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Introduction by the Organisers

The workshopFree Probability Theory, organised by Alice Guionnet (MIT), Roland
Speicher (Saarland University), and Dan Voiculescu (UC Berkeley), was held June
7 - 13, 2015. This meeting was well attended with over 50 participants with broad
geographic representation from Austria, Canada, Denmark, France, Germany, Is-
rael, Ireland, Japan, Luxembourg, Mexico, Poland, Switzerland, USA.

Free probability theory is a line of research which parallels aspects of classi-
cal probability, in a non-commutative context where tensor products are replaced
by free products, and independent random variables are replaced by free random
variables. It grew out from attempts to solve some longstanding problems about
von Neumann algebras of free groups. In the almost thirty years since its creation,
free probability has become a subject in its own right, with connections to several
other parts of mathematics: operator algebras, the theory of random matrices,
classical probability, the theory of large deviations, and algebraic combinatorics.
Free probability also has connections with some mathematical models in theoret-
ical physics and quantum information theory, as well as applications in statistics
and wireless communications.
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Free probability is certainly a very active area, with many unsolved problems
ahead, as well as various recent new exciting developments. The Oberwolfach
workshop brought together various mathematical backgrounds and was strong on
the connections of free probability with other fields, with particular emphasis on
the random matrix perspective. The diversity of the participants and the ample
free time left in the programme stimulated a lot of fruitful discussions.

The programme consisted of 19 lectures of 50 minutes, and four lectures of 30
minutes. Because of the various backgrounds of the participants much emphasis
was put on making the lectures accessible to a broad audience; most of them pro-
vided a survey on the background as well as highlighting some recent developments
in connection with free probability.

In the following we want to highlight examplarily some of the topics which
where covered in the talks: new results on the theory of bifreeness (free probability
for pairs of faces); relations between braid group problems and free probability;
aspects of asymptotics of representations; various aspects of eigenvalues of different
classes of random matrices; applications of free probability in quantum information
theory; regularity questions for polynomials in free variables and free stochastic
integrals; relations between classical and free stochastic analysis; non-commutative
distributions, traffic distribution, and free transport; non-commutative rational
functions

Instead of going into more detail we will let the following abstracts speak for
themselves.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting James A. Mingo in the “Simons Visiting Professors”
program at the MFO.
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Tail algebras of symmetric states and de Finetti theorems . . . . . . . . . . . . . 1618

Brent Nelson
An example of factoriality under non-tracial finite free Fisher information
assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1620

James A. Mingo
Freeness and the Partial Transposes of Haar Distributed Unitary
Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1621

Special Activities: 10 minutes research announcements . . . . . . . . . . . . . . . 1623



Free Probability Theory 1575

Abstracts

Free probability for pairs of faces

Dan-Virgil Voiculescu

We recently introduced an extension of free probability to systems with left and
right non-commutated random variables, based on a notion of bi-free indepen-
dence. Half of the talk dealt with general properties of the emerging bi-free proba-
bility theory, like the relation to free and classical non-commutative independence,
bi-free convolution operations, existence and uniqueness of additive bi-free cumu-
lants, the bi-free Gaussian distributions and central limit theorem. The second
part of the talk dealt with the explicit formulae we have found in the simple case
of a pair of one left and one right variable for partial transforms for bi-additive, bi-
multiplicative and additive-multiplicative convolution operations as well as for the
bi-free max-convolution in the case of commuting variables. For a commuting pair
of variables this settles the problems of finding the distribution of sums, products,
sum-products, and max-es of two bi-free pairs. In particular, the result about bi-
free max-convolution reduces the questions about finding the bi-free, max-stable
and max-infinitely divisible laws to analysis questions in the classical context for
bi-variable distributions.

The approach in the work covered essentially analytic, the recent combinatorial
developments this has triggered were presented in talks by Paul Shoufranis and
by Ian Charlesworth.

References

[1] D. V. Voiculescu, Free probability for pairs of faces I, Communication Math. Phys. 332

(2014), 955–980.
[2] D. V. Voiculescu, Free probability for pairs of faces II: 2 variables bi-free partial R-transform,
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Enumeration of braids and free cumulants

Philippe Biane

(joint work with Patrick Dehornoy)

A Garside structure on a group is a system of generators such that each element
of the group has a nice (called “S-normal”) decomposition into a product of these
generators. We consider the dual Garside structure of braid groups which is closely
related to noncrossing partitions. The question is to enumerate the number bn,d
of S-normal decompositions having length d in the braid group Bn. It turns out
that this computation involves free cumulants: for d = 2, the sequence bn,2 is
the sequence of free cumulants of a product of independant commuting variables
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distributed as the the square of semi-circular variables. We show that this is
actually a particular case of a general formula for computing the free cumulants
of a product of independent commuting random variables.

References

[1] Philippe Biane, Patrick Dehornoy Dual Garside structure of braids and free cumulants of
products, Séminaire Lotharingien de Combinatoire, B72b (2014), 15 pp.

Between random matrices, irreducible representations and lozenge

tilings

Vadim Gorin

The talk is about Laws of Large Numbers and Central Limit Theorems for the
global fluctuations in the study of random matrices, decompositions of linear rep-
resentations of Lie groups into irreducible components, random lozenge tilings,
and discrete log–gases.

A 25 years old result of Voiculescu [Vo] describes the Law of Large Numbers
for the empirical measure of the eigenvalues of the sum C of two independent
uniformly random N × N Hermitian random matrices A and B with prescribed
eigenvalues {ai}, 1 ≤ i ≤ N and {bi}, 1 ≤ i ≤ N , respectively. The result says
that if the empirical measures of the eigenvalues of A and B converge as N →
∞ to probability measures µA and µB, respectively, then the (a priory random)
empirical measure of the eigenvalues of C = A + B converges to a deterministic
measure µC , which is the free convolution of µA and µB, µC = µA ⊞ µB. The
quantization of this problem deals with the asymptotics of decomposition into
irreducible components for the tensor product of two irreducible representations
of the unitary group U(N). One important difference with random matrix case
is that while the spectrum of a matrix is continuous, the labels of irreducible
representations are discrete. We show that in this quantization a similar Law
of Large Numbers is valid with free convolution replaced by its deformation —
quantized free convolution.

Instead of adding two independent matrices, one can cut corners from a single
matrix. This operation also results in a Law of Large Numbers, which is now
related to the notion of free projection. The representation–theoretic analogue of
this setup is decomposition of the restriction of an irreducible representation of
U(N) onto a subgroup U(αN) ⊂ U(N), 0 < α < 1. There is also an equiva-
lent statistical–mechanics formulation where one considers sections of uniformly
random lozenge tilings of planar domains. This analogue again leads to a Law of
Large Numbers; it is related to a deformation (quantization) of the free projection.

We further study the second order corrections to the Laws of Large Numbers,
which result in a form of Central Limit Theorem, as the global fluctuations turn
out to be Gaussian. An interesting question arises on the identification and con-
ceptual explanation of the covariance structure of the resulting one–dimensional
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Gaussian field. In the random matrix context the covariance can be computed
in the framework of second order freeness, but the resulting formulas still ask for
simple explanations. Such explanation exists in the context of restrictions of the
representations and lozenge tilings — in this case the limiting random field be-
comes 2d (the parameter α adds a second dimension) and can be identified with
the pullback of 2d Gaussian Free Field with respect to a map constructed in a
relatively simple way. For the tensor products we do not yet know any conceptual
explanation and the covariance (which is structurally similar to the random matrix
case, but again involves a certain deformation) still remains somewhat mysterious.

In this part our proofs rely on analysis of generating functions in terms of sym-
metric polynomials via contour integral representations and differential operators.

Another instance of the Central Limit Theorems in the random matrix context
is that for general β log–gases, i.e. distributions on N–tuples of reals with density
proportional two

∏

1≤i<j≤N

|xi − xj |β
N
∏

i=1

exp(NV (xi)),

where V (x) is called the potential. Starting from the pioneering work of Johansson
[Jo] it was shown that under weak assumptions on analytic potential V (x) the
global fluctuations are always Gaussian and, moreover, the resulting covariance
structure possesses certain universality (it depends only on the support of the
equilibrium measure describing the Law of Large Numbers in the system).

The Johansson’s proof (as well as all the following ones) is based on exploit-
ing certain equations for the observables of log–gases, which are known as loop
or Schwinger–Dyson equations. The N → ∞ limit of these equations attracted
attention in the free probability theory in relation with the notion of conjugate
variables.

Despite numerous potential applications, the extension of this CLT to discrete
log–gases was out of reach for a long time because of the absence of an appropriate
analogue of the loop equations. It turns out that the key to finding such equations
lies in the correct definition of the discretization. We let the discrete log–gas to
be a probability measure on N—tuples of integers λ1 ≤ λ2 ≤ · · · ≤ λN defined in
the coordinates ℓi = λi + iθ (where θ > 0 is a parameter playing the role of β/2
in continuous log–gases) via

P(λ1, . . . , λN ) =
1

Z

∏

1≤i<j≤N

Γ(ℓj − ℓi + 1)Γ(ℓj − ℓi + θ)

Γ(ℓj − ℓi)Γ(ℓj − ℓi + 1− θ)

N
∏

i=1

w(ℓi),

where Z is a normalization constant. We prove that under certain technical as-
sumptions on the weight w(x) the Central Limit Theorem is valid for the global
fluctuations for such discrete log–gases. Moreover, the limiting covariance turns
out to be the same as in the random–matrix case. This looks unexpected compared
to the aforementioned results, where discreteness always resulted in a deformation
of the answer.
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In the second part our proofs rely on the use of the novel discrete loop equations ;
the idea for building such equations originates in the articles [NS], [NP], [N].

The results reported in this talk are based on three papers: [BG1], [BGG],
[BG2].
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Outliers in the Single Ring Theorem

Florent Benaych-Georges

(joint work with Jean Rochet)

This talk is about spiked models of non-Hermitian random matrices. More specif-
ically, we consider matrices of the type A+P, where the rank of P stays bounded
as the dimension goes to infinity and where the matrix A is a non-Hermitian ran-
dom matrix, satisfying an isotropy hypothesis: its distribution is invariant under
the left and right actions of the unitary group. The macroscopic eigenvalue distri-
bution of such matrices is governed by the so called Single Ring Theorem, due to
Guionnet, Krishnapur and Zeitouni. We first prove that if P has some eigenvalues
out of the maximal circle of the single ring, then A + P has some eigenvalues
(called outliers) in the neighborhood of those of P, which is not the case for the
eigenvalues of P in the inner cycle of the single ring. Then, we study the fluctu-
ations of the outliers of A around the eigenvalues of P and prove that they are
distributed as the eigenvalues of some finite dimensional random matrices. Such
kind of fluctuations had already been shown for Hermitian models. More surpris-
ing facts are that outliers can here have very various rates of convergence to their
limits (depending on the Jordan Canonical Form of P) and that some correlations
can appear between outliers at a macroscopic distance from each other (a fact
already noticed by Knowles and Yin in [1] in the Hermitian case, but only for non
Gaussian models, whereas spiked Gaussian matrices belong to our model and can
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have such correlated outliers). Our first result generalizes a result by Tao proved
specifically for matrices with i.i.d. entries, whereas the second one (about the
fluctuations) is new.

References

[1] A. Knowles, J. Yin The outliers of a deformed Wigner matrix, Ann. Probab. 42 (2014), no.
5, 1980–2031.

On the Combinatorics of Bi-Freeness

Paul Skoufranis

Free probability has been an important area of Operator Algebras since its incep-
tion by Voiculescu in [10]. Although originally motivated by analytic techniques, a
combinatorial approach to free probability was developed by Speicher in [9] via the
theory of non-crossing partitions. These two approaches to free probability each
have their own advantages and many results may be demonstrated using either
approach.

Approximately two years ago, Voiculescu introduced the notion of bi-free pairs
of algebras in [13]. Roughly speaking, a collection of pairs of unital algebras is
bi-freely independent if their joint distribution may be computed by representing
the pairs of algebras on a reduced free product vector space such that each pair of
algebras is represented on one portion of the free product space with one algebra
acting via the left regular representation and the other algebra acting via the right
regular representation. Although the work of Muraki in [4] demonstrates that there
are only five natural notions of independence for algebras, bi-free independence
does not fit into this theory as it is a notion for independence for pairs of algebras.

Voiculescu was able to generalize many concepts in free probability to the bi-free
setting (see [13], [14], [15], [16]). The goal of this talk is to discuss the combinato-
rial aspects of bi-free independence. In particular, although bi-free independence
appears very different from free independence on the surface, the combinatorial
aspects are not very different. However, although the similarities in the combi-
natorial structures directly imply that free and bi-free probability may not be
substantially different, some surprising results can be obtained via combinatorial
techniques.

The main difference between the combinatorial structures of free and bi-free in-
dependence come from handling permutations. First, given a product of operators
from the left and right algebras, a map χ : {1, . . . , n} → {ℓ, r} is used to designate
whether the kth operator in a sequence of n operators should be considered a left
operator (when χ(k) = ℓ) or a right operator (when χ(k) = r). If

χ−1({ℓ}) = {i1 < · · · < ip} and χ−1({r}) = {ip+1 > · · · > in},
the necessary permutation on {1, . . . , n} is sχ which defined by sχ(k) = ik. The
analogue of non-crossing partitions for bi-free independence are the bi-non-crossing
partitions with respect to χ, which are all partitions π on {1, . . . , n} such that
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s−1χ · π (the partition formed by applying s−1χ to each entry of each block of π) is
non-crossing. These partitions have origins in the paper [3] of Mastnak and Nica
and were motivated by two-sided queues.

In joint work with Charlesworth and Nelson in [2], the notion of bi-non-crossing
partitions was connected with bi-free independence. This was done by describing
the universal bi-free moment polynomials via bi-non-crossing partitions and ver-
ifying that mixed cumulants corresponding to this partition lattice vanishing is
equivalent to bi-free independence. The results of [2] enable a combinatorial ap-
proach to bi-free probability and many results which are described below.

The R-transform and S-transform are important objects in free probability
which were introduced in [11] and [12] respectively. Using analytic techniques,
Voiculescu constructed partial bi-free R- and S-transforms in [14] and [15] respec-
tively. Using the notion of bi-non-crossing partitions, one can use combinatorial
techniques to construct the partial bi-free R- and S-transforms, which was done
in [6] and [7] respectively.

In [13], Voiculescu noticed that both free independence and classical indepen-
dence occur from bi-freely independent pairs of algebras. Perhaps surprisingly, it
was demonstrated in [6] that Boolean independence and (anti-)monotonically in-
dependence also arise from bi-freely independent pairs of algebras. Consequently,
all five natural notions of independence for algebras can be studied through bi-free
pairs of algebras. One interesting question to ask is, “Is it possible that other
notions of independence, such as conditionally free independence and type B free
independence, can be realized through bi-free pairs of faces?” Such results would
give evidence that bi-free independence may be a universal independence theory.

In joint work with Charlesworth and Nelson in [1], the combinatorics of bi-free
independence was extended to the operator-valued setting. Although there are
many technicalities and restrictions that occur due to the necessity of having two
copies of the amalgamation algebra, there again is a connection with operator-
valued free probability. Furthermore [1] demonstrated that bi-freeness naturally
occurs from freeness whenever all left operators commute with all right operators.
Consequently, one must be careful that bi-free results where all left and right
algebras commute are not simply free probability results in disguise. In addition,
most concrete examples of bi-free pairs of algebras occur in this commutation
framework, so one may ask, “Are there any unexpected examples of bi-free pairs
of algebras?”

One interesting result in free probability is that if two algebras A1 and A2 are
free with respect to ϕ, then the matrix algebrasMN(A1) andMN(A2) are free with
amalgamation over MN (C) with respect to ϕN where ϕN ([xi,j ]) = [ϕ(xi,j)]. The
bi-free analogue of this result was obtained in [6] where one needs to consider pairs
of matrices where the left matrices act via left matrix multiplication whereas the
right matrices at via right matrix multiplication with a certain twist. Using these
actions, bi-matrix models were investigated in [8]. Unfortunately, only specific
bi-free central limit distributions can be obtained using matrices of self-adjoint



Free Probability Theory 1581

Gaussian random variables due to commutativity. However, if left and right cre-
ation and annihilation operators on a Fock space are used, then all bi-free central
limit distributions may be obtain. Furthermore, [8] demonstrates that matrices of
left and right q-deformed creation and annihilation operators asymptotically tend
to left and right creation and annihilation operators on a Fock space in distribu-
tion thereby generalizing the results of [5]. Despite these results, it is still natural
to ask, “Are there honest random matrices that can realize all bi-free central limit
distributions?”
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k-positive maps and free probability

Benoit Collins

(joint work with Patrick Hayden and Ion Nechita)

1. Introduction

This report is an abridged version of the manuscript [1]. Completely positive maps
play an important role in Quantum Information Theory. The Stinespring theorem
provides a useful classification of these maps.

Maps with weaker positivity properties are of interest in quantum information
theory because they fail in subtle ways to be physically realizable. Specifically,
positive but not completely positive maps acting on entangled states may fail to
preserve positivity, mapping states to non-positive operators. Since such maps
will always preserve positivity for separable quantum states, positive but not com-
pletely positive maps can be used to detect the presence of entanglement. The
most famous such test is partial transposition; the states with no entanglement
detectable this way are known as the PPT states.

Our goal is to use free probability and random matrix techniques to construct
new families of positive but not completely positive maps and apply these maps
to the study of entanglement. The basic idea is to model the Choi map of a
linear map instead of the map itself, and assume that the Choi map is largely
independent of its blocks (in the free or asymptotically free sense).

2. Positive maps and entanglement detection

Let A,B be two C∗-algebras. Positive elements in a C∗ algebra are elements x that
are self-adjoint and that can be written as x = yy∗ for some y in the C∗-algebra.
A positive linear map Φ : A → B is a map that sends positive elements to positive
elements. If Φ is positive, then Φk = idk ⊗ Φ :Mk(C) ⊗A →Mk(C) ⊗ B is not
necessarily positive, unless A or B are commutative. For example if A = B =
Mn(C), n ≥ 2 and Φ is the transpose map, then, Φk is not positive as soon as
k ≥ 2.

However if Φk is positive, then for l ≤ k, the map Φl is clearly positive too.
A map Φ such that Φk is positive is said to be k-positive. A completely positive
map is one that has this property for all integers k. Note that if A = Mn(C)
and B = Md(C), min(n, d)-positive is equivalent to completely positive. There
are many examples of maps that are k positive but not (k + 1)-positive, but the
classification of positive, or even k-positive maps is far from complete.

Next, we recall the terminology of Choi matrices. We denote by Mn(C) the
algebra of n×n complex matrices. Let E = (Eij)i,j∈{1,...n} be the basis of matrix
units, i.e. EijEkl = Eilδjk and E∗ij = Eji. For a C

∗-algebraA, let Φ :Mn(C)→ A
be a linear map. Its Choi matrix in the basis E, denoted by CΦ is an element of
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Mn(C)⊗A defined as

CΦ =

n
∑

i,j=1

Eij ⊗ Φ(Eij).

According to a celebrated result of Choi, Φ is completely positive if and only
if CΦ is positive in Mn(C) ⊗ A. We recall the following result, characterizing
k-positivity of maps.

Proposition 1. Consider a linear map Φ :Mn(C)→ B(H), where H is a Hilbert
space. The following are equivalent:

(1) The map Φ is k-positive.
(2) The operator (P ⊗ 1H)CΦ(P ⊗ 1H) is positive semidefinite for any rank k

orthogonal projection P ∈Mn(C) (1H is the identity operator in B(H)).
In the sequel, we elaborate a new systematic method to obtain k-positive maps

fromMn(C)→Md(C), based on free probability techniques. In the next section,
we describe the free probability version, and the last section describes its random
matrix avatar.

3. Positive maps through free probability

We assume in the context of this conference that the reader is familiar with basic
notions of free probability. We refer to references in [1] for further details, and
in particular to the book of Nica and Speicher for basics about free probability.
Here, we just recall the following important lemma

Lemma 2. Let a, p be free elements in a non-commutative probability space (A, φ)
and assume that p is a self-adjoint projection of rank t ∈ (0, 1) and that a is a self-
adjoint random variable having distribution µ. Then, the distribution of t−1pap in
(pAp, φ(p·)) is µ⊞1/t.

We now introduce the main idea of this paper, a construction of a linear map
depending on a probability measure µ. We start with a compactly supported
probability measure µ on R and fix an integer n. Consider the space L∞(R, µ).
Note that this space is spanned as a von Neumann algebra by the operator x 7→ x,
which we will denote by X . By construction, X is a self-adjoint operator and its
spectrum is the support of µ. Next, consider the free product

(M̃, tr ∗ E) := (Mn(C), tr) ∗ (L∞(R, µ),E)

and the contracted von Neumann probability space (M, τ) whereM = E11M̃E11

is the contracted algebra of M̃ and τ is the restriction of tr ∗ E appropriately
normalized (by a factor n). Defining the map Φµ :Mn(C)→M given by

Φµ(Eij) = E1iXEj1,

our main result is as follows:

Theorem 3. Let µ be a compactly supported probability measure. The map Φµ

defined above is k-positive if and only if supp(µ⊞n/k) ⊆ [0,∞).
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4. Positive maps through random matrix theory

The above result yields a very systematic method to obtain many maps that are
k-positive but not k + 1 positive fromMn(C) to a von Neumann algebra for any
integers k, n such that 1 ≤ k < n. However, the domain space of this example
is not perfectly well understood. It turns out however that the whole idea can
be translated into the random matrix theory context. The drawback is that one
requires randomness and an additional approximation parameter which makes the
estimates less quantitative. But the advantage is that the algebras do not depend
on the choice of µ: they are just large matrix algebras.

Instead of describing the whole translation (for which we refer to [1]), we focus
on the specific case of GUE random matrices and show important applications in
this context. We first start with the following definition:

Definition 4. A random matrix Z ∈ Md(C) is said to have the GUEd distribution
if its entries are as follows:

Zij =











Xii/
√
d, if i = j

(Xij + iYij)/
√
2d, if i < j

Z̄ji, if i > j,

where {Xij, Yij}di,j=1 are i.i.d. centered, standard real Gaussian random variables.

Given this definition, we say that Z̃ is a shifted GUEd of mean a and variance
b iff it can be written Z̃ = aIdd +

√
bZ where Z is a standard GUEd as defined

above. With these definitions at hand, we can show the following theorem.

Theorem 5. Let Zd be a shifted GUE random matrix inMn(C)⊗Md(C) of mean
2 and variance α ∈ [0, 1). Then there is a linear map Φd :Mn(C)→Mn(C) – that
is itself a shifted GUE – such that its Choi matrix is again a shifted GUE matrix
(which depends on Zd), of mean (2 + ε)/

√
n and variance 1. With probability one

as d→∞:

(1) The matrix Zd is positive and PPT.
(2) The map Φd is positive. However, Φd is not completely positive, provided

that 2 + ε <
√
n.

(3) As soon as 2(2 + ε) < α
√
n, the map Φd detects the entanglement present

in Zd.

This theorem shows that it is possible to choose a mean, a variance and a d
large enough such that, typically, linear mapsMn(C)⊗Md(C) whose Choi matrix
is a shifted GUEnd are positive, not completely positive, and detect much more
efficiently entanglement than PPT (in particular, these maps are far from being
decomposable).
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A new proof of Friedman’s second eigenvalue Theorem and its

extension to random lifts

Charles Bordenave

This talk is based on the preprint [5]. Consider a finite graph G = (V,E) with
n = |V | vertices. Its adjacency matrix A is the matrix indexed by V and defined
for all u, v ∈ V by Auv = 1I({u, v} ∈ E). The matrix A is symmetric, its eigenvalues
are real and we order them non-increasingly,

µn ≤ . . . ≤ µ1.

We assume further that, for some integer d ≥ 3, the graph G is d-regular, that
is, all vertices have degree d. We then have that µ1 = d, that all eigenvalues
have absolute value at most d, and µn = −d is equivalent to G being bipar-
tite. The absolute value of the largest non-trivial eigenvalues of G is denoted
by µ = max{|µi| : |µi| < d}. Classical statements such as Cheeger’s isoperimet-
ric inequality or Chung’s diameter inequality relate small values of µ or µ2 with
good expanding properties of the graph G, we refer for example to [7, 11]. It
turns out that µ cannot be made arbitrarily small. Indeed, a celebrated result of
Alon-Boppana implies that for any d-regular graph with n vertices,

(1) µ2 ≥ 2
√
d− 1− εd(n),

where, for some constant cd > 0, εd(n) = cd/ logn, see the above references and
[17]. Following [16, 14], one may try to construct graphs which achieve the Alon-
Boppana bound. A graph is called Ramanujan if µ ≤ 2

√
d− 1. Proving the

existence of Ramanujan graphs with a large number of vertices is a difficult task
which has been solved for arbitrary d ≥ 3 only recently [15]. On the other end, it
was conjectured by Alon [2] and proved by Friedman [9] that most d-regular graphs
are weakly Ramanujan. More precisely, for integer n ≥ 1, we define Gd(n) as the
set of d-regular graphs with vertex set {1, . . . , n}. If nd is even and n ≥ n0(d)
large enough, this set is non-empty. A uniformly sampled d-regular graph is then
a random graph whose law is the uniform distribution on Gd(n).
Theorem 1 (Friedman’s second eigenvalue Theorem [9]). Let d ≥ 3 be an integer
and nd be even with n ≥ n0(d). If G is uniformly distributed on Gd(n), we have
for any ε > 0,

lim
n→∞

P

(

µ2 ∨ |µn| ≥ 2
√
d− 1 + ε

)

= 0,

where the limit is along any sequence going to infinity with nd even.

The first aim of this talk is to give a new proof of this important result. The
argument simplifies substantially the original proof and it allows to take, in this
above statement, ε = c log logn/ logn for some large constant c > 0 depending on
d. The method is quite robust and it has already been recently applied in [6] to
random graphs with structures (stochastic block model).

The second aim of this talk is to apply this method to study similar questions
on the eigenvalues of random lifts of graphs. This class of models sheds a new light
on Ramanujan-type properties, and, since the work of Amit and Linial [3, 4] and
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Friedman [8], it has attracted a substantial attention [12, 1, 13, 18, 10]. We will
give a simpler proof of a recent result of Friedman and Kohler [10] and establish
a weak Ramanujan property for the non-backtracking eigenvalues of a random lift
of an arbitrary graph.

References

[1] L. Addario-Berry and S. Griffiths. The spectrum of random lifts. arXiv:1012.4097, 2010.
[2] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986. Theory of computing

(Singer Island, Fla., 1984).
[3] A. Amit and N. Linial. Random graph coverings. I. General theory and graph connectivity.

Combinatorica, 22(1):1–18, 2002.
[4] A. Amit and N. Linial. Random lifts of graphs: edge expansion. Combin. Probab. Comput.,

15(3):317–332, 2006.
[5] C. Bordenave. A new proof of friedman’s second eigenvalue theorem and its extension to

random lifts. arXiv:1502.04482, 2015.
[6] C. Bordenave, M. Lelarge, and L. Massoulié. Non-backtracking spectrum of random graphs:
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Regularity properties for polynomials in free variables

Dimitri Shlyakhtenko

(joint work with I. Charlesworth)

Let P ∈ A = C[t1, . . . , tn] be a non-constant self-adjoint non-commutative poly-
nomial in n variables (the self-adjoint condition means that P = P ∗, where ∗ is
the natural involution on A determined by t∗j = tj , and P is non-constant in the
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sense that P /∈ C1). Let X1, . . . , Xn be self-adjoint variables in a non-commutative
probability space (M, τ), and let Y = P (X1, . . . , Xn). Our aim is to study the
question of regularity of the distribution µY of Y under various conditions on the
variables X1, . . . , Xn.

Theorem 1. [SS13] Assume that X1, . . . , Xn are free semicircular variables.
Then (i) The law of Y has no atoms. (ii) The Cauchy transform GY (z) =
∫

(t−z)−1dµY (t) is an algebraic function. (iii) The free entropy χ(Y ) =
∫∫

log |s−
t|dµY (s)dµY (t) is finite.

This theorem leads us to the following rather bold conjecture: Assume that

some variant of Voiculescu’s free entropy χ(X1, . . . , Xn) is finite. Then χ(Y ) is
also finite.

While we cannot prove the conjecture at this point, the results below may be
considered as steps towards it.

Theorem 2. [MSW, Sh14] Assume that the free entropy dimension δ⋆(X1, . . . , Xn)
= n. Then the law µY is non-atomic.

In [Sh14] we have given a proof of this theorem based on ideas from L2 (co)-
homology developed in [CS03] (in the process we have weakened the hypothesis of
Theorem 2, the assumptions of which were considerably stronger in the original
version of [MSW], whose later version upgraded their proof to give the stronger
statement presented here). The idea is to use the implication [CS03]:

(1) δ∗(X1, . . . , Xn) = n =⇒ W (X1, . . . , Xn) = 0

where

W (X1, . . . , Xn) = {(T1, . . . , Tn) ∈ L1(L2(M, τ))n :
∑

[Tj , JXjJ ] = 0},

L1(H) denotes the space of trace-class operators on a Hilbert space H and J :
L2(M, τ) → L2(M, τ) is the Tomita conjugation operator. If µY has an atom
(which by subtracting a constant we may assume to be at zero), for some nonzero
projections p, q we have pY q = 0, which imply

p[JY J, P1]q = [JY J, pP1q] = 0

we denote by P1 the rank one projection onto 1 ∈ L2(M, τ). Let now ∂j :
A → A ⊗ A be the j-th Voiculescu free difference quotient, determined by
the Leibnitz property that ∂jtk = δj=k1 ⊗ 1. Denote by Rj the value of ∂jP
evaluated at JX1J, . . . , JXnJ, JX1J, . . . , JXnJ . For any derivation δ we have
δ(JY J) =

∑

j Rj#δ(JXjJ), if we use the notation (a ⊗ b)#T = aT b. Applying

this to δ = [·, P1] we obtain

0 = p[JY J, P1]q =
∑

j

(p⊗ q)#Rj#[JXjJ, P1] =
∑

[JXjJ, (p⊗ q)#Rj#P1] = 0.

Noting that Qj = (p⊗q)#Rj#P1 ∈ L1(L2(M)) allows us to conclude that Qj = 0
for all j. A recursive argument from [MSW] then allows us to conclude that P is
a scalar multiple of 1, a contradiction.
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The inequality (1) has its origin in the following computation. Assume that
X1, . . . , Xn have a dual system in the sense of Voiculescu [Voi95]; in other words, for
some bounded operators Dj : L

2(M, τ)→ L2(M, τ) one has [Dj , JXkJ ] = δj=kP1.
Then assuming the identity

∑

[Rj , JXjJ ] = 0 with Rj trace-class we can conclude
that

Tr(
∑

[Rj , JXjJ ]Dk) =
∑

j

Tr(Rj [JXjJDk]) = Tr(RkP1)

showing thatRk ⊥ P1 as a Hilbert-Schmidt operator. ReplacingDk with
∑

ajDkbj
with aj , bj ∈ M allows one to conclude that actually Rk = 0. This argument ad-
mits a quantitative version: it similarly shows that if ‖∑[Rj , JXjJ ]‖1 ≤ ε, then
Tr(RkP1) must be at most ε‖Dk‖∞. Using this observation and the fact that the
spectral measure of Y is singular with respect to Lebesgue measure if and only if for
some sequence of positive finite rank contractions Tk with Tk ↑ 1, ‖[Tk, Y ]‖1 → 0
[Voi79], we are able to deduce the following:

Theorem 3. Assume that X1, . . . , Xn have a dual system. Then the spectral
measure of Y cannot be singular.
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Liberation questions in noncommutative geometry

Teodor Banica

We investigate liberation questions for the noncommutative analogues of the com-
pact real algebraic manifolds X ⊂ C

N . These noncommutative manifolds are by
definition the duals of the universal C∗-algebras defined with generators z1, . . . , zN ,
subject to noncommutative polynomial relations, as follows:

C(X) = C∗
(

z1, . . . , zN

∣

∣

∣Pi(z1, . . . , zN) = 0
)

Observe that, by the Gelfand theorem, this construction covers all the compact
real algebraic manifolds X ⊂ CN . In general, the axiomatization of the universal
algebras at right is quite a tricky problem. Let us just say that the family of
polynomials {Pi} must be by definition such that the biggest C∗-norm on the
universal ∗-algebra < z1, . . . , zN |Pi(z1 . . . , zN ) = 0 > is bounded.
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Now let X be as above, and consider its classical version Xclass ⊂ C
N , obtained

by dividing the algebra C(X) by its commutator ideal:

C(Xclass) = C∗comm

(

z1, . . . , zN

∣

∣

∣Pi(z1, . . . , zN ) = 0
)

We can think then of X as being a “liberation” of Xclass, and the problem is
that of understanding how the correspondence Xclass → X can appear.

This latter question was recently solved in the quantum group case, cf. joint
work with Bichon-Collins, Curran-Speicher, and others, plus more recent (and on-
going) work by Bichon-Dubois-Violette, Raum-Weber-Freslon, and others. Among
the main findings was the fact that, for liberation purposes, the usual commutation
relations ab = ba can be succesfully replaced by the half-commutation relations
abc = cba (“half-liberation”), or by nothing at all (“liberation”).

Some of these quantum group ideas apply to the general algebraic manifold case,
and we therefore have a “half-liberation” problem to be solved, and a “liberation”
question as well. Some preliminary work in this direction was done in the recent
papers [1], [2], [3], [4], [5], [6], with the conclusion that the half-liberation question
is basically within reach, and that the liberation question needs some new ideas.
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Some new limit theorems on free chaoses

Giovanni Peccati

(joint work with Solesne Bourguin, Ivan Nourdin, Guillaume Poly, and Rosaria
Simone)

The aim of this presentation is to discuss some new central limit theorems (that
is, limit results where the target distribution is given by a semicircular law) for
sequences of homogeneous sums involving products of freely independent random
variables. In particular, our main task is to explain the following result, taken from
[5] (all non-commutative random variables considered in the sequel are defined on
an adequate free probability space (A, ϕ)).
Theorem 1. Let d ≥ 2, and consider a sequence of symmetric kernels vanishing
on diagonals fN : [N ]d → C, N ≥ 1, such that

lim
N→∞

∑

i1,...,id

|fN |2(i1, ..., id) = 1.
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Let Y = {Yi : i ≥ 1} be a sequence of freely independent and identically distributed
random variables such that ϕ(Y1) = 0, ϕ(Y 2

1 ) = 1 and ϕ(Y 4
1 ) ≥ 2. Then, the

following two assertions are equivalent, as N →∞:

(i) the sequence

FN :=
∑

i1,...,id

fN (i1, ..., id)Yi1 · · ·Yid , N ≥ 1,

converges in distribution to a standard semicircular random variable;
(ii) ϕ(F 4

N )→ 2.

Theorem 1 extends parts of the results proved in [3], that apply to the case where
Y is composed of freely independent standard semicircular random variables (note,
however, that the results of [3] concern general subsequences contained in the free
Wigner chaos associated with a free Brownian motion – see [1]). The proof of
Theorem 1 is based on a novel combinatorial analysis of the free cumulant of order
four associated with the random variable FN .

A connection with universality statements is also discussed. In this respect, a
crucial role is played by the so-called influence function

i 7→
∑

i1,...,id−1

|fN |2(i, i1, ..., id−1),

that we use in a spirit similar to [4].

Finally, a brief introduction to transfer principles on the free semicircular and
Poisson chaoses is provided, with special emphasis on the counterexamples studied
in [2].
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Spectra of regular random graphs and related structures

Ioana Dumitriu

For the last several decades, the spectra of regular random graphs and associated
regular structures have made the object of an intense line of study; in addition to
the fact that random graphs are connected to the field of random matrix theory,
the potential applications from studying their spectra lie in areas like theoretical
computer science, network science, electrical engineering, social sciences, etc. The
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past few years have seen tremendous progress in the understanding of how these
spectra behave for various densities of the graph (i.e., degrees of the vertices).

We present here a few results in this direction obtained by the author in collab-
oration with students and colleagues, noting that, to date, many are still state-of-
the-art in certain regimes.

For simple regular graphs (graphs for which the degree of each vertex is the
same), the adjacency matrix is symmetric and records the presence (1) or absence
(0) of edges between vertices. Bipartite biregular graphs, on the other hand, have
a two-class partition of the vertices (with sizes m,n) such that the degree of a
vertex in a given class is the same (d1, respectively, d2), and there are no intra-
class edges (hence md1 = nd2). The random models considered for either type of
graph include uniform (for both), as well as configuration and permutation for the
regular graph. For regular graphs, all three models are contiguous if the degrees
are finite, but the author and colleagues studied also the case when the degrees
grow slowly.

The first example of result obtained was laws of large numbers, both on macro-
scopic and microscopic (short) scales, for the uniformly random regular graph.

Theorem 1. ([7]) If the degree d of the graph grows at most polylogarithmically
in n (d . (log n)α for α > 0), given any ǫ > 0, on intervals I for which |I| .
max{ 1d , 1

log n}, for n large enough, with high probability,

∣

∣

∣

∣

NI −
∫

I

s(x)dx

∣

∣

∣

∣

< ǫ|I| .

Here NI is the number of eigenvalues of the scaled adjacency matrix falling in the
interval I, and s(x) is the density of the semicircular distribution.

This theorem has been improved on first by [13], who obtained better scales
and better probabilities for d & (logn)10, and by [2] in the range d & (log n)4. It
is an open question of whether it can be improved when d . (logn)4.

For bipartite biregular graphs, a similar theorem was obtained.

Theorem 2. ([5]) If the two degrees d1 and d2 are roughly polylogarithmic in n,
such that d1/d2 → γ ∈ (0, 1), then, using the same notation, given ǫ > 0 and m,n
large enough, with high probability, on intervals I for which |I| . max{ 1

d1

, 1
logn},

∣

∣

∣

∣

NI −
∫

I

mγ(x)dx

∣

∣

∣

∣

< ǫ|I| .

Here mγ(x) is a simple transformation of the well-known Marčenko-Pastur law.

The next result concerns fluctuations from the semicircle law for the random
regular graph, in the case of the permutation model (the adjacency matrix A =
P1 + PT

1 + P2 + PT
2 + . . . + Pd + PT

d for uniformly and independently chosen

permutation matrices P1, . . . , Pd). For both d fixed and d = no(1) (i.e., d growing
slower than any fixed power of n), if one chooses a function f that’s smooth enough
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(analytical plus some technical conditions), the centered linear statistic

n
∑

i=1

f(λi)− E

(

n
∑

i=1

f(λi)

)

converges to an infinitely divisible variable (if d fixed) or to a normal distribution
(if d grows to ∞). In both cases the variance depends on f ([6]).

Remarkably, for the d growing case, the result is similar to the result for Gauss-
ian ensembles and β-Gaussian ensembles, in the sense that the variance expression
for the limiting normal variable is the same.

Recently, the author and colleagues have considered a related, but different
regular structure, the Regular Stochastic Block Model (RSBM). The classical Sto-
chastic Block Model (SBM), in its simplest form, has two classes of vertices, each of
size n. Each class comes with an independent Erdős-Rényi G(n, p) random graph
placed on its vertices, and the two classes are joined by a bipartite Erdős-Rényi
G(n, n, q). The problem studied here is whether one can recover, partially or com-
pletely, or even detect the presence of the partition (the two classes), starting only
from the adjacency matrix of the graph. This problem has been intensely studied,
and completely solved recently in a series of papers ([1, 9, 10, 11, 8, 12, 14, 4]).

We have replaced the G(n, p) and G(n, n, q) by a configuration-model random
regular graph G(n, d1), respectively, by a bipartite random configuration-model
random graph G(n, n, d2) ([3]). Note that since d1 and d2 are fixed, the model is
contiguous to the case when the configuration models were replaced by uniform
ones.

The rigidity of the new graph model RSBM allows us to obtain exact recovery
in regimes given by a certain technical condition on the degrees. By contrast,
in similar degree regimes, all that can be be obtained for the classical SBM is
detection of the partition, or, if the degrees are very high, partial recovery (recovery
of up to a determined fraction of the vertices). The method is spectral and adapts
and hybridizes the tools of [8] to the new setup of no independent edges, but much
more rigid graph structure.

We note that we also proved that, provided that the degrees are high enough,
the partition is unique with high probability, and hence the graph is theoretically
checkable (which means that the problem of whether or not the partition exists,
given the adjacency matrix, is decidable with high probability). However, un-
like the polynomial-time spectral algorithm we proposed in the case of the extra
technical condition, we emphasize that this last result is not practical.

Finally, [3] also shows that the rigidity of the model allows us to use the Majority
Rule to transform a sufficiently accurate partial labeling into a exact one.

Current work involves extending this to k-frames, graphs where one starts out
with a “frame” (small, finite graph), then duplicates each vertex a number of
times, keeping some fixed proportions between vertices, and then places a uni-
formly random bipartite biregular structure between the classes of vertices. This
represents a generalization of lifts.
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Outliers in perturbed matrix models

Hari Bercovici

(joint work with Ş. Belinschi, M. Capitaine, and M. Février)

We report on joint work with Ş. Belinschi, M. Capitaine, and M. Février. Com-
puter simulations were kindly supplied by C. Bordenave.

Consider a tracial W* probability space (A, ϕ) tracial W* and two selfadjoint
random variables a, b ∈ A that are freely independent. Using the notation Ga(λ) =
ϕ((λ − a)−1) for the Cauchy transform of the distribution of a, it is known that
Ga+b is subordinate to Ga and Gb. That is, we have Ga+b(λ) = Ga(ω1(λ)) =
Gb(ω2(λ)), where ω1, ω2 are analytic self maps of the upper half-plane which satisfy
the additional relation ω1(λ) + ω2(λ) = λ + 1/Ga+b(λ). The maps ωj extend
continuously to the real line (provided we allow infinite values). Suppose that γ
is an eigenvalue of a + b, so Ga+b behaves roughly as if it had a pole at γ. It
follows that Ga (respectively, Gb) behaves roughly as if it had a pole at α = ω1(γ)
(respectively β = ω2(γ)) and α+β = γ. It follows that α and β are eigenvalues for
a and b, respectively (and the sum of the two masses exceeds 1). These facts have
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counterparts in the behavior of independent random matrices. Suppose given, for
every positive integer N , selfadjoint, independent, random matrices AN and BN

whose distribution is invariant under unitary conjugation. Assume that AN → a
and BN → b in distribution asN →∞, in which case we also haveAN+BN → a+b
in distribution. Suppose that t > 0 and AN + BN has at least tN eigenvalues
arbitrarily close (as N → ∞) to γ. Then it follows that AN (respectively, BN )
must have eigenvalues arbitrarily close to α = ω1(γ) (respectively, β = ω1(γ)).

This is, of course, a statement about eigenvalues in the bulk of the spectrum
of these matrices. We are interested in outlying eigenvalues, that is eigenvalues
which do not belong to the spectrum of the limiting elements of A. We work under
the following basic assumption:

(A) The eigenvalues of AN (respectively, BN ) belong to the bulk with the
exception of p (respectively, q) fixed eigenvalues.

The exceptional eigenvalues of AN and BN are called spikes and the goal is to
determine whether AN +BN has any identifyable outliers (eigenvalues not in the
spectrum of a + b). To illustrate the nature of the results, we consider a simple
example. Suppose that σ(AN ) = {1, 2, 3, 4} and each eigenvalue has multiplic-
ity ∼ N/4 while BN is a projection of rank 1. It is easy to check that a has
eigenvalues 1, 2, 3, 4 with eigenprojections of trace 1/4, b = 0, ω1(λ) = λ, and
ω2(λ) = 1/Ga(λ). With the above convention we have p = 0 (no spikes for
AN ), q = 1, and 1 is the unique spike of BN . Clearly, AN +BN surely has outliers
ρ1, . . . , ρ4, one each in [1, 2), [2, 3), [3, 4), [4, 5). Almost surely, we have ω2(ρj) ∼ 1,
while ω1(ρj) are not eigenvalues of AN .

Our main results shows that this is a general phenomenon, independent of the
distributions of a and b. In the following statement, EA(σ) denotes the orthogonal
projection onto the space generated by the eigenvectors of A corresponding to
eigenvalues in the set σ.

Theorem 1. Suppose that ρ /∈ σ(a + b) and denote by PN (respectively, QN)
the orthogonal projection onto the space generated by the spike eigenvectors of AN

(respectively, BN ). Then ω1(ρ) /∈ σ(a) and, for small ε > 0,

PNEAN+BN
((ρ− ε, ρ+ ε))PN ∼

1

ω′1(ρ)
EAN

({ω1(ρ)})

almost surely as N → +∞. A similar statement holds with QN , BN , and ω2 in
place of PN , AN , and ω1, respectively. In particular, ρ is an outlier precisely when
ω1(ρ) is a spike for AN or (not exclusive) ω2(ρ) is a spike for BN .

The special case in which there are no spikes (that is, p = q = 0) was treated
earlier by Collins and Male and it is an essential ingredient in the proof. We try
now to explain why the functions ωj appear in this result. The intuition comes
from a stronger property, discovered by Biane, that these functions satisfy. Denote
by {a}′′ the subalgebra of A generated by a, and let P : A → {a}′′ denote the
trace-preserving conditional expectation. Then the identity

P[(λ− (a+ b))−1] = (ω1(λ) − a)−1
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holds. The natural analog of P in the context of random matrices is the conditional
expectation E[·] = E[·|AN ]. We can then define the (random analytic) function

CN (λ) = E[(λ − (AN +BN ))−1]

and hope that the relation CN (λ) = (ω1(λ)−AN )−1 holds. Given ρ ∈ R such that
ω1(λ) is a spike for AN , it follows that the function CN (λ) has a pole at ρ, and
thus ρ is an eigenvalue for AN +BN .

An approximate version of this argument does in fact hold. Denote by RN (λ) =
(λ − (AN + BN ))−1 the resolvent of AN + BN . In most calculations, λ is in the
upper half plane.

Lemma 2. For every constant N ×N matrix X we have

CN (λ)X −XCN(λ) = E[RN (λ)(XAN −ANX)RN (λ)].

Proof. It suffices to consider selfadjoint matrices X . Observe that CN (λ) = E[(λ−
(AN + eiεXBNe−iεX))−1] (by unitary invariance). Differentiate at ε = 0 to obtain
the desired identity. �

It follows immediately that CN (λ) belongs to {AN}′′ so it is a function of AN

in the sense of functional calculus.

Lemma 3. For every N ×N matrix X we have X(CN(λ)−1+AN )− (CN(λ)−1+
AN )X =CN (λ)−1E[(RN (λ)− CN (λ))(XAN −ANX)(RN (λ)− CN (λ))]CN (λ)−1.

This is merely a reformulation of the preceding lemma. Note that the right
hand side contains the difference RN (λ) − CN (λ) between the resolvent and its
conditional expectation. This allows us to estimate the left hand side using known
concentration results. The conclusion, obtained by applying the lemma to opera-
tors X of rank one, is that CN (λ)+AN is close (with high probability as N →∞)
to a scalar multiple of the identity matrix:

CN (λ)−1 ∼ ω
(N)
1 (λ) −AN .

Next we can use asymptotic freeness to conclude that ω
(N)
1 converge uniformly on

compact subsets of C+ to ω1.
Suppose now that the spikes of AN are a1, . . . , ap with corresponding eigenvec-

tors e1, . . . , ep.

Corollary 4. For every λ in the upper half plane, we have

PNCN (λ)PN → Diag((ω1(λ) − a1)
−1, . . . , (ωp(λ) − a1)

−1)

almost surely as N →∞.

The remaining arguments, in case BN has no spikes (that is, q = 0) are roughly
as follows.

(1) Reduction to the study of a random matrix of fixed size p, as done earlier
by Benaych-Georges and Nadakuditi.
(a) Write AN = A′N + A′′N where A′N has e-values close to σ(a) and A′′N

has rank p.
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(b) By results of Collins and Male, A′N +BN has no outliers.
(c) Apply Sylvester’s identity to reduce the study of outliers to that of

detFN (λ) = det(I − PN (λ − (A′N +BN))−1PNT )

where T is a p× p diagonal (in the basis e1, . . . , ep).
(2) Note that FN converges uniformly on the compact sets of C \ σ(a+ b) to

Diag

(

1− a1 − α

ω1(λ)− α
, . . . , 1− ap − α

ω1(λ) − α

)

for a proper choice of A′N .
(3) Use the Hurwitz theorem to deduce that the proper number of outliers are

present.
(4) Treat outlying eigenvectos with methods developed by M. Capitaine, first

in case spikes have no multiplicity.
(a) Assume that ρ is a spike such that ω1(ρ) = a1. We need to show

PNEAN+BN
((ρ− ε, ρ+ ε))PN ∼

1

ω′1(ρ)
EAN

({a1}),

and this is the same as

Tr[EAN
({ai})EAN+BN

((ρ− ε, ρ+ ε))] ∼ δi1
ω′(ρ)

.

(b) Here EA is the spectral measure, a characteristic function of A. Re-
place it by a smooth function to evaluate

Tr[fi(AN )h(AN +BN )].

This is done using concentration inequalities, turning the trace into
a contour integral involving CN (λ) ∼ (ω1(λ) −AN )−1.

(c) Multiple spikes are separated by small perturbations.
(d) When both AN and BN have spikes, the process must be done twice

(switching the roles of A and B.)

Similar results are proved for multiplicative models, both on T and on R+.
Details, bibliography, simulations and historical remarks are in our preprint [1].

References

[1] S. T. Belinschi, H. Bercovici, M. Capitaine, and M. Février. Outliers in the spectrum of
large deformed unitarily invariant models, 2014. Preprint, arXiv:1412.4916v2.



Free Probability Theory 1597

Free transport in free probability with amalgamation

Yoann Dabrowski

(joint work with A. Guionnet and D. Shlyakhtenko)

Free transport is a tool inspired by classical optimal transport of measures to
obtain von Neumann algebras isomorphisms between algebras generated by free
Gibbs states. More precisely, a free transport map from τ0 to τ , two traces on non-
commutative polynomials C := C〈X1, ..., Xn〉 is a collection of elements F1, ..., Fn ∈
W ∗(τ0) the von Neumann algebra generated in the GNS-representation, such that
for any non-commutative polynomial P ∈ C :

τ0(P (F1, ..., Fn)) = τ(P ).

Then α(P ) = P (F1, ..., Fn) extends to a trace preserving ∗-homomorphism α :
W ∗(τ) → W ∗(τ0), that is often an isomorphism provided that τ0 and τ can be
exchanged.

Guionnet and Shlyakhtenko [5] first solved a free Monge-Ampère equation :

(1) (1 ⊗ τ + τ ⊗ 1)Tr log ∂Dg = {W (Dg(X))} − 1

2

∑

X2
j

to obtain as cyclic gradient Dg of the solution such a transport map between
free semicircular variables and free Gibbs states with potential W small analytic
perturbations of quadratic potentials. Recall that this non-linear non-commutative
PDE uses two differential operators, the cyclic gradient D and the free difference
quotients ∂ (and the mixed Hessian ∂D) defined respectively for monomials P by:

DiP =
∑

P=AXiB

BA ∈ C, ∂iP =
∑

P=AXiB

A⊗B ∈ C⊗C, ∂Dg := (∂jDig)ij ∈ Mn(C⊗C).

In this way, as a noticeable application, [5] obtained an isomorphism of von
Neumann algebras generated by n q-gaussian variables for |q| ≤ q0(n) with the
free group factor case q = 0.

Among desirable extensions of their results, such as dealing with infinitely many
variables (note that their q0(n) →n→∞ 0 and does not give any result when n =
∞) and the non-tracial analogue obtained in [7], this work focuses on dealing
with more general potentials W and more general reference trace τ0 to be able
to transport semicircular variables with covariance map η : B → B a unital
completely positive map with τ(η(a)b) = τ(aη(b)). However, we only consider
finite von Neumann algebras in the sequel. Recall that in this context of free
probability with amalgamation over B, the relevant Schwinger-Dyson equation
was introduced in [8] as definition of a conjugate variable ξi relative to η (m is the
multiplication map):

τ(ξiP ) = τ(m[(1 ⊗ ηEB) ◦ ∂iP ]), ∀P ∈ B〈X1, ..., Xn〉.
In the scalar case the choice ξi = DiW corresponds to a potential W and we write
τW the solution when it is unique, this generalizes [9]. In the general case, ξi = Xi

gives a characterization of semicircular variables with covariance η.
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We explain the main steps to achieve this goal of obtaining transport maps
between such τW relative to η. One first needs to capture the relations between B
and a semicircular system (S1, ..., Sn) with covariance η as done in [2] and consider
transport maps between variables satisfying the same relations. For instance, if η =
ED for a von Neumann subalgebra D, the variables commute with D. In general,
forB ⊂M finite and η : B → B a covariance map, these relations are captured by a
quotient of the normal Haagerup tensor productM⊗w∗hηM := M⊗σhM/Ker(pη),
Haagerup tensor product being used to have available a multiplication map pη =
.#S1 extending (a ⊗ b)#c = acb. Then, if one considers η′ ∩ M ⊗w∗hη M a
subspace of elements x such that d#x = 0 if d ∈ Ker(pη), one obtains an algebra
for the multiplication extending (a ⊗ b)#(c ⊗ d) = ac ⊗ db. In the case η = ED,
one recovers D′ ∩M ⊗ehD M the commutant in the extended Haagerup tensor
product extensively studied in [6]. We also define in this paper a space of non-
commutative polynomials capturing these relations B〈X1, ..., Xn : η〉. This will be
the space we will complete to get appropriate Ck function spaces in which we solve
a non-commutative PDE.

The second step is then to replace the cyclic gradient Ansatz for the transport
map Fi = Dig originally used. At this stage, we rather understand when it can
be used. The most general Ansatz would be to take transport maps Fi having
properties similar to ξi that may depend on η. For instance, in the scalar case,
the main property of cyclic gradient used is the relation ∂jDig = σ(∂iDjg) for
σ(a ⊗ b) = b ⊗ a. This suggests to consider a subalgebra η′ ∩M ⊗w∗hη M stable
by an extension of σ, we call this symmetric version M ⊗w∗shη M . It is explained
in [3] that one can find such an algebra which becomes a ∗-algebra for an ex-
tension of (a ⊗ b)∗ = a∗ ⊗ b∗ and for which one can use interpolation to make

it act by bounded operators on an Hilbert space Hη = (M ⊗w∗shη M)#S1 ⊂
L2(W ∗(M,S1)). We found in [4] that the cyclic gradient Ansatz can be used when
τ(U) = 〈U#Sn+1, Sn+1〉 is a trace on N ⊗w∗shη N for N = W ∗(M,S1, ..., Sn), in
the basic semi-circular starting case. As proved in [3], this is for instance the case
when η = ED and B = D ⋊ Γ the cross-product of a countable discrete group Γ
by a trace preserving action on a finite von Neumann algebra D.

Finally, one needs to consider appropriate classes of non-commutative functions
having cyclic gradients and free difference quotients in n-ary cyclic variants of
N ⊗w∗shη N . The use of variants of Haagerup tensor products is also crucial
to define a convexity assumption on the potential W . Moreover, one uses free
probability with amalgamation analogues of Cébron’s trace polynomials [1] that
were already implicitly used in [5]. This enables to obtain a semigroup for the
free diffusion with drift DW with generator we call ∆W . This semigroup is the
starting point for solving a non-commutative PDE

Our main result in [4] is thus the following : Assume given a covariance map
η : B → B as above and

(1) V,W are in an appropriate C3-completion of B〈X1, ..., Xn : η〉
(2) (V,W ) are generalized (c,M) convex for c > 0 and M much huger than
||Xi|| under τV , τW i.e. for all Y ∈ η′ ∩ N,N = W ∗(Y1, ..., Yn, B) with



Free Probability Theory 1599

||Yi|| ≤M for T among V,W

((∂iDjT )(Y ))ji − cIn ≥ 0

in Mn(N ⊗w∗shη N) in the sense they are self-adjoint and generate con-
traction semigroups.

(3) τ(U) = 〈U#Sn+1, Sn+1〉 is a trace on N ⊗w∗shη N for N = W ∗(M,S1, ...,
Sn) (e.g. this is the case if η = ED and B = D ⋊ Γ)

Then there exists F1, ..., Fn ∈ W ∗(X1, ...Xn, B) such that τV (P (F1, ..., Fn)) =
τW (P ) for P ∈ B〈X1, ..., Xn〉 and we deduce that the von Neumann algebras
generated by B,X1, ..., Xn in the corresponding GNS representations W ∗(τW ) ≃
W ∗(τV ) are isomorphic.

Note that the convexity assumptions is for instance satisfied for small C3 pertur-
bations of V0 = 1

2

∑n
i=1 X

2
i which gives back the semicircular case with covariance

η.
More specifically, instead of solving a generalization of (1) we rather consider a

linearized variant. One considers a path Vα = αW + (1− α)V and find a solution
for α ∈ [0, 1] of

∆Vα
gα = W − V − τVα

(W − V ).

The solution of this PDE is obtained using free diffusions.
We then produce a transport map Fα between τV and τVα

in solving at least
for more regular V,W :

d

dα
Fα = Dgα(Fα) = (D1gα(Fα), ...,Dngα(Fα)).
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Reaization theory for noncommutative rational functions around a

matrix point

Victor Vinnikov

(joint work with Dmitry S. Kaliuzhnyi-Verbovetskyi)

It is well known that noncommutative (nc) rational functions regular at the origin
admit a good realization (or linearization) theory. This is very useful both concep-
tually and for a variety of applications since it often essentially reduces the study
of these rational functions to a study of linear pencils. By translation the method
can be applied to nc rational functions that are regular at some scalar point, but
not beyond. The purpose of the talk is to use the general Taylor–Taylor series
of nc function theory [6] to describe the power series expansion of a nc rational
function around an arbitrary matrix (rather than scalar) centre, and to discuss a
work in progress that provides a full generalization of the realization theory for
nc rational functions regular at an arbitrary given matrix point, thus allowing to
handle all noncommutative rational functions.

NC rational functions. We consider the ring of nc polynomials (the free ring)
K〈x1, . . . , xd〉 over a field K. Here x1, . . . , xd are nc indeterminates, and p ∈
K〈x1, . . . , xd〉 is of the form p =

∑

w∈Gd
pwx

w, where Gd denotes the free monoid

on d generators (letters) g1, . . . , gd with identity ∅ (the empty word), pw ∈ K,
xw are nc monomials in x1, . . . , xd (xw = xj1 · · ·xjl for w = gj1 · · · gjl ∈ Gd and

x∅ = 1), and the sum is finite. p can be evaluated in an obvious way on d-

tuples of square matrices of all sizes over K: for X = (X1, . . . , Xd) ∈ (Kn×n)
d
,

p(X) =
∑

w∈Gd
pwX

w =
∑

w∈Gd
Xwpw ∈ Kn×n.

The skew field of nc rational functions K (<x1, . . . , xd )> over a field K (the free
skew field) is the universal skew field of fractions of the ring of nc polynomials
over K. This involves some non-trivial details since unlike the commutative case,
a nc rational function does not admit a canonical coprime fraction representation;
see [7, Chapter 8] and [3] for good expositions and background, including the
original constructions of Amitsur and Cohn. The following is most natural from
the point of view of nc function theory and is a version of Amitsur’s construction
except that we use evaluation on d-tuples of square matrices of all sizes over K

instead of evaluation on a “large” auxilliary skew field; see [4, 5] for details and
further references. We first define (scalar) nc rational expressions by starting with
nc polynomials and then applying successive arithmetic operations — addition,
multiplication, and inversion. A nc rational expression r can be evaluated on a d-
tuple X of n×n matrices in its domain of regularity, dom r, which is defined as the
set of all d-tuples of square matrices of all sizes such that all the inverses involved in
the calculation of r(X) exist. (We assume that dom r 6= ∅, in other words, when
forming nc rational expressions we never invert an expression that is nowhere
invertible.) Two nc rational expressions r1 and r2 are called equivalent if dom r1 ∩
dom r2 6= ∅ and r1(Z) = r2(Z) for all d-tuples Z ∈ dom r1 ∩ dom r2. We define a
nc rational function r to be an equivalence class of nc rational expressions; notice
that it has a well-defined evaluation on dom r =

⋃

R∈r domR (here R denotes a
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1 × 1 matrix-valued rather than scalar nc rational expression, i.e., some of the
intermediate expressions may involve matrices of scalar nc rational expressions,

cf. below). We set (dom r)n = dom r ∩ (Kn×n)
d
.

It is clear that the evaluation of a nc rational function respects direct sums and
simultaneous similarities, so that a nc rational function r defines a nc function
[6] on dom r (technically, on an apriori somewhat larger set called the extended
domain of regularity of r obtained by evaluating r on d-tuples of generic matrices).
In particular, nc rational functions admit a difference-differential calculus, see [5].

Power series expansion around a scalar point. A nc rational expression
which is regular at 0 determines a nc formal power series. This correspondence is
defined recursively using addition and multiplication of nc formal power series and
inversion of a nc formal power series with an invertible constant term (the coeffi-
cient of z∅). Furthermore, r1 and r2 are equivalent if and only if the corresponding
nc formal power series coincide. By translation, if λ = (λ1, . . . , λd) ∈ (dom r)1 ⊆
Kd we obtain, for X = (X1, . . . , Xd) ∈ Kn×n,

(1) r(X) ∼
∑

w∈Gd

(X − Inλ)
w
rw.

Here rw ∈ K are the coefficients, andX−Inλ stands for (X1−Inλ1, . . . , Xd−Inλd).
From the point of view of nc function theory, (1) is the Taylor–Taylor (TT)

power series expansion of r around λ. In particular, the coefficients rw can be
calculated by means of the nc difference-differential calculus: rw = ∆wr(λ, . . . , λ),
Also, the series (1) actually converges to r(X) in the following cases: (a) if X −
Inλ is a jointly nilpotent d tuple of matrices so that the sum is finite; (b) in
the case K = R or K = C, the series converges normally on any open nc ball
∐∞

n=1

{

X ∈ (Kn×n)
d
: ‖X − Inλ‖ < r

}

(with respect to any operator space norm

on Kd, e.g., ‖Z‖ = ‖Z∗1Z1 + · · · + Z∗dZd‖ for Z = (Z1, . . . , Zd)) contained in the
(extended) domain of regularity of r.

Fact of life if a nc rational function r is regular at 0 it admits a unique (up to
unique similarity) minimal (controllable and observable) state space realization:

(2) r(x) = D + C(I −A1x1 − · · · −Adxd)
−1(B1x1 + · · ·+Bdxd),

where A1, . . . , Ad ∈ KL×L for some integer L, B1, . . . , Bd ∈ KL×1, C ∈ K1×L, and
D = r(0). Furthermore,

dom r =

∞
∐

n=1

{

X = (X1, . . . , Xd) ∈
(

K
n×n

)d
:

det(ILn −X1 ⊗A1 − · · · −Xd ⊗Ad) 6= 0
}

.

Here a realization is called minimal if the state space dimension L is as small
as possible, controllable if spani=1,...,d, w∈Gd

imAwBi = CL, and observable if
∩w∈Gd

kerCAw = {0}. The minimal realization can be either (a) constructed
recursively by synthesis, starting with polynomuals (or even just the basic mono-
mials x1, . . . , xd) and using sum, product, and inversion formulae, and compressing
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to achieve minimality; or (b) constructed in one step using the columns space of
the infinite Gd × Gd Hankel matrix H = [ruv]u,v∈Gd

, which is of finite rank if and

only if the nc power series
∑

w∈Gd
rwx

w ∈ K〈〈x1, . . . , xd〉〉 is the power series ex-

pansion of a nc rational function at a scalar point. We refer to [1] and [5] for details
and further references, including the original work of Kleene, Schützenberger, and
Fliess, see [2] for a good survey.

Power series expansion around a matrix point. Some notation: for P =

[Pij ]i,j=1,...,m , Q = [Qij ]i,j=1,...,m ∈ K
sm×sm ∼= (Ks×s)

m×m
, we let P ⊙s Q denote

the product of P and Q viewed as m×m matrices over the tensor algebra of Ks×s:

P ⊙s Q =





m
∑

j=1

Pij ⊗Qjk





i,k=1,...,m

∈
(

K
s×s ⊗K

s×s
)m×m

.

For Z = (Z1, . . . , Zd) ∈ (Ksm×sm)
d
and w = gj1 · · · gjl ∈ Gd, we let Z⊙sw =

Zi1 ⊙s · · · ⊙s Zil ∈
(

(Ks×s)
⊗l
)m×m

.

The power series expansion around Y ∈ (dom r)s is now given by, for X ∈
(Ksm×sm)

d
,

(3) r(X) ∼
∑

w∈Gd

(X − Im ⊗ Y )
⊙sw

rw.

Here, the coefficient rw is a l-linear mapping (Ks×s)
l −→ Ks×s, where l is the

length of the word w, or alternatively a linear mapping (Ks×s)
⊗l −→ Ks×s. Notice

that (X − Im ⊗ Y )
⊙sw ∈

(

(Ks×s)
⊗l
)m×m

, hence we can apply rw to every entry

of this matrix yielding a matrix in (Ks×s)
m×m ∼= Ksm×sm — which is where the

value r(X) lies.
NC formal power series with a matrix centre Y , of the form (3), form a ring with

an obvious convolution product. It is clear that any nc polynomial can be written
as a (finite) nc power series with centre Y , and the power series expansion of a
nc rational expression r regular at Y can be obtained recursively using addition
and multiplication of nc formal power series with centre Y and inversion of a nc
formal power series with an invertible constant term. From the point of view of
nc function theory, (1) is the TT power series expansion of r around a matrix
centre Y . One important difference with the case of a scalar centre is that the
coefficients rw are not arbitrary multilinear mappings; they have to satisfy certain
ccompatibility conditions with respect to Y , see [6, (4.14)–(4.17)].

We conjecture that if a nc rational function r is regular at Y ∈ (Ks×s)
d
, it

admits a unique (up to unique similarity) minimal (controllable and observable)

state space realization with centre Y : for X ∈ (Ksm×sm)
d
,

(4) r(X) = Im ⊗D + (Im ⊗ C)
(

ILsm − (X1 − Im ⊗ Y1)A1−
· · · − (Xd − Im ⊗ Yd)Ad

)−1(
(X1 − Im ⊗ Y1)B1 + · · ·+ (Xd − Im ⊗ Yd)Bd

)

.
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Here A1, . . . ,Ad : K
s×s → K

Ls×Ls for some integer L and B1, . . . ,Bd : K
s×s →

KLs×s are linear mappings, C ∈ Ks×Ls, and D = r(Y ) ∈ Ks×s. Furthermore,

(dom r)sm =
{

X = (X1, . . . , Xd) ∈
(

K
sm×sm

)d
:

det
(

ILsm − (X1 − Im ⊗ Y1)A1 − · · · − (Xd − Im ⊗ Yd)Ad

)

6= 0
}

.

Some open problems:

• The currently envisioned proof of the realisation (4) involves synthesis
using sum, production, and inversion formulae. It is important to obtain
necessary and sufficient “finiteness” conditions on the sequence of multilin-
ear mappings rw satisfying the compatibility conditions [6, (4.14)–(4.17)]
with respect to Y so that the nc power series (3) with centre Y is the
power series expansion at Y of a nc rational function. This should then
provide a one step construction of the minimal realization, analogous to
the Hankel matrix realization.
• To find necessary and sufficient compatibility conditions with respect to
Y on the coefficients A1, . . . ,Ad, B1, . . . ,Bd, C, D for the corresponding
sequence of coefficients rw to satisfy the compatibility conditions [6, (4.14)–
(4.17)] and for (4) to define a nc rational function.
• Use power series expansions and realizations around an arbitrary matrix
point to provide a direct construction of the free skew field.
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Traffic spaces and unitarily invariant variables

Guillaume Cébron

(joint work with Antoine Dahlqvist and Camille Male)

In this talk, we wanted to describe the algebraic structure of a space of traffics, the
convergence of the distribution of traffic of random matrices which are invariant by
unitary conjugations, and how this result can be used to turn any non-commutative
space into a space of traffic.

Thanks to the fundamental work of Voiculescu [4], it is now understood that,
for large independent N×N matrices A(N) and B(N) which are unitarily invariant
and which converge separately in non-commutative distribution (in the sense that
the normalized trace of the powers of the matrices converges as N tends to∞), the
joint non-commutative distribution of A(N) and B(N) converges as well. If the ma-
trices are invariant by conjugations by matrices of permutation instead of unitary
conjugations, this is not necessarily true. In [2], Male introduced the concept of
space of traffics in order to describe this new situation. Roughly speaking, a space
of traffics is a non-commutative probability space where one can consider not only
the usual operations of algebras, but also more general n-ary operations that we
will denote by (Zg)g∈G . At the level of matrices, each Zg takes n matrices of size
N ×N and produces a new N ×N matrix. He was able to prove the following: for
large independent N × N matrices A(N) and B(N) which are invariant by conju-
gations by matrices of permutation and which converge separately in distribution
of traffic (in the sense that the normalized trace of every Zg(A

(N), . . . , A(N)) con-

verges as N tends to∞), the joint non-commutative distribution of A(N) and B(N)

converges as well.

1. Spaces of traffics and operad G
For all n ≥ 0, we call n-graph operation any connected graph g with n oriented
and ordered edges, and two distinguished vertices (one input and one output,
not necessarily distinct). The set G of graph operations is the set of all n-graph

1

3

2

4

5

in out in out
12

Figure 1. One 5-graph operation and one 2-graph operation

operations for all n ≥ 0. A n-graph operation g has to be thought as an operation
that accepts n objects and produces a new one. In particular, a n-graph operation g
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can produce a new graph operation g◦(g1, . . . , gn) from n different graph operations
g1, . . . , gn in the following way: replace the i-th edge of g by the graph operation
gi. Endowed with those composition maps, the set of graph operations G is an
operad, in the sense that ◦ is associative, has a identity (given by (·in → ·out) ∈
G, which consists in two vertices and one edge from the input to the output),
and is equivariant for the right action of the symmetric group which consists in
interchanging the edges of a graph operation.

Let us fix N ≥ 1. For each n-graph operation g ∈ G, we can also define a n-
linear map Zg : MN (C)× · · · ×MN(C)→MN(C) in the following way. Denoting
by V the vertices of g, by (v1, w1), . . . , (vn, wn) the edges of g, and by Ek,l the

matrix unit (δikδjl)
N
i,j=1 ∈MN (C), we set, for all M (1), . . . ,M (n) ∈MN (C),

Zg(M
(1), . . . ,M (n)) =

∑

k:V→{1,...,N}

(

M
(1)
k(w1),k(v1)

· · ·M (n)
k(wn),k(vn)

)

· Ek(out),k(in).

Following [3], we can think of Zg(M
(1), . . . ,M (n)) as an algorithm, where we are

feeding a vector into the input vertex and then operate it through the graph, each
edge doing some calculation thanks to the corresponding matrix M (i), and each
vertex acting like a logic gate, doing some compatibility checks. Endowed with the
sequence (Zg)g∈G , the vector space MN (C) is an algebra over the operad G, in the
following sense: an algebra over the operad G is a vector space A with a collection
of multilinear map (Zg)g∈G such that Zg : An → A if g is a n-graph operation,
and subject to some natural conditions which implement the idea of interpreting
n-graph operations as n-ary operations on A (compatibility, for g 7→ Zg, of the
composition maps ◦, of the identity of G and of End(A), and of the right action

of the symmetric group). Remark that the product graph operation (· 1← · 2← ·)
(which consists in three vertices and two successive edges from the input to the
output) induces a bilinear map Z

·
1
←·

2
←·

: A×A → A which gives to A a structure

of associative algebra: every algebra over the operad G is in particular a unital
algebra.

A space of traffics is a vector space A which is an algebra over the operad G,
together with an involution ∗ and a linear map τ : A → C fulfilling some techni-
cal conditions which imply in particular that (A, τ) is a tracial non-commutative
probability space (see [1, 2] for more details).

2. From non-commutative probability spaces to spaces of traffics

Let g be a graph operation. Because the map Zg : MN (C)n → MN (C) is multi-
linear, we can think of it as a linear map from MN(C)⊗n to MN(C). Let us fix a
random matrix A ∈MN (C), and write

E

[

1

N
Tr(Zg(A⊗ · · · ⊗A))

]

=
1

N
Tr(Zg(E[A⊗ . . .⊗A])).

If we assume that A is unitarily invariant, it is possible to express this quantity
thanks to the expectation of products of the moments (Tr(Ak)/N)k>0 (see [5]).
In [1], we used this fact to prove the following result.
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Theorem 1. For all N ≥ 1, let A(N) be a random matrix in MN(C). We assume

(1) The unitary invariance: for all N ≥ 1 and all U ∈ MN (C) which is
unitary, UA(N)U∗ and A(N) have the same law.

(2) The convergence in distribution: for all k > 0, E
[

1
NTr

(

(A(N))k
)]

con-
verges as N tends to ∞.

(3) The factorization property: for all k1, . . . , km > 0, we have the following
convergence

lim
N→∞

E

[

1

N
Tr
(

(A(N))k1

)

· · · 1
N

Tr
(

(A(N))kn

)

]

= lim
N→∞

E

[

1

N
Tr
(

(A(N))k1

)

]

· · · lim
N→∞

E

[

1

N
Tr
(

(A(N))kn

)

]

.

Then, A(N) converges in distribution of traffic, in the sense that, for all g ∈ G,

E

[

1

N
Tr
(

Zg(A
(N), . . . , A(N))

)

]

converges as N tends to ∞.

We have also a version of this theorem for a family of random matrices. Fur-
thermore, we have a formula for the limit of E[Tr(Zg(A

(N), . . . , A(N)))/N ] which
involves only the limit of (E[Tr(Ak)/N ])k>0. Replacing in this formula the limit-
ing distribution by an arbitrary distribution, we were able to prove the following
result, which is a result about the positivity of the state which occurs.

Theorem 2. Let (A, φ) be a noncommutative probability space. There exists a
space of traffics (B, τ) such that (A, φ) is included in (B, τ) as a noncommutative
probability space.

The space (B, τ) is canonical for at least two reasons. First, in this setting,
freeness in A is equivalent to traffic freeness in B. Secondly, if A(N) is a sequence
of random matrices that converges in distribution to a random variable a ∈ A and
which is unitarily invariant, then A(N) converges in distribution of traffics to a
seen as a random variable in B.
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[5] Benoit Collins and Piotr Śniady. Integration with respect to the Haar measure on unitary,
orthogonal and symplectic group Communications in Mathematical Physics, 264(3):773–
795, 2004.



Free Probability Theory 1607

Local eigenvalue distribution of random regular graphs

Antti Knowles

(joint work with Roland Bauerschmidt, Jiaoyang Huang, and Horng-Tzer Yau)

Let A be the adjacency matrix of a random d-regular graph on N vertices. For
fixed d ≥ 3, it is well known that as N →∞ the empirical spectral measure of A
converges weakly to the Kesten-McKay law [9, 11], with density

(1)
d

d2 − x2

1

2π

√

[4(d− 1)− x2]+ .

Thus, the rescaled adjacency matrix (d− 1)−1/2A has asymptotic spectral density

(2) ̺d(x) :=

(

1 +
1

d− 1
− x2

d

)−1√
[4− x2]+
2π

.

Clearly, ̺d(x) → ̺(x) as d → ∞, where ̺(x) := 1
2π

√

[4− x2]+ is the density of
Wigner’s semicircle law. The semicircle law is the asymptotic eigenvalue distri-
bution of a random Hermitian matrix with independent (upper-triangular) entries
(correctly normalized and subject to mild tail assumptions). From (2) it is nat-
ural to expect that, for sequences of random d-regular graphs such that d → ∞
as N → ∞ simultaneously, the spectral density of (d − 1)−1/2A converges to the
semicircle law. This was only proved recently [12].

In the study of universality of random matrix statistics, local versions of the
semicircle law and its generalizations have played a crucial role; see for instance
the survey [7]. The local semicircle law is a far-reaching generalization of the weak
convergence to the semicircle law mentioned above. First, the local law admits test
functions whose support decreases with N so that far fewer than N eigenvalues are
counted, ideally only slightly more than order 1. (In contrast, weak convergence of
probability measures applies only to macroscopic test functions counting an order
N eigenvalues). Second, the local law controls individual matrix entries of the
Green function. Both of these improvements have proved of fundamental impor-
tance for applications. For Wigner matrices, i.e. Hermitian random matrices with
independent identically distributed upper-triangular entries, the semicircle law is
known to hold down to the optimal spectral spectral scale 1/N , corresponding to
the typical eigenvalue spacing, up to a logarithmic correction. In [12, 4, 1, 8], it
was shown that the semicircle law (for d→∞) or the Kesten-McKay law (for fixed
d) holds for random d-regular graphs on spectral scales that are slightly smaller
than the macroscopic scale 1.

In [3], we show that d-regular graphs with degree d at least (logN)4 obey the
semicircle law down to spectral scales (logN)4/N . This scale is optimal up to the
power of the logarithm.

From the perspective of random matrix theory, the adjacency matrix of a ran-
dom d-regular graph is a symmetric random matrix with nonnegative integer en-
tries constrained so that all row and column sums are equal to d. These constraints
impose nontrivial dependencies among the entries. For example, if the sum of the
first k entries of a given row is d, the remaining entries of that row must be zero.
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Our general strategy in [3] is in part inspired by that developed for random ma-
trices with independent entries, starting with [6]. All previous works on local
laws rely heavily on the independence of the matrix entries, which allows one to
condition on a subset of entries to obtain precise large deviation bounds on the
entries of the Green function. (See for instance [5] for a detailed account.) While
the independence of the matrix entries can presumably be replaced by weak or
short-range dependence, the dependence structure of the entries of random regu-
lar graphs is global, and therefore a fundamentally different approach is required.
In [3], we introduce a new method to analyse random regular graphs.

For simplicity, we present the results for the uniform random d-regular graph;
similar results hold for other models of random regular graphs, such as the permu-
tation and configuration models. From now on, therefore, A denotes the adjacency
matrix of the uniform random d-regular graph on N vertices. First, we note that
A has the trivial eigenvector e := N−1/2(1, . . . , 1)∗ with eigenvalue d. We consider
a matrix H obtained from A by setting the trivial eigenvalue d to zero followed by
a rescaling:

H := (d− 1)−1/2(A− d ee∗) .

The local law is best stated in terms of the Green function

G(z) := (H − zI)−1 ,

where z ∈ C+.

Theorem 1 (Local semicircle law for random regular graphs [3]). Define

D := d ∧ N2

d3
,

and suppose that ξ ≥ (logN)2 and D ≥ ξ2. Fix c > 0. Then, with probability at
least 1− e−ξ log ξ,

(3) max
i,j
|Gij(z)− δijm(z)| = O

[

ξ

(

1√
N Im z

+
1√
D

])

uniformly for all z ∈ [−2 + c, 2− c]× (ξ2/N,∞), where

m(z) :=

∫

̺(x)

x− z
dx

is the Stieltjes transform of the semicircle law. A similar estimate holds in the
whole domain z ∈ R× (ξ2/N,∞), with a slightly more complicated error bound in
(3).

Theorem 1 has a number of important consequences. For instance, it implies
that all eigenvectors of A (or H) are completely delocalized with high probability.

Corollary 2. Under the assumptions of Theorem 1, any ℓ2-normalized eigenvector
of A or H has ℓ∞-norm of size O(ξ/

√
N) with probability at least 1− e−ξ log ξ.

Another consequence of Theorem 1 is that the bulk eigenvalue statistics of A
coincide with those of the Gaussian Orthogonal Ensemble (GOE). The universality
of local eigenvalue statistics is one of the central questions in randommatrix theory.
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Random matrix statistics are believed to apply to very general complex systems,
including the zeros of the Riemann ζ-function on the critical line. However, proofs
of random matrix statistics have so far been limited mostly to matrix ensembles.
There are two classes of matrix ensembles for which random matrix statistics have
been established under very general conditions: invariant ensembles and ensembles
with independent entries. Random regular graphs are not invariant and do not
have independent entries. In [2], using the local semicircle law of [3] and the rate of
convergence to equilibrium of the Dyson Brownian motion from [10], we prove that
the eigenvalues of A obey random matrix statistics in the bulk of the spectrum.

Theorem 3 ([2]). For d ∈ [Nε, N2/3−ε] with ε > 0 fixed, the local eigenvalue
statistics of A in the bulk coincide with those of the GOE.
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Limiting Spectral Distributions of Non-Hermitian Random Matrices

Holger Kösters

(joint work with Friedrich Götze and Alexander Tikhomirov)

We consider matrix-valued functions F(X1, . . . ,Xm) of independent random ma-
trices with independent matrix entries. More precisely, we assume that Xq =

(n−1/2X
(q)
jk )jk=1,...,n, q = 1, . . . ,m, where the X

(q)
jk are independent uniformly

square-integrable random variables with zero mean and unit variance, and that
F := F(X1, . . . ,Xm) is a (non-Hermitian) random matrix of dimension n × n.
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We investigate the asymptotic behavior of the empirical singular value and eigen-
value distributions (SVD’s and EVD’s) as n→∞. Here, all limits are understood
as weak limits in probability.

In [4], we establish the universality of the limiting SVD’s and EVD’s within
a general framework; see also [3] for related results. Informally, with I the identity
matrix of appropriate dimension, our main result may be summarized as follows:

Theorem. Suppose that there exist regularized matrix functions Ft such that (i)
for any α ∈ C, the matrices Ft − αI and F − αI have the same limiting SVD’s
as t→ 0, (ii) for any α ∈ C, the regularized matrix functions Ft(X1, . . . ,Xm)−αI
satisfy certain rank, smoothness and boundedness conditions, (iii) for any α ∈ C,
the large and small singular values of the matrices F−αI can be controlled. Then
the limiting SVD’s and EVD’s of the matrices F are universal, i.e. they do not

depend on the distributions of the matrix entries X
(q)
jk .

We apply these general results to a special class of matrix-valued functions,
namely sums of products of independent random matrices and their inverses [4, 7],
where the limiting SVD’s and EVD’s can be described more explicitly using tools
from free probability theory. By universality, it is sufficient to identify the limits
in the Gaussian case. Furthermore, there exists a 1–1 correspondence between
(symmetrized) limiting SVD’s on the real line and (rotation-invariant) limiting
EVD’s on the complex plane [5, 6]. One exemplary result from [7] is as follows:

Theorem. Suppose that F(X0, . . . ,Xm) := X0X
−1
1 · · ·X−1m . Then the limiting

SVD is given (after symmetrization) by the symmetric ⊞-stable distribution of
parameter 2

m+1 , and the limiting EVD is the associated rotation-invariant dis-
tribution. Moreover, for any fixed k ∈ N, if F1, . . . ,Fk are independent copies
of F, the sums k−(m+1)/2(F1 + . . . + Fk) have the same limiting SVD and EVD
as the matrices F.

Let us also mention the recent work [1, 2], which provides an algorithm for
calculating the Brown measures of general polynomials in free non-commutative
random variables. This leads to a wide class of further examples (e.g. sums of
products of independent shifted random matrices Xq − αqI) where the limiting
spectral distributions may be determined. For general matrix-valued functions,
however, the control of the small singular values is an open problem.
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Strong Convergence of Unitary Brownian Motion

Antoine Dahlqvist and Todd Kemp

(joint work with Benôıt Collins)

Let UN denote the unitary group ofN×N complex matrices U satisfying UU∗ = I.
It is a (real) Lie group of dimension N2, with Lie algebra u(N) consisting of all
skew-Hermitian matrices. Equip this Lie algebra with the appropriately scaled
Hilbert-Schmidt inner product, 〈X,Y 〉 ≡ −NTr(XY ), which is Ad(UN )-invariant.
By right-translation, this gives rise to a left-invariant Riemannian metric and thus
a left-invariant Laplace operator ∆UN

on UN . The Laplacian can be computed by
fixing any orthonormal basis βN for u(N); then

∆UN
=
∑

X∈βN

∂2
X

where ∂X is the left-invariant vector field whose value at the identity I is X : in
other words, ∂X(f)(U) = d

dt

∣

∣

t=0
f(U exp tX).

The unitary Brownian motion (UN (t))t≥0 is the diffusion process whose
generator is 1

2∆UN
. Alternatively, it can be described as the unique process with

a.s. continuous paths whose left multiplicative increments {UN(s)−1UN (t) : s < t}
are independent and stationary, with distribution given by the heat kernel µN

t−s

(the fundamental solution of the heat equation ∂tφ = 1
2∆UN

φ at time t − s).
A still more computationally practical characterization is as the solution of a
stochastic differential equation. Let (WN (t))t≥0 be a standard Brownian motion
in the Lie algebra u(N): WN (t) =

∑

X∈βN
WX(t) ·X where {WX : X ∈ βN} are

i.i.d. standard Brownian motions on R. If we define XN(t) = −iWN(t), then

(XN(t))t≥0 is a GUEN Brownian motion: the entries are Brownian motions, and

the matrix XN(t) is a GUEN of total variance t. The unitary Brownian motion
is the unique solution of the SDE

dUN (t) = UN (t) ◦ dWN (t) = iUN (t) dXN(t)− 1

2
UN (t) dt, UN (0) = I

where ◦ denotes the Stratonovich integral, and the right-hand-side is written as a
more typical Itô integral.



1612 Oberwolfach Report 28/2015

In [1], Biane showed that the process (UN (t))t≥0 converges, in the sense of its
finite dimensional noncommutative distributions, to the free unitary Brownian

motion (u(t))t≥0, which is analogously defined as the solution of the free SDE

du(t) = iu(t) dx(t)− 1

2
u(t) dt, u(0) = 1

where (x(t))t≥0 is a standard free additive Brownian motion in a W ∗ probability
space (A, τ). To be clear, the notion of convergence here is as follows: for any
times t1, . . . , tk ≥ 0, and any noncommutative polynomial P in 2k indeterminates,

lim
N→∞

1

N
Tr
[

P (UN(t1), U
N (t1)

∗, . . . , UN (tk), U
N (tk)

∗)
]

= τ [P (u(t1), u(t1)
∗, . . . , u(tk), u(tk)

∗)] a.s.

In the case k = 1 of a single time t1 = t, the fact that UN(t) and u(t) are
normal reduces Biane’s result to a random matrix result: the ESD (empirical
spectral distribution) of UN (t) converges, weakly a.s., to the law νt of u(t). This
law is a measure on the unit circle U1 which was also first computed by Biane in
[1]. It has the following properties: νt has a continuous density ̺t with respect to
the Haar measure on U1, with support

supp νt =

{

eiθ : |θ| ≤ 1

2

√

t(4− t) + arccos

(

1− t

2

)}

when 0 < t < 4, and full support for t ≥ 4. The density ̺t is real analytic on
the interior of its support, symmetric about 1, and is determined by ̺t(e

iθ) =
Reκt(e

iθ) where z = κt(e
iθ) is the unique solution (with positive real part) to the

equation
z − 1

z + 1
e

t
2
z = eiθ.

Biane’s convergence result is a (noncommutative generalization of a) bulk result:
it concerns the average behavior of all eigenvalues, and is therefore not fine enough
to characterize the behavior of the edge eigenvalues. That is: for 0 < r < 1, the
eigenvalue whose angle is ⌊rN⌋th largest is known to converge, by Biane’s result, to
the point up to which the proportion r of the mass of the measure νt is distributed.
But the largest and smallest angled eigenvalues (or more generally the ℓth largest
and smallest, for fixed ℓ as N grows) are not determined by Biane’s result.

The topic of this lecture was the dissemination of the results in the speakers’
paper [2], addressing the edge eigenvalues of the unitary Brownian motion, and
the appropriate noncommutative generalization thereof. Restricting to the case
k = 1, we state the first main theorem, known as the hard edge theorem for the
unitary Brownian motion.

Theorem 1. For 0 < t < 4, the largest and smallest angled eigenvalues of UN (t)
converge, a.s. as N →∞, to the edges of supp νt; for t ≥ 4, they converge to −1.

This can be restated in a more geometric fashion. Given two compact sets A and
B in a metric space, their Hausdorff distance is defined to be dH(A,B) ≡ inf{ǫ ≥
0: A ⊆ Bǫ & B ⊆ Aǫ}, where Aǫ is the neighborhood of all points within distance
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ǫ of A. Theorem 1 can be restated thus: For t ≥ 0, dH(spec(UN (t)), supp νt)→ 0
a.s. as N →∞. The random spectrum of UN (t), as a random compact subset of
R, converges a.s. in Hausdorff distance, to the arc that is the support of νt.

The proof of Theorem 1 uses harmonic analysis techniques to detect eigenvalues
in any neighborhood outside the putative limit spectrum. It boils down to having
sharp enough estimates on the average trace moments of the unitary Brownian mo-
tion: how fast do they converge to their limits in Biane’s theorem? The sufficient
answer is as follows.

Theorem 2. For t ≥ 0 and n ∈ N,
∣

∣

∣

∣

1

N
ETr
[

(UN
t )n

]

−
∫

U1

un νt(du)

∣

∣

∣

∣

≤ t2n4

N2
.

The summable 1
N2 allows the use of the Borel-Cantelli lemma to yield a.s. con-

vergence, while the polynomial factor n4 gives the freedom to use Sobolev test
functions (in H5(U1), in particular) to test for eigenvalues outside the bulk. The
majority of the first half of the paper is devoted to the proof of Theorem 2. It uses
a mixture of direct computation with SDEs for unitary Brownian motion, a subtle
coupling technique to compare UN (t) with U2N (t) (and then sum the differences
to get a geometric series comparison with the limit), and representation theory of
the unitary groups, notably using the Schur-Weyl duality to calculate and estimate
all involved quantities via the action of the symmetric groups.

In the remainder of the lecture, we discussed the noncommutative generalization
of the hard edge theorem. The analogue of Hausdorff convergence of the spectrum
is called strong convergence. Introduced formally in Camille Male’s dissertation
[5], the notion augments convergence in noncommutative distribution by measur-
ing the mixed moments not only in trace but also in operator norm. In the case
of unitary Brownian motion, the definition is that, in addition to convergence of
finite dimensional noncommutative distributions, we also have

lim
N→∞

∥

∥P (UN (t1), U
N (t1)

∗, . . . , UN (tk), U
N (tk)

∗)
∥

∥

= ‖P (u(t1), u(t1)
∗, . . . , u(tk), u(tk)

∗)‖ a.s.

for all noncommutative polynomials P and times t1, . . . , tk ≥ 0. The main theorem
of the second half of our paper is as follows.

Theorem 3. For any times t1, . . . , tk ≥ 0, (UN (t1), . . . , U
N(tk)) converges strong-

ly to (u(t1), . . . , u(tk)) as N →∞.

In fact, in the paper [2], we prove a strong extension form of this result: any
strongly convergent collection of ensembles, when augments with an independent
unitary Brownian motion, still converges strongly.

The proof of Theorem 3 relies on earlier work of Collins and Male [3] and
Haagerup and Thorbjørnsen [4] which showed that this extension property of
strong convergence holds for GUE ensembles. We then, using Theorem 1 at a
critical initial juncture, show how to uniformly approximate the increments of a
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unitary Brownian motion by nice functions of independent GUE ensembles, yield-
ing the proof.
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The Douglas-Kazakov phase transition

Thierry Lévy and Mylène Mäıda

We present a proof of the existence of a third order phase transition discovered
by Douglas and Kazakov around 1993 [1]. From the point of view of theoretical
physics, this transition occurs for the U(N) Yang-Mills measure on the two di-
mensional sphere S2, in the large N limit, as the total area of the sphere crosses
the critical value π2.

From a probabilistic point of view, the transition can be observed on the large
N limit of the Brownian bridge on U(N) as the total lifetime of the bridge crosses
the critical value π2.

The first mathematical study of this transition was made by Liechty and Wang
in their study of non-intersecting Brownian motions on a circle [5]. Their results
show that the phase transition can be understood as a qualitative difference in the
large N limit of the behaviour of the eigenvalues between a Brownian bridge of
short lifetime and a Brownian bridge of long lifetime.

We analyse this phase transition from a dual point of view, in Fourier space.
There is a natural partition function associated with the Brownian bridge of life-
time T on U(N), namely the value at the identity matrix of the heat kernel at
time T on the unitary group, which can be expressed as

pT (IN ) =
e

T
24

(N2−1)

(1! . . . (N − 1)!)2

∑

(ℓ1>...>ℓN )∈ZN

e−
T
2

∑N
i=1

(ℓi−
N−1

2
)2

∏

1≤i<j≤N

(ℓi − ℓj)
2.

We identify, in the limit where N tends to infinity, and as a function of T , the
shape of the N -tuple of integers which brings the largest contribution to the sum.

Technically, introducing the empirical measure µ̂ℓ =
1
N

∑N
i=1 δ 1

N
(ℓi−

N−1

2
), a mild

reformulation of the expression above and an application of a principle of large
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deviations proved by Guionnet and Mäıda [2] leads us to the problem of finding
the minimum of the functional

IT (µ) =

∫∫

− log |x− y| dµ(x)dµ(y) + 2

∫

T

4
x2 dµ(x)

over the set of all Borel probability measure on R which are absolutely continu-
ous with respect to the Lebesgue measure, with density bounded by 1. This last
condition can be understood as the continuous analogue of the fact that the inte-
gers ℓ1 > . . . > ℓN which index Fourier modes on the unitary group are pairwise
distinct.

If one ignores the constraint, the solution of this problem is well known. In-
deed, IT attains its minimum at the semi-circular distribution of parameter 1

T .

However, for T > π2, the density of this absolute minimiser of IT exceeds 1 on an
open interval, and the solution of the constrained problem is another probability
measure.

Using tools of potential theory (for which an excellent first reference is the
book of Saff and Totik [6]), we explain how to derive a solution of this constrained
problem, and how to prove that the probability measure thus obtained is indeed
the unique solution to our problem.

The figure below shows the shape of the density of the measure which minimises
IT for T = 4, 7, 10, 13, 16. We obtain (and, more critically, explain how to obtain)
explicit expressions for these densities, which were already present in [5], and in
an older work of Gross and Matytsin [3].

-1 0 1

1

2

1

Finally, a precise formulation of the phase transition is the following: for all
T > 0, the limit

F (T ) = lim
N→∞

1

N2
log pT (IN )

exists, and the function F thus defined is smooth on R∗+ \ {π2}, of class C2 on R∗+,
and F ′′′ has a jump discontinuity at T = π2.
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The Thompson group F from the viewpoint of noncommutative

probability

Claus Köstler

This talk reports on new research results on the Thompson group F ; related
publications are in preparation. Our main results establish that the Thompson
group F has a very rich and interesting representation theory. We illustrate this
from a viewpoint of noncommutative probability.

Traditionally the Thompson group F is an infinite group generated by X0, X1

subject to some relations, but here it is convenient to take the infinite presentation
with generators X0, X1, X2, . . . satisfying the relations

XnXk = XkXn+1 (0 ≤ k < n).

For our purposes it will be even more convenient to use the inverse generators
xn := X−1n satisfying the relations

xkxn = xn+1xk (0 ≤ k < n)

and to work with the Thompson monoid

MF := 〈xn|xkxn = xn+1xk; 0 ≤ k < n <∞〉.
The starting point of our investigations was the following observation: ’Spreadabil-
ity’, a distributional invariance principle for infinite sequences of noncommutative
random variables [7, 2], is implemented by maps (δn)n≥0 satisfying the relations

δkδn = δn+1δk (0 ≤ k ≤ n).

As for classical de Finetti theorems, it was shown in [7] that spreadability yields
noncommutative Bernoulli shifts. Above relations are those of a quotient of the
Thompson monoid MF . This initiated our studies to understand representations
of MF as a ’nice’ perturbation of noncommutative Bernoulli shifts: noncommu-
tative Markov shifts. We illustrate this by a simple example for the Thompson
monoid MF .

Let A and B von Neumann algebras and, for some fixed automorphism α ∈
Aut(A⊗B), define on the infinite von Neumann algebraic tensor product

M := A⊗ B ⊗ B ⊗ B ⊗ · · ·
the coupling

β1(a⊗ b1 ⊗ b2 ⊗ b3 ⊗ · · · ) := α(a ⊗ b1)⊗ b2 ⊗ b3 ⊗ · · ·
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and, for n ≥ 2, the local flips

βn(a⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ bn ⊗ · · · ) := a⊗ b1 ⊗ · · · ⊗ bn ⊗ bn−1 ⊗ · · ·
Now consider the endomorphisms

Tn = lim
N→∞

βn+1βn+2 · · ·βn+N

where the limit is taken in the pointwise strong operator topology. Using the fact
that (Tn)n≥1 implements ’spreadability’, it is straightforward to verify that the
endomorphisms (Tn)n≥0 satisfy the relations:

TkTn = Tn+1Tk (0 ≤ k < n).

In other words, the multiplicative extension of the map

ρ : MF ∋ xn 7→ Tn ∈ End(M)

is a representation of the Thompson monoid MF in the unital endomorphisms of
the von Neumann algebraM. EquippingM with a normal faithful tensor product
state ϕ, the endomorphism T0 is a unilateral (noncommutative) Markov shift and
T1 is a unilateral (noncommutative) Bernoulli shift over A. By construction T0 =
β1T1, so the Markov shift is given as a coupling to the Bernoulli shift. As a
consequence one obtains the following result.

Theorem 1. Every classical stationary Markov chain (on a finite state space)
defines a representation of the Thompson monoid MF .

This result transfers to the noncommutative setting, for example, taking square
matrices for A and B and equipping them with normalized traces. In particular
one obtains for factorizable Markov maps (as introduced in [1, 5]) the following
result. Let trd denote the normalized trace on the complex d× d-matrices Md(C).

Theorem 2. Any trd-factorizable Markov map on Md(C) defines a representation
of the Thompson monoid MF .

It is natural to ask if a converse of these results is also true. Note that a Bernoulli
shift over some von Neumann algebra is a Markov shift with a conditional expec-
tation as transition operator and thus the sequence of endomorphisms (Tn)n≥0 can
be interpreted as a system of Markov shifts. To avoid additional technical con-
ditions we announce the following result in a tracial setting of noncommutative
W*-algebraic probability spaces.

Theorem 3. Let the von Neumann algebraM be equipped with a normal faithful
tracial state tr. If ρ : MF → End(M, tr) is a representation in the tr-preserving
endomorphisms of M, then (ρ(xn))n≥0 is a system of unilateral noncommutative
Markov shifts.

As an immediate consequence, a representation of the Thompson group F in
the tr-preserving automorphisms ofM gives rise to a system of bilateral noncom-
mutative Markov shifts.

An open problem is at the moment if each of these Markov shifts ρ(xn) is
given as a coupling to a Bernoulli shift, a feature exhibited in above motivating
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example. Moreover, since unitary representations of the infinite braid group give
rise to ’spreadability’ ([7, 3]), it will be of interest to investigate how above results
relate to the construction of unitary representations of the Thompson group F in
[6]. Finally we speculate if a better understanding of the representation theory of
F creates valuable insight for the still open amenability problem of F (compare
[4]).
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Tail algebras of symmetric states and de Finetti theorems

Ken Dykema

(joint work with Claus Köstler and John Williams)

A classical theorem of B. de Finetti [5] shows that an infinite sequence of clas-
sical random variables is exchangeable (namely, has distribution invariant under
arbitrary permutations of the variables) if and only if the random variables are
conditionally independent over the tail algebra. The noncommutative de Finetti
theorem of Köstler and Speicher [6], in the setting of a W∗-noncommutative prob-
ability space equipped with a faithful state, forms one of the many marvelous
parallels between classical and free probability theories. It shows that an infinite
sequence of noncommutative random variables is quantum exchangeable if and
only if they are free with amalgamation over the tail algebra. Here, quantum ex-
changeable means invariant under the action of of S. Wang’s quantum permutation
group [9].

E. Størmer [8] extended the purview of the classical de Finetti theorem to the
realm of C∗-algebras, showing the symmetric states on the infinite tensor product
⊗∞

1 A of a unital C∗-algebra A with itself, form a Choquet simplex and that the
extreme points of this simplex are the infinite tensor product states ⊗∞1 φ, of states
φ on A. Here “symmetric” means invariant under the obvious permutation action
of S∞ on the above tensor product algebra.

In the paper [4], we investigate quantum symmetric states on the universal uni-
tal free product ∗∞1 A of a C∗-algebra A with itself infinitely many times, these



Free Probability Theory 1619

being those that are invariant under the appropriate action of Wang’s quantum
permutation group. It turns out that, by a proof analogous to Köstler’s and Spe-
icher’s proof of the noncommutative de Finetti theorem, these states are charac-
terized by freeness of the copies of A with amalgamation over the tail algebra. We
investigate the structure of the set of these quantum symmetric states and for this
it is essential to study also quantum symmetric states that yield non-faithful states
on the von Neumann algebras generated by the images of their GNS representa-
tions. (We would like to point out also some similar freeness-with-amalgamation
results of S. Curran [2], proved with different techniques that yield interesting re-
sults about finite sequences, though assuming faithfulness of states.) These states
form a compact convex set, though they are not a simplex. In [4], we characterize
the extreme points of this convex set.

We also mention that in [3], Dabrowski, Dykema and Mukherjee show that the
set of tracial quantum symmetric states does form a Choquet simplex and the
authors characterize its extreme points.

The main body of the talk, (after a summary of results slightly more detailed
than the one found above), focused the tail algebra and questions about conditional
expectations onto the tail algebra for symmetric states on the free product C∗-
algebra A = ∗∞1 A. The symmetric states are those that are invariant under the
obvious permutation action of S∞ on A. These include the quantum symmetric
states, but are much more general. If φ is such a symmetric state, let πφ be the
GNS representation of it, letMφ denote the von Neumann algebra generated by

the image of πφ, and let φ̂ denote the normal state 〈·1̂, 1̂〉 onMφ so that φ̂◦πφ = φ.
The tail algebra of φ is the von Neumann subalgebra

Tφ =

∞
⋂

n=1

W ∗
(

⋃

j≥n

πφ(Aj)
)

,

of Mφ, where Aj is the j-th copy of A in A. An example of Weihua Liu [7]

(described in [4]) shows that there need not be a normal, φ̂-preserving conditional

expectation from Mφ onto Tφ. However, we show that there is a φ̂-preserving,
S∞-invaraint conditional expectation from the C∗-algebra

Qφ := C∗(Tφ ∪ πφ(A))

onto Tφ, and we define the tail C∗-algebra Dφ to be the the smallest unital C∗-
subalgebra of Tφ containing Eφ(C

∗(Dφ∪πφ(A))). It is freeness with amalgamation
over Dφ (with respect to the restriction of Eφ to Qφ) that characterizes quantum
symmetric states, and that we can use in the description of the convex structure
of quantum symmetric states.

We ask two open questions about tail algebras of symmetric states:

Question 1. Do we always have Dφ ⊆ πφ(A)?

Question 2. Is Tφ generated as a von Neumann algebra by Dφ?

The answers to both of these questions are “yes” in the case of quantum sym-
metric states (for the first question, the proof depends on a version of Haagerup’s
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inequality for free products with amalgamation, found in [1]). These questions are
relevant to investigating the extreme points of the convex set of symmetric states
on A.
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An example of factoriality under non-tracial finite free Fisher

information assumptions

Brent Nelson

Suppose M is a von Neumann algebra equipped with a faithful normal state ϕ,
and is generated by an algebraically free finite set G = G∗, |G| ≥ 3. We show
that if G consists of eigenvectors of the modular operator ∆ϕ and has finite free
Fisher information, then the centralizer Mϕ is a II1 factor and M is a factor of
type depending on the eigenvalues of G.

We first use the finite free Fisher information assumption to establish the ex-
istence of diffuse elements in Mϕ. As in the tracial case (cf. Theorem 3.1 in
[3] and Theorems 3 and 4 in [4]), a reduction argument is used that shows when
xp = 0 for certain polynomials x ∈ C 〈G〉 ∩Mϕ and a non-zero projection p, then
(ϕ ⊗ 1)(δy(x))p = 0 for every free difference quotient δy, y ∈ G. A non-tracial
analogue of Theorem 4.4 in [1] is used, wherein the generators are regularized by
quasi-free semicircular random variables (i.e. generators of a free Araki-Woods
factor) rather than free semicircular random variables.

The construction of a diffuse element x ∈ Mϕ requires |G| ≥ 2 in the non-
tracial case. The requirement that |G| ≥ 3 is necessary so that ∃y ∈ G such that
δy(x) = 0.

Using a contraction resolvent argument of Dabrowski (cf. Section 1 in [2]),
we show that if z ∈ (Mϕ)′ ∩M then δy(z) is a Hilbert-Schmidt operator which
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commutes with the diffuse element x; that is, δy(z) = 0. An simple ad hoc
argument can then be used to show z ∈ C, and therefore Mϕ and M are factors.

That Mϕ is a II1 factor is immediate since it contains the diffuse element x
and ϕ |Mϕ is a finite trace. The type classification of M follows by studying the
Arveson spectrum of σϕ and Connes S(M) invariant.
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Freeness and the Partial Transposes of Haar Distributed Unitary

Matrices

James A. Mingo

In 2012 Guillaume Aubrun [1] showed that the partial transpose of a real or com-
plex Wishart matrix converges to a shifted semi-circular distribution. The result-
ing semi-circular operator is positive when the aspect ratio of the Wishart matrix
is greater than 4, otherwise the partially transposed matrix will asymptotically
have negative eigenvalues.

In a recent paper with Mihai Popa, [3], we showed that unitarily invariant en-
sembles were asymptotically real second order free from their transposes. In partic-
ular unitarily invariant matrix was asymptotically free from its transpose. A nat-
ural question was what happens with partial transposes. Suppose that G1 . . . , Gd1

are independent complex Gaussian d2×p random matrices whose entries are com-
plex Gaussian random variables with mean 0 and (complex) variance 1 and let

W =
1

d1d2







G1

...
Gd1







(

G∗1 · · · G∗d1

)

.

By our result [3], W and WT our asymptotically free where WT is the transpose
of W . Writing W as a block matrix W = (W (i, j))ij with 1 ≤ i, j ≤ d1 and each

W (i, j) a d2×d2 matrix we let W Γbe the block matrix whose (i, j) entry is W (j, i)
and WΓ be the block matrix whose (i, j) entry is W (i, j)T. We showed that the

family {W,W Γ,WΓ,WT} is an asymptotically free family. Using the method of
graph sums, [4], this has been extended to the case of non-Gaussian entries with
the same conclusion. Back in the Gaussian case, the second order cumulants have
been computed. In the real Gaussian case W = WT and W Γ= WΓ, so we only
get W and WΓ becoming asymptotically free.
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In this report we turn to the case of Haar distributed random unitary matrices.
Let U be a d1d2× d1d2 Haar distributed random unitary matrix, we would like to
find the joint distribution of the following eight operators

U,U∗, U Γ, (U Γ)∗, UΓ, (UΓ)∗, UT, (UT)∗.

Here we define the partial transpose with respect to Md1
(C)⊗Md2

(C). We write
U = (U(i, j))i,j as a d1 × d1 block matrix where U(i, j) is a d2 × d2 matrix. Then

the (i, j) block of U Γis U(j, i); the (i, j) block of UΓ is U(i, j)T and the (i, j)
block of UT is U(j, i)T.

Theorem 1. The operators U,U Γ, UΓ, UT are asymptotically ∗-free and U Γand
UΓ are asymptotically circular.

In order to keep track of all eight of these operators we introduce some notation:
ǫ is left partial transpose ‘bit’, η is the right partial transpose ‘bit’, θ is the adjoint
‘bit’.

U (ǫ,η,θ) =















































U ǫ = 1 η = 1 θ = 1
U∗ ǫ = 1 η = 1 θ = −1
U Γ ǫ = −1 η = 1 θ = 1

(U Γ)∗ ǫ = −1 η = 1 θ = −1
UΓ ǫ = 1 η = −1 θ = 1

(UΓ)∗ ǫ = 1 η = −1 θ = −1
UT ǫ = −1 η = −1 θ = 1

(UT)∗ ǫ = −1 η = −1 θ = −1

.

To prove Theorem 1 we need to compute for every n and for every (ǫ1, . . . , ǫn),
for every (η1, . . . , ηn), and for every (θ1, . . . , θn) the limit

(1) lim
d1,d2→∞

E(U (ǫ1,η1,θ1) · · ·U (ǫn,ηn,θn))

and show that this is the joint distribution of a ∗-free family of operators u1, c1, c2,
u2 where u1 and u2 are Haar unitaries and c1 and c2 are circular operators. The
asymptotic freeness is achieved by showing that mixed cumulants vanish.

Let us elaborate on how we obtain that U Γand UΓ converge to circular op-
erators. Recall that P. Biane, [2], showed that the non-crossing partitions on [n]
can be embedded into the permutation group Sn by considering each block of a
partition to be a cycle of the corresponding permutation where the elements are
written in increasing order. The permutations that arise in this way are exactly
those permutations σ that satisfy the equality #(σ) + #(σ−1γ) = n + 1. Recall
that #(σ) denotes the number of cycles in the cycle decomposition of σ and that
γ is the permutation with the single cycle (1, 2, 3, . . . , n).

The crucial point for us is that σ is non-crossing then σ−1 cannot be non-
crossing unless σ has only cycles of length 1 or 2. We illustrate this with an
example. Suppose n = 5 and σ = (1, 3, 4)(2)(5). Then #(σ) + #(σ−1γ) =
3 + 3 = n + 1. On the other hand #(σ−1) + #(σγ) = 3 + 1 = 4 = n − 1. If we
convert a permutation σ ∈ Sn to a pairing π of {1,−1, 2,−3, . . . , n,−n} by letting
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π = σδσ−1 then the crossing will become visible. In this case the pairing for σ is
{(1,−4)(−1, 3)(2,−2)(−3, 4)(5,−5)}. See the figure below.
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On the other hand for σ−1 the corresponding pairing is {(1,−3)(−1, 4)(2,−2)
(3,−4)(5,−5)}.
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The fact that U Γconverges in moment distribution to a circular operator c1
arises from the fact that when writing (1) as a sum of cumulants the only non-
crossing partitions that arise are the ones that are also non-crossing when the
order of elements in each block is reversed.
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Special Activities

In addition to the regular talks we also scheduled two sessions of 10 minutes
announcements of research results. This was mainly, but not exclusively, intended
for young researchers, who could so give an idea of their work to the general
audience; quite often those announcement resulted in more in depth discussions
in small groups afterwards.
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List of 10 minutes research announcements.

• Uwe Franz: On unitary dual groups
• Greg Anderson: Semicirculars as building blocks for all allgebraic non-
commutative formal power series: a free probabilistic version of the
Chomsky-Schützenberger theorem
• Tobias Mai: Regularity of distributions of Wigner integrals
• Octavio Arizemendi: On a logarithmic transform for non-classical convo-
lutions
• Arup Bose: High dimensional time series, random matrices, and free prob-
ability
• Ian Charlesworth: Combinatorics of bi-free probability
• Franz Lehner: Spreadability, cumulants and Hausdorff series
• John Williams: B-valued free convolution of unbounded operators
• Steen Thorbjørnsen: Unimodality of the freely selfdecomposable probabil-
ity laws

Reporter: Tobias Mai
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Université Paul Sabatier
118, route de Narbonne
31062 Toulouse Cedex 9
FRANCE

Prof. Dr. Arup Bose

Stat-Math Unit
Indian Statistical Institute
203 BT Road
Kolkata 700108
INDIA

Prof. Dr. Marek Bozejko

Institute of Mathematics
Wroclaw University
pl. Grunwaldzki 2/4
50-384 Wroclaw
POLAND

Prof. Dr. Mireille Capitaine

Laboratoire de Statistique et
Probabilites
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SWITZERLAND

Prof. Dr. Holger Kösters
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