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Introduction by the Organisers

The aim of the workshop was to bring together mathematicians from several areas
of algebra and topology for the purpose of fostering interactions on projects of
overlapping interests. This is the fourth workshop in the series. An Oberwolfach
workshop with this same title has been held every five years since 2000. The
meetings have contributed substantially to the development of interactions be-
tween fields such as commutative algebra, homological algebra, homotopy theory,
modular representation theory and transformation groups. The common theme
has been the use and application of techniques from the cohomology theory of
finite groups, but the emphasis has been on applications and interactions with a
host of diverse subjects.

The meeting had 53 participants from ten different countries. In total, there
were 24 lectures, almost all of which were for 50 minutes. The schedule allowed
plenty of time for discussions and collaborations. The weather at the meeting was
excellent, particularly for the traditional Wednesday afternoon hike to St. Roman.
In addition to the stimulating mathematics, the participants were treated to a
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concert of classical music and jazz presented by four of the particapants: Serge
Bouc, Bernhard Hanke, Markus Linckelmann and Peter Webb.

There were many scientific highlights of the meeting. Included were the presen-
tations of Srikanth Iyengar and Julia Pevtsova on different aspects of their very
recent proof, in joint work with Benson and Krause, of the classification on local-
izing subcategories of the stable module category for a finite group scheme. The
crucial new concept in the proof is the notion of π-cosupport and its relationship
with the cohomological cosupport. This work continues a thread started about 25
years ago in homotopy theory and commutative algebra by Hopkins and Neeman,
and was imported into cohomology and representation theory of finite groups 20
years ago by Benson, Carlson and Rickard.

Dave Hemmer presented a lecture on recent work with Dan Nakano and Fred
Cohen on the complexity of the Lie module, a module over the symmetric group
on n letters. The collaboration of Hemmer, Nakano and Cohen began at the Ober-
wolfach workshop with this title in 2005 which produced an earlier publication.
Hemmer and his collaborators settle a conjecture of Erdmann, Lim and Tan in
their most resent work. The proof is a mixture of methods from representation
theory and topology.

Various functor categories are used when representations and cohomology of
groups are studied. The talk of Nick Kuhn was devoted to functors on the category
of finite dimensional vector spaces over a finite field. He coined the term ‘generic
representation theory’, because these functors descibe the representations of the
general linear groups GL(n) simultaneously for all n. In fact, he analysed the
functor category in nondescribing characteristic, while Steven Sam presented some
exciting structural results in the equi-characteristic case. Homological stability
provided the general framework for Sam’s talk. Motivated by questions from
algebraic topology, Aurelien Djament presented his work on polynomial functors
in the study of stable homology of congruence groups.

Beren Sanders spoke on joint work with Paul Balmer in which they compute
the spectrum of the G-equivariant homotopy theory for G a finite group. This
follows work of Mike Hopkins and Jeff Smith in the case G = {1}. Sanders and
Balmer are able to determine the set of all prime thick tensor ideal subcategories,
thereby obtaining the spectrum of the category as a set. Sanders also reported on
some progress on finding the topology of the spectrum.

The notion of a p-local finite group, and the associated fusion system and link-
ing system, have played a major role in the cohomology of groups in recent years.
Chermak’s recent proof of the existence and uniqueness of linking systems asso-
ciated with a fusion system has put the subject on a firmer footing, and this is
reflected in the fact that three of the talks at this conference were on this topic.
Natàlia Castellana’s talk concentrated on cellular properties: when can the classi-
fying space of a p-local finite group be built out of that for its Sylow p-subgroup?
Carles Broto talked about the fusion systems of finite groups of Lie type, and their
automorphisms. Ran Levi talked about his joint work with Libman on the more
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general concept of a p-local compact group, and the existence and uniqueness of
Adams operations on their classifying spaces.

There were a number of lectures where methods from group cohomology were
applied to interesting problems in topology. These included the talk by Ian Ham-
bleton on his joint work with Ergün Yalçın, in which they described conditions
on a finite group G for it to act on a sphere with periodic isotropy. It is an im-
portant step forward in developing geometric models for homotopy actions. The
lecture by Bernhard Hanke on inessential Brown-Peterson homology and bordism
of elementary abelian groups has important applications to the Gromov-Lawson-
Rosenberg conjecture on scalar curvature. The presentation by Ben Williams on
his joint work with Ben Antieau on Azumaya algebras made significant advances
on the period-index problem and the cohomology of PGLn. Ignasi Mundet spoke
on a conjecture of Ghys related to the Jordan condition for diffeomorphism groups
of manifolds. The lecture by Hans-Werner Henn reviewed important applications
of group cohomology to current computations in homotopy theory. This sam-
pling illustrates the broad scope of the meeting across many areas of algebra and
topology.

Another highlight of the meeting was a report by Jesper Grodal on his progress
towards a solution to Linckelmanns gluing conjecture in p-local group theory for
the case of a finite group of Lie type. This conjecture had been proposed at the
first meeting with this title some 15 years ago.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Julia Pevtsova and Peter Webb in the “Simons Visiting
Professors” program at the MFO.
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Abstracts

On a question of Rickard on tensor product of stably equivalent
algebras

Serge Bouc

(joint work with Alexander Zimmermann)

Let K be a field, and let A, B, C and D be finite dimensional K-algebras. Rickard
showed in [9] that if A and B are derived equivalent, and if C and D are derived
equivalent, then also A⊗K C and B⊗K D are derived equivalent. Rickard asks in
[10, Question 3.8] if this still holds when replacing derived equivalence by stable
equivalence of Morita type.

First it is clear that we have to suppose that all algebras involved have no
semisimple direct factor. A result due to Liu [5] shows that then we may suppose
that all algebras are indecomposable. In [7] Liu, Zhou and Zimmermann showed
that the question has a negative answer in case A, B are not necessarily self-
injective.

However, a derived equivalence between self-injective algebras A and B induces
a stable equivalence of Morita type between A and B ([4], [8]). If A and B are
not self-injective, then this implication is no longer valid. Hence, the natural
playground for Rickard’s question consists of self-injective algebras.

The purpose of this talk is to describe such an example for which the answer
to Rickard’s question is negative: for an algebraically closed base field K of char-
acteristic p > 0, we construct symmetric K-algebras A and B which are stably
equivalent of Morita type, but A⊗KK[X ]/Xp and B⊗KK[X ]/Xp are not stably
equivalent of Morita type.

Our example ([1]) is the principal p-block B of the group G = PSU(3, pr) and
its Brauer correspondent b, i.e. the group algebra over K of the normalizer N in G
of a Sylow p-subgroup S of G. After observing that since the Sylow p-subgroups of
G have trivial intersection (i.e. S ∩Sg = 1 if g ∈ G−N), the algebras B and b are
stable equivalent of Morita type, we compute the radical series of the center of b.
To do this, we first determine the structure constants of the centre of the group
algebra of N over the integers. Next, using GAP ([3]), we compute the radical
series of the center of B, in the cases pr ∈ {3, 4, 5, 8}. The results are as follows
(where q = pr and γ = gcd(q + 1, 3)):

G PSU(3, 3) PSU(3, 4) PSU(3, 5) PSU(3, 8) PSU(3, q)
Z(B) Z(b) Z(B) Z(b) Z(B) Z(b) Z(B) Z(b) Z(b)

dimK J0 13 13 21 21 13 13 27 27 q2+q
γ

+ γ

dimK J1 12 12 20 20 12 12 26 26 q2+q
γ

+ γ − 1

dimK J2 4 3 5 4 2 1 3 2 q+1
γ
− 1

dimK J3 0 0 0 0 0 0 0 0 0
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This shows that when q ∈ {3, 4, 5, 8}, the center of B ⊗K K[X ]/Xp is not iso-
morphic to the center of b ⊗K K[X ]/Xp, as their radical square have different
dimensions. Now by a theorem of Liu, Zhou and Zimmermann ([6]), the projec-
tive centers of B ⊗K K[X ]/Xp and b⊗K K[X ]/Xp are equal to 0. It follows that
the stable center of B ⊗K K[X ]/Xp (resp. b ⊗K K[X ]/Xp) is isomorphic to its
ordinary center.

Hence the stable centers of B⊗KK[X ]/Xp and b⊗KK[X ]/Xp are not isomor-
phic, so a theorem of Broué ([2]) implies that these two algebras cannot be stably
equivalent of Morita type.
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Inessential Brown-Peterson homology and bordism of elementary
abelian groups

Bernhard Hanke

Let p be an odd prime. We study ΩSO
∗ (B(Z/p)n), oriented bordism of the clas-

sifying space B(Z/p)n, as a module over the oriented bordism ring ΩSO
∗ . This is

equivalent to bordism of free oriented (Z/p)n-manifolds. In the following we drop
the superscript SO from our notation.

For n = 1 the structure of the reduced module has been described by Conner
and Floyd [3]. It can be derived from the Gysin sequence for the fibration

S1 →֒ BZ/p→ CP∞,

which splits, in the case under consideration, into short exact sequences

0→ Ω̃∗+2(CP
∞)

−∩[p]t
→ Ω̃∗(CP

∞)→ Ω̃∗+1(BZ/p)→ 0.
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Here t ∈ Ω2(CP∞) is a generator (Conner-Floyd class) and [p]t ∈ Ω2(CP∞) is
the image of t under the map induced by B(z 7→ zp) : BS1 → BS1. This is
determined by the formal group law associated to oriented bordism localized at p,
or, equivalently, Brown-Peterson theory for the prime p.

For n > 1 we consider the Künneth type exact sequence of reduced oriented
bordism groups

0→ Ω̃∗(∧
n−1BZ/p)⊗Ω∗

Ω̃∗(BZ/p)→ Ω̃∗(∧
nBZ/p)→

→ (TorΩ∗
(Ω̃∗(∧

n−1BZ/p), Ω̃∗(BZ/p)))∗−1 → 0

due to Landweber [7]. Elements in the torsion product can be pulled back to

Ω̃∗(∧nBZ/p) by a (matrix) Toda bracket construction. But this is noncanonical,
and indeed it has been an open problem whether the map

Ω̃∗(∧
nBZ/p)→ (TorΩ∗

(Ω̃∗(∧
n−1BZ/p), Ω̃∗(BZ/p)))∗−1

appearing in the Künneth-Landweber sequence splits Ω∗-linearly.

Theorem 1. There is an Ω∗-linear map

Ψn : Ω̃∗(∧
nBZ/p)→ Ω̃∗(BZ/p)⊗Ω∗

· · · ⊗Ω∗
Ω̃∗(BZ/p)

which splits the iterated Künneth map

Φn : Ω̃∗(BZ/p)⊗Ω∗
· · · ⊗Ω∗

Ω̃∗(BZ/p)→ Ω̃∗(∧
nBZ/p).

The construction of Ψn is independent of any choices.

From this we derive the following assertions:

• The Ω∗-module Ω∗(B(Z/p)n) splits as a direct sum of suspensions of mul-
tiple tensor products of Ω∗(BZ/p). This sharpens a result of Johnson-
Wilson [6], who proved a corresponding statement for the graded module
associated to a certain filtration of Ω∗(B(Z/p)n) by Ω∗-submodules.
• The Künneth-Landweber sequence splits Ω∗-linearly.
• The Ω∗-module Ω∗(B(Z/p)n) is generated by generalized products of lens
spaces, i.e. images of k-fold products of standard lens spaces in Ω∗(B(Z/p)k)
under maps Ω∗(B(Z/p)k)→ Ω∗(B(Z/p)n) induced by injective group ho-
momorphisms (Z/p)k → (Z/p)n, 0 ≤ k ≤ n.

Note that the last assertion does not hold for ordinary homology.
The main idea for the proof of Theorem 1 is to study the inessential Brown-

Peterson group homology of (Z/p)n. In our context this amounts to the Ω∗-
submodule of Ω∗(B(Z/p)n) generated by elements coming from proper subgroups

of (Z/p)n. Let K∗ ⊂ Ω̃∗(∧nBZ/p) be the image of this submodule in the reduced
theory. Note that this definition is canonical (i.e. independent of any choices).

Because the map Φn in the iterated Künneth sequence is injective [6], Theorem
1 following from the following two facts, which show thatK∗ is a direct complement

of imΦn in Ω̃∗(∧nBZ/p):

• imΦn +K∗ = Ω̃∗(∧nBZ/p),
• imΦn ∩K∗ = 0.
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The first assertion is proven by an explicit calculation, examining the Pontryagin
product on Ω∗(B(Z/p)n) induced by the group structure on (Z/p)n. The second
assertion follows from methods developped in Ravenel-Wilson’s solution of the
Conner-Floyd conjecture [8]. We remark that the second assertion is no longer
true for p = 2.

As an application of our results we prove the Gromov-Lawson-Rosenberg con-
jecture for atoral manifolds with elementary abelian fundamental groups of odd
order. In the following we call a closed oriented manifold Md p-atoral, if

f∗(c1) ∪ · · · ∪ f
∗(cd) = 0 ∈ Hd(M ;Fp)

for all c1, . . . , cd ∈ H1(Bπ1(M);Fp). Here f : M → Bπ1(M) is the classifying
map of M .

Theorem 2. Assume that M is a p-atoral manifold of dimension d ≥ 5 with
fundamental group (Z/p)n, where p is an odd prime. Then the following assertions
hold.

• If M admits a spin structure, then M admits a Riemannian metric of
positive scalar curvature, if and only if α(M) = 0 ∈ KOd, where α is the
index invariant introduced by Hitchin [5] with values in the coefficients of
real K-theory.
• IfM does not admit a spin structure, then M admits a Riemannian metric
of positive scalar curvature.

These results already appeared in [2, Theorem 5.8] and [1, Theorem 2.3], but
the proofs in these references contain a gap (in the proof of [2, Theorem 5.6]),
which is filled by our methods.

For more details concerning our results the reader is referred to the preprint [4].
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On good (p, r)-filtrations for rational G-modules

Daniel K. Nakano

(joint work with Tobias Kildetoft)

Let k be an algebraically closed field k of characteristic p > 0, and G be a simple,
simply connected algebraic group scheme defined over Fp. A class of modules of

central interest are the induced modules ∇(λ) = indGBλ where λ ∈ X+ (dominant
integral weight) and B is a Borel subgroup (corresponding to the negative roots).
The characters of ∇(λ) are given by Weyl’s character formula, and ∇(λ) has a
simple socle L(λ) where each finite-dimensional simple G-module is isomorphic to
a unique such L(λ). The category of rational G-modules is not semisimple and one
of the major open problems is to determine multiplicities of composition factors in
these induced modules which naturally arise from the characteristic zero through
reduction modulo p.

The modules ∇(λ) also form the building blocks for studying injective modules.
It is natural to consider modules which admit filtrations whose sections are ∇(λ)
for suitable λ ∈ X+. These filtrations are called good filtrations. For each λ ∈ X+

with unique decomposition λ = λ0 + prλ1 with λ0 ∈ Xr (prth restricted weights)
and λ1 ∈ X+, one can define

∇(p,r)(λ) = L(λ0)⊗∇(λ1)
(r)

where (r) denotes the twisting of the module action by the rth Frobenius mor-
phism. A G-module M has a good (p, r)-filtration if and only if M has a filtration
with factors of the form ∇(p,r)(λ) for suitable λ ∈ X+. Let Str = L((pr − 1)ρ) be
the rth Steinberg module. The following conjecture, introduced by Donkin at an
MSRI lecture in 1990, interrelates good filtrations with good (p, r)-filtrations via
the Steinberg module:

Conjecture. Let M be a finite-dimensional G-module. Then M has a good (p, r)-
filtration if and only if Str⊗M has a good filtration.

Let h be the Coxeter number of the underlying root system Φ of G. When
p ≥ 2h− 2, Andersen [And01] showed that if M has a good (p, r)-filtration then
Str ⊗ M has a good filtration. The verification of the other direction of the
conjecture appears to be much harder. A special case is that for any λ ∈ X+, the
module ∇(λ) has a good p-filtration because tensor products of modules with good
filtrations again have good filtrations. Parshall and Scott [PS12] have proved that
∇(λ) has a good p-filtration when p ≥ 2h− 2 and the Lusztig character formula
holds for all composition factors of ∇(λ).

The talk will primarily focus on issues related to the “⇒” direction of the
conjecture. Our results expand on the work of Andersen by proving that when M
has a good (p, r)-filtration then Str ⊗M has a good filtration, provided a suitable
inequality holds between p, r, h and the weights occurring in the good (p, r)-
filtration of M . As a special case, we recover the results of Andersen, though our
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method of proof is markedly different. Our method of proof involves the use of the
Donkin/Scott cohomological criterion for the existence of a good filtration, and a
careful analysis of the vanishing of extension groups with appropriate conditions
on weights.

In order to prove the “⇒’ direction of the conjecture, it is clearly enough to
prove that Str ⊗∇(p,r)(λ) has a good filtration for any λ ∈ X+. However, due to
a result of Andersen (with an argument also included our work), it turns out that
the “⇒” direction is equivalent Str⊗L(λ) having a good filtration for any λ ∈ Xr.
The inequality obtained allows us to prove that Str ⊗ L(λ) has a good filtration
with smaller restrictions on p provided that the weight λ is also suitably smaller.
This still leaves weights λ ∈ X+ for which we do not know whether Str⊗∇(p,r)(λ)
has a good filtration when p is small. However, if λ = λ0+p

rλ1 with λ0 ∈ Xr and
if λ1 is large enough compared to λ0, then we can still show that Str ⊗∇(p,r)(λ)
has a good filtration, even if λ0 is not small enough to satisfy the inequality we
get with respect to p, r and h.

A natural question is for which λ ∈ X+ does Str ⊗L(λ) have a good filtration?
When p ≥ 2h− 2 and if 〈λ, α∨

0 〉 ≤ (pr − 1)(h − 1) (where α0 is the highest short
root of Φ), L(λ) ≃ ∇(p,r)(λ) so in these cases it does hold. However, we also
show that this is close to being the best bound of this type possible. Namely,
we show that if p = 2h − 5 and R is of type A, then there is a λ with 〈λ, α∨

0 〉 ≤
(p−1)(h−1) and such that St1⊗L(λ) does not have a good filtration. Furthermore,
we demonstrate that our results are strong enough to prove the “⇒” direction of
the (p, r)-filtration conjecture for root system of type A2, A3, and B2 over fields of
arbitrary characteristic, as well as for the root system of type G2 as long as p 6= 7.

In the final part of the talk, I indicate how we recast Donkin’s (p, r)-Filtration
Conjecture via tilting modules. This allows us to establish a cohomological criteria
(analogous to the one for good filtrations) for Str ⊗M to admit a good filtration.
This cohomological criteria is independent of the characteristic of the field. As a
corollary of this result we show that if Donkin’s Tilting Modules Conjecture holds
then the “⇒” direction of Donkin’s (p, r)-Filtration Conjecture holds. Since the
tilting module conjecture is valid when p ≥ 2h−2, this yields a second proof of the
“⇒” direction of the (p, r)-filtration conjecture. We note that if both directions
of the (p, r)-conjecture are true then our cohomological criteria is equivalent to a
module M -admitting a good (p, r)-filtration.
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Rational Cohomology and Support Varieties for Algebraic Groups

Eric M. Friedlander

In two recent papers [1] and [2], we initiated the study of support varieties for
rational G-modules M for a linear algebraic group G of exponential type. This
approach utilizes constructions of earlier work with Andrei Suslin and Christopher
Bendel [3] and [4] employing 1-parameter subgroups Ga → G. Although the
resulting theory of support varieties has many good properties, the construction is
somewhat subtle and thereby confusing because of a necessary twist of parameters.

In this talk, we explained how these support varieties in the special case G = Ga

can be reformulated in terms of rational cohomology, thereby relating them to more
classical constructions for finite groups. The talk presented some elementary and
concrete aspects of the representation theory and cohomology of Ga. Time did not
permit the discussion of more general unipotent algebraic groups for which there
appears to be a parallel theory which relies on certain refinements of computations
of [3] and [4].

The talk discussed “mock injectives” for an affine algebraic group G: the ra-
tional G-module L is a mock injective if its restriction to every Frobenius kernel
G(r) is injective.

The talk also considered infinite dimensional rational G-modules Qζ for a ratio-
nal cohomological class ζ ∈ H2n(G, k) which are natural analogues of Jon Carlson’s
important Lζ-modules constructed for finite group schemes. Because one does not
have projective rationalG-modules, these are constructed using truncated injective
resolutions of the trivial module.
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An attempt on the classification of unstable Adams operations for
p-local compact groups.

Ran Levi

(joint work with Assaf Libman)

A p-local compact group is an algebraic object modelled on the homotopy the-
ory associated with p-completed classifying spaces of compact Lie groups and
p-compact groups. In particular p-local compact groups give a unified framework
in which one may study p-completed classifying spaces from an algebraic and ho-
motopy theoretic point of view. Like compact Lie groups and p-compact groups,
p-local compact groups admit “unstable Adams operations”, i.e. certain self equiv-
alences of their algebraic structure which give rise to self homotopy equivalences
of their classifying spaces, and are characterised by their effect on p-adic cohomol-
ogy. Similarly to the classical case, unstable Adams operations are considered to
be a very useful and important family of maps. For instance, their existence was
used by Gonzalez to express p-local compact groups as colimits of certain finite
approximations with some important consequences. However, for a given p-local
compact group and a given p-adic degree, the question whether an unstable Adams
operation of that degree exists, and if it does whether it is unique up to homotopy,
is not well understood. This talk is a report on recent progress in this subject,
and some remaining questions.

We start by recalling the concepts involved. Fix a prime p. A discrete p-toral
group is a group S containing a normal subgroup T ∼= (Z/p∞)r, called the maximal
torus of S, with p-power index. A p-local compact group is a triple G = (S,F ,L),
where S is a discrete p-toral group, F is a saturated fusion system over S, and
L is a centric linking system associated to F . The fusion and linking systems
are categories whose objects are certain subgroups of S. The morphisms in F
are group monomorphisms between objects that satisfy a certain set of conditions.
The classifying space of a p-local compact group G, denoted BG is the p-completed
nerve |L|∧p . For complete definitions of all these concepts see [4].

Let ζ be a p-adic unit and let S be a discrete p-toral group with maximal torus
T . An Adams automorphism of S of degree ζ is an automorphism of S which
restricts to the ζ power map on T . Such an automorphism is called normal if the
induced map on S/T is the identity map. If T is self centralising in S, then all
Adams automorphisms on S are normal.

An automorphism ϕ of S is said to be fusion preserving, if for any α : P → Q
in F , the homomorphism ϕ|Q ◦ α ◦ (ϕ|P )−1 is a morphism in F .

An unstable Adams operation on G = (S,F ,L) of degree ζ is a pair (Ψ, ψ),
where ψ is a fusion preserving Adams automorphism of S of degree ζ and Ψ is a
self equivalence of L that is compatible with ψ in the appropriate sense (see [6])
for details). In [5] it was shown that the p-adic cohomology of a p-local compact
group is the invariants under the action of the Weyl group of the p-adic cohomology
of its maximal torus. Thus one can show that an unstable Adams operation of
degree ζ on a p-local compact group induces multiplication by ζi on H2i

Qp
(BG). In
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fact under some mild hypotheses it is shown that every self map of BG with this
cohomological effect induces an unstable Adams operation of degree ζ on G.

Unstable Adams operations on p-local compact groups can thus be defined in
three different ways. The original definition in [6] is algebraic, starting off with an
Adams automorphism ψ on S, and using the algebraic structure of G = (S,F ,L)
to define Ψ. The second definition, also from [6] is topological: a self map of BG
which restricts to an Adams automorphism of S of the prescribed degree. In [6] we
show that there is an epimorphism from the group of algebraic Adams operations
on G to the group of geometric Adams operations. The third definition is the
cohomological criterion discussed above.

In the current project, we start by analysing the difference between the alge-
braic and the geometric operations. In particular we compute the kernel of the
epimorphism from the algebraic to the geometric operations to be a subgroup
AdL(S) of the automorphism group of S as an object in the linking system L.
This kernel contains the maximal torus T as a normal subgroup, and the quotient,
denoted D(F) is an invariant of the p-local group and plays an important role in
our study.

The two questions we attempt in this project are existence and uniqueness.
First, finding conditions for the existence of unstable Adams operations of a given
degree on a p-local compact group G. Second is the question of uniqueness up to
homotopy of an unstable operation of a given degree.

As may be expected, to answer the uniqueness question a certain concept of
connectivity is required. We say that a p-local compact group G = (S,F ,L) is
connected if for every x ∈ S, there is some ϕ ∈ F , such that ϕ(x) ∈ T . Let W
denote the Weyl group of G, defined as the automorphism group of T in F . We
prove the following:

Theorem 1. Suppose that G is connected and letW be its Weyl group, and assume
that H1(W,T ) = 0. If p is odd, then the degree map Adoutg (G) → Z×

p /D(F) is

injective, and if p = 2, then its kernel is given by a certain lim1 term.

This gives many examples of p-local compact groups where degree determines
an unstable operation up to homotopy. We show:

Theorem 2. Let F be a connected saturated fusion system. Assume that either
one of the following conditions holds:

a) p is odd and the Weyl group W = OutF(T ) is a pseudo-reflection group,
or

b) p is odd and D(F) 6= 1.
c) p = 2, D(F) 6= 0 and H1(W/D(F), TD(F)) = 0.

Then H1(W,T ) = 0.

Notice in particular that this gives a new proof that, for odd primes, unstable
Adams operations on p-compact groups, when they exist are unique up to homo-
topy. Of course for p-compact groups unstable Adams operations are already well
understood by works of Andersen, Grodal, Moller and Viruel [2, 1, 3].
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We turn to the existence question. We consider L as an extension of a quotient
category L/0 obtained from L by dividing out each morphism set in L by the
maximal torus of the target object. There is a functor Φ from L/0 to abelian groups
given by taking an object to its maximal torus, and the linking system L can be
regarded as an extension of L/0 by Φ, with an extension class [L] ∈ H2(L/0,Φ).
We prove the following:

Proposition 3. Let G = (S,F ,L) be a p-local compact group, and let ζ be a p-adic
integer such that ζ · [L] = [L]. Then there exists an unstable Adams operation on
G of degree ζ.

It turns out that the unstable operations constructed this way have certain
additional properties, we omit the technical details and call such operations “spe-
cial” for lack of a better name. The converse of Proposition 3 is true if a special
operation on G exists. Precisely,

Proposition 4. Let G = (S,F ,L) be a p-local compact group, and let ζ be a p-adic
integer such that G admits a special unstable Adams operation of degree ζ. Then
ζ · [L] = [L].

Finally, we show that there are examples of unstable Adams operations on p-
compact groups which are not special. Thus the general question of existence
remains open. A second question that remains open is whether uniqueness can
be completely characterised by properties of the p-local group in question. In
particular we are not aware of an example where G is connected in the sense
defined above, and H1(W,T ) is nontrivial, but we do not have enough evidence to
state a conjecture.
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Group actions on spheres with rank one isotropy

Ian Hambleton

(joint work with Ergün Yalçın)

Actions of finite groups on spheres can be studied in various different settings.
The fundamental examples come from the unit spheres S(V ) in a real or complex
G-representation V , and natural questions arise for these examples about the
dimensions of the non-empty fixed sets S(V )H , H ≤ G, and the structure of the
isotropy subgroups.

A useful way to measure the complexity of the isotropy is the rank. We say
that G has rank k if it contains a subgroup isomorphic to (Z/p)k, for some prime
p, but no subgroup (Z/p)k+1, for any prime p. In recent joint work we answer the
following question:

Question. For which finite groups G, does there exist a finite G-CW-complex
X ≃ Sn with all isotropy subgroups of rank one ?

By P. A. Smith theory, the rank one assumption on the isotropy subgroups
implies that G must have rank(G) ≤ 2 (see [4, Corollary 6.3]). Since every rank
one finite group can act freely on a finite complex homotopy equivalent to a sphere
(Swan [7]), we can restrict our attention to rank two groups. Here are three natural
settings for the study of finite group actions on spheres:

(1) smooth G-actions on closed manifolds homotopy equivalent to spheres;
(2) finite G-homotopy representations;
(3) finite G-CW-complexes X ≃ Sn.

In contrast to G-representation spheres S(V ), the non-linear smooth G-actions
on a smooth manifold M ≃ Sn exhibit more flexibility. For example, in the linear
case, the fixed sets S(V )H are always linear subspheres. For smooth actions,
the fixed sets are smoothly embedded submanifolds but may not even be integral
homology spheres.

Well-known general constraints on smooth actions arise from P. A. Smith the-
ory: if H is a subgroup of p-power order, for some prime p, then MH is an Fp-
homology sphere. In addition, even if the fixed sets are diffeomorphic to spheres,
they may be knotted or linked as embedded subspheres in M . One can also
consider topological G-actions, usually with the assumption of local linearity, oth-
erwise the fixed sets may not be locally flat submanifolds.

In the setting (B) of G-homotopy representations, the objects of study are
finite (or more generally finite-dimensional) G-CW-complexes X satisfying the
property that for each H ≤ G, the fixed point set XH is homotopy equivalent to
a sphere Sn(H) where n(H) = dimXH . We could also consider a version of this
setting where dimXH is the same as its homological dimension, and XH is an
Fp-homology n(H)-sphere, for H of p-power order.

The third setting (C) is the most flexible of all. Here we suppose that X ≃ Sn

is a finite G-CW-complex homotopy equivalent to a sphere, but do not require
that dimX = n. Moreover, we make no initial assumptions about the homology
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of the fixed sets XH , although the conditions imposed by P. A. Smith theory with
Fp-coefficients still hold. In the setting (C), we will see that dimXH must be
(much) higher in general than its homological dimension, and this provides new
obstructions to understanding our motivating question in setting (A) or (B).

We provide a complete answer for the existence question in setting (C). Our
construction produces G-CW-complexes with prime power isotropy.

Theorem A. Let G be a finite group of rank two. There exists a finite G-CW-
complex X ≃ Sn with rank one isotropy if and only if G is Qd(p)-free.

The group Qd(p) is defined as the semidirect product of (Z/p×Z/p) and SL2(p)
with the obvious action of SL2(p) on Z/p× Z/p. We say Qd(p) is p′-involved in
G if there exists a subgroup K ≤ G, of order prime to p, such that NG(K)/K
contains a subgroup isomorphic to Qd(p). If a group G does not p′-involve Qd(p)
for any odd prime p, then we say that G is Qd(p)-free.

The necessity of the Qd(p)-free condition was established in [9, Theorem 3.3]
and [4, Proposition 5.4]. In the other direction, if G is a rank two finite group
which is Qd(p)-free then G has a p-effective representation Vp : Gp → U(n) which
can be used to construct finite G-CW-complexes X ≃ Sn with rank one isotropy.
The existence of these p-effective representations was proved by Jackson [6, The-
orem 47] and they were also one of the main ingredients for the constructions in
Hambleton-Yalçın [4].

In our earlier work [3] and [4], we studied this problem in the setting (B) of
G-homotopy representations, introduced by tom Dieck (see [8, Definition 10.1]).

Definition. A finite group G has the rank one intersection property if for every
pair H,K ≤ G of rank one 2-subgroups such that H∩K 6= 1, the subgroup 〈H,K〉
generated by H and K is a 2-group. We say that G is 2-regular if (i) Ω1(Z(G2))
is strongly closed in G2 with respect to G, or (ii) G has the rank one intersection
property.

Let P(G) denote the set of primes p such that rankp(G) = 2. Let Hp denote
the family of all rank one p-subgroups H ≤ G, for p ∈ P(G), and let H =

⋃
{H ∈

Hp ‖ p ∈ P(G)}. Our main result in setting (B) is the following:

Theorem B. Let G be rank two finite group satisfying the following two condi-
tions:

(1) G is 2-regular if 2 ∈ P(G), and G is Qd(p)-free for all p ∈ P(G) with
p > 2;

(2) If 1 6= H ∈ Hp, then rankq(NG(H)/H) ≤ 1 for every prime q 6= p.

Then there exists a finite G-homotopy representation X with isotropy in H.

As an application, we studied the rank two simple groups in detail.

Theorem C. Let G be a finite simple group of rank two. Then there exists a
finite G-homotopy representation with rank one isotropy of prime power order if
and only if G is one of the following: (i) PSL2(q), q ≥ 5, (ii) PSL2(q

2), q ≥ 3,
(iii) PSU3(3), or (iv) PSU3(4).
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We remark that G = PSL3(q), q odd, and G = PSU3(q), with 9 | (q + 1),
are the rank two simple groups that are not Qd(p)-free at some odd prime. The
remaining simple groups G = PSU3(q), q ≥ 5, are eliminated by the Borel-Smith
conditions. The groups PSU3(3) and PSU3(4) have a linear actions on spheres
with rank one prime power isotropy. We note that the group G = PSU3(3) does
not satisfy the rank one intersection property.
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[2] I. Hambleton, S. Pamuk, and E. Yalçın, Equivariant CW-complexes and the orbit category,

Comment. Math. Helv. 88 (2013), 369–425.
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Algebras without (Fg)

Karin Erdmann

Assume A is a finite-dimensional selfinjective algebra. Then A-modules have sup-
port using HH∗(A) with properties similar to support varieties defined via group
cohomology, for group representations, provided A satisfies

(Fg) HH∗(A) is noetherian and Ext∗(A/r, A/r) is finitely generated over
HH∗(A)

(see [5] and [10]). This condition is difficult to verify directly, but it has some
consequences. In particular

Theorem [5]. Assume A is selfinjective and satisfies (Fg). Then
(1) A non-projectie indecomposable A-module M is Ω-periodic if and only if it has
complexity = 1.
(2) If M is an A-module such that Ext∗A(M,M) is finite-dimensional then M is
projective.

We call M a criminal if cx(M) = 1 but M is not Ω-periodic, and we say M
is ext finite if M is not projective and Ext∗(M,M) is finite-dimensional. Hence if
an algebra has a criminal, or has an ext finite module then (Fg) fails.
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In [2] it is proved that the four-dimensional local algebra

Λ = K〈x, y〉/(x2, y2, xy + qyx)

for q not a root of 1 has finite-dimensional Hochschild cohomology, and hence it
does not satisfy (Fg). As well, this algebra has criminals and these are ext finite;
this had been discovered a while ago, see [8]. Similarly [7] investigate a class
of weakly symmetric algebras with radical cube zero, which have a deformation
parameter. They show show that if this parameter is not a root of unity then
as well the algebra has finite-dimensional Hochschild cohomology, and hence does
not satisfy (Fg). One can show directly that these algebras also have criminals,
and these are ext finite: in fact the algebras of [2] and [7] belong to the class of
weakly symmetric algebras with radical cube zero, studied in [1], [6], and in [6]
has a classification of which of these satisfy (Fg).

For the algebras in this list, of finite complexity, it turns out that (Fg) fails if
and only if the algebra is either the algebra of [2], or an algebra of [7]. Furthermore,
these are precisely the weakly symmetric algebras with radical cube zero which
have criminals, and which have ext finite modules.

We consider a class of weakly symmetric special biserial algebras, details are
for example in [4] or [3]. These include the algebras above, but many others which
occur in various contexts. One typical example is

Γq = k〈x, y〉/(x2, y2, (xy)2 + q(yx)2)

with q 6= 0. If the field has characteristic 2 and q = −1 then Γ is isomorphic
to the group algebra of the dihedral group of order 8. A socle deformation of a
selfinjective algebra A is an algebra A′ with A′/socA′ ∼= A/socA. For example, Γq

is a socle deformation of Γ−1 and Γ−1 is symmetric.
A socle deformation of A has the same indecomposable non-projective modules,

but the actions of Ω can be very different. We show that most special biserial
symmetric algebras have socle deformations with criminals.

Theorem [3]. Assume A is symmetric and special biserial with no simple
periodic module. Then there is a socle deformation Aq which has criminals, unless
possibly A is commutative, or one of a few exceptions.

One would like to know what goes wrong with (Fg). For a typical example we
have the answer.

Theorem. Let A := K〈x, y〉/(x2, y2, (xy)2 + q(yx)2) with q non-zero.
(i) If q is not a root of 1 then A has criminals.
(ii) HHn(A) is 1-dimensional for n ≥ 3.
(iii) Let N be the largest homogeneous nilpotent ideal of HH∗(A), then HHn(A) ⊆
N for all n ≥ 1.

Part (i) is a special case of [3]. To prove parts (ii) and (iii), we construct an
explicit minimal bimodule resolution; this is not much more complicated than the
construction in [2]. For (iii), it suffices to show that for n ≥ 2, any homomorphism
θ : Ωn(A)→ A maps into the radical of A, by Proposition 4.4 in [9].
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Proving part (iii) for the algebras Aq with criminals in general is feasible, one
can use the bimodule exact sequence in [4] to construct a part of a minimal bi-
module resolution, and do induction.
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Automorphisms of fusion systems of finite groups of Lie type

Carles Broto

(joint work with Jesper M. Møller & Bob Oliver)

When p is a prime, G is a finite group, and S ∈ SylpG, the fusion system of G
over S is the category FS(G) whose objects are the subgroups of S, and whose
morphisms are those homomorphisms between subgroups induced by conjugation
in G. The fusion system FS(G) can also be obtained from the p-complete clas-
sifying space BG∧

p , up to equivalence of categories (cf. [2]). Then, we can define
natural homomorphisms

Out(G)
κG−→ Out(BG∧

p )
µG
−→ Out(S,FS(G)) and κ̄G = µG ◦ κG ,

where Out(BG∧
p ) stands for the group of homotopy classes of self-homotopy equiv-

alences of BG∧
p , and Out(S,FS(G))

def
= Aut(S,FS(G))/AutFS(G)(S), is the group

of fusion preserving automorphisms of S, modulo those included in the fusion
system.

We will use the above homomorphisms in order to compare Out(G), Out(BG∧
p ),

and Out(S,FS(G), in case of finite groups of Lie type. The motivation comes from
topology and from the theory of fusion systems, in particular the search of exotic
fusion systems. Abstract (saturated) fusion systems where originally defined by
Llúıs Puig (cf. [3]). An abstract fusion system is called exotic if it is not the fusion
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system of a finite group. In [1], Andersen-Oliver-Ventura establish some technics
in order to locate exotic fusion systems.

Definition. An abstract fusion system F is called tame if

(i) There is a finite group G and S ∈ Sylp(G) such that F ∼= FS(G) (i.e. F
is realized by G), and

(ii) κG is split surjective (we say that F is tamely realized by G).

It is shown in [1] that if F is not tame, then there is an exotic fusion system F̃
related to F by a number of extensions. As an outcome of the results discussed
below we obtain:

Corollary. Fusion systems of finite groups of Lie type are tame.

By finite group of Lie type, defined in characteristic q, we understand a group

G for which there exists a pair (G, σ) where G is a simple algebraic group over the

algebraic closure Fq, and σ is a Steinberg endomorphism of G (i.e. an algebraic
endomorphism with finite fixed subgroup), such that

G ∼= Oq′C
G
(σ) ,

that is, the maximal normal subgroup of index prime to q of the finite subgroup,

C
G
(σ), of G fixed by σ. G is called universal (resp. adjoint) if G is universal (resp.

adjoint). The adjoint forms are simple groups with a few exceptions.

For a fixed prime p, our results must be stated separately in cases where the
finite group of Lie type G is defined in characteristic p = q, or q 6= p.

Theorem A. Let p be a prime. Assume that G is a finite group of Lie type,
universal or adjoint, defined in characteristic p. Then, both κG and µG are iso-
morphisms, with the exceptions G = Sz (2) and PSL3(2).

In case G = PSL3(2), p = 2, we have Out(G) ∼= C2, Out(BG∧
p )
∼= C2×C2, and

Out(S,FS(G)) ∼= C2. κ̄G is an isomorphism. If G = Sz(2) ∼= C4 ⋊ C4, p = 2, then
we have Out(G) ∼= 1, Out(BG∧

p )
∼= Out(S,FS(G)) ∼= C2. µG is an isomorphism.

The situation is different if the groupG is defined in characteristic different from
p. Among this class of groups, one can easily find examples of different groups
G and H , with different outer automorphisms, but having homotopy equivalent
p-complete classifying spaces, and therefore equivalent fusion systems over the
respective Sylow p-subgroups. We write G ∼p H if this is the case (see [4]). The
known coincidences of mod p cohomology rings for different finite groups of Lie
type suggest many of these equivalences.

Theorem B. Fix a pair of distinct primes p and q, and a group G of Lie type, uni-
versal or adjoint, defined in characteristic q. Assume that the Sylow p-subgroups
of G are nonabelian. Then there is a prime q∗ 6= p, and a group G∗ of Lie type,
universal or adjoint, respectively, defined in characteristic q∗ such that

(a) G∗ ∼p G and
(b) κG∗ is split surjective.
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If, furthermore, p is odd or G∗ has universal type, then µG∗ is an isomorphism,
and hence κ̄G∗ is also split surjective.

In order to complete the proof of the above Corollary one must handle separately
the exceptions to Theorem A and the general case where G has abelian Sylow p-
subgroups.

We present an example that illustrates Theorem B. Assume p = 2 and G =
PSL2(17). In this case κG : Out(G) −→ Out(BG∧

p ) is not surjective. For G∗ =
PSL2(81), we have that G and G∗ have equivalent fusion systems at the prime
2, G ∼2 G

∗, and κG∗ is an isomorphism, with Out(G∗) ∼= C2 × C4 generated by
diagonal and field automorphisms [2]. µG∗ has kernel of order two, generated by
a field automorphism so it is not split surjective. However, for the universal form
G̃∗ = SL2(81), both κG̃∗ and µG̃∗ are isomorphisms.
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Cohomology of groups and K(2)-local homotopy theory

Hans-Werner Henn

This was a survey talk which aimed to highlight the role of group cohomology in
chromatic stable homotopy theory.

In chromatic stable homotopy theory one localizes the stable homotopy category
of spectra first at a natural prime p and then at a “chromatic prime n” where n ≥ 0
is an integer. In case n = 0 this amounts to rationalization, for n = 1 one localizes
with respect to complex K-theory modulo p. The case n = 2 has been under much
investigation in the last 30 years with major advances in the last 10 years related
to a better appreciation of the subject via group cohomology. Very little is known
for n > 2.

The general picture is that for a fixed prime p theK(n)-local homotopy category
is largely controlled by the category of continuous modules with an action of a
profinite group Gn of dimension n2. The group Gn is also known under the name
extended Morava stabilizer group. It is a p-adic Lie group of dimension n2; more
precisely it is an extension of the group of units Sn in the central division algebra
over Qp of dimension n2 and Hasse invariant 1

n
. This group acts on the Morava

module (En)∗X of a spectrum X and there is a spectral sequence (the K(n)-local
Adams Novikov spectral sequence)

Es,t
2 = Hs(Gn, (En)t) =⇒ πt−s(LK(n)S

0) .
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starting from the continuous cohomology of Gn with coefficients in a certain profi-
nite ring (En)∗ and converging towards the homotopy groups of X localized with
respect to the n-th Morava K-theory at the prime p. If we fix n and vary p then
this spectral sequence collapses at E2 if p is sufficiently large and in this case
calculating homotopy groups is the same as calculating group cohomology.

The case n = 1 has been well understood for a long time by work of Bousfield
and Ravenel. In this case the group G1 is the group of units in the p-adics, i.e.
G1 = Z×

p , E1 = Zp[u
±1] is p-completed complex K-theory and G1 acts by algebra

maps via Adams operations. Furthermore the group cohomology calculation is
fairly straightforward in this case.

The case n = 2 is significantly more complicated. The main problem is to
calculate the continuous cohomology H∗(S12, (En)∗X) where S12 is the kernel of a
canonical homomorphism from S2 to the additive group of the p-adics. The group
S12 is a virtual Poincaré duality group of dimension 3, and even a genuine Poincaré
duality group of dimension 3 if p > 3. The trivial module Zp for the group S12
therefore admits a projective resolution of length 3 if p > 3. At the small primes
p = 2 and p = 3 the cohomological dimension is infinite and therefore no finite
projective resolution can exist. However, in analogy to the case of discrete groups
one can hope for finite resolutions whose terms are permutation modules on finite
subgroups of S12. In fact, explicit resolutions of such a form can be constructed
generalizing the resolution of the trivial G1-module Zp in the case n = 1, given by

0→ Zp[[Z
×
p /µ]]→ Zp[[Z

×
p /µ]→ Zp .

Here µ is the finite subgroup of groups of unity in Z×
p and the map Zp[[Z

×
p /µ]]→

Zp[[Z
×
p /µ] is given by multiplication with T , after identifying Zp[[Z

×
p /µ] with the

Iwasawa algebra Zp[[T ]].
The following result has been proved in the case of the primes 2 and 3 by using

information about the cohomology of suitable finite index subgroups of S12 which
are themselves genuine Poincaré duality groups of dimension 3.

Theorem. Let p be any prime. Then there is an exact complex of Zp[[S
1
2]]-modules

of the form

0→ C3 → C2 → C1 → C0 → Zp → 0

such that C3 = C0 = Zp[[S
1
2]] ⊗Zp[G] Zp and C2 = C1 = Zp[[S

1
2]] ⊗Zp[H] M for

suitable finite subgroups G and H of S12 and a suitable Zp[H ]-module M . More
precisely,

a) if p > 3 then G = H ∼= F×
p2 ⋊ Gal(Fp2 : Fp) is “the” unique (up to con-

jugation) maximal finite subgroup of S12 and M is a certain 2-dimensional
Zp-free module for G. ([L])

b) if p = 3 then G ∼= C3 ⋊ Q8 and H = SD16 are the two unique (up to
conjugacy) maximal subgroups of S12 and M is a certain 1-dimensional
Zp-free module for H. ([GHMR], [HKM])

c) If p = 2 then G = Q8⋊C3, H = C6 and M ∼= Z2 with trivial action of H.
([GHMR] unpublished, [Be]).
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Remark. In case (a) the resolution is a projective resolution.

These resolutions have been very successfully used for calculations with the
Adams Novikov spectral sequence for p ≥ 3 [L], [HKM], and most recently they
have been used by Beaudry [Be] and Bobkova [Bo] to make interesting progress at
the very difficult prime p = 2. The details of the calculation are quite involved.

However, some interesting structural insight has been gained in the course of
these calculations.

• For example, for any n and any p the groups Hs(G2, (En)t) are finite
abelian p-groups unless t = 0.
• For t = 0 the inclusion of the constants Zp ⊂ (E2)0 induces an isomorphism

H∗(S2,Zp) ∼= H∗(S2, (E2)0) .

Unfortunately we can establish this isomorphism only because we can explicitly
calculate the source and the target of this map and check by hand that the map
is an isomorphism. The source is not very hard to calculate but the calculation
of the target is quite involved. It would be very interesting to have a conceptual
proof of this isomorphism and then deduce the result for the target from that for
the source.

In any case, as a corollary one gets the rational homotopy of the K(2)-local
sphere as an exterior algebra, namely

π∗(LK(2)S
0)⊗Q ∼= ΛQp

(e−1, e−3) ,

at least if p > 2.
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Low dimensional cohomology of finite groups of Lie type and
Linckelmann’s gluing conjecture

Jesper Grodal

In my talk I presented a solution to Linckelmann’s gluing conjecture for blocks [7,
Conj. 4.2] (Problem 4 in [2, §IV.7]), when the block fusion system comes from a
finite group of Lie type in defining characteristic. Our approach is to take a new
look at the central p′–extensions of finite groups of Lie type in characteristic p,
and then deduce the results about fusion systems from our results about groups;
the results about groups should be of independent interest.
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Cosupport and stratification

Srikanth B. Iyengar

(joint work with Dave Benson, Henning Krause, Julia Pevtsova)

This is a progress report on a long-running collaboration between Dave Benson,
Henning Krause, and myself aimed at understanding modular representations of
finite groups using methods from commutative algebra and (abstract) homotopy
theory. In recent years, we have also got interested in finite group schemes; Julia
Pevtsova is now part of this endeavor. The fundamental object of our interest
is StMod(kG), the stable module category of all (finite and infinite dimensional)
modules over a finite group (or finite group scheme) G over a field k. This is a
triangulated category with suspension Ω−1(−), the inverse of the syzygy functor.
The tensor product M ⊗k N of kG-modules, with the usual diagonal G-action, is
inherited by StMod(kG), making it a tensor triangulated category. This category
is compactly generated, and the subcategory of compact objects is equivalent to
stmod(kG), the stable module category of finite dimensional kG-modules. Even
if one is interested only in this subcategory it pays to work in the larger one, for
there are natural constructions that result in infinite dimensional modules. And it
is only in StMod(kG) that methods from homotopy theory can be readily applied.

Many questions that arise concerning the structure of StMod(kG) boil down
to the following: Given kG-modules M,N , when is M built out of N? When I
say N builds M , I mean that one can get to M from N using the operations in
StMod(kG): taking infinite direct sums, mapping cones, and (this is important)
tensor products with arbitrary kG-modules; in short,M is in Loc⊗(N), the tensor-
ideal localising subcategory of StMod(kG) generated by N . When M and N are
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finite dimensional, ifM is built out of N , then it can be finitely built out of N ; this
is by a standard argument which I learnt from Neeman [11], the key point being
that M,N are compact in StMod(kG). The adjective “finitely” means that only
finite direct sums are required; however, one has then to allow also for retracts.

One answer to the question above is in terms of suppGM , the support of M
introduced by Benson, Carlson, and Rickard [1], and says: M is built out of N
if (and only if) suppGM ⊆ suppGN ; this is the main result of [4]. Another way
to state this result is that assigning a subcategory C of StMod(kG) to the subset
∪M∈C suppGM of ProjH∗(G, k) induces a one-to-one correspondence between the
tensor-ideal localising subcategories of StMod(kG) and subsets of ProjH∗(G, k).

The crucial step in establishing this classification is to verify that for any p in
ProjH∗(G, k) and kG-modules M,N with suppG(M) = {p} = suppG(N) one has
Loc⊗(M) = Loc⊗(N); equivalently, there is a non-zero map M ⊗k W → N , for
some kG-module W ; equivalently, the kG-module Homk(M,N) is not projective.
In short, StMod(kG) is stratified by the action of the cohomology ring, H∗(G, k).

The proof of the stratification of StMod(kG) in [4] is rather involved, and it goes
through various triangulated categories of differential graded modules over differ-
ential graded algebras. Subsequently we realised that there is another invariant
kG-modules, introduced in [2] and called cosupport, that plays a crucial role in all
this, though it is somewhat hidden behind the scenes. Its relevance springs from
the fact [2] that the property that StMod(kG) is stratified by H∗(G, k) is equiv-
alent (there is a precise statement to this effect applying to tensor triangulated
categories) to cosuuport having the following properties:

cosuppGM = ∅ ⇐⇒ M is projective(1)

cosuppGHomk(M,N) = suppGM ∩ cosuppGN .(2)

For the notion of cosupport defined in [2], and which is based on cohomology, the
first property is clear but the second seems only accessible as a consequence of the
stratification of StMod(kG).

This brings me to the preprint [5] where we introduce a notion of π-cosupport for
modules over finite group schemes, based on the theory of π-points developed by
Friedlander and Pevtsova [9]. Even for finite groups it extends Carlson’s theory
of rank varieties for group algebras of elementary abelian groups [6] so that it
applies to all finite groups, and gives an approach to studying representations that
is based more on linear algebra than in cohomology. With π-support, introduced
in [9], and π-cosupport replacing their cohomological counterparts, it is not hard
to establish formula (2), even for arbitrary finite group schemes; see [5].

For finite groups, we have been able to verify also (1) for π-cosupport directly:
Chouinard’s theorem allows us to focus on the case when G is an elementary
abelian p-group and then the argument for (1) is a variant of the proof of Dade’s
Lemma (for infinite dimensional modules) from [1]. As a consequence one gets a
much shorter proof than the one in [4] of the stratification of StMod(kG).

This brings me to work in progress, of which [10] is a preview: Property (1)
for π-cosupport holds also for any finite group scheme G. However, we have
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only been able to verify this by first establishing that StMod(kG) is stratified by
H∗(G, k). The proof of the stratification in this context is more delicate (read also
‘interesting’) than for finite groups, and weaves ideas and techniques from theory
of π-points from [9] and the cohomological one from [3, 4]. To return to where
we started: What all this means is that, even over finite group schemes, we have
a satisfactory answer to the question: when does one kG-module build another?
Another consequence of the stratification is that the π-versions of cosupport and
support coincide with the cohomological ones, and we have now two different
perspectives, and different sets of tools, to bring to bear on the representation
theory for finite group schemes.

In summary, what I want to emphasise is that, like support, cosupport is an
interesting and important invariant of kG-modules, and not only from the perspec-
tive of stratification. In fact, like support, there is a notion of cosupport for objects
in any compactly generated triangulated category with a ring action [3, 4]. In the
special case of the derived category of a commutative noetherian ring, cosupport is
connected to completions, just as support is related to local cohomology, and the
close connection between these two invariants is a manifestation of the adjointness
relation between completions and local cohomology discovered by Greenlees and
May [8], and further elaborated in the work of Dwyer and Greenlees [7].
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Localizing subcategories for finite group schemes

Julia Pevtsova

(joint work with Dave Benson, Srikanth B. Iyengar, Henning Krause)

Let k be a field of positive characteristic. An affine group scheme G over k is
a representable functor from the category of commutative k-algebras to groups.
The coordinate algebra, denoted k[G], is a commutative Hopf k-algebra. An affine
group scheme G is finite if the coordinate algebra is finite dimensional over k. In
that case we define the group algebra kG to the the linear dual of k[G]. Hence,
kG is a finite dimensional cocommutative Hopf algebra. Likewise, starting with
any finite dimensional cocommutative Hopf algebra, its linear dual is a coordinate
algebra of a finite group scheme. One therefore has an equivalence of categories:

{
finite group
schemes

}
∼

{
finite dimensional co-

commutative Hopf algebras

}

Via this equivalence, one can identify representations of G with kG-modules; for
the rest of this note we shall refer to representations of G as G-modules. Examples
of finite group schemes include finite groups, restricted Lie algebras and Frobenius
kernels of algebraic groups. A finite group scheme is unipotent if the group algebra
kG is local and is abelian if kG is commutative.

Let G will be a finite group scheme defined over k. Since the group algebra kG
is Frobenius (see, for example, [16, I.6]), the projective modules are injective and,
moreover, one can construct the stable module category StModG. Recall that the
objects of StModG are G-modules, whereas the Hom-sets are defined as follows:

Hom(M,N) :=
HomG(M,N)

PHomG(M,N)

with PHomG(M,N) being the subset of all G-maps betweenM andN which factor
through a projective G-module. The category StModG is a compactly generated
tensor triangulated category with the compact objects being the finite dimensional
G-modules. This subcategory is denoted stmodG.

A subcategory C of StModG is localizing if it is a full triangulated subcategory
closed under set-indexed direct sums. It is tensor ideal if for any M ∈ StModG,
C ∈ C, we have M ⊗C ∈ C. A subcategory C of stmodG is thick (or épaisse) if it
is a full triangulated subcategory closed under taking direct summands.

The cohomology ring H∗(G, k) = Ext∗G(k, k) is a graded commutative k-algebra
which is finitely generated by a fundamental result of Friedlander and Suslin [15].
The following is the main theorem of this note:

Theorem 1. For any finite group scheme G, there is a one-to-one correspondence

{
Localizing tensor-ideal

subcategories of StModG

}
∼

{
subsets of

ProjH∗(G, k)

}

which restricts to one-to-one correspondence
{

Thick tensor-ideal
subcategories of stmodG

}
∼

{
specialization closed

subsets of ProjH∗(G, k)

}



1346 Oberwolfach Report 24/2015

The correspondence is given explicitly as follows:

C ✤ // V =
⋃

M∈C

suppM

C = {M ∈ StModG | suppM ⊂ V } V
✤oo

This theorem generalizes the main result in [8] where it was proved for finite
groups. An essential feature of the argument in [8] was the fact that various proper-
ties of modules for finite groups, such as projectivity, are detected upon restriction
to elementary abelian p-subgroups. Unfortunately, this does not generalize to ar-
bitrary finite group schemes. The approach we use to prove Theorem 1 for any
finite group scheme is substantially different and relies heavily on the notion of
cosupport introduced in [6]. In particular, it yields a completely new proof of the
classification theorem even for finite groups. In fact, it yields two new proofs!
In this note we’ll sketch the strategy which yields the theorem in full generality.
A simpler, and conceptually very pleasing, new proof which works only for finite
groups is alluded to in S. Iyengar’s note in the same volume.

The support ofM , suppM , is a geometric invariant associated to any G-module
M which we now describe. In fact, to prove Theorem 1, we need to develop two
notions of support, and parallel notions of cosupport. The first theory of support
and cosupport is due to Benson-Iyengar-Krause [7], [9], [8], [6], building on the
earlier work of Rickard in representation theory [19]. To each homogeneous prime
ideal p (strictly contained in the irrelevant ideal) of H∗(G, k) we associate a univer-
sal module (usually infinite dimensional) Γp(k) (see [7]). Then the cohomological
support and cosupport are defined as follows:

Definition 2 ([7], [6]).

supp(M) := {p ∈ ProjH∗(G, k) | Γp(k)⊗k M is not projective}.

cosupp(M) := {p ∈ ProjH∗(G, k) | Homk(Γp(k),M) is not projective}.

The general philosophy captured beautifully by Balmer in [1] prescribes that
to classify tensor ideal subcategories in a tensor triangulated category one needs
“good” theory of supports. Benson-Iyengar-Krause support and cosupport de-
fined above satisfy many of the properties expected of a “good” theory but their
cohomological nature renders them unsuitable for testing behavior with respect to
tensor products and function objects. To repair this, we introduce another theory,
that of π-supports and π-cosupports. For a field extension K/k, we denote by GK

the finite group scheme over K with the coordinate algebra K[GK ] := K ⊗k k[G].

Definition 3 ([14], [13]). A π-point of G, defined over a field extension K of k,
is a morphism of K-algebras

α : K[t]/(tp)→ KGK

which factors through the group algebra of a unipotent abelian subgroup scheme
C of GK , and such that KGK is flat when viewed as a left (equivalently, as a
right) module over K[t]/(tp) via α.
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We say that a pair of π-points α : K[t]/(tp)→ KGK and β : L[t]/(tp)→ LGL

are equivalent if they satisfy the following condition: for any finite dimensional
kG-module M , the module α∗(K ⊗k M) is projective if and only if β∗(L ⊗k M)
is projective. The set of equivalence classes of π-points is denoted Π(G); it has
a naturally defined Zariski topology. By [14, Theorem 3.6], there is a natural
homeomorphism Π(G) ≃ ProjH∗(G, k), which allows us to identify these two
spaces. Via this identification, we associate to each homogeneous prime ideal
p ⊂ H∗(G, k), p 6= H∗>0(G, k), a π-point αp whose equivalence class in Π(G)
coincides with the point p on ProjH∗(G, k). By [13, 4.6], [11, 2.1], the definition
given below is independent of which representative we choose.

Definition 4. The π-support of M is the subset of ProjH∗(G, k) defined by

π- supp(M) := {p ∈ ProjH∗(G, k) | α∗
p(K ⊗k M) is not projective}.

The π-cosupport of M is the subset of ProjH∗(G, k) defined by

π- cosupp(M) := {p ∈ ProjH∗(G, k) | α∗
p(Homk(K,M)) is not projective}.

The usefulness of π-support and π-cosupport is postulated in the following
theorem.

Theorem 5. Let M and N be G-modules. Then there are equalities

π- supp(M ⊗k N) = π- supp(M) ∩ π- supp(N),

π- cosupp(Homk(M,N)) = π- supp(M) ∩ π- cosupp(N).

To prove Theorem 1, we need to identify cohomological and π-supports. This
can be done formally following the strategy developed in [5] once we know the
following detection result.

Theorem 6. Let G be a finite group scheme, and M be a G-module. Then M is
projective if and only if π- supp(M) = ∅.

This detection theorem is an ultimate generalization of the famous Dade’s
lemma [12]. It builds on the work of many authors, see [5], [2], [17], [18]. In
this generality the result was stated in [13] but the proof contained an error. The
complete proof is to appear in [10].

Theorem 6 implies the following two properties which constitute an essential
step in the proof of Theorem 1.

Corollary 7. (1) π- suppΓp(k) = p;
(2) For any G-module M , π- supp(M) = supp(M).

By the work of Benson-Iyengar-Krause [7], Theorem 1 follows from the stratifi-
cation of StModG by the action of the cohomology ring H∗(G, k). Explicitly, one
needs to show the following:

For any point p ∈ ProjH∗(G, k), the tensor ideal localizing subcategory

Γp(StModG) = {M ∈ StModG | supp(M) ⊆ p}

is minimal, that is, does not contain any non-trivial proper tensor ideal localizing
subcategories. This is equivalent to showing that for any non-zero objects M,N ∈
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Γp(StModG), the G-module Homk(M,N) is not projective. It is at this point that
the function object formula for cosupport (5) becomes of utmost importance.

With these ingredients in place, the proof of Theorem 1 proceeds in two steps.
First, we show that for any closed point m ∈ ProjH∗(G, k), the subcategory
Γm(StModG) is minimal. To reduce the problem from any point p on ProjH∗(G, k)
to a closed point on ProjH∗(GK ,K) for some field extensionK/k, we use a commu-
tative algebra calculation with Carlson modules (or, equivalently, Koszul objects)
to show the following:

Theorem 8. Let p be a point on ProjH∗(G, k). Let K be the residue field at
p and let m be a closed point in ProjH∗(GK ,K) “lying over” p. Then Γp(k) ∈
Loc⊗(Γm(K)↓G), where Loc

⊗(Γm(K)↓G) is the minimal tensor ideal localizing sub-
category containing Γm(K)↓G.
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Techniques for studying modules of constant Jordan type

Shawn Baland

(joint work with Kenneth Chan)

Let p be a prime number, E ∼= (Z/p)r an elementary abelian p-group of rank r
and k an algebraically closed field of characteristic p. The purpose of this talk
was to further investigate a curious functorial relationship between kE-modules
of constant Jordan type and vector bundles on the projective space Pr−1

k due to
Benson and Pevtsova [4]. The general setup is as follows: Choosing a collection
of pairwise commuting generators g1, . . . , gr for E, one sets Xi = gi − 1 ∈ kE.
It is easy to verify that the elements Xi generate Rad(kE). For any r-tuple α =
(λ1, . . . , λr) ∈ kr, one then defines the element Xα = λ1X1 + · · · + λrXr ∈ kE.
The fact that k has characteristic p forces Xp

α = 0. If α is not the zero r-tuple, it
follows that 1 +Xα has order p in the multiplicative group of units kE×, hence
〈1 +Xα〉 ∼= Z/p. The subalgebra k〈1 +Xα〉 is called a cyclic shifted subgroup of
kE.

Now let M be a finite dimensional kE-module. Because each Xα (for α 6= 0) is
p-nilpotent, the Jordan canonical form of Xα acting as a k-linear endomorphism
of M consists of Jordan blocks whose eigenvalues are all zero and whose lengths
are at most p. The Jordan type of Xα on M is the partition

JType(Xα,M) = [p]ap [p− 1]ap−1 . . . [1]a1

of dimk(M), where Xα acts on M via aj Jordan blocks of length j. We remark
that this is simply the isomorphism type of M ↓k〈1+Xα〉 as a k(Z/p)-module.

Definition (Carlson, Friedlander, Pevtsova [5]). A finite dimensional kE-module
M has constant Jordan type if the partition JType(Xα,M) is independent of the
choice of non-zero α ∈ kr. In this case, if JType(Xα,M) = [p]ap . . . [1]a1 for each
non-zero α, then we call [p]ap . . . [1]a1 the (constant) Jordan type of M .

As shown in [5], the modules of constant Jordan type form a full subcategory
cJt(kE) of mod(kE) closed under direct sums, direct summands, tensor products
over k, k-linear duals and Heller shifts. One of the main objectives in studying
these modules is to determine which partitions are realised as the Jordan types of
kE-modules of constant Jordan type. This turns out to be a very hard problem.
Amongst the limited information we have in this regard, Benson [3] proved that if
r ≥ 2 and p ≥ 5, then there does not exist a kE-module of constant Jordan type
[p]n[a] for 2 ≤ a ≤ p− 2 and n ≥ 0.

In [1], the current author used the theory of Chern classes for vector bundles on
Pr−1
k to study modules of constant Jordan type with only two blocks of length less
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than p. This was based on the work of Benson and Pevtsova [4], who constructed
functors

Fi : mod(kE) // coh(Pr−1
k )

for 1 ≤ i ≤ p. These are defined as follows:

Let V = spank{X1, . . . , Xr} and let Yi = X#
i be the corresponding elements in

the dual vector space V #. The Yi then act as coordinate functions on V , hence
we consider Pr−1

k as Proj k[Y1, . . . , Yr]. For a finite dimensional kE-module M , we

then define the coherent sheaf M̃ =M ⊗k OP
r−1

k
on Pr−1

k . For n ∈ Z, Friedlander

and Pevtsova [6] constructed the sheaf morphisms

θM : M̃(n) // M̃(n+ 1)

defined locally via m⊗ f 7→
∑
Xim⊗Yif , where m ∈M and f is a homogeneous

rational function of degree n in the Yi. The idea in considering these maps is that,
for a closed point α = [λ1 : . . . : λr] ∈ Pr−1

k , the fibre of θM at α is (up to a scalar
multiple) the k-linear map Xα : M → M . Benson and Pevtsova [4] later defined
the subquotients

Fi(M) =
Ker θM ∩ Im θi−1

M

Ker θM ∩ Im θiM

of M̃ . In [4], those authors showed that a kE-module M has constant Jordan type
[p]ap . . . [1]a1 if and only if Fi(M) is a vector bundle of rank ai on Pr−1

k for each

1 ≤ i ≤ p. They also proved that the restricted functor F1 : cJt(kE)→ vec(Pr−1
k )

is essentially surjective up to a Frobenius twist.
The goal of the work being presented was to understand how certain geometric

concepts translate into the world of representation theory under the functors Fi.
For example, a common technique of the algebraic geometer is to take a vector
bundle on Pr−1

k and study its restriction to a line L ⊆ Pr−1
k . A consequence of

our main result is that restricting the vector bundle Fi(M) to L is equivalent, in
an appropriate sense, to restricting the module M to a corresponding rank two
shifted subgroup of kE.

In this direction, we recall that for s ≤ r, a rank s-shifted subgroup of kE is
an embedding φ : kE′ →֒ kE of k-algebras, where kE′ is the group algebra of an
elementary abelian p-group of rank s. We let T1, . . . , Ts be a choice of generators
of Rad(kE′). In order to study linear subvarieties of Pr−1

k (e.g., a line L), it suffices
to consider embeddings φ for which φ(Tj) =

∑r
i=1 aijXi, the aij being scalars in

k. Similar to our notation for kE, we define U = spank{T1, . . . , Ts}, and we also

let Zj = T#
j denote the dual elements in U#. The upshot of this setup is that the

matrix A = (aij) induces an injective linear map A : U →֒ V , which then induces
a surjective linear map At : V # ։ U#. This, in turn, gives rise to a surjective
homomorphism of graded rings k[Y1, . . . , Yr] ։ k[Z1, . . . , Zs]. Applying the Proj

functor then induces the desired closed immersion f : Ps−1
k →֒ Pr−1

k . We emphasise

that any linear subvariety of Pr−1
k may be constructed in this way.
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Our main result answers the following question: If M is a kE-module of con-
stant Jordan type, then we know that Fi(M) is a vector bundle on Pr−1

k , whence

f∗Fi(M) is a vector bundle on Ps−1
k . On the other hand, M ↓kE′ is a kE′-module

of constant Jordan type, so Fi(M ↓kE′) is also a vector bundle on Ps−1
k . One is

left to wonder whether or not these vector bundles are one and the same.

Theorem (Baland, Kenneth Chan [2]). The diagram of functors

cJt(kE)
Fi

//

↓kE′

��

vec(Pr−1
k )

f∗

��

cJt(kE′)
Fi

// vec(Ps−1
k )

commutes up to natural isomorphism.

Our long term goal is to use this technology to (hopefully) answer various open
questions about modules of constant Jordan type using techniques from algebraic
geometry, such as the realisation problem for Jordan types stated above.
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Ghys’s conjecture on finite group actions on manifolds

Ignasi Mundet i Riera

A group G is said to be Jordan if there is some constant C such that any finite
subgroup Γ of G contains an abelian subgroup whose index in Γ is at most C.
This terminology comes from a classic theorem of Camille Jordan, which states
that GL(n,C) is Jordan for every n. Jordan’s theorem implies that any finite
dimensional Lie group with finitely many connected components is Jordan (by the
existence and uniqueness up to conjugation of maximal compact subgroups and
Peter–Weyl’s theorem).

Around twenty years ago, Étienne Ghys conjectured that the diffeomorphism
group of any smooth compact manifold is Jordan.
1. The diffeomorphism group of smooth manifolds is known to be Jordan in the
following cases.
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(A) Compact 2-dimensional manifolds (easy exercise).
(B) Compact 3-dimensional manifolds (Zimmermann, [9]).
(C) Closed n-dimensional manifolds M with cohomology classes α1, . . . , αn ∈

H1(M ;Z) such that α1 ∪ · · · ∪ αn 6= 0 (M., [5]).
(D) Compact manifolds, possibly with boundary, with nonzero Euler charac-

teristic (M., [3, 4]).
(E) Open contractible manifolds (M., [4]).
(F) Homology spheres (M., [4]).

Some of the ingredients in the proofs of (D), (E), (F):

(I) Given a group G, define P(G) = {P ≤ G | P finite p-group, any p} and

T(G) = {Γ ≤ G | Γ finite, Γ ≃ P⋊Q, P abelian p-group, Q abelian q-group, p 6= q}.

Theorem (M., Alexandre Turull). Let G be a group and suppose there
exist C, d such that any Γ ∈ P(G) ∪ T(G) has an abelian subgroup A ≤ Γ
satisfying [Γ : A] ≤ C and rkA ≤ d. Then G is Jordan.

The proof of this theorem uses the classification of finite simple groups.

(II) By a theorem of Mann and Su [2], for any manifoldM satisfying
∑
bj(M) <

∞ we have

d(M) = max{r | ∃ prime p and monomorphism (Z/pZ)r →֒ Diff(M)} <∞.

So for any finite abelian subgroup A < Diff(M) we have rkA ≤ d(M).

(III) To deal with P(Diff(M)) in (D) and (E) combine: (1) fixed point theorems
for finite p-group actions, (2) Lemma: if H < Diff(M) is finite, MH 6= ∅
and M connected, then H →֒ GL(dimM,R), (3) Jordan’s theorem. To
deal with P(Diff(M)) in (F), use a theorem of Dotzel and Hamrick.

(IV) To deal with T(Diff(M)) ∋ Γ ≃ P⋊Q study the action of Q on the normal
bundle of MP →֒M .

2. Suppose that M is a compact manifold, possibly with boundary, such that
H∗(M ;Z) has no torsion and is supported in even degrees. Then [4] there exists a
constant C so that any finite group Γ acting effectively and smoothly onM has an
abelian subgroup A ≤ Γ with the properties that [Γ : A] ≤ C and χ(MA) = χ(M).
Corollary. For any n there is some constant C such that for any smooth action
of a finite group Γ on the n-dimensional closed disk Dn there exists some x ∈ Dn

such that [Γ : Γx] ≤ C.
Note that for big enough n there exist smooth finite group actions onDn without

fixed points (Floyd–Richardson 1959, Oliver 1975).

3. Popov [8] found in 2013 an open connected 4-manifold whose diffeomorphism
group is not Jordan. Csikós, Pyber and Szabó [1] proved in 2014 that Diff(T 2×S2)
is not Jordan, thus giving the first counterexample to Ghys’s conjecture. The
construction in [1] can be generalized to yield.
Theorem. If M is a smooth manifold supporting an effective action of SU(2) or
SO(3,R) then Diff(T 2 ×M) is not Jordan.
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Combining this with case (C) in §1 and using the fact that any compact con-
nected nonabelian Lie group contains a subgroup isomorphic to SU(2) or SO(3,R)
we deduce.
Corollary. If M is a smooth compact n-dimensional manifold admitting classes
α1, . . . , αn ∈ H1(M ;Z) such that α1 ∪ · · · ∪ αn 6= 0 then any compact connected
Lie group acting smoothly and effectively on M is abelian.

Using a result of Olshanskii we prove.
Theorem (M., [6]). For any ǫ > 0 there exist a, b such that T a×Sb admits effective
smooth actions of arbitrarily large p-groups Γ all of whose abelian subgroups have
at most |Γ|ǫ elements.

4. Choose elements t ∈ T 2, s ∈ S2 and orientations of T 2 and S2. Define for any
symplectic form ω on T 2 × S2

α(ω) =

∫

T 2×{s}

ω, β(ω) =

∫

{t}×S2

ω,

λ(ω) = max

{(
2Z ∩

(
−∞,

∣∣∣∣
2α(ω)

β(ω)

∣∣∣∣
))
∪ {1}

}
.

Theorem (M., [7]). Let ω be a symplectic form on T 2× S2. Any finite subgroup
Γ < Symp(T 2 × S2, ω) contains an abelian subgroup A ≤ Γ such that

[Γ : A] ≤ max{144, 6λ(ω)}.

If λ(ω) ≥ 8 then there exists a finite subgroup Γ < Symp(T 2× S2, ω) all of whose
abelian subgroups A ≤ Γ satisfy [Γ : A] ≥ 6λ(ω).
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[1] B. Csikós, L. Pyber, E. Szabó, Diffeomorphism groups of compact 4-manifolds are not
always Jordan, preprint arXiv:1411.7524.

[2] L. N. Mann, J. C. Su, Actions of elementary p-groups on manifolds, Trans. Amer.
Math. Soc. 106 (1963), 115–126.

[3] I. Mundet i Riera, Finite group actions on 4-manifolds with nonzero Euler characteristic,
preprint arXiv:1312.3149.

[4] I. Mundet i Riera, Finite group actions on homology spheres and manifolds with nonzero
Euler characteristic, preprint arXiv:1403.0383.

[5] I. Mundet i Riera, Jordan’s theorem for the diffeomorphism group of some manifolds,
Proc. AMS 138 (2010) 2253–2262.

[6] I. Mundet i Riera, Non Jordan groups of diffeomorphisms and actions of compact Lie
groups on manifolds preprint arXiv:1412.6964.

[7] I. Mundet i Riera, The symplectomorphism groups of T 2 × S2 are Jordan, preprint
arXiv:1502.02420.

[8] V.L. Popov, Finite subgroups of diffeomorphism groups, preprint arXiv:1310.6548.
[9] B. Zimmermann, On Jordan type bounds for finite groups acting on compact 3-

manifolds, Arch. Math. 103 (2014) 195–200.



1354 Oberwolfach Report 24/2015

Cellular properties of fusion systems

Natàlia Castellana

(joint work with Alberto Gavira)

In 1990s, E. Dror-Farjoun and W. Chachólski generalized the concept of CW -
complex, spaces build from spheres by means pointed homotopy colimits. Let A be
a pointed space and let C(A) denote the smallest collection of pointed spaces that
contains A and it is closed by weak equivalences and pointed homotopy colimits.
A pointed space X is A-cellular if X ∈ C(A). Moreover, there exists an augmented
idempotent endofunctor CWA : Spaces∗ → Spaces∗ such that for all pointed space
X , the space CWAX is A-cellular and the augmention map cX : CWAX → X is
an A-equivalence, that means, it is induced a weak equivalence in pointed map-
ping space (cX)∗ : map∗(A,CWAX) → map∗(A,X). Roughly speaking, CWAX
is the best A-cellular approximation of X . We will say that CWAX is the A-
cellularization of X and the map cX : CWAX → X is the A-cellular approximation
of X . See [5] for more details about the construction and main properties of the
functor CWA.

Let p be a prime. Let G be a finite group such that p divides de order of G and
fix S to be a Sylow p-subgroup of G. In the stable homotopy category, the stable
transfer map t : Σ∞BG∧

p → Σ∞BS provides a retraction showing that Σ∞BG∧
p

is a stable retract of Σ∞BS. In the terminology of the previous paragraph we
say that Σ∞BG∧

p ∈ C(Σ
∞BS). The question we solve in this project is the one:

BG∧
p ∈ C(BS)?
We will approach this question in the more general context introduced by Llúıs

Puig and Broto-Levi-Oliver of saturated fusion systems and p-local finite groups.
Given a finite p-group S, p a prime, a fusion system over S is a subcategory of
the category whose objects are the subgroup of S and morphisms are the injective
homomorphisms, containing those which are induced by conjugation of elements
of S. A fusion system F is saturated if it verifies certain axioms such as would be
holded if S were a Sylow p-subgroup of a finite group. These ideas were develop by
L. Puig in an unpublished notes. The notion of classifying space was formulated
by C. Broto, R. Levi and B. Oliver in [2], where the notion of “centric linking
system” (or “p-local finite group”) associated to saturated fusion systems appears.
Recently, A. Chermak [4] proved the existence and uniqueness of centric linking
system over saturated fusion system, that means, each saturated fusion system F
has a unique (up to isomorphism) centric linking system L over F , and so a unique
(up to homotopy equivalence) classifying space BF := |L|∧p .

Question 1. Given a P a finite p-group and (S,F ,L) a p-local finite group, when
BF ∈ C(BS)?

Previous results were obtained by R. Flores [6], R. Flores-R. Foote [7] and R.
Flores-J.Scherer [8] when G is a finite group generated by elements of order p and
P = Z/p.

To approach this question we will use Chacholsky’s strategy. Chachólski [3,
Theorem 20.5] describes a method to compute the A-cellular aproximation of X .
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Let C be the homotopy cofibre of the evaluation
∨

[A,X]∗
A→ X . Then CWAX is

the homotopy fibre of X → PΣAC.
Let C be the homotopy cofibre of the evaluation map ev :

∨
[BP,BF ]∗

BP →

BF . Then CWBP (BF) is homotopy equivalent to the homotopy fibre of the
composite r : BF → C → PΣBPC, where PΣBP denotes the ΣBP -nullification
functor defined by A. K. Bousfield in [1]. We proved that CWBP (BF) ≃ BF if
and only if the map r∧p is null-homotopic. Therefore, the BP -cellularity of BF is
equivalent to the homotopy nullity of the map r∧p . To do that, we study the kernel
of r∧p in the sense of D. Notbohm introduced in [9] for maps from classifying space
of compact Lie groups.

Definition 2. Let (S,F ,L) be a saturated fusion system and let Z be a p-complete
and ΣBZ/p-null space. Let f : BF → Z be a pointed map. Then

ker(f) := {g ∈ S | f |B〈g〉 ≃ ∗}.

Let F be a fusion system over a finite p-group S. Then a subgroup K ≤ S
is strongly F-closed if for all P ≤ K and all morphism ϕ : P → S in F we have
ϕ(P ) ≤ K.

Since the intersection of strongly F -closed subgroups is again strongly F -closed,
given a finite p-group P , we can define ClF(P ) to be the smallest strongly F -closed
subgroup of S that contains f(P ) for all f ∈ Hom(P, S).

Proposition 3. Let f : BF → Z be a pointed map as in Definition 2.

(1) The kernel ker(f) is a strongly F-closed subgroup of S.
(2) Let Z be a p-complete and ΣBZ/p-null space with abelian fundamental

group. Then a map f : BF → Z is null-homotopic if and only if ker(f) =
S.

(3) Let K be a strongly F-closed subgroup. There is N ≥ 0 and a map
f : BF → (BΣN )∧p such that ker(f) = K.

In order to understand when BF is BP -cellular we need to compute the kernel
of the map r∧p where r : BF → C → PΣBPC is the map in Chacholski’s fibration.

Theorem 4. Let (S,F) be a saturated fusion system and let P be a finite p-group.
Then BF is BP -cellular if and only if S = ClF(P ).

Corollary 5. Let (S,F) be a saturated fusion system.

(1) The classifying space BF is BS-cellular.
(2) Let A be a pointed connected space. If BS is B(π1A)ab-cellular, then BF

is A-cellular.
(3) Let Ωpm(S) be the (normal) subgroup of S generated by its elements of

order pi, which i ≤ m. Then BF is BZ/pm-cellular if and only if S =
ClF(Ωpm(S)). In particular, there is a non-negative integer m0 ≥ 0 such
that BF is BZ/pm-cellular for all m ≥ m0.
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The spectrum of the equivariant stable homotopy category

Beren Sanders

(joint work with Paul Balmer)

Let G be a finite group and let SH(G) denote the G-equivariant stable homotopy
category. The aim of this work – joint with Paul Balmer – is to compute the
spectrum (in the sense of [3]) of the subcategory of compact objects, Spc(SH(G)c),
and thereby classify the thick ⊗-ideals of SH(G)c.

The Hopkins-Smith classification theorem [6] solves the problem for G = 1
(i.e. for the nonequivariant stable homotopy category):

(†)

C2,∞ C3,∞ · · · Cp,∞ · · ·

Spc(SHc) =

ρSHc

��

...
...

...

C2,n+1 C3,n+1 · · · Cp,n+1 · · ·

C2,n C3,n · · · Cp,n · · ·

...
...

...

C2,2
❲❲❲

❲❲❲
❲❲❲

❲❲❲ C3,2
▼▼

▼▼
· · · Cp,2
❧❧
❧❧
❧❧

· · ·

C0,1

Spec(Z) = 2Z

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲ 3Z
▼▼

▼▼
· · · pZ

❧❧
❧❧
❧❧
❧ · · ·

(0)
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Here Cp,n is the kernel of the (n − 1)th Morava K-theory (at the prime p). In

particular, Cp,1 = SHc,tor =: C0,1 is the subcategory of finite torsion spectra,
independently of p, while Cp,∞ = ∩n≥1Cp,n is the subcategory of finite p-acyclic
spectra. The closure of a point is everything displayed above it, so that each Cp,∞
is a closed point, while C0,1 is a dense point.

The projection Spc(SHc) → Spec(Z) displayed above is a manifestation of a
general construction from [2]: For any tensor triangulated category K, there exists
an inclusion-reversing continuous map ρK : Spc(K)→ Spec(EndK(1)) to the affine
scheme associated to the endomorphism ring of the unit object 1. For K =
SH(G)c, the endomorphism ring EndK(1) = A(G) is the Burnside ring and the
map Spc(SH(G)c)→ Spc(A(G)) should similarly exhibit the spectrum of SH(G)c

as a chromatic refinement of the spectrum of the Burnside ring (the latter of which
has been completely described by Dress [5]).

We are able to completely describe Spc(SH(G)c) as a set for any finite group:

Theorem. Every prime ideal of Spc(SH(G)c) is of the form

P(H, p, n) := (ΦH)−1(Cp,n)

for some subgroup H ≤ G, prime number p, and “integer” 1 ≤ n ≤ ∞, where

ΦH : Spc(SH(G)c)→ Spc(SHc)

denotes the geometric H-fixed point functor. Moreover, P(H, p, n) = P(K, q,m)
iff H ∼G K, n = m, and, if n = m > 1 then p = q.

In particular, every prime ideal of Spc(SH(G)c) is obtained by pulling back the
nonequivariant primes via the geometric fixed point functors. Interestingly, the
fact that the prime P(H, p, n) is uniquely specified by the conjugacy class of H ,
the prime p, and the number 1 ≤ n ≤ ∞ shows that the height 1 collisions in the
spectrum of the Burnside ring do not occur in the spectrum of SH(G)c. In this
way, the spectrum of the category of G-spectra is not only a chromatic refinement
of the spectrum of the Burnside ring – it is also a group-theoretic refinement.

The two crucial ingredients in the proof are:

(1) The fact that the geometric fixed point functor ΦG : SH(G) → SH is a
finite Bousfield localization. Although this appears already in [8], it does
not seem to be much exploited in the literature.

(2) A result of [4] which asserts that restriction ResGH : SH(G) → SH(H)
is a separable extension (a.k.a. a finite étale extension). More precisely,
AG

H := Σ∞G/H+ has the structure of a commutative separable ring object
in SH(G) and there is an equivalence SH(H) ∼= AG

H -ModSH(G) such that
restriction becomes the extension-of-scalars functor. This enables us to
utilize the results of [1] on the tensor-triangular geometry of separable
extensions.

In any case, having described Spc(SH(G)c) as a set, it remains to determine
its topology. This boils down to determining the inclusions among the primes:
P(H, p, n) ⊂ P(K, q,m). For this, the inclusion-reversing map ρ : Spc(SH(G)c)→
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Spec(A(G)) is extremely useful since it greatly reduces the possibilities. Never-
theless, the problem of understanding the inclusions among the primes turns out
to be related to so-called “blue-shift” phenomena in Tate cohomology. By uti-
lizing blue-shift results of Hovey-Sadofsky and Kuhn (following on from work of
Greenlees-Sadofsky) we can completely determine the topology for finite groups
whose order is square-free (such as G = Cp or G = S3). For a general finite
group, we reduce the problem to the case of p-groups. However, for p-groups there
remains a slight indeterminacy in the topology that we have not yet been able
to resolve. This investigation has led us to conjecture a new form of blue-shift
phenomena for the Tate construction which, if true, would resolve this indeter-
minacy and complete the determination of the topology (and hence complete the
classification of thick ⊗-ideals) for all finite groups. This conjecture may be stated
as follows:

Conjecture. Let G be a p-group and let X ∈ SH be a nonequivariant spectrum.
If X ⊗ Cp,n = 0 then ΦG(tG(triv(X)))⊗ Cp,n−logp(|G|) = 0.

Remark. The problem of classifying the thick ⊗-ideals of Spc(SH(G)c) has also
been considered by Strickland using other methods. Some of these results have
been written up in the dissertation of Ruth Joachimi [7].
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The period-index problem and the cohomology of PGLn

Ben Williams

(joint work with Ben Antieau)

Overview of Problem. We begin with a local ring object R in a category of
sheaves— of one of the following two kinds: the category of sheaves on a CW
complex, X , locally ringed by C or X the étale site of a scheme, locally ringed
by OX . As a special case of the latter we have Speck. An Azumaya algebra A is
a sheaf of R-algebras, locally isomorphic to Matn(R). Assuming X is connected,
the number n is constant and is called the degree of A. An Azumaya algebra is
equivalent to an AutR–alg(Matn(R))-bundle, which is a PGLn(R) bundle since R
is a local ring object.

There are coboundary maps H1(X,PGLn)→ H2(X,Gm); the joint image
∐

n

H1(X,PGLn)→ H2(X,Gm)

is the Brauer group of X—the group operation being inherited from the tensor
product of R-algebras. Two Azumaya algebras, A, A′ are said to be Brauer equiv-
alent if they have the same image in the Brauer group. In the case of X = Speck,
one recovers the theory of central simple algebras over a field.

The Brauer group is torsion, assuming X is connected, and per([A]), the period,
is a name for the order of [A] ∈ Br(X). This is the first measurement of the
nontriviality of [A].

We have per([A])| deg(A). We ask what the degrees of the algebras A′ ∼ A are.
To this end, we define ind([A]) = gcdA′∼A(deg(A

′)).

Period–Index. The period–index problem is to give a bound on ind(α) in terms
of X and per(α). As a special example we have the period–index conjecture : if
X is a smooth variety of dimension d, and α ∈ Br(k(X)), then ind(α)| per(α)d−1.
There are examples due to Colliot-Thélène [3] where this bound is seen to be sharp.
It has been proved when d = 2 by de Jong [4]. One passes from the period–index
conjecture to the following, by work of de Jong & Starr [5], to the unramified
brauer group of k(X): that is, Br(X) if X is smooth & projective.

We try to understand this problem for complex varieties by taking a topolog-
ical realization functor X 7→ X(C). Azumaya algebras may be topologized and
we obtain a homomorphism: Br(X)→ Br(X(C)) and relations pertopo(α)| per(α),
indtopo(α)| ind(α). We were led by the period–index conjecture to make the fol-
lowing ‘straw-man’ conjecture: if X is a 2d dimensional finite CW complex, and
α ∈ Br(X), then indtopo(α)| pertopo(α)

d−1.
In [1] we disproved this conjecture in a specific case. In the talk I made a

conjecture similar to the following.

Topological Period–Index Conjecture: The ‘straw-man’ conjecture is true
unless per(α) ≡ 2 (mod 4) and d = 3.
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Counterexample. One has a CW complexX and a class α ∈ Br(X) ⊂ H3(X,ZZ).
We concentrate on the case where per(α) = 2. In this case α may be lifted to a
class ξ ∈ H2(X,ZZ/2).

We are now faced with the problem of lifting a map ξ : X → K(ZZ/2, 2) to a
map X → BPGL2m(C). this case is a an unstable operation mP2 : H2(·,ZZ/2)→
H5(·,ZZ). The operation P2 can be interpreted as a Pontryagin square: 2P2(ξ) =
β2(ξ

2), where β2 denotes the unreduced Bockstein map.
The choice of ξ is not unique; some work is required to turn the obstruction

theory into a bound on the index. This can be done ([1]):

Proposition 1. Suppose ξ ∈ H2(X,ZZ/2) has β2(ξ) = α. Define Q(α) to be
the class of P2(ξ) ∈ H5(X,ZZ)/(α ⌣ H2(X,ZZ)). Then ord(Q(α)) per(α)| ind(α),
and the bound is sharp if dim(X) ≤ 6.

Examples. We seek examples of classes ξ ∈ H2(X,ZZ/2) with the property that
ξ2 is not a reduction of integral class, or better yet that the Bockstein β2(ξ

2) is
not a multiple of β2(ξ)— so ord(Q(α)) = 4. We are grateful to M. Kameko for
pointing out to us that this behaviour is expected in the cohomology of the finite
groups SL8(Fq)/µ2 for q odd. We seek examples when X is a complex 3-fold, in
particular.

Addenda.

• In [2], we showed that the topological period–index problem for BG, where
G is a topological group, is essentially a problem in the projective repre-
sentation theory of G.
• There is a family of further obstructions β2(ξ

2n), that seem to generalize
the one above, but we do not understand the topology of BPGLn(C) well
enough to make precise claims.
• There is a remarkable similarity between our candidate family of obstruc-
tions and some of the obstructions obtained by [6] to the realization of
cohomology classes as being induced by immersed submanifolds. I do not
understand this coincidence.
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Homological epimorphisms, stable equivalences and the Lie bracket in
Hochschild cohomology

Reiner Hermann

Throughout, we let K be a commutative ring and our algebras will be unital and
associative, defined over K. We further put ⊗ = ⊗K . The following exposition is
mainly based on parts of the preprint [7].

1. The loop bracket

Let A be a K-algebra, and Aev = A⊗Aop. In [13], Stefan Schwede described the
Lie bracket in Hochschild cohomology (see [6]) in terms of bimodule extensions.
More precisely, Schwede took advantage of the (asymmetric) monoidal structure
of (Mod(Aev),⊗A, A) to produce, for given m- and n-self extensions S and T of A
with Yoneda composite S ◦ T , a loop

S ⊠A T

##❋
❋❋

❋❋

{{①①
①①
①①

Ω(S, T ) ≡ S ◦ T (−1)mnT ◦ S

(−1)mnT ⊠A S

<<①①①①①

bb❋❋❋❋❋❋

in the category Extm+n
Aev (A,A) of (m+n)-self extensions of A over Aev, that is, an

element in the fundamental group π1(Ext
m+n
Aev (A,A), S ◦ T ). This loop identifies

with an element in Extm+n−1
Aev (A,A) thanks to Vladimir Retakh (see [12], and also

[10]) who proved the existence of an isomorphism

Extn−1
R (U, V )

∼
−−→ π1(Ext

n
R(U, V ), S′) (for a ring R and U, V ∈ Mod(R))

which is, in an appropriate sense, independent of the taken base point S′. Schwede’s
main theorem in this context is now the following.

Theorem 1 (see [13, Thm. 3.1]). Let A be a K-projective K-algebra and m,n > 1
be integers. Then for all elements α ∈ HHm(A) and β ∈ HHn(A), represented by
extensions S = S(α) and T = T (α) respectively, the Lie bracket (−1)n{α, β}A of
α and β identifies with the image of the loop Ω(S, T ) in Extm+n−1

Aev (A,A).

2. Homological epimorphisms and the main theorem

2.1. A compatibility result. In [8], we generalised Schwede’s construction to
“suitable” exact monoidal categories. One class of such categories are exact
monoidal K-categories (C,⊗,1) which are closed under kernels of epimorphisms
(that is, the class of admissible epimorphisms conincides with the class of epimor-
phisms in C) such that −⊗X : C→ C is an exact functor for all X ∈ ObC. In this
setting, we can provide a map [−,−]C : ExtmC (1,1)×ExtnC(1,1)→ Extm+n−1

C
(1,1)

which specialises to Schwede’s map, and hence the Lie bracket, when C is taken
to be the full subcategory of Mod(Aev) whose objects are Aev-modules which are
projective on either side. For exact and colax monoidal functors between exact
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monoidal categories of the above form, we proved the result below. See [1] to recall
the definition of a colax monoidal functor.

Theorem 2. Let F : (C,⊗C,1C) → (D,⊗D,1D) be an exact and colax monoidal

functor whose unit morphism F1C

∼
−→ 1D is an isomorphism. Then the induced

graded K-algebra homomorphism

Ext∗C(1C,1C)
F
−−→ Ext∗D(F1C, F1C)

∼
−→ Ext∗D(1D,1D)

takes [−,−]C to [−,−]D.

2.2. Homological epimorphisms. Recall that a ring homomorphism f : R→ S
is an epimorphism if, and only if, the restriction functor f⋆ : Mod(S) → Mod(R)
is full and faithful. Due to a classical result of Silver, this is the same as saying
that the multiplication map S ⊗R S → S is an isomorphism of S-bimodules.

The case where the derived restiction functor D(f⋆) defines a full and faithful
functor D(Mod(S))→ D(Mod(R)) has been studied by Geigle-Lenzing; see [5]. It
is evident, that f will have to be an epimorphism in that case. By adding the
condition TorRi (S, S) = 0 for all i > 0 one obtains a precise characterisation of this
situation. Epimorphisms satisfying the latter Tor-vanishing condition are called
homological epimorphisms.

2.3. The main theorem. Let us fix twoK-algebrasA and B which are projective
when considered as K-modules. Let further q : B → A be a K-linear homological
epimorphism. The induced K-algebra homomorphism qev = q ⊗ qop : Bev → Aev

remains a homological epimorphism, and the left adjoint to the restriction functor
D(qev⋆ ) has remarkable properties, by Theorem 2:

Theorem 3. The graded K-algebra homomorphism

A⊗L

B(−)⊗
L

BA : HH∗(B) = HomD(Bev)(B,B[∗]) −→ HomD(Aev)(A,A[∗]) = HH∗(A)

also preserves the Lie bracket.

Indeed, the crucial observation for the proof of the above statement is that
q : B → A gives rise to a colax monoidal functor

A = A⊗B (−)⊗B A : (Mod(Bev),⊗B, B) −→ (Mod(Aev),⊗A, A).

To produce the desired exact and monoidal subcategories between which A defines
an exact functor, one starts with the category of bimodules being projective on
either side, and successively removes those modules that do not contribute to the
exactness of A, in such a way that the resulting category remains exact and closed
under ⊗A.

3. An application to a long exact sequence of Koenig-Nagase

3.1. Stratifying idempotents. Let R be a ring. In [4], Cline-Parshall-Scott
introduced the notion of a stratifying idempotent in R. Such an idempotent e ∈ R
is defined by the multiplication map Re⊗eRe eR

∼
−→ ReR being an isomorphism,

and
ToreRe

i (Re, eR) = 0 (for i > 0).
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For I = ReR, S = R/I and q : R→ S, one has TorR1 (S, S) = I/I2 = 0 and

TorRi (S, S)
∼= TorRi−1(I, S) (by a long exact sequence)

∼= TorRi−1(Re⊗eRe eR, S) (as Re⊗eRe eR ∼= ReR)

∼= ToreRe
i−1(Re, eR⊗R S) (by [3, Chap. IX, Thm. 2.8])

∼= 0 (as e annihilates S)

for i > 1, whence q : R→ R/ReR is a (surjective) homological epimorphism.

3.2. A cohomological long exact sequence. Let B be a K-projective K-
algebra and e ∈ B a stratifying idempotent such that A = B/BeB is K-projective.
From the adjunction isomorphism HomAev(A⊗B BB⊗B A,A) ∼= HomBev(BB,A),

where BB is the bar resolution of B, one obtains HH∗(A)
∼
−→ Ext∗Bev(B,A). There-

fore, applying HomBev(B,−) to the canonical short exact sequence

0 −−→ BeB −−→ B
q
−−→ B/BeB −−→ 0

induces a cohomological long exact sequence

(†) · · · −−→ ExtnBev(B,BeB) −−→ HHn(B)
γn
−−−→ HHn(A) −−→ · · ·

as observed by Koenig-Nagase in [9]. The following Lemma implies, when com-
bined with Theorem 3, that the map γ∗ : HH∗(B) → HH∗(A) in the long exact
sequence (†) preserves the cup product (see also [9]) and the Lie bracket.

Lemma 4. The map γ∗ agrees with A⊗L

B (−)⊗L

B A : HH∗(B) −→ HH∗(A).

In this context, we like to raise the following question.

Question 5. Let K be a field of characteristic 2. If B denotes the algebra

B =

[
K(Z2 × Z2) KZ2

0 K

]
, with stratifying idempotent e =

[
0 0
0 1

]
,

what is the precise Lie algebra structure of HH∗(B)? Can the above sequence (†)
be used to determine it (the Lie structure of HH∗(B/BeB) is well understood)?

4. Towards a result for stable equivalences of Morita type

4.1. Stable equivalences. Let A and B be two K-algebras. Then a stable equiv-
alence of Morita type between A and B (in the sense of Broué; see [2]) is given by a
quadruple (M,N,ϕ, ψ), whereinM is an A⊗Bop-module, N is an B⊗Aop-module,
both being finitely generated projective when considered as one-sided modules, and
ϕ and ψ are bimodule isomorphisms ϕ :M⊗BN

∼
−→ A⊕P , ψ : N⊗AM

∼
−→ B⊕Q

for some projective Aev-module P and some Bev-module Q.
Clearly, each pair of Morita equivalent algebras gives rise to a stable equivalence

of Morita type. However, there are algebras which are stably equivalent but not
even derived equivalent. The latter circumstance already suggests, that Hochschild
cohomology might not be the right cohomology theory in this setting. Indeed,
HH∗(A) has to be replaced by its stable analogue, the stable Hochschild cohomology
ring HH∗(A), which is invariant under stable equivalences of Morita type (see [11]).
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It is open whether the same holds true for the Lie algebra structure (in appropriate
degrees).

4.2. An attempt to prove invariance. In current work in progress, we offer
the following refinement of Theorem 2 as a step towards a solution of the above
problem. We assume that our categories are exact monoidal with properties as de-
scribed in Paragraph 2.1. Recall that the image of the unit under a bilax monoidal
functor contains the unit of the target category as a direct summand; see [1].

Refinement of Thm. 2. Let F : (C,⊗C,1C)→ (D,⊗D,1D) be an exact and bilax
monoidal functor. Assume that there is an integer d > 0 such that the cosummand
C of 1D in F1C satisfies ExtiD(1D, C) = 0 for i > d. Then the induced map

Ext>d
C

(1C,1C)
F
−−→ Ext>d

D
(F1C, F1C)

can
−−→ Ext>d

D
(1D,1D)

takes [−,−]C to [−,−]D.

The question thus is, whether, for a given stable equivalence (M,N,ϕ, ψ), the
functor M ⊗B (−) ⊗B N : Mod(Bev) → Mod(Aev) can be turned into a bilax

monoidal functor with (split surjective) unit map M ⊗B N
∼
−→ A⊕ P ։ A.
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[2] M. Broué, Equivalences of blocks of group algebras, in Finite-dimensional algebras and
related topics (Ottawa, ON, 1992), 1–26, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
424, Kluwer Acad. Publ., Dordrecht.

[3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ,
1956.

[4] E. Cline, B. Parshall and L. Scott, Stratifying endomorphism algebras, Mem. Amer. Math.
Soc. 124 (1996), no. 591, viii+119 pp.

[5] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations
and sheaves, J. Algebra 144 (1991), no. 2, 273–343.

[6] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78

(1963), 267–288.
[7] R. Hermann, Homological epimorphisms, recollements and Hochschild cohomology - with a

conjecture by Snashall-Solberg in view, preprint (2014). http://arxiv.org/abs/1411.0836
[8] R. Hermann, Monoidal categories and the Gerstenhaber bracket in Hochschild cohomology,

preprint, to appear in Mem. Amer. Math. Soc. (2014). http://arxiv.org/abs/1403.3597
[9] S. Koenig and H. Nagase, Hochschild cohomology and stratifying ideals, J. Pure Appl.

Algebra 213 (2009), no. 5, 886–891.
[10] A. Neeman and V. Retakh, Extension categories and their homotopy, Compositio Math.

102 (1996), no. 2, 203–242.
[11] S. Pan and G. Zhou, Stable equivalences of Morita type and stable Hochschild cohomology

rings, Arch. Math. (Basel) 94 (2010), no. 6, 511–518.
[12] V. S. Retakh, Homotopy properties of categories of extensions, Uspekhi Mat. Nauk 41

(1986), no. 6(252), 179–180.
[13] S. Schwede, An exact sequence interpretation of the Lie bracket in Hochschild cohomology,

J. Reine Angew. Math. 498 (1998), 153–172.

http://arxiv.org/abs/1411.0836
http://arxiv.org/abs/1403.3597


Cohomology of Finite Groups: Interactions and Applications 1365

Torsion endo-trivial modules

Jacques Thévenaz

(joint work with Jon F. Carlson)

Let k be an algebraically closed field of prime characteristic p and let G be a
finite group of order divisible by p. A kG-module M is endo-trivial if M ⊗M∗

is isomorphic to the trivial module k in the stable category, that is, M ⊗M∗ ∼=
k⊕(proj), where (proj) denotes some projective module. Let T (G) be the group of
isomorphism classes, in the stable category, of all endo-trivial kG-modules. This
is an abelian group (for tensor product) and it is known to be finitely generated
(Puig). We write T (G) = TT (G)⊕ TF (G), where TT (G) is the torsion subgroup
(a finite group) and TF (G) is a torsion-free group. Thus TF (G) ∼= ZN for some
integer N , and this is essentially known (see [2] for details). We still have to
understand TT (G).

Let X(G) be the group of one-dimensional kG-modules. Obviously X(G) is a
subgroup of TT (G), isomorphic to the dual group (G/G′)∗ of the abelian group
G/G′, where G′ = [G,G]S and S ∈ Sylp(G) (so that G/G′ is the largest abelian
p′-quotient of G). For p-groups, the following result was proved 10 years ago using
heavy cohomological machinery.

Theorem 1. (Carlson-Thévenaz [3]) Let S be a finite p-group. Then the torsion
subgroup TT (S) is trivial, except if S is cyclic, generalized quaternion, or semi-
dihedral.

Note that TT (S) is completely known in the three exceptional cases. In order
to pass from a Sylow p-subgroup S of G to the whole group G, it is natural to
introduce

K(G) := Ker
(
ResGS : T (G) −→ T (S)

)
.

Thus the class of a kG-moduleM belongs to K(G) if and only ifM↓GS
∼= k⊕(proj).

Since such a module must have trivial source, there are finitely many of them and
so K(G) is a finite group, that is, K(G) ⊆ TT (G). In fact, in view of Theorem 1,
we have K(G) = TT (G) if S is not one of the three exceptional cases.

We are left with the determination of K(G). Many results appeared in recent
years about TT (G) for specific families of groups G (see the introduction of [4] for
a list). In many cases, we have simply TT (G) = K(G) = X(G), but there are also
numerous examples where K(G) is larger than X(G). The starting point of the
analysis is the following lemma.

Lemma. Let S be a Sylow p-subgroup of G.

(a) For any nontrivial subgroup Q ⊆ S, we have K(NG(Q)) = X(NG(Q)).

(b) The restriction map ResGNG(S) : T (G) −→ T (NG(S)) is injective.

In fact, the map in part (b) is induced by the Green correspondence, which must
be injective. It follows that we have an injective restriction map

ResGNG(S) : K(G) −→ K(NG(S)) = X(NG(S)) ,
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and the problem is to find its image. In other words, given a one-dimensional
kNG(S)-module L, we need to know when its class is the restriction of some class
of endo-trivial kG-modules.

For any nontrivial subgroup Q of a Sylow p-subgroup S, we define a sequence
of subgroups {ρi(Q) | i ≥ 1} inductively as follows :

ρ1(Q) := NG(Q)′ .

As before, NG(Q)′ is the product of the commutator subgroup of NG(Q) and a
Sylow p-subgroup of NG(Q). For i ≥ 2, we let

ρi(Q) := < NG(Q) ∩ ρi−1(R) | {1} 6= R ⊆ S > .

This contains ρi−1(Q), so we have a nested sequence of subgroups

Q ⊆ ρ1(Q) ⊆ ρ2(Q) ⊆ ρ3(Q) ⊆ . . . ⊆ NG(Q) .

Since G is finite, the sequence eventually stabilizes and we let ρ∞(Q) be the limit
subgroup of the sequence {ρi(Q) | i ≥ 1}, namely their union.

If a one-dimensional kNG(S)-module L is the restriction of some endo-trivial

kG-module M , that is, M↓GNG(S)
∼= L ⊕ (proj), then it is easy to see, using the

lemma above, that ρ∞(S) must be in the kernel of L. We conjecture that this
necessary condition is also sufficient.

Conjecture. Let S be a Sylow p-subgroup of G.

(a) Let L be a one-dimensional kNG(S)-module. There exists an endo-trivial

kG-module M such that M↓GNG(S)
∼= L⊕ (proj) if and only if ρ∞(S) is in

the kernel of L.
(b) The image of the restriction map

ResGNG(S) : K(G) −→ K(NG(S)) = X(NG(S))

is the dual group of NG(S)/ρ
∞(S). Thus K(G) ∼=

(
NG(S)/ρ

∞(S)
)∗
.

Note that (b) is an immediate consequence of (a), so the conjecture is actually
only part (a). Our main result settles the problem when S is abelian.

Theorem 2. (Carlson-Thévenaz [4]) Assume that the Sylow p-subgroup S is
abelian. Then the conjecture holds. More precisely, ρ∞(S) = ρ2(S) and restriction

induces an isomorphism K(G) ∼=
(
NG(S)/ρ

2(S)
)∗
.

One ingredient is Burnside’s well-known result which asserts that NG(S) con-
trols fusion when S is abelian. But the main ingredient is a new method due to
Balmer [1]. He provided a new characterization of the group K(G) in terms of the
group of weak homomorphisms.

Definition. As above, S denotes a Sylow p-subgroup of G. A map χ : G→ k× is
called a weak homomorphism if it satisfies the following three conditions:

(a) If s ∈ S, then χ(s) = 1.
(b) If g ∈ G and S ∩ gS = {1}, then χ(g) = 1.
(c) If a, b ∈ G and if S ∩ aS ∩ abS 6= {1}, then χ(ab) = χ(a)χ(b).
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The set A(G) of all weak homomorphisms is an abelian group under the usual
product of maps.

Theorem 3. (Balmer [1]) The groups K(G) and A(G) are isomorphic.

Balmer’s isomorphism is explicit and is described in [1]. The proof of Theorem 2
is based on the construction of a weak homomorphism χ : G→ k× that extends a
given homomorphism ϕ : NG(S)→ k× which is trivial on ρ2(S).

Remark. Apart from Balmer’s approach, there is another useful new method for
handling endo-trivial modules, due to Lassueur-Malle [5]. They show that any
endo-trivial kG-module lifts to a module in characteristic zero. Then ordinary
character theory can be applied. In particular, a criterion is given for characteriz-
ing endo-trivial modules in K(G) by purely character-theoretic means. This can
be used for showing the existence, or the nonexistence, of endo-trivial modules for
specific groups, by examination of their character table, as in [5] and [6].
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Algorithmic isomorphism classification of modular cohomology rings
of finite groups

Simon King

(joint work with Bettina Eick, David Green)

For a finite group G, let H∗(G;Fp) denote the modular cohomology ring with
coefficients in the finite prime field Fp. It is well known that modular cohomology
rings of finite groups are finitely presentable graded-commutative Fp–algebras.

It is possible that the modular cohomology rings of two non-isomorphic finite
groups are isomorphic as graded Fp–algebras. In fact, Carlson [2] has shown that,
for any c ∈ N, the finite 2–groups of coclass c (of which there are infinitely many)
only have finitely many different graded isomorphism types of modular cohomology
rings. Recently, A. Dias Ramos et al. announced a similar result for p–groups of
fixed coclass, for any prime p > 2. The proof is not constructive, hence, it is
unclear how many isomorphism types actually occur. Also, it is conjectured that
in each of the “coclass families” of p–groups defined in [5] all but finitely many
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groups have isomorphic modular cohomology rings. Again, it is not clear how
many exceptions will occur.

To explore the isomorphism types by computer calculations, it is needed (1) to
compute modular cohomology rings for many groups, and (2) to create an algo-
rithm that can decide whether or not two modular cohomology rings are graded
isomorphic. In [4], we classify the modular cohomology rings of all prime power
groups of order at most 81 up to graded isomorphism. For example, the 340
2-groups of order at most 64 have 260 graded isomorphism classes of mod-2 coho-
mology rings.

For computing group cohomology, we use an optional package [11] for the free
open source computer algebra system [13] SageMath. It can compute a minimal
presentation of H∗(G;Fp) as graded–commutative Fp–algebra, as well as some
ring theoretic invariants such as Poincare series, a–invariants and depth. Experi-
mentally, it also computes Massey products. The package can deal with induced
homomorphisms and uses them to compute the nilradical and the essential respec-
tively depth essential ideals.

It was asked by Hambleton whether the mod-2 cohomology in degree 2 is de-
tected by metabelian groups, in the same way as the degree 1 is detected by
cyclic groups. Computer experiments suggested to generalise the question for any
prime p and any degree: For any mod-p cohomology class of G, does there exist a
metabelian not necessarily proper subgroup of G to which the class has non-trivial
restriction? During the workshop in Oberwolfach, Green found that the answer
to the generalised question is negative: There is a group of order 316 that is not
metabelian and has essential mod-3 classes (but most likely not in degree 2).

To compute the cohomology ring, the package computes “ring approximations”
in increasing degrees, and uses various completeness criteria to test whether the
current ring approximation actually is isomorphic to the whole cohomology ring.

In the case of a prime power group G, the computation of approximations of
H∗(G;Fp) is based on the construction of a minimal projective resolution. For
this, a signature based non-commutative standard basis algorithm of Green [6] is
used. It is work in progress to replace Green’s algorithm by a potentially more
efficient non-commutative version of Faugere’s F5 algorithm [9].

If G is not of prime power order, the package uses the stable element method [3,
XII §10]: If U ≤ G is any subgroup containing a Sylow p–subgroup of G, the
restriction from G to U is injective, and thus H∗(G;Fp) can be considered as
a sub-ring of H∗(U ;Fp). Moreover, this sub-ring can be described by stability
conditions, that are associated to the double cosets U \G/U and give rise to linear
equation systems in each degree.

For the third Conway group G = Co3, a Sylow 2–subgroup S ≤ G has as many
as 484,680 double cosets, which is unfeasible. It was suggested by Holt [8] to use
stable elements in two or more steps: One considers a subgroup U that is strictly
between G and S (in many cases, U = NG(Z(S)) will do), and then uses stability
to first compute H∗(U ;Fp) as a subring of H∗(S;Fp) and finally H∗(G;Fp) as a
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subring of H∗(U ;Fp). Using a certain tower of five groups, the computation of
H∗(Co3;F2) only involves a total of 11 stability conditions [12].

To prove completeness of cohomology ring approximations, we use criteria
from [1], [7], [14] and [10]. In all criteria, the key is to construct elements in the
ring approximation over which the cohomology ring is finite, so that the degrees
of these elements is as small as possible. Depending on the criterion, the elements
have to have additional properties. The criteria have different advantages and dis-
advantages, we therefore combine them. The first part of the criterion from [10]
tests whether the ring approximation contains a generating set of the whole coho-
mology ring, which is very useful in the stable element method: By consequence,
it is enough to solve the stability conditions only in relatively small degrees.

In [4], we provide an algorithmic solution of the graded isomorphism problem
for finitely presented associative unital F–algebras that are generated in positive
degrees, where F is a finite field. This holds, in particular, for modular cohomology
rings of finite groups, where one can additionally use Groebner basis techniques
to speed-up some computations.

The basic idea of the algorithm is straight forward. Let R1, R2 be algebras
satisfying the above hypotheses. Since R2 is finitely generated in positive degrees,

for each d, the degree-d part R
(d)
2 is a finite dimensional F vector space, and

actually a finite set, since F is finite. Therefore, there are only finitely many
possibilities to map a generator of R1 to an element of the same degree in R2.
And for each choice of generator images, it is possible to test if it extends to an
isomorphism.

Of course, in that basic form, the algorithm wouldn’t be usable. It is essential
to drastically cut down the choices. We have developed techniques to do so, so
that the isomorphism classification of modular cohomology rings of all prime power
groups up to order 81 is just a matter of few minutes.
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Twisted homological stability for groups via functor categories

Steven V. Sam

(joint work with Andrew Putman)

A sequence of groups and maps G1 → G2 → · · · satisfies homological stability
if, for each i ≥ 0, the induced map on homology Hi(Gn) → Hi(Gn+1) is an
isomorphism for n≫ i. Some sequences of groups that satisfy homological stability
(the maps are the usual ones):

• Symmetric groups Gn = Sn (Nakaoka [Nak]);
• For any group Γ, the wreath products Gn = Sn ⋉ Γn (this seems to have
been well-known – it is stated explicitly in [HW, Prop. 1.6]);
• For well-behaved rings R (such as commutative noetherian rings of finite
Krull dimension), Gn = GLn(R) (van der Kallen [Va]), and
• the symplectic groups Gn = Sp2n(R) (Mirzaii–van der Kallen [MV]).

More generally, Gn-representations Mn equipped with Gn-equivariant maps
Mn → Mn+1 satisfy twisted homological stability if, for each i ≥ 0, the
induced map Hi(Gn;Mn)→ Hi(Gn+1;Mn+1) is an isomorphism for n≫ i.

The problem we consider is to determine which kinds of sequences satisfy twisted
homological stability. Wahl [W] gave a general setup using the notion of homo-
geneous categories (they are monoidal categories; we omit the definition since we
use a special case below). If (G,⊕, 0) is a symmetric monoidal groupoid such that
Aut(0) = {1} and such that the map Aut(A)→ Aut(A⊕B) given by f 7→ f ⊕ 1B
is injective for all A,B, then there is a minimal homogeneous symmetric monoidal
category UG containing G as its underlying groupoid [W, 1.4, 1.5].

Corresponding to the previous examples, we give a few cases of G and UG:

• The groupoid of finite sets under disjoint union gives the category FI,
whose objects are finite sets and whose morphisms are injections;
• The groupoid of free Γ-sets under disjoint union gives the category FIΓ,
whose objects are finite sets and whose morphisms are Γ-injections: an
injective function f : R → S and a function ρ : R → Γ; the composition
with (g : S → T, σ) is given by (gf, τ) where τ(x) = σ(f(x)) · ρ(x));
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• The groupoid of finite rank free R-modules under direct sum gives the
category VIC(R), whose objects are finite rank free R-modules and whose
morphisms V → W are pairs of maps V →W → V composing to 1V ;
• The groupoid of finite rank free symplectic R-modules under direct sum
gives the category SI(R), whose objects are finite rank free symplectic R-
modules and whose morphisms are linear maps preserving the form (and
hence must be injective).

The above examples of UG are in fact complemented categories. A symmetric
monoidal category is complemented if it satisfies the following properties:

• Every morphism is a monomorphism;
• 0 is an initial object, and so we have canonical maps V → V ⊕ V ′ and
V ′ → V ⊕ V ′;
• The map Hom(V ⊕ V ′,W )→ Hom(V,W )×Hom(V ′,W ) is injective;
• Every subobject C ⊂ V has a complement, i.e., another subobject D ⊂ V
so that V ∼= C ⊕ D and where the isomorphism identifies the inclusion
C ⊂ V with the canonical map C → C ⊕D, and similarly for D.

Each one has a generator X , i.e., every object is isomorphic to X⊕n.
Fix a commutative ring k. Given a complemented category C with generatorX ,

and a functor F : C → k-Mod, define ΣF : C → k-Mod to be the precomposition
with the functor Y 7→ Y ⊕X . There is a natural transformation F → ΣF , and its
kernel and cokernel are denoted kerF and cokerF . We can use this to define the
degree of a functor:

• If F = 0, then its degree is −1;
• If kerF and cokerF have degree ≤ r − 1, then F has degree ≤ r.

Otherwise F has infinite degree. Also, for each n, define a semisimplicial set
Wn(X) whose p-simplices are Hom(X⊕p+1, X⊕n).

Let C be a complemented category with generator X . Suppose that there is an
integer k ≥ 2 so that for all n ≥ 1, Wn(X) is (n− 2)/k-connected. Then a special
case of [W, Theorem 5.6] is that for any functor of finite degree ≤ r, the map

Hi(Aut(X
⊕n);F (X⊕n))→ Hi(Aut(X

⊕n+1);F (X⊕n+1))

is an isomorphism when i ≤ (n − r)/k. Implicitly, we always use the morphisms
X⊕n → X⊕n+1 as inclusion via the first n factors to define all structure maps.
We will say that the functor F satisfies homological stability.

For some purposes, having finite degree is too restrictive of a condition. For
example, if k is a field and F takes finite-dimensional values, then it implies that
the function n 7→ dimk F (X

⊕n) is a polynomial for n ≫ 0. A basic property
of complemented categories C with generator X is that for n ≥ r, the permuta-
tion representation k[Hom(X⊕r, X⊕n)] is isomorphic to the induced representation

Ind
Aut(X⊕n)
Aut(X⊕n−r)k. So by Shapiro’s lemma, the functor Pr : C → k-Mod defined by

Y 7→ k[Hom(X⊕r, Y )] satisfies homological stability if the same is true for the
constant functor, i.e., the groups Aut(X⊕n) satisfy homological stability. From
now on, we will make this assumption about Aut(X⊕n).
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By Yoneda’s lemma, the set of natural transformations Pr → F identifies with
F (X⊕r), and so the Pr are a set of projective generators for the functor category
[C,k-Mod]. In particular, any functor F admits a projective resolution of the form

· · · → Pd → Pd−1 → · · · → P1 → P0 → F → 0

where Pd is a direct sum of Pr. If we assume that each Pd has a decomposition as⊕
r≤D Pr (D depending on d), then Pd also satisfies homological stability. Note

that for each n, there is a spectral sequence

E1
p,q(n) = Hp(Aut(X

⊕n);Pq(X
⊕n)) =⇒ Hp+q(Aut(X

⊕n);F (X⊕n)),

and spectral sequence morphisms E1
∗,∗(n)→ E1

∗,∗(n+ 1). So with the assumption
on Pd above, we see that for a given diagonal p+ q, the map of spectral sequences
on all relevant terms to calculate Hp+q is an isomorphism for n≫ 0, and hence F
satisfies homological stability.

This motivates the following definitions. Say that F is finitely generated if it
is a quotient of a finite direct sum Pr1 ⊕ · · · ⊕ Prn , and say that F is noetherian
if every subfunctor of F is finitely generated; [C,k-Mod] is (locally) noetherian if
every finitely generated functor is noetherian. This implies that k is a noetherian
ring. If [C,k-Mod] is noetherian, then every finitely generated functor has a pro-
jective resolution where each Pd is a finite direct sum of Pr, and hence satisfies
homological stability. This is formalized in [PS, Theorem 4.2].

Some examples of when [C,k-Mod] is noetherian (take k to be any noetherian
ring) corresponding to the running examples:

• FI (Church–Ellenberg–Farb–Nagpal [CEFN, Theorem A])
• When Γ is virtually polycyclic, FIΓ (Sam–Snowden [SS, Cor. 1.2.2])
• When R is a finite commutative ring, VIC(R) and SI(R) (Putman–Sam
[PS, Theorems C, D])

Finally, a word about cohomology versus homology. Let k be a field of char-
acteristic p > 0 and let h(n) = {(x1, . . . , xn) ∈ kn |

∑
i xi = 0} be the reflection

representation of Sn; note that {1, . . . , n} 7→ h(n) defines a finitely generated
functor FI→ k-Mod. For n ≥ 3 we have H0(Sn; h(n)) = 0, whereas

H0(Sn; h(n)) = hSn =

{
0 if p 6 | n

k if p | n
.

In fact, this periodic behavior is typical: Nagpal shows that if F is a finitely
generated FI-module, then for each i, the function n 7→ dimk H

i(Sn;F ({1, . . . , n}))
is a periodic function of n for n≫ 0 with period a power of p [Nag, Theorem D].
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The Lie module and its complexity

David Hemmer

(joint work with Frederick Cohen, Daniel Nakano)

Let Σn be the symmetric group and k and algebraically closed field of characteristic
p. In this talk we discussed our determination of the complexity of the kΣn module
Lie(n), which we define next. For any commutative ring R and positive integer n,
let LieR(x1, x2, . . . , xn) be the free Lie algebra over R generated by x1, x2, . . . , xn
and let LieR(n) be the submodule spanned by all bracket monomials containing
each xi exactly once. Then LieR(n) is a module for the symmetric group Σn acting
by permuting the variables.

We will be interested in Liek(n) := Lie(n). This module arises naturally in topol-
ogy, for example as the top degree homology of the configuration space of n points
in the plane tensored by the sign representation. In characteristic zero there is a
beautiful description of its complex character in terms of tableaux combinatorics,
see [4, Chapter 8] for a thorough treatment. Furthermore, the representation
Lie(n) is a direct summand of QΣn. In characteristic p, very little is known about
the module structure of Lie(n) except in special cases, for example small n or when
p2 ∤ n. Over an arbitrary field k, Lie(n) has dimension (n − 1)! and is free over
kΣn−1.

Erdmann, Lim and Tam [2] stated a conjecture for cΣn
(Lie(n)). In particular

they conjectured the complexity to be r, where pr is the largest power of p dividing
n!. Our strategy in proving this conjecture was to first employ earlier results
of Hemmer-Nakano which reduce the calculation to studying H•(Σλ, Lie(n)) for
various Young subgroups Σλ. This reduction lets us apply a result of Arone and
Kankaanrinta [1] giving bases for these homology groups.

Specifically we used the following result, where λ(V•) denotes the polynomial
rate of growth of the dimensions of a sequence of vector spaces:

Theorem 1. Let M be a kΣn-module with complexity cG(M). The following are
equivalent.

(a) cG(M)
(b) maxλ�n{γ(H

•(Σλ,M))}
(c) maxλ�n{γ(H•(Σλ,M))}
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Now we apply the work of Aronke-Kankaarinta. Let

Mr = H•(Σpr , Lie(pr)).

Arone and Kankaanrinta gives a basis for the (r + 1)st suspension Σ1+rMr in
terms of “completely inadmissible Dyer-Lashof words of length r”. Their results
are summarized in the next theorem.

Theorem 2. [1, Thm. 3.2] The following elements constitute a basis for Σ1+rMr:
if p > 2

{βǫ1Qs1 · · ·βǫrQsru | sr ≥ 1, sj > psj+1 − ǫj+1∀1 ≤ j < r},

if p=2

{Qs1 · · ·Qsru | sr ≥ 1, sj > 2sj+1∀1 ≤ j < r}.

Here u is of dimension 1, the Qsj s are Dyer-Lashof operations and the βs are
the homology Bocksteins. Thus Qs increases dimension by s if p = 2 and by
2s(p− 1) if p > 2, and β decreases dimension by one.

As a special case we remark that the basis element Qs1Qs2 · · ·Qsru lies in degree
2(p− 1)(s1 + s2 + · · ·+ sr) for p odd and (s1 + s2 + · · ·+ sr) for p = 2.

By analyzing the basis elements in Theorem 2 we obtained our main result:

Theorem 3. For all n ∈ N, cΣn
(Lie(n)) = r where pr | n and pr+1 ∤ n.
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Polynomial functors on hermitian spaces

Aurélien Djament

(joint work with Christine Vespa)

In the early fifties, Eilenberg and Mac Lane [3] introduced the notion of polynomial
functors between categories of modules to study the homology of topological spaces
which have now their name. The interest of this notion has remained strong,
because of other connections with algebraic topology (Henn-Lannes-Schwartz),
representation theory, algebraic K-theory and stable homology of linear groups
(Betley, Suslin, Scorichenko). This classical notion of polynomial functor can be
defined in the same way for functors from a (small) symmetric monoidal category
(C,+, 0) whose unit 0 is an zero object to a (nice) abelian category.
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But for some purposes, this setting is not enough. For example, many recent
works deal with FI-modules (functors from the category of finite sets with injec-
tions to abelian groups, see [1]); finitely generated FI-modules carry polynomial
properties (for dimension functions, when the values are in finite-dimensional vec-
tor spaces over a field). Another example comes from the quotients of the lower
central serie of the automorphism group of a free group — see recent works by
Satoh and Bartholdi. But our main motivation to introduce a generalized notion
of polynomial functors in the study of stable homology of congruence groups. To
be more precise, let I a ring without unit, n a non-negative integer and

GLn(I) := Ker (GLn(I ⊕ Z)→ GLn(Z))

the corresponding general linear group, which is congruence group (I ⊕ Z is the
ring obtained by adding formally a unit to I). The study of the homology of these
groups is known to be extremely hard and related to the problem of excision in
algebraic K-theory. For a qualitative approach of this problem, let us remark that
the stabilization maps H∗(GLn(I)) → H∗(GLn+1(I)) and the natural action of
GLn(Z) on H∗(GLn(I)) assemble to give a functor

S(Z)→ Ab Zn 7→ Hd(GLn(I))

for each d ∈ N (which will be denoted by Hd(GL(I))). Here, we denote by S(R),
for any ring R, the category of finitely generated left free R-modules with split
R-linear injections, the splitting being given in the structure.

Conjecture. For any ring without unit I and any d ∈ N, the functor Hd(GL(I)) :
S(Z)→ Ab is weakly polynomial of degree ≤ 2d.

This conjecture is inspired by the beautiful work of Suslin [4].
We will now explain the meaning of weakly polynomial and how wich kind of

classification result we can get for this kind of polynomial functors (following [2]).
The category S(R) can be seen as a particular case of the category H(A) of her-

mitian spaces over a ring with involution A (the objects are the finitely generated
free A-modules endowed with a non-degenerate hermitian form, the morphisms
are A-linear maps which preserve the hermitian forms): S(R) is equivalent to
H(Rop × R), where Rop × R is endowed with the canonical involution. We deal
with this general hermitian setting, which is not harder than S(Z).

Strongly polynomial functors

In the sequel, (C,+, 0) denotes a (small) symmetric monoidal category whose unit
0 is an initial object (as FI with the disjoint union or H(A) with the hermitian
sum) and A a Grothendieck category. The category Fct(C,A) of functors from C
to A is also a Grothendieck category.

Definition. For any object x of C, let τx : Fct(C,A) → Fct(C,A) denote the
precomposition by the functor −+ x : C → C. We denote also by δx (respectively
κx) the cokernel (resp. kernel) of the natural transformation Id = τ0 → τx induced
by the unique map 0→ x.
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A functor F : C → A is said strongly polynomial of degree ≤ d if δa0
δa1

. . . δad
(F )

= 0 for any (d+ 1)-tuple (a0, . . . , ad) of objects of C.

This notion is not so well-behaved, because is it not stable under subfunctors.

Weakly polynomial functors

To avoid this problem, we change the definition by working in a suitable quotient
category:
Proposition and definition. The full subcategory SN (C,A) of Fct(C,A) of
functors F such that F =

∑
x∈ObC

κx(F ) is localizing. We denote by St(C,A) the

quotient category Fct(C,A)/SN (C,A).
For any object x of C, τx induces an exact functor (always denoted in the same

way) of St(C,A); in this category, the natural transformation Id → τx is monic.
So its cokernel δx is exact.

An objectX of St(C,A) is said polynomial of degree ≤ d if δa0
δa1

. . . δad
(X) = 0

for any (d+ 1)-tuple (a0, . . . , ad) of objects of C.
The full subcategory Pold(C,A) of St(C,A) of these objects is bilocalizing.
A functor F : C → A is said weakly polynomial of degree ≤ d if its image in

St(C,A) belongs to Pold(C,A).

Main result

Theorem ([2]). Let A be a ring with involution and A a Grothendieck category.
For any d ∈ N, the forgetful functor H(A)→ F(A) (category of finitely generated
free A-modules, with usual morphisms) induces an equivalence of categories:

Pold(F(A),A)/Pold−1(F(A),A)→ Pold(H(A),A)/Pold−1(H(A),A)

(the source category can be described from the wreath product of A and Sd).
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Generic Representations of finite fields in nondescribing characteristic

Nicholas J. Kuhn

1. Introduction and the Main Theorem

Let F and K be fields. Let Rep(F;K) denote the category whose objects are
functors

F : fin. dim. F–vector spaces −→ K–vector spaces,

and having natural transformations as morphisms. We refer to F ∈ Rep(F;K) as
a generic representation of the field F.

This is a K–linear category in the obvious way. For example, a sequence of
functors

0→ F → G→ H → 0

is short exact if

0→ F (V )→ G(V )→ H(V )→ 0

is a short exact sequence of K–vector spaces for each F–vector space V .
Structure inK–vector spaces tends to induce structure in Rep(F;K). For exam-

ple, given F,G ∈ Rep(F;K), F ⊗G is defined to be the functor V 7→ F (V )⊗G(V ).
We will focus on the case when F = Fq, a finite field of order q = pr.
The category Rep(F;F) has been much studied since late 1980’s with good effect:

see, e.g., [HLS93, K00, FFSS99] (with some results reviewed below). Our new
result concerns the case with char F 6= char K. Using a 1992 result in semigroup
theory by L.G.Kovács [Ko92], we show that there is great simplification:

Theorem 1. Let F be a finite field of characteristic p. If p is invertible in K,
there is a natural equivalence of K–linear abelian categories

Rep(F;K) ≃
∞∏

n=0

K[GLn(F)]–modules.

Some structural results about Rep(F;K) are immediate corollaries.

Corollary 2. If K is a field of characteristic different than p, then all projectives
in Rep(F;K) are also injective, and indecomposable projectives have only finitely
many composition factors.

Corollary 3. If K is a field of characteristic 0, then Rep(F;K) is semisimple.

2. Examples of generic representations

Examples 4. Rep(F;F) contains the familiar polynomial functors: T n defined
by T n(V ) = V ⊗n, Sn = (T n)Σn

, Γn = (T n)Σn , Λn. These all have polynomial
growth, and this property characterizes functors in Rep(F;F) which have only a
finite number of composition factors.
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Examples 5. For any K, one has generic representations Pn and Grn defined by
Pn(V ) = K[Hom(Fn, V )] and Grn(V ) = K[Grn(V )], where Grn(V ) is the set of
n–planes in V . By Yoneda’s lemma, HomRep(F;K)(Pn, F ) = F (Fn), so the Pn form
a set of small projective generators for Rep(F;K).

Remark 6. We give a sense of what Pn looks like when F = K = F2. First note
that Pn = P⊗n

1 . Then P1 has an infinite number of composition factors: it is
the direct sum of a one dimensional constant functor and a uniserial module with
composition factors Λn for n ≥ 1.

Pondering this in the late 1980’s, Lionel Schwartz conjectured that the functors
Pn ∈ Rep(F;F) are always Noetherian objects. This has been recently proved
by Steven Sam, Andrew Snowden, and Andrew Putman with proofs [PS14, SS14]
that show this for all Rep(F;K). Corollary 2 then shows that a much stronger
result holds in the non-describing characteristic case.

3. Connection with K[GLn(F)]–modules

Note that F ∈ Rep(F;K) determines a K[GLn(F)]–module F (Fn) for each n.
Even better: F (Fn) is a module for the semigroup ring K[Mn(F)]. These modules
for different n are compatible as follows. Let en−1 = [In−1] ∈ K[Mn(F)] where
In−1 is the n×nmatrix which has 1’s on the first (n−1) diagonal entries and is zero
elsewhere. Then F (Fn−1) is naturally isomorphic to en−1F (F

n), and Rep(F;K) is
roughly the category of such compatible sequences of K[Mn(F)]–modules.

Furthermore, as described in [K94], one has a recollement diagram:

K[GLn(F)]–mod

q
←−
i
−→p
←−

K[Mn(F)]–mod

l
←−
e
−→r
←−

K[Mn−1(F)]–mod.

In this diagram, e is multiplication by en−1, and the functors i and e are exact,
with left adjoints q and l, and right adjoints p and r.

Thus Rep(F;K) is built from the categories of K[GLn(F)]–modules for all n.
One consequence is that there is a bijection

{simple F ∈ Rep(F;K)} ↔
∞∐

n=0

{simple K[GLn(F)]–modules }.

Example 7. If K is the trivial K[GLn(F2)]–module, the corresponding simple
functor in Rep(F;K) is Λn if K = F2, and Grn if char K 6= 2.

4. Kovács’ theorem

Let Singn(F) ⊂ Mn(F) be the set of singular matrices. There is a short exact
sequence

0→ K[Singn(F)]→ K[Mn(F)]→ K[GLn(F)].

Theorem 8. [Ko92] Let F be a finite field of characteristic p. If p is invertible
in K, the sequence above splits as unital K–algebras. Equivalently, there exists
eSn ∈ K[Singn(F)] which serves as a unit.
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Remark 9. eSn is easily seen to be the unique element in K[Singn(F)] that is
invariant under conjugation by GLn(F) and satisfies eSnen−1 = en−1.

5. Sketch proof of Theorem 1

Let eGn = 1− eSn ∈ K[Mn(F)]. e
G
n is a central idempotent satisfying:

(1) eGnK[Mn(F)]e
G
n ≃ K[GLn(F)] as algebras.

(2) eGn · [A] = 0 for all A ∈ Singn(F).

The algebra EndRep(F;K)(Pn) identifies with K[Mn(F)], and we let PG
n = Pne

G
n .

The next two propositions follow from the properties of eGn .

Proposition 10. Pn ≃
⊕n

k=0 grk(n)P
G
n , where grk(n) is the number of k–planes

in Fn. Thus the PG
n form a set of small projective generators for Rep(F,K).

Proposition 11. HomRep(F;K)(P
G
m , P

G
n ) =

{
K[GLn(F)] if m = n

0 if m 6= n.

The main theorem then follows from these using general Morita theory.
Given a sequence M0,M1,M2, . . . , with Mn a K[GLn(F)]–module, the associ-

ated generic representation F is

F =

∞⊕

n=0

PG
n ⊗K[GLn(F)] Mn.

Conversely, given F ∈ Rep(F;K), the associated sequence has

Mn = HomRep(F;K)(P
G
n , F ).
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Université de Picardie Jules Verne
33 rue Saint Leu
80039 Amiens Cedex
FRANCE

Prof. Dr. Carles Broto

Departament de Matematiques
Universitat Autonoma de Barcelona
Campus UAB
08193 Bellaterra (Barcelona)
SPAIN

Prof. Dr. Ragnar-Olaf Buchweitz

Computer & Mathematical Sciences
Dept.
University of Toronto at Scarborough
1265 Military Trail
Toronto,Ontario M1C 1A4
CANADA

Prof. Dr. Jon F. Carlson

Department of Mathematics
University of Georgia
Athens, GA 30602-7403
UNITED STATES

Prof. Dr. Natalia Castellana Vila

Centre de Ricerca Matematica
Departament de Matematicas
Universitat Autonoma de Barcelona
08193 Bellaterra (Barcelona)
SPAIN

Prof. Dr. Joseph Chuang

Department of Mathematics
The City University
Northampton Square
London EC1V OHP
UNITED KINGDOM

Prof. Dr. Ivo Dell’Ambrogio

Laboratoire Paul Painleve, UMR 8524
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École Polytechnique Fédérale de
Lausanne
1015 Lausanne
SWITZERLAND
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