
tors; this is achieved by the equations

(TCf)(x) =
d

dx

∫ 1

0

∂2C(x, t) f(t) dt ,

CT (u, v) =

∫ u

0

T1[0,v](s) ds .

Moreover, if A and B are copulæ, then, under the correspondence just intro-
duced one has

TA ◦ TB = TAB .

It follows from Pfanzagl’s characterisation [4] of Conditional Expections (CEs) that
the following conditions are equivalent for a Markov operator T : L1(I) → L1(I):
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(a) T is the restriction to L1(I) of a CE on (I,B(I), λ);
(b) T is idempotent, viz. T 2 = T .

When either condition is satisfied, then T = EG , where

G := {A ∈ B(I) : T 1A = 1A} .
A copula C is said to be idempotent if C C = C, viz., if it satisfies the integro–

differential equation

C(u, v) =

∫ 1

0

∂2C(u, t) ∂1C(t, v) dt .

Idempotent copulæ and Markov operators are related.

Theorem 1. [5] For a copula C ∈ C2, the following statements are equivalent:

(a) the corresponding Markov operator TC is a CE;
(b) the corresponding Markov operator TC is idempotent;
(c) C is idempotent.

As a consequence to every sub–σ–field G of B, the Borel σ–field of I, there
corresponds a unique idempotent copula C(G ) ∈ C2 such that EG = TC(G ). Con-
versely, to every idempotent copula C ∈ C2 there corresponds a unique sub–σ–field
G (C) of B such that TC = EG (C).

Let I2 denote the set of idempotents of (C2, ∗). Every idempotent copula
A ∈ I2 is symmetric (=exchangeable)[2], AT = A, i.e., A(u, v) = A(v, u) for
every (u, v) in I2. Since the product of two idempotents need not be an idempotent,
(I2, ∗) is not a sub–semigroup of (C2, ∗). However, if two idempotents A ∈ I2

and B ∈ I2 commute, viz., AB = BA, then also AB is an idempotent, viz.,
(AB)2 = AB.

A partial order ≤∗ is introduced on C2: A ≤∗ B if two copulæ X ∈ C2 and
Y ∈ C2 exist such that {

A = XB = BY ,

A = XA .

It follows from semigroup theory, see [3], that the relation ≤∗ on C2 is a partial
order. When restricted to I2 the partial order ≤∗ reads A ≤∗ B if, and only if,
A = AB = BA. It suffices to take X = Y = A.

Theorem 2. Let G1 and G2 be sub–σ–fields of B and let C1 and C2 the (uniquely
determined) idempotent copulæ corresponding to them. Then the following state-
ments are equivalent:

(a) G1 ⊆ G2

(b) C1 ≤∗ C2

Recall that if G1 ⊆ G2 and Ej := EGj
, then E1 E2 = E2 E1 = E1 or C1C2 =

C2C1 = C1, viz., C1 ≤∗ C2.

The following result, originally proved in [2], is now immediate.

Corollary The set (I2,≤∗) of idempotent copulas endowed with the partial order
≤∗ is a lattice.
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Proof. Let Cj ∈ I2 (j = 1, 2) and Gj the corresponding sub–σ–fields of B, let
G = G1∨G2 be the σ–field generated by the union G1∪G2 and C ∈ I2 the unique
idempotent copula corresponding to G ; then, because of the previous theorem
both C1 ≤∗ C and C2 ≤∗ C. �
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Gaussian copula random field with application to longitudinal

neuroimaging data analysis

Peter X. K. Song

(joint work with Jian Kang)

Motivated by the needs of analyzing massive longitudinal imaging data, this paper
extends the GeoCopula proposed by [2] and develops a multilevel spatial-temporal
copula model for the analysis of high-dimensional imaging data. The resulting
model is termed as imageCopula. We propose a two-step composite likelihood
approach based on the joint composite estimating functions (JCEF) [1] for pa-
rameter estimation and inference. The computation of the proposed algorithm to
solve JCEF is scalable to large-scale imaging data. We conduct several simulation
studies to evaluate the performance of the proposed models and estimation meth-
ods. We apply the imageCopula to analyze a longitudinal PET data set from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. We beign with the
definition of field copula.

Definition 3. (Field Copula) Let {U(s)} be a collection of random variables in-
dexed by location s ∈ A ⊂ Rd. Suppose that U(s) ∼ Uniform(0, 1) for any s. Let
σ(A ) be the σ-algebra of A . Define a joint distribution function CB : [0, 1]|B| →
[0, 1] for any B ∈ σ(A ) as follows. If for any n ≥ 1 and any {s1, . . . , sn} ⊂ A

the n-dimensional joint distribution is given by the following (conditional) copula:

Pr [U(s1) ≤ u1, . . . , U(sn) ≤ un] = Cs1,...,sn(u1, . . . , un), (u1, . . . , un) ∈ [0, 1]n

then C is a field copula on σ(A ), denoted by U(s) ∼ FieldCopula(C, σ(A )).

Definition 4. (Copula Indeced Random Field) Let {ζ(s)} be a collection of ran-
dom variables indexed by location s ∈ A ⊂ Rd. Let Fs be the marginal distribution



1116 Oberwolfach Report 20/2015

function of ζ(s) and CB be a field copula on σ(A ). Then {ζ(s)} is distributed ac-
cording to a copula induced random field by marginals Fs and field copule CB on
σ(A ), denoted by ζ(s) ∼ FieldCopula[Fs,C, σ(A )] if and only if any n ≥ 1 and
any {s1, . . . , sn} ⊂ A and for all (a1, . . . , an) ∈ Rn,

Pr [ζ(s1) ≤ a1, . . . , ζ(sn) ≤ an] = Cs1,...,sn [Fs1(a1), Fs2(a2), . . . , Fsn(an)].

Definition 5. (Gaussian Field Copula) Suppose the field copula

Cs1,...,sn(u1, . . . , un) = Φn[Φ
−1(u1), . . . ,Φ

−1(un);Σ(s1, . . . , sn)]

where (i) Φn(·;Σ) is an n-dimensional multivariate normal distribution with mean
0 and spatially varying correlatoin matrix Σ; (ii) Φ(·) = Φ1(·; 0, 1) is the standard

normal distribution function; and (iii) Σ(s1, . . . , sn) =









1 . . . k(s1, sn)
k(s2, s1) . . . k(s2, sn)

. . . . . . . . .

k(sn, s1) . . . 1









with k(s, s′) being a correlation kernel function.

Moreover, we can define the Gaussian copula induced random field.

Definition 6. Suppose ζ(s) ∼ FieldCopula[Fs,C, σ(A )]. If C is a Gaussian field
copula on σ(A ) determined by correlation kernel k(s, s′), then ζ(s) is distributed
according to a Gaussian copula induced random field, denoted simply by

ζ(s) ∼ GaussFieldCopula[Fs, k]

We propose to analyze longitudinal imaging data by a semiparametric location-
scale marginal model. For subject i = 1, . . . ,m, occasion t = 1, . . . , T and voxel
v = 1, . . . , n,

yi(t, sv) = α(t, sv) +

p∑

j=1

xi,j(t)βj(sv) +

q∑

k=1

zi,kηk(sv) + τ(t, sv)ζi(t, sv),

where ζi(t, sv)
iid∼ GaussFieldCopula(Ft,sv , kt), yi(t, sv) ∈ R is a longitudinal imag-

ing outcome, xi,j(t) is a vector of time varying covariates, zi,k is a vector of time
independent covariates, α(t, sv) is a spatially-temporally varying intercept, βj(sv)
and ηk(sv) are the vectors of spatially varying coefficients, and ζi(t, sv) is a spatio-
temporal random field with a correlation kernel function k(·, ·|θ). We choose a
non-separable spatiotemporal covariance structure used by [1].

We consider spatial basis expansion on the varying coefficients, and the result-
ing vector of coefficients is denoted by Θ. Thus the set of all parameters to be

estimated is Θ̃ = (Θ, θ). We propose a two-step estimation procedure to estimate

Θ̃. The steps of the estimation is listed below.

Step 1 Construct nonparametric estimation for the marginal standard distribu-

tion F̂t,s for each time point t and for any location s ∈ A .
Step 2 To develop the joint composite estimating function (JCEF) [1] to estimate

the varying coefficients α(t, s), βj(s), and ηk(s) and parameter θ in the
correlation kernel in the model. The JCEF is based on the spatial basis
expansions on the varying coefficients.
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To construct JCEF, we consider patial, temporal and spatio-temporal compos-

ite estimating functions, denoted by, respectively, Ψn,S(Θ̃),Ψn,T (Θ̃),Ψn,C(Θ̃).

The JCEF is defined as a quadratic inference function of the form: Qn(Θ̃) =

Γn(Θ̃)
⊤

W−1Γn(Θ̃), where Γn(Θ̃) = [Ψ
⊤

n,S(Θ̃),Ψ
⊤

n,T (Θ̃),Ψ
⊤

n,C(Θ̃)]
⊤

and W is a

positive definite matrix of weights. The estimator is given by
̂̃
Θ = argmin

Θ̃
Qn(Θ̃).

The estimation of the weight matrix W (a covariance matrix) can be obtained

by a subsampling approach [1]. Based on
̂̃
Θ, we can construct estimators for

α(t, s), βj(s) and ηk(t, s), respectively, given by α̂(t, s) =
∑Ln

l=1 θ̂α,t,lψl(s), β̂j(s) =∑Ln

l=1 θ̂β,j,lψl(s), η̂k(s) =
∑Ln

l=1 θ̂η,k,lψl(s).
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Goodness-of-fit test for specification of semiparametric copula

dependence models

Ostap Okhrin

(joint work with Shulin Zhang, Qian M. Zhou, Peter X.-K. Song)

This paper concerns goodness-of-fit tests for semiparametric copula models. Sup-
pose that X1 = (X11, . . . , X1d)

T , . . . , Xn = (Xn1, . . . , Xnd)
T is a random sample

of size n drawn from a multivariate distribution H(x) = H(x1, x2, . . . , xd) with

continuous marginal CDF F (x)
∆
= {F1(x1), . . . , Fd(xd)}. According to Sklar’s the-

orem [3], we suppose that:

H(x1, x2, . . . , xd) = C0{F (x)} = C0{F1(x1), . . . , Fd(xd)},
where C0(·) is the true copula function. In practice, we often assume that the

underlying true copula C0 belongs to a parametric class, say, C
∆
= {C(·; θ), θ ∈ Θ},

where Θ ⊂ Rp is a p-dimensional parameter space.
In the following, we are interested in the development of a goodness-of-fit test

on the hypotheses

H0 : C0 ∈ C = {C(·; θ) : θ ∈ Θ} vs. H1 : C0 6∈ C = {C(·; θ) : θ ∈ Θ} .
Let θ̂ be the two-step pseudo maximum likelihood estimator of θ given by

θ̂ = argmax
θ∈Θ

n∑

t=1

l
{
F̃ (Xt); θ

}
,(1)

where l{F̃(Xt); θ} = log c{F̃1(Xt1), . . . , F̃d(Xtd); θ} and F̃ (x) = {F̃1(x1), . . . ,

F̃d(xd)} with F̃k(xk) = 1
n+1

∑n
t=1 I (Xtk ≤ xk), k = 1, . . . , d, and I (·) being the

indicator function.



1118 Oberwolfach Report 20/2015

To present our new test, let us randomly divide the original data {X1, . . . , Xn}
into B blocks and denote the b-th block as Xb = (Xb

1 , . . . , X
b
nb
), b = 1, . . . , B. For

the simplicity of exposition, we assume that all the blocks have equal size, say,
nb ≡ m, and hence mB = n. Similar to the “jackknife” resampling method (e.g.

[1]), we can yield a set of delete-one-block PLMEs θ̂−b, 1 ≤ b ≤ B, according to
the following procedure:

θ̂−b = argmax
θ∈Θ

B∑

b′ 6=b

m∑

i=1

l{F̃ (Xb
′

i ); θ}, b = 1, . . . , B.(2)

Precisely, we propose a test statistic of the following form:

Tn(m) =

B∑

b=1

m∑

i=1

[
l{F̃(Xb

i ); θ̂} − l{F̃ (Xb
i ); θ̂−b}

]
.(3)

For n → ∞ and under suitable regularity conditions and assumption, that there

exists a parameter value θ∗ ∈ Θ such that θ̂ → θ∗ we can show that

Tn(m)
pr→ E0

[
lTθ {F (X1); θ

∗}S(θ∗)−1lθ{F (X1); θ
∗}
]
= tr

{
S(θ∗)−1V (θ∗)

}
,

where S(θ)
∆
= −E0 [lθθ{F (X1); θ}], V (θ)

∆
= E0

[
lθ{F (X1); θ}lTθ {F (X1); θ}

]
, and

tr(A) denotes the trace of a matrix A. Here also lθ(u; θ) =
∂
∂θ log c(u; θ), lθθ(u; θ) =

∂2

∂θ∂θT log c(u; θ), and E0(·) represents the expectation under the true copula C0.
Under regularity assumptions we show, that under the null hypothesis

√
n (Rn − p)

d→ N(0, σ2
R), as n→ ∞,

where σ2
R is the asymptotic variance. And, that

Rn − Tn(m) = op(n
−1/2).

where the asymptotic test statistics Rn = tr
{
Ŝ(θ̂)−1V̂ (θ̂)

}
. Further on, we con-

sidered the local power of the test in the Pitman sense for a constant δ > 0,
assuming C1{F (x)} ≥ C0{F (x); θ0} for all x ∈ Rd

H1,n : PC1,δ
n (x) = C0{F (x); θ0}+

δ√
n
[C1{F (x)} − C0{F (x); θ0}] .

Under extra regularity assumption, we showed, that under H1,n

√
n (Rn − p)

d−→ N{δm(c0, c1), σ
2
R}

where m(c0, c1) = Ec0 [W (Xt)g {F (Xt); θ0}] and W (·) is a weighting function. In
this work we also considered, the goodness-of-fit test for a class of multivariate
time series models constructed by a semi-parametric copula with corresponding
asymptotic distributional properties.

In most scenarios for goodness-of-fit tests, including the ones for copula models
(e.g. [2]), there exists no single dominate optimal test. Consider q test statistics,

denoted by T
(1)
n , T

(2)
n , . . . , T

(q)
n , where the subscript n is the sample size. Suppose

that all of them have type I error controlled at a given significance level α under a
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common null hypothesis. A hybrid test is constructed as follows: Let p
(i)
n denote

the corresponding p-value obtained from the test statistic T
(i)
n , i = 1, . . . , q. A

hybrid test, denoted by T hybridn , will make decision according to a p-value, defined
as

phybridn = q ×min{p(1)n , . . . , p(q)n }.

This hybrid test can control both types of errors P (phybridn ≤ α|H0) ≤ α and
P (phybridn ≤ α|H1) ≥ max

{
β1
n(α/q), . . . , β

q
n(α/q)

}

Huge simulation study has been performed in order to support proposed tests
in iid as well as time series setup. Empirical examples shows usefulness of the
methodology
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Volatility clustering, leverage effect, and copulas

Cathy Ning

(joint work with Dinghai Xu)

This research investigates the volatility clustering and leverage effect of asset re-
turns with copulas. Volatility clustering and leverage effect are both well-known
stylized features of financial asset returns, which are mainly captured in a GARCH
model and its extensions. In this research, we use vine copula models to capture
the possible nonlinearity and asymmetry in these features. [3] employ an univari-
ate copula approach in [2] and find nonlinear and asymmetric volatility clustering
in asset returns, i.e., clusters of high volatility are much stronger than clusters of
low volatilities. Models accommodates asymmetric volatility clustering can signif-
icantly improve the out-of-sample forecasts of Value-at-Risk. [4] use pair copula
models allowing for non-Gaussian marginal distributions and document a nonlin-
ear leverage effect. This research extends our previous work and captures both
features at the same time via the use of M-vine copulas of [1] for higher dimension
dependence and the across time univariate dependence. The advantage of using
such a model is that it does not impose a linear structure on the volatility clus-
tering such as a GARCH model and it also allows for nonlinear and asymmetric
feedback effect and leverage effect. The more complete vine copula approach mod-
eling both features simultaneously is expected to further improve the forecasts of
VaR, which is important in risk management.
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Über copulæ

Bruno Rémillard

In the first part of the talk, I state two conjectures about the Kendall distribution.
The first one is that the Kendall functionK determines uniquely any Archimedean
copula family for any d ≥ 2. The conjecture appears in [1] and [2]. The second one
was about the uniqueness of the Kendall distribution for the independence copula.
During the talk, Fabrizio Durante disproved the claim; it seems that some singular
copula would have the same Kendall function as the independence copula.

In the second part of the talk, which is a joint ongoing work with Johan Segers,
I stated weak convergence properties for empirical processes constructed from
pseudo-observations based on Rosenblatt transforms. This kind of pseudo-observa-
tions arise naturally when one studies pair-copula models. Even if the limiting
empirical process depends on unknown parameters, one can show that under the
hypothesis of independence, the associated empirical copula process will have a
distribution free limit. This is an important result for those using vine models.
In particular it means that under the null hypothesis of independence for a given
pair, Kendall’s tau, Spearman’s rho and many other dependence measures behave
as if we were working with i.i.d. samples.
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Construction and sampling of Archimedean and nested Archimedean

Lévy copulas

Marius Hofert

(joint work with Oliver Grothe)

In the copula world, the Archimedean class is well-known and widely used. A
large sub-class of Archimedean copulas can be sampled with a stochastic repre-
sentation due to [3]. The corresponding algorithm is referred to as Marshall–Olkin
Algorithm. This algorithm is typically substantially faster than the (more generic)
conditional distribution method for sampling a general copula, as the former does
not require to compute and then invert high-order conditional copulas.

The class of nested Archimedean copulas provides an extension of the class
of Archimedean copulas in that it allows one to leave the symmetry of the lat-
ter and model more flexible partially symmetric dependencies. Sampling nested
Archimedean copulas can be achieved in a fast and numerically stable way with a
“Marshall–Olkin-type algorithm” based on a stochastic representation derived by
[4] and [2].

Lévy copulas (although not distributional copulas) are used to couple Lévy
processes and thus to construct (cross-)dependent (vector-valued) Lévy processes.
We focus on positive Lévy copulas as general Lévy copulas may be obtained by
gluing together 2d positive Lévy copulas, each referring to one of the 2d orthants
of the d-dimensional Euclidean space; see [5, Theorem 5.3]. In the Lévy world,
Archimedean Lévy copulas are also known. They have been sampled with a “con-
ditional method” similar to the conditional distribution method used for sampling
copulas. Archimedean Lévy copulas share with Archimedean copulas a similar
functional form and their symmetry. The latter implies, however, that any two
(or three, or four etc.) marginal Lévy processes jump with dependence structure
specified by the same (marginal) Archimedean Lévy copula.

To circumvent this restriction, we introduce the class of (positive) nested Archi-
medean Lévy copulas. This class allows one to model hierarchical dependencies
between Lévy processes. Furthermore, we present a new, Marshall–Olkin-type al-
gorithm for sampling both positive Archimedean and positive nested Archimedean
Lévy copulas. Besides not requiring (inverses of) conditional Lévy copulas to be
known, this algorithm also does not suffer from an asymmetric bias introduced
by the conditional method in the Lévy framework. For more details, see [1] or
demo(NALC) in the R package copula.
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Copulas for small area estimation

Louis-Paul Rivest

(joint work with François Verret, Sophie Baillargeon)

This work is concerned with unit level small area estimation. The goal is to predict
the mean value of a variable Y , in each small area, using simple random samples
drawn in each area and auxiliary variables x known for all the population units.
We assume a linear model for the dependent variable Y ,

(1) Yij = x⊤ijβ + εij i = 1, . . . ,m; j = 1, . . . , ni,

where β is a vector of known regression parameters, i denotes the small area, ni
is the sample size in small area i and j stands for an observed unit in area i. Let
k represent an unobserved unit in small area i, the basic regression prediction for
Yik given xik is x⊤ikβ. By modeling the residual dependency within small areas,
one can also construct ε̃i, a prediction of the regression error εik for unit k, and

use Ỹik = x⊤ikβ̂ + ε̃i as a predictor (note that subscript k has been dropped since
ε̂i is the same for all unobserved units in small area i).

The standard model for the residual dependency is the mixed normal model of
[1]. It assumes that the vector of regression errors has a multi-normal distribution
with mean 0 and an exchangeable covariance matrix, σ2Σ(ρ, ni), where σ

2 is the
known marginal residual variance and Σ(ρ, n) is a n× n correlation matrix where
all off diagonal elements are equal to ρ, the known intra cluster correlation. Under
this model the best predictor is linear and is given by

ε̃ℓi = niρε̄is/{1 + (ni − 1)ρ},
where ε̄is is the mean of the ni errors in small area i. This is the BLUP (for best
linear unbiased predictor). Thus the predictor for ȲiU , where subscript U means
that the mean is evaluated for the Ni units in small area i and Ni, (Ni > ni), is
the size of area i, is

(2) ˜̄YiU = x̄⊤iUβ +
ni
Ni
εis
N−ni
Ni

+ ε̃ℓi .

The variance of the prediction error, E{( ˜̄YiU − ȲiU )
2} is, when Ni is much larger

than ni, equal to MSEℓi = σ2ρ(1 − ρ)/{1 + (ni − 1)ρ}. This is the standard g1i
variance component of the small area mean squared error, see [3].

This works consider a new class of exchangeable models for the regression errors,
constructed in terms of Cα,n(u1, . . . , un), an extendible n-dimensional parametric
copula model and and arbitrary cumulative distribution function Fe, with a null
expectation. The proposed joint distribution of the errors within small area i
is Cα,ni

{Fe(yi1 − x⊤i1β), . . . , Fe(yini
− x⊤ini

β)}. Suitable candidates for Cα,n are
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the Archimedean copulas with a single dependency parameter such as Clayton’s,
Frank’s or Gumbel’s family, see [2]. The normal and the t copula associated to
correlation matrix Σ(ρ, ni) can also be used. For this large class of models the
BLUP is given by (2) and MSEℓi measures its precision, where ρ the intra-cluster
correlation depends on both Cα,2 and Fe.

For the new non-normal models, the best unbiased predictor (BUP) for εik is
no longer a linear function of {εij : j = 1, . . . , ni}. It can be evaluated as the
conditional expectation of εik given {εij : j = 1, . . . , ni},

ε̃i =

∫

ℜ

z
cα,ni+1{Fe(z), Fe(εi1), . . . , Fe(εini

)}
cα,ni

{Fe(εi1), . . . , Fe(εini
)} Fe(dz)

where cα,n denotes the copula density. When Ni is large, the variance of the
prediction error for ȲiU constructed with the BUP is MSEi = σ2ρ−E{E(εik|εij :
j = 1, . . . , ni)

2}. First we evaluate the efficiency, MSEi/MSEℓi , of the BLUP
with respect to the BUP to find out whether considering non-linear predictors is
worthwhile. We show that in a model with normal errors and Clayton’s copula, the
BLUP’s efficiency can be as small as 60%. Thus implementing the BUP appears
to be useful.

The parameters of the proposed model are β, the vector of regression parame-
ters, α, the dependency parameter, and Fe the centered marginal error distribu-
tion. Parameter estimation is this semi-parametric setting is first considered and√
m consistent estimators are derived. For β we suggest using the estimator ob-

tained through the algorithm that fits the normal mixed model of [1]. Parameter α
is estimated using the generalization of Kendall’s tau to clustered data investigated
in [4]. Finally Fe is estimated using the empirical cdf of the regression residuals,

{eij = Yij −x⊤ij β̂}. Then the EBUP, an estimator of the BUP, calculated with the
parameters estimates is evaluated. Table 1 presents some simulations comparing
the two predictors, EBLUP vs EBUP (the first E stands for empirical). It features
m = 20 and 40 small areas containing Ni = 500 units and samples of size ni = 4
drawn in each one. For all models ρ = 0.5 and σ2 = 2 so that MSEℓi = 0.2. BHF
stands for the normal model of [1], Clayton for a model with Clayton’s copula
and normal margins and Example 3 has a normal copula and log-normal margins.
Table 1 presents aggregated results for the m small areas combined. The EBLUP
only involves estimators for β and ρ. In the BHF simulation it should be more
accurate that the EBUP as the later uses an estimate of Fe. Table 1 reveals that
the difference in precision is small, especially for m = 40. For Clayton’s model the
EBUP does well; the efficiencies of the EBLUP are 84% and 78% respectively. In
the simulation with log-normal margins the performance of the EBUP is affected
by the outliers that occur with this type of data; still it is slightly better than the
EBLUP.
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Table 1. Comparisons of the Monte Carlo prediction errors of
the EBLUP versus the EBUP.

EBLUP EBUP
Model Bias MSE Bias MSE

BHF m=20 -.008 .213 -.008 .221
BHF m=40 .003 .206 .003 .210

Clayton m=20 -.000 .209 -.019 .178
Clayton m=40 -.001 .209 -.008 .164

Example 3 m=20 .010 .206 .000 .200
Example 3 m=40 -.001 .205 .008 .200

[2] J.-M. Mai, & M. Scherer (2012), Simulating Copulas; Stochastic Models, Sampling Al-
gorithms and Applications. Series in Quantitative Finance: Volume 4. World Scientific
Publishing Company.
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Singular copulas

Fabrizio Durante

(joint work with Juan Fernández-Sánchez and Wolfgang Trutschnig)

Copulas are distribution functions of probability measures on Id := [0, 1]d (d ≥ 2)
whose univariate marginals are uniformly distributed on I (see, e.g., [5]). If Cd

denotes the class of d–dimensional copulas, the probability measure µC associated
with C ∈ Cd can be decomposed in the form

µC = µacC + µsC ,

where µacC is absolutely continuous with respect to the Lebesgue measure λd, while
µsC is singular with respect to λd.

Now, while absolutely continuous copulas have been largely considered in the
literature (especially in view of their practical convenience in applications), there
are many reasons to investigate also the set of singular copulas (or, copulas with
a singular component). In fact, in many situations, given a functional g : Cd → R

the supremum supC∈Cd
g(C) is attained by non–absolutely continuous copulas.

Examples include the copula that gives the worst–case value-at-risk scenario for
a two-asset portfolio at a given level α (see, e.g., [9, 14]) and the maximally
asymmetric copulas (see, e.g., [7, 12]).

In order to address properly the study of singular copulas we should aim at
providing tools to deal with them in a convenient way. A possibility is provided
by the representation of copulas in terms of their Markov kernels (see, e.g., [6, 15]).
Specifically, suppose that (X,Y) is a random vector in a given probability space
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(Ω,F ,P) distributed according to C ∈ Cd. Then, for every Borel set B ⊆ Id, one
has

µC(B) =

∫

I

KC(x,Bx)dλ(x),

where Bx := {y ∈ Id−1 : (x,y) ∈ B} and the so-called Markov kernel KC satisfies

KC(X(ω), B) = E(1B ◦ Y | X)(ω) P–a.s.

For every C ∈ Cd and for every y ∈ [0, 1]d−1, one has ∂1C(x,y) = KC(x, [0,y])
for λ–almost every x ∈ [0, 1]. However, for each x ∈ [0, 1], y 7→ KC(x, [0,y]) is a
proper probability distribution function, a fact that often represents an advantage
in some proof strategies.

The Markov kernel of a copula C ∈ C2 can be decomposed into

E 7→ KC(x,E) = Ka
C(x,E) +Ks

C(x,E) +Kd
C(x,E)

whereKa
C(x, ·) is absolutely continuous with respect to λ, Ks

C(x, ·) is singular with
respect to λ and has no point masses, and Kd

C(x, ·) is discrete for every x ∈ I.
This latter fact has been exploited in [3] in order to provide an alternative

viewpoint to a classical problem in optimal coupling (see also [8]).

Theorem 1. Let F1 and F2 be continuous distribution functions. Set T = F2 ◦
F−1
1 . Let

p = sup
(X1,X2)∼C(F1,F2)

P(X1 = X2),

where the supremum is calculated over all the possible random pairs with the given
univariate marginals.

If T is a non singular transformation, then there exists a copula AT such that
the probability mass of the singular component of AT is concentrated in Graph(T ).
Moreover, p = µAT

(Graph(T )).

In other words, if the random variables X1 and X2 have the interpretation of
lifetimes, the maximal probability of joint default is obtained when they are cou-
pled by a copula that concentrates the probability mass of the singular component
in the graph of a function that depends on the marginals.

The Markov kernel representation of a copula has been also used in the char-
acterization of complete dependence among random variables. Suppose that two
random variables U and V are distributed according to C ∈ C2. Then C is called
completely dependent if V = h(U) almost surely or, equivalently, there exists a
λ–measure preserving transformation h : I → I such that KC(x,E) = 1E(h(x)) is
the Markov kernel of C. In particular, if h is a bijection, then C is called mutual
completely dependent. The class of complete dependence copulas is a distinguished
subset of singular copulas that is dense in (C2, d∞), where d∞ denotes the L∞ dis-
tance. Actually, it can be proved that mutually completely dependent copulas
(i.e. shuffles of Min) are dense in (C2, d∞) (see, e.g., [10]). In particular, there are
sequences (Cn)n∈N of shuffles of Min with d∞(Cn,Π) → 0, a fact that has been
investigated several times in the literature (see, e.g., [10, 16].
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The latter results strongly depends on the topology we are considering on the
space of copulas. In fact, if we assume that C2 is equipped with the D1 metric
in [15] or with the topology induced by the M–convergence in [11], the following
result holds (for the proofs see [1, 15]).

Theorem 2. Complete dependence copulas form a closed set in (C2, D1) and well
as in (C2, dM).

A final aspect that we are interested has been the possibility of describing the
relative size such special classes of copulas using tools from Baire categories. These
investigations have also been motivated by the necessity of clarifying whether
classical assumptions in asymptotic statistics apply to a relatively large set (see,
e.g., [13]).

We recall that a subset of a metric space (S, d) is nowhere dense if its closure
has empty interior; while a set A ⊆ S is meager or of first category in (S, d) if it is
expressible as a countable union of nowhere dense sets. Moreover, a set A is called
of second category if it is not meager and it is called co-meager if S \A is meager.

The following results have been proved in [4].

Theorem 3. Consider the complete metric space (Cd, d∞) as well as (Cd, D1).

• The set of absolutely continuous copulas is of first category in (Cd, d∞) as
well as in (Cd, D1).

• The class of (purely) singular copulas is co-meager in (Cd, d∞).

Similar results have been also proved in [2] for several subclasses of exchangeable
and associative copulas. It remains an open question whether the class of purely
singular copulas is of second category in (Cd, D1).

To conclude, many statistical distributions and methods have been introduced
in the last years to provide alternatives to absolutely continuous copulas. This
report (and the related investigations) suggests that these structures may also
arise in a natural way as solutions of special optimization problems and present
properties of some mathematical interest.
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[14] L. Rüschendorf. Random variables with maximum sums. Adv. in Appl. Probab., 14(3):623–

632, 1982.
[15] W. Trutschnig. On a strong metric on the space of copulas and its induced dependence

measure. J. Math. Anal. Appl., 384(2):690–705, 2011.
[16] R. A. Vitale. Approximation by mutually completely dependent processes. J. Approx. The-

ory, 66(2):225–228, 1991.

On some new constructions of copulas

Radko Mesiar

Recently, we have introduced several new kinds of constructions of binary copulas.
We recall and exemplify some of them. Based on the results of [8, 10], we introduce
first the role of ultramodularity in copula constructions, including some examples.

A copula C : [0, 1] → [0, 1] is ultramodular [9, 10] if and only if for all x,y, z ∈
[0, 1]2 satisfying x+ y + z ∈ [0, 1]2 we have

(1) C(x + y + z) + C(x) ≥ C(x + y) + C(x+ z).

Note that ultramodular copulas are just copulas with convex horizontal and ver-
tical sections.

Out of the three basic copulas W,M and product copula Π given by Π(x, y) =
x·y onlyW and Π are ultramodular. However, the upper Fréchet–Hoeffding bound
M is ultramodular on the upper left triangle

∆ = {(x, y) ∈ [0, 1]2 | x ≤ y}.

Theorem 4 ([10], Theorem 3.1). Let C : [0, 1]2 → [0, 1] be an Archimedean copula
with a two times differentiable additive generator t : [0, 1] → [0,∞]. Then C is
ultramodular if and only if t′ is constant or 1

t′ is a convex function.

As a consequence of Theorem 4.1 in [10] we get:

Theorem 5. Let C1, C2, D : [0, 1]2 → [0, 1] be a copulas and assume that D
is ultramodular. Then, for all monotone non–decreasing functions f1, f2, g1, g2 :
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[0, 1] → [0, 1] with D (f1(x), f2(x)) = D (g1(x), g2(x)) = x for all x ∈ [0, 1], also
the function E : [0, 1]2 → [0, 1] given by

(2) E(x, y) = D (C1 (f1(x), g1(y)) , C2 (f2(x), g2(y)))

is a copula.

Example 1. Here is example of the construction in Theorem 5:
For each copula C and all α, β ∈ [0, 1] the function E : [0, 1]2 → [0, 1] given

by E(x, y) = C
(
xα, yβ

)
· C

(
x1−α, y1−β

)
is a copula (this result was obtained

independently in [7], see also [12]). Putting C = W and α = β = 0.5, we
obtain the Clayton copula with parameter -0.5 (see [16]) given by C−0.5(x, y) =(
max

(√
x+

√
y − 1.0

))2
.

Next, we will need the Schur concavity of a copula D : [0, 1]2 → [0, 1] on the upper
left triangle ∆ =

{
(x, y) ∈ [0, 1]2|x ≤ y

}
only, which means that for all (x, y) ∈ ∆

and for all ε > 0 with (x + ε, y − ε) ∈ ∆ we have

D(x, y) ≤ D(x+ ε, y − ε).

Theorem 6 ([8]). Let C be a binary copula and let D be a binary copula which is
ultramodular and Schur concave on the upper left triangle ∆. Then the function
D(C,C⋆) is a copula, where C⋆ is the dual copula given by

C⋆(x, y) = x+ y − C(x, y).

It is remarkable that D(C,C⋆) in Theorem 6 preserves the ultramodularity and
the Schur concavity on ∆ of the copulas C and D.

Proposition 1. Let C, D be binary copulas which are ultramodular and Schur con-
cave on the upper left triangle ∆. Then also the copula D(C,C⋆) is ultramodular
and Schur concave on ∆.

It turns out that the ultramodularity of D is a necessary condition if we want
D(C,C⋆) to be a copula for each copula C.

Theorem 7. Let D be a binary copula such that for each binary copula C the
function D(C,C⋆) is a copula. Then D is ultramodular on the upper left triangle
∆.

Example 2. The product copula Π is both ultramodular and Schur concave, and
thus ΠC : [0, 1]2 → [0, 1] given by ΠC(x, y) = C(x, y) · (x+ y−C(x, y)) is a copula
for any (bivariate) copula C.

Next, we recall quadratic constructions of copulas [11] and their stochastic inter-
pretation based on results of [4]. Inspired by the fact that the above introduced
copula ΠC can be seen as a composite function,

ΠC(x, y) = P (x, y, C(x, y)),

where P is a quadratic polynomial, P (x, y, z) = z · (x+ y− z), we were interested
[11] in a complete description of all ternary quadratic polynomials P such that,
for any bivariate copula C, the function P(C) : [0, 1]

2 → [0, 1] given by
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(3) P(C)(x, y) = P (x, y, C(x, y))

is a copula.

Theorem 8. For a copula C : [0, 1]2 → [0, 1], let P(C) be a function defined on

[0, 1]2 by

P(C)(x, y) = ax2+ by2+ cz2+dxy+ exz+ fyz+ gx+hy+ iz+ j, (x, y) ∈ [0, 1]2,

where z = C(x, y) and a, . . . , j ∈ R. Then the following are equivalent.

(i) For any copula C, P(C) is a copula.
(ii) P(C) is given by

P(C)(x, y) = cC2(x, y) + dxy − cxC(x, y) − cyC(x, y) + (1 + c− d)C(x, y),

with coefficients c, d satisfying conditions

0 ≤ d ≤ 1, 0 ≤ d− c ≤ 1.

Observe that, up to the case when c = d = 0, the only copula invariant under the
quadratic construction generated by the polynomal

P (x, y, z) = cz2 + dxy − cxz − cyz + (1 + c− d)z

by (3), i.e., P(C) = C, is the Plackett copula CPlα with parameter α = d
d−c if d 6= c,

P(C) =M if d = c 6= 0. If c = d = 0 then P(C) = C for any copula C.
Note that considering c = −1 and d = 0, the corresponding quadratic construc-

tion coincides with construction described in Example 2, i.e.,P(C) = ΠC . This
construction has also an interesting stochastic interpretation, see [4].

Consider IID random vectors (X1, Y1) and (X2, Y2) characterized by a copula
C, and such that X1, Y1, X2, Y2 are uniformly distributed over [0, 1]. Then the
random vector (Z1, Z2) is characterized by the copula ΠC , where

(Z1, Z2) =

{
(min(X1, X2),max(Y1, Y2)) with pp. 0.5,
(max(X1, X2),min(Y1, Y2)) with pp. 0.5.

Another kind of constructions of singular copulas is related to modular functions
[2].

Recall that a function A : [0, 1]2 → [0, 1] is called an aggregation function if it
is monotone and satisfies two boundary conditions A(0, 0) = 0 and A(1, 1) = 1 [5].
An aggregation function A is said to be modular (1–Lipschitz) if it satisfies, for
all x,y ∈ [0, 1]2,

A(x) +A(y) = A(x ∨ y) +A(x ∧ y)

(|A(x) −A(y)| ≤ ‖x− y‖1 = |x1 − y1|+ |x2 − y2|).
In [2] we have shown the next result.

Theorem 9. Let A : [0, 1]2 → [0, 1] be a modular 1–Lipschitz aggregation function.

Then the function Ã : [0, 1]2 → [0, 1] given by

(4) Ã(x, y) = min (x, y, A(x, y))

is a copula.
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Note that, considering any copula C : [0, 1]2 → [0, 1], the function AC : [0, 1]2 →
[0, 1] given by

AC(x, y) =
C(x, x) + C(y, y)

2

satisfies the constraints of Theorem 9, and then ÃC given by (4) is a diagonal
copula introduced in [17]. For some further generalizations of Theorem 9 we
recommend our paper [2].

We briefly recall some other recent construction methods for copulas. Conic
copulas were introduced in [6]. A close relation between Archimax copulas [1]
and conic copulas [6] was recently shown in [3]. Interesting, especially for fitting
purposes, seems to be also the approach based on perturbations of particular
copulas [14]. Finally, recall DUCS copulas (Distorted Univariate Conditioning
Stable Copulas) introduced and discussed in [13].
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Factor copulas constructed from stochastic processes

Matthias Scherer

(joint work with G. Bernhart, J.-F. Mai, S. Schenk)

Randomizing the parameter(s) of a given parametric family of univariate random
variables is a popular technique to enrich the distribution in concern with addi-
tional stochastic properties and to create new probability laws. On a multivariate
level, another motivation is to introduce dependence to originally independent ob-
jects by means of a joint mixture variable affecting multiple random variables in a
similar way. A well-known example are extendible Archimedean copulas that can
be interpreted as the survival copulas arising from a two step experiment: Firstly,
a positive random variable M is simulated. Second, a sequence of exponential
random variables with rate parameterM is drawn independently. Other examples
are credit-risk models where a joint (random) default probability p ∈ (0, 1) is used
as mixture variable in a sequence of Bernoulli(p) experiments, or loss models for
insurance claims based on Poisson-distributed count variables with joint (random)
intensities.

Factor models created in this way are popular due to, among others, the fol-
lowing facts: They enjoy a great level of interpretability, they are straightforward
to simulate in large dimensions, the dimension of the considered problem is flex-
ible, convenient limit results for large-dimensional random vectors (X1, . . . , Xd)
for (dր ∞) are often computable, parametric families of mixture variables imply
parametric families of copulas, and extensions beyond conditional iid (i.e. homoge-
neous one-factor models) are typically easy to find by, e.g., using multiple factors
or inhomogeneous marginal laws. Moreover, hierarchical constructions are imme-
diate in many cases, see [10].

Most factor models currently considered – in theory as well as in practice – are
based on the aforementioned idea of using random parameters. This ansatz, how-
ever, can be extended to more involved random objects, e.g. stochastic processes.
Providing more mathematical structure, a famous result by Bruno de Finetti (see
[2]) shows that an infinite sequence of random variables {Xk}k∈N on (Ω,F ,P) is
exchangeable if and only if it is conditionally iid, i.e. there exists a sub-σ-algebra
G ⊂ F s.t. for all d ≥ 2:

P(X1 ≤ x1, . . . , Xd ≤ xd |G ) =

d∏

k=1

P(X1 ≤ xk |G ), x1, . . . , xd ∈ R.

This is equivalent to the existence of a random distribution function t 7→ Ft such
that conditioned on G := σ({Ft}t∈R), the components {Xk}k∈N are iid and can
be represented as

Xk := inf{t ∈ R : Ft ≥ Uk}, {Uk}k∈N

iid∼ U [0, 1],

where the sequence {Uk}k∈N is independent of {Ft}t∈R.
In the case of randomized parameters, the stochastic process {Ft}t∈R is an

ordinary distribution function with random parameters. Opposed to this quite
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simplistic approach, we will need “true” stochastic processes in the following. Mo-
tivated especially by applications in portfolio credit-risk modeling and insurance,
our research group has considered the questions:

• Given an interesting class of multivariate probability distributions, can we
identify the conditionally iid subfamily, i.e. the subfamily representable by
a one-factor construction?

• How can we create new probability laws starting from one-factor models?

These questions are flanked by the search for stochastic representations, efficient
sampling strategies, extensions to multi-factor models, and real-world applications.
It is quite difficult to give a general description on how the above questions can be
solved, since the answer heavily depends on the family one has in mind. Generally
speaking, one first has to identify the exchangeable subfamily of the distribution in
concern in dimension d (since this is a necessary condition for extendibility), then
one has to let the dimension go to infinity, and finally one has to guess a stochastic
model for {Xk}k∈N that ultimately reveals the nature of G := σ({Ft}t∈R).

Since the applications we have in mind involve the modeling of default times
or the arrival times of insurance claims, it is not surprising that we consider fatal
shock models on the one hand, and various multivariate extensions of the expo-
nential law on the other hand. Fatal shock models have been thoroughly studied
and applied in different fields, e.g., finance, hydrology, insurance, and reliability
theory. In their classical stochastic representation, distinct shocks EI hit combi-
nations of components of a d-dimensional vector, i.e. the vector (X1, . . . , Xd) is
defined as

Xk := min
∅6=I⊂{1,...,d}

{EI : k ∈ I}, k = 1, . . . , d.(1)

The seminal example for both – multivariate exponential laws and fatal shock
constructions as in (1) – is the Marshall–Olkin law (see [12]), in which the shocks
EI are independent and exponentially distributed. While this is convenient to
interpret and use in low dimensions, the number of involved shocks increases ex-
ponentially in d, preventing such models from being applicable even in moderate
dimensions. This problem is overcome as soon as a one-factor subfamily is identi-
fied. For the Marshall–Olkin law, one can show that the exchangeable subfamily
is parameterized by d-monotone vectors, which for (d ր ∞) provides a link to
completely monotone sequences. These are linked to Bernstein functions by a re-
sult in [4], which are finally in a one-to-one relation with Lévy subordinators (see
[9]). The model for {Xk}k∈N, called Lévy-frailty construction in [8], can then be
formulated as

Xk := inf{t ≥ 0 : Λt ≥ ǫk}, k ∈ N,(2)

with a sequence of iid unit exponentials {ǫk}k∈N and {Λt}t≥0 a Lévy subordinator.
On a theoretical basis, this provides a marvelous link between classes of multivari-
ate probability laws and the corresponding families of stochastic processes.

Generalizations to arbitrary exchangeable fatal shock models, extending the
Marshall–Olkin model beyond the embedded exponential law, are considered in
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[5]. Among others, all copulas of the functional form

C(u1, . . . , ud) =

d∏

k=1

gk(u(k)), d ≥ 2,(3)

are characterized analytically and by means of a fatal shock model. Here, u(1) ≤
. . . ≤ u(d) denotes the ordered arguments of C. Moreover, a link to additive
processes, serving as stochastic factor, is revealed, and the specific cases of Sato
processes (see [6]) and the Dirichlet process (see [7]) are discussed in quite some
detail.

Turning to alternative multivariate definitions of the exponential law (apart
from the Marshall–Olkin distribution), MSMVE distributions and distributions
with exponential minima are natural candidates, see [3]. For both classes, the
extendible subfamilies are characterized in [11] and a stochastic model based on
strong (respectively weak) IDT subordinators is given. Specific families of MSMVE
distributions (respectively their associated extreme-value copula) are constructed
in [1]. This provides new (low-parametric) families of extreme-value copulas that
might be interesting for applications, among others, due to their convenient sto-
chastic representation.
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