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Introduction by the Organisers

The field of quantum molecular dynamics hosts considerable research activity from
different disciplines, such as mathematics, chemistry, and physics. Within these
disciplines, powerful mathematical methods have been developed. However, inter-
disciplinary communication in the field is scarce. Scientists in different disciplines
frequently fail to talk to one another and often use different language to mean the
same thing. The workshop has aimed at bringing together mathematicians and
other scientists in the field for mutual benefit.

In molecular quantum mechanics, one studies systems that have electrons (typ-
ically taken to have mass 1) and nuclei that have much larger masses (typically
with masses of several thousand or tens of thousands in the same units). In most
practical instances, these discrepancies of mass allow one to do an approximate
separation of variables when solving the associated Schrödinger equation. This
separation of electronic and nuclear motions is usually referred to as a Born–
Oppenheimer approximation.

Even when one can use a Born–Oppenheimer approximation, there are serious
issues in solving problems of quantum molecular dynamics. One such issue is the
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“curse of dimension.” The time–dependent Schrödinger equation for the nuclei
involves 3N space dimensions if there are N nuclei whose motion is to be studied.
Often this is done numerically, but most numerical approximations have been
developed for only a few dimensions, instead of perhaps 12, 15, 18, or more. Several
of the speakers in this Workshop (such as Irene Burghardt, Tucker Carrington,
Christian Lubich, and Uwe Manthe) directly addressed this problem. Several
others (such as Francis Nier, Johannes Keller, Emil Kieri, Giovanni Ciccotti, Sara
Bonella, and Anders Szepessy) discussed alternative approximations for addressing
the difficulties of computing quantum nuclear motion.

Another issue that has gotten mathematical attention in recent years is the
failure of Born–Oppenheimer approximations near level crossings or avoided cross-
ings of electron energy levels that cause relevant nonadiabatic transitions. Several
speakers mentioned this problem (such as Jeremy Richardson), and the presenta-
tion by Benjamin Goddard was specifically on this topic.

A few speakers in this Workshop (such as Pierre Rouchon, Raymond Kapral,
Ben Leihmkuhler, and Stefan Teufel) talked about molecules interacting with a
larger environment. This situation occurs, for example, for molecules in a solution,
and clearly asks for new mathematical methods.

Several speakers (such as Peter Gill, François Gygi, David Gontier, Mathieu
Lewin, Simen Kvaal, and Rupert Klein) discussed electronic states in molecules.

Other speakers addressed related issues or presented alternative approximations
and techniques for studying electrons and/or nuclei in molecules. These ranged
from topological (Gianluca Panati) and numerical topics (Erwan Faou), to as-
ymptotic analysis and stability theory (Clotilde Fermanian and Anthony Bloch),
to quantum computing (Mazyar Mirrahimi) and to alternative approaches to stan-
dard quantum mechanics (Bill Poirier).

The 28 talks of the Workshop were held by scientists representing a wide vari-
ety of disciplines all with strong interest in molecular quantum mechanics. This
diversity of people and backgrounds led to interesting, wide–ranging discussions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Tomoki Ohsawa in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Semiclassical approximations of quantum mechanical equilibrium
distributions

Stefan Teufel

(joint work with Wolfgang Gaim)

In his seminal paper from 1932 Eugene Wigner computes what he call the “Quan-
tum correction for thermodynamic equilibrium”. In modern language he shows
how to obtain an asymptotic expansion in powers of the semiclassical parame-
ter for certain equilibrium expectation values. More precisely, let h : R2n → R,

(q, p) 7→ h(q, p) = 1
2p

2+V (q) be the Hamiltonian function and hε := − ε2

2 ∆+V (x)

the corresponding Schrödinger operator acting on L2(Rn), then he gives an explicit
expression for the subleading term c(q, p) in

Tr
(
âε e−βĥ

ε
)
=

1

(2πε)n

∫

R2n

a(q, p) e−βh(q,p)
(
1 + ε2c(q, p) +O(ε3)

)
dqdp .

Here a : R2n → R and âε“=”a(x, iε∇x) its Weyl quantization.
We answer a similar question for the case when only some degrees of freedom

in a quantum system behave semiclassical, as it happens for example in molecular
systems. Such systems are described by Hamiltonians with matrix- or operator-
valued symbols:

H : R2n → Lsa(Hf) , Ĥε = H(x,−iε∇x) ∈ Lsa(L
2(Rn,Hf)) .

For example, the Hamiltonian describing a molecule has the form

Ĥε = − ε2

2 ∆x− 1
2∆y + V (x, y)︸ ︷︷ ︸

Hel(x)

with ε2 = 1
M and operator valued symbol

H(q, p) = 1
2 |p|2 +Hel(q) ∈ Lsa(L

2(Rmy )) .

Let e(x) be an isolated eigenvalue of Hel(x),

Hel(x)P0(x) = e(x)P0(x) ,

and P0(x) the corresponding spectral projection. Then the restriction of Ĥε to
the range of P0 is

P0Ĥ
εP0 = P0

(
− ε2

2 ∆x +Hel(x)
)
P0 = P0

(
− ε2

2 ∆x + e(x)
)
P0 = P0ĥ

εP0

with ĥε = h0(x,−iε∇x) for

h0(q, p) =
1
2 |p|2 + e(q)
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being again the quantization of a “classical” Hamiltonian function. One would
expect and it follows from our results that indeed

(1) Tr
(
âε f(Ĥε)P0

)
=

1

(2πε)n

∫

R2n

dqdp a(q, p) f(h0(q, p)) (1 +O(ε))

with
h0(q, p) =

1
2 |p|2 + e(q) .

Here
RanP0 = {Ψ(x, y) |Ψ(x, ·) ∈ RanP0(x)} .

However, one can ask whether the left hand side of (1) is really the right quantity
to compute and, in the sense of Wigner, what the higher order corrections are?
The answer to the first questions is basically well understood, also for more gen-
eral systems where e(q, p) is an isolated eigenvalue of an operator valued symbol
H(q, p), i.e. H(q, p)P0(q, p) = e(q, p)P0(q, p) (see [2] for an overview). While for

P̂ ε0 one only has

Ĥε = P̂ ε0 Ĥ
εP̂ ε0 + (1 − P̂ ε0 )Ĥ

ε(1− P̂ ε0 ) +O(ε) ,

under suitable technical conditions there are slightly tilted projections P ε with
symbol

P (q, p) = P0(q) +O(ε)

such that
Ĥε = P̂ εĤεP̂ ε + (1 − P̂ ε)Ĥε(1 − P̂ ε) +O(ε∞) .

Hence the range of P̂ ε is an almost invariant subspace for Ĥε. The following
theorem shows that one can compute semiclassical expectations restricted to such
almost invariant subspaces completely in terms of a modified classical Hamiltonian
system. Let the modified classical Hamiltonian be

hε(q, p) = e(q) + ε i
2 trHf

{P0|H |P0} =: e(q, p) + εm(q, p)

and the modified symplectic form

σεij := σ0
ij − i ε trHf

(P0[∂iP0, ∂jP0])

with corresponding Liouville measure λε.

Theorem 1: (Stiepan, Teufel [3]) Under suitable conditions it holds that

Tr
(
âε f(Ĥ

ε
) P̂

ε
)
=

1

(2πε)n

(∫

R2n

dλε a(q, p) f(hε(q, p)) + O(ε2‖a‖L1)

)

In an upcoming work with Wolfgang Gaim we show that there is also at next order
approximation an underlying classical Hamiltonian system.

Theorem 2: (Gaim, Teufel [4]) Under suitable technical conditions it holds that

Tr
(
âε f(Ĥ

ε
) P̂

ε
)
=

1

(2πε)n

(∫

R2n

dλε a(q, p) f ε(q, p) + O(ε3‖a‖L1)

)
,

where

f ε = f ◦ hε + ε2
(
fWigner
2 (e) + fadi

2 (e, P0)
)
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with
hε(q, p) = e(q, p) + εm1(q, p) + ε2m2(q, p)

and

dλε =
(
1 + ε λ1(q, p) + ε2λ2(q, p)

)
dq dp

the Liouville measure of a symplectic form with second order corrections.
For the corrections to the standard Born-Oppenheimer approximation one finds

for example

hε(q, p) = 1
2 |p|2 + e(q) + ε2

(
〈p, C(q)p〉Cn + 1

2 trCn

(
D(q)

))
,

dλε =
(
1 + 2 ε2 trCn

(
C(q)

))
dq dp ,

and
fadi
2 (q, p) = f ′′(h0(q, p)

)
〈p,D(q)p〉Cn ,

with

Cij(q) = trHf

(
∂iP0(q)

(
Hel(q)− e(q)

)−1
∂jP0(q)

)

and

Dij(q) = trHf

(
P0(q) ∂iP0(q) ∂jP0(q)

)
.

We find similar higher order approximations in terms of the modified classical
system also for the Heisenberg time-evolution of semiclassical observables.
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Variational Multiconfigurational Quantum Dynamics Using Moving
Gaussian Basis Sets

Irene Burghardt

(joint work with Sarah Römer, Matthias Ruckenbauer, Pierre Eisenbrandt)

In this contribution, we review the current status and prospects of the Gaussian-
based Multiconfiguration Time-Dependent Hartree (G-MCTDH) method [1, 2, 3],
with particular emphasis on recently developed two-layer and multi-layer variants
[4] as well as multiconfigurational quantum-classical hybrid schemes [5].

The solution of the time-dependent Schrödinger equation using Gaussian wave-
packets (GWPs) goes back to Heller [6, 7] and Hagedorn [8] and was later ex-
tended to a variational treatment involving superpositions of GWPs by Metiu and
collaborators [9]. In the latter case, a non-classical evolution of coupled GWPs
results from the application of the Dirac-Frenkel time-dependent variational princi-
ple to a parametrized wavefunction [10, 11, 12]. Both “thawed” Gaussians (TGs)
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[6, 9], with a flexible width, and “frozen” Gaussians (FGs), with a fixed width
[7], are accommodated in this framework. While the approach of Ref. [9] carries
over straightforwardly to multi-dimensional GWPs, an unfavorable scaling with
dimensionality results due to the nonclassically coupled, “entangled” GWP evolu-
tion [13, 14].

For high-dimensional systems it is therefore advantageous to use a multiconfig-
urational, tensor product wavefunction form, in line with the multiconfiguration
time-dependent Hartree (MCTDH) [15, 16] approach. Thus, the Gaussian-based
multiconfiguration time-dependent Hartree (G-MCTDH) method [1, 2, 3] involves
a variational, non-classical evolution of coupled GWPs propagated in subspaces
under the effect of time-dependent mean-field Hamiltonians. This method inter-
polates between the standard MCTDH scheme and more approximate approaches
based upon classically evolving Gaussian basis sets. Further, hybrid representa-
tions can be straighforwardly chosen that mix subspaces composed of GWPs vs.
standard MCTDH single-particle functions (SPFs). Indeed, the original version
of the G-MCTDH method was formulated as a hybrid scheme tailored to unitary
system-bath dynamics in many dimensions [1]. A closely related method is the
Local Coherent States Approximation (LCSA) by Martinazzo and collaborators
[17].

Besides system-bath type situations, an important area of application is on-the-
fly dynamics in conjunction with ground-state or excited-state electronic struc-
ture calculations [14, 18, 19]. Here, the so-called variational multi-configurational
Gaussian (vMCG) variant [14, 18] has been employed, where all degrees of free-
dom are grouped together in high-dimensional GWP particles. This facilitates
the correspondence with the configuration space points where electronic structure
calculations are carried out, at the expense of unfavorable scaling of the GWP
dynamics.

Even though good performance and convergence properties have been achieved
to date for the G-MCTDH approach for medium-sized systems, a significantly
larger number of GWP functions may be required as compared with the fully
flexible basis sets of the MCTDH method, especially if multidimensional FG type
GWPs are employed. A remedy is provided by a recently developed two- (and
multi-)layer version of the G-MCTDH method which effectively reintroduces flex-
ibility into FG basis sets [4]. Since the first layer(s) consist of MCTDH-like,
orthogonal SPFs, this approach can be straightforwardly combined with existing
multi-layer MCTDH schemes [20, 21, 22].

In this talk, first applications of the two-layer approach are demonstrated for
a model of site-to-site vibrational energy flow in the presence of intrasite vibra-
tional energy redistribution, as well as for nonadiabatically coupled systems. These
results are promising and suggest that the multi-layer variant will significantly ex-
tend the scope of multiconfigurational GWP-based methods.

Following up on Hagedorn’s work on the classical limit of GWP dynamics
[23, 24], we further consider a variational, multiconfigurational formulation of
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quantum-classical dynamics [5], based upon a classical-limit G-MCTDH wave-
function. Using semiclassically scaled GWPs, a multiconfigurational Ehrenfest
dynamics is obtained (see also Ref. [25] for a related development). Contrary to
standard Ehrenfest dynamics, the multiconfigurational approach accounts for cor-
relations between the quantum and classical subspaces and leads to a consistent
quantum-classical description.

Overall, we anticipate that hierarchical hybrid schemes involving fully varia-
tional and classical GWP evolution in different subspaces will prove versatile tools
in future developments of high-dimensional quantum dynamics.
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A phase-space approach to bosonic quantum mean field dynamics

Francis Nier

(joint work with Zied Ammari)

In a series of articles with Zied Ammari, we developed a phase space approach to
bosonic mean field problems, inspired by former works of Berezin, Hepp, Kree and
the development around the 1990’s of semiclassical or Wigner measures (Shnirel-
man, Colin de Verdière, Helffer-Martinez-Robert, Gérard-Markowick-Mauser-Pou-
paud, Lions-Paul. . . ). A rather comprehensive list of references, related to this
point of view or other recent works about mean field problems can be found in the
articles.
As a starting point, semiclassical Canonical Commutation Relations can be writ-
ten:

[a(g), a∗(f)] = 2h〈g , f〉Z = ε〈g, f〉Z
where 〈 , 〉Z denotes the hermitian scalar product on the one particle Hilbert
space Z , h or ε is a small parameter, and a(g) and a∗(f) are the annihilation and
creation operators on the bosonic Fock space H = ⊕n∈NZ

⊗symN .
The mean field problem is reduced to the asymptotics ε = 1/N where N is the
number of particles, and therefore coincides formally with a semiclassical asymp-
totics (h → 0) .
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As an example the N -body problem

i∂tΨ =


−

N∑

i=1

∆xj
+

1

2N

∑

i,j

V (xi − xj)


Ψ

can be written

i

N
∂tΨ =


− 1

N

N∑

i=1

∆xj
+

1

2N2

∑

i,j

V (xi − xj)


Ψ .

When Ψ ∈ L2(Rd;C)⊗symN = Z⊗symN is a N -particle wave functions and V (x) =
V (−x) , it can be rewritten with ε = 1

N :

iε∂tΨ = HεΨ ,

where

Hε =

∫

Rd

∇a∗(x)∇a(x) dx+
1

2

∫

R2d

V (x− y)a∗(y)a∗(x)a(y)a(x) dxdy ,

is the Wick quantization of the energy

E(z) =
∫

Rd

|∇z(x)|2 dx+
1

2

∫

R2d

V (x− y)a∗(y)|z(x)|2|z(y)|2 dxdy ,

The mean field dynamics is then given by the Hartree equation

i∂tz = −∆z + (V ∗ |z|2)z = ∂z̄E ,
which is exactly the usual semiclassical result when Z = L2(Rd;C) is replaced by
a finite dimensional Hilbert space.
With this strategy, we obtained in several steps the following results:

A) Existence of Wigner measures in [1]: For f ∈ Z consider the unitary Weyl

operatorWε(f) = eiΦ(f) with Φ(f) = a(f)+a∗(f)√
2

and let N denote the semiclassical

number operator N = εNε=1 on the Fock space. Let (̺ε)ε∈(0,ε0) be a family of
non negative trace class operators on H with Tr [̺ε] = 1 (e.g. ̺ε = |Ψ〉〈Ψ|) . For
a subset E ′ ∈ (0, ε0) with 0 ∈ E ′ , we say that the Borel probability measure µ on
Z is the Wigner measure of (̺ε)ε∈E′ , if

lim
ε∈E′,ε→0

Tr [̺εWε(f)] =

∫

Z

e2iπRe〈f , z〉 dµ(z) .

We denote by M(̺ε, ε ∈ E) the set of Wigner measures obtained for all E ′ ⊂ E
with 0 ∈ E ′ . Under the simple estimate Tr

[
̺εN

δ
]
≤ Cδ uniform in ε for some

δ > 0 and Cδ > 0 , M(̺ε, ε ∈ E) is not empty.
From the definition, the uniqueness M(̺ε , ε ∈ E ′) = {µ} can always be supposed
after a subsequence (subfamily) extraction.

B) (PI)-condition [2] and [3]: After assuming M(̺ε, ε ∈ E) = {µ} , the (PI)-
condition (PI for Polynomial and Identity) is written:

∀k ∈ N , lim
ε∈E,ε→0

Tr
[
̺εN

k
]
=

∫

Z

|z|2k dµ(z) .
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It is actually equivalent to the convergence

lim
ε∈E,ε→0

Tr
[
̺εb

Wick
]
=

∫

Z

b(z) dµ(z) .

for all b(z) = 〈z⊗q , b̃z⊗p〉 with b̃ bounded operator. Contrary to the usual finite
dimensional case (for Z), the above conditions may not be satisfied according to
what we called in [2] a dimensional defect of compactness (“dimensional” referring
to the infinite dimensional phase-space).
Alternatively if the condition (PI) is satisfied, it implies a very strong convergence
result about all the reduced density matrices. In the example Z = L2(Rd;C) the
p-particles reduced density matrix is defined as usual by

γ(p)ε (x, y) =

∫

Rd(N−p)

Ψ(x,X ′)Ψ(y,X ′) dX ′ ,

and the general definition is

Tr
[
γ(p)ε b̃

]
=

Tr
[
̺εb

Wick
]

Tr [̺ε(|z|2p)Wick]
.

The condition (PI) implies the trace norm convergence

∀p ∈ N , lim
ε→0

‖γ(p)ε − γ
(p)
0 ‖L1 = 0 ,

with

γ
(p)
0 =

∫

Z

|z⊗p〉〈z⊗p| dµ(z) .

C) Propagation results in [3] and [4] (see also [5]): Although the written
results are more general, let us stick for this short summary to our example with a
pair interaction potential, leading to the Hartree equation in the mean field limit.
Under different assumptions and with two different techniques we proved in [3]
and [4] the following propagation result

(M(̺ε , ε ∈ E) = {µ0}) ⇔
(
∀t ∈ R , M(e−i

t
ε
Hε

̺εe
i t
ε
Hε

, ε ∈ E) = {µt}
)

where µt = Φ(t, 0)∗µ0 is the push-forward of µ0 by the nonlinear hamiltonian flow
on the phase-space (Z or Z1 see below) associated with the energy E(z)) .
In [3], it was proved for V ∈ L∞(Rd) under the additional condition that the
family (̺ε)ε∈E satisfies the condition (PI). The technical part relied on truncated
Dyson expansions, adapted from previous works of J. Fröhlich and collaborators,
combined with the a priori information carried by Wigner measures.
In [4], it was proved for a class of singular potentials including the 3D attractive or
repulsive Coulombic potential V (x) = c

|x| , c ∈ R . Then the nonlinear hamiltonian

flow is well defined on Z1 = H1(Rd;C) . The propagation result was obtained
after adapting to our infinite dimensional case, measure transportation techniques
developed by Ambrosio, Gigli and Savaré.

An important remark: The folklore often confuses the mean field regime with
uncorrelated states. Uncorrelated mean field states are actually coherent states,
̺ε = |Ψ〉〈Ψ| , with Ψ = W (−

√
2iε−1f) (then µ = δf ) , or Hermite (or atomic
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coherent) states with Ψ = f⊗N , Nε → 1 (then µ = δS
1

f = 1
2π

∫ 2π

0
δeiθf dθ) . In

other cases γ
(2)
0 differs from γ

(1)
0 ⊗ γ

(1)
0 . The propagation of Wigner measures can

be used to follow the nonlinear deformations of correlations like γ
(2)
0 (t)− γ

(1)
0 (t)⊗

γ
(1)
0 (t) .
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Using Spectrograms for the Semiclassical Propagation of Quantum
Expectations

Johannes Keller

(joint work with Caroline Lasser, Tomoki Ohsawa)

Let ψt ∈ L2(Rd,C) denote a solution of the time-dependent Schrödinger equation

(1) iε∂tψt = − ε2

2 ∆ψt + V ψt,

where 0 < ε ≪ 1 is a small parameter. After conducting the Born-Oppenheimer
approximation, (1) appears as the effective equation in atomic units for the vibra-
tional motion of the nuclei in a molecule on a single electronic potential energy
surface V . In this application, ε typically equals the square root of the ratio of
electronic versus average nuclear mass, and the ε prefactor on the left hand side
of (1) is due to a time rescaling.

We want to compute the evolution of quantum expectation values

(2) t 7→
〈
ψt, Âψt

〉
L2

for observables Â : L2(Rd,C) → L2(Rd,C). If Â is obtained from a phase space
function (a symbol) A : R2d → R by Weyl quantization, Egorov’s theorem implies
the semiclassical approximation

(3)
〈
ψt, Âψt

〉
L2

=

∫

R2d

(A ◦ Φt)(z)Wψ0(z)dz +O(ε2),

where Wψ0 : R2d → R is the Wigner transform of the initial state ψ0, and Φt is
the flow of the classical Hamiltonian system

(4) q̇ = p, ṗ = −∇V (q).
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Discretizations of the Egorov theorem (3), like the LSC-IVR method or the Wigner
quasi classical method, are well-known in chemistry since decades, see also [KL14].
They all build on a sampling z1, . . . , zN from the initial Wigner transform Wψ0

and subsequent averaging of A over the propagated phase space points Φt(z1), . . . ,
Φt(zN ).

The Wigner transform Wψ0 is typically not a probability density, which creates
severe difficulties for the sampling step. A possibility to circumvent this problem
is to use the state’s Husimi transform

(5) Hψ0 = Wψ0 ∗Wg0 ,

which is a probability density. However, as shown in [KL13], merely replacing
Wψ0 by Hψ0 in (3) deteriorates the accuracy to O(ε) errors, unless one includes
involved corrections of the dynamics by additional ODEs. In (5), Wg0 denotes the
Wigner transform of the harmonic oscillator ground state.

The convolution of two Wigner transforms is always a probability density on
phase space. In time-frequency analysis, Wψ0 ∗Wφ with φ ∈ L2(Rd,C) is called a
spectrogram of ψ0. In [KLO15] we introduce the novel phase space density

(6) µψ0 = (1 + d
2 )Wψ0 ∗Wg0 − 1

2

d∑

j=1

Wψ0 ∗Wϕej

consisting of the state’s Husimi transform and the spectrograms obtained from the
first order multivariate Hermite functions ϕej , with ej the jth unit vector in Rd.

Figure 1. Contour plots of the Wigner function (left) and the
density µψ (right) for a one-dimensional superposition of a Gauss-
ian wave packet and a delocalized Lagrangian state. Negative
values are indicated by blue color (color in online version only).

In figure 1 one can see an example for the new density µψ in one space dimension.
While the nonnegative Husimi transform does not show any of the interferences
that arise in the Wigner transform, the new density µψ again attains negative
values.

The function µψ0 is a linear combination of two smooth probability densities,
and hence much better amenable for sampling purposes than the Wigner transform
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Wψ0 . As our main result we prove that one can replace the Wigner transform in
the Egorov theorem by µψ0 without deteriorating the second order accuracy in ε,
that is,

(7)
〈
ψt, Âψt

〉
L2

=

∫

R2d

(A ◦ Φt)(z)µψ0(z)dz +O(ε2).

In [KLO15] we illustrate the validity and applicability of the semiclassical approx-
imation (7) by means of various numerical experiments.

For instance, we consider the evolution of potential energies for a 32-dimensional
Henon-Heiles type system with Gaussian initial data, see figure 2. Since reliable
references are not available for this high-dimensional system, we compare the val-
ues obtained from discretizations of Egorov’s theorem (3), the new spectrogram
approximation (7), and the “naive Husimi method” that results from replacing
the Wigner transform Wψ0 in (3) by the Husimi transform Hψ0 . Figure 2 shows
that the results of the Wigner and the spectrogram method are almost indistin-
guishable, while the the outcome of the naive Husimi method differs considerably.

Figure 2. Evolution of potential energies for 32-dimensional
Henon-Heiles system with Gaussian initial data and ε = 0.0029.
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Discretised dynamical low-rank approximation in the presence of
small singular values

Emil Kieri

(joint work with Christian Lubich, Hanna Walach)

We prove error estimates for a novel time-stepping scheme for low-rank matrix and
tensor differential equations. The estimate is robust with respect to small singular
values. When a singular value in the approximation approaches zero, standard
time-stepping schemes break down. We show that the new method solves this
problem.

Low-rank approximations have had much success in the field of quantum dy-
namics, in particular through the multi-configurational time-dependent Hartree
(MCTDH) method [5]. However, also time-stepping schemes for MCTDH have
difficulties in the presence of small singular values. MCTDH uses the Tucker
format to construct low-rank approximations of tensors. In this work we use a
different low-rank tensor format, known as tensor trains or matrix product states.

We consider the low-rank approximation of a large, time-dependent tensor
A(t) ∈ Cn1×···×nd , given via a tensor differential equation

Ȧ(t) = F (t, A(t)), A(0) = A0 ∈ C
n1×···×nd .

If we can approximate A(t) by a rank-r tensor train, the amount of data required
to represent A(t) would be reduced from O(nd) to O(dr2n), with n = maxni. To
keep the notation simple we will in this note only consider the matrix case, i.e.,
d = 2, and aim at approximating A(t) by a rank-r matrix. The results extend to
low-rank tensors in the tensor train format with arbitrary d.

Commonly, the singular values of a matrix decay without a distinct gap. This
means that the last included and first neglected singular values, σr and σr+1, are
of similar size. σr+1 represents neglected information, and if it is not small the
low-rank approximation will introduce a large error. We should therefore expect
also σr to be small. In this work we prove that the splitting scheme is robust in this
situation: If the exact solution is an ε-perturbation of a rank-r matrix, the error
can be bounded in terms of ε and the time step, independently of the smallness of
σr. For a more precise statement and a proof of this result, see [1].

We approximate A(t) by a matrix of rank r using the SVD-like decomposition

A(t) ≈ Y (t) = U(t)S(t)V (t)∗,

where U ∈ Cn1×r and V ∈ Cn2×r have orthonormal columns and S ∈ Cr×r. We
denote the manifold of rank-r matrices by Mr and its tangent space at Y by
TYMr. We then determine the time-evolution of Y (t) using the Dirac–Frenkel
time-dependent variational principle,

(1) Ẏ (t) = P (Y (t))F (t, Y (t)), Y (0) = Y0,

where P (Y ) is the orthogonal projection onto the tangent space TYMr. This can
also be seen as a Galerkin condition on the tangent space. Subject to a gauge
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condition, (1) determines a system of differential equations for the matrices U , S
and V [2],

U̇(t) = (I − U(t)U(t)∗)F (t, Y (t))V (t)S(t)−1,

Ṡ(t) = U(t)∗F (t, Y (t))V (t),

V̇ (t) = (I − V (t)V (t)∗)F (t, Y (t))∗U(t)S(t)−∗.

We note that this system is stiff if σr is small, and does not have a well-defined
solution in the limit σr → 0.

The projection onto the tangent space can be decomposed as

P (Y )Z = ZV V ∗ − UU∗ZV V ∗ + UU∗Z, Y = USV ∗, Z ∈ C
n1×n2 .

Recently, a time-stepping scheme based on this splitting was proposed [3]. A sim-
ilar scheme for the tensor train case has also been constructed [4]. Error bounds
in terms of the time step h are available by standard theory for splitting methods,
but unfortunately these estimates break down when σr → 0. Such a break-down
is, however, not observed in numerical experiments. The splitting scheme pos-
sesses a remarkable exactness property, which gives a first theoretical indication
of its robustness: If A(t) ∈ Mr for all t and its time-derivative Ȧ(t) = F (t) is
given independently of A(t), then the splitting method is exact for any h and
independently of σr. Our analysis unifies this property with the standard error
estimates.

The error estimate requires F to be Lipschitz continuous. This is a consider-
able limitation in a quantum dynamics context, since for a discretisation of the
Schrödinger equation with spatial step size ∆x the Lipschitz constant will be of
order ∆x−2. This suggests that very small time steps would be needed. Such
a time step restriction is however not observed in numerical experiments. The
method seems to be robust for partial differential equations, and it would be of
interest to extend the theory also to this situation.
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Convergence of normalized gradient algorithms applied to ground
states computations

Erwan Faou

(joint work with Tiphaine Jézéquel)

We consider the convergence of the normalized gradient algorithm used to compute
numerically ground states of Schrödinger equations fulfilling symmetry and coer-
civity conditions as considered in the seminal works of Weinstein [7] and Grillakis,
Shatah and Strauss [5, 6].

We consider the focusing cubic non linear Schrödinger equation

(NLS) i∂tψ = −1

2
∆ψ − |ψ|2ψ,

set on R, where ψ(t, x) depends on space variables x ∈ R. With this equation is
associated the energy

(1) H(ψ, ψ̄) =
1

4

∫

R

|∇ψ|2 − |ψ|4,

that is preserved by the flow of (NLS) for all times. The equation (NLS) can thus
be written

i∂tψ = −1

2
∆ψ − |ψ|2ψ = 2

∂H

∂ψ̄
(ψ, ψ̄).

Let ∇H denote the L2 derivative of the energy H with respect to real functions
ψ. The ground state η(x) is defined as the unique real symmetric minimizer of the
problem

(2) min
‖ψ‖

L2
=1
H(ψ).

In the one dimensional cubic case considered in this paper, explicit computations
show that

η(x) :=
1

2
sech

(x
2

)
.

We denote by −λ the Lagrange multiplier associated with this minimization prob-
lem, such that

(3) ∇H(η) = −1

2
∆η − η3 = −λη.

In general, η is not explicitly known, and one has to rely to numerical simulation.
To compute numerically η, the imaginary time method, which is a nonlinear version
of the normalized gradient algorithm (see [1]). The algorithm consists in defining
a sequence {ψn}n∈N as follows:

(i) An intermediate function ψ∗
n is defined a a numerical approximation of the

solution of the parabolic equation

(4) ∂tψ =
1

2
∆ψ + |ψ|2ψ = −∇H(ψ)
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over a time interval [0, τ ], where τ is a given time step. To compute ψ∗
n,

we will consider the following time integration methods:

ψ∗
n = ψn + τ∇̂H(ψn, ψ

∗
n).

with

∇̂H(ψn, ψ
∗
n) =

1

2
∆ψ∗

n +





|ψn|2ψn (implicit-explicit)
|ψn|2ψ∗

n (linearly implicit)
|ψ∗
n|2ψ∗

n (fully implicit)

(ii) Then we define the normalized function

(5) ψn+1 =
ψ∗
n

‖ψ∗
n‖L2

Our main result is the following:

Theorem 1.1. There exists B and τ0 such that if ‖u0‖H1 ≤ B and τ ≤ τ0, then
there exist constant c and C such that

• For the linearly implicit scheme, we have

∀n ‖ψn − η‖
H1 ≤ Ce−ρnτ .

• For the implicit-explicit and fully implicit Êschemes, there exists ητ such
that ‖ητ − η‖

H1
≤ Cτ , and

∀n ‖ψn − ητ‖H1 ≤ Ce−ρnτ .

This result can be extended to the fully-discrete case in space and time by using
the analysis of [3] and [2]. The main conclusion is that the linearly implicit schemes
has infinite order in time in the numerical computation of the soliton (that is: the
exact ground state is also the ground state of the numerical scheme).
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The multi-configurational time-dependent Hartree approach revisited

Uwe Manthe

The multi-configurational time-dependent Hartree (MCTDH) approach facilitates
accurate high-dimensional quantum dynamics simulations. In the approach, the
wavefunction is expanded in a direct product of self-adapting time-dependent
single-particle functions (SPFs). The equations of motion for the expansion coeffi-
cients and the SPFs are obtained via the Dirac-Frenkel variational principle. While
this derivation yields well-defined differential equations for the motion of occupied
SPFs, singularities in the working equations resulting from unoccupied SPFs have
to be removed by a regularization procedure. Here an alternative derivation of
the MCTDH equations of motion is presented. It employs an analysis of the time-
dependence of the single-particle density matrices up to second order. While the
analysis of the first order terms yields the known equations of motion for the oc-
cupied SPFs, the analysis of the second order terms provides new equations which
allow one to identify optimal choices for the unoccupied SPFs. The effect of the
optimal choice of the unoccupied SPFs on the structure of the MCTDH equations
of motion and their regularization is discussed. Generalized equations applicable
in the multi-layer MCTDH framework are presented. Finally, the effects resulting
from the initial choice of the unoccupied SPFs are illustrated by a simple numerical
example.

Time integration in the multiconfiguration time-dependent Hartree
method of molecular quantum dynamics

Christian Lubich

Developed over the last 25 years, the multiconfiguration time-dependent Hartree
(MCTDH) method [5, 6] has become a reference method for computing accurate
quantum dynamics of small molecules. It combines a low-rank tensor approxi-
mation in the Tucker format with the Dirac–Frenkel time-dependent variational
principle, which yields a large, highly structured, nonlinear system of differential
equations for the core tensor and the single-particle basis functions. This system
needs to be solved numerically. It is a known difficulty to deal with the typically
ill-conditioned density matrices whose inverses appear in the equations of motion.
This leads to severe stepsize restrictions for the known integrators, which are only
mitigated by an ad hoc regularization of the density matrices.

This talk presents a numerical integrator that avoids this difficulty. A step of
the integrator alternates between orthogonal matrix decompositions and solving
linear systems of differential equations, which can be efficiently solved by Lanczos
approximations. The MCTDH density matrices are nowhere computed, nor are
their inverses.

The integrator proposed here can be interpreted as a splitting method that
is based on an additive decomposition of the projection onto the tangent space
of the low-rank tensor manifold. It extends recently proposed projector-splitting
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integrators for the dynamical approximation by low-rank matrices [2] and tensors
in the tensor train format [3]. In view of numerical and theoretical results for
those cases, as given in [1], the MCTDH integrator proposed here is expected
to be completely insensitive to the presence of small singular values in matrix
unfoldings of the core tensor, or equivalently, insensitive to an ill-conditioning of
the density matrices.
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Wigner measures and effective mass theorems

Clotilde Fermanian-Kammerer

(joint work with Victor Chabu, Fabricio Macia)

We consider the equation

(1)
i∂tψ

ε + 1
2∆xψ

ε + 1
ε2VΓ

(
x
ε

)
ψε + Vext(x)ψ

ε = 0, (t, x) ∈ R× R2,
ψε|s=0 = ψε0,

where (ψε0) is a bounded family of L2(R2), VΓ a potential periodic with respect to
the lattice Z2,Vext an external potential that we assume C∞ and the parameter ε
goes to 0. We are interested in the description of the limit as ε goes to 0 of time
averaged of energy densities such as

Jε(a) =
1

2

∫ T

−T

∫

R2

a(x)|ψε(t, x)|2dx dt, a ∈ C∞
0 (Rd).

We consider a special class of initial data that are linked with the following
spectral problem : For ξ ∈ Rd, we consider the operator on the torus T2 = R2\Z2,

P (ξ) =
1

2
(ξ +Dy)

2
+ V (y), y ∈ T

2.

The operator P (ξ) is self-adjoint on L2(T2) and has a compact resolvant, hence a
nondecreasing sequence of eigenvalues called Bloch energies

λ1(ξ) ≤ λ2(ξ) ≤ · · · ≤ λn(ξ) → +∞,



1522 Oberwolfach Report 27/2015

and an orthonormal basis of eigenfunctions (ϕj(ξ))j∈N
, called Bloch waves satis-

fying for all ξ ∈ R
d,

P (ξ)ϕn(ξ, y) = λn(ξ)ϕn(ξ, y), n ∈ N, y ∈ T
2

with Z2-periodic boundary conditions.

We focus on a mode λj(ξ) that we assume of multiplicity 1. As a consequence,
it is an isolated eigenvalue from the rest of the spectrum in the sense that there
exists a gap δ > 0 separating λj(ξ) for the rest of the spectrum. Therefore the
functions ξ 7→ λj(ξ) and ξ 7→ ϕj(ξ, ·) are smooth functions of the variable ξ. We
assume that the initial data of our evolution problem (1) is of the form

(2) ψε0(x) = (ϕj (εD, y)u
ε
0(x))y= x

ε

,

where the family (uε0)ε>0 is uniformly bounded in L2(R2) and ε-oscillating in the
sense that its frequencies of oscillations are not larger than 1

ε :

(3) lim sup
ε→0

∫

|ξ|>R/ε

∣∣∣ûε0(ξ)
∣∣∣
2

dξ −→
R→+∞

0.

Equivalently, equation (2) writes

ψε0(x) = (2π)−d
∫

Rd

eiξ·(x−y)ϕ
(
εξ,

x

ε

)
uε0(y)dydξ.

Under these assumptions, we prove the following result.

Theorem 1.1. Assume that the initial data of equation (1) satisfies (2), assume
that λj(ξ) is an eigenvalue of constant multiplicity 1 and that the critical points
of λj are non-degenerated, then there exists a subsequence εk which goes to 0 as ε
goes to 0 and a function γ(t, x) ∈ L∞(R, L1(R2)), γ ≥ 0, such that

∀a ∈ C∞
0 (R2), Jε(a)−→

ε→0

∫

R

∫

R2

χ(t)a(x)γ(t, x)dt dx,

with χ = 1
2T 1[0,T ].

This result relies on a microlocal approach, the use of Wigner measures and
in performing a two-microlocal analysis in the spirit of earlier works of two of
the authors [3, 4, 5, 6]. We prove in fact a larger result and we are able to give
a description of the structure of the limit points of Jε(a) in the case where the
critical points of λj are isolated without any condition on the Hessian of λj .The
fact that the limit points of Jε(a) are described by measures which are absolutely
continuous with respect to the Lebesgue measure may fail whenever the non-
degeneracy condition on the Hessian of λj is not satisfied. In the case where there
is only one critical point ξ0 and where the Hessian is non-degenerated in ξ0, the
density γ is related with an effective mass equation : γ(t, x) = |Φ(t, x)|2 where Φ
solves the equation

(4) i∂tΦ = Hessλj(ξ0)D ·DΦ + V (x)Φ, Φ(0) = Φ0,
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where Φ0 is a weak limit in L2(R2) of the sequence x 7→ e
i
ε
ξ0·xuε0(x). This extends

the results of [2, 1] to a larger class of initial data. It also gives another approach
which should help to understanding this problems in more general situations such
as the case where the set of critical points of λj consists in a submanifold.
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The semiclassical limit of time correlation functions by path integrals

Giovanni Ciccotti

(joint work with Sara Bonella, Michele Monteferrante, Carlo Pierleoni)

The exponential scaling of the computational cost of quantum time evolution with
the number of degrees of freedom motivates current attempts to approximate and
interpret quantum dynamics via classical trajectories. These can in fact be com-
puted with essentially linear effort and provide a more intuitive representation of
the dynamics. In spite of these tempting properties of the trajectories, the accu-
racy and generality of such attempts requires careful analysis since it is unclear
whether they can be successful for condensed phase systems. To illustrate this
point, we comment on how and when quantum evolution can be approximated
in terms of (generalised) classical dynamics in the calculation of the symmetrised
time correlation function [1]

(1) GAB(t, β) =
1

Z
Tr{Âe i

~
Ĥt∗c B̂e−

i
~
Ĥtc}

in semiclassical conditions. In the expression above, tc = t − i~β
2 ,β = 1/kBT

(T is the temperature and kB Boltzmann’s constant), Ĥ is the Hamiltonian of

the system and Z = Tr{e−βĤ} is the canonical partition function. Eq. (1) is
equivalent via a relationship in Fourier space to the standard time correlation

CAB(t, β) = 1
ZTr{e−βĤÂe

i
~
ĤtB̂e−

i
~
Ĥt} function, but it also shares some formal

properties with classical correlation functions, for example it is by construction a
real function, and this suggests that it might be a convenient starting point for
describing semiclassical systems (see for example[2-8]). The analysis presented in
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the following is described in [9] and we refer to that paper for a detailed derivation
of the results summarised here.

The starting point of our considerations is the Feynman path integral expression
(in a mixed coordinate and momenta representation) of the forward and backward
propagators in complex time that appear in eq. (1). To examine the semiclassical
limit of that expression, mean and difference paths in the coordinates and momenta
are introduced and the exponent of the overall path integrals written as a Taylor
series expansion in the difference paths.

First order result
Retaining only terms up to linear order in the Taylor series expansion, the sym-
metrised function can be written as

G
(1)
AB(t, β) =

1

Z

∫
dr̄0dp̄1e

− 2ǫβ
~

[

p̄21
2m+V (r̄0)

]

Aw(r̄0, p̄1)Bw(r̄N , p̄N )

where Ow stands for the Wigner transform [10] of operator Ô and (r̄t, p̄t) are the
end points of the classical trajectory evolved from (r̄0, p̄1) for a time t. Both the
dynamics and the statistical weight in the correlation function above thus reduce
to their fully classical counterparts. The Fourier relationship with the standard
time correlation function mentioned above can, however, be used to restore some
non-classical properties (such as detailed balance) of this quantity, and it is in
fact formally identical to the so-called quantum correction procedure that was
introduced by Schofield in ref. [1]. However, it is well known that this correction
can fail at low temperature even when the system is non-interacting (see [9] for
an explanation of this fact) and, more in general, that the temperature and mass
range in which it is valid are quite limited.

Second order result
The result of a second order truncation of the series expansion of the exponent,
instead, can be expressed as

G
(2)
AB(t, β) =

Zcl(2ǫβ/~)

Z

∫
dr̄0dr̄N

{
N−1∏

k=1

∫
dr̄kdp̄k

}
dp̄N
2π~

(2)

×




e
−2ǫβ/~

[

p̄21
2m+V (r̄0)

]

Zcl(2ǫβ/~)

e−
1

2σ2

∑N
k=1[r̄k−r̄k−1−ǫt p̄k

m
]2

(
√
2πσ2)N

e
−∑N−1

k=1 [
p̄k+1−p̄k+ǫt∇V (r̄k)

2~ǫβ |∇2V (r̄k)
]2|

(
√
2πσ2)N





× e
−2ǫβ/~

∑N
k=2

[

p̄2
k

2m+V (r̄k−1)

]

Aw(r̄0, p̄1)Bw(r̄N , p̄N )FΩ({r̄k}, {p̄k})
where (r̄k−1, p̄k) (k = 1, ..., N) are the positions and momenta along the path,
Zcl(2ǫβ/~) is the classical partition function at inverse temperature 2ǫβ/~, and
FΩ is discussed below. The factors in the curly bracket are a probability density
and the approximate symmetrised correlation function can then be computed as

the expectation of e
−2ǫβ/~

∑N
k=2

[

p̄2
k

2m+V (r̄k−1)

]

Aw(r̄0, p̄1)Bw(r̄N , p̄N )FΩ({r̄k}, {p̄k})
The variables (r̄k−1, p̄k) can be sampled as follows: The zero time values r̄0, p̄1 are
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obtained from the high temperature classical Boltzmann factor

e
−2ǫβ/~

[

p̄21
2m+V (r̄0)

]

/Zcl(2ǫβ/~)

while the other variables are generated recursively from

r̄k = r̄k−1 + ǫt
p̄k
m

k ∈ [1, N ]

p̄k+1 = p̄k − ǫt∇V (r̄k) k ∈ [1, N − 1]

where ξk and ηk+1 are Gaussian white noises. This scheme illustrates how quan-
tum mechanical delocalisation sets in in this semiclassical representation of the
correlation function. Within this approximation in fact, both the new coordinates
and momenta are sampled at each complex time step from Gaussian distributions
centred around classically evolved phase space points. The dispersion around the

classical path is determined by the variances σ2 =
~ǫβ
m and ~ǫβ∇2V (r̄k). The

classical limit is restored for ~ → 0 and/or β → 0 when these variances tend to
zero. For finite values of Planck’s constant or of the inverse temperature, the non
classical nature of the time evolution of the system appears at each time step in
the form of Gaussian random displacements from the ”driving” classical propa-
gation. While this interpretation is intriguing, the actual interest of the driving
classical trajectory depends crucially on the system. If the potential is everywhere
convex, the function FΩ in the integrand is well defined (it reduces essentially to
the determinant of Hessian of the potential computed along the path) and the
estimate of the average as a mean over paths generated as outlined above is vi-
able. In the more general case of potentials with regions of negative curvature,
on the other hand, this function does not have an explicit form, and there is no
reason to expect that it will be localised around the complex paths generated via
the sampling scheme of eq. (2). Furthermore, it can be shown that small vari-
ations in its argument result in ”explosively” different values for FΩ. Attempts
to interpret or estimate the average above via a scheme based on localised paths
are therefore doomed to failure for two reasons: first, the integrand is not peaked
around the sampling function, second it is a numerically unstable function. These
characteristics are a direct manifestation of delocalisation, an intrinsic property of
quantum mechanics that it is very difficult, if not impossible, to represent within
this semiclassical scheme.

To conclude, the path integral expression of the symmetrised correlation func-
tion is a useful tool to examine how and when quantum evolution can be approxi-
mated via (generalised) classical trajectories. In particular, the second order result
presented in the previous section shows how, in the semiclassical limit, the most
relevant contributions to the path integral localise or, pathologically, de-localise
around guiding or poorly guiding classical trajectories for general systems. While
we employed the path integral formalism to illustrate how a picture based on classi-
cal dynamics is usually not enough to compute quantum properties, the difficulty
to account for delocalisation appears also in other approximations of quantum
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mechanics (e.g. Wigner-Liouville, semiclassical IVR) pointing to the inherent dif-
ficulty of using a trajectory based picture to represent this phenomenon.
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Quantum Dynamics with (almost) classical trajectories?

Sara Bonella

(joint work with Giovanni Ciccotti, Michele Monteferrante, Carlo Pierleoni,
Julien Beutier, Rodolphe Vuilleumier)

Several simulation methods for computing approximate quantum time dependent
properties of high dimensional systems employ the so called linearisation approx-
imation. In this framework, time correlation functions are obtained via mixed
schemes in which a set of initial conditions are sampled from the exact quantum
thermal density via Monte Carlo and then evolved classically via standard molec-
ular dynamics. The advantage of these methods is that the additional numerical
effort compared to classical simulations is concentrated entirely in the sampling
of the initial conditions. The two key questions in this context are: (1) how to
reduce as much as possible the cost of initial condition sampling without loss of
accuracy; (2) how to improve on the linearised dynamics when a fully classical
propagation fails to capture important properties of the system such as quantum
coherence. In this presentation these questions will be addressed: a numerically
efficient algorithm for (1) will be mentioned, and an attempt to address (2) will
be briefly described together with some open questions related to it.
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Both questions above can be addressed, with different degree of success, start-
ing from the linearised expression of the symmetrised time correlation function
(STCF)[1, 2, 3, 4, 5, 6]. This quantity is defined as

(1) GAB(t, β) =
1

Z
Tr{Âe i

~
Ĥt∗c B̂e−

i
~
Ĥtc}

where tc = t − i~β
2 ,β = 1/kBT (T is the temperature and kB Boltzmann’s con-

stant), Ĥ is the Hamiltonian of the system and Z = Tr{e−βĤ} is the canonical
partition function. The Fourier transform of GAB(t, β) is related to those of the
standard and Kubo quantum time correlation functions, so all these quantities
carry equivalent information. The linearised expression of the STCF can be ob-
tained via a path integral representation of the forward and backward propagators
in complex time tc, combined with an approximation of the real time path integral
propagation valid to second order in ~ (see ref. [7] for details). The approximate
form of the correlation function can then be expressed as an expectation value of
the form

(2)
< e−

i
~
p0∆A(r0)Bw(rt, pt) >

< e−
i
~
p∆ >

In the expression above, the expectation value is taken with respect to an explicit
probability density determined by the path integral expression of the quantum
thermal density reorganised to contain an explicit dependence on the momentum
p0 (see ref.[7]), ∆ and r0 are two of the path variables, and Bw(rt, pt) is the

Wigner transform [8] of the operator B̂ evaluated at the end point of a classical
trajectory with initial conditions r0, p0. The numerical difficulty with eq.(2) lies

in the presence of the phase factor e−
i
~
p0∆ in the function to be averaged. This

is, for general system, a highly oscillatory function whose rapid changes of sign
make numerical converge of the average extremely difficult. As shown in [9], this
phase factor can however be controlled via a cumulant expansion which leads to
the definition of a new estimator for the linearised STCF given by

(3) < A(r0)Bw(rt, pt) >P

which does not contain any phases. The price to pay for this rewriting is that,
as a consequence of the use of cumulants, the probability P contains terms that
can only be estimated numerically and are thus known with some uncertainty.
Due to this, standard Monte Carlo methods cannot be applied to sampling P . In
ref. [9], we showed that this sampling can, however, be accomplished by combining
the Penalty [10] and Kennedy [11] methods for Monte Carlo of noisy probability
densities. These two methods combine standard techniques to generate trial moves
with non-standard acceptance probabilities, which have been modified so as to
compensate for the effect of the noise and ensure that detailed balance is satisfied.
A detailed description of the algorithm can be found in [9]. The solution of this
phase problemmakes it possible to apply the linearised approximation of the STCF
to multidimensional realistic models of condensed phase systems. For example, in
ref [12] the scheme was used to reliably compute the quantum structure factor for a
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system of 64 Neon atoms described by a standard pair potential in the semiclassical
regime.

In spite of this and other useful applications [13, 14], the linearised approxima-
tion to the quantum dynamics fails when quantum effects play a more significant
role in the system’s dynamics. A possible solution to solve (or mitigate) this prob-
lem originates from the observation that linearisation is valid for short times. The
idea is then to use the time composition property of the exact quantum propa-
gators in complex time to break the overall propagation in a sequence of shorter
time intervals and to use a linearised approximation to represent each short time
propagator [15]. The expression of the STCF at longer times is then obtained by
concatenating these short time propagators. The underlying dynamics in complex
time can be written as a sequence of exact samplings of quantum thermal densities
at high temperature and classical real time propagations. Unfortunately, while nu-
merical evidence on model systems suggests that this scheme does indeed enable to
extend the accuracy of the approximation to longer times [15], this method suffers
from several drawbacks that make it not only numerically expensive, but also in
need of more detailed theoretical analysis. From the numerical point of view, the
problem is that with each linearised short time propagator, a phase factor appears
in the estimator of the STCF. Unlike what happens in the fully linearised case,
the new phase factors cannot be effectively controlled via cumulants. This implies
a dramatic increase in the cost of the calculation with the number of segments.
From a theoretical point of view, there are two main open questions. Firstly, the
precise nature of the limit of the approximate expression when the number of seg-
ments goes to infinity is unclear and, in particular, so far it has not been possible
to prove that the exact quantum result is recovered. Secondly, the linearisation
approximation on the individual short time segments is difficult to justify formally
for deeply quantum systems. These difficulties notwithstanding, the method just
mentioned is, to the best of our knowledge, one of the few - if not the only -
attempt to systematically improve the accuracy of linearised schemed and may
provide an interesting point of departure for future developments.
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Dynamically protected cat-qubits: a new paradigm for universal
quantum computation

Mazyar Mirrahimi

(joint work with Z. Leghtas, V. Albert, S. Touzard, R.J. Schoelkopf, L. Jiang,
M.H. Devoret)

We present a new hardware-efficient paradigm for universal quantum computation
which is based on encoding, protecting and manipulating quantum information
in a quantum harmonic oscillator. This proposal exploits multi photon driven
dissipative processes to encode quantum information in logical bases composed of
Schrödinger cat states. More precisely, we consider two schemes. In a first scheme,
a two-photon driven dissipative process is used to stabilize a logical qubit basis
of two-component Schrödinger cat states. While such a scheme ensures a protec-
tion of the logical qubit against the photon dephasing errors, the prominent error
channel of single-photon loss induces bit-flip type errors that cannot be corrected.
Therefore, we consider a second scheme based on a four-photon driven dissipative
process which leads to the choice of four-component Schrödinger cat states as the
logical qubit. Such a logical qubit can be protected against single-photon loss by
continuous photon number parity measurements. Next, applying some specific
Hamiltonians, we provide a set of universal quantum gates on the encoded qubits
of each of the two schemes. In particular, we illustrate how these operations can
be rendered fault-tolerant with respect to various decoherence channels of partic-
ipating quantum systems. Finally, we also propose experimental schemes based
on quantum superconducting circuits and inspired by methods used in Josephson
parametric amplification, which should allow to achieve these driven dissipative
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processes along with the Hamiltonians ensuring the universal operations in an ef-
ficient manner. This work has been published in New Journal of Physics [1] and
have led to preliminary experiments [2].
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Semiclassical Green’s functions and an instanton formulation of
electron transfer in the nonadiabatic limit

Jeremy O. Richardson

(joint work with Rainer Bauer and Michael Thoss)

Electron transfers are a key step in many important molecular processes, including
redox reactions in electrochemistry and charge separation in photosynthesis and
solar cells [1]. The electron resides initially on a donor molecule and is transferred
to an acceptor, accompanied by a reorganization of the polar environment. This
reaction can be characterized as a transition between two nuclear potential-energy
surfaces, describing the reactant and product environments. We are thus interested
in studying a curve-crossing problem, which as it involves discrete electronic states,
is inherently quantum mechanical.

We consider a general multidimensional system with two electronic states,

Ĥ = Ĥ0 |0〉〈0|+ Ĥ1 |1〉〈1|+∆
(
|0〉〈1|+ |1〉〈0|

)
,(1)

where Ĥn = |p̂|2/2m+Vn(x̂) is the nuclear Hamiltonian for the electronic state |n〉.
For this system, we wish to derive a practical computational method to provide
good approximations to the golden-rule reaction probability [2, 3],

P (E) = 4~2∆2

∫∫
〈x′| Im Ĝ0(E)|x′′〉 〈x′′| Im Ĝ1(E)|x′〉dx′dx′′,(2)

where the Green’s functions are given in the position representation by

〈x′|Ĝn(E)|x′′〉 = − i

~

∫ ∞

0

〈x′|e−iĤnt/~|x′′〉 eiEt/~ dt.(3)

This golden-rule definition is valid only for weak electronic coupling, ∆.
The thermal reaction rate is in turn given by the Boltzmann average

k =
1

2π~Z0

∫
P (E) e−βE dE,(4)

where the reactant partition function is Z0 = Tr[e−βĤ0 ].
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Figure 1. Schematic showing the two imaginary-time bounce
trajectories with energy E in a one-dimensional, two-state system.
The left trajectory is on |0〉 and the right on |1〉. The steepest-
descent integration of positions will be taken about the crossing
point x′ = x′′ = x‡ at which V0(x

‡) = V1(x
‡) = V ‡.

Following Gutzwiller [4], we begin by replacing the propagator using van-Vleck’s
semiclassical approximation,

〈x′|e−iĤt/~|x′′〉 ∝
∑

cl. traj

eiSn/~,(5)

where we take a sum over all classical trajectories travelling from x
′′ to x

′ in
time t with phases determined by the classical action, Sn. Because our electron
transfer problem includes nuclear tunnelling, the end-points x′ and x

′′ of interest
are in the classically-forbidden region where E < Vn(x). The stationary-phase
points in Eq. (3) correspond to imaginary-time trajectories (known as instantons)
with energy E. Deforming the integration contour so as to pass through these
points and evaluating it using steepest descent leads to the following semiclassical
approximation to the Green’s functions:

〈x′|Ĝn(E)|x′′〉 ∝
∑

cl. traj

e−W̄n/~−iνπ/2,(6)

where W̄n =
∫ √

2m[Vn(x)− E]|dx| is a line integral along the trajectory. The
Maslov-Morse index, ν, counts the number of times the trajectory bounces at a
turning point, where E = Vn(x), and determines the phase. The dominant imag-
inary part, which appears in Eq. (2), thus comes from trajectories which bounce
exactly once.

This semiclassical approximation to the Green’s functions can be employed in
Eq. (2) to give the reaction probability and hence in Eq. (4) for the golden-rule
rate. Performing the integrals over positions and energy using the method of
steepest descents, defines two dominant classical trajectories which join together
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smoothly into a periodic orbit of length β~, as shown in Fig. 1. We thereby ob-
tain a semiclassical formula for the golden-rule rate of a multidimensional system,
exponentially dependent on the total Euclidean action around the periodic orbit.
This formula is similar to one derived by Cao and Voth [5] based on a less rigorous
foundation. In the high-temperature limit, the instanton pathway collapses to a
point and the rate formula recovers the classical golden-rule transition-state theory
result [3].

The method is applicable to study electron-transfer rates in polar environments
of interest in chemistry. The instanton trajectory can be located in such complex
multidimensional systems using a discretization scheme [6]. In this approach, the
pathway is described using a ring polymer and the action integral obtained using
the trapezium rule. The ring-polymer geometry is optimized to give a stationary
value of the action functional and thus the pathway of the required trajectory. In
this form, the golden-rule instanton method can be seen to be strongly related to
Wolynes’ quantum instanton approach [7].

The semiclassical Green’s functions are also a powerful tool for deriving other
chemical reaction rate theories. In a similar way, it is possible to rederive the
usual adiabatic instanton theory [6], which includes the Born-Oppenheimer ap-
proximation, and we are researching applications to more general nonadiabatic
reactions.
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Using Smolyak interpolants to solve the vibrational Schroedinger
equation

Tucker Carrington

(joint work with Gustavo Avila)

At the workshop, I presented new ideas for computing the vibrational spectrum of a
polyatomic molecule. The goal is to calculate many energy levels of a Hamiltonian,
H = K+V , for which the potential energy surface (PES) is general and the kinetic
energy operator (KEO) is exact. In particular, the methods I discussed do not
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require representing the PES as a sum of products or a sum of terms depending on
a subset of the coordinates. We have published several papers about using basis
pruning schemes, Smolyak quadratures, and efficient evaluation of matrix-vector
products to compute vibrational spectra. In this talk, I focused on collocation,
which obviates the need for quadrature. To devise a good quadrature method or
a good collocation method one must confront two problems. First, the size of the
basis needed to solve the Schroedinger equation scales exponentially. Second, the
size of the quadrature or collocation grid needed to compute matrix elements or
interpolate the wavefunctions also scales exponentially. A method that can be
used with a general potential must be able to cope with both these manifestations
of the curse of dimensionality.

Why collocation? If one uses a variational (Galerkin) method then to avoid a
generalized eigenvalue problem it is common to choose basis functions and quadra-
tures so that the overlap (Gram) matrix is an identity. This is important because
there are no efficient iterative (i.e. Krylov-based) eigensolvers for generalised eigen-
value problems. The need to make the identity matrix an identity (and the desire
to have exact KEO matrix elements) often forces one to choose non-optimal ba-
sis functions and quadrature points. In addition, it is only possible to find good
nested sets of quadrature points if the 1-D basis functions are classical orthogo-
nal polynomials. If instead, one uses collocation there are no integrals (and no
quadratures) and no need to have exact KEO matrix elements and one is free
to choose any basis functions. Nonetheless, established collocation methods have
the key disadvantage that they require solving a generalized eigenvalue problem.
Using Smolyak interpolants enables one to obviate, even in many dimensions, the
need to solve a generalized eigenvalue problem.

Two new developments were presented at the workshop. First, I showed that a
Smolyak collocation method can also be used with curvilinear internal coordinates.
This is important because coupling will often be less important in curvilinear (than
normal) coordinates and it is therefore possible to choose better basis functions
and reduce the number of required points. Curvilinear coordinates are better
suited for describing large amplitude motion and high-lying states. In curvilinear
coordinates, the KEO is more complicated. It is easier to use collocation than
variational (Galerkin) methods when the KEO is complicated because collocation
obviates the need to determine a basis representation of the KEO. Second, I re-
ported new ideas for writing an interpolated wavefunction as a sum of product
basis functions and showed that they facilitate the evaluation of matrix-vector
products for the KEO. The KEO matrix-vector products are computed using a
sequential summation approach. Rather than evaluating a matrix-vector prod-
uct for a term in the kinetic energy operator (KEO) by implicitly constructing a
grid representation of the operator and applying it to a vector labelled by points,
we instead apply the operator to basis functions and then evaluate at collocation
points. Obviating the need to do matrix-vector vector products with vectors la-
belled by points reduces the CPU cost by orders of magnitude. Transforming the
grid vector to a basis vector is not simple because the basis is not a direct product
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basis (it is pruned) and the grid is not a direct product grid (it is a Smolyak grid).
Evaluating KEO matrix-vector products in this manner, the collocation method is
as efficient as a Smolyak quadrature method but it allows one to use better basis
functions.
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A new algorithm to compute the Z2 invariant of time-reversal
symmetric topological insulators

Gianluca Panati

(joint work with D. Fiorenza, D. Monaco)

In my talk, I consider a gapped periodic quantum system with time-reversal sym-
metry of fermionic type, i. e. the time-reversal operator squares to −1. With my
collaborators, we investigated the existence of periodic and time-reversal invariant
Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such
a frame is shown to be encoded in a Z2-valued topological invariant, which
can be computed by a simple algorithm. We prove that the latter agrees with
the Fu-Kane index. In 3d, instead, four Z2 invariants emerge from the construc-
tion, again related to the Fu-Kane-Mele indices. When no topological obstruction
is present, we provide a constructive algorithm yielding explicitly a periodic
and time-reversal invariant Bloch frame. The result is formulated in an abstract
setting, so that it applies both to discrete models and to continuous ones.

In the recent past, the solid state physics community has developed an in-
creasing interest in phenomena having topological and geometric origin. The first
occurrence of systems displaying different quantum phases which can be labelled
by topological indices can be traced back at least to the seminal paper by Thou-
less, Kohmoto, Nightingale and den Nijs [TKNN], in the context of the Integer
Quantum Hall Effect. The first topological invariants to make their appearance
in the condensed matter literature were thus Chern numbers : two distinct insu-
lating quantum phases, which cannot be deformed one into the other by means
of continuous (adiabatic) transformations without closing the gap between energy
bands, are indexed by different integers (see [Gr] and references therein). These
topological invariants are related to an observable quantity, namely to the trans-
verse (Hall) conductivity of the system under consideration [TKNN, Gr]; the fact
that the topological invariant is an integer explains why the observable is quan-
tized. Beyond the realm of Quantum Hall systems, similar non-trivial topological
phases appear whenever time-reversal symmetry is broken, even in absence of ex-
ternal magnetic fields, as early foreseen by Haldane [Hal]. Since this pioneering
observation, the field of Chern insulators flourished [SPFKS, Ch, FC].
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More recently, a new class of materials has been first theorized and then ex-
perimentally realized, where instead interesting topological quantum phases arise
while preserving time-reversal symmetry: these materials are the so-called time-
reversal symmetric (TRS) topological insulators (see [An, HK] for recent reviews).
The peculiarity of these materials is that different quantum phases are labelled
by integers modulo 2 ; from a phenomenological point of view, these indices are
connected to the presence of spin edge currents responsible for the Quantum Spin
Hall Effect [KM1, KM2]. It is crucial for the display of these currents that time-
reversal symmetry is of fermionic (or odd) type, that is, the time-reversal operator
Θ is such that Θ2 = −1.

In a milestone paper [KM1], Kane and Mele consider a tight-binding model
governing the dynamics of an electron in a 2-dimensional honeycomb lattice subject
to nearest- and next-to-nearest-neighbour hoppings, similarly to what happens
in the Haldane model [Hal], with the addition of further terms, including time-
reversal invariant spin-orbit interaction. This prototype model is used to propose
a Z2 index to label the topological phases of 2d TRS topological insulators, and
to predict the presence of observable currents in Quantum Spin Hall systems. An
alternative formulation for this Z2 index is then provided by Fu and Kane in
[FK], where the authors also argue that such index measures the obstruction to
the existence of a continuous periodic Bloch frame which is moreover compatible
with time-reversal symmetry. Similar indices appear also in 3-dimensional systems
[FKM].

Since the proposals by Fu, Kane and Mele, there has been an intense activity
in the community aimed at the explicit construction of smooth symmetric Bloch
frames, in order to connect the possible topological obstructions to the Z2 indices
[SV3], and to study the localization of Wannier functions in TRS topological in-
sulators [SV1, SV2]. However, while the geometric origin of the integer-valued
topological invariants is well-established (as was mentioned above, they represent
Chern numbers of the Bloch bundle, in the terminology of [Pa]), the situation is less
clear for the Z2-valued indices of TRS topological insulators. Many interpretations
of the Z2 indices have been given, using homotopic or K-theoretic classifications
[AZ, MB, Ki, RSFL], C∗-algebraic approaches [Pr1, Pr2, Sch], the bulk-edge cor-
respondence [ASV, GP], monodromy arguments [Pr3], or gauge-theoretic methods
[FW]. However, we believe that a clear and simple topological explanation of how
they arise from the symmetries of the system is still missing in the literature.

In a recent paper [FMP2], we provide a geometric characterization of these
Z2 indices as topological obstructions to the existence of continuous periodic and
time-reversal symmetric Bloch frames, thus substantiating the claim in [FK] on
mathematical grounds. We consider a gapped periodic quantum system in presence
of fermionic time-reversal symmetry, and we investigate whether there exists a
global continuous Bloch frame which is both periodic and time-reversal symmetric.
While in 1d this always exists, a topological obstruction may arise in 2d. We show
that such obstruction is encoded in a Z2 index δ, which is moreover a topological
invariant of the system, with respect to those continuous deformations which
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preserve the symmetries. We prove that δ ∈ Z2 agrees with the Fu-Kane index
∆ ∈ Z2 [FK], thus providing a proof that the latter is a topological invariant.
Lastly, we investigate the same problem in 3d, yielding to the definition of four Z2-
valued topological obstructions, which are compared with the indices proposed by
Fu, Kane and Mele in [FKM]. In all cases where there is no topological obstruction
(i. e. the Z2 topological invariants vanish), we also provide an explicit algorithm
to construct a global smooth Bloch frame which is periodic and time-reversal
symmetric.

The main advantage of our method is that, being geometric in nature, it is based
only on the fundamental symmetries of the Hamiltonian modeling the system,
namely invariance by lattice translations (i. e. periodicity) and fermionic time-
reversal symmetry. No further assumptions on the Hamiltonian and its gaps are
needed in our approach, thus making it model-independent ; in particular, it applies
both to continuous and to tight-binding models, and both to the 2-dimensional
and 3-dimensional setting. To the best of our knowledge, our method appears
to be the first obstruction-theoretic characterization of the Z2 invariants in the
pioneering field of 3-dimensional TRS topological insultators.

Another strong point in our approach is that the construction is algorithmic
in nature, and gives also a way to compute the Z2 invariants in a given system.
This makes our proposal well-suited for numerical implementation, which may be
particularly appealing to the computational physics community [SV1, SV3].
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Improved quantum chemistry via electrons on D-dimensional spheres

Peter M.W. Gill

(joint work with Anneke Knol, Caleb Ball, Davids Agboola, Pierre-François Loos)

The primary goal of many quantum chemists is to know the electronic energy of
a given system of nuclei and electrons. Under certain assumptions, this energy is
given by an eigenvalue of the associated Schrödinger equation but, in all but the
simplest of cases, the equation is impossible to solve exactly. For this reason, it
is common to use self-consistent field (or mean field) methods to obtain a good
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approximation and then to append a small correction to the eigenvalue which is
designed to fix most of the error in that approximation.

Following Wigner (1934) and Löwdin (1959), the correction is often called the
“electron correlation” energy Ec and, in density functional theory, it is assumed
that it can be written as a functional F [ρ] of the electron density ρ(r). Although
the existence of F has been proven [1], its form is unknown and it is often supposed
that, for electrons moving in RD, it may be approximated by the so-called Local
Density Approximation (LDA)

(1) Ec =

∫

RD

ρ(r) ǫDc (rs(r)) dr

where rs is the Seitz radius and ǫDc (rs) is the correlation energy per electron of
the D-dimensional infinite uniform electron gas (UEG) with Seitz radius rs. The
function ǫDc (rs) is not known exactly but has been calculated accurately over a
wide range of rs values using quantum Monte Carlo (QMC) calculations [2] and
various types of perturbation theory.

Recently, we showed that (1) gives incorrect correlation energies when applied
to finite UEGs, such as those that form when n electrons are confined to a D-
sphere, i.e. the surface of a (D + 1)-dimensional ball [3]. This revealed that the
correlation energy of a UEG is not uniquely determined by its Seitz radius and
that, therefore, at least one other defining parameter is required. We have argued
that, because the Seitz radius measures the one-electron density at each point in
space, it is natural to introduce a parameter η that measures (in some way) the
two-electron density at each point and then to propose

(2) Ec =

∫

RD

ρ(r) ǫDc (rs(r), η(r)) dr

to generalize (1) so that it is exact for both infinite and finite gases.
There are many reasonable definitions for η but we have begun by investigating

(3) η(r) = CDrs(r)
D+2∇2ρ2(r, r)

ρ(r)

where ρ2 is the spinless reduced two-electron density matrix. The quantity (3) is
a dimensionless measure of the curvature of the electron-electron hole at r.

To develop an understanding of the two-variable function ǫDc (rs, η), we have be-
gun a systematic analytic and numerical investigation of the correlation energies
of electrons on D-spheres with a range of rs and η values. In the course of this
investigation, we have discovered several families of closed-form solutions to the
Schrödinger equation for two electrons on a D-sphere [5, 6, 7] and we have devel-
oped a variety of algorithmic techniques [8, 9, 10, 11, 12] for obtaining accurate
numerical solutions for three or more electrons.

The study is complete for D = 1 [4] (i.e. rings) but is still underway for D = 2
and D = 3. Once the correlation energies have been obtained, they can be fit to
judiciously chosen functional forms and the resulting Generalized Local Density
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Approximation (GLDA) represented by (2) tested on non-uniform D-dimensional
electronic systems.

References

[1] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964), B864–B871.
[2] D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method, Phys.

Rev. Lett. 45 (1980), 566–569.
[3] P.M.W. Gill, P.F. Loos, Uniform electron gases, Theor. Chem. Acc. 131 (2012), 1069/1–9.
[4] P.F. Loos, C.J. Ball, P.M.W. Gill, Uniform electron gases. II. The generalized local density

approximation in one dimension, J. Chem. Phys. 140 (2014), 18A524/1–11.
[5] P.F. Loos, P.M.W. Gill, Two electrons on a hypersphere, Phys. Rev. Lett. 103 (2009),

123008/1–4.
[6] P.F. Loos, P.M.W. Gill, Excited states of spherium, Mol. Phys. 108 (2010), 2527–2532.
[7] P.F. Loos, P.M.W. Gill, Exact wave functions of two-electron quantum rings, Phys. Rev.

Lett. 108 (2012), 083002/1–4.
[8] P.F. Loos, P.M.W. Gill, Ground state of two electrons on a sphere, Phys. Rev. A 79 (2009),

062517/1–8.
[9] P.F. Loos, P.M.W. Gill, The uniform electron gas on a hypersphere, J. Chem. Phys. 135

(2011), 214111/1–5.
[10] P.F. Loos, P.M.W. Gill, Uniform electron gases. I. Electrons on a ring, J. Chem. Phys. 138

(2013), 164124/1–9.
[11] P.M.W. Gill, P.F. Loos, D. Agboola, Basis functions for electronic structure calculations

on spheres, J. Chem. Phys. 141 (2014), 244102/1–4.
[12] D. Agboola, A.L. Knol, P.M.W. Gill, P.F. Loos, Uniform electron gases: III. Low-density

gases on three-dimensional spheres, J. Chem. Phys. submitted.

State and parameter estimations for open quantum systems

Pierre Rouchon

The first quantum feedback experiment has been realized in the cavity quantum
electro-dynamics group of Serge Haroche and Jean-Michel Raimond in 2011. The
mathematical models underlying these feedback-loops are hidden state Markov
chains. In these experiments, the hidden quantum state is the density operator of
a quantum harmonic oscillator. It is estimated in real-time from the measurement
outcomes via a discrete-time adaptation of Belavkin quantum filters. These filters
rely essentially on quantum probability attached to the collapse of the wave packet
resulting from the measurement process, decoherence seen as unread fictitious
measurements done by the environment, and classical probabilities to take into-
account measurement imperfections.

We expose the mathematical structure of such quantum filters. We show with
elementary arguments that their formulations are based on completely positive
linear maps, indexed by the measurement outcomes, and non-necessarily trace
preserving. In the continuous-time (diffusive) case, such formulations are equiva-
lent to usual stochastic master equations driven byWiener processes and governing
the density operator dynamics. They provide also numerically efficient formula-
tions of particle quantum filters for Bayesian estimations of classical parameters.
To illustrate the practical interest of these formulations we show how to precisely



1540 Oberwolfach Report 27/2015

estimate the detection efficiency from experimental data collected for a supercon-
ducting qubit whose fluorescence field is measured using a heterodyne detector.

Quantum mechanics without wavefunctions

Bill Poirier

(joint work with Gérard Parlant, Jeremy Schiff, and Hung-Ming Tsai)

This presentation explores an alternate “Many Interacting Worlds” [1, 2, 3, 4, 5, 6,
7, 8], quantum framework in which the wavefunction Ψ(t,x) plays no role. Instead,
quantum states are represented as ensembles of real-valued trajectories, x(t,C),
where C labels a trajectory. Quantum effects arise from the mutual interaction of
different trajectories or “worlds,” manifesting as partial derivatives with respect to
C. The quantum trajectory ensemble x(t,C) satisfies an action principle, leading
to a dynamical PDE (via a generalized Euler-Lagrange procedure), as well as
to conservation laws (via Noether’s theorem). The action is extremized as in
classical Lagrangian mechanics—rather than exponentiated and summed over, as
in the path-integral formulation. All quantities are real-valued, and x(t,C) foliates
spacetime (for a single particle). The “worlds” are therefore interacting but non-
branching—exactly opposite behavior from “Everett Many Worlds” [9].

The original, nonrelativistic version of the trajectory-based theory was found
to be mathematically equivalent to the time-dependent Schrödinger equation [1,
2, 3, 10, 11], although it can be derived completely independently [1, 2, 3]. On the
other hand, a more recent, relativistic generalization (for single, spin-zero, massive
particles) [5] is not equivalent to the Klein-Gordon (KG) equation—and in fact,
avoids certain well-known issues of the latter, such as negative probability density.
It therefore makes new physical predictions that could in principle be validated or
refuted by experiment. Likewise, a discretized version of the nonrelativistic theory
that was recently proposed [6, 7, 8] could also lead to new physical predictions.

Consider a trajectory x(t) for a single spatial coordinate x and time coordinate t,
presumed to be the solution of some as-yet-unspecified dynamical law (ODE). We
wish to determine x(t), as well as the dynamical law itself, solely by applying the
two bedrock physical principles of action extremization and energy conservation.
The former implies that x(t) obeys an Euler-Lagrange equation obtained from a
Lagrangian L, which we take to be of the form

(1) L[x, ẋ] = T [ẋ]− V [x].

For the moment, T [ẋ] and V [x] are arbitrary. By Noether’s theorem, the lack of
implicit dependence of L on t implies a conserved quantity along x(t). If we take
this to be the energy E[x, ẋ] = T [ẋ] + V [x], this results in a constraint on the
allowed forms for T [ẋ] and V [x], thereby determining the dynamical law.

Specifically, one finds that T [ẋ] must take the form of a constant times ẋ2

(V [x] is arbitrary). Identifying that constant as one half the mass (m/2) leads to
Newton’s ODE. Thus is the familiar classical dynamical law derived, presuming
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only a Lagrangian of the generic Eq. (1) form, in addition to the two physical
principles. Moreover, it can be shown [2] that a more generalized L[x, ẋ] form—i.e.,
not restricted to Eq. (1)—gives rise to the generalized (non-Euclidean x) dynamical
law of standard classical Lagrangian mechanics. Thus, only the standard forms
of classical physics emerge as permissible dynamical laws, when the Lagrangian is
first order in the time derivatives of x (with one caveat [2]).

Conversely, any nonclassical dynamical laws must arise from Lagrangians in-
volving higher-order derivatives. Towards this end, a kinematic “quantum correc-
tion” is presumed, leading to the following modified expressions:

L[x, ẋ, ẍ, . . .] = T [ẋ]− V [x]−Q[ẋ, ẍ,
...
x , . . .]

E[x, ẋ, ẍ, . . .] = T [ẋ] + V [x] +Q[ẋ, ẍ,
...
x , . . .]

The existence of a nontrivial Q[ẋ, ẍ,
...
x , . . .] (i.e., not Q = const) that satisfies both

physical principles is not guaranteed a priori. A systematic, order-by-order search
reveals the following to be the simplest, lowest-order, meromorphic solution:

(2) Q[ẋ, ẍ,
...
x ] = B

( ...
x

ẋ3
− 5

2

ẍ2

ẋ4

)

Other dynamical laws also exist, at third order, and every higher odd order.

The identification B = ~
2

4m in Eq. (2) leads to trajectories that are equivalent
to those of Bohmian mechanics [12] in the special case of 1D time-independent
stationary scattering. The Q of Eq. (2) is therefore the “quantum potential,”
although it is derived here without reference to a wavefunction—nor indeed, to
any quantum mechanical postulates whatever. Note that in this context, a single
quantum trajectory represents a single quantum state in one-to-one fashion.

For time-dependent 1D applications, a single trajectory no longer suffices to
represent a single quantum state; rather, a one-parameter ensemble of trajectories,
x(C, t), must be used. For the time-independent special case described above,
these trajectories must all be time-delayed copies of one another (i.e., effectively
a single trajectory, as discussed), so that, e.g., x(C, t) = x(C − αt). Because all
terms in Eq. (2) are invariant under the rescaling t → −αt, the time derivatives
may be replaced with “spatial” (C) derivatives—suggesting a more general form
of Q, suitable also for the time-dependent case. Equivalently, energy and action
considerations of the type discussed above also lead to this same, C-derivative Q
form. The resulting Euler-Lagrange dynamical PDE for x(C, t) is

(3) mẍ+
∂V (x)

∂x
+

~
2

4m

(
x′′′′

x′4
− 8

x′′′x′′

x′5
+ 10

x′′3

x′6

)
= 0 ,

where primes denote partial derivatives with respect to C, keeping t fixed.
The trajectories emerging from Eq. (3) are equivalent to those of Bohmian me-

chanics – and the trajectory theory equivalent to 1D time-dependent Schrödinger
theory – provided that: (a) probability is presumed to be conserved along trajecto-
ries; (b) the parameter C is presumed to “uniformize” the probability density – i.e.
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f(C) = const, where |Ψ(x)|2dx = ρ(x)dx = f(C)dC. (Arbitrary reparametriza-
tions of C may also be considered, but will not be here). For many-D applications,
x is replaced with the vector x = xi, and C with C = Ci. Equation (3) becomes

(4) mẍi +
∂V (x)

∂xi
− ~2

4m

∂

∂Cm

(
Kk

iK
m
j

∂2K l
j

∂Ck∂Cl

)
= 0 ,

where K = J−1 is the inverse Jacobi matrix, i.e. Ki
j = ∂Ci/∂xj. Einstein

notation is used, albeit with mismatched indices, as Euclidean x space is presumed.
The quantum force term in Eq. (4) can be easily rewritten in terms of metric

tensors, leading to a straightforward single-free-particle relativistic generalization:

∂2xα

∂T 2
= exp

[
− 2Q

mc2

]
fα

m
−
(

1

mc2

)
∂Q

∂T
∂xα

∂T ,(5)

where Q = − ~
2

2m
γ−1/4 ∂i

[
γ1/2 γij ∂jγ

−1/4
]
,

fα = −ηαβ ∂C
i

∂xβ
∂iQ = −∂x

α

∂Ci
γij ∂jQ ,

η is the usual (flat) Minkowski spacetime metric, γ is the spatial part of the
(block-diagonal) metric tensor g in the curvilinear (cT ,C) coordinates, and T is
the global “ensemble proper time” coordinate. Equation (5) reduces seamlessly
to both classical relativistic mechanics and nonrelativistic quantum mechanics in
the appropriate limits. It also introduces a generalized “global simultaneity” into
relativity theory, as well as a purely quantum “time compression” effect [5].

Broad ranging ramifications of the trajectory-based approach continue to be
realized, including new conservation laws, numerical algorithms, mixed quantum
classical methods, experimental predictions, interpretations of “wavefunction col-
lapse” and measurement, etc.
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Quantum dynamics in open quantum-classical systems

Raymond Kapral

Open quantum systems interact with their environments and these environmental
interactions can lead to decoherence and dissipation. Often, the dynamics of the
environment may be treated classically to a good approximation so that the system
may be classified as an open quantum-classical system. The talk described such
open quantum-classical systems whose dynamics is given by the quantum-classical
Liouville equation,

∂

∂t
ρ̂W (X, t) = − i

~
[ĤW , ρ̂W (t)] +

1

2

(
{ĤW , ρ̂W (t)} − {ρ̂W (t), ĤW }

)
.

Here ρ̂W (X, t) is the density matrix with X = (R,P ) the phase space variables of
the environment, and the square and curly brackets denote the commutator and
Poisson brackets, respectively. This equation may derived by first taking a partial
Wigner transform over the environmental degrees of freedom, then passing to the
quantum-classical limit through either an expansion in the ratio of the mass of
the (light) quantum subsystem particles to the mass of the (heavy) environmental
particles, or though an analysis based on linearized path integrals. For reviews
with references see Refs. [1, 2]

In the quantum-classical Liouville equation written above, no specific represen-
tation for the quantum subsystem was specified. In the talk a representation in
terms of the eigenstates of the subsystem Hamiltonian was considered. Rather
than dealing directly with this representation of the equation, the eigenstates and
quantum operators were then transformed into the mapping basis in order to ob-
tain a phase space description of the quantum degrees of freedom. The mapping
representation associates a basis of singly occupied harmonic oscillators states with
each subsystem quantum state. For example the subsystem quantum state |λ〉 is
mapped to the state |0, · · · , 1λ, · · · , 0〉 where the 1 appears in the λ position. Op-
erators may then be written in terms of annihilation and creation operators on
these mapping states. The resulting quantum-classical Liouville equation may be
written as [3, 4, 5]

∂

∂t
ρm(X , t) = {Hm, ρm(t)}X

−~

8

∂hλλ′

∂R
(
∂

∂rλ′

∂

∂rλ
+

∂

∂pλ′

∂

∂pλ
) · ∂

∂P
ρm(t),

where x = (r, p) are the phase space variables that arise from a further Wigner
transform over the mapping variables. We use the notation {Am, Bm(t)}X for
a Poisson bracket in the full mapping-bath phase space of the entire system,
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χ = (x,X). The first Poisson bracket term on the right side of the equation
specifies a Hamiltonian dynamics that can be solved in terms of an ensemble if
independent trajectories. Often, but not always, the dynamics described by this
term provides an accurate description of nonadiabatic dynamics. It may happen
that the dynamics described by the first term alone takes the system out of the
physical mapping space. If the second term is also taken into account then no such
independent-trajectory description is possible. The dynamics described by the full
quantum-classical Liouville equation where both terms are taken into account is
confined to the physical space. [5]

Another solution to the quantum-classical Liouville equation may be obtained
by again starting from its representation in the mapping basis. Now however one
writes the formal solution in terms of forward and backward quantum-classical
propagators, analogous to the formal solution for the full quantum mechanical
problem. Given this starting point, writing the solution as a concatenation of
short-time segments and inserting complete sets of coherent states, an approximate
solution may be constructed [6, 7] The equations of motion that govern phase space
variables that enter this forward-backward solution have a Hamiltonian form,

dχµ
dt

=
∂He(χ, π)

∂πµ
,

dπµ
dt

= −∂He(χ, π)

∂χµ
,

where

He(χ, π) = P 2/2M + Vfb(R)

+
1

2~
hλλ′(R)(qλqλ′ + pλpλ′ + q′λq

′
λ′ + p′λp

′
λ′),

with χ = (R, q, q′), and π = (P, p, p′) where the lower case unprimed and primed
variables arise from forward and backward quantum dynamics, respectively. The
matrix elements of the Hamiltonian (minus the kinetic energy of the environmental
degrees of freedom) are hλλ′(R) and Vfb(R) is the potential energy of the environ-

ment minus the trace of ĥ. Because of the Hamiltonian structure of these equations
the dynamics is easily simulated. To obtain this solution, it was assumed that the
coherent state overlap matrix elements that connect the small time intervals in
the solution are Dirac delta functions. This approximation may be relaxed sys-
tematically obtain a numerically exact solution, albeit at a considerably increased
computational cost. The simple forward-backward solution is often very accurate
and its validity can be checked by the systematic relaxation of the orthogonality
approximation.

The quantum-classical Liouville equation is equivalent to full quantum dynam-
ics for the entire system for an arbitrary quantum subsystem bilinearly coupled
to a harmonic bath. For nonlinear coupling an and nonlinear baths it is an ap-
proximation to full quantum dynamics. Since it is exact for an important class of
systems the accuracy of simulation methods may easily be assessed and connec-
tions to other theories established.
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Accurate Thermodynamics with a Noisy Gradient

Ben Leimkuhler

Thermostats are distributional controls commonly used to sample the canonical
distribution in molecular dynamics simulation where the underlying model is a con-
servative system or gradient flow. In many applications, however, the forces are
corrupted by perturbations due to incomplete averaging in another scale regime.
For example, this situation arises in many types of mixed quantum-classical dy-
namics (Ehrenfest dynamics, TDDFT, QM-MM). It is also an important char-
acteristic of dynamics-based Bayesian inference procedures being used by Google
and others in the data science community.

The usual solutions proposed in the literature include (i) the use of standard
stochastic gradient dynamics (Brownian or Langevin dynamics), ignoring the per-
turbation, with the assumption that errors “average out,” and (ii) quantification
of the error relative to an underlying gradient model coupled with a correction pro-
cedure. The first of these approaches is demonstrably wrong–the effect of the force
error is typically an additional random perturbation and failure to take it into con-
sideration will introduce substantial errors in the equilibrium state, whereas the
second is not practical in many cases as it is computationally difficult to directly
extract the unknown underlying force field in the presence of noise.

It is possible to design a robust thermostat-based procedure addressing the noisy
gradient sampling problem when the noise is Gaussian of unknown variance[1]
this is a reasonable assumption in many cases due to the central limit theorem.
Our methods come in several flavors, for example Adaptive Langevin which can
be viewed as a sort of Langevin dynamics in which the dissipation coefficient is
automatically determined by local kinetic energy control; it is effectively a hybrid of
Nose-Hoover dynamics and Langevin dynamics (but different than Nose-Hoover-
Langevin). Although our analysis assumes a fixed variance, the methods can
be generalized to the case where the variance evolves adiabatically as a function
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of position. We have have already deployed adaptive thermostats for QM/MM
simulation in [2].

Our work on numerical analysis for Langevin dynamics [3, 4, 5] has uncovered
numerical methods that have exceptional properties with respect to the invari-
ant measure, specifically they are exact for harmonic systems, highly accurate for
weakly perturbed harmonic models, and for general anharmonic systems exhibit
high order of accuracy (superconvergence) for configurational averages in the high
friction regime. In [6] we have demonstrated that a certain integration scheme for
the Adaptive Langevin method inherits these accuracy properties; dramatic im-
provements in sampling accuracy are therefore unlocked for multiscale simulation.
Several model examples have been considered which illustrate the properties and
efficiencies attainable.
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Computational error estimates for molecular dynamics

Anders Szepessy

(joint work with Christian Bayer, H̊akon Hoel, Ashraful Kadir, Petr Plecháč,
Mattias Sandberg)

We have three types of errors in molecular dynamics simulations: time discretiza-
tion error, sampling error and modeling error. The time discretization error comes
from approximating the differential equation for molecular dynamics positions Xt,
at time t, with a numerical method, based on replacing time derivatives with dif-
ference quotients and time steps ∆t. The sampling error is due to truncating
the infinite τ and using a finite value of τ in determining a molecular dynamics
observable

∫ τ
0 g(Xt)dt/τ . The modeling error originates from eliminating the elec-

trons in the Schrödinger nuclei-electron system and replacing the nuclei dynamics
with their classical paths; this approximation error was first analyzed by Born and
Oppenheimer in their seminal paper 1927.
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The time discretization and truncation error components are in some sense
simpler to handle by comparing simulations with different choices of ∆t and τ ,
although it can, of course, be difficult to know that the behavior does not change
with even smaller ∆t and larger τ . The modeling error is more difficult to check
since a direct approach requires the solution of the Schrödinger equation. Conse-
quently the modeling error requires mathematical error analysis.

Egorov’s theorem is one of the main tools to estimate approximation error of
molecular dynamics observables as compared to quantum observables in the micro
canonical ensemble. Shnirelman and others have shown how observables for the
time-independent Schrödinger equation is approximated by ergodic dynamics. Our
work [1] focuses on the following mathematical modifications, which are important
in a computational setting.

• In general, ergodicity is hard to verify theoretically and computationally.
We use an alternative assumption, which can be tested computationally
based on finite time convergence rate, also leading to an error estimate of
molecular dynamics observables.

• The standard proofs use L2-estimates of remainders in Weyl quantization
compositions which lead to maximum norm bounds on derivatives of the
observable up to the order of the number of particles. We show how to
avoid this many derivatives, using instead a maximum norm estimate of a
regularized observable.
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The Lieb-Oxford inequality and the Jellium model

Mathieu Lewin

(joint work with Elliott H. Lieb)

One of the central problems in density functional theory is the estimation of the
indirect part EInd of the Coulomb energy in the ground state. Ideally, this estimate
should be local, that is, it must be given by an integral of some function of ρ(x)
and its derivatives.

The indirect part of the Coulomb energy of an N -particle (symmetric) proba-
bility distribution PN on R3N is defined by

(1) EInd =

∫

R3N


 ∑

1≤j<k≤N

1

|xj − xk|


 dPN −D(ρ, ρ)

where ρ(x) = N
∫
R3(N−1) dPN (x, x2, ..., xN ) is the corresponding density and

(2) D(ρ, ρ) =
1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dxdy
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is its (direct) Coulomb energy. A well known bound on EInd is the Lieb-Oxford
inequality [9]

(3) EInd ≥ −1.68

∫

R3

ρ(x)4/3 dx

which was based on an earlier inequality in [7] with the constant 8.52 instead of
1.68, and which was later improved by Chan and Handy to 1.64 in [5].

The Lieb-Oxford inequality has been used to construct some exchange-corre-
lation functionals, like the famous Perdew-Burke-Erzenhof functional [11]. Due to
its impact on the models used by practinioners, it is important to find the best
constant in the Lieb-Oxford inequality (3). The latter is not yet known. It was
conjectured in [10, 12] that the best constant is attained when ρ is the characteristic
function of a large set of volume V → ∞, and that the lowest value of EInd/

∫
ρ4/3

that can be reached with N -particle probability distributions over R3N yielding
such a density ρ is −1.4442. This value comes from the Jellium problem, as will
be discussed below.

In [6], we gave two new inequalities which are better than the original Lieb-
Oxford inequality for a slowly varying ρ and, in particular, when ρ is constant on
a large set. Our inequality is

(4) EInd ≥ −


3

5

(
9π

2

)1
3
+ α



∫

R3

ρ
4
3 −





0.001206

α3

∫

R3

|∇ρ|
0.1236

α2

∫

R3

|∇ρ 1
3 |2

for all α > 0. After optimizing over α in (4), an equivalent formulation is

(5) EInd ≥ −3

5

(
9π

2

)1
3
∫

R3

ρ
4
3 −





0.3270

(∫

R3

|∇ρ|
) 1

4
(∫

R3

ρ
4
3

)3
4

0.9416

(∫

R3

|∇ρ 1
3 |2
)1

3
(∫

R3

ρ
4
3

)2
3
.

The constants have been slightly optimized as compared to [6]. The inequality
on the second line uses a non-optimal estimate for Hardy-Littlewood maximal
functions, and this is why it is much worse than the first line, which is based
on simpler arguments. Our constant 3/5(9π/2)1/3 ≃ 1.4508 is very close to the
supposedly optimal 1.4442 for a slowly varying ρ. Our result extends a previous
work of Benguria, Bley and Loss [1] who got a similar inequality, but involving
the nonlocal term (

√
ρ, |∇|√ρ) instead of our gradient corrections. The constant

3/5(9π/2)1/3 also already appeared in a previous work [8] of Lieb and Narnhofer
dealing with Jellium.

Our bounds (5) were numerically studied in [4, 3]. In particular, in [4] it was
found that the new bound is not better than the usual Lieb-Oxford bound (3)
for spherically symmetric atoms with Z ≤ 88. Dividing our constant 0.3270 by
a factor two would make it better for all Z ≥ 2. It is therefore an important
challenge to improve our bounds.
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Let us now discuss a relation between the Jellium problem and the indirect
energy, which is often mentioned in the literature. The Jellium problem consists
in optimizing the positions of classical Coulomb particles in a neutralizing uniform
background. A famous conjecture of Wigner [13, 2] is that the particles are, in
the minimizing position, placed on a Body-Centered Cubic (BCC) lattice. The
indirect energy problem has no background but there is a way to interpret the
term D(ρ, ρ) as coming from a fictitious uniform background, provided that the
density ρ of PN is constant.

Let L be the BCC lattice with unit cell Q of volume 1 and with 0 ∈ L. We pick
a big ball BR of radius R (or any other fixed set that is dilated of a factor R) and
place N = #L∩BR particles on the sites z1, ..., zN of L that are in this ball. Next

we average the corresponding probability density (N !)−1
∑

σ∈SN

∏N
j=1 δzj (xσ(j))

over the translations of the unit cell. We thereby obtain a probability density PN
which has the constant density ρ ≡ 1 over the union Ω = ∪Nj=1Q + zj of the cells
that intersect the ball BR. The Coulomb energy of this probability density does
not change, by translation-invariance, and the indirect energy of PN is thus

Eind(N) =
1

2

∑

x 6=y∈L∩BR

1

|x− y| −
1

2

∫

Ω

∫

Ω

dxdy

|x− y| .

Now if we think of having particles at the centers of the cells and a uniform
background in the domain Ω, the Jellium energy is

(6) EJell(N) =
1

2

∑

x 6=y∈L∩BR

1

|x− y| −
∑

x∈L∩BR

∫

Ω

dy

|x− y| +
1

2

∫

Ω

∫

Ω

dxdy

|x− y| .

A calculation shows that EJell(N)/N → ζL(1) ≃ −1.4442 as N → ∞, where
ζL(s) =

∑
z∈L\{0} |z|−s is the Epstein Zeta function, analytically continued to

s = 1, see [2]. In the literature, the second term in (6) above is sometimes claimed
to be the same quantity as the third term in (6), up to a factor of 2, in the limit
N → ∞. In this manner, one is led to think that one has constructed a probability
density PN with an indirect energy that is exactly the same as the Jellium energy,
namely −1.4442 in the limit N → ∞. Unfortunately, this expectation is not
fulfilled, as we have shown in [6]. Indeed, a careful calculation gives

(7) lim
N→∞

EInd(N)− EJell(N)

N
=

∫

R3

(
1

|x| −
∫

Q

1

|x− y|dy
)
dx

=
2π

3

∫

Q

|x|2 dx ≃ 0.4935.

Our result relies on the long range of the Coulomb potential. For any other
potential that decays slightly faster than 1/|x| at infinity, the Jellium and indirect
energies coincide in the limit. After this computation, it is not clear anymore
that the best Lieb-Oxford inequality is ≥ 1.4442. Given the importance of the
uniform electron gas model in density functional theory, we hope that our work
will stimulate further investigations of the indirect energy problem at constant
density.
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Coupled Hill’s Equations and the Lorentz Oscillator Model

Anthony M. Bloch

(joint work with Fred C. Adams, Rohit Gupta, Hamed Razavi)

We study the stability of a class of coupled Hill’s equations with application to the
Lorentz Oscillator Model. In particular we show that there is a transformation
from the Lorentz Oscillator model to the coupled Hill’s equation which removes
the dissipation terms and illustrates the stability of both systems. We analyze the
stability using Floquet theory and discuss the structure of the transfer matrix. The
Lorentz Oscillator models bound electron motion. We are interested in this model
in dielectric materials where electric and magnetic response is of interest. The
work here is inspired by the research in [3]. We include both numerical analysis
of the stability regions and analysis of the Floquet multipliers.

The general n-dimensional coupled Hills equations (CHE) have the form

ẍ+B(t)x = 0(1)

where x is n× 1 and B(t) is an n× n periodic real matrix.
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We are interested in a particular two-dimensional model which is related to the
Lorentz Oscillator model:

ẍ+ p(t)x = −q(t)z(2)

z̈ + p(t)z = q(t)x ,(3)

where p(t) is even and periodic and q(t) is odd and periodic, both smooth with
common period T .

The Lorentz Oscillator Model (LOM) mentioned above is described by the cou-
pled differential equations

ẍ+ γxẋ+ ω2
xx =

qE0

m
cos(ωt)− qB0

m
cos(ωt)ż ,(4)

z̈ + γz ż + ω2
zz =

qB0

m
cos(ωt)ẋ .(5)

This model described bound electron motion subject to external electric and
magnetic fieldsand amplitudes Eo and B0 respectively. Scaling appropriately we
can rewrite as:

ẍ+ γxẋ+Ω2
xx = ǫ cos t− β(cos t)ż ,(6)

z̈ + γz ż + Ω2
zz = β(cos t)ẋ .(7)

Definition: The LOM is said to be symmetric if

γx = γz = γ, Ω2
x = Ω2

z = Ω2.(8)

We can use a transformation to write the symmetric homogeneous LOM as a CHE.
Define the complex function

y = x+ iz =W exp

[
−1

2
γt+

i

2
β sin t

]
.(9)

Then we define W = χ+ iζ and let

a ≡ Ω2 − γ2

4
+
β2

8
and b ≡ β2

8
.(10)

The differential equations then become

χ̈+ [a+ b cos 2t]χ =
1

2
β (γ cos t− sin t) ζ(11)

ζ̈ + [a+ b cos 2t] ζ = −1

2
β (γ cos t− sin t)χ .(12)

We now consider the use of Floquet theory to analyze the general coupled Hills
equations

ẍ+ p(t)x = −q(t)z(13)

z̈ + p(t)z = q(t)x ,(14)
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where p(t), q(t) are smooth periodic functions with a common period T . This
system can be written in the form

dv

dt
= A(t)v .(15)

This system is linear periodic, hence we can apply Floquet theory ([4]) to study
the stability of the solutions. Let T be the common period of p(t) and q(t), i.e.
p(t+ T ) = p(t) and q(t+ T ) = q(t).

We can prove the following result:

Theorem: The transfer matrix has the following block form

M =

[
A −B

B A

]
,(16)

where A and B are 2 × 2 matrices. The constituent matrices A and B have the
general forms

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
.(17)

Further the largest Floquet multiplier is determined generically by a formula of
the form

λ = a11 ±
[
a211 − 1

]1/2
.(18)

Thus the stability of symmetric coupled Hills system can be studied by only looking
at one element of the transfer matrix, a11.

We can study the stability regions for a special case of the Hills equations which
was found from the rotation of the LOM:

ẍ+ [a+ b cos 2t]x = −c sin(t)z
z̈ + [a+ b cos 2t] z = c sin(t)z .(19)

Figure 1. (a,b) Stability diagrams in the (a, b) plane for the
coupled equations (19) for the parameter c = 5.



Mathematical Methods in Quantum Molecular Dynamics 1553

We provide a picture (linear and logarithmic) of the stability regions in a, b
parameter space for a sample value of c. Level sets of largest Floquet multiplier
are given. See Figure 1. We note how this generalizes the regions one finds in the
Mathieu equation for example. Details and analysis are given in a forthcoming
paper. We also intend to extend to the setting where the equations are subject to
noise, building on the work in [1] and [2] and related publications.
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Algorithms for DFT Ab Initio Molecular Dynamics

Francois Gygi

First-Principles molecular dynamics (FPMD) simulations performed within the
Born-Oppenheimer approximation are a popular approach for the description of
condensed matter at finite temperature. This approach is most often used within
the framework of Density Functional Theory [1] and requires the solution of the
Kohn-Sham equations[2]. The accuracy of a DFT calculation depends critically on
the choice of functional used to describe the exchange and correlation energy[3].
Recently, a new class of density functionals (called ”hybrid” density functionals)
was introduced in order to improve the accuracy of the exchange and correlation
energy. Hybrid functionals include in their definition a fraction of the Hartree-Fock
exchange energy

(1) EHF
x = −1

2

N∑

i,j=1

∫
φ∗i (r)φ

∗
j (r)φj(r

′)φi(r′)

|r − r′| drdr′.

where φi(r) are Kohn-Sham orbitals, and N denotes the number of occupied or-
bitals. The inclusion of this term results in a large increase of the computational
cost of simulations involving hybrid functionals. Although this cost can be mit-
igated by expanding the Kohn-Sham orbitals on atom-centered, localized basis
functions (e.g. gaussians), we are interested in using the plane wave (or Fourier)
basis for condensed systems because of their good translational invariance proper-
ties, and the absence of basis set superposition errors (BSSE) in that basis. The
computational cost of the Hartree-Fock exchange energy is O(N3 logN) when us-
ing plane waves and exploiting the efficiency of the fast Fourier transform (FFT)
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algorithm. This high cost has severely hindered the use of hybrid DFT calculations
for large systems (i.e. systems including several hundred atoms). It has been noted
by several authors that localized orbitals could be used to reduce this cost since an
exchange integral for a pair of orbitals (φi, φj) can be neglected if the orbitals are
localized in distinct domains in real space. According to the ”near-sightedness”
principle proposed by Kohn[4], it is in general possible to obtain a representation
of the Kohn-Sham occupied subspace in terms of localized orbitals. One approach
used to generate such localized orbitals is the calculation of Maximally Localized
Wannier Functions (MLWFs)[5, 6], which were shown to be exponentially local-
ized in systems exhibiting a finite gap between the eigenvalues of occupied and
empty orbitals[7]. Following this approach, Wu et al have demonstrated efficient
calculations of the Hartree-Fock exchange energy in liquid water[8].

We have developed an alternative approach[9] to the localization of orbitals,
based on the CS decomposition[10]. In this approach, which we refer to as recursive
subspace bisection (RSB), projectors P (k), k = x, y, z are associated with bisecting
planes that divide the simulation domain into subdomains Ωk of equal size in the
x, y, and z directions, e.g.

(2) P (x)f(x, y, z) =

{
f(x, y, z) x < a/2

0 x > a/2

where a is the size of the simulation domain in the direction x. The matrices A(k)

representing these projectors in the subspace of occupied orbitals are defined by

(3) a
(k)
ij = 〈φi, P (k)φj〉

Performing an approximate simultaneous diagonalization[11] of the matrices A(k)

in the subspace of occupied orbitals provides singular values c
(k)
i and s

(k)
i =√

1− c2i that characterize the localization of the approximate computed eigen-

vectors in the subdomains Ωk. For example, if c
(x)
i ≃ 1, the ith eigenvector is

mostly localized in the region x < a/2. If however c
(x)
i ≃ 0, it is mostly local-

ized in the region x > a/2. Given a threshold value ǫ > 0, orbitals can then be

truncated to one of these two subdomains if (c
(x)
i )2 > 1 − ǫ or if (c

(x)
i )2 < ǫ, re-

spectively. If the singular values have intermediate values, i.e. ǫ < (c
(k)
i )2 < 1− ǫ,

the eigenvector is not localized, and therefore it is not truncated. Using this trun-
cation criterion based on a predefined threshold value ǫ, it is guaranteed that the
truncation procedure does not introduce an error larger than

√
ǫ in 2-norm. We

used this truncation procedure to accelerate the computation of the Hartree-Fock
exchange energy in plane wave calculations. In that approach, exchange integrals
for a pair (i, j) in (1) are not computed if the orbitals φi and φj can be truncated
to separate domains for a given value of the threshold ǫ. A large acceleration
of the computation results, as was shown in applications to various systems in-
cluding liquid water, a chloride ion solvated in water, and a vacancy in a silicon
crystal [12]. When using this truncation method, the 2-norm error threshold ǫ can
be continuously reduced to zero, leading to smaller errors and a correspondingly
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smaller gain in computational speed. The error in the exchange energy can also
be shown to be positive, since each neglected exchange integral is negative (this is
apparent when representing the convolution integrals in (1) as Fourier sums). This
property guarantees that convergence to the exact exchange energy is monotonic,
which facilitates the error analysis in hybrid DFT simulations.

Further developments of the recursive subspace bisection method are under way
to accelerate the computation of other quantities related to the correlation energy.
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Nanadiabatic transitions through avoided crossings

Benjamin Goddard

(joint work with Volker Betz, Stefan Teufel)

For most molecular dynamics applications, the Born-Oppenheimer (infinite nuclear
mass) approximation is used; it is assumed that the electronic energy levels are
well-separated. However, in many chemical systems this is not valid. Typical
examples are ultra-fast chemical reactions, such as the photodissociation of sodium
iodide and the reception of light in the retina. We have considered the fundamental
case of two electronic energy levels with one nuclear degree of freedom x, with
Schrödinger equation

iǫ∂t

(
ψ1(x, t)
ψ2(x, t)

)
=

(
− ǫ

2

2
∂2xI +

(
X(x) Z(x)
Z(x) −X(x)

)
+ d(x)I

)(
ψ1(x, t)
ψ2(x, t)

)
,

where I is the 2 × 2 unit matrix, ǫ2 is the nuclear-electron mass ratio, and ψ =
(ψ1, ψ2)

T ∈ L2(dx,C2).
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An interesting physical case is where the two Born-Oppenheimer energy levels
become close but do not cross – an avoided crossing. It is natural to change to the
adiabatic representation in which the potential matrix becomes diagonal, and the
two levels decouple up to errors of order ǫ. Interest lies in starting a wavepacket on
the upper level and investigating the (exponentially small) part transmitted, via
the avoided crossing, to the lower level, far away from the crossing (in the scattering
limit). This exponential smallness, coupled with the highly oscillatory nature of
the wavepackets, makes numerical simulations very computationally expensive.

By considering generalizations of the adiabatic representation [1], we derived
a closed form approximation to the transmitted wavepacket, which is in excellent
agreement (around 1–2% relative error) with high-precision numerics for a wide
range of potentials and wavepackets. In contrast to most previous mathematical
results, it is highly suited to numerical implementation, requiring only multiplica-
tion in momentum space. When the slope of the potential near the crossing, given
by λ = dd

dx |x=0, is small the formula is

ψ̂−
ǫ
(k, t) = e

−i
ǫ
tĤ−

χ{k2>4δ}
η + k

2|η| e
iτδ
2δǫ |k−η|φ̂ǫ(η),

where Ĥ− is the Born-Oppenheimer propagator on the lower level, ·̂ǫ denotes a
scaled Fourier transform, χ is the characteristic function (corresponding to energy

conservation), η = sgn(k)
√
k2 − 4δ is the classical incoming momentum for outgo-

ing momentum k, φ is the wavepacket on the upper level at t = 0, and τ , δ, and γ
are constants easily derivable from X and Z. When λ is not small, the formula is
analogous but more complicated [2, 3]. Some typical results are given in Figure 1.

The next avenues of this research involve application of the results to real-world
chemical systems, such as the photodissociation of NaI, and the extension to higher
dimensions. In particular we are interested in tackling the dynamics near a true
crossing, say in 2D, in the case that the centre of the wavepacket travels along a
path well away from the crossing, resulting in a type of avoided crossing with a
non-zero gap.
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Figure 1. (a) The wavepacket on the upper level at the crossing
point (subplot), along with the transmitted wavepacket (solid,
left axis) and relative error (dashed, right axis). (b) Phase of
the wavepackets, and error in the phase; axes as in (a). (c) The
potential energy surfaces, the avoided crossing is at x = 0. The
relative error is around 1.8% with a transmission probability of
around 10−5.
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A mathematical analysis of the GW0 method

David Gontier

(joint work with Eric Cancès, Gabriel Stoltz)

The aim of this talk was to present a mathematical framework to understand
the properties of the GW0 method, which has been proven very successful to
predict electronic-excited energies [1]. This method relies on the study of the one-
body Green’s function for electronic systems. Numerically, the Green’s function
(which is an operator-valued distribution) is difficult to evaluate from its standard
definition, due to the curse of dimensionality. The state-of-the-art method to
computeit consists in solving Hedin’s equations [2].

In this talk, I first exposed the properties of the one-body Green’s function. This
function is very irregular in the time or frequency domain, so that its analysis is
tedious on these axes. It is possible however to consider its analytical continuation,
provided some stability condition is satisfied. This continuation is regular, and
contains the same information as the original function.

I then focused on the GW0 equations. These equations are obtained from
Hedin’s equations by neglecting some terms. The GW0 equations involve many
operator-valued distributions, among which the dynamically screened Coulomb
operatorW , the self-energy Σ and the Green’s function G. The mathematical def-
inition of these operators were clarified during the talk. The GW0 equations are
traditionally set on the time-axis, but it is possible to recast them into formally
equivalent equations on an imaginary axis, where the operator-valued functions
under consideration are smooth.

In the last part of my talk, I investigated the resulting GW0 equations. They are
non-linear equations which are solved self-consistently in practice. Our main result
is that, in some perturbative regime, where the Coulomb interaction is weakened,
the GW0 equations are well-posed, in the sense that they admit a unique solution
close to a reference Green’s function. Moreover, we proved that the self-consistent
procedure converges exponentially fast towards this unique solution.
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The bivariational principle for the time-dependent Schrödinger
equation and coupled-cluster theory

Simen Kvaal

Solving the Schrödinger equation via variational techniques. Deriving ac-
curate approximations of solutions to the time-dependent Schrödinger equation is
an important task in the study of many physical phenomena, e.g., ionization of
atoms and molecules in intense laser fields and chemical reactions. The Dirac–
Frenkel/McLachlan variational principle is a cornerstone of the development of
such approximations [1, 2]. Virtually all common schemes are derived from it. In
brief, letting H be the Hilbert space of wavefunctions and H the system Hamil-
tonian, one considers the “action functional” A : H× [0, T ] → R, defined by

(1) A[ψ(·)] =
∫ T

0

〈ψ(t)|(i∂t −H)|ψ(t)〉 dt,

a functional dependent on the whole history ψ(·) of the system. For simplicity, we
assume that H is bounded, in addition to being self-adjoint.

The Euler–Lagrange equations for stationarity of A under arbitrary variations
in ψ(·) are the time-dependent Schrödinger equation and its complex conjugate,
i.e.,

(2) i∂t |ψ(t)〉 = H |ψ(t)〉 , −i∂t 〈ψ(t)| = 〈ψ(t)|H.
Importantly, in order to arrive at Eq. (2), one uses the assumption that H is
self-adjoint.

Approximate schemes are typically derived by devising a complex approxima-
tion manifold M ⊂ H and restricting the action integral to paths t 7→ ϕ(t) ∈ M.

Equation (1) is a time-dependent analogue of the common Rayleigh–Ritz vari-
ational procedure for computation of the smallest eigenvalue of the self-adjoint
operator H . Assuming that H is below bounded and has a smallest eigenvalue E0

(the ground-state energy), this eigenvalue can be computed via

(3) E0 = inf
{
〈ψ|H |ψ〉 /‖ψ‖2 | ψ ∈ H, ψ 6= 0

}
.

Approximate ground-state energies can be computed via restriction of the mini-
mization to the manifold M, i.e.

(4) E0 ≤ E0[M] = inf
{
〈ψ|H |ψ〉 /‖ψ‖2 | ψ ∈ M, ψ 6= 0

}
.

For systems of many degrees of freedom, such as molecular systems in the
Born–Oppenheimer approximation, the cost of systematically refinable “varia-
tional methods” for the time-independent or time-dependent Schrödinger equation
scale exponentially with the number N of particles, the so-called “curse of dimen-
sionality”. The most widely used method today is the multiconfigurational time-
dependent Hartree method (MCTDH) and variants (e.g., MCTDHF for Fermions)
[3, 4, 5]. (By “systematically refonable” we mean that M carries a discretization
parameter h, such that, as h→ 0, we recover H i a certain sense.)
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The bivariational principle. In 1983, a generalization of the above variational
principles was suggested, independently, by P.-O. Löwdin [6] and J. Arponen [7].
If one lifts the assumption that H is self-adjoint, the left- and right eigenvectors
of H are no longer simply related via complex conjugation. Therefore, it makes
sense to consider the functional E : H′ ×H → C given by

(5) E(ψ̃, ψ) = 〈ψ̃|H |ψ〉
〈ψ̃|ψ〉

.

It is straightforward to verify, that (ψ̃, ψ) is a critical point of E if and only if

〈ψ̃|ψ〉 6= 0 and

(6) H |ψ〉 = E |ψ〉 , 〈ψ̃|H = E 〈ψ̃| ,
with E = E(ψ̃, ψ) being the critical value. Thus, 〈ψ̃| is a left eigenvector of H and
|ψ〉 is a right eigenvector of H belonging to the eigenvalue E.

The corresponding generalization of the Dirac–Frenkel/McLachlan action func-
tional is

(7) S(ψ̃(·), ψ(·)) =
∫ T

0

〈ψ̃(t)| (i∂t −H) |ψ(t)〉 dt,

which Euler–Lagrange equations are

(8) i∂t |ψ(t)〉 = H |ψ(t)〉 , −i∂t 〈ψ̃(t)| = 〈 ˜ψ(t)|H.
Approximations can be made by introducing a submanifold N ⊂ H′ × H, re-

stricting the time-independent and time-dependent functional to N and evaluating
the corresponding critical point and Euler–Lagrange equations. This approach is
referred to as the (time-dependent or time-independent) bivariational principles
(BIVPs). Of course, H is indeed self-adjoint. However, by not using the as-

sumption, we introduce 〈ψ̃| as an additional variable, obtaining a more flexible
parameterization.

Indeed, Arponen introduced the BIVPs in the context of the coupled-cluster
(CC) method [8, 9], nowadays a very popular method for the solution of the
Schrödinger equation. In quantum chemistry, The CC method is anomalous in the
sense that it is not obtained using the Rayleigh–Ritz or Dirac–Frenkel/McLachlan
variational principles. Moreover, the CC method has the virtue that it breaks the
curse of dimensionality, scaling only polynomially with the number N of particles
in the system. From the perspective of this work, Arponen’s main point was that it
may be more natural to view CC as derived from the bivariational principle instead
of the common similarity transformation and projection approach, see Ref. [8].

The bivariational approach of Löwdin and Arponen is considered unconven-
tional. One of the challenges is that the mathematical foundation of the BIVPs
has not yet been worked out. For example, since E is not below bounded, can
we be sure that a critical value of E (restricted to the manifold N ) is in fact an
approximation to an eigenvalue? Can we be sure that approximate dynamics from
the time-dependent BIVP will in fact exist?
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Contents of talk. In the talk, the BIVPs are presented and discussed in some
detail, and Arponen’s unconventional approach to CC is outlined. Some ideas and
preliminary results concerning the rigorous mathematical analysis of the BIVPs
are also discussed. As proof of concept, the orbital-adaptive time-dependent CC
method (OATDCC) is described [10]. The OATDCC method is a hierarchy of
approximations to the popular MCTDHF method, based on the time-dependent
BIVP and including the usual CC method as a special case. OATDCC includes
the orbitals as additional bivariational variables. OATDCC breaks the curse of di-
mensionality in the context of the time-dependent Schrödinger equation, while still
being systematically refinable towards the exact solution. A numerical experiment
is shown, indicating that OATDCC compares favorably with MCTDHF.
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Dynamics of individual Wannier-Mott-type excitons

Rupert Klein

The motivation for this work in progress lies in artificial photosynthesis, more
specifically in the desire to turn photonic energy into chemically bound energy
with the help of some device preferably made from anorganic materials. A cen-
tral element of one possible design of such a device is a semiconductor (nano-)
structure that captures the energy of photons of visible light by absorption into
localized electronic excitations called “excitons” here. The energy stored in these
excitons can be harvested for chemical energy conversion only at the surface of
the semiconductor material where it is in contact, e.g., with an electrolyte. State
of the art models for the “diffusion” and “decay” of excitons within the bulk of
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the material consist of custom-designed random walk models whose parameters
are fitted to experimental data, [1, 2].

In a joint activity with C. Draxl (Humboldt University, Berlin), Carlos Garcia-
Cervera (UC Santa Barbara), Eric Cancès (CERMICS, Paris) we aim at developing
a first-principles, quantum mechanical description of the time dependent evolution
of localized excitons in semi-conductor materials. Focusing on anorganic semi-
conductors in which the Coulomb interaction of electrons is strongly “screened”
owing to large dielectricity, it is reasonable to assume the excitations to feature
characteristic spacial scales large compared to the crystal lattice spacing. Thus we
aim to describe them by multiple scales asymptotic techniques.

In the presentation I have discussed two aspects of this project. The first is the
derivation of an effective evolution equation for what is called an “electron-hole (e-
h) pair”. Starting from a bosonic Schrödinger equation for the two quasi-particles

(1) ı ∂tψ = (He +Hh + εHeh)ψ (ε≪ 1)

that is used in practice to compute the excitation spectrum of the considered
material, we have considered the time dependent version of the equation and
developed an effective evolution equation for an excitation envelope.

In (1), He,Hh denote the individual particle Hamiltonians for electron and
hole, respectively, that feature the particles’ kinetic energy and lattice periodic
potentials, i.e.,

(2) Hx = −1

2
∇2
x + Vx (x ∈ {e, h}) .

Note that we have neglected that electron and hole generally have different effective
masses in such a description. Next, Heh in (1) is the electon-hole interaction term
which, in the considered simplified setting, is a multiplicative, screened Coulomb
interaction of the form

(3) Heh(re, rh) =
1

ǫ(re, rh)|re − rh|

where ǫ(re, rh) is the material’s dielectricity.
The small parameter ε ≪ 1 in (1) indicates that the dielectric screening of

the Coulomb interaction is strong in that the effective dielectricity is ε/ǫ(re, rh),
where ǫ(re, rh) = O(1) as ε → 0 by the chosen non-dimensionalization. Note
the notational compromise between the material scientists’ custom of labelling
dielectricity by “epsilon” (here ǫ), while mathematicians usually reserve “epsilon”
for their small singular perturbation parameter (here ε).

A more or less straightforward multiple scales expansion allows us to for-
mally derive an effective evolution equation for the envelope A(ε2t, εre, εrh) of
an electron-hole wavepacket described by a WKB-type ansatz,

(4) Ψ = exp
( ı

ε2

(
S(0) + εS(1)

)) [
Aϕe0ϕ

h
0 + εψ(1) + ε2ψ(2)

]
+ h.o.t.
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where we have introduced amplitude and phase functions depending on appropri-
ate slow space and time coordinates,

(5)
A → A(ε2 t, ε re, ε rh) ,

S(i) → S(i)(ε2 t) ,

where ϕe0(re), ϕ
h
0 (rh) are the lattice-periodic ground state eigenfunctions of the

single-particle Hamiltonians in (2), and where the higher-order terms have a gen-
eral multiscale dependence according to

(6) ψ(i) → ψ(i)(ε2 t, re, rh, ε re, ε rh) .

In the sequel we abbreviate

(7) ε2t ≡ τ , ε rx ≡ ξx (x ∈ {e, h}) .
Expansion of the electron-hole Schrödinger equation in (1) to second order in

ε and applying the sublinear growth condition to the second-order solution one
obtains an evolution equation for the (complex) amplitude, A,

(8) ıAt = HA
where the effective Hamiltonian is given by

(9) H = −1

2
(Id−Ue) : (∇ξe

◦ ∇ξe
)− 1

2

(
Id−Uh

)
: (∇ξh

◦ ∇ξh
)−W

with anisotropic contributions to the effective mass tensors, (Id−Ux), given by

(10) Ux =
1

2
〈ϕx0 | rx ◦ rx |ϕx0〉 −

1

2
〈ϕx0 | rx |ϕx0〉 ◦ 〈ϕx0 | rx |ϕx0〉

and an effective potential

(11) W =W e +Wh +W eh

that involves self-interactions of the electron and hole and an electron-hole inter-
action term,

(12) W x =
∑

i6=0

〈ϕx0ϕy0 |Veh |ϕxi ϕy0〉
2

Exi − Ex0

(13) W eh =
∑

j 6= 0

Êk 6= 0

〈ϕejϕhk |Veh |ϕe0ϕh0 〉
2

(Eej − Ee0) + (Ehk − Eh0 )
.

Here the ϕej and ϕhk are the lattice-periodic eigenfunctions of the single-particle

Hamiltonians from (2) for eigenvalues Eej and Ehk , respectively. The conclusion
from this exercise is that it seems entirely feasible to construct a theory for exciton
dynamics from first principles using multiple scales techniques, provided one can
justify the two-particle Schrödinger equation from (1) in the first place.

Some thoughts on this latter issue I discussed in the second part of the lec-
ture. The two-particle problem from (1) arises as part of Bethe-Salpeter theory



1564 Oberwolfach Report 27/2015

described, e.g., by Strinati, [3]. In this theory one is interested in two-particle
Green’s functions of the form

(14) G(t, r1, r2, r3, r4) = 〈N, 0|Ψ†(t, r1)Ψ(t, r2)Ψ
†(0, r3) Ψ(0, r4) |N, 0〉 .

Here |N, t〉 denotes a N–particle state evaluated at time t, typically the ground
state of the system under consideration, and Ψ(t, r) and Ψ†(t, r) are the particle
annihilation and creation field operators of second quantization in the Heisenberg
view, respectively. Now, what is the physical interpretation of (14) and does it
inform us about “particles (electrons) and holes”?

Consider first the action of the (singular) field operators on a smooth wave
function for time zero. Let |N, 0〉 be represented by a fermionic, i.e., antisymmetric
wave function φN (r1, ..., rN ). Then detailed elaboration of the definitions of the
field operators found, e.g., in [4] yields

(15)
(
Ψ(0, r) |N, 0〉

)
(r2, ..., rN ) =

√
N φN (r, r2, ..., rN)

and

(16)
(
Ψ†(0, r) |N, 0〉

)
(r0, ..., rN ) =

√
N + 1AS [δr, φN ] (r0, ..., rN )

where

(17)

AS [ϕ, φN ] (r0, ..., rN ) =

1

N + 1


ϕ(r0)φN (r1, ..., rN )−

N∑

j2

ϕ(rj)φN (r1, ... , r0,︸︷︷︸
j

...rN )




and δr(r0) = δ(r0−r). We note that, even if φN is a normalized wave function, the
results of applying the field operators are generally not. Thus, the field operators
Ψ(r) ,Ψ†(r) to not create proper N–1– and N+1–particle states, respectively.

Nevertheless, in the physics literature these operators are generally interpreted
to “annihilate a particle from r” or “to create a hole at r” for Ψ(r) and to “create
a particle at r” for Ψ†(r). The formulae in (15), (16) reveal that the “mechanics”
of the field operators is as follows: Ψ(r) simply fixes the first coordinate of the
wave function φN at r while leaving the functional dependencies on (r2, ..., rN )
untouched. It thus creates an antisymmetric N–1–particle function, though not
a normalized one. Similarly, Ψ†(r) generates an antisymmetrized multiplication
of φN with a delta-distribution at r for an additional particle coordinate r0. The
result is an antisymmetric N+1–particle distribution that is again not normalized
and even not square integrable. The physical interpretations mentioned above are
therefore to be taken with a grain of salt.

Next we recall that in the Heisenberg view, the field operators at time t > 0
are defined by

(18) Ψ(t, r) = U−t
N−1Ψ(r)U tN

where U tN is the N–particle time evolution operator. With this relation in place
and recalling that Ψ†(r) and U−t

N are the transposes of Ψ(r) and U tN , respectively,
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and vice versa we rewrite (14) as

(19) G(t, r1, r2, r3, r4) =
〈
Ψ†(r2)Ψ(r1) N, t

∣∣∣U tNΨ†(r3)Ψ(r4) N, 0
〉
.

If we buy into the physical interpretations of the field operators given above, then
the interpretation of this two-particle Green’s function is clear: Suppose at time 0
we “create a hole at r4 and then a particle at r3” and let the resulting N–particle
function evolve to time t under the N–particle Hamiltonian. Then we project the
resulting (non-normalized) state onto the (non-normalized) state that obtains by
first evolving |N, 0〉 to time t and then creating a hole in r1 and a particle in r2.

Difficulties with the normalization set aside for the moment, the resulting quan-
tity provides a rough answer to the question: “What is the probability amplitude
that the particle–hole perturbation created at time 0 on top of |N, 0〉 evolves into
a state that corresponds to some other particle–hole perturbation created at time
t on top of |N, t〉?” Put differently we may also say: “How likely is it that the
perturbed state created at time 0 evolves into a fresh perturbation at time t on
top of the state |N, t〉 that evolved unperturbed from |N, 0〉?” This is equivalent
to asking how likely it is that the perturbed electronic system has not responded
to the perturbation except for a shift of the perturbation locations. It seems that
the central question of how the many-body system would react and rearrange as
a consequence of the initial perturbation cannot be answered by studying this
quantity since we project onto a state that.
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Auf der Morgenstelle 10
72076 Tübingen
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Cité Descartes, Champs-sur-Marne
6 et 8 Ave. Blaise Pascal
77455 Marne-la-Vallée Cedex 2
FRANCE

Prof. Dr. Anders Szepessy

Department of Mathematics
The Royal Institute of Technology
10044 Stockholm
SWEDEN

Prof. Dr. Stefan Teufel

Mathematisches Institut
Universität Tübingen
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