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Introduction by the Organisers

The workshop Probabilistic Techniques in Modern Statistics was organized
by Vladimir Koltchinskii (Georgia Tech), Richard Nickl (University of Cambridge),
Markus Reiss (Humboldt-Universität, Berlin) and Sara van de Geer (ETH, Zürich)
and it took place on May 17–May 23, 2015.

The goal of the workshop was to bring together researchers in modern proba-
bility, statistics and related areas and to discuss recent advances and open prob-
lems at the intersection of these fields. The main focus was on the areas of the
most intense interactions of probability and statistics with a significant impact
on the development of novel methods of statistical inference for complex, high-
and infinite-dimensional data sets. Among recent advances in these areas are deep
understanding of the role of concentration of measure and concentration inequal-
ities in high-dimensional inference, the development of non-asymptotic theory of
random matrices and the progress on generic chaining and concentration bounds
for empirical and related classes of stochastic processes.
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The list of specific topics discussed at the workshop included:

• concentration of measure and its applications in statistical inference;
• probabilistic and geometric methods in high-dimensional statistics;
• Gaussian and empirical processes methods;
• non-asymptotic bounds for random matrices;
• statistics of stochastic processes;
• nonparametric methods, model selection and adaptive estimation;
• Bayesian nonparametrics.

In total, 51 mathematicians and statisticians participated in the workshop,
including a number of junior researchers and PhD students. The program included
25 regular talks (their abstracts are given below) and a short evening session
with several presentations by PhD students: Nicolay Baldin (Berlin), Claire Boyer
(Toulouse), Emilie Devijver (Orsay), Ester Mariucci (Grenoble) and Benjamin
Stucky (Zurich).

The workshop has stimulated fruitful discussions, exchanges and potential col-
laborations between probabilists and statisticians working in cutting edge areas of
their fields.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Nonparametric estimation of service time distribution in the M/G/∞
queue and related estimation problems

Alexander Goldenshluger

The subject of this talk is the problem of estimating service time distribution G
of the M/G/∞ queue from incomplete data on the queue. This problem has been
studied under different assumptions on the available data. The following three
observation schemes have been considered in the literature:

(a) observation of arrival and departure epochs without their matchings;
(b) observation of the queue–length (number–of–busy–servers) process;
(c) observation of the busy–period process.

We note that observation schemes (a) and (b) are equivalent up to initial conditions
on the queue length.

In setting (a) Brown [2] proposed an estimator of G which is based on the
idea of pairing every departure epoch with the closest arrival epoch to the left.
Differences between these epochs constitute an ergodic stationary random sequence
whose marginal distribution is related to the service time distribution G by a
simple formula. Then estimation of G can be achieved by inverting the formula
and substituting the empirical marginal distribution of the differences. Brown [2]
proved that the proposed estimator is consistent.

Nonparametric estimation of service time distribution G under observation
schemes (b) and (c) was considered in [1]. It is well known that in the steady
state the queue–length process {X(t)} is stationary with Poisson marginal distri-
bution and correlation function

(1) H(t) = 1 −G∗(t), G∗(t) :=
[ ∫ ∞

0

[1 −G(x)]dx
]−1

∫ t

0

[1 −G(x)]dx.

This fact suggests that function G∗ can be reconstructed by estimating correlation
function of the queue–length process. Bingham & Pitts [1] discuss this approach
and provides standard results from the time series literature for estimators of
G∗. The idea of reconstructing the service time distribution from correlation
structure of the queue–length process was also exploited by Pickands & Stine [3].
The model considered in that paper assumes that a Poisson number of customers
arrives at discrete times 1, 2, . . . , T , and service times are i.i.d. random variables
taking values in the set of non–negative integer numbers. In this discrete setting
estimation of the service time distribution is equivalent to estimating a linear form
of the correlation function of the queue–length process. For the latter problem
standard results from the time series literature are applicable.

Although estimation of G under different observation schemes was considered
in the literature, the most interesting and important statistical questions remain
to be open. In particular, it is not clear what is the achievable estimation accuracy
in such problems, and how to construct optimal estimators.
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In this work we adopt minimax approach for measuring estimation accuracy. It
is assumed that the estimated distribution G belongs to a given functional class,
and accuracy of any estimator is measured by its worst–case mean squared error
on the class. The functional class is defined in terms of restrictions on smoothness
and tail behavior of G. We concentrate on the observation scheme (b) when the
queue–length process is observed on a fixed interval at the points of the regular
grid. We want to estimate G at a fixed point using such observations.

We develop an estimator of G which is based on the relationship between dis-
tribution G and covariance function of the queue–length process, as discussed in
[1] and [3] [cf. (1)]. In particular, estimating G at a fixed point is reduced to
estimating derivative of the covariance function of the queue–length process at
this point. We analyze accuracy of our estimator over a suitable class of target
distributions and derive an upper bound on the maximal risk. The upper bound is
expressed in terms of the functional class parameters and the observation horizon.
The problem of estimating the arrival rate is discussed as well.

A natural question is: what is the achievable estimation accuracy in theM/G/∞
problem? This question calls for a lower bound on the minimax risk. Since ex-
plicit formulas for finite dimensional distributions of the queue–length process in
the M/G/∞ model are not available, derivation of lower bounds on the minimax
risk seems to be analytically intractable. Therefore, driven by a Gaussian ap-
proximation to the queue–length process, we consider a closely related estimation
problem for a Gaussian model. Specifically, let {X(t), t ∈ R} be a continuous–time
stationary Gaussian process which is observed at the points of a regular grid on
a given time interval. Using such discrete observations we want to estimate the
derivative of the covariance function of {X(t), t ∈ R}. We derive a lower bound
on the minimax risk in this problem, and show that under suitable conditions it
converges to zero at the same rate as the risk of our estimator in the M/G/∞
estimation problem. This fact strongly suggests that our estimator of the service
time distribution is rate–optimal.

References

[1] N. H. Bingham and S. M. Pitts, Non–parametric estimation for the M/G/∞ queue. Ann.
Inst. Statist. Math. 51 (1999), 71–97.

[2] M. Brown, An M/G/∞ estimation problem. Ann. Math. Statist. 41 (1970), 651–654.
[3] J. Pickands and R. A. Stine, Estimation for an M/G/∞ queue with incomplete information.

Biometrika 84 (1997), 295–308.

Gaussian approximation of suprema of empirical processes

Kengo Kato

(joint work with Victor Chernozhukov,Denis Chetverikov)

We develop a new direct approach to approximating suprema of general empirical
processes by a sequence of suprema of Gaussian processes, without taking the route
of approximating whole empirical processes in the sup-norm. We prove an abstract
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approximation theorem applicable to a wide variety of statistical problems, such
as construction of uniform confidence bands for functions. Notably, the bound
in the main approximation theorem is nonasymptotic and the theorem allows for
functions that index the empirical process to be unbounded and have entropy di-
vergent with the sample size. The proof of the approximation theorem builds on
a new coupling inequality for maxima of sums of random vectors, the proof of
which depends on an effective use of Stein’s method for normal approximation,
and some new empirical process techniques. We study applications of this approx-
imation theorem to local and series empirical processes arising in nonparametric
estimation via kernel and series methods, where the classes of functions change
with the sample size and are non-Donsker. Importantly, our new technique is
able to prove the Gaussian approximation for the supremum type statistics under
weak regularity conditions, especially concerning the bandwidth and the number
of series functions, in those examples.

References

[1] Chernozhukov, V., Chetverikov, D., and Kato, K. (2014). Gaussian approximation of
suprema of empirical processes. Ann. Statist. 42 1564-1597.

[2] Chernozhukov, V., Chetverikov, D., and Kato, K. (2015). Empirical and multiplier boot-
straps for suprema of empirical processes of increasing complexity, and related Gaussian
couplings. Stochastic Process. Appl., to appear.

How large is the norm of a random matrix?

Ramon van Handel

(joint work with Afonso S. Bandeira)

Let X be an n× n symmetric random matrix with independent Gaussian entries
Xij ∼ N(0, b2ij). If the variances b2ij of the entries are all the same (that is, the
entries are i.i.d.) or of the same order, this model is known as a Wigner matrix and
has been widely studied in the literature. Due to the large amount of symmetry
of such models, extremely precise analytic results are available on the limiting
behavior and distributions of fine-scale spectral properties of the matrix.

Our interest, however, goes in an orthogonal direction. We consider the case
where the variances b2ij are given but arbitrary: that is, we consider structured
random matrices where the structure is given by the variance pattern of the entries.
For example, one could consider “sparse Wigner matrices” where a certain sparsity
pattern of the matrix is given, and only the nonzero entries are made i.i.d. standard
Gaussian. The challenge in investigating such matrices is to understand how the
given structure of the matrix variances b2ij (for example, the sparsity pattern) is
reflected in the spectral properties of the matrix.

In particular, we are interested in the location of the edge of the spectrum,
that is, in the expected spectral norm E‖X‖ of the matrix. Understanding the
spectral norm of random matrices is a problem of basic interest in several areas of
pure mathematics (probability theory, functional analysis, combinatorics) and in



1456 Oberwolfach Report 26/2015

applied mathematics, statistics, and computer science. While the spectral norm of
classical random matrix models such as Wigner matrices is well understood, exist-
ing methods almost always fail to be sharp in the presence of nontrivial structure.
For example, the widely used “matrix concentration” method, which gives

E‖X‖ . σ
√

logn, σ2 := max
i

∑

j

b2ij

in our setting, is sharp for diagonal matrices with i.i.d. entries (bij = 1i=j) but fails
to be sharp even for Wigner matrices (bij = 1). On the other hand, by estimating
all the variances b2ij from above by the maximal variance, we can estimate the

norm of X by that of a Wigner matrix whose entries have variance maxij b
2
ij :

E‖X‖ . σ∗
√
n, σ2

∗ := max
ij

b2ij .

This bound is sharp for Wigner matrices, but fails to be sharp for diagonal matri-
ces. Another well-known bound due to Lata la is similarly sharp essentially only
for Wigner matrices. None of these bounds succeeds in capturing precisely how
the variance structure is reflected in the spectral norm of the matrix.

In [1] we give a nearly optimal solution to this problem: we show that

E‖X‖ . σ + σ∗
√

log n,

which could be viewed as a sort of interpolation between the two extreme bounds
that are stated above. The beauty of this bound is that it is matched by the
almost identical lower bound (that is essentially trivial, see below)

E‖X‖ & σ + Emax
ij

|Xij |.

It is classical that Emaxij |Xij | ∼ σ∗
√

logn under mild assumptions. Thus the
result of [1] evidently captures precisely how the structure of the variances—in
terms of the parameters σ and σ∗—is reflected in the norm of the matrix. This
result has already proved to be extremely useful in statistical applications such as
community detection and matrix completion, and makes it possible to effortlessly
address otherwise nontrivial problems of classical random matrix theory such as
identifying the phase transition of the spectral edge of random band matrices.

The lower bound given above is extremely suggestive. It is obtained by aver-
aging two trivial bounds. First, the norm of a matrix is always trivially bounded
below by the magnitude of its largest entry:

E‖X‖ ≥ Emax
ij

|Xij |.

On the other hand, by the Poincaré inequality and Jensen’s inequality,

E‖X‖ & [E‖X‖2]1/2 ≥ ‖EX2‖1/2 = σ.

Thus the two terms in the lower bound reflect two distinct mechanisms that control
the edge of the spectrum: the spectral norm is large either if the matrix itself is
large on average (which is quantified by σ2 = ‖EX2‖; note that the expectation
here is inside the norm!), or if one of the entries of the matrix has a large fluctuation
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(which is quantified by Emaxij |Xij |). In view of the nearly matching upper
bound, this strongly suggests that these are the only two reasons why the spectral
norm can be large. If this surprising phenomenon is true, then the lower bound
should be sharp, that is, we have the following conjecture:

E‖X‖ ?≍ σ + Emax
ij

|Xij |.

Unfortunately, the proof of the upper bound in [1] proceeds by an entirely different
route that sheds no light on this conjecture. The idea behind the proof of the upper
bound is a “dimensional compression” argument: the norm of the structured n×n
random matrix X is compared with the norm of an (unstructured) Wigner matrix
of much smaller dimension of order ∼ (σ/σ∗)2+logn, for which classical estimates
are available. The (easy) proof of this compression argument is combinatorial in
nature, and does not help understand the more delicate probabilistic mechanism
conjectured above. Resolving this conjecture will require an entirely different
approach to the problem. Some progress in this direction is reported in [2].

References

[1] A. S. Bandeira and R. van Handel, Sharp nonasymptotic bounds on the norm of random
matrices with independent entries (2015), Ann. Probab., to appear.

[2] R. van Handel, On the spectral norm of inhomogeneous random matrices (2015), preprint
arXiv:1502.05003.

Statistical estimation in transport-fragmentation models

Marc Hoffmann

(joint work with M. Doumic, N. Krell, A. Olivier, L. Robert)

We consider simple branching processes with deterministic evolution between jump
times. Such models appear as toy models for population growth in cellular biol-
ogy. We wish to statistically estimate the parameters of the model, in order to
ultimately discriminate between different hypotheses related to the mechanisms
that trigger cell division. We structure the model by state variables for each indi-
vidual like size, age, growth rate, DNA content and so on. The evolution of the
particle system is described by a common mechanism:

(1) Each particle grows by “ingesting a common nutrient” = deterministic
evolution.

(2) After some time, depending on a structure variable, each particle gives
rise to k = 2 offsprings by cell division = branching event.

In the talk we focus on structuring variables that are either age or size. The popula-
tion evolution is associated with an infinite marked binary tree U =

⋃∞
n=0{0, 1}n

with {0, 1}0 := ∅. To each cell or node u ∈ U , we associate a cell with size at
birth given by ξu and lifetime ζu, a birth time bu and a time of death du so that
ζu = du − bu.
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Observation scheme I: genealogical data. Set |u| = n if u = (u1, . . . , un) ∈ U ,
uv = (u1, . . . , un, v1, . . . , vm) if v = (v1, . . . , vm) ∈ U . For some (large) n = 2kn ,
define U[n] = {u ∈ U , |u| ≤ kn}. We observe {ξu and/or ζu, u ∈ U[n]}, i.e. the
whole (unbiased) tree over the first kn generations.

Observation scheme II: temporal data. For some (large) T > 0, define UT = {u ∈
U , bu ≤ T }. We have UT = ŮT ∪ ∂ UT , with

ŮT =
{
u, du ≤ T

}
and ∂ UT =

{
u, bu ≤ T < du

}

We observe {ζTu and/or ξTu , u ∈ UT } where ζTu = min{du, T } − bu, and ξTu = ξu
if du ≤ T and the “size of u at time T ” otherwise. This induces a bias: small
lifetimes are more often observed than large lifetimes.

We are able to charaterise the optimal (in a min-max sense) rate of convergence
for the branching rate z ❀ B(z) in two separate cases: 1) from genealogical data
I when B = B(x) depends on the size x of the cell only, or 2) from the more chal-
lenging case of temporal data II but in the mathematically simpler model when
B = B(a) depends on the age a of the cell only (recovering B(a) from genealogi-
cal data I becomes irrelevant since the resulting statistical model is equivalent to
density estimation).

Estimation of the size dependent B(x) from observation scheme I. Each cell grows
according to the simple deterministic evolution dX(t) = τX(t)dt where τ is the
common growth rate of the population. After division according to the branching
rate B(X(t)), each cell splits into two offsprings with the same size. We thus
have P(ζu ∈ [t, t + dt] |ζu ≥ t, ξu = x) = B(xeτt)dt, from which we obtain the
density of the lifetime of the parent ζu− conditional on its size at birth ξu− = x:

t❀ B(xeτt) exp
(
−
∫ t
0
B(xeτs)ds

)
. Using 2 ξu = ξu− exp

(
τζu−

)
, we further infer

P
(
ξu ∈ dx′

∣∣ ξu− = x
)

=
B(2x′)

τx′
1{x′≥x/2} exp

(
−
∫ x′

x/2

B(2s)
τs ds

)
dx′.

We obtain a simple an explicit representation for the transition kernel PB
(
x, dx′) =

P
(
ξu ∈ dx′

∣∣ ξu− = x
)
. Under appropriate conditions on B, the Markov chain

associated to PB on (0,∞) is geometrically ergodic; in particular, there exists a
unique invariant probability νB(dx) = νB(x)dx on [0,∞). Expanding the equation
νBPB = νB, one can easily prove that

νB(y) =
B(2y)

τy
PνB

(
ξu− ≤ 2y, ξu ≥ y

)
=
B(2y)

τy

∫ 2y

y

νB(x)dx

which yields a strategy for estimating B(x) by recovering νB(x/2) by kernel esti-
mation and

∫ x
x/2

νB(z)dz by empirical mean. Under appropriate assumptions on

the ergodicity of the model that can be specified over an appropriate function class
for B, the s-Hölder function x❀ B(x) can be recovered in squared-error loss over
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nontrivial compact intervals in (0,∞) with the (normalised) rate n−s/(2s+1) and
this rate is optimal in a minimax sense. The precise statements and assumptions
are developed in [1].

Estimation of the age dependent B(a) from observation scheme II. In that set-
ting, we have P(ζu ∈ [a, a + da] |ζu ≥ a) = B(a)da. Let fB(a) = B(a) exp

(
−∫∞

0
B(s)ds

)
. We have a law of large numbers

1

|ŮT |
∑

u∈ŮT

g(ζu)
P→ 2

∫ ∞

0

g(a)eλBafB(a)da, T → ∞

for an appropriate test function g, where λB is the Malthus parameter of the
model, that governs (for instance) the size of the population in the following sense:

E[|ŮT |] ∼ κBe
λBT as T → ∞, for some constant κB > 0. The convergence is ap-

pended with the expected rate eλBT/2 uniformly in B belonging to an appropriate
function class. Using data from ∂ UT , it is then possible to estimate λB with the
rate eλBT/2 as well. This yields a strategy for recovering B(a) by picking g as a
weighted (random) kernel estimator. Under appropriate assumptions that can be
specified over an explicit class of functions B, the s-Hölder function a❀ B(a) can
be recovered in squared-error loss over nontrivial compact intervals in (0,∞) with
the (normalised) rate e−sλBT/(2s+1) and this rate is optimal in a minimax sense.
The precise statements and assumptions are developed in [4].

Open questions, future research. A formal link can be made rigorous between
the above statistical model and the analysis of the transport-fragmentation equa-
tion. In the size-dependent model, it is well known (see for instance [5]) that the
evolution n(t, x) of the number of cells of size x alive at time t solves the PDE

∂tn(t, x) + ∂x
(
τxn(t, x)

)
+B(x)n(t, x) = 4B(2x)n(t, 2x),

with initial condition n(t, x = 0) = 0, t > 0 and an appropriate initial condition
n(0, x) for x ≥ 0. By renormalising the equation and approximating its solution by
a steady state n(t, x) = eλBtNB(x), where NB(x) denotes the probability density
of a “typical” cell alive at time t and λB is the Malthus parameter of the model, it
is possible to define a proxy statistical experiment mimicking data from ∂ UT (cells
alive at time t) in which x❀ B(x) can estimated via an inverse problem of order
1, see [3, 2]. The extension of the approach in the simple age-dependent model of
[4] to a size-dependent model suggests a strategy for proving in full generality the
results of the proxy model, with the hope to establish that the optimal rate from
data ŮT is indeed e−sλBT/(2s+3), as suggested by the studies [3, 2].
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Likelihood ratios for eigenvalues in spiked multivariate models

Iain M. Johnstone

(joint work with Prathapa Dharmawansa, Alexei Onatski)

It is just over 50 years since James’ 1964 paper on the distribution of matrix
variates and latent roots, in which he gave a remarkable classification of many
of the eigenvalue distribution problems of multivariate statistics. We revisit the
classification, now from the viewpoint of high dimensional models and low rank
departures from the usual null hypotheses.

We consider spiked models representing each of the five classes of multivariate
statistical problems identified by James [1]. For each of the models, we describe
the phase transition of the largest eigenvalue, and derive the asymptotic behavior
of the likelihood ratios that correspond to null and alternative hypotheses about
sub- and super-critical spikes. We find that the statistical experiment of observing
the eigenvalues in the super-critical regime, parameterized by local deviations of
the spike from its value under the null, converges to a simple Gaussian shift ex-
periment, and therefore, the best test about a single super-critical spike is based
on the largest eigenvalue only. Our findings for the sub-critical regime are totally
different. In that regime, the experiment of observing the eigenvalues converges to
a Gaussian sequence experiment, and no optimal test about a sub- critical spike is
available. We derive the asymptotic power envelopes for such tests. The current
state of this work in progress is described in manuscripts [2, 3].
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Change-point analysis of volatility

Mathias Vetter

(joint work with Markus Bibinger, Moritz Jirak)

Suppose one observes a continuous Itô semi-martingale, i.e. a time-continuous
stochastic process of the form

Xt = X0 +

∫ t

0

as ds+

∫ t

0

σs dWs ,

with a standard Brownian motion W and adapted drift and volatility processes
a and σ. In the situation of high-frequency asymptotics, in which the process is
recorded at discrete regular times i∆n with a mesh n−1 = ∆n → 0, we are inter-
ested in inference on the smoothness of the underlying volatility process. Central
for the analysis in this talk is to check whether jumps occur or whether paths be-
come rougher after a certain point in time. Thus, change-point techniques become
important.

We focus on volatilities which are almost surely locally bounded and strictly
positive adapted processes. For our testing problem we consider classes of squared
volatilities

Σ(a, L) =
{

(σ2
t (ω))t∈[0,1]

∣∣ sup
s,t∈[0,1],|s−t|<δ

∣∣σ2
t (ω) − σ2

s (ω)
∣∣ ≤ L(ω)δa

}
,

for an almost surely bounded random variable L. The regularity exponent a > 0
is the key parameter to describe the null hypothesis H0.

Our core idea is to estimate spot volatility over small time blocks and to idenfity
breaks from too large deviations between two successive local estimators. Precisely,
if we set ∆n

i X = Xi∆n −X(i−1)∆n
, we use

Xn,i =
n

kn

kn∑

j=1

(∆n
ikn+jX)2 , i = 0, . . . , ⌊n/kn⌋ − 1 ,

as a spot volatility estimator over [ikn∆n, (i + 1)kn∆n], where kn → ∞ is an
auxiliary sequence. Then we consider

Vn = max
i=0,...,⌊n/kn⌋−2

|Xn,i/Xn,i+1 − 1| ,

measuring the largest deviation of ratios of spot volatility estimators to one, as well
as an analogous statistic V ∗

n computed over all overlapping blocks of kn increments.
Under mild assumptions on the processes as well as a certain growth condition on
kn which depends on a, we are able to prove convergence in distribution of a
rescaled version of Vn (and its analogue V ∗

n ) to a Gumbel distribution, utilizing
a result from [3]. Using this theorem, an asymptotic level α test for changes in
the volatility is readily obtained. In case of jumps in the price process X and
under further conditions, a similar result is obtained for truncated spot volatility
estimators following [2].

On the other hand, we are interested in detection bounds on changes in the
smoothness. Suppose that the volatility at time θ either has a jump of absolute
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size larger than bn or that its smoothness drops to a
′ on an interval at least of

length b
1/a
n . In the spirit of [1] we are interested in minimax bounds on bn, i.e. in

finding the smallest order of bn such that

lim
n→∞

inf
ψ
γψ
(
a, bn

)
= 0

holds, where ψ is a test and γψ
(
a, bn

)
denotes the sum of the supremum over the

error of the first kind in case σ2 is a smooth and the supremum of the error of the
second kind in case the respective alternative holds. In both cases,

bn ∼
(
n/ log(n)

)− a

2a+1

is proven to be the minimax bound.
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High-dimensional robust regression

Po-Ling Loh

We present results for high-dimensional linear regression using robustM -estimators
with a regularization term. We show that when the derivative of the loss function
is bounded, our estimators are robust with respect to heavy-tailed noise distri-

butions and outliers in the response variables, with the usual O
(√

k log p
n

)
rates

for high-dimensional statistical estimation. Our results continue a line of recent
work concerning local optima of nonconvex M -estimators with possibly noncon-
vex penalties, where we adapt the theory to settings where the loss function only
satisfies a form of restricted strong convexity within a local neighborhood. We
also discuss second-order results concerning the asymptotic normality of our esti-
mators, and provide a two-step M -estimation algorithm for obtaining statistically
efficient solutions within the local region.
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Limit theorems for stationary increments Lévy driven moving average
processes

Mark Podolskij

(joint work with Andreas Basse-O’Connor, Raphaël Lachièze-Rey)

In this talk we present some new limit theorems for power variation of kth or-
der increments of stationary increments Lévy driven moving averages. In this
infill sampling setting, the asymptotic theory gives very surprising results, which
(partially) have no counterpart in the theory of discrete moving averages.

We consider a stationary increments Lévy moving average process

Xt = X0 +

∫ t

−∞
{g(t− s) − g0(−s)}dLs,

where L is a pure jump Lévy process and the function g is assumed to be of the
form

g(x) = xαf(x), α > 0,

with f : R+ → R being a smooth quickly decaying function with f(0) 6= 0. Next,
we define the kth order differences of X via

∆n
i,kX :=

k∑

j=0

(−1)j
(
k

j

)
X(i−j)/n.

For instance, ∆n
i,1X = Xi/n−X(i−1)/n and ∆n

i,2X = Xi/n− 2X(i−1)/n +X(i−2)/n.
The power variation of kth order differences of X is given by the statistic

V (X, p, k)n :=

n∑

i=k

|∆n
i,kX |p.

The Blumenthal-Getoor index of L is playing an important role in the description
of the first order asymptotic results for the statistic V (X, p, k)n. We recall that
the Blumenthal-Getoor index β of L is defined via

β := inf
{
r ≥ 0 :

∫ 1

−1

|x|rν(dx) <∞
}

= inf
{
r ≥ 0 :

∑

s∈[0,1]

|∆Ls|r <∞
}
.

For instance, a ρ-stable Lévy process with ρ ∈ (0, 2) has the Blumenthal-Getoor
index ρ. Our first theorem comprise the first order asymptotic theory for power
variation V (X, p, k)n.

Theorem: Under certain differentiability and integrability conditions on the ker-
nel function g we obtain the following results:

(i) When α ∈ (0, k − 1/p) and p > β, we obtain the stable convergence

nαpV (X, p, k)n
dst−→ |f(0)|p

∑

m: Tm∈[0,1]

|∆LTm |p
( ∞∑

l=k

|hk(l + Um)|p
)
,
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where (Tm) are jump times of L, (Um)m≥1 is a sequence of iid U([0, 1])-
distributed random variables independent of L and the function hk is de-
fined via

hk(x) :=

k∑

j=0

(−1)j
(
k

j

)
(x− j)α+.

(ii) Assume that L is a symmetric β-stable process with β ∈ (0, 2). When
α ∈ (0, k − 1/β) and p < β, we obtain

np(α+1/β)−1V (X, p, k)n
P−→ cp,

where cp are certain positive constants.
(iii) When α > k − 1/max(p, β) and p ≥ 1 we deduce

nkp−1V (X, p, k)n
P−→
∫ 1

0

|F (k)
s |pds, F (k)

s =

∫ s

−∞
g(k)(s− u)dLu.

We remark that the above limit theorem essentially comprises all possible cases
with an exception of critical cases α = k − 1/p, α = k − 1/β and p = β. We
also notice that our asymptotic results uniquely identify the parameters α and β.
We may apply our limit theorem to construct statistical estimates of α and β as

follows. Define the statistic Sα,β(p, k)n := − log V (X,p,k)n
logn . Then it holds that

Sα,β(p, k)n
P−→ Sα,β(p, k) :=





αp : α < k − 1/p, p > β

p(α+ 1/β) − 1 : α < k − 1/β, p < β

kp− 1 : α > k − 1/max(p, β)

Notice that the limit Sα,β(p, k) is a piecewise linear function in p. For this reason
a natural estimator of (α, β) is given via

(α̂, β̂) := argmin(α,β)

k̄∑

k=1

∫ p̄(k)

0

(Sα,β(p, k)n − Sα,β(p, k))
2
dp,

where the integral needs to be discretised for practical applications. Finally, there
exists a weak limit theory associated to case (ii) of the above theorem. We refer
to [1] for more details.
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Asymptotic equivalence for regression under dependent noise

Johannes Schmidt-Hieber

Consider the model Y = (Y1,n, . . . , Yn,n) with

Yi,n = f
(
i
n

)
+NH

i , i = 1, . . . , n,(1)

and (NH
i )i denotes a fractional Gaussian noise process (fGN) with Hurst index

H ∈ (0, 1), that is, a centered Gaussian process with autocovariance function
k 7→ 1

2 (|k+ 1|2H− 2|k|2H + |k− 1|2H). The different choices for H capture possible
behavior of dependent data. For H > 1/2, fGN exhibits long-range dependence;
for H < 1/2, the process has many negative correlations leading to cancellation
of the noise with a faster rate than in the Central Limit Theorem; in the special
case H = 1/2, fGN is just i.i.d. Gaussian white noise.

This model is inconvenient to work with due to the discrete design and the
dependence of the errors. Working with the likelihood becomes very challenging
as it involves the inverse covariance matrix for which no good approximations are
known. Thus, even simple questions such as efficiency for constant f turn out
to be very difficult. It has therefore been suggested in [2] to replace the discrete
model by a continuous version, where we observe the path (Yt)t∈[0,1] with

Yt =

∫ t

0

f(u)du+ nH−1BHt , t ∈ [0, 1](2)

and (BHt )t a fractional Brownian motion, that is, a Gaussian process with covari-
ance function K(s, t) := Cov(BHs , B

H
t ) = 1

2 (|s|2H + |t|2H − |t − s|2H). Using the
partial sum process of the observations (1), the closeness of the models can be
motivated.

We discuss whether these models are asymptotically equivalent in the sense
of Le Cam. To describe the approximation quality, we make heavily use of the
geometry induced by the fBM through its uniquely defined reproducing kernel
Hilbert space (RKHS), which in the following will be denoted by H. As a first
result, we obtain that asymptotic equivalence holds for the approximation of (1)
by (2) with parameter space Θ, provided that

sup
f∈Θ

inf
(α1,...,αn)t∈Rn

∥∥
∫ ·

0

f(u)du−
n∑

j=1

αjK
(
·, jn
)∥∥

H
= o(nH−1)(3)

and that the functions f can be approximated by step functions in L2[0, 1] with rate
o(n−1 ∧ n2H−2). Thus, the question of asymptotic equivalence can be reduced to
two approximation conditions. The key step in the proof is to show that given ob-
servations (1), one can construct a path which is asymptotically indistinguishable
from (2). Although the partial sum process seems to be natural for interpolating
discrete data it leads to intractable problems. Instead, for a well chosen vector
(x1, . . . , xn), one has to use the projection property of the interpolation function

t 7→ E[BHt |BHℓ/n = xℓ, ℓ = 1, . . . , n], t ∈ [0, 1]

in order to arrive at (3).
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Unfortunately, it is close to impossible to check with elementary tools whether
the approximation condition (3) holds for given Θ. Indeed, the function t 7→ K(t, s)
does not concentrate on a small interval and has low Hölder smoothness due to
the irregular behavior at t = 0 and t = s. Moreover, except for H = 1

2 , we have
no clear understanding of the RKHS norm ‖ · ‖H. With the spectral representation
of the RKHS, we can, however, rewrite (3). Denote by F the Fourier transform
and write ‖ · ‖hSob(γ) for the norm of the homogeneous Sobolev space with index
γ. Suppose that for any f ∈ Θ there exists a function g with support on [0, 1] such
that

f = F−1
(
| · |1−2HF(g)

)∣∣
[0,1]

(4)

and

sup
f∈Θ

inf
(β1,...,βn)t∈Rn

∥∥g −
n∑

j=1

βjI( j−1
n ,

j
n

](·)
∥∥
hSob( 1

2−H)
= o(nH−1).(5)

This condition implies (3). Approximation by step functions in the Sobolev norm
is feasible. The difficulty is in (4). There is no obvious way to invert the Fourier
multiplier because of the support restrictions on g and f. One way to overcome
this is to introduce a space of smooth functions g such that (5) holds and to
declare the parameter space Θ as being all functions that are of the form (4).
Nevertheless, a much better characterization can be obtained using the following
explicit solutions of the Fourier multiplier representation, which are a consequence
of the fundamental results in [1]. Denote by . . . < ω−1 < ω0 := 0 < ω1 < . . . the
ordered, real roots of the Bessel function of the first kind and index 1 − H. For
any integer k, define

s 7→ gk(s) := I(0,1)(s)∂s

∫ s

0

ei2ωk(s−u)(u − u2)1/2−Hdu,

and fk = e2iωk·. Then, (fk, gk) are (up to constants) solutions to (4). Using
the theory of non-harmonic Fourier series, it follows that (fk)k and (gk)k are bi-
orthogonal Riesz bases of L2[0, 1]. In particular, any f ∈ L2[0, 1] has a unique
representation as non-harmonic Fourier series f =

∑
k θke

2iωk·. It is natural to
consider then Sobolev balls

Θ(α,R) =
{
f =

∑

k

θke
2iωk· :

∑

k

(1 + |k|)2α|θk|2 ≤ R2
}
.

For integer smoothness, explicit boundary conditions can be derived. Now, we are
able to state the main result.

Theorem 1. If H ≥ 1/2, then, asymptotic equivalence holds for Θ(α,R) if and
only if α > 1/2. If H ∈ (14 ,

1
2 ), then, asymptotic equivalence holds if α > (1 −

H)/(H + 1/2) +H − 1/2 and it fails to hold if α < 1 −H.

Thus, for long-range dependence we have found sharp conditions. In the case
1/4 < H < 1/2, we have a small gap between the upper and lower bound and need
an additional symmetry condition (cf. [3], Theorem 5). What is interesting is that
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in this case the boundary is not at 1/2 as typical for asymptotic equivalence. For
H ≤ 1/4, we have some heuristic arguments indicating that asymptotic equivalence
cannot hold in this case.

From the theory, we can immediately deduce a sequence space representation
of the continuous regression model (2), which is of the form

Zk = θk + σkn
H−1ǫk, ǫk

i.i.d.∼ N (0, 1), k ∈ Z,

where θk are the coefficients in the non-harmonic Fourier representation of f and
σk ≍ |k|1/2−H . The growth of σk and the noise level nH−1 completely characterize
the convergence rates that can be obtained for estimation of f or functionals of it.
Moreover, in the continuous/sequence space model, construction of estimators are
much more straightforward than in the discrete regression model with dependent
noise.
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Regression and the Offset Rademacher Complexity

Alexander Rakhlin

(joint work with T. Liang and K. Sridharan)

We consider regression with square loss and general classes of functions without the
boundedness assumption. We introduce a notion of offset Rademacher complexity
that provides a transparent way to study localization both in expectation and in
high probability. Given x1, . . . , xn ∈ X , the offset Rademacher process is defined
as a stochastic process

f 7→ 1

n

n∑

t=1

ǫtf(xt) − cf(xt)
2

indexed by f ∈ F ⊆ RX . Here c ≥ 0 and ǫt’s are independent Rademacher random
variables. Given a class F of functions, as well as data {(Xi, Yi)}ni=1 consider the
two-step estimator

ĝ = argmin
f∈F

Ê(f(X) − Y )2, f̂ = argmin
f∈star(F ,ĝ)

Ê(f(X) − Y )2

where Ê is the empirical expectation and star(F , ĝ) denotes the star hull of F
around ĝ. For any (possibly non-convex) class F , the excess loss of this two-step
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estimator is shown to be upper bounded by the offset complexity through a novel
geometric Pythagorean-like inequality

‖h− Y ‖2n − ‖f̂ − Y ‖2n ≥ c · ‖f̂ − h‖2n
for any h ∈ F and c = 1/18. Here ‖ · ‖n is the empirical distance.

In the convex case, the estimator reduces to an empirical risk minimizer. The
method recovers the results of (Rakhlin, Sridharan, Tsybakov ’15) for the bounded
case while also providing guarantees without the boundedness assumption.

Adaptive confidence bands for Markov chains and diffusions:
Estimating the invariant measure and the drift

Jakob Söhl

(joint work with Mathias Trabs)

We consider the problem of nonparametric drift estimation for a diffusion process
X following the equation dXt = b(Xt)dt + dWt, where W is a Brownian mo-
tion. We base our estimation method on low-frequency observations X0, X∆, . . . ,
X(n−1)∆ for n→ ∞ and with ∆ > 0 fixed. First the invariant density is estimated
by a wavelet projection estimator and subsequently the drift function by a plug-in
approach. The low-frequency observations follow a Markov chain obtained from
restricting the diffusion to the discrete observation times. So we consider the set-
ting of geometrically ergodic Harris-recurrent Markov chains. The first result is a
functional central limit theorem in a multi-scale space for the estimator of the in-
variant density. This is used to construct confidence bands with L∞-diameters that
shrink at a (logn/n)s/(2s+1)-rate (up to undersmoothing), where s is the Hölder
smoothness of the invariant density. We apply our results to the diffusion model,
where in addition we prove a functional central limit theorem for the drift estima-
tor and construct confidence bands for the drift. In order to construct confidence
bands that adapt to the unknown smoothness of the drift function we assume
a self-similarity assumption. Using Lepski’s method we estimate the projection
level that balances bias term and the stochastic term. This leads to an estimator
of the smoothness of the drift function. We conclude with adaptive confidence
bands for the drift whose L∞-diameters shrink at a (log n/n)s/(2s+3)-rate (up to
undersmoothing), where s is the Hölder smoothness of the drift function. Our
proofs rely on the central limit theorem for Markov chains and on a concentration
inequality for Markov chains recently obtained by Adamczak and Bednorz [1].
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Inference for Random Satisfiability Problems

Quentin Berthet

We consider high-dimensional inference problems on various random satisfiability
problems, mainly the detection and estimation of planted solutions. We show that
the study of these statistical problems is closely related to the properties of random
instances. We will also describe the algorithmic aspects of these problems, giving
positive and negative results pertaining to the performance of computationally
efficient procedures.

Tail index estimation, concentration and adaptivity

Stéphane Boucheron

(joint work with Maud Thomas)

We present an adaptive version of the Hill estimator based on Lespki’s model selec-
tion method. This simple data-driven index selection method is shown to satisfy
an oracle inequality and is checked to achieve the lower bound recently derived
by Carpentier and Kim. In order to establish the oracle inequality, we derive
non-asymptotic variance bounds and concentration inequalities for Hill estima-
tors. These concentration inequalities are derived from Talagrand’s concentration
inequality for smooth functions of independent exponentially distributed random
variables combined with three tools of Extreme Value Theory: the quantile trans-
form, Karamata’s representation of slowly varying functions, and Rényi’s charac-
terisation of the order statistics of exponential samples. The performance of this
computationally and conceptually simple method is illustrated using Monte-Carlo
simulations.
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On Pólya tree posterior densities

Ismaël Castillo

The first purpose of this talk is to investigate convergence of the Bayesian posterior
distribution when a Pólya tree is used as a prior distribution on density functions.
If posterior consistency has been established in a weak or Hellinger sense for this
class of priors [1], [7], no rate-result is available in the literature so far. Another
purpose is to show that this class of priors naturally illustrates the multiscale
framework for analysis of posterior distributions recently introduced in a series of
papers [2], [3], [4]. In particular, we investigate posterior limiting shape results
via a nonparametric Bernstein-von Mises-type result.

Let E := ∪l≥0{0, 1}l ∪ {∅} be the set of finite binary sequences. If ε ∈ {0, 1}l,
we write |ε| = l. Let us consider the collection of regular dyadic partitions of [0, 1].
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Set I∅ = [0, 1) and, for any ε ∈ E such that ε = ε(l, k) is the expression of length
l in base 1/2 of k2−l, set

Iε :=

[
k

2l
,
k + 1

2l

)
.

A random probability measure P follows a Pólya tree distribution PT (A) with
parameters A = {αε, ε ∈ E} on the sequence of partitions I = {(Iε)ε: |ε|=l, l ≥ 0}
if there exist random variables 0 ≤ Yε ≤ 1 such that,

1. the variables Yε0 for ε ∈ E are mutually independent and Yε0 follows a
Beta(αε0, αε1) distribution.

2. for any ε ∈ E , we have Yε1 = 1 − Yε0
3. for any l ≥ 0 and ε = ε1 . . . εl ∈ {0, 1}l, we have

P (Iε) =

l∏

j=1

Yε1...εj .

A typical choice of parameters assumes that αε only depends on the depth |ε| of
the tree at ε, that is αε = a|ε|, for some sequence (al)l≥0. If

∑
a−1
l <∞, it can be

shown that the Pólya tree law produces random distributions that are Lebesgue-
absolutely continuous, and hence can be used as prior on density functions.

Posterior convergence in L∞-norm. A first main result in [5] is as follows.

Theorem 1. Let X = (X1, . . . , Xn) be i.i.d. from law P0 with density f0. Let f0
belong to Cα[0, 1], for α ∈ (0, 1] and suppose f0 is bounded away from 0 on [0, 1].
Let Π be a Pólya tree with parameters A = {αε, ε ∈ E} chosen as αε = a|ε| ∨ 8
for any ε ∈ E, with

al = l22lα, l ≥ 0.

Then as n→ ∞, for any Mn → ∞, it holds

Enf0Π[f : ‖f − f0‖∞ ≤Mnε
∗
n,α |X ] → 1.

The class of density Pólya tree prior distributions thus provides an example of
canonical – not dependent on n – prior, for which convergence of the posterior
distribution in the supremum norm occurs at the minimax rate.

Limiting shape of the posterior distribution. Let w := (wl)l≥0 be such

that wl/
√
l ↑ ∞. Let us define as in [4] the multiscale sequence space M0 = M0(w)

(1) M0 =
{
x = {xlk} : lim

l→∞
max
k

|xlk|
wl

= 0
}
,

equipped with the norm ‖x‖lk := supl maxk |xlk|/wl. It is a separable Banach
space. A function f is said to belong to M0 if the sequence of its wavelet coeffi-
cients 〈f, ψlk〉 over the Haar basis {ψlk} on [0, 1] belongs to M0.

Now we define a limiting process. For P a given probability distribution on
[0, 1], let GP be a P -white bridge process, the Gaussian process indexed by the
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Hilbert space L2(P ) ≡ {f : [0, 1] → R :
∫ 1

0
f2dP <∞} with covariance function

E [GP (g)GP (h)] =

∫ 1

0

(g − Pg)(h− Ph)dP.

The process GP defines a tight Borel Gaussian variable in M0.
Let Pn denote the empirical measure associated to the observed data X . Let

Tn be a smoothed version of Pn defined by, for Ln given in (3) below,

(2) 〈Tn, ψlk〉 = 〈Pn, ψlk〉1ll≤Ln .

For a given δ > 0, let Ln be the largest integer such that

(3) 2Ln ≤ n
1

2δ+1 .

Let βM0(w) denote the bounded-Lipschitz metric on M0(w).

Theorem 2. Let X = (X1, . . . , Xn) be i.i.d. from law P0 with density f0. Let
f0 ∈ Cα[0, 1], for α ∈ (0, 1] and suppose f0 is bounded away from 0 on [0, 1]. Let
Π be a Pólya tree PT(A) with parameters A = {al, l ≥ 1}, where al = 22lδ ∨ 8 for
some δ > 0.

Let τTn : f → √
n(f − Tn) and let w = (wl)l be a weighting sequence such that

wl/
√
l ↑ ∞. For any parameters α ∈ (0, 1], δ ≤ α, if Tn is given by (2), as n→ ∞,

βM0(w)(Π(· |X) ◦ τ−1
Tn
,GP0) →P0 0.

This is a nonparametric Bernstein-von Mises result in the space M0(w) for
density estimation, which is obtained for a class of non-n-dependent priors.

Applications. A natural use of Theorem 2 is the derivation of Bernstein-von
Mises theorems for semiparametric functionals via the continuous mapping theo-
rem. A prototypical example is the map f →

∫ ·
0 f = F (·), leading to a Donsker-

type result for the distribution function F , see [5] for a statement, paralleling Lo’s
[6] result for the Dirichlet process. Other smooth functionals can be considered as
well, as in [2], [4]. Another important application, see [4], is the construction of
confident credible bands.
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Approximations of Functions on the Sphere

Friedrich Götze

(joint work with S. Bobkov, G. Chistyakov, A. Naumov, V. Ulyanov)

We investigate optimal Poincaré inequalities for classes of functions on the sphere
Sn−1 with respect to the uniform measure σn−1 which are orthogonal to the class
of restrictions of affine functions to Sn−1, say A. Let ||f ′′(θ)||HS denote the
Hilbert-Schmidt norm of the 2nd order derivative, say f ′′(θ), of f with respect to
the tangent space at θ. We prove inequalities with optimal constant of type

∫
f2 dσn−1 ≤ 1

2n(n+ 2)

∫
‖f ′′
S‖2HS dσn−1, f ∈ A⊥,

For ||f ′′
S (θ)|| ≤ 1 this leads to optimal exponential bounds of type

∫
exp

{n− 1

2
|f |
}
dσn−1 ≤ exp

{n− 1

n+ 2

∫
‖f ′′
S‖2HS dσn−1

}
.

These results can be extended to Euclidean derivatives 2nd order derivative f ′′

of functions defined on a neighborhood of Sn−1 in Rn with similar constants of
asymptotic optimal size. More precisely, for ”almost” orthogonal functions to A,

i.e. ||
∫
θf(θ)dσn−1(θ)||2 ≤ b

1/2
0 n−1 and

∫
fdσn−1 = 0, we obtain for ‖f ′′−aIn‖ ≤

1 and
∫
‖f ′′ − aIn‖2HS dσn−1 ≤ b2

∫
exp

{ n− 1

2(1 + b20 + 4 b2)
|f |
}
dσn−1 ≤ 2.

This is joint work with S. Bobkov and A. Chistyakov, [1].
This result applies in particular to the concentration of measure phenomenon
for distribution of weighted empirical processes en(θ,X) :=

∑n
j=1 θj(δXj − P )

based on i.i.d. observations Xj ∼ P with weights θ taken from the sphere, like
hn(θ) := EH(en(θ,X)), θ ∈ Sn−1, where H denotes a smooth functional of en.
The class of smooth symmetric functions on Rn arising in this context can be
described by the properties

hn(θπ(1), ..., θπ(n)) = hn(θ1, ..., θn) for all permutations π,(1)

hn+1(θ1, ..., θn, 0) = hn(θ1, ..., θn);(2)

∂

∂θj
hn(θ1, ..., θj , ..., θn)

∣∣∣∣
θj=0

= 0 for all j = 1, ..., n;(3)

Let θd :=
∑n

j=1 θ
d
j , |θ|d :=

∑n
j=1 |θj |d, d ≥ 1 denote the d-th power sums.

Assuming that hn(·), n ≥ 1, satisfies (1)–(3) and

(4) |Dαhn(θ)| ≤ B,

for all θ, some B > 0, α = (α1, ..., αr), r ≤ 3 and αj ≥ 2,
∑r
j=1(αj − 2) ≤ 1.

there is a function h∞(0; θ2) such that the following ”Berry-Esseen” type bound
holds

|hn(θ) − h∞(0; θ2)| ≤ c · B · max((θ2)1/2, (θ2)3/2)| θ|3, c > 0 absolute.
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Moreover, assuming condition (4) the functions

h∞(λ1, ..., λs;λ
2) := lim

k→∞
hk+s

(
λ1, ..., λs,

λ√
k
, ...,

λ√
k

)
.

exist. Assume for hn(θ), n ≥ 1, conditions (1)–(3) and (4) with s ≥ 3, as well
as uniform derivatives up to

∑r
j=1(αj − 2) ≤ s − 2, αj ≥ 2. Then we have for

θ ∈ Sn−1 the ”Edgeworth”-type expansion

hn(θ) = h∞(0; 1) +
s−3∑

l=1

Pl(θ
∗κ∗)h∞(λ1, ..., λs; 1)

∣∣
λ1=...=λs=0

+Rs,

where |Rs| ≤ cs·B ·|θ|s, cs > 0, where ”Edgeworth”-polynomialsPl of differential
operators (at zero) are used. For example the polynomials P1 and P2 are given by

P1(θ∗D∗) =
1

6
θ3D3, Dr :=

∂r

∂λr
, DrDl :=

∂r

∂λr1

∂l

∂λl2

P2(θ∗D∗) =
1

24
θ4(D4 − 3D2D2) +

1

72
(θ3)2D3D3.

This is joint work with A. Naumov and V. Ulyanov, [2]. For further applications
of the scheme to expansions in the ”CLT” in Free Probability, see [3].
For symmetric functions of such type restricted to the sphere, we have, assuming
conditions (1)–(3) and (4) with s = 4, that for θ ∈ Sn−1

hn(θ) = h∞(0; 1) +
1

6
θ3D3h∞(λ; 1)|λ=0 +O(θ4).

Here, a 2nd order concentration of measure phenomenon for fn(θ) := hn(θ) −∫
hndσn−1 holds. This means that there exists c > 0 depending on B such that

for n ≥ n0 ∫
exp

{n− 1

c
|fn|

}
dσn−1 ≤ 2.

.
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Uncertainty quantification for high dimensional linear problems

Alexandra Carpentier

(joint work with Jens Eisert, David Gross, and Richard Nickl)

We consider the following prototypical high dimensional model. We observe noisy
inner products

Yi = 〈X i, θ〉 + εi, i = 1, . . . , n;

The noise is, e.g., εi ∼i.i.d. N(0, σ2), σ > 0 and 〈., .〉 is a scalar product in the
space where the problem is posed. We consider two settings for this model (and
we use unified notations in order to reduce the notational complexity).

• The “vector” model, which is the classic linear regression model in dimen-
sion p > 0. In this setting, the X i ∈ Rp are sensing vectors, θ ∈ Rp is the
unknown parameter, and 〈a, b〉 =

∑p
j=1 ajbj is the classical scalar product

in l2, with associated norm ‖.‖ (which is the l2 norm). In this setting the
number n of observations is small compared to dimension p but the vector
θ is k-sparse and we write that θ ∈ M(k).

• The “matrix” model, which is a linear regression model where the param-
eters and the design elements are matrices of dimension d > 0. In this
setting, the X i ∈ Cd×d are sensing matrices, θ ∈ Cd×d is the unknown
parameter, and 〈A,B〉 = tr(A∗B) is the trace scalar product, with associ-
ated norm ‖.‖ (which is the Frobenius norm). In this setting the number
n of observations is small compared to dimension d2 but the vector θ is of
low rank k and we write that θ ∈ M(k).

We consider two different design assumptions on the design elements (X i)i≤n.

• The design is Gaussian and i.i.d.
• In the matrix model, we also consider Pauli random design, which is the

one considered in quantum tomography. For this design, we use the quan-
tum constraint, i.e.

θ ∈ {u ∈ C
d×d, u � 0, tr(u) = 1}.

For these designs, there exists an estimator θ̃ of θ that satisfies the following
statements uniformly over θ ∈ M(k) and with high probability.

• Vector model : if k log(p) . n : ‖θ̃ − θ‖ .
√

k log p
n := r(k).

• Matrix model : if kd(log d)γ . n : ‖θ̃ − θ‖ .
√

kd
n := r(k).

Here the unified notation r(k) stands for the minimax optimal rate of estimation
in both models [3, 4].

The main problem that we aim at solving is on quantifying the uncertainty on
θ when the model M(k) is unknown, i.e. when k is unknown. More precisely, we
want that this error scales correctly with the unknown model k.

There are works on “local” quantification of the uncertainty [8, 12, 13, 6] in high
dimensional models but our objective is different. Our aim will be to construct
the following objects for a given k > 0.
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• An adaptive and honest confidence set for θ over M(k), i.e. a set Cn such
that for a given α > 0

inf
θ∈M(k)

Pθ(θ ∈ Cn) ≥ 1 − α and ∀k0 ≤ k, sup
θ∈M(k0)

Eθ|Cn| . r(k0),

where r(k0) is the k-minimax-optimal rate of estimation of θ in ‖.‖ norm.
• An adaptive certificate for θ over M(k), i.e. a stopping time and an asso-

ciated estimator (n̂, θ̃n̂) that satisfy for a given ǫ > 0

sup
θ∈M(k)

‖θ̃n̂ − θ‖ .whp ǫ and ∀k0 ≤ k, sup
θ∈M(k0)

n̂ .whp
m(k0)

ǫ2
,

where m(k0) is the model complexity for estimation (respectively m(k0) =
k0 log p for the vector model or m(k0) = k0d(log d)γ for the matrix model).

These two concepts are interesting because they aim at quantifying uncertainty
in ways that depend on the unknown model M(k0) to which θ belongs. They are
also linked : if adaptive certificates exist, then adaptive confidence sets exist. If
adaptive confidence sets exist for all n, then adaptive certificates exist.

[10] have proved that there are no adaptive confidence sets (and therefore no
adaptive certificates) in the vector model. This is not very surprising when one
considers the literature on non-parametric confidence sets that mainly consists of
negative results [9, 2, 11, 7, 1]. On the other hand [5] have proved that in the
matrix model, confidence sets and adaptive certificates exist.

This can seem surprising but it can be explained by the following testing argu-
ment. Consider, for k0 ≤ k, the testing problem

H0 : θ ∈ M(k0) vs H1 : θ ∈ M(k), ‖θ −M(k0)‖ > ρ,

for ρ > 0. Let ρ := ρ(k, k0) be the minimax-optimal rate of testing. The following
statements hold.

• If for n large enough, and for some k0 ≤ k, it holds that ρ(k, k0) ≫
r(k0), then adaptive and honest confidence sets, and therefore adaptive
certificates, do not exist. This is the case for the vector model with large
k, since a lower bound on ρ(k, k0) is

min
(√k log(p)

n
, n−1/4, p1/4

√
1

n

)
≫
√

log(p)

n
= r(1).

• If for any n and for any k0 ≤ k, it holds that ρ(k, k0) ≤ r(k0), then adaptive
and honest confidence sets and adaptive certificates do exist. This is the
case for the matrix model since an upper bound on ρ(k, k0) is

min
(
n−1/4,

√
d

n

)
+

√
k0d

n
≤
√
k0d

n
= r(k0).

This highlights a main difference between the sparsity constraint and the low
rank constraint. The sparsity constraint of the vector model induces a too radical
dimension reduction for confidence sets (and adaptive certificates) whereas the
dimension reduction induced by the low rank model is not too strict - the low
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rank model’s dimension is kd and is always larger than the square root of the full
dimension d2.

In the case of the vector model, we are also interested in constructing adaptive
and honest confidence sets in trace norm, since this norm is a meaningful con-
cept for quantum tomography in the context of quantum states distinguishability.
Without the quantum constraint, even in the case of Gaussian design, one can
prove that if k is large enough, adaptive and honest confidence sets do not ex-
ist, which highlights a fundamental difference when comparing with the results in
Frobenius norm. However, when one considers that the quantum constraint holds,
then it is possible to prove that adaptive and honest confidence sets exist. This
implies that for the trace norm that has a less regular geometry than the isotropic
Frobenius norm, a shape constraint is necessary for uncertainty quantification.

There are many open problems that remain to be solved in this area, in par-
ticular the construction of really practical trace norm confidence intervals, the
construction of trace norms certificates, the study of other confidence intervals in
other norms, and the study of alternative methods for confidence interval con-
struction like Bayesian methods of the Bootstrap.
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[12] S. Van de Geer, P. Bühlmann, Y. Ritov, and R. Dezeure, On asymptotically optimal confi-
dence regions and tests for high-dimensional models, The Annals of Statistics 42.3 (2014),
1166–1202.

[13] C.H. Zhang, and S. Zhang, Confidence intervals for low dimensional parameters in high
dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 76.1 (2014), 217–242.



Probabilistic Techniques in Modern Statistics 1477

On Hoeffding’s One-Sided Inequality

Emmanuel Rio

In this talk we will give two improvements of Theorem 3 in Hoeffding (1963)
for sums of independent random variables bounded on the right. The second
improvement, which deals with large values of the deviation, will then be used to
get additional results for sums of random variables with values in [0, 1].

Colored microstructure noise, irregular sampling, and estimation of
integrated volatility

Jean Jacod

(joint work with Yingying Li and Xinghua Zheng)

Our setting contains three basic ingredients.

1) An underlying one-dimensional Brownian semimartingale X :

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs,

with both processes bt and σt being themselves Itô semimartingales with locally
bounded characteristics (possibly with jumps), on some filtered probability space
(Ω,F , (Ft)t≥0,P).

2) At stage n, that is, for a given frequency of observations, the successive obser-
vations occur at times 0 = T (n, 0) < T (n, 1) < · · · for a sequence T (n, i) of finite
stopping times, and we set

Nn
t =

∑

i≥1

1{T (n,i)≤t}, ∆(n, i) = T (n, i) − T (n, i− i).

We suppose that, at stage n, the time lags ∆(n, i) are of the same order of magni-
tude ∆n for all i, where ∆n → 0 is a non observable sequence. More specifically,

(i) ∆nN
n
t

P−→ At :=
∫ t
0 αs ds, where αt is an Itô semimartingale with locally

bounded characteristics and αt > 0 and αt− > 0.

(ii) For all s, t > 0 the sequence ∆
1/2+ρ′

n

(
Nn
t − Nn

(t−s∆ρ′
n )+

)
is bounded in

probability, where ρ′ ∈ (0, 1/2).
(iii) There are a sequence τm of stopping times increasing to ∞, a sequence wm

of reals, and ρ > 1/4 and κ ≥ 8 ∨ 1
1−2ρ′ such that

T (n, i) ≤ τm ⇒
{ ∣∣E

(
αT (n,i)∆(n, i+ 1) | FT (n,i)

)
− ∆n

∣∣ ≤ wm∆1+ρ
n

E
(
|αT (n,i)∆(n, i+ 1)|κ | FT (n,i)

)
≤ wm∆κ

n.

This assumption accommodates regular sampling schemes, of course, and Poisson
schemes or modulated Poisson schemes and also modulated random walk schemes.

3) A microstructure noise, meaning that at time T (n, i) the observation is not
XT (n,i), but rather Y ni = XT (n,i) + εni , with a noise εni . We suppose that the noise
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can be realized as εni = γT (n,i) · χi, where γt is a nonnegative Itô semimartingale
with locally bounded characteristics and (χi)i∈Z is a stationary process, indepen-
dent of F∞ =

∨
t>0 Ft, centered with variance 1 and finite moments of all orders,

and which is v-polynomially ρ-mixing for some v > 3. We denote by r(m) the
autocovariance of (χi) (so r(0) = 1), and observe that

|r(m)| ≤ K

(|m| + 1)v
, so R =

∑

m∈Z

r(m) is well defined.

Our aim is to estimate CT =
∫ T
0
σ2
s ds, on the basis of the noisy observation

within a fixed time interval [0, T ]. When the noise is i.i.d., several methods can
be used, see e.g. [5], [3], [1] or [2], but they all introduce a typically strong bias
when the noise is colored. We show here how to take out this bias, using the
pre-averaging method plus some new estimators for the covariance r(m). This
necessitates to average the data over two windows of hn (for pre-averaging) and
kn (for estimating the noise) successive observations, with 2 ≤ kn < hn. For the
estimation of the asymptotic variance we need two other window sizes h′n and k′n.
We need hn → ∞, and the order of magnitude of kn, h

′
n, k

′
n is constrained by the

choice of hn, according to a rule given below.
The choice of these tuning parameter is rather subtle, and is in principle driven

by the unobserved “mean” time lag ∆n if we wish asymptotic rate-efficiency (the

efficient rate is 1/∆
1/4
n . A proxy for ∆n is 1/Nn

t , which is observable. However, in
practice the choice of hn, h

′
n, kn, k

′
n has to be determined by simulation studies, and

below we pick the following choice (where an ≍ bn means that 1/K ≤ an/bn ≤ K
for some constant K ≥ 1, and θ > 0 is a constant).

hn ∼ θ√
∆n

, h′n ≍ 1

∆η
n

with
1

2
< η <

3

4
, kn ≍ 1

∆
1/5
n

, k′n ≍ 1

∆
1/8
n

(once hn is chosen, this amounts to having h′n ≍ h2ηn and kn ≍ h
2/5
n and k′n ≍ h

1/4
n ).

For pre-averaging we need a weight (or, kernel) function g on R, which satisfies

g is continuous, piecewise C1 with a piecewise Lipschitz derivative g′,

s /∈ (0, 1) ⇒ g(s) = 0,
∫ 1

0 g(s)2ds > 0.

We associate with g and the sequence hn the following numbers (indexed by n ≥ 1
and i, j ∈ Z), and functions:

gni = g(i/hn), gni = gni+1 − gni
φnj = 1

hn

∑
i∈Z

gni g
n
i−j , φ

n

j = hn
∑

i∈Z
gni g

n
i−j

φ(s) =
∫
g(u)g(u− s) du, φ(s) =

∫
g′(u)g′(u− s) du

Φ00 =
∫ 1

0 φ(s)2 ds, Φ01 =
∫ 1

0 φ(s)φ(s) ds, Φ11 =
∫ 1

0 φ(s)2 ds.

In the simple case when g(x) = x
∧

(1 − x) for x ∈ (0, 1), we have

φ(0) =
1

12
, φ(0) = 1, Φ00 =

151

80640
, Φ01 =

1

96
, and Φ11 =

1

6
.
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For any process V we write V ni = VT (n,i), and also ∆n
i V = V ni − V ni−1 (so, for

example, ∆n
i X is the ith return), and ∆n

i Y = Y ni −Y ni−1 is the ith observed (noisy)
return. If V ni is any array of variables, we set

Ṽ ni =

hn−1∑

j=1

gnj ∆n
i+jV = −

hn−1∑

j=0

gnj V
n
i+j .

Below the function g is kept fixed, but we occasionally replace hn by h′n: in this

case, g′ni , g
′,
i φ

′n
j , φ

′n
j , Ṽ

′n
i . We also use the following simple averages:

V
n

i =
1

kn

kn−1∑

j=0

V ni+j , V
′n
i =

1

k′n

k′n−1∑

j=0

V ni+j .

Then for m = 0, . . . , kn we set

U(m)nt =

Nn
t −5kn∑

i=0

(Y ni − Y
n

i+2kn)(Y ni+m − Y
n

i+4kn).

We are now ready to exhibit our estimators for Ct:

Ĉnt =
1

hn φn0

Nn
t −hn∑

i=0

(Ỹ ni )2 − 1

h2n φ
n
0

k′n∑

m=−k′n

phi
n

m U(|m|)nt .

These estimators are consistent for estimating Ct, and enjoy a Central Limit
Theorem, for any fixed time t. However, to make the CLT feasible, we need con-
sistent estimators for the (conditional) variance. For this, with m,m′ = 0, . . . , kn
we set

U(m,m′)nt =
Nn

t −11kn∑
i=0

(Y ni − Y
n

i+2kn)(Y ni+m − Y
n

i+4kn)

(Y ni+6kn
− Y

n

i+8kn)(Y ni+m′+6kn
− Y

n

i+10kn)

V (m)nt =
Nn

t −h′

n−6kn∑
i=0

(Ỹ ′n
i )2

(
Y ni+h′

n+kn
− Y

n

i+h′

n+3kn

)(
Y ni+m+h′

n+kn
− Y

n

i+h′

n+5kn

)

V n,1t =

Nn
t −h′

n∑

i=0

(Ỹ ′n
i )4, V n,2t =

k′n∑

m=−k′n

V (|m|)nt , V n,3t =

k′n∑

m,m′=−k′n

U(|m|, |m′|)nt .

Finally we set

Σnt =
4

φ(0)2

( hn
h′2n

Φ00

3φ(0)2
V n,1t +

1

hnh′n

2Φ01

φ(0)
V n,2t +

1

h3n
Φ11V

n,3
t

)
.

With all this notation, and under all previous assumptions, we obtain that for

any t > 0 the sequence 1

∆
1/4
n

(Ĉnt − Ct) converges F∞-stably in law to a limiting

variable defined on an extension of the original space, and which is of the form
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Yt =
∫ t
0 βs dBs, where B is a standard Wiener process independent of F and βt is

the square-root of

β2
t =

4

φ(0)2

(
Φ00

θσ4
t

αt
+ 2Φ01

σ2
t γ

2
t

θ
R+ Φ11

γ4t αt
θ3

R2
)

and also 1√
∆n

Σnt converges in probability to
∫ t
0
β2
s ds.

Therefore, for any t > 0, the sequence (Ĉnt −Ct)/
√

Σnt converges stably in law
to an N (0, 1) variable, independent of F .

The last claim is free from the unknown sequence ∆n and allows us to construct
confidence intervals for Ct in a standard way.
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Approximation of spectra of integral operators by spectra of kernel
random matrices based on Markov chains.

Rados law Adamczak

(joint work with Witold Bednorz)

Consider a measurable space (X ,F) equipped with a probability measure π and let
h : X × X → R be a symmetric measurable kernel, square integrable with respect
to π ⊗ π. Let H be the associated integral operator

(1) Hf(x) =

∫

X
h(x, y)f(y)π(dy).

H is a symmetric Hilbert-Schmidt operator on L2(π) and with a little bit of am-
biguity we can identify its spectrum λ(H) with an element of ℓ2, the space of all
real square-summable sequences (in this abstract, whenever considering a finite-
dimensional operator, we append its spectrum with an infinite sequence of zeros).

In [9] Koltchinskii and Giné considered the problem of approximating λ(H) by
the spectrum of a random matrix Hn, given by

Hn =
1

n
((1 − δij)h(Xi, Xj))0≤i,j≤n−1,(2)
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where X0, X1, . . . is a sequence of i.i.d. random variables with law π and δij stands
for the Kronecker symbol. In particular they proved that∫

X×X
h2(x, y)π(dx)π(dy) <∞

is equivalent to the almost sure convergence

d2(λ(Hn), λ(H)) → 0,

where for x, y ∈ ℓ2,

δ2(x, y) = inf
σ

( ∞∑

i=0

(xi − yσ(i))
2
)1/2

(the infimum is taken over all permutations of the set N of nonnegative integers).
They also obtained corresponding limit theorems and rates of convergence under
some stronger assumptions on h.

In [4] we investigated a counterpart of the above law of large numbers in the
Markov chains setting, more precisely when X0, X1, . . . is a sample from a Harris
ergodic Markov chain with invariant measure π. Recall that a Markov chain on
X with transition function P : X × F → [0, 1] and invariant measure π is called
Harris ergodic if for every initial point x ∈ X ,

‖Pn(x, ·) − π‖TV → 0,

where ‖ · ‖TV denotes the total-variation distance and Pn is the n-step transition
function of the chain.

We consider two types of random matrices, the one defined by (2) as well as

H̃n =
1

n
(h(Xi, Xj))0≤i,j≤n−1(3)

(we remark that as pointed out in [9], even in the i.i.d. case, in general λ(H̃n) may
not approximate well the spectrum of H, however it does so under some additional
assumptions).

Our main result is

Theorem 1. Let X = (Xn)n≥0 be a Harris ergodic Markov chain on (X ,F) with
invariant probability measure π and let h : X ×X → R be a symmetric measurable
function. Assume that there exists F : X → R, such that

∫
X F

2(x)π(dx) < ∞
and |h(x, y)| ≤ F (x)F (y) for all x, y ∈ X . Let H : L2(π) → L2(π) be the linear

operator given by (1) and H̃n, Hn be defined by (3),(2) respectively. Then for
every initial measure µ of the chain X, with probability one,

δ2(λ(H̃n), λ(H)), δ2(λ(Hn), λ(H)) → 0.

The main tool in the proof of the above theorem is Nummelin’s splitting tech-
nique for Markov chains, which allows to decompose the trajectory of a chain into
one dependent blocks of random length (see [12, 14, 13, 7]). We use it to adapt the
original argument of Koltchinskii and Giné. As a tool, which may be of indepen-
dent interest, we also obtain a law of large numbers for U -statistics of order two
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of a Markov chain started at a point. This complements earlier results of many
authors [1, 6, 8, 5].

Our main motivation for investigating convergence of spectra of kernel matrices
based on Markov chains (besides its intrinsic mathematical interest) is the pos-
sibility of obtaining Markov Chain Monte Carlo algorithms for approximation of
spectra of integral operators. From this perspective it is desirable to complement
the law of large numbers with an appropriate exponential inequality. This goal
in general cannot be achieved without imposing some restrictions on the kernel
h and the Markov chain. The estimates we are able to obtain work for Mercer’s
type kernels and geometrically ergodic Markov chains, i.e. chains for which there
exists 0 < ρ < 1 such that for every x ∈ X and some constant M(x), we have for
every n ≥ 0,

‖Pn(x, ·) − π‖TV ≤M(x)ρn.

The tail inequality is given by the following theorem.

Theorem 2. Let π be a probability measure on (X ,F), where X is a metric space
and F the Borel σ-field. Let h : X × X → R be a bounded function and H the
corresponding kernel operator defined by (1). Assume that there exist continuous
functions φn : X → R, n ∈ I (where I = {0, . . . , R} or I = N) which form
an orthonormal system in L2(π) and a sequence of non-negative numbers λ =
(λn)n∈I ∈ ℓ2(I) such that we have a point-wise equality

h(x, y) =
∑

n∈I
λnφn(x)φn(y),

with the series converging absolutely and almost uniformly on X ×X . Assume fur-
thermore that X = (Xn)n≥0 is a geometrically ergodic Markov chain with invariant
measure π, started at a point z. Then

P(δ2(λ(H̃n), λ(H)) ≥ t) ≤ 2 exp
(
− 1

L
nmin

( t2

supx∈X h(x, x)2
,

t

supx∈X h(x, x)

))
,

where the constant L depends only on the transition function P and the starting
point z.

We remark that the constant L can be made explicit in terms of hitting times of
certain sets or in terms of drift conditions guaranteeing geometric ergodicity (see
[2, 3]). Let us also mention that in the i.i.d. case some inequalities of a similar
flavour were obtained in [10, 11, 15].
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Optimalities in Network Analysis

Harrison Zhou

(joint work with Chao Gao, Yu Lu, Zongming Ma, Anderson Zhang)

Network science has become one of the most active research areas over the past
few years. It has applications in many disciplines, for example, physics , sociology
biology, and Internet. Detecting and identifying communities is fundamentally
important to understand the underlying structure of the network. Many models
and methodologies have been proposed for community detection from different
perspectives, including RatioCut, Ncut and spectral method from computer sci-
ence, Newman–Girvan Modularity from physics, semi-definite programming from
engineering, and maximum likelihood estimation from statistics.

Deep theoretical developments have been actively pursued as well. Recently, cel-
ebrated works of Mossel et al. and Massoulie considered balanced two-community
sparse network, and discovered the threshold phenomenon for both weak and
strong consistency of community detection. Further extensions to slowly grow-
ing number of communities have been made. Recently in statistical literature,
theoretical properties of various methods had been investigated as well, usually
under weaker conditions, but the convergence rates are often sub-optimal.

Despite recent active and significant developments in network analysis, assump-
tions and conclusions can be very different in different papers. There is not a inte-
grated framework on optimal community detection. In this paper, we attempt to
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give a fundamental and unified understanding of the community detection prob-
lem for Stochastic Block Model (SBM). Our framework is very general, including
homogeneous and inhomogeneous SBM, dense and sparse networks, equal and
non-equal community sizes, and finite and growing number of communities. For
example, the connection probability can be as small as an order of 1/n, or as
large as a constant order, and the total number of communities can be as large
as n/ logn. Under such framework, a sharp minimax result is obtained with an
exponential rate. This result gives a clear and smooth transition from weak con-
sistency (partial recovery) to strong consistency (exact recovery), i.e. clustering
error rate from o(1) to o(n−1). As a consequence, we obtain phase transitions for
non-consistency and strong consistency, under various settings, which recover the
tight thresholds for phase transition in literature.

The Stochastic Block Model is possibly the most studied model in network
community detection. Consider an undirected network with totally n nodes and
K communities, labeled as {1, 2 . . . ,K}. Each node is assigned to one community.
Denote σ to be the assignment, and σ(i) is the community assignment for the
i-th node. Thus nk = |{i : σ(i) = k}| is the size for k-th community, for each
k ∈ {1, 2, . . . ,K}. We observe the connectivity of the network, which could be
encoded into the adjacency matrix {Ai,j} taking values in {0, 1}n×n. If there exists
a connection between two nodes, Ai,j equals 1, and 0 otherwise. We assumeAi,j for
any i ≥ j to be an independent Bernoulli random variable with success probability
θi,j . Let θi,i = 0 (no self-loop) and Ai,j = Aj,i (symmetry). In SBM, {θi,j} is
assumed to have a block structure, in the sense that θi,j = θi′,j′ when σ(i) = σ(i′)
and σ(j) = σ(j′). We usually require that the within-community probabilities
larger than the between-communities probabilities, as in reality individuals from
the same community are more likely to be connected.

We consider a general SBM with parameter space defined as follows,

Θ(n,K, a, b, β) ,

{
(σ, {θi,j}) : σ : [n] → [K]n, nk ∈

[ n

βK
,
βn

K

]
, ∀k ∈ [K],

{θi,j} ∈ [0, 1]n×n, θi,j ≥
a

n
if σ(i) = σ(j) and θi,j ≤

b

n
if σ(i) 6= σ(j), θi,j = θj,i

}
,

where β ≥ 1 and is bounded. When β = 1 + o(1), all communities have almost
the same size. The parameters a/n and b/n have straightforward interpretation,
with the former one as the smallest within-community probability and the later
as the largest between-community probability. Throughout the paper, we assume
ǫ < b < a and a/n < 1 − ǫ for a small constant ǫ > 0, allowing the network to be
very sparse or dense.

We use the mis-match ratio r(σ, σ̂) to measure the performance of community
detection. It is as the proportion of nodes mis-clustered by σ̂ against the truth
σ. The minimax rate for the parameter space Θ(n,K, a, b, β) in terms of the
mis-match ratio loss is given in the following theorem.
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Theorem 1. Assume nI
K logK → ∞,

inf
σ̂

sup
Θ(n,K,a,b,β)

Er(σ̂, σ) =

{
exp

(
− (1 + o(1))nI2

)
, k = 2,

exp
(
− (1 + o(1))nIβk

)
, k ≥ 3, 1 ≤ β < c,

(1)

where c ≤
√

5/3. In addition if nI/K = O(1), there are at least a constant
proportion of nodes mis-clustered, i.e. inf σ̂ supΘ(n,K,a,b,β) Er(σ̂, σ) ≥ c1.

Bayesian Clustering of Functional Data Using Local Features

Subhashis Ghosal

(joint work with Adam Suarez)

Most traditional clustering techniques for functional data apply multivariate clus-
tering methods on a vector of estimated basis coefficients, assuming that the un-
derlying signal functions live in the L2-space. Bayesian methods use models which
imply the belief that some observations are realizations from some signal plus noise
models with identical underlying signal functions. The method we propose differs
in this respect: we employ a model that does not assume that any of the signal
functions are truly identical, but possibly share many of their local features, repre-
sented by coefficients in a multiresolution wavelet basis expansion. We cluster each
wavelet coefficient of the signal functions using conditionally independent Dirichlet
process priors. Each possible clustering gives rise to a model, and an uncountable
number of such models exist. An appropriate topology on the model space is given
by the product of discrete topologies on the partitions of each wavelet coefficients.
Under the asymptotic regime that the noise level goes to zero but with a fixed
number of subjects, we show that the posterior probability of every neighborhood
of the true clustering pattern among subjects tends to one in probability, giv-
ing a frequentist justification of the proposed Bayesian clustering procedure. We
describe efficient Markov chain Monte Carlo computing techniques for the poste-
rior distribution and a method of identifying the posterior expected cluster. We
demonstrate the proposed method using the popular Canadian weather data.

Upper and lower bounds for suprema of canonical processes

Rafa l Lata la

(joint work with Tomasz Tkocz)

In many problems arising in probability theory and its applications one needs to
estimate the supremum of a stochastic process. In particular it is very useful
to be able to find two-sided bounds for the mean of the supremum. The mod-
ern approach to this challenge is based on the chaining methods (cf. the recent
monograph of Michel Talagrand [8]).

In this talk, based on [4], we are going to discuss the class of canonical processes
(Xt) of the form Xt =

∑∞
i=1 tiXi, where Xi are independent random variables.
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If Xi are standardized, i.e. have mean zero and variance one, then this series
converges a.s. for t ∈ ℓ2 and one may try to estimate E supt∈T Xt for T ⊂ ℓ2. In
fact it is more convenient to work with the quantity E sups,t∈T (Xt−Xs). Observe
however that if the set T or the variables Xi are symmetric then

E sup
s,t∈T

(Xs −Xt) = E sup
s∈T

Xs + E sup
t∈T

(−Xt) = 2E sup
t∈T

Xt.

In the case when Xi are i.i.d. N (0, 1) r.v.s, Xt is the canonical Gaussian pro-
cess. Moreover, any centered separable Gaussian process has the Karhunen-Loève
representation of such form. For Gaussian processes the behaviour of supt∈T Xt

is related to the geometry of the metric space (T, d2), where d2 is the ℓ2-metric
d2(s, t) = (E|Xs −Xt|2)1/2. The celebrated Fernique-Talagrand [2, 6] majorizing
measure bound can be expressed in the form

1

C
γ2(T ) ≤ E sup

t∈T
Xt ≤ Cγ2(T ).

Here and in the sequel C denotes a universal constant,

γ2(T ) := inf sup
t∈T

∞∑

n=0

2n/2∆2(An(t)),

the infimum runs over all admissible sequences of partitions (An)n≥0 of the set T ,
An(t) is the unique set in An which contains t, and ∆2 denotes the ℓ2-diameter.
An increasing sequence of partitions (An)n≥0 of T is called admissible if A0 = {T }
and |An| ≤ Nn := 22

n

for n ≥ 1.
Let us start with a general simple upper bound. For p ≥ 1 and a finite set T

we have

E sup
s,t∈T

(Xs −Xt) ≤
(
E sup
s,t∈T

|Xs −Xt|p
)1/p

≤


E

∑

s,t∈T
|Xs −Xt|p




1/p

≤ |T |2/p sup
s,t∈T

‖Xs −Xt‖p.

Hence

|T | ≤ ep ⇒ E sup
s,t∈T

(Xs −Xt) ≤ e2∆p(T ),

where ∆p(T ) is the diameter of T with respect to the metric

dp(s, t) = ‖Xs −Xt‖p = (E|Xt −Xs|p)1/p.
It is natural to ask whether this estimate may be reversed.

Definition. We say that a process (Xt)t∈T satisfies the Sudakov minoration prin-
ciple with constant κ > 0 if for any p ≥ 1, S ⊂ T with |S| ≥ ep such that
‖Xs −Xt‖p ≥ u for all s, t ∈ S, s 6= t we have

E sup
s,t∈S

(Xs −Xt) ≥ κu.
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In the case of centered Gaussian process (Gt)t∈T we have ‖Gs−Gt‖p ∼ √
p‖Gs−

Gt‖2 and it is not hard to see that the Sudakov minoration principle in the sense
above is equivalent to the classical one:

E sup
t∈S

Gt ≥
1

C
u
√

log |S| if (E|Gt −Gs|2)1/2 ≥ u for all s, t ∈ S, s 6= t.

Results of [7] and [3] imply that canonical processes based on symmetric r.v’s with
log-concave tails satisfy Sudakov minoration.

It is easy to check that for a symmetric variable Y with a log-concave tail we
have ‖Y ‖p ≤ C p

q ‖Y ‖q for p ≥ q ≥ 2. This motivates the following definition.

Definition. For α ≥ 1 we say that moments of a random variable X grow α-
regularly if ‖X‖p ≤ αpq ‖X‖q for p ≥ q ≥ 2.

Theorem 1. Suppose that X1, X2, . . . are independent standardized r.v.s and
moments of Xi grow α-regularly for some α ≥ 1. Then the canonical process
Xt =

∑∞
i=1 tiXi, t ∈ ℓ2 satisfies the Sudakov minoration principle with constant

κ(α), which depends only on α.

In fact the assumption on regular growth of moments is necessary for the Su-
dakov minoration principle in the i.i.d. case.

Proposition 2. Suppose that a canonical process Xt =
∑∞

i=1 tiXi, t ∈ ℓ2 based
on i.i.d. standardized random variables Xi satisfies the Sudakov minoration with
constant κ > 0. Then moments of Xi grow C/κ-regularly.

Methods developed to prove Theorem 1 allow also to show the following result.

Theorem 3. Let Xt be as in Theorem 1. Then for any ∅ 6= T ⊂ ℓ2 and p ≥ 1,
(
E sup
t,s∈T

|Xt −Xs|p
)1/p

≤ C(α)

(
E sup
t,s∈T

|Xt −Xs| + sup
t,s∈T

(E|Xt −Xs|p)1/p
)
.

Let us try to refine the simple bound leading to the Sudakov minoration em-
ploying this time a chaining argument. We follow closely Talagrand’s construction
of the γ2 functional. Let (Xt)t∈T be a general process with T finite (for simplicity).
We fix an increasing sequence of admissible partitions (An)n≥0. For each n we con-
struct a set Tn by choosing exactly one point from every set A of the partition An.
Hence, |Tn| ≤ 22

n

. We pick πn(t) ∈ Tn in such a way that t and πn(t) belong to the
same set in the partition An. We have Xt −Xπ1(t) =

∑
n≥1

(
Xπn+1(t) −Xπn(t)

)
.

Hence for u ≥ 16,

P


sup
t∈T

|Xt −Xπ1(t)| ≥ u sup
t∈T

∑

n≥1

d2n(πn+1(t), πn(t))




≤ P
(
∃n≥1∃t∈T |Xπn+1(t) −Xπn(t)| ≥ ud2n(πn+1(t), πn(t))

)

≤
∑

n≥1

∑

s∈Tn,s′∈Tn+1

P(|Xs −Xs′ | ≥ ud2n(s, s′)) ≤
∑

n≥1

|Tn||Tn+1|u−2n ≤ 128

u2
.
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Therefore

E sup
t,s∈T

(Xt −Xs) ≤ 2E sup
t∈T

|Xt −Xπ1(t)| + E sup
s,t∈T

|Xπ1(t) −Xπ1(s)|)

≤ C sup
t∈T

∑

n≥1

d2n(πn+1(t), πn(t)) + |T1|2 · ∆1(T ).

Since πn(t) ∈ An(t) and πn+1(t) ∈ An+1(t) ⊂ An(t) we have d2n(πn+1(t), πn(t)) ≤
∆2n(An(t)), where ∆2n(An(t)) is the d2n -diameter of the unique set An(t) from
An containing t.

The bound obtained above motivates the following defininition

γX(T ) := inf sup
t∈T

∞∑

n=0

∆2n(An(t)),

where the infimum runs over all admissible sequences of partitions (An) of T .
We have thus shown the following bound (observed also in [5]).

Theorem 4. For any process (Xt)t∈T ,

E sup
s,t∈T

(Xs −Xt) ≤ CγX(T ).

It is not hard to see that reversing the above γX -bound requires the Sudakov
minoration, so in the case of canonical processes the regular growth of moments
is necessary. Unfortunately we need one more technical assumption.

Definition. For β < ∞ we say that moments of a random variable X grow with
speed β if ‖X‖βp ≥ 2‖X‖p for p ≥ 2.

Theorem 5. Let Xt =
∑∞

i=1 tiXi, t ∈ ℓ2 be the canonical process based on inde-
pendent standardized r.v.s Xi with moments growing α-regularly with speed β for
some α ≥ 1 and β > 1. Then for any nonempty T ⊂ ℓ2,

1

C(α, β)
γX(T ) ≤ E sup

s,t∈T
(Xs −Xt) ≤ CγX(T ).

Corollary 6. Let Xt be as in the main theorem. Then for any nonempty T ⊂ ℓ2

and any process (Yt)t∈T such that for all p ≥ 1 and s, t ∈ T , ‖Ys − Yt‖p ≤
‖Xs −Xt‖p we have

P

(
sup
s,t∈T

(Ys − Yt) ≥ u

)
≤ C(α, β)P

(
sup
s,t∈T

(Xs −Xt) ≥
1

C(α, β)
u

)
for u > 0.

Another consequence of Theorem 5 is the following convex-hull bound.

Corollary 7. Let Xt be as in our main theorem and let nonempty set T ⊂ ℓ2 be
such that E sups,t∈T (Xs −Xt) <∞. Then there exist t1, t2, . . . ∈ ℓ2 such that

T − T ⊂ conv{±tn : n ≥ 1}
and

‖Xtn‖log(n+2) ≤ C(α, β)E sup
s,t∈T

(Xs −Xt) for all n.
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Remark. The reverse statement easily follows by the union bound and Cheby-
shev’s inequality. Namely, for any canonical process (Xt)t∈ℓ2 and any nonempty
set T ⊂ ℓ2 such that T − T ⊂ conv{±tn : n ≥ 1} and ‖Xtn‖log(n+2) ≤M one has
E sups,t∈T (Xs −Xt) ≤ CM . Indeed,

P

(
sup

s∈T−T
Xs ≥ uM

)
≤ P

(
sup
n≥1

X±tn ≥ uM
)
≤
∑

n≥1

P(|Xtn | ≥ u‖Xtn‖log(n+2))

≤
∑

n≥1

u− log(n+2)

and integration by parts yields E sups,t∈T (Xs −Xt) = E sups∈T−T Xs ≤ CM .

Let (εi)i≥1 be i.i.d. symmetric ±1-valued r.v.s, Xt =
∑∞

i=1 tiεi, t ∈ ℓ2 and
T = {en : n ≥ 1}, where (en) is the canonical basis of ℓ2. Then obviously
E sups,t∈T (Xs − Xt) = 2, moreover for any A ⊂ T with cardinality at least 2,

we have ∆2k(A) ≥ ∆2(A) =
√

2, hence γX(T ) = ∞. Therefore one cannot reverse
γX -bound for Bernoulli processes, so some assumptions on the nontrivial speed of
growth of moments are necessary to get two-sided γX estimate.

However, the convex hull bound holds for Bernoulli processes [1] and we believe
that it holds for canonical processes based on r.v’s with regular growth of moments.
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Estimation of functionals under sparsity constraints

Alexandre Tsybakov

(joint work with Olivier Collier, Laëtitia Comminges, Nicolas Verzelen)

Consider the model

(1) yj = θj + σξj , j = 1, . . . , d,

where θ = (θ1, . . . , θd) ∈ R
d is an unknown vector of parameters, ξj are i.i.d.

standard normal random variables, and σ > 0 is the noise level. Based on the
observations y1, . . . , yd, we want to estimate the functionals

• L(θ) =
∑d
i=1 θi

• Q(θ) =
∑d
i=1 θ

2
i

• ‖θ‖2 =
√
Q(θ),

• Lγ(θ) =
∑d

i=1 |θi|γ , 0 < γ ≤ 1.

We assume that θ belongs to a given subset Θ of Rd. We consider two possible
choices for Θ:

B0(s) = {θ ∈ R
d : ‖θ‖0 ≤ s}, and Bq(r) = {θ ∈ R

d : ‖θ‖q ≤ r}
where ‖θ‖0 denotes the number of non-zero components of θ, and

‖θ‖q =

(
d∑

i=1

|θi|q
)1/q

for 0 < q <∞. The integer s and r > 0 are given constants.
Let T (θ) be one of the functionals defined above. We measure the perfor-

mance of an estimator T̂ of the functional T (θ) by the maximum squared risk

supθ∈ΘEθ(T̂ − T (θ))2 where Eθ is the expectation with respect to the joint dis-
tribution of y1, . . . , yn satisfying (1). The best possible quality is characterized by
the minimax risk

R∗
T (Θ) = inf

T̂
sup
θ∈Θ

Eθ(T̂ − T (θ))2,

where inf T̂ denotes the infimum over all estimators. We construct minimax optimal

estimators of T (θ), i.e., estimators T̃ such that

sup
θ∈Θ

Eθ(T̃ − T (θ))2 ≍ R∗
T (Θ).

Here, and below the sign a ≍ b means that c1 ≤ a/b ≤ c2 for some absolute
constants c1, c2 > 0. We study non-asymptotic behavior of the minimax risk on
the classes Θ = B0(s) and Θ = Bq(r) for all 1 ≤ s ≤ d, σ, r > 0, 0 < q ≤ 2. For
the class B0(s) we obtain the following results:

R∗
L(B0(s)) ≍ σ2s2 log(1 + d/s2),(2)

R∗
Lγ

(B0(s)) ≍ σ2γs2 logγ(1 + d/s2) (for 1 ≤ s ≤
√
d),

R∗
Q(B2(r) ∩B0(s)) ≍ min{r4,max{σ2r2, ψσ(s, d)}},(3)

R∗√
Q(B0(s)) ≍

√
ψσ(s, d),
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where

ψσ(s, d) =

{
σ4s2 log2(1 + d/s2) if s <

√
d,

σ4d if s ≥
√
d.

For the quadratic functional Q, we consider in (3) a smaller class B2(r) ∩ B0(s)
rather than B0(s) since R∗

Q(B0(s)) = ∞.

For the classes Bq(r), the behavior of the minimax risks is characterized in terms
of the integer m = m(B) defined for any B ∈ B := {Bq(r) : 0 < q ≤ 2, r > 0} as
follows:

(4) m = max{s ∈ N : σ2 log(1 + d/s2) ≤ r2s−2/q}
if the set in (4) is non-empty, and m = 0 otherwise. Then, for all 0 < q ≤ 1, r > 0,

R∗
L(Bq(r)) ≍





σ2d if m >
√
d,

σ2(r/σ)2q log1−q(1 + d(σ/r)2q) if 1 ≤ m ≤
√
d,

r2 if m = 0,

and for all 0 < q ≤ 2, r > 0,

R∗
Q(Bq(r)) ≍





max{σ2r2, σ4d} if m >
√
d,

max{σ2r2, σ4( rσ )2q log2−q(1 + d(σr )2q)} if 1 ≤ m ≤
√
d,

r4 if m = 0.

R∗√
Q(Bq(r)) ≍





σ2
√
d if m >

√
d,

σ2( rσ )q log1−q/2(1 + d(σr )2q) if 1 ≤ m ≤
√
d,

r2 if m = 0.

In all the cases considered above, we explicitly construct estimators that achieve
the minimax rates, cf. [1]. For the classes B0(s), these estimators depend on s,
and for the classes Bq(r), they depend on q and r. A natural question is whether
such rates can be attained adaptively, i.e., on the estimators independent of these
parameters. We show that the answer to this question is negative for the problem
of adaptive estimation of the linear functional L(·). Namely, we prove that the
adaptive rates are different from the minimax rates given above. The aim is to
construct an estimator of L(θ) that adapts simultaneously to sparsity s when θ
belongs to the class B0(s), 1 ≤ s ≤ d, and to parameters q, r when θ belongs to
the class Bq(r), 0 < q ≤ 1, r > 0. For this purpose, we consider selection from
a family of estimators indexed by integer k ∈ [0,

√
d log d/2] ∪ {d}. Estimators in

this family are defined as follows:

L̂k =





∑d
j=1 yj for k = d,∑d
j=1 yj 1{|yj|>σxk} for 1 ≤ k ≤ √

d log d/2,

0 if k = 0.

Here, xk = A
√

log
(
1 + d log d

k2

)
for a large enough absolute constant A > 0 (given

explicitly), and we assume that d ≥ 3. We define the adaptive estimator as L̃ = L̂k̂
where

k̂ = inf
{
k ∈ [0,

√
d log d/2] ∪ {d} : |L̂k − L̂k′ | ≤ ωk′ , ∀k′ > k

}
,
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ωk =

{
A1σk

√
log
(
1 + d log d

k2

)
for k ∈ [1,

√
d log d/2],

A2σ
√
d log d for k = d,

and A1, A2 are explicitly given absolute positive constants. We show that there
exists an absolute constant C > 0 such that

(5) sup
θ∈B0(s)

Eθ(L̃− L(θ))2 ≤ Cσ2s2 log

(
1 +

d log d

s2

)
, , ∀ 1 ≤ s ≤ d.

Thus, the rate of adaptive estimation differs from the minimax rate only in that
we replace d by d log d under the logarithm. This is the price for not knowing
the value of s. If s = da, a ∈ (0, 1/2), the right hand side of (5) is of the order
σ2s2 log d, which coincides with the minimax rate for such s. For

√
d log d ≤ s ≤ d

the right hand side of (5) is of the order σ2d log d, while the minimax rate is of
the order σ2d.

For the adaptive estimation on the scale of classes B′ := {Bq(r) : 0 < q ≤ 1, r >
0}, we get the following bound. There exists an absolute constant C > 0 such that

inf
T̂

sup
B∈B′

sup
θ∈B

Eθ(T̂ − L(θ))2

Ψσ(B)
≤ C

where inf T̂ is the infimum over all estimators, and

Ψσ(B) =

{
σ2m2(B) log

(
1 + d log d

m2(B)

)
if m(B) ≥ 1,

r2 if m(B) = 0.

We also establish lower bounds showing that Ψσ(B) is the adaptive rate of con-
vergence that cannot be improved on the scale of classes B′ in the sense described
in [2].
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Achieving Optimal Misclassification Proportion in Stochastic Block
Model

Zongming Ma

(joint work with Chao Gao, Anderson Y. Zhang, Harrison H. Zhou)

Community detection is a fundamental statistical problem in network data anal-
ysis. Many algorithms have been proposed to tackle this problem. Most of these
algorithms are not guaranteed to achieve the statistical optimality of the problem,
while procedures that achieve information theoretic limits for general parameter
spaces are not computationally tractable. In this paper, we present a computa-
tionally feasible two-stage method that achieves optimal statistical performance
in misclassification proportion for stochastic block model under weak regularity
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conditions. Our two-stage procedure consists of a generic refinement step that can
take a wide range of weakly consistent community detection procedures as initial-
izer, to which the refinement stage applies and outputs a community assignment
achieving optimal misclassification proportion with high probability. The practi-
cal effectiveness of the new algorithm is demonstrated by competitive numerical
results.
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ETH Zürich; HG G 17

Rämistr. 101

8092 Zürich
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