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Introduction by the Organisers

Noncommutative geometry applies ideas from geometry to mathematical struc-
tures determined by noncommuting variables. Within mathematics, it is a highly
inter-disciplinary subject drawing ideas and methods from many areas of math-
ematics and physics. Natural questions involving noncommuting variables arise
in abundance in many parts of mathematics and theoretical quantum physics.
On the basis of ideas and methods from algebraic and differential topology and
Riemannian geometry, as well as from the theory of operator algebras and from
homological algebra, an extensive machinery has been developed which permits
the formulation and investigation of the geometric properties of noncommutative
structures. This includes K-theory, cyclic homology and the theory of spectral
triples. Areas of intense research in recent years are related to topics such as in-
dex theory, quantum groups and Hopf algebras, the Novikov and Baum-Connes
conjectures as well as to the study of specific questions in other fields such as
number theory, modular forms, topological dynamical systems, renormalization
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theory, theoretical high-energy physics and string theory. Many results elucidate
important properties of specific classes of examples that arise in many applications.
But the properties of many important classes of examples still remain mysterious,
and are currently under intense investigation. This meeting concentrated on se-
lected aspects of Noncommutative Geometry. Special emphasis this time was laid
on connections to von Neumann algebras and to classification questions for group
measure space II1 factors, as well as to geometric group theory and the study of
embeddings of groups into Hilbert and Banach spaces. There are indications for a
deep connection between recent progress in that direction and the role of factors,
ergodic theory and quantum statistical mechanics in the approach to number the-
ory and L-functions from noncommutative geometry. In addition quite a few other
topics of current interest in Noncommutative Geometry were covered as well.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Noncommutative De Leeuw theorems

Martijn Caspers

(joint work with Javier Parcet, Mathilde Perrin, Eric Ricard)

1. Classical De Leeuw theorems

In 1965 Karel de Leeuw [4] proved fundamental theorems about Fourier multipli-
ers acting on Lp-spaces. These theorems play a major role in commutative and
noncommutative harmonic analysis and have many applications to for example
partial differential equations. In order to state De Leeuw’s main results recall
the following. Let m : Rn → C be measurable and consider the linear mapping
Tm : L2(R)→ Lp(R) that is determined by

T̂mf = mf̂,

where f 7→ f̂ is the Fourier transform.

(1) Restriction. Let H be a subgroup of Rn. Suppose that Tm acts bound-
edly on Lp(Rn) then the mapping

Tm|H :

∫

H

f̂(h)χhdµ(h) 7→
∫

H

m(h)f̂(h)χhdµ(h)

extends to a Lp(Ĥ)-bounded multiplier for any subgroup H ⊆ Rn where

the χh’s stand for the characters on the dual group Ĥ and µ is the Haar
measure.

(2) Compactification. Let Rn
Bohr be the Pontryagin dual of Rn

disc equipped
with the discrete topology. Given m : Rn → C bounded and continu-
ous, the Lp(Rn)-boundedness of Tm is equivalent to the boundedness in
Lp(Rn

Bohr) of the multiplier with the same symbol,

Tm :
∑

Rn
disc

f̂(ξ)χξ 7→
∑

Rn
disc

m(ξ)f̂(ξ)χξ.

The proof of the compactification theorem proceeds through the restriction the-
orem. In fact the restriction theorem easily follows from the compactification
theorem which therefore is the stronger statement. We also take into considera-
tion periodization and lattice approximation (i.e. Igari’s theorem [3]). After De
Leeuw’s fundamental paper [4] these theorems were soon generalized to nonabelian
groups by Saeki [8].
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2. Noncommutative De Leeuw theorems

The development of noncommutative integration theory (especially in the second
half of the 20th century) naturally raises the question if there are noncommutative
De Leeuw theorems. Noncommutative means that Rn can be replaced by an
arbitrary group. In this case the Fourier multipliers Tm act on its Pontryagin
dual, which only exists as a so-called quantum group, whose underlying space is
the group von Neumann algebra. Very recently a prolific series of papers was
devoted to this topic, see [2], [5], [6], [7] and references given there.

In [1] we show to what extent De Leeuw theorems can be generalized to arbitrary
locally compact groups. LetG be a locally compact group and letm : G→ C which
we shall always assume to be bounded and continuous. To avoid technicalities in
our exposition here, we assume that G is unimodular. Let

L(G) = {λ(f) | f ∈ L1(G)}′′,
be the group von Neumann algebra generated by the left regular representation
λ. Let ϕ be the Plancherel weight on L(G) which is given by ϕ(x∗x) = ‖f‖L2(G)

in case there exists f such that xg = f ∗ g, g ∈ L2(G). Otherwise ϕ(x∗x) = ∞.
As G is unimodular ϕ is tracial. We may construct noncommutative Lp(L(G)) as
the completion of the space {x | ‖x‖p := τ(|x|p)1/p <∞} with respect to the ‖ ‖p
norm. It follows that Cc(G)

∗2 (second convolution power) spans a dense subset of
Lp(L(G)) and that we may set

Tm : Lp(L(G))→ Lp(L(G)) : λ(f) 7→ λ(mf), m ∈ Cc(G)
∗2.

We call m an Lp-Fourier multiplier in case Tm extends boundedly.
In [1] we prove the following theorem which involves two assumptions. We say

that G has small almost invariant neighbourhoods with respect to a subgroup Γ
if for every finite subset F ⊆ Γ there exists a net of open sets Ui → {e} of G such
that for all s ∈ F we have measure(Ui ∩ sUis

−1)/measure(Ui) → 0. We say that
G is approximable by discrete subgroups if there exists a net Γi of subgroups of G
with fundamental domains shrinking to the identity. Our main results include:

(1) Restriction. Let 1 ≤ p ≤ ∞. Let Γ ⊆ G be a discrete subgroup and
suppose that G has small almost invariant neighbourhoods with respect
to Γ. Then,

‖Tm|H : Lp(L(H))→ Lp(L(H))‖ ≤ ‖Tm : Lp(L(G))→ Lp(L(G))‖,
(2) Compactification. Let 1 ≤ p ≤ ∞. Suppose that G is approximable by

discrete subgroups and that Gdisc with the discrete topology is amenable.
Then,

‖Tm : Lp(L(Gdisc))→ Lp(L(Gdisc))‖ = ‖Tm : Lp(L(G))→ Lp(L(G))‖,
These theorems recover the classical De Leeuw theorems. The proof strategy is

(in a suitable sense) the same as De Leeuw’s. However the techniques are totally
different and involve an intricate analysis of ucp maps on von Neumann algebras.
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3. Final comments

We conclude with three remarks. Firstly in [1] we also prove noncommutative
periodization and lattice approximation results as in the classical case. Secondly
the unimodularity condition on G can be removed in which case proper noncom-
mutative Lp-spaces of a group von Neumann algebra were defined by Haagerup
and Connes-Hilsum. Finally, the above theorems also hold in the operator space
setting, meaning that bounds can be replaced by complete bounds. In fact in the
operator space setting one gets additional result using the technique of transfer-
ence to Schur multipliers (found in [6] for discrete groups and generalized in [2] to
arbitrary groups).
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The scaling Site

Alain Connes

(joint work with Caterina Consani)

I described in my talk the recent joint work [4] with C. Consani on the Scaling
Site. It is the algebraic geometric space obtained from the arithmetic site of [2, 3]
by extension of scalars from the Boolean semifield B to the tropical semifield Rmax.

The underlying site inherits from its structural sheaf a natural structure of a
tropical curve allowing one to define the sheaf of rational functions and to inves-
tigate an adequate version of the Riemann-Roch theorem in characteristic 1. We
tested this structure by restricting it to the periodic orbits of the scaling flow,
namely the points over the image of SpecZ (see [3], §5.1). We found that for each
prime p the corresponding circle of length log p is endowed with a quasi-tropical
structure which turns this orbit into the analogue Cp = R∗

+/p
Z of a classical el-

liptic curve C∗/qZ. In particular rational functions, divisors, etc. all make sense.
A new feature is that the degree of a divisor can now be any real number. We
determined the Jacobian of Cp : the quotient J(Cp) of the group of divisors of
degree 0 by principal divisors and showed that it is a cyclic group of order p− 1.
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For each divisor D we define the corresponding Riemann-Roch problem with
solution space H0(D). We introduce the continuous dimension DimR(H

0(D)) of
this Rmax-module using a limit of normalized topological dimensions and find that
DimR(H

0(D)) is a real number. Finally, we prove that the Riemann-Roch formula
holds true for Cp. The appearance of arbitrary positive real numbers as continuous
dimensions in the Riemann-Roch formula is due to the density in R of the subgroup
Hp ⊂ Q of fractions with denominators a power of p and the fact that continuous

dimensions are obtained as limits of normalized dimensions p−ndimtop(H
0(D)p

n

).
This outcome is the analogue in characteristic 1 of what happens for modules over
matroid C∗-algebras and the type II normalized dimensions as in [5].

One can compare our Riemann-Roch theorem with the tropical Riemann-Roch
theorem of [1, 6, 8] and its variants. Let thus C be the elliptic tropical curve given
by a circle of length L. In this case, the structure of the group DivClass(C) of
divisor classes is inserted into an exact sequence of the form

0→ R/LZ→ DivClass(C)
degree−→ Z→ 0

(see [8]). In our case we get the following split exact sequence associated to Cp

0→ Z/(p− 1)Z→ DivClass(Cp)
degree−→ R→ 0
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Analytic cohomology in characteristic p > 0.

Guillermo Cortiñas

(joint work with Joachim Cuntz, Ralf Meyer)

Let k be a field of characteristic p > 0, V =W (k) the ring of Witt vectors. Thus
V is a Noetherian, local domain with principal maximal ideal m = πV and residue
field V/πV = k, complete in the m-adic topology. We write K for the field of
fractions of V . Our goal is to construct a functor

Han : k − algebras→ ((Z/2-graded complexes of K-modules))
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which is polynomially homotopy invariant and matrix invariant, which satisfies
excision and which for commutative algebras of finite type, recovers Bertherlot’s
rigid cohomology [3] in the sense that

Han
n (A) =

∏

j

H2j−n
rig (A,K).

To explain why having such a theory could be useful, assume for a moment that
a functor with the properties above exists, and write

Han
∗ (A,B) = H∗(HOM(Han(A), Han(B))).

It follows from the universal property of algebraic bivariant K-theory [1] and
the assumed properties of Han, that there is a Chern character kk∗(A,B) →
Han

∗ (A,B), compatible with composition. In particular, setting A = k, we get
a Chern character KH∗(B) = kk∗(k,B) → Han

∗ (B) := Han
∗ (k,B) from Weibel’s

homotopy algebraic K-theory [6] (and thus also from Quillen’s K-theory, using
the natural transformation K → KH). Specializing to B commutative of finite

type, yields maps chj,n : KHn(B)→ H2j−n
rig (B).

Next we recall the definition of rigid cohomology for a smooth commutative
algebra k → A. By a theorem of Elkik [2], there is a smooth morphism V → R
which reduces to k → A mod π. Let R† be the weak completion of Monsky-
Washnitzer [4]. Write ΩR/V for the de Rham complex of Kähler differential forms.
The rigid cohomology of A is defined to be [5]

H∗
rig(A,K) = H∗((ΩR/V ⊗R R

†)⊗V K).

As R is a V -algebra of finite type, it is a quotient of a polynomial ring V [x1, . . . , xm]
and thus it can be equipped with a filtration coming from the degree filtration on
the polynomials. Using this filtration one can define a bornology on R⊗V K whose
bornological completion is R† ⊗V K. In particular the latter is a bornological
algebra. Our first result relates the periodic cyclic homology of the bornological
algebra R† ⊗V K to the rigid cohomology of A:

HPn(R
† ⊗V K) =

∏

j

H2j−n
rig (A,K).

The basic idea for constructing Han is to write A = TL/I as a quotient of the
tensor algebra of a free V -module L and then take the periodic cyclic complex
of a bornological completion of TLK := TL ⊗V K with respect to I: Han(A) =

HP (T̂ LK). The highly non-trivial technical point is what bornology to take. The
tentative definition of Han we have so far is homotopy invariant. Furthermore,
we can prove the following. Let A = L/πL be a presentation as a quotient of a
unital filtered V -algebra L. Assume that F0L = V , that Fn+1L/FnL is a free
V -module (n ≥ 0), and that there exists n > 0 such that the bimodule Ωn

V L of
noncommutative differential forms is projective. The algebra LK := L⊗VK carries

a natural bornology coming from the filtration and we let L̂K be the bornological
completion. Assume that p > 2, and let A = L/πL. Then

Han
∗ (A) = HP∗(L̂K).
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As a consequence, we have the following. Let k → A be smooth commutative
and let V → R as in Elkik’s theorem. Assume that there exists L as above such
that L̂K

∼= R† ⊗V K. Then

Han
n (A) =

∏

j

H2j−n
rig (A,K).

An L as above exists, for example, if A = k[x1, . . . , xm]/f is a smooth hypersurface.
We do not know whether such an L exists for general smooth algebras k → A.
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Groupoids and pseudodifferential calculus

Claire Debord

(joint work with Georges Skandalis)

We recall how pseudodifferential operators on a groupoid G can be expressed as
integrals of kernels on the adiabatic groupoid Gad of G and investigate several
generalisations of pseudodifferential operators of the Boutet de Monvel calculus
[4, 5].

1. Pseudodifferential operators as integral kernels [4]

A key ingredient here will be the adiabatic groupoid of a groupoid G which is a
generalisation of the famous tangent groupoid of A. Connes (see [3]).

1.1. The adiabatic groupoid. Let G ⇒ G(0) be a smooth groupoid, denote by
AG its Lie algebroid and ♯ the corresponding anchor map. The adiabatic groupoid
is the deformation to the normal cone of the inclusion G(0) ⊂ G (see [7, 8, 9]) :

Gad = G× R∗ ⊔ AG× {0}⇒ G(0) × R .

It can be equipped with a (unique) smooth structure such that its Lie algebroid
is the bundle AGad = AG× R with anchor map :

♯ad : AG× R→ TG(0) × TR ; (x,X, t) 7→ (♯(x, tX), (t, 0)) .
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The scaling action of R∗ on G × R∗ extends to a smooth action of R∗ on Gad

which is free and proper outside the units G(0) × R. For λ ∈ R∗ it is given by :

λ · (γ, t) = (γ, λt) for t 6= 0 and λ · (x,X, 0, λ) = (x,
1

λ
X, 0) .

The previous constructions applied to the product groupoid of G with the group
R leads to a local compactification of Gad :

Gad :=
(
(G× R)ad \G(0) × {0} × R

)
/R∗ = Gad ⊔G \G(0) ⊔ P(AG) .

Notice that the map equal to identity on G×R∗ and which sends AG×{0} on
G(0) × {0} extends to a proper map τ : Gad −→ G× R.

1.2. Spaces of functions on Gad. A smooth function f on Gad will be denoted
f = (ft)t∈R where ft ∈ C∞(G) for t 6= 0 and f0 ∈ C∞(AG). We may introduce
several spaces of functions on Gad and on its crossed product by the R∗ action:

The Schwartz algebra: Sc(Gad) is the restriction to Gad of smooth functions
on Gad which are ∞-flat (i.e. vanish as well as all the derivatives) outside
Gad and whose support is sent by τ on a compact subset of G× R.

The ideal: J0(G) ⊂ C∞
c (Gad) of rapidly decreasing functions at 0 is made of

smooth functions which are ∞-flat outside G× R∗.
The ideal: J (G) ⊂ Sc(Gad) is the set of functions f = (ft)t∈R which satisfy

that for any g ∈ C∞
c (G), (ft ∗ g)t∈R∗ and (g ∗ ft)t∈R∗ belong to J0(G).

The ⋊R∗ version : we define similarly Sc(Gad ⋊R∗) and the ideal J (G)⋊ ⊂
Sc(Gad ⋊R∗).

The ideal J (G) enables us to recover the pseudodifferential operators on G,
precisely we have :

Theorem 1. For f = (ft)t∈R ∈ J (G) and m ∈ Z (and even m ∈ C) let

P =

∫ +∞

0

tmft
dt

t
and σ : (x, ξ) ∈ A∗G \G(0) 7→

∫ +∞

0

tmf̂(x, tξ, 0)
dt

t

Then P is a pseudodifferential operator of order −m on G and its principal symbol
is σ. Moreover any pseudodifferential operator on G is of this form.

Let us denote by J+(G) the image of J (G) under the restriction of functions
to Gad+ := τ−1(G× R+) and J+(G) its closure in C∗(Gad).

Theorem 2. A completion of J+(G) into a bimodule E leads to a Morita equiv-
alence between Ψ∗

0(G) and J+(G) ⋊R∗
+.

In the special case of the pair groupoid G = V × V over a smooth manifold V ,
this last theorem was proved abstractly by Aastrup-Melo-Monthubert-Schrohe in
[1]. In this situation Gad is the tangent groupoid and the previous construction
leads to an ideal J of Sc(Gad) which can be (restricted and) completed into a full
Ψ∗

0(G) = Ψ0(V ) module E which satisfies K(E) ≃ J+ ⋊R∗
+.
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2. The Boutet de Monvel calculus

Let M = V × R+ be a manifold with boundary embeded in the smooth manifold

M̃ = V ×R. The aim here is to define a pseudodifferential calculus adapted to M .

Let P be a pseudodifferential operator on M̃ , f ∈ C∞c (M) and f̃ the extension

of f by 0 on M̃ . The computation P (f̃) gives a function on M \ ∂M which may
not admit a limit on ∂M = V × {0}. This leads to the notion of transmitting

property : the operator P has the transmitting property when for any smooth

function f ∈ C∞c (M), P (f̃) coincides on M \ ∂M with a smooth function on M̃ .
In such a situation we let P+ be the corresponding operator on C∞c (M) and we
denote by PM

+ the set of such operators.

When P, Q are pseudodifferential operators on M̃ with the transmitting prop-
erty it may happen that P+Q+ 6= (PQ)+, thus PM

+ is not an algebra. To solve
this problem, Boutet de Monvel defined the algebra GM of singular Green oper-
ators whose typical elements are P+Q+ − (PQ)+. The space PM

+ + GM is now
an algebra. Moreover he also defined the spaces K of singular Poisson opera-
tors C∞c (∂M) → C∞c (M) and T of singular Trace operators C∞c (M) → C∞c (∂M),
adjoint of each other and formed an algebra of 2× 2 matrices :

(
P+ +G K
T Q

)
: C∞c (M)⊕ C∞c (∂M)→ C∞c (M)⊕ C∞c (∂M)

where P+ ∈ PM
+ , G ∈ G, K ∈ K, T ∈ T and Q is an ordinary pseudodifferential

operator on V = ∂M . See [2] for the original construction and [6] for a detailed
description.

The product of a singular Poisson operator with a singular Trace operator gives
a singular Green operator. Thus, forgetting PM

+ , one gets an algebra of 2 × 2
matrices which (almost) gives a Morita equivalence between the two corners : GM

and the algebra of pseudodifferential operators on V . The comparison of this
phenomenon with the result of Theorem 2 leads to the following [5]:

Theorem 3. For f ∈ J and F ∈ J⋊:
• Kf : C∞c (∂M)→ C∞c (M), u0 7→ (ft ∗ u0)t∈R∗

+
is a singular Poisson oper-

ator.
• Tf : C∞c (M)→ C∞c (∂M), u 7→

∫∞
0
ft ∗ ut dt

t is a singular Trace operator.
• GF : C∞c (M)→ C∞c (M) ;u 7→ F ∗ u is a singular Green operator.

Moreover, we obtain in this way all the singular Green, Trace and Poisson opera-
tors of the Boutet de Monvel calculus up to smoothing operators.

This result enables to propose a natural extension of such a calculus.
IfM = V ×R and G⇒ V is a smooth groupoid on V , the above constructions still
make sense : for f ∈ J (G) and F ∈ J (G)⋊ the same formulas give Poisson type

operators Kf : C∞c (G) → C∞c (G × R) , Trace type operators Tf : C∞c (G × R) →
C∞c (G) and Green type operators GF : C∞c (G× R)→ C∞c (G× R).

One can go one step further by considering a groupoid G ⇒M which is trans-
verse to a codimension one submanifold V of M . The transversality condition
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means that (locally) G is isomorphic to GV
V × R × R around V ⊂ G(0) ⊂ G.

By replacing the groupoid G around V by (GV
V )ad ⋊ R∗ one gets a groupoid

Gcg = G
M\V
M\V ∪ AGV

V ⋊ R∗. We can produce again Poisson type operators K :

C∞c (GV
V ) → C∞(GV \ GV

V ) , Trace type operators T : C∞c (GV ) → C∞c (GV
V ) and

Green type operators G : C∞c (GV \GV
V )→ C∞(GV \GV

V ).

This is a first step in the way to establish generalized Boutet de Monvel index
theorems. See [5] for details.
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A complete characterization of connected Lie groups with the
Approximation Property

Tim de Laat

(joint work with Uffe Haagerup, Søren Knudby)

Approximation properties provide important information about the structure of
locally compact groups. The Approximation Property for groups (AP), as intro-
duced by Haagerup and Kraus in [4], is an important example of such a property
in the spirit of Grothendieck’s approximation property for Banach spaces. For a
locally compact group G, let A(G) denote its Fourier algebra, and let M0A(G)
denote the space of completely bounded Fourier multipliers. It is known that
A(G) ⊂ M0A(G). The space M0A(G) is the dual of a certain completion of
L1(G), and we can consider the associated weak-* topology on M0A(G).

Definition 1. A locally compact group G has the AP if there is a net (ϕα) in the
Fourier algebra A(G) of G such that ϕα → 1 in the weak-* topology on M0A(G).

Other important examples of approximation properties for locally compact
groups are amenability, weak amenability, and the Haagerup property, the first
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two of which are both strictly stronger than the AP. Moreover, all these properties
have natural operator algebraic analogues. We refer to [2] for a thorough account
of approximation properties for groups and operator algebras.

The AP has not been considered as much as the other aforementioned proper-
ties, probably because until recently, the only examples of groups without the AP
followed from the theoretical fact that every discrete group with the AP is exact,
as established by Haagerup and Kraus. However, in 2010, Lafforgue and de la Salle
provided the first concrete examples of groups without the AP, namely, SL(n,R)
for n ≥ 3 and lattices in these groups [8]. In fact, they also proved that SL(n, F )
(with n ≥ 3) and its lattices do not have the AP for any non-Archimedean local
field F . Their results on real Lie groups were put into a more systematic context
and were extended by Haagerup and the author of this text, first to connected
simple Lie groups with real rank at least 2 and finite center [6], by proving that
Sp(2,R) does not satisfy the AP, and then to all connected simple Lie groups with

real rank at least 2 [7], by also considering the universal covering group S̃p(2,R).
Indeed, any connected simple Lie group with real rank at least 2 contains a closed
subgroup that is locally isomorphic to SL(3,R) or Sp(2,R), which, together with
the known permanence properties of the AP, implies the general result. From this,
it follows that a connected semisimple Lie group, which is always locally isomor-
phic to a direct product S1× · · · × Sn of connected simple Lie groups, has the AP
if and only if all these Si’s have real rank 0 or 1.

In a recent joint work with Haagerup and Knudby [5] we consider what happens
in the case of non-semisimple Lie groups. Firstly, note that it is straightforward to
characterize the AP for more general classes of groups by using the known perma-
nence properties of the AP, but this does not give a satisfactory characterization
of connected Lie groups with the AP. However, by using a natural obstruction
to the AP that we introduce in [5], it turns out that we do obtain a complete
characterization of connected Lie groups with the AP. This obstruction is in fact
a strengthening of Kazhdan’s property (T) (see [1] for a comprehensive treatment
of property (T)), and we call it property (T∗).

As mentioned above, property (T∗) forms a natural obstruction to the AP, in
the sense that a locally compact group having both the AP and property (T∗) is
necessarily compact. Note that in the same way, property (T) is an obstruction
to the Haagerup property. In order to define property (T∗), we first need the
following result (see [5, Theorem A]).

Theorem 1. Let G be a locally compact group. Then the space M0A(G) of com-
pletely bounded Fourier multipliers on G carries a unique left invariant mean m.
This mean is also right invariant.

It is known that M0A(G) is a subspace of the space W (G) of weakly almost
periodic functions on G, which is known to have a unique left invariant mean (see
e.g. [3]). It follows that the mean on M0A(G) is the restriction to M0A(G) of the
mean on W (G). The definition of property (T∗) is as follows ([5, Definition 1.1]).



Noncommutative Geometry 1645

Definition 2. A locally compact group G is said to have property (T∗) if the
unique left invariant mean m on M0A(G) is a weak-* continuous functional.

It is easy to see that compact groups have property (T∗). Also, as mentioned
before, any group satisfying both the AP and property (T∗) is compact. Using a
powerful result of Veech from [9] and the results of [6] and [7], we are able to prove
the following result (see [5, Theorem B]).

Theorem 2. The groups SL(3,R), Sp(2,R), and the universal covering group

S̃p(2,R) of Sp(2,R) have property (T∗).

Property (T∗) satisfies certain permanence properties. One of the essential ones
for us is that whenever π : H → G is a continuous homomorphism between locally
compact groups with dense image and H has property (T∗), then G has property
(T∗). Using Theorem 2 and this permanence property, we are able to prove the
following theorem (see [5, Theorem C]), which gives a complete characterization
of connected Lie groups with the AP. The statement of the theorem uses the Levi
decomposition of connected Lie groups, asserting that any connected Lie group G
admits a decomposition G = RS, where R is a solvable closed normal subgroup of
G and S is a semisimple subgroup of G. Note that the subgroup S need not be
closed. Recall that a connected semisimple Lie group is always locally isomorphic
to a Lie group of the form S1 × . . .× Sn, where the Si’s are connected simple Lie
groups.

Theorem 3. Let G be a connected Lie group, let G = RS be a Levi decomposition,
and assume that S is locally isomorphic to the direct product S1 × · · · × Sn of
connected simple factors. Then the following are equivalent:

(i) the group G has the AP,
(ii) the group S has the AP,
(iii) the groups Si, where i = 1, . . . , n, have the AP,
(iv) the real rank of the groups Si, where i = 1, . . . , n, is 0 or 1.

The point where property (T∗) is crucial in the proof of the theorem, is in the
fact that if G (or S) contains a subgroup that is locally isomorphic to SL(3,R) or
Sp(2,R), i.e., a subgroup locally isomorphic to a group with property (T∗), then
we can use the aforementioned permanence property of property (T∗) in order to
obtain a non-compact closed subgroup with property (T∗). Because of the fact
that property (T∗) is an obstruction to the AP, this closed subgroup does not have
the AP.

It turns out that we can actually generalize Theorem 2 to connected simple
higher rank Lie groups with finite center (see [5, Theorem D]).

Theorem 4. Let G be a connected simple Lie group with real rank at least 2 and
finite center. Then G has property (T∗).

We expect that this theorem is also true without the finite center condition.
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Approximation properties for group non-commutative Lp spaces

Mikael de la Salle

(joint work with Tim de Laat, Vincent Lafforgue)

To every von Neumann algebra M one associates, following Segal and Dixmier
(in the tracial case) or Haagerup (general case) a family of non-commutative Lp

spaces Lp(M) for 0 < p ≤ ∞. Such a non-commutative Lp space is said to have
the completely bounded approximation property (CBAP) if there is a net of finite
rank maps Tα : L

p(M) → Lp(M) such that Tα(x) → x for all x ∈ Lp(M) and
supα ‖Tα‖cb <∞, where the completely bounded (cb) norm of Tα is

‖Tα‖cb = sup
n
‖Tα ⊗ id‖Lp(M⊗Mn(C))→Lp(M⊗Mn(C)).

An invariant ofM is given by the set of values of p ∈ [1,∞] such that Lp(M)
has the completely bounded approximation property. So far this invariant has not
been so useful because in all cases when it has been computed, it is either (1)
[1,∞], or (2) (1,∞) or (3) {2}. For example, among discrete group von Neumann
algebras, the von Neumann algebras of weakly amenable groups (e.g. hyperbolic
groups) fall into case (1), whereas the von Neumann algebra of SL(2,Z)⋉Z2 falls
into case (2), and the von Neumann algebra of grous containing SL(n,Z) for all n
falls into case (3). However, there is some recent evidence that this invariant might
take other values and distinguish between the von Neumann algebras of lattices in
certain algebraic groups, in a similar way as the weak amenability constant allowed
Cowling and Haagerup [1] to distinguish the von Neumann algebras of lattices in
Sp(n, 1) for different values of n.

The following tabular summarizes, in terms of the groupG, what is known about
the above invariant for the von Neumann algebra of a lattice in G. I recall that a
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lattice in a locally compact group G is a discrete subgroup Γ such that the quotient
G/Γ has finite Haar measure. In the following F denotes a nonarchimedean local
field.

G {p, Lp(LΓ)has CBAP} for Γ ⊂ G lattice Reference
SL(3,R) ⊂ [4/3, 4] [6]
SL(3,F) ⊂ [4/3, 4] [6]

SL(2n+ 1,F) ⊂ [2− 2
n+2 , 2 +

2
n ] [6]

SL(2n+ 1,R) ⊂ [2− 2
n+2 , 2 +

2
n ] [4]

Sp(2,R) ⊂ [ 109 , 10] [2, 3]
Sp(2,F) ⊂ [4/3, 4] [7]

The first line says for example that the non-commutative Lp space of the von
Neumann algebra of SL(3,Z) does not have the CBAP for p > 4 or p < 4/3, but
does not say anything if p ∈ [ 43 , 4]. Nothing is known about the reverse inclusions
and it might be that for every lattice in a higher rank group and ever p 6= 2,
Lp(LΓ) lacks the CBAP. However each interval is optimal for the proofs (which
are inspired by Lafforgue’s work [5]) to work.

One sees from this list that for SL(n), although the proofs in the real and non-
archimedean case are quite different, the numerology at the end is the same. By
the forthcoming work [7], this is no longer the case for Sp(2). I wonder whether
there is anything to say about this spontaneous symmetry breaking.
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Toposes in Noncommutative geometry

Simon Henry

Toposes are a generalization of ordinary topological spaces introduced by Gro-
thendieck in order to define cohomology theories attached to algebraic varieties.
One now knows how to attach interesting toposes to a large variety of geomet-
ric objects (foliation, dynamical system, topological groupoids, algebraic varieties,
etc.). On the other hand, C∗-algebras are also objects that one want to think
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of as “generalized” (locally compact) topological spaces, and it is very natural to
wonder whether those two generalizations of topology are related or not. In this
talk I tried to give an intuition of what is a topos, explain how C∗-algebras and
Von Neumann algebras can be attached to a topos and show that how to con-
struct C∗-algebras from geometric data (foliations, groupoids, graphs, semi-group
actions, etc.) can be seen as a special case of the C∗-algebra attached to a topos.

For a technical and precise introduction to topos theory we refer to ([3], [2]).
Here we will try to give a more intuitive explanation. The starting point is the
concept of a sheaf of sets over a topological space X , intuitively it is a continuous
family Fx of sets indexed by x ∈ X . There are two equivalent definitions: a sheaf
F can either be defined as a topological space Y = Et F together with a map
p : Y → X which is locale homomorphism (the set Fx for x ∈ X is then just
p−1({x})), or it can be defined as the data of a set F(U) of so called “sections of
F over U” for each open subset U ⊂ X , together with a compatible restriction
map F(U)→ F(V ) when V ⊂ U and such that when (Ui) is an open covering of U
the restriction maps induce a bijection between F(U) and the subset of

∏
i F(Ui)

of (si) such that for any i, j the restriction of si and sj on Ui∧Uj coincide. Those
two definitions determine equivalent categories of sheaves over X : in the first case
morphisms are continuous map over X and in the second case a family of maps
fU : F(U)→ F ′(U) compatible with the restriction maps.

The first definition makes apparent that a sheaf is a sort of family of “general-
ized” open subsets: it is locally an open subset of X and globally it is some sort
of gluing of open subsets along other open subsets, moreover, if U ⊂ X is an open
subset then the map U → X is a locale homeomorphism hence U can be seen as
a special kind of sheaf.

One way to see topos theory is that it replaces open subsets by sheaves, which
are more flexible: while a topological space is defined by giving the set of all its
open subsets (or a basis of open subsets) a topos is defined instead by specifying the
category of all sheaves over it, or a “basis” of sheaves. This gives two equivalent
definitions of a topos : either a list of properties that the given category “of
sheaves” should satisfy (the Giraud’s axioms) or as the category of sheaves over
a Grothendieck site (which is the analogue of a basis). See [2] or [3] for precise
definitions. So a topos is a “nice” category, but this not how we want to think
about it: in the same way that we will never think of a topological space as the
ordered set of its open subset, a topos is intuitively a geometric object and the
corresponding category used to describe it is thought of as the category of sheaves
over the topos.

A large part of what can be done with topological spaces can also be done with
toposes: there is a good notion of “continuous map” between two toposes (called
geometric morphism), of point of topos (it is a geometric morphism to the topos
of sets, corresponding to the one point space) we know what a compact topos
is, a proper map between toposes, an open map between toposes, we can attach
homology and cohomology groups to topos or define the covering dimension or the
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homological dimension of a topos etc... Some of these notions are defined in [3] or
in the encyclopedia [1].

Let us now give some examples of toposes:

• If X is a topological space, then it can be seen as a topos. Concretely, it
is the category Sh(X) of sheaves over X .
• One can define a topos attached to a measured space such that continuous
function over it are exactly measurable function up to equality almost
everywhere (sheaves over it can be thought as measurable families of sets
defined almost everywhere).
• If X is any topological space (or in fact any topos) and G is a group
(preferably discrete) acting continuously on X then one can define a topos
X⋊G whose object are G-equivariant sheaves over X . If the action of G is
free and proper then this topos is isomorphic to the topos of sheaves over
the quotient. In general, its points are the orbits of the action of G on X
(with the isotropy group as automorphism of the points) but it has a way
finer structure than the mere topological quotient (see the next example).
Applying this to the case where X is the topos described above on gets
also a topos naturally attached to any measurable dynamical system.
• The previous construction generalizes to any topological groupoids (prefer-
ably etale). For etale groupoids the isomorphism of the topos is equiva-
lent to the notion of equivalence of groupoids. One can reconstruct the
groupoid C∗-algebras up to Morita equivalence from the topos. As a spe-
cial case one can define toposes attached to a foliation whose objects are
sheaves over the base manifold which are leaf-wise locally constant.
• One can also attach a topos to a graph and reconstruct the graph C∗-
algebras from this topos, and attach a topos to a semi-group or a semi-
group action which is related to the corresponding algebras.
• There is a long list of toposes coming from algebraic geometry attached
to a scheme: etale, Zariski, Nisnevich, crystalline...

In order to attach a C∗-algebra to a topos, the first idea is the following: there
is a good notion of continuous fields of Hilbert spaces over a topos (as well as con-
tinuous and semi-continuous fields of Banach spaces and C∗-algebras). Moreover
if T is any topos one can define a C∗-category H(T ) of continuous fields of Hilbert
spaces over T . This attaches to any topos a very natural C∗-category hence a
familly of C∗-algebras all related to each other by Hilbert bi-modules. But those
C∗-algebras, although closely related, are not exactly the ones that we want to
attach to the example mentioned above, we need to select nice sub-algebras of
these algebras. One way to do that is by using the following theorem:

Theorem ([5]) : Let T be a separated, locally compact, locally decidable topos
then for any semi-continuous fields C of C∗-algebras over T there is a C∗-algebra
C⋊T such that the category of Hilbert C⋊T -modules is equivalent to the category
of continuous fields of Hilbert C-module over T .
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The algebra C ⋊ T is well-defined up to Morita equivalence, and in particular
for such a topos one has an algebra C∗(T ) = C ⋊ T (well-defined up to Morita
equivalence) whose category of Hilbert modules is equivalent to the categoryH(T )
of continuous fields of Hilbert spaces over T .

The hypothesis “separated” of the theorem is very restrictive: it corresponds to
the idea of a proper groupoid or a proper group action in the case of the example
above, and the theorem itself is hence just a topos theoretic form of the Green-Julg
theorem. The trick is that all the example mentioned above satisfies the hypothesis
of the theorem “locally” (in a topos theoretical sense). A topos which satisfies
the theorem locally can always be written as an etale groupoid whose spaces of
morphisms and of objects are toposes which satisfies the hypothesis of the theorem.
One can then attach to all of these toposes a reduced and a maximal algebra by a
modified version of the construction of the convolution algebra of an etale groupoid,
using the algebra constructed by our theorem instead of the algebra of continuous
functions. One can then prove that both the reduced and the maximal algebra
attached to such a topos are well defined up to Morita equivalence, I am still
looking for better universal characterizations of these algebras.

There is also an alternative approach, attaching Von Neuman algebras to a
topos, which would behave like enveloping algebras and which play the role of the
algebra of “measurable functions”, see [4].
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Local spectral gap in simple Lie groups

Adrian Ioana

(joint work with Rémi Boutonnet and Alireza Salehi-Golsefidy)

Let G be a second countable locally compact group and Γ < G be a countable
dense subgroup. Then the left translation action Γ y G given by g · x = gx
preserves any left Haar measure mG of G, and is free and ergodic.

Assume that G is compact. Then mG can be taken to be a probability measure.
A question that has received a lot of attention is whether the translation action
Γ y (G,mG) has spectral gap? In other words, is there a finite symmetric set
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S ⊆ Γ such that the averaging operator P : L2(G)→ L2(G) given by

P (ξ) =
1

|S|
∑

g∈S

g · ξ

has a gap in its spectrum right below 1, i.e. σ(P ) ∩ [1− κ, 1) = ∅, for some κ > 0.
This question first attracted interest in the 1980’s in connection with a classical

problem of Ruziewicz. The latter asks whether the Lebesgue measure is the unique
finitely additive measure on the n-dimensional sphere Sn which is invariant under
rotations and is defined on all Lebesgue measurable sets. In 1923, Banach showed
that the answer is negative if n = 1 [Ba23]. Strikingly, 50 years later, Margulis,
Sullivan, and Drinfeld showed that the answer is positive for every n ≥ 2 [Ma80,
Su81, Dr84]. They achieved this by providing a countable dense subgroup Γ of
G := SO(n+ 1) such that the left translation action Γ y G has spectral gap.

In recent years, this has been vastly generalized by Bourgain and Gamburd
[BG06, BG10], and Benoist and de Saxcé [BdS14]. These works culminated in
[BdS14, Theorem 1.2] which shows that Γ y G has spectral gap, whenever G is
a simple connected compact Lie group and Γ is a dense subgroup of G generated
by matrices with algebraic entries.

One of the main motivations of our work [BISG15] is to formulate and prove
an analogue of this result that applies to general (not necessarily compact) simple
connected Lie groups G. The starting point is therefore to find an appropriate
notion of spectral gap for infinite measure preserving actions.

If G is compact, then a left translation action Γ y G has spectral gap iff there
is no sequence of unit vectors ξn ∈ L2(G) which have mean zero and are almost
invariant: ‖g · ξn − ξn‖2 → 0, for every g ∈ G. In [BISG15], we introduced a
“local” version of spectral gap in the case G is locally compact, but not compact.

More precisely, let B ⊆ G be a measurable set with non-empty interior and
compact closure (e.g. let B be a ball in G). We say that a left translation action
Γ y G has local spectral gap if there is no sequence of vectors ξn ∈ L2(G) which
have mean zero on B and are almost invariant on B: ‖g · ξn − ξn‖2,B → 0, for
every g ∈ G. Here, we denote by ‖ξ‖2,B the 2-norm of the restriction of ξ to B.

Theorem (see [BISG15, Theorem A]) Let G be a connected simple Lie group.
Denote by g the Lie algebra of G and by Ad: G→ GL(g) its adjoint representation.
Let Γ < G be a dense subgroup. Assume that there is a basis B of g such that the
matrix of Ad(g) in the basis B has algebraic entries, for any g ∈ Γ.

Then the left translation action Γ y (G,mG) has local spectral gap.

This theorem generalizes all known results in the compact case, and is entirely
new in the non-compact case. Moreover, this result and its proof lead to several
novel applications, which we describe below.

Firstly, we deduce that the Haar measure mG of G is, up to a multiplicative
constant, the unique finitely additive measure which is Γ-invariant and is defined on
all bounded measurable subsets of G. This provides a uniqueness characterization
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of the Haar measure of simple Lie groups as a finitely additive measure, in the
spirit of the classical Banach-Ruziewicz problem.

Secondly, in combination with results from [Io14], we obtain new rigidity results
for orbit equivalence of group actions. More precisely, assume that G has trivial
center, let H be any connected Lie group with trivial center, and Λ < H be any
countable dense subgroup. We show that the left translation actions Γ y G and
Λ y H are orbit equivalent iff there exists an isomorphism δ : G → H such that
δ(Γ) = Λ.

Thirdly, the proof of the above theorem sheds some new light on the spectra of
averaging operators on compact groups. Assume for simplicity that G = SU(2).
Let P : L2(G)→ L2(G) be an averaging operator given by P (ξ) = 1

|S|
∑

g∈S g · ξ,
for a finite symmetric set S ⊆ Γ. Then λ0 = 1 is an eigenvalue of P . As explained
above, in many cases it is now known that there is a gap in the spectrum of P
right below 1. In other words, λ1 := sup(σ(P )\{1}) satisfies λ1 < 1. Moreover, as
first noticed in [LPS86], “most” of the eigenvalues of P lie in the interval [−ρ, ρ],
where ρ =

√
2|S|−1

|S| .

However, it was an open problem whether λ1 could ever be an eigenvalue of P .
As a consequence of [BISG15, Theorem B], we were able to show that there are
averaging operators P on G such that λ1 is an eigenvalue, and moreover such that
there is a gap in the spectrum of P right below λ1.
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Quasidiagonality, unique ergodicty, and crossed products

David Kerr

In [2] Rosenberg showed that, for a countable discrete groupG, if the reduced group
C∗-algebra C∗

λ(G) is quasidiagonal then G is amenable. Whether the converse is
true has remained an open problem (“Rosenberg’s conjecture”). Recently Ozawa,
Rørdam, and Sato succeeded in applying results from the classification program
for simple separable nuclear C∗-algebras to deduce that C∗

λ(G) is quasidiagonal for
every elementary amenable group G [3]. Their approach avoids a direct analysis of
C∗

λ(G) itself and proceeds by proving, using a bootstrap argument, that when G is

elementary amenable the crossed product (M⊗N
2 )⊗G⋊G by the shift action on the

CAR algebra is quasidiagonal, which then yields the quasidiagonlity of C∗
λ(G) as an

immediate corollary. The crossed product (M⊗N
2 )⊗G⋊G is simple and monotracial

and hence is amenable to a combination of structure and classification results due
to Matui-Sato, Winter, Lin-Niu, and Matui which allow one to conclude that
quasidiagonality for such crossed products is preserved under extensions by Z,
which is the most difficult part of the proof.

The motivation for the present work is the question of whether one can replace
the noncommutative shift G y (M⊗N

2 )⊗G with a free continuous action G y X
on a compact space. In order to carry out the Ozawa-Rørdam-Sato bootstrap
argument, such an action must not only be strictly ergodic, but its restriction
to each subgroup in a transfinite chain witnessing elementary amenability must
also be strictly ergodic. This will ensure a unique tracial state at each stage of
the transfinite recursion, which is automatic for the above noncommutative shift
and is necessary in order to be able to apply classification results as in [3]. To
show that such actions exists we apply a recent tiling theorem for amenable groups
due to Downarowicz, Huczek, and Zhang [1] to establish the following version of
the Jewett-Krieger theorem. In [5] Weiss introduced a method for extending the
original Jewett-Krieger theorem for Z-actions to actions of other amenable groups,
and a treatment of the general countable amenable case using this approach is given
in [4]. What is different here is the extra condition involving subgroups and the
use of exact tilings.

Theorem 1. Let G y (X,µ) be a free ergodic probability-measure-preserving
action of a countable amenable discrete group, and let {Hi} be a countable totally
ordered collection of subgroups of G such that each restriction Hi y (X,µ) is
ergodic. Then there is a minimal continuous action Gy Y on the Cantor set and
a unique G-invariant Borel probability measure ν on Y such that Gy (X,µ) and
Gy (Y, ν) are measure conjugate and each restriction Hi y Y is strictly ergodic.

This ends up giving us, for every countable elementary amenable group G, a
wealth of continuous actions G y X on the Cantor set whose crossed product is
quasidiagonal and monotracial. We furthermore note that if such crossed product
has finite nuclear dimension then it will fall within the scope of classification
theorems based on the Elliott invariant.
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The resolvent expansion for second order elliptic differential
multipliers

Matthias Lesch

(joint work with Henri Moscovici)

This is a report on the more technical aspects of the recent preprint [7]. We develop
a complete asymptotic expansion of the heat resp. resolvent trace of Laplace type
operators on vector bundles over the noncommutative torus (Heisenberg modules).
Moreover we compute the second coefficient. The second coefficient contains sig-
nificant geometric information, as in the case of classical Riemann surfaces. As
discovered in [3] the noncommutativity of the symbol exhibits a completely new
phenomenon: namely, the appearance of universal entire functions in the expres-
sion for the second heat coefficients. This has no counterpart in the commutative
situation.

The main technical device which we are going to develop is a pseudodifferen-
tial calculus adapted to twisted C∗-dynamical systems, extending the well-known
calculi due to Connes [2] and Baaj [1].

Heisenberg modules on the noncommutative torus. Connes and Rieffel [2],
[4] gave a very beautiful description of the projective modules over the noncom-
mutative torus. As usual, for a real number θ, we denote by Aθ the C∗–algebra
generated by two unitaries Uj , j = 1, 2, subject to the commutation relation
U2U1 = e2πiθU1U2. The smooth structure is given by the subalgebra Aθ ⊂ Aθ

consisting of the smooth elements w.r.t. to the natural R2–action on Aθ i.e., of
those a =

∑
k,l∈Z ak,lU

k
1U

l
2 ∈ Aθ such that the sequence {ak,l} ⊂ C is rapidly

decreasing.

Let g =

(
a b
c d

)
∈ SL(2,Z), and let E (g, θ) := S (R)|c| ≡ S (R × Zc),Zc :=

Z/cZ. Then E (g, θ) has a natural A ′
θ −Aθ bimodule structure, θ′ = gθ := aθ+b

cθ+d .

Furthermore, the three dimensional Heisenberg group acts on E (g, θ) and hence
R2 (its quotient modulo its center) acts projectively on E (g, θ). This projective
action is compatible with the natural R2–actions on Aθ resp. A ′

θ . Hence, there is
a standard connection on E (g, θ) compatible with the basic derivatives on Aθ,Aθ′ .
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Explicitly, (∇1f)(t, α) :=
∂
∂tf(t, α), (∇2f)(t, α) :=

2πi
θ+d/c · t · f(t, α). This connec-

tion satisfies the Heisenberg commutation relation [∇1,∇2] =
2πi

θ+d/c · Id, hence it

is a connection of constant curvature.

Twisted pseudodifferential multipliers. The action of the Heisenberg group
on E (g, θ) induces a C∗–dynamical system (A ,Rn=2, α) (A = Aθ or A = Aθ′).
Equivalently, Rn acts by a projective representation with cocycle e(x, y) := ei〈Bx,y〉,
with a skew symmetric matrix B = (bkl)

n
k,l=1.

S (Rn,A ∞) is a pre-C∗–module with inner product 〈f, g〉 =
∫
Rn f(x)

∗g(x)dx.
The natural covariant representation of the C∗–dynamical system on S (Rn,A ∞)
is implemented by the projective family of unitaries U∗

x = U−x, Ux Uy =
e(x, y)Ux+y, x, y ∈ Rn, UxaU−x = αx(a), a ∈ A ∞.

By associating to f ∈ S (Rn,A ∞) the multiplier Mf =
∫
Rn f(x)Uxdx the

space S (Rn,A ∞) becomes a ∗–algebra. Putting Pf :=Mf∨ and allowing f to be
a symbol of Hörmander class Sm(R we obtain a class of multipliers extending the
pseudodifferential multipliers à la Connes and Baaj. Essentially, the usual rules
of calculus remain valid. However, the formula for the symbol of a composition is
slightly more complicated due to the twisting.

As usual differential multipliers are defined as those pseudodifferential multipli-
erts having a symbol which is polynomial in the ξ–variable. The basic derivatives
are defined by ∂γ := Pξγ . It is important to note that due to the twisting in

general ∂γ∂γ′ 6= ∂γ+γ′

.
In dimension n = 2 the only invariant is the entry b12 of the twisting matrix

B. Fixing τ ∈ C with ℑτ > 0 (a complex structure!) we have the following basic
differential multipliers:

∂τ := ∂1 + τ∂2, ∂∗
τ
= ∂1 + τ∂2, ∂1 := ∂1,0,∂2 := ∂0,1

[∂τ ,∂
∗
τ
] = −4 · ℑτ · b12 =: cτ ,

△τ :=
1

2
(∂∗

τ
∂τ + ∂τ∂

∗
τ
) = ∂2

1 + |τ |2∂2
2 + ℜτ(∂1∂2 + ∂2∂1).

We will first analyze these operators acting as multipliers on the Hilbert mod-
ule completion of S (Rn,A ∞). Lateron we will have to pass to their concrete
counterparts acting on the Heisenberg modules.

The resolvent expansion for second order elliptic differential multipli-
ers. We consider the differential multiplier P = Pε1,ε2 := k2 △τ +ε1(∂τk

2)∂∗
τ
+

ε2(∂
∗
τk

2)∂τ +a0, where a0 ∈ A and ε1, ε2 are real parameters. This multiplier con-
tains all conformal Laplace type multipliers, which occur on Heisenberg modules
over noncommutative tori, as special cases.

We want to compute the first three terms in the expansion of the resolvent
(P − λ)−1 in the parameter dependent pseudodifferential calculus.1 The symbol

1Note that heat/resolvent invariants are enumerated from 0. We are after a2 which is the
second nontrivial heat invariant, as a1 is always 0 for differential operators, but in the counting
of the recursion system it is the third term.
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of P takes the form σP (ξ) := a2(ξ) + a1(ξ) + a0, where a0 ∈ A ∞ is the same as
above and

a2(ξ) = k2|ξ1 + τξ2|2 =: k2|η|2,
a1(ξ) = ε1(∂τk

2)η + ε2(∂
∗
τk

2)η, η := ξ1 + τξ2,

=: ̺1η + ̺2η, ̺1 := ε1∂τk
2, ̺2 := ε2∂

∗
τk

2.

Theorem 1. (P − λ)−1 is a parameter dependent pseudodifferential multiplier
with polyhomogeneous symbol b−2 + b−3 + b−4 + . . .. Up to a function of total
ξ–integral 0 we have the following closed formulas for the first three terms in the
symbol expansion of (P − λ)−1:

b−2 = b = (k2|η|2 − λ)−1, b−3 = −bk2
(
η∂∗τ + η∂τ

)
b− ba1b,

b−4 =
(
2bk2|η|2 − 1− ε1 − ε2

)
bk2△τb+ λbk2

(
(∂∗τ b)(∂τb) + (∂τ b)(∂

∗
τ b)

)

+ ε1 · λb(∂τk2)b∂∗τ b+ ε2 · λb(∂∗τk2)b∂τ b
+ ε1ε2 · |η|2b ·

(
(∂τk

2)b(∂∗τk
2) + (∂∗τk

2)b∂τk
2
)
· b− ba0b.

These concise closed formulas should be compared to the somewhat lengthy
earlier computer calculations, cf., e.g., [5].

Theorem 2 (Second heat coefficient in terms of log k2). There exist entire func-
tions K(s), Hℜ(s, t), Hℑ(s, t), such that with h := log k2 the second heat coefficient
of P (w.r.t. the natural dual trace on the twisted crossed product) takes the form

a2(P, a) =
1

4π|ℑτ |ϕ0

[
a
)
K(∇)(△τh)− k−2a0

+Hℜ(∇(1),∇(2))
(
�

ℜ(h)
)
+Hℑ(∇(1),∇(2))

(
�

ℑ(h)
))

]
.

Here, �ℜ/ℑ(h) := 1
2

(
∂τh · ∂∗τ ± ∂∗τh · ∂τh

)
, ∇ = − ad(h), and ∇(i) signifies that it

acts on the i-th factor (cf. [3], [6]).
The functions K,Hℜ, Hℑ depend only on P but not on τ . They can naturally

be expressed in terms of simple divided divided differences of log.

Effective pseudodifferential operators and resolvent. The effective imple-
mentation of the pseudodifferential calculus amounts to passing from its realization
on multipliers to a direct action on projective representation spaces (Heisenberg
modules or on L2(A , ϕ0) itself). More concretely, let π : G → L(H) be a pro-
jective unitary representation of G = Rn × (Rn)∧. For a symbol f ∈ Sm(R the
assignment Sm(R ∋ f 7→ Op(f) :=

∫
G f

∨(y)π(y)dy represents pseudodifferential
multipliers as concrete operators in H.

By exploiting the representation theory of the Heisenberg group we are able to
relate the Hilbert space trace of parameter dependent pseudodifferential operators
to the trace of the corresponding multiplier acting on S (Rn,A ∞). For the class
of operators in the Theorems 1 and 2 we prove full heat trace asymptotics and
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identify the second heat coefficient in terms of the expressions above and numerical
invariants of the representation.
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Sofic mean length

Hanfeng Li

(joint work with Bingbing Liang)

Let R be a unital ring. By a length function L on (left) R-modules [13] we mean
associating a value L(M ) ∈ R≥0 ∪ {∞} for each R-module M such that the
following conditions are satisfied: (1) L(0) = 0; (2) (additivity) for any short
exact sequence 0 → M1 → M2 → M3 → 0 of R-modules, one has L(M2) =
L(M1) + L(M3); (3) (upper continuity) for any R-module M , one has L(M ) =
supN L(N ), for N ranging over all finitely generated R-submodules of M .

A countable discrete group Γ is called sofic [4, 16] if there is a sequence of maps
Σ = {σi : Γ → Sdi

}i∈N, where di ∈ N and Sdi
denotes the permutation group of

[di] := {1, . . . , di}, such that

(1) for any s, t ∈ Γ, limi→∞
|{v∈[di]:σi,sσi,t(v)=σi,st(v)}|

di
= 1;

(2) for any s 6= t ∈ Γ, limi→∞
|{v∈[di]:σi,s(v) 6=σi,t(v)}|

di
= 1.

When such a sequence exists, one can always find a sequence Σ satisfying the
further requirement that limi→∞ di = +∞. Then Σ is called a sofic approximation
sequence for Γ. All amenable groups and residually finite groups are sofic, and it
is an open question whether every group is sofic or not.

Fix a ring R with a length function L on (left) R-modules, and a countable sofic
group Γ. A R-module M is called locally L-finite if L(Rx) < ∞ for all x ∈ M .
When Γ is amenable, one can define a length function mL on locally L-finite RΓ-
modules such that mL(RΓ ⊗R M ) = L(M ) for all locally L-finite R-modules M
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[9, 15]. However, in general this is impossible for the free group F2 with two
generators, since RF2 ⊕RF2 is isomorphic to a R-submodule of RF2 [14].

Fix a sofic approximation sequence Σ for Γ, and a free ultrafilter ω on N. LetM
be a (left) RΓ-module. Let A ,B ∈ F (M), F ∈ F(Γ), and σ be a map Γ→ Sd for
some d ∈ N, where F (M) denotes the set of all finitely generated R-submodules
of M and F(Γ) denotes the set of all finite subsets of Γ. For any x ∈ M and
v ∈ [d], denote by δvx the element of Md taking value x at v and 0 everywhere
else. Denote by M (B, F, σ) the R-submodule of Md generated by the elements
δvb − δsvsb for all v ∈ [d], b ∈ B and s ∈ F , and by M (A ,B, F, σ) the image of
A d inMd/M (B, F, σ) under the quotient mapMd →Md/M (B, F, σ).

Definition 1. For any locally L-finite RΓ-modulesM1 ⊆M2, we define the mean
length of M1 relative toM2 as

mLΣ,ω(M1|M2) = sup
A ∈F(M1)

inf
B∈F(M2)

inf
F∈F(Γ)

lim
i→ω

L(M (A ,B, F, σi))

di
.

The mean length of M2 is defined as mLΣ,ω(M2) := mLΣ,ω(M2|M2).

Our main result is the following addition formula:

Theorem 1. LetM1 ⊆M2 be locally L-finite RΓ-modules. Then

mLΣ,ω(M2) = mLΣ,ω(M1|M2) + mLΣ,ω(M2/M1).

For any RΓ-module M, any A ∈ F (M), and any F ∈ F(Γ), we set A F =∑
t∈F−1 tA . When Γ is amenable, by the Ornstein-Weiss lemma, the limit

limF
L(A F )
|F | as F ∈ F(Γ) becomes more and more left invariant exists, which

we denote by mL(A ). Then we set mL(M) := supA ∈F(M) mL(A ) as in [9, 15].
The following result says that Definition 1 extends with the definitions of mean
length for RΓ-modules in [9, 15] for amenable groups:

Theorem 2. Suppose that Γ is amenable. For any locally L-finite RΓ-modules
M1 ⊆M2, we have mLΣ,ω(M1|M2) = mL(M1).

Kaplansky’s direct finiteness conjecture says that for any field R and any group
Γ, RΓ is directly finite in the sense that for any a, b ∈ RΓ with ab = 1, one has
ba = 1. This is known to be true when R is a field with characteristic 0 by
Kaplansky [7], when R is a skew-field and Γ is residually amenable by Ara et al.
[1], when R is a skew-field and Γ is sofic by Elek and Szabó [3], when R is an
Artinian ring and Γ is sofic by Ceccherini-Silberstein and Coornaert [2], and when
R is a left Noetherian ring and Γ is amenable by Virili [15]. Using sofic mean
length and the method of Virili, we get

Theorem 3. For any left Noetherian ring R and any sofic group Γ, the group
ring RΓ is directly finite.

For any countable group Γ, one has the left group von Neumann algebra LΓ
and its canonical trace tr. One can extend the trace tr to Mn(LΓ) for any n ∈ N
by tr((ajk)1≤j,k≤n) =

∑n
j=1 tr(ajj). For any finitely generated projective (left)
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LΓ-module M̃, its dimension dim(M̃) is defined as tr(P ) for any P ∈ Mn(LΓ)
for some n ∈ N with P 2 = P and M̃ ∼= (LΓ)nP . For an arbitrary (left) LΓ-
module M̃, its von Neumann-Lück dimension, denoted by dim(M̃), is defined as

supÑ dim(Ñ ) for Ñ ranging over all finitely generated projective submodules of

M̃ [11, 12].
Mean topological dimension for continuous actions of countable amenable groups

on compact metrizable spaces was introduced by Gromov [5, 10], as a dynamical
analogue of the covering dimension of compact metrizable spaces. It was extended
to actions of countable sofic groups [8]. For a compact space Y and two finite open
covers U and V of Y , we say that V refines U if every element of V is contained in
some element of U . For a finite open cover U of a compact space Y , we denote

ord(U) = max
y∈Y

∑

U∈U
1U (y)− 1, and D(U) = min

V
ord(V),

where V ranges over finite open covers of Y refining U . Let α be a continuous
action of a countable sofic group Γ on a compact metrizable space X . Let ρ be
a compatible metric on X . Let F ∈ F(Γ) and δ > 0. Let σ be a map from
Γ to Sd for some d ∈ N. We define on the set of all maps from [d] to X the

metric ρ2(ϕ, ψ) =

(
1
d

∑
v∈[d](ρ(ϕ(v), ψ(v)))

2

)1/2

, and then define Map(ρ, F, δ, σ)

to be the set of all maps ϕ : [d] → X such that ρ2(ϕ ◦ σs, αs ◦ ϕ) ≤ δ for all
s ∈ F . We consider Map(ρ, F, δ, σ) to be a topological space with the topology
inherited from Xd. For a finite open cover U of X , we denote by Ud the finite
open cover of Xd consisting of U1×U2×· · ·×Ud for U1, . . . , Ud ∈ U . Consider the
restriction Ud|Map(ρ,F,δ,σ) = Ud ∩Map(ρ, F, δ, σ) of Ud to Map(ρ, F, δ, σ). Denote

D(Ud|Map(ρ,F,δ,σ)) by D(U , ρ, F, δ, σ). Fix a sofic approximation sequence Σ for Γ,
and a free ultrafilter ω on N. The sofic mean dimension of the action Γ y X is
defined as

mdimΣ,ω(Γ y X) = sup
U

inf
F∈F(Γ)

inf
δ>0

lim
i→ω

D(U , ρ, F, δ, σi)
di

for U ranging over finite open covers of X , and is independent of the choice of ρ.
Using the sofic mean length, we have

Theorem 4. Let M be a countable (left) ZΓ-module for a countable sofic group

Γ. Consider the induced Γ-action on the Pontrjagin dual M̂ of the discrete abelian

groupM. Then mdimΣ,ω(Γ y M̂) = dim(LΓ⊗ZΓM).

Theorem 4 was proved for the case Γ is amenable in [9], and for the case Γ is
residually finite andM is a finitely presented ZΓ-module in [6].
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Semigroup C*-algebras, Cartan subalgebras, and continuous orbit
equivalence

Xin Li

This talk was mainly a report on [5].

1. Semigroup C*-algebras

As a motivation, let us start with semigroup C*-algebras: Let P be a left cancella-
tive semigroup. For every p ∈ P , define the isometry Vp : ℓ2P → ℓ2P, δx 7→ δpx.
Set C∗

λ(P ) := C∗({Vp : p ∈ P}) ⊆ L(ℓ2P ). This is the (left reduced) semigroup
C*-algebra attached to P .

From now on, let us assume that P is a subsemigroup of a group, say G, i.e.,
we have P ⊆ G. In order to analyze C∗

λ(P ), the following observation is crucial:
Let Dλ(P ) = C∗

λ(P ) ∩ ℓ∞(P ). ℓ∞(P ) acts on ℓ2(P ) by multiplication operators,
so we can take the intersection in L(ℓ2P ). It turns out that G acts partially on
Dλ(P ), or if we dualize, onX = Spec(Dλ(P )). We obtain a canonical isomorphism
C∗

λ(P )
∼= C(X)⋊rG, where ⋊ stands for partial crossed product. This is explained

in [7].
For instance, we obtain as a consequence

Theorem 1. Let P ⊆ G be a subsemigroup of a group G. If G is amenable, then
C∗

λ(P ) is nuclear.
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It is interesting to compare this with the well-known fact that subsemigroups
of amenable groups do not have to be amenable.

The motivation for the main part of the talk is the isomorphism problem: Given
two semigroups P1 and P2, what does C

∗
λ(P1) ∼= C∗

λ(P2) mean for P1 and P2? In
[2], we were able to give a complete answer for right-angled Artin monoids. In
[4, 6], partial answers were obtained for ax+ b-semigroups over rings of algebraic
integers in number fields. There are other classes of semigroups, for instance affine
semigroups, where this isomorphism problem has not been studied.

2. Topological dynamics and C*-algebras

The isomorphism problem can be rephrased as follows: What does reduced crossed
products tell us about the underlying partial dynamical systems? Already for
classical dynamical systems, this is an interesting question. Let us discuss it now.
More precisely, given two topological dynamical systems G y X and H y Y ,
what does C0(X)⋊r G ∼= C0(Y )⋊r H mean for the underlying systems?

In the setting of measurable dynamics and von Neumann algebras, this question
has been studied a lot. And there have been breakthrough results in recent years
by Sorin Popa, Stefaan Vaes, and many others. In the topological setting, however,
much less is known.

Let us first discuss the topological analogue of a classical result of Singer and
Feldman-Moore in the measurable setting. In the following G y X and H y Y
are topological dynamical systems. By this, we mean that G, H are discrete
and countable groups, and X , Y are locally compact second countable Hausdorff
spaces. In the following, we write G y X ∼conj H y Y if there exists a

homeomorphism ϕ : X
∼=−→ Y and a group isomorphism ρ : G

∼=−→ H such that
ϕ(g.x) = ρ(g).ϕ(x) for every g ∈ G and x ∈ X . We write Gy X ∼coe H y Y if

there exists a homeomorphism ϕ : X
∼=−→ Y and continuous maps a : G×X → H ,

b : H × Y → G such that ϕ(g.x) = a(g, x).ϕ(x) and ϕ−1(h.y) = b(h, y).ϕ−1(y) for
all g ∈ G, x ∈ X , h ∈ H , y ∈ Y .

Theorem 2. Let G y X and H y Y be topologically free. Then G y X ∼coe

H y Y if and only if there is a C*-isomorphism Φ : C0(X)⋊rG
∼=−→ C0(Y )⋊rH

with Φ(C0(X)) = C0(Y ).

Here, G y X is topologically free if for every e 6= g ∈ G, {x ∈ X : g.x 6= x}
is dense in X . In that case, C0(X) is a Cartan subalgebra in C0(X) ⋊r G. This
definition goes back to Kumjian [3] and Renault [8].

To summarize, we have the following implications: Conjugacy ⇒ COE ⇔
Cartan-isomorphism⇒ C*-isomorphism.

Can we reverse one of these one-sided arrows? If yes, then we speak of rigidity.
Let us discuss continuous orbit equivalence rigidity (COER), i.e., the question
whether we can reverse the first on-sided arrow.

We always have COER for topologically free, topologically transitive actions of
G = H = Z on compact spaces. This is a result by Boyle and Tomiyama [1]. But
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COER does not hold for more complicated groups, for instance not for Zn (n ≥ 2),
and also not for Fn (n ≥ 2). Examples are given in [5].

Here are some positive results concerning COER (see [5] for details).

Theorem 3. Let G y X and H y Y be topologically free, and let X and Y be
compact spaces. Assume Gy X ∼coe H y Y .

If G is finitely generated, then so is H, and G and H are quasi-isometric.

Theorem 4. Let Gy X and H y Y be topologically free.
Assume that X is compact, that C(X,Z) ∼= Z · 1⊕N as ZG-modules, and that

pdZG(N) < cd(G)− 1 (∗).
Further assume that G is a duality group, and that H is solvable.
Then Gy X ∼coe H y Y ⇒ Gy X ∼conj H y Y .

Here is an example: Let G be torsion-free. Let X0 be a compact space. Then
the Bernoulli action G y XG

0 is ZG-free, i.e., C(XG
0 ,Z)

∼= Z · 1 ⊕ N as ZG-
modules, where N is a free ZG-module. Hence pdZG(N) = 0, and if cd(G) > 1,
then Gy XG

0 satisfies (∗).
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Hyperbolic groupoids and operator algebras

Volodymyr Nekrashevych

Hyperbolic groupoids (or pseudogroups) generalize two notions of hyperbolicity:
Gromov hyperbolic groups (acting on their boundaries) and hyperbolic dynamical
systems.

A pseudogroup of homeomorphisms of a topological space X is a collection
G of homeomorphisms F : U1 → U2 between open subsets of X closed under
taking compositions, inverses, restrictions to open subsets, and unions of homeo-
morphisms that agree on intersections of their domains. Let G be a pseudogroup.
A G-germ is an equivalence class of a pair (F, x), where F ∈ G and x is a point of
the domain of F . Two pairs (F1, x1) and (F2, x2) are equivalent (define the same
germ) if x1 = x2 and there exists a neighborhood U of x1 such that F1|U = F2|U .
The set of all G-germs is a groupoid. A natural topology is given by the basis of
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open sets consisting of sets of the form {(F, x) : x ∈ Dom(F )}. The groupoid of
germs, as a topological groupoid, uniquely determines the associated pseudogroup.
We will use, therefore, both terminologies interchangeably.

Let G be a pseudogroup of local homeomorphisms of a space X . A subset
X1 ⊂ X is called a topological transversal if there exits an open subset X0 ⊂ X1

intersecting every G-orbit.
For a groupoid G of germs of a pseudogroup acting on X , and A ⊂ X , we

denote by G|A the set of germs (F, x) ∈ G such that x ∈ A and F (x) ∈ A, seen as
a topological groupoid (with topology induced from G).

A groupoid of germs G (and the associated pseudogroup) are said to be com-
pactly generated if there exists a compact topological transversalX1 and a compact
subset S of the groupoid G|X1

such that for every g ∈ G|X1
there exists n such

that
⋃

1≤k≤n(S ∪ S−1)k is a neighborhood of g in G|X1
. Then the associated

Cayley graph G(x, S), for x ∈ X1, is the oriented graph with the set of vertices
{(F, x) ∈ G|X1

: x ∈ X1}, where two germs g1, g2 are connected by an arrow
from g1 to g2 if there exists s ∈ S such that g2 = sg1.

A Hausdorff compactly generated pseudogroup G is said to be hyperbolic, if
there exist X1 and S as above, and a metric defined on a neighborhood of X1 such
that the following conditions hold.

(1) The Cayley graphs G(x, S) are Gromov δ-hyperbolic (for a fixed δ, not
depending on x).

(2) For every x ∈ X1 there exists a point ωx of the boundary ∂G(x, S) such
that every oriented path in the Cayley graph G(x, S−1) is a quasigeodesic
converging to ωx (in a uniform way).

(3) The elements of S are germs of contractions.
(4) The elements of G are locally bi-Lipschitz (non-uniformly).
(5) The sets of sources and targets of the elements of S are equal to X1.

For more details, see [Nek15].
Examples of hyperbolic pseudogroups are: pseudogroup generated by the action

of a Gromov hyperbolic group on its boundary [Gro87], pseudogroup generated by
a locally expanding self-covering of a compact metric space, pseudogroup generated
by a shift of finite type, Ruelle pseudogroups associated with Smale spaces [Put14],
pseudogroups associated with an Anosov flow.

There is an interesting duality theory for hyperbolic groupoids. Unlike hyper-
bolic groups, which act on their boundaries, for every hyperbolic groupoid G there
is another groupoid G⊤ (defined up to a natural Morita equivalence of groupoids)
acting on the boundary of the Cayley graph of G, and (G⊤)⊤ is equivalent to G.
Groupoids of the actions of Gromov hyperbolic groups on their boundaries are
self-dual, but in general G is different from G⊤. For example, if G is the groupoid
of germs generated by the maps x 7→ 2x and x 7→ x + 1 on the space of real
numbers, then its dual is the groupoid of germs generated by the maps given by
the same formulas on the space of dyadic integers.

J. Kaminker, I. F. Putnam, and M. F. Whittaker provedK-theoretic duality for
algebras associated with stable and unstable foliations of a Smale space [KPW10].
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These algebras are convolution algebras of mutually dual hyperbolic groupoids.
Similarly, a Poincaré duality was proved for convolution algebras of the actions
of hyperbolic groups on their boundaries, see [E03]. Both cases are examples of
duality for hyperbolic groupoids, so it would be interesting to generalize their
results for arbitrary hyperbolic groupoids.

We have the following properties of convolution algebras of hyperbolic groupoids.

Theorem. Let G be a hyperbolic groupoid. Then it is amenable, hence the reduced
and the full C∗-algebras of G coincide. The algebra C∗(G) is purely infinite,
simple, and satisfies UCT.

K-theory of convolution algebras of groupoids associated with hyperbolic com-
plex rational functions were studied in [Nek09].
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Categorical Poisson boundaries and applications

Sergey Neshveyev

Let C be a rigid C∗-tensor category. Consider the set IC of isomorphism classes of
simple objects U in C and a probability measure µ on IC . Then we can define a
random walk on IC with transition probabilities

pµ(s, t) =
∑

r

µ(r)mt
rs

d(Ut)

d(Ur)d(Us)
,

where mt
rs = dimHomC(Ut, Ur ⊗ Us) is the multiplicity of Ut in Ur ⊗ Us and

d = dC denotes the intrinsic dimension of an object in C. The random walk defines
a Markov operator Pµ on ℓ∞(IC):

Pµ(f)(s) =
∑

t

pµ(s, t)f(t).

The space H∞(IC ;Pµ) of bounded harmonic (Pµ(f) = f) functions is an abelian
von Neumann algebra with product

(f · g)(s) = lim
n→∞

Pn
µ (fg)(s).
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This construction of the Poisson boundary of IC can be lifted to the categorical
level as follows. Take objects U and V and consider the functors ι ⊗ U and
ι ⊗ V on C. Consider bounded natural transformations between these functors:
collections of natural in X morphisms

ηX : X ⊗ U → X ⊗ V, sup
X
‖ηX‖ <∞.

Define an operator Pµ on the space of such transformations by

Pµ(η)X =
∑

r

µ(r)

d(Ur)
(TrUr

⊗ι⊗ ι)(ηUr⊗X),

where Tr denotes the categorical trace. Note that if U = V , then Pµ can be
considered as a normal ucp map on

ℓ∞-
⊕

s

EndC(Us ⊗ U).

Then for U = V = 1 we get exactly the classical Markov operator introduced
earlier. For arbitrary U and V , denote by P(U, V ) the space of bounded harmonic
(Pµ(η) = η) natural transformations. Every morphism T : U → V in C defines
such a transformation η: ηX = ιX ⊗ T . We can then enlarge C to a C∗-tensor
category P such that every object in P is a subobject of an object in C,

HomP(U, V ) = P(U, V ),

and the composition of morphisms is defined by

(η · ν)X = lim
n→∞

Pn
µ (ην)X .

We call P together with the embedding functor Π: C → P the Poisson boundary
of (C, µ).

This construction was introduced in a joint work with Makoto Yamashita [3],
but its origin goes back to the notions of standard model in subfactor theory [6]
and noncommutative Poisson boundary in quantum groups [2].

Our central result on the categorical Poisson boundaries is as follows. For every
object U , let ΓU ∈ B(ℓ2(IC)) be the operator such that its matrix coefficient
corresponding to s, t ∈ IC is the multiplicity of Us in U ⊗Ut. Note that we always
have ‖ΓU‖ ≤ dC(U).

Theorem 1.([3]) Assume that µ is an ergodic measure, meaning that the classical
random walk on IC has trivial Poisson boundary (H∞(IC ;Pµ) = C). Then the
Poisson boundary Π: C → P of (C, µ) is a universal unitary tensor functor such
that

dP(Π(U)) = ‖ΓU‖
for all objects U in C.

This result unifies and generalizes various results on amenability for tensor
categories, quantum groups and subfactors [4]. It also has applications to analysis
of representations of Drinfeld doubles [5], non-existence of unitary fiber functors
for certain categories [1], as well as to classification of some compact quantum
groups [4].
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The last two applications are based on the following description of the Poisson
boundary of RepG, which is a categorical version of a result of Tomatsu [7]. Let G
be a compact quantum group. Let K be the maximal quantum subgroup of G
of Kac type, so that the algebra C[K] of regular functions on K is the quotient
of C[G] by the ideal generated by the elements a− S2(a).

Theorem 2.([4]) Assume G is coamenable and the set IrrG is at most count-
able. Then there exists an ergodic probability measure µ on IrrG, and the Poisson
boundary of RepG with respect to any such measure can be identified with the
forgetful functor RepG→ RepK.

In particular, any unitary fiber functor F : RepG→ Hilbf such that

dimF (U) = dimU for all U

factors, in an essentially unique way, through RepK.
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The Furstenberg boundary and C∗-simplicity

Narutaka Ozawa

(joint work with Emmanuel Breuillard, Mehrdad Kalantar, Matthew Kennedy)

The reduced group C∗-algebra C∗
rG of a discrete group G is defined to be the norm

closure of the complex group ring λ(CG) in B(ℓ2G), where λ is the left regular rep-
resentation of G on ℓ2G. For example, in case G is abelian, the Fourier transform

ℓ2G ∼= L2(Ĝ) gives rise to C∗
rG
∼= C(Ĝ). Here C(Ĝ) is the abelian C∗-algebra of the

continuous functions on the Pontrjagin dual Ĝ of G and C∗
rG is highly non-simple,

but it is expected that C∗
rG becomes simple when G is highly noncommutative.

A discrete group G is said to be C∗-simple if C∗
rG is simple. This property is

a priori not relevant to the simplicity. When N is a normal subgroup of G, the
quotient map from CG onto C(G/N) extends to a continuous homomorphism be-
tween their reduced group C∗-algebras if and only if N is amenable. Recall that
every group G has the unique largest amenable normal subgroup R(G), called the
amenable radical. Hence, any C∗-simple group G must have a trivial amenable
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radical. Thus the main problem on C∗-simplicity is whether the converse holds
true: Does R(G) = 1 imply C∗-simplicity of G ?

This problem is still open. The first result was due to R. Powers in 1975 who
proved that the noncommutative free groups Fd are C∗-simple. In fact, he found
a combinatorial condition which implies C∗-simplicity and checked it for the free
groups. Since then, Powers’s method has been streamlined and extended by many
researchers, most notably by P. de la Harpe (see [dlH] for a survey). By now, the
above problem is solved affirmatively for the following classes (see [BKKO] and
references therein):

• Acylindrically hyperbolic groups (Dahmani–Guirardel–Osin 2011).
• Linear groups (Bekka–Cowling–de la Harpe 1994, Poznansky 2008).
• Groups with nontrivial ℓ2-Betti numbers (Peterson–Thom 2011).
• Baumslag–Solitar groups and some other groups acting on a tree (de la
Harpe–Préaux 2011).
• Free Burnside groups, etc. (Olshanskii–Osin 2014).

Recently, Haagerup and Olesen (2015) observed that if Thompson’s group F is
amenable (recall that whether F is amenable or not is a very famous open prob-
lem), then Thompson’s group T is not C∗-simple. Since T is simple and non-
amenable and in particular R(T ) = 1, this would provide the first counterexample
if F is amenable. In fact, what Haagerup and Olesen found is an interesting
condition on a pair H ≤ G of a group and a subgroup which implies that the
quasi-regular representation λG/H : CG→ B(ℓ2(G/H)) is not faithful on the com-
plex group ring CG. Their condition applies to F ≤ T . Note that the quasi-regular
representation extends on C∗

rG if and only if H is amenable.
Last year, M. Kalantar and M. Kennedy ([KK]) found a remarkable and to-

tally new if-and-only-if characterization of C∗-simplicity in terms of topological
dynamical systems.

Theorem (M. Kalantar and M. Kennedy). A discrete group G is C∗-simple if
and only if its action on the Furstenberg boundary ∂FG is (topologically) free.

Recall that a compact topological space X on which G acts is called minimal if
Gx = X for every x ∈ X . It is called a G-boundary in the sense of Furstenberg if
for every µ ∈ Prob(X) one has Gµ ⊃ {δx : x ∈ X}. Any G-equivariant quotient of
a G-boundary is again a G-boundary, and the one-point space is a G-boundary for
any group G—in fact this is the only G-boundary when G is amenable, because
in which case there always exists a G-invariant probability measure µ ∈ Prob(X).
Furstenberg has observed that for any G there is a unique largest G-boundary
∂FG, which is called the (maximal) Furstenberg boundary of G. This should not be
confused with the Furstenberg–Poisson boundary, which is a more famous measure-
theoretic counterpart of ∂FG. It is proved in [KK] that the Furstenberg boundary
∂FG coincides with the Hamana boundary and hence is an extremally disconnected
space (a.k.a. a Stonean space), which is not second countable unless G is amenable.
This means that there is no hope to describe ∂FG concretely. The amenable radical
R(G) acts trivially on ∂FG and the induced action of G/R(G) on ∂FG is faithful.
The action G on X is said to be topologically free if for every non-neutral g ∈ G
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the fixed point set {x ∈ X : gx = x} has empty interior. Therefore, if G is not
C∗-simple, then the stabilizer groups Gx = {g ∈ G : gx = x} are non-trivial for
all x ∈ ∂FG, by the minimality of ∂FG. In that case, these subgroups Gx are
all amenable and normalish. Here a subgroup H ≤ G is said to be normalish if⋂

t∈F tHt
−1 is non-trivial (infinite) for every finite subset F ⊂ G. Therefore, we

arrive at the following.

Corollary ([BKKO]). If R(G) = 1 but G is not C∗-simple, then G must have
uncountably many amenable normalish subgroups.

This criterion gives a simple and unified approach to the C∗-simplicity of all the
above-mentioned classes and more. Moreover, we have used the boundary theory
to prove the following very general result.

Theorem ([BKKO]). For any group G, any tracial state φ on C∗
rG is supported

on R(G), i.e., φ(λ(g)) = 0 for every g ∈ G \R(G).
I have talked about these results and outlined some of the proofs. The talk was

based on [BKKO] and [Oz].
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A Dixmier-Douady Theory for strongly self-absorbing C∗-algebras

Ulrich Pennig

(joint work with Marius Dadarlat)

Continuous C(X)-algebras or continuous fields of C∗-algebras play the role of
bundles in C∗-algebra theory. They are employed as versatile tools in several
areas such as index and representation theory and in proofs of the Novikov and
the Baum-Connes conjecture. The first classification result in this area is due
to Dixmier and Douady: They proved that isomorphism classes of locally trivial
continuous fields over a paracompact space X with the compact operators K as
fibers form a group with respect to the natural tensor product. This group is
isomorphic to the third Čech cohomology group Ȟ3(X,Z). Moreover, such a
continuous field is locally trivial if and only if it satisfies Fell’s condition. In joint
work with Marius Dadarlat the speaker showed that the theorems of Dixmier and
Douady can be generalized to continuous fields with fibers isomorphic to stabilized
strongly self-absorbing C∗-algebras.

Deep theorems of Kirchberg and Phillips have shown the exceptional role played
in the classification program by the Cuntz algebras O∞ and O2. The class of



Noncommutative Geometry 1669

strongly self-absorbing C∗-algebras defined by Toms and Winter [5] captures an
essential property those two examples share: They tensorially absorb themselves
in a very strong sense. A separable, unital C∗-algebra D is strongly self-absorbing
if there exist an isomorphism ϕ : D → D ⊗D and a path u : [0, 1) → U(D ⊗D),
such that for all d ∈ D we have limt→1‖ϕ(d) − ut(d ⊗ 1)u∗t ‖ = 0. Apart from
the above two examples, the class includes the Jiang-Su algebra Z, infinite UHF
algebras and is closed under tensor products. Moreover, K0(D) is a ring.

The extension of the Fell condition to the case of stabilized strongly self-
absorbing fibers takes the following form:

Theorem: [1, Thm. B] A separable continuous field A with fibers isomorphic to
D ⊗ K over a locally compact metrizable space X of finite covering dimension is
locally trivial if and only if for each point x ∈ X , there exist a closed neighborhood
V of x and a projection p ∈ A(V ) such that [p(v)] ∈ GL1(K0(A(v))) for all v ∈ V .

The proof of the classification result of Dixmier and Douady rests on the fact
that the classifying space BAut(K) is an infinite loop space. Surprisingly, the same
is true in the above case.

Theorem: [1, Thm. A] The space BAut(D⊗K) is an infinite loop space. The set
of isomorphism classes of locally trivial continuous fields over a compact metrizable
space X with fiber D ⊗ K is an abelian group with respect to the tensor product.
It is isomorphic to the first group E1

D(X) of the generalized cohomology theory
associated to BAut(D ⊗K).

The coefficients E∗
D(pt) of the theory are completely determined by the K-

theory of D. In fact, BAut(D ⊗ K) can be identified with the infinite loop
space BGL1(KU

D) representing the unit spectrum of the multiplicative gener-
alized cohomology theory X 7→ K0(C(X) ⊗ D) [2]. It is computable via the
Atiyah-Hirzebruch spectral sequence. Via rationalization it is also possible to de-
fine (rational) higher analogues of the Dixmier-Douady class.

The above theorem has some nice applications in algebraic topology: The group
E1

O∞
(X) classifies all homotopy theoretical twists of K-theory. It is bigger than

the group H3(X,Z) usually studied in this context. A corresponding operator
algebraic version of higher twisted K-theory has been worked out in [4].
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Noncommutative residues and higher indices

Denis Perrot

This report is based on the preprint [1]. Let G ⇒ B be a Lie groupoid acting
smoothly on a submersion of smooth manifolds π : M → B. The action is not
supposed proper, nor isometric. By considering the induced action of G on the
algebra CL0

π(M) of order zero pseudodifferential operators acting along the fibers
of the submersion π, one gets an extension of crossed-product algebras

0→ L−∞
π (M)⋊G→ CL0

π(M)⋊G→ CS0
π(M)⋊G→ 0

where L−∞
π (M) is the subalgebra of smoothing operators, and CS0

π(M) denotes
the quotient algebra of formal symbols. In general the elements of the crossed-
product algebra CL0

π(M) ⋊ G are a mixture of pseudodifferential operators and
diffeomorphisms: they do no longer belong to the class of pseudodifferential opera-
tors, but to the larger class of Fourier integral operators [2]. The quotient algebra
CS0

π(M) ⋊ G should be viewed as the algebra of “G-equivariant symbols”. An
operator Q is called elliptic if its symbol is invertible. Such an operator has an
index living in the K-theory of the ideal of smoothing operators:

Ind(Q) ∈ K0(L
−∞
π (M)⋊G)

Our main result is an index theorem which computes the evaluation of this index
on cyclic cohomology classes contained in the range of the excision map associated
to the extension above. More precisely, let O ⊂ G be an isotropic Ad-invariant
submanifold. We define the cyclic cohomology HP •(C(G))[O] of the smooth con-
volution algebra localized at O in terms of supports. Then if the action of O onM
is non-degenerate in a certain sense, the excision map Exc fits in a commutative
diagram

HP •(L−∞
π (M)⋊G)

Exc // HP •+1(CS0
π(M)⋊G)

HP •(C(G))[O]

OO

π!
G // HP •+1(C(S∗

πM ⋊G))[π∗O]

σ∗

OO

where S∗
πM is the fiberwise cosphere bundle of M , and the isotropic submanifold

π∗O ⊂ S∗
πM ⋊G is the pullback of O under the submersion S∗

πM → B. Moreover,
the shriek map π!

G is given by an explicit formula involving a localized version of
the Wodzicki residue. We give several examples, including the case of localization
at units where explicit formulas are obtained in terms of the equivariant Todd
class of the fiberwise tangent bundle of the submersion.
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Locally compact C∗-simple groups

Sven Raum

In my talk I described recent work on locally compact C∗-simple groups. Motivated
by recent breakthrough results on discrete C∗-simple groups of Kalantar-Kennedy
[5] and Breuillard-Kalantar-Kennedy-Ozawa [2], I investigated possibilities to ob-
tain non-discrete examples of C∗-simple groups.

Our first result says that every C∗-simple group is totally disconnected. I briefly
outlined the proof, following a result of Bekka-Cowling-de la Harpe [1]. It is
based on three ingredients. (1) An application of the structure theorem for locally
compact groups, (2) representation theory of semisimple Lie groups and (3) results
on the outer automorphism group of real semisimple Lie groups.

I then described the following example of a non-discrete C∗-simple group. Let

BS(m,n) = 〈a, t | tamt−1 = an〉

be the Baumslag-Solitar group with parameters m and n. If 2 ≤ |m|, |n|, then
BS(m,n) is non-amenable. Further, if |m| 6= |n|, then 〈a〉 does not contain any non-
trivial normal subgroup of BS(m,n). Fixing such parameters. The set of cosets
BS(m,n)/〈a〉 becomes a tree T if we declare g〈a〉 ∼ gt〈a〉 for all g ∈ BS(m,n).
(This is the Bass-Serre tree of BS(m,n)). The action of BS(m,n) on T by left
multiplication gives rise to an injective map BS(m,n) → Aut(T ). The closure of
BS(m,n) in Aut(T ) is a non-discrete C∗-simple group.

The previous example is covered by the following general result. We say that a
locally compact group G satisfies condition (∗), if one of the following equivalent
conditions.

• There is a locally finite tree T such that G ≤ Aut(T ) is closed. G is not
amenable and does not contain any compact normal subgroup. Further
there is a compact open subgroup K ≤ G such that NG(K)/K contains
an element of infinite order.
• There is a locally finite thick (i.e. all vertices have valency at least 3) tree
T such that G ≤ Aut(T ) is closed. The action of G on the boundary ∂T
is minimal and there is x ∈ ∂T such that the stabiliser Gx ≤ G is open
and Gx ∩ G0 contains a hyperbolic element, where G0 denotes the kernel
of the modular function of G.

My work says that if every group satisfying condition (∗) is C∗-simple. The
proof of this theorem is based on an adaption of Powers averaging for discrete
group C∗-algebras [6, 3]. Several obstacles have to be overcome to generalise it
to totally disconnected groups. In particular, the work of Préeaux-de la Harpe on
Powers groups acting on trees [4] has to be adapted.

I finished the talk by describing several von Neumann algebraic consequences
that come forth from our work.
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Irreducible Representations of Bost-Connes systems

Takuya Takeishi

1. Classification Problem of Bost-Connes systems

For a number field K, we have a C∗-dynamical system (AK , σt,K) which has a
relation with class field theory. This C∗-dynamical system is called the Bost-
Connes system, taken from the name of Bost and Connes [1] who created such
system for Q. The classification problem of the Bost-Connes system is that if two
Bost-Connes systems (AK , σt,K) and (AL, σt,L) attached to number fields K and
L are isomorphic, then K and L are isomorphic or not.

This problem was studied by Cornellissen and Marcolli [2] partially, but still
remains unsolved. The best classification result is the classification theorem of
KMS-states by Laca-Larsen-Neshveyev [4]. The KMS-classification theorem im-
plies that the partition function of (AK , σt,K) coincides with the Dedekind zeta
function ζK(s). This means that ζK(s) is an invariant of Bost-Connes systems.
When the condition ζK(s) = ζL(s) implies K ∼= L was studied by R. Perlis [6]. As
a part of his result, we know that for any number field K with [K : Q] ≤ 6, ζK(s)
is a complete invariant.

In my recent work [7], we found that the narrow class number of K is also an
invariant. More precisely, we have the following theorem:

Theorem 1. Let (AK , σt) be the Bost-Connes system for a number field K and
let h1K be the narrow class number of K. Then AK has h1K-dimensional irreducible
representations, and does not have n-dimensional irreducible representations for
n 6= h1K <∞.

It is known that the narrow class number is an invariant which is independent
from zeta functions. For example, let

K = Q( 8
√
−15), L = Q( 8

√
−240).

Then they have the same zeta functions and h1K/h
1
L = 2 (cf. [3]).
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2. Dynamics of the primitive ideal space

Our strategy to prove Theorem 1 is to examine the primitive ideal space of AK .
There is a result of Laca and Raeburn [5] which concerns with the determination
of the primitive ideal space of the original Bost-Connes C∗-algebra AQ. The key
ingredient in that work was Williams’ Theorem [8], and we will also use this
theorem crucially. As a complementary result, we can also determine the primitive
ideal space of AK , which is a generalization of the work of Laca and Raeburn.

In the above strategy, we intentionally ignored the time evolution on AK . Com-
bining the above result and the information of σt,K , we get a similar result to
KMS-classification theorem. Precisely, by looking at flows on the primitive ideal
space, we know the dynamics (P̂ 1

K , σt,K) is embedded into PrimAK and is pre-
served under R-equivariant isomorphism. Here, P 1

K is the group of all principal

ideals generated by totally positive elements, P̂ 1
K is the Pontrjagin dual group of

it, and R acts on P̂ 1
K by the following formula:

〈x, σt(γ)〉 = NK(x)it〈x, γ〉
for x ∈ P 1

K , t ∈ R, γ ∈ P̂ 1
K . Here, NK means the ideal norm map.

The dynamical system (P̂ 1
K , σt,K) is determined by the norm NK : P 1

K → Q.
Conversely, we can restore NK from this dynamical system.

Theorem 2. Let K,L be number fields. If their Bost-Connes systems (AK , σt,K)
and (AL, σt,L) are R-equivariantly isomorphic, then we have a group isomorphism
P 1
K → P 1

L which preserves the norm map.

Compared with KMS-classification theorem, we can restore the norm map NK :
JK → Q from the zeta function. In that sense, Theorem 2 is similar to KMS-
classification theorem, and the difference amounts to the narrow class group.
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Topological K-theory for non-archimedean algebras and spaces

Georg Tamme

(joint work with Moritz Kerz, Shuji Saito)

This talk was a report on work in progress.

1. Motivation

Let X be an algebraic variety over C. One way to study X is to look at its set
of C-valued points X(C), which carries the structure of a complex analytic space.
For these, usual topological K-theory is a well-behaved invariant.

If instead X is an algebraic variety over a complete non-archimedean field K,
e.g. K = Qp or K = C((t)), then the canonical topology on X(K) has unpleasant
properties, for instance it is totally disconnected. To overcome this difficulty, Tate
invented the notion of rigid analytic spaces. These are the analog of complex ana-
lytic spaces over non-archimedean fields and play an important role in arithmetic
geometry.

The goal of this ongoing project is to develop a good notion of topological K-
theory for rigid analytic spaces, which should be ‘easier’ than algebraic K-theory
but still carry some interesting information. For example, to X as before one can
associate a rigid analytic space Xan, and one hope is that one can get some control
on the homotopy fibre of the comparison map

(alg. K-theory of X)→ (top. K-theory of Xan)

using cyclic homology. On the other hand, this new topological K-theory turns
out to be related to so-called continuous K-theory of formal models (see below)
which makes it interesting in the study of deformation problems of algebraic cycles
[1, 2].

2. Definition

Locally, rigid analytic spaces are given by the max-spectra Sp(A) of so called affi-
noid K-algebras A, which by definition are quotients of a ring of convergent power
series in finitely many variables with coefficients in K and radius of convergence
1. These are particular examples of Banach K-algebras. For the latter, Karoubi-
Villamayor [6] and Calvo [3] proposed a definition of topological K-theory, which
can be described as follows: For a Banach K-algebra A, one defines the algebra of
power series with radius of convergence equal to 1 by

A〈X1, . . . , Xn〉 := {
∑

I

aIX
I | |aI | → 0 as |I| → ∞}

and a simplicial ring

[n] 7→ A〈∆n〉 := A〈X0, . . . , Xn〉/(X0 + · · ·+Xn − 1).

Then

KVi(A) := πi−1(GL(A〈∆•〉)), i ≥ 1.
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Essentially by definition, KV∗ is homotopy invariant with respect to the unit ball,
i.e., the natural map

KVi(A)→ KVi(A〈t〉)
is an isomorphism. However, an obstacle that prevents one from extending this
definition to more general rigid spaces in a reasonable way is that there is no
Mayer-Vietoris sequence.

Therefore, we modify the previous definition a little bit: Instead of fixing the
radius of convergence 1, we consider power series A〈X1, . . . , Xn〉ρ with radius of
convergence ρ ≥ 1. As ρ goes to ∞, we get a pro-system of simplicial rings

“lim”
ρ

A〈∆•〉ρ.

As a substitute for the topological K-theory of A, we propose what we call the
analytic KV -theory of A: It is given by the pro-abelian groups

KV an
i (A) := “lim”

ρ
πi−1(GL(A〈∆•〉ρ)), i ≥ 1.

These are no longer homotopy invariant with respect to the unit ball. Instead they
satisfy the weaker property of being pro-homotopy invariant, i.e., the natural map
of pro-abelian groups

KV an
i (A)→ “lim”

ρ
KV an

i (A〈t〉ρ)

is an isomorphism.

3. Results

From now on all rings are commutative and unital. The following results hold
under more general assumptions. For simplicity, we only state them in the easiest
cases.

Theorem 1. Fix π ∈ K× with |π| < 1 and assume that there is a regular, π-
adically complete and separated ring A◦ such that A = A◦[1/π]. Then there is a
long exact sequence

· · · → Gi(A
◦/(π))→ “lim”

n
Ki(A

◦/(πn))→ KV an
i (A)→ . . .

ending in

· · · → KV an
1 (A)→ G0(A

◦/(π))→ “lim”
n

K0(A
◦/(πn)).

Here G∗ is the algebraic K-theory of coherent modules, K∗ is the usual al-
gebraic K-theory. This result gives the relation with the continuous K-theory
Kcont

∗ (A◦) := “lim”
n

K∗(A◦/(πn)) mentioned above.

Theorem 2. Let A be an affinoid K-algebra. Let ℓ be an integer which is prime
to the residue characteristic of K. Then the natural comparison map

Ki(A;Z/ℓ)→ KV an
i (A;Z/ℓ)

from algebraic K-theory with Z/ℓ-coefficients to analytic KV -theory with Z/ℓ-
coefficients is an isomorphism.
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This is the analog of comparison results of Suslin [9], Fischer [4], and Prasolov [8]
for commutative C∗-algebras. The proof uses Gabber’s rigidity theorem [5] to
reduce to a theorem of Weibel on homotopy invariance of algebraic K-theory with
finite coefficients [11].

The final result is a version of the desired Mayer-Vietoris property.

Theorem 3. Assume that K is discretely valued and of equal characteristic 0.
Then KV an

∗ satisfies Mayer-Vietoris for regular affinoids, i.e., if A is a regular
affinoid K-algebra, X := Sp(A), and

X = U ∪ V

is an open covering by U = Sp(B) and V = Sp(C), then there is a long exact
sequence of pro-abelian groups

· · · → KV an
i (A)→ KV an

i (B)⊕KV an
i (C)→ KV an

i (B⊗̂AC)→ KV an
i−1(A)→ . . .

ending in · · · → KV an
1 (B) ⊕KV an

1 (C)→ KV an
1 (B⊗̂AC).

To prove this, one uses pro-cdh descent of algebraic K-theory [7] to reduce to
Zariski descent for the algebraic K-theory of formal models [10].
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Isomorphism conjectures in algebraic and topological K-theory

Gisela Tartaglia

(joint work with Guillermo Cortiñas)

Let G be a discrete group, X a G-space, R a ring or a C∗-algebra equipped with an
action of G by automorphisms and E a functor from the category of small Z-linear
categories to the category of spectra. We write HG(X,E(R)) for the equivariant
homology theory of X with coefficients in E(R) (see [5]). If H ⊂ G is a subgroup,
then

(1) HG
∗ (G/H,E(R)) = E∗(R ⋊H)

is just E∗ evaluated at the crossed product ring. If R is a C∗-algebra and E is
Ktop, then ⋊ stands for the reduced crossed product C∗

r (G,R).
Let F be a family of subgroups of G and let E(G,F) be the classifying space

associated to F . The projection to the one point space E(G,F) → pt induces a
morphism

(2) HG
∗ (E(G,F), E(R))→ HG

∗ (pt, E(R)) = HG
∗ (G/G,E(R)) = E∗(R ⋊G),

called assembly map. The isomorphism conjecture for (G,F , E,R) asserts that
the assembly map is an isomorphism. The appropriate choice of F varies with
E. For E = K, the nonconnective algebraic K-theory spectrum, one takes
F = Vcyc, the family of virtually cyclic subgroups; the isomorphism conjecture
for (G,Vcyc,K,R) is the K-theoretic Farrell-Jones conjecture. If E = KH is
homotopy K-theory, one can equivalently take F to be either Vcyc or the family
Fin of finite subgroups. For E = Ktop one takes the family Fin and in this case
is called the Baum-Connes conjecture with coefficients in R.

Both the Farrell-Jones and the Baum-Connes conjectures have been proven for
a large class of groups using a variety of different methods coming from operator
theory, controlled topology and homotopy theory (see for example [1] for the case
of Gromov hyperbolic groups and algebraic K-theory, and [7] for the case of a-
T-menable groups and topological K-theory). It is worth mentioning that there
are no counterexamples known to the Farrell-Jones conjecture and to the Baum-
Connes conjecture with coefficients in R = C.

We study different versions of the isomorphism conjectures with operator ideals
as coefficient rings.

Let B be the ring of bounded operators in a complex, separable Hilbert space.
Consider the following Farrell-Jones assembly map:

(3) HG
∗ (E(G,Vcyc),K(S))→ K∗(S[G]).

Here S =
⋃

p>0 Lp, and Lp ⊳ B is the Schatten ideal of those compact operators
whose sequence of singular values is p-summable. Guoliang Yu proved that the
assembly map (3) is rationally injective ([9]). His proof involves the construction of
a certain Chern character tailored to work with coefficients S and the use of some
results about algebraic K-theory of operator ideals and about controlled topology
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and coarse geometry. In [2] we give a different proof of Yu’s result. Our proof
uses the usual Chern character to cyclic homology. Like Yu’s, it relies on results
on algebraic K-theory of operator ideals, but no controlled topology or coarse
geometry techniques are used. We formulate the result in terms of homotopy
K-theory. We prove that the rational assembly map

(4) HG
∗ (E(G,Fin),KH(Lp))⊗Q→ KH∗(Lp[G])⊗Q

is injective. Then we show that the latter map is equivalent to the assembly map
considered by Yu, and thus obtain his result as corollary.

In [3] we prove that if (4) is surjective for p = 1 and F is a number field, then
the following assembly maps are injective:

(5) HG
∗ (E(G, {1}),K(Z))⊗Q→ K∗(Z[G])⊗Q

(6) HG
∗ (E(G,Fin),K(F )) ⊗Q→ K∗(F [G])⊗Q.

We remark that the K-theory Novikov conjecture asserts that the assembly (5)
is injective for all G. Hence the validity of the rational isomorphism conjecture
for KH with coefficients in L1 implies the validity of the Novikov conjecture for
K-theory.

Finally, in [4] we study the techniques used by Higson, Kasparov and Trout in
[6], [7] and [8] to prove the Baum-Connes conjecture for groups with the Haagerup
approximation property, and we apply them to the algebraic case. More precisely,
we prove the validity of the Farrell-Jones conjecture for such a group G with
coefficients in a ring of the form I ⊗ (A⊗

˜
K), where I is a K-excisive G-ring, A

is a G-C∗-algebra, K = K(ℓ2(N)) is the ideal of compact operators and ⊗
˜

is the

tensor product of C∗-algebras. Moreover, if we consider the following commutative
diagram

HG
∗ (E(G,Fin),K(A⊗

˜
K))

��

// K∗((A⊗˜
K)⋊G)

α

��
HG

∗ (E(G,Fin),Ktop(A)) // Ktop
∗ (C∗

red(G,A))

and we assume that A is separable, we obtain as a corollary that α is an isomor-
phism.
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Non-commutative real algebraic geometry

Andreas Thom

In this talk I explained the use of sum-of-squares approaches in non-commutative
geometry. A classical problem in real algebraic geometry is to find properties of
real polynomials that certify that these polynomials are positive or non-negative
on certain semi-algebraic subsets. A typical statement is that such a polynomial
must be (plus some ε or not) be in the cone or the quadratic module formed by
the defining inequalities and the sums of squares. Results of this sort are highly
relevant in applications of semi-definite optimization.

The non-commutative framework has been studied by many authors, including
William Helton and co-workers and Konrad Schmüdgen. One of the seminal results
(by Helton) is that a polynomial in self-adjoint non-commuting variables is positive
semi-definite in every (self-adjoint) matrix-evaluation if and only if it is a sum of
hermitean squares.

In this talk, we present some results that are more particular for group rings and
relate them to various fundamental problems in the theory of operator algebras.
A first result (first proved by Schmüdgen) says that Helton’s theorem also holds
for the complex group ring of a free group. Using a model theoretic approach, we
can give a new and conceptual proof of this fact – very much analogous to the
modern approaches to Hilbert’s 17th problem. This is one of the first applications
of real closed fields in operator algebras.

Note also that any group that satisfies Helton’s theorem must be residually
finite dimensional. Result of Scheiderer say that Helton’s theorem holds for the
group ring of Z2, but not Z3. In general, we conjecture that it holds for group
rings of groups with cohomological dimension at most two. In particular, this
would cover surface groups (which are known to be residually finite dimensional
by deep results of Lubotzky and Shalom) but also a product of two free groups –
a group which is known to be residually finite dimensional if and only if Connes’
Embedding Problem has a positive answer.

We end the talk be reviewing some work Ozawa on property (T) in the context
of sums of squares methods. We present a new (elementary but computer-assisted)
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proof that SL(3,Z) has property (T), a result that was obtained in joined work
with Tim Netzer. Some more recent computations with Laurent Bartholdi indicate
that the sum of squares approach might also be useful to prove property (T) for
the integer points of Kac-Moody groups.
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A link between Krasner’s valued hyperfields and Deligne’s triples

Jeffrey Tolliver

An important problem in number theory is to link arithmetic in characteristic 0
with characteristic p. In the case of local fields two similar approaches to this
problem have been developed by Marc Krasner[3] and Pierre Deligne[2]. Our goal
is to understand how these approaches are related.

As motivation, it is useful to recall some results from local class field theory,
which may be found in [4]. Let K denote a local field. The main result of local

class field theory says that Gal(Ksep/K)ab ∼= K̂×. In particular, to classify the
abelian extensions of K, we only need to understand the multiplicative structure.
On the other hand, if we wish to understand the nonabelian extensions, we must
take into account the additive structure on K as well.

Let u > 0. There is a variant of the above theorem which classifies abelian
extensions satisfying the condition that Gal(L/K)u = 1. This condition should be
interpreted as saying that the ramification of the extension is not too wild. The

result states that for u > 0, (Gal(Ksep/K)/Gal(Ksep/K)u)ab ∼= ̂K×/1 +mu
K . It

is entirely possible for distinct local fields F,K to have K×/1+mu
K
∼= F×/1+mu

F

even if char(F ) 6= char(K). In this case, the aforementioned result provides a link
between characteristic p and characteristic 0. However this link is of limited value
because it tells us nothing about the nonabelian extensions. Hence we would like
a nonabelian generalization of this result.

Form the quotient K/1 + mu
K of K by the action of the group 1 + mu

K . Then
we know that (Gal(Ksep/K)/Gal(Ksep/K)u)ab depends only on the multiplicative
structure of K/1+mu

K in exactly the same ways as Gal(Ksep/K)ab depends on the
multiplicative structure of K. By analogy to the relation between Gal(Ksep/K)
and K, one might expect Gal(Ksep/K)/Gal(Ksep/K)u to depend on both the
additive structure and multiplicative structure of K/1 + mu

K . In particular, we
should take the additive structure of K/1+mu

K seriously even though the addition
is not well-defined. This motivates the study of hyperfields, which was initiated
by Marc Krasner in [3]. Note that a map which is not well-defined may instead
be regarded as a multivalued function.
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Definition 1. A hyperring consists of a multiplicative monoid H together with a
multivalued operation + : H ×H → 2H (i.e an operation landing in the power set
of H) such that the following properties hold.

• x+ y = y + x for all x, y ∈ H.
• (x+ y)+ z = x+(y+ z) for all x, y, z ∈ H, where we define the sum of an
element and a subset by x+ S =

⋃
t∈S x+ t for any x ∈ H and S ⊆ H.

• There exists an element 0 such that x+ 0 = {x} for all x ∈ H.
• For all x ∈ H there is a unique element −x ∈ H such that 0 ∈ x+ (−x).
• x(y + z) = xy + xz for all x, y, z ∈ H.

A hyperfield is a hyperring in which every nonzero element has a multiplicative
inverse

Before continuing the discussion of local fields, it is worth mentioning a few
examples of hyperfields.

Given a field K and a multiplicative subset S, the quotient K/S is a hyperfield.
A simple example is provided by the hyperfield of signs S = R/R>0. One has
S = {0, 1,−1} with the obvious multiplication and with 1 + 1 = 1, −1 − 1 = −1
and 1 − 1 = {0, 1,−1}. This hyperfield encodes the arithmetic of zero, positive,
and negative numbers in exactly the same way that F2 encodes the arithmetic of
even and odd numbers.

For another example, take Y = R ∪ {−∞}. Define multiplication in Y to be
addition of real numbers. Define addition in Y by x + y = max(x, y) if x 6= y
and x + x = [−∞, x]. This addition operation bears an obvious relation to the
ultrametric inequality. In fact if K is a non-archimedean field, then the logarithm
of the absolute value is a homomorphism K → Y. This hyperfield was studied by
Oleg Viro[5], who showed that tropical varieties are zero sets of polynomials over
Y.

Another example is the hyperfield T R. As a multiplicative monoid, T R = R.
The addition is defined by x+ y = x if |x| > |y|, x + y = y if |x| < |y|, x + x = x
and x − x = {y | |y| ≤ |x|}. In [5], Viro constructed T R as a dequantization of
R by analogy with the way that the max-plus algebra Rmax is a dequantization
of the semiring R≥0. In the work of Alain Connes and Caterina Consani[1] it was
necessary to replace the semiring Rmax with the hyperfield T R in order to have a
well behaved Witt construction in characteristic one.

The most important example for our purposes is the hyperfieldK/1+mu
K where

K is a local field. This example was studied by Marc Krasner who noted that it
is possible to have K/1 + mu

K
∼= F/1 + mu

F even when K and F have different
characteristics. In fact if K is a local field of characteristic p it is possible to have
a sequence of fields Kn of characteristic zero with K/1 + mn

K
∼= Kn/1 + mn

Kn
for

all n. In this situation Krasner says that K is the limit of the local fields Kn.
Deligne suggested an alternate approach to limits of local fields. Given a local

field K and an integer n > 0, one may define a ring RK,n = OK/m
n
K , an RK,n-

module MK,n = mK/m
n+1
K , and a module homomorphism ǫK,n : MK,n → RK,n.

Together these form what is called the triple Trn(K) = (RK,n,MK,n, ǫK,n) asso-
ciated to K.



1682 Oberwolfach Report 29/2015

I have shown that the hyperfield K/1 + mn
K determines the triple Trn(K). In

fact I have shown somewhat more:

Theorem 1. There is a faithful essentially surjective functor from the category
of discretely valued hyperfields which aren’t fields (as defined by Krasner in [3])
to the category of triples (as defined by Deligne in [2]) which sends K/1 + mu

K to
Tru(K) for any local field K and any u > 1.

The above functor fails to be full because morphisms of valued hyperfields are
required to preserve the absolute value while morphisms of triples preserve it only
up to equivalence. However one may show that there is a precise sense in which
this is the only way it fails to be full, so that the functor is almost an equivalence
of categories.

Deligne has shown that Tru(K) determines Gal(Ksep/K)/Gal(Ksep/K)u. Hence
we have the following corollary.

Corollary 1. The hyperfield K/1+mu determines Gal(Ksep/K)/Gal(Ksep/K)u.

This generalizes the fact mentioned at the beginning of the report, which says
that K/1 + mu determines the abelianization of Gal(Ksep/K)/Gal(Ksep/K)u. A
particular consequence of this result is that if K/1 + mu

K
∼= F/1 + mu

F then one
has Gal(Ksep/K)/Gal(Ksep/K)u ∼= Gal(F sep/F )/Gal(F sep/F )u, even if K and F
have different characteristics.
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Representation theory and (co)homology for subfactors, λ-lattices and
C∗-tensor categories.

Stefaan Vaes

(joint work with Sorin Popa and Dimitri Shlyakhtenko)

Subfactors of finite Jones indexN ⊂M give rise to several group like combinatorial
structures, that can be axiomatized in different ways. In the joint work [6] with
Sorin Popa, we introduced the unitary representation theory for these group like
structures, which I presented in the first part of the talk.

This representation theory has several equivalent descriptions. The first makes
use of Popa’s symmetric enveloping (SE) inclusion T ⊂ S, associated in [5] with any
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extremal finite index subfactor N ⊂M . Here T =M ⊗Mop and this SE-inclusion
should be thought of as a crossed product type inclusion w.r.t. an outer action of
the underlying group like structure: we have T ′ ∩ S = C1 and as a T -bimodule,
L2(S) is a direct sum of irreducible finite index T -subbimodules, each appearing
with multiplicity one. In [6], we called SE-correspondence of the subfactor N ⊂M
any Hilbert S-bimodule H that is generated by T -central vectors. Every T -central
vector ξ ∈ H gives rise to a coefficient of the representation, in the form of a
T -bimodular completely positive map ψξ : S → S.

Denoting by C the tensor category generated by allM -bimodules that appear in
the Jones tower of the subfactor N ⊂M , it turns out that a normal T -bimodular
map ψ : S → S is entirely determined by a function ϕ : Irr(C) → C. In [6], we
characterized, purely in terms of the rigid C∗-tensor category C, which functions
ϕ : Irr(C)→ C arise in this way and we called them cp multipliers of C. These are
the positive definite functions on C, and we similarly defined completely bounded
(cb) multipliers. This then leads to natural geometric group theory properties for
C∗-tensor categories, including weak amenability, the Haagerup property, prop-
erty (T), etc.

In the case where C = Rep(G) is the representation category of a compact quan-
tum group G, we gave a description of cp/cb multipliers in terms of the quantum
group G. In combination with the work of [2], resp. [1], this allowed us to prove
that the Temperley-Lieb-Jones category has both the Haagerup approximation
property and the complete metric approximation property (CMAP), while the
category Rep(SUq(3)) has property (T).

Shortly after the publication of [6], two equivalent descriptions of the repre-
sentation theory of a rigid C∗-tensor category were given. In [4], Neshveyev and
Yamashita consider the Drinfeld center of ind-C, roughly speaking the category
of all finite and infinite direct sums of objects in C. When C is a category of
finite index M -bimodules with associated SE-inclusion T ⊂ S, it is proved in
[4] that there is a natural bijection between this Drinfeld center and generalized
SE-correspondences, i.e. Hilbert S-bimodules that, as a T -bimodule, can be writ-
ten as a direct sum of T -bimodules of the form Hα ⊗ Hβ , α, β ∈ C (recall that
T =M ⊗Mop). Note that the SE-correspondences of [6] should be considered as
the spherical part of the representation theory.

Given any rigid C∗-tensor category C, we denote by C[C] its fusion ∗-algebra.
By definition, Irr(C) is a vector space basis of C[C], α∗ = α and the product is
given by the fusion rules. Whenever ϕ : Irr(C) → C is a cp multiplier in the
sense of [6] and using the dimension function on C, the map ω : α 7→ d(α)ϕ(α)
extends to a positive functional on C[C]. If moreover ϕ(ε) = 1, we say that ω is
an admissible state on C[C]. The completion w.r.t. all admissible states yields the
universal C∗-algebra Cu(C) and we proved in [6] that there is a natural bijection
between SE-correspondences and representations of the C∗-algebra Cu(C) (in the
case where C is a category of M -bimodules).

Not all states on C[C] are admissible. The fusion ∗-algebra C[C] is a corner of
Ocneanu’s tube ∗-algebra A. This ∗-algebra can be defined for any rigid C∗-tensor
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category C. It is typically non-unital, but comes with an orthogonal family of
projections (pi)i∈Irr(C) whose sums serve as local units of A. We canonically have
C[C] = pε · A · pε. In [3], Ghosh and C. Jones proved that a state ω : C[C] →
C is admissible if and only if ω(a∗a) ≥ 0 for all a ∈ A · pε. This provides a
new purely categorical description of cp multipliers on a rigid C∗-tensor category.
Pushing things a bit further, in [7], we provide a natural bijection between the
non-degenerate ∗-representations of Ocneanu’s tube ∗-algebra A and the Drinfeld
center of ind−C.

In the second part of the talk, I presented a work in progress with Sorin Popa
and Dimitri Shlyakhtenko, [7], introducing homology and cohomology for subfac-
tors and rigid C∗-tensor categories with coefficients in a unitary representation as
above. Using the regular representation, we can then define L2-Betti numbers for
subfactors and rigid C∗-tensor categories.

We start off in the very general context of an arbitrary quasi-regular inclusion
of tracial von Neumann algebras T ⊂ S. Here, quasi-regularity means that L2(S)
can be decomposed as a direct sum of finite index T -subbimodules. Equivalently,
the quasi-normalizer S = QNS(T ) defined as the set of elements x ∈ S such that

xT ⊂
n∑

i=1

Txi and Tx ⊂
m∑

j=1

yjT

for some xi, yj ∈ S, is weakly dense in S.
In [7], we define homology and cohomology of T ⊂ S with coefficients in any

Hilbert S-bimodule H. When H = L2(S) ⊗T L
2(S) is the regular representation

and under the correct unimodularity assumption, this allows us to define the L2-

Betti numbers β
(2)
n (T ⊂ S).

In the case where T ⊂ S is a Cartan subalgebra with associated equivalence

relation R, we find Gaboriau’s L2-Betti numbers: β
(2)
n (T ⊂ S) = β

(2)
n (R).

In the case where T ⊂ S is the SE-inclusion associated with a tensor category
C of finite index M -bimodules, we prove that the homology of T ⊂ S is precisely
given by the Hochschild homology of Ocneanu’s tube ∗-algebraA with its canonical
augmentation (co-unit) ǫ : A → C. Note that here, we use the natural bijection
between generalized SE-correspondences (the coefficients for the homology of T ⊂
S) and Hilbert A-modules (the coefficients for the Hochschild homology of A).

This last result provides us with the necessary computational tools. We prove
that the L2-Betti numbers of the Temperley-Lieb-Jones category all vanish and
that the expected formulae for free products and direct products hold. In partic-
ular, the Fuss-Catalan category has a non-vanishing first L2-Betti number.

References

[1] Y. Arano, Unitary spherical representations of Drinfeld doubles, Preprint, arXiv:1410.6238.
[2] K. De Commer, A. Freslon and M. Yamashita, CCAP for universal discrete quantum groups,

Comm. Math. Phys. 331 (2014), 677–701.
[3] S.K. Ghosh and C. Jones, Annular representation theory for rigid C∗-tensor categories,

Preprint, arXiv:1502.06543.



Noncommutative Geometry 1685

[4] S. Neshveyev and M. Yamashita, Drinfeld center and representation theory for monoidal
categories, Preprint, arXiv:1501.07390.

[5] S. Popa, Symmetric enveloping algebras, amenability and AFD properties for subfactors,
Math. Res. Lett. 1 (1994), 409–425.

[6] S. Popa and S. Vaes, Representation theory for subfactors, λ-lattices and C∗-tensor cate-
gories, Comm. Math. Phys., to appear. arXiv:1412.2732.

[7] S. Popa, D. Shlyakhtenko and S. Vaes, In preparation.

Dynamic Asymptotic dimension

Rufus Willett

(joint work with Erik Guentner, Guoliang Yu)

The aim of this work is to unify, generalise, and simplify some notions that have
been important in controlled topology (e.g. [1]), operator K-theory (e.g. [6]), and
C∗-classification theory (e.g. [5] ). All these notions have in common that they
allow one to ‘decompose’ an action of a discrete groupG on a compact spaceX into
simpler ‘pieces’, and then use information about these pieces to get information
about the overall action. The main notions also work for étale groupoids, but for
simplicity we will focus here on the case of free group actions.

The main definition is as follows. Let G be a group acting freely by homeomor-
phisms on a compact space X . For any open subset U of X and subset E of G,
let ∼ be the equivalence relation on U generated by the relation

{(x, xg) | x, xg ∈ U, g ∈ E};
in other words, x ∼ y if y can be reached from x by applying a finite number of
elements from E ∪ E−1, in such a way that each intermediate point remains in
U . The subset U is called small for E if there is a uniform bound on the size of
the equivalence classes for ∼. The dynamic asymptotic dimension of the action is
then the smallest integer d such that for any finite subset E of G, there is an open
cover

X = U0 ∪ · · · ∪ Ud

of X by sets that are small for E.
The definition is inspired by Gromov’s asymptotic dimension [3][Section 1.E],

which can be defined as follows. Say G is a group, and consider the right action
of G on itself. The asymptotic dimension is the smallest integer d such that for
any finite subset E of G there exists a finite cover

G = U0 ∪ · · · ∪ Ud

such that each Ui is small for E. It follows easily from this and the properties of
the Stone-Čech compactification βG of G that the dynamic asymptotic dimension
of the action of G on βG equals the asymptotic dimension of G.

There seems to be a large class of examples with this property, although much
more remains to be understood here. Here are the examples that appear in our
published work.
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(1) Any minimal Z action has dynamic asymptotic dimension one.
(2) Conditions considered by Bartels, Lück, and Reich in their work on the

Farrell-Jones conjecture [2] imply estimates on dynamic asymptotic di-
mension.

(3) Any group G admits a free and minimal action on the Cantor set with
dynamic asymptotic dimension of the action equal to the asymptotic di-
mension of G.

Work of Szabó, Wu, and Zacharias [4] implies that there are also many examples
coming from natural actions of Zn, and of more general nilpotent groups. On the
other hand, the asymptotic dimension of G is an absolute upper bound on the
dynamic asymptotic dimension of any action.

The main applications we get from dynamic asymptotic dimension are as fol-
lows.

(1) The nuclear dimension of a reduced crossed product of C(X) by G is
bounded by the product of the dimension of X , and the dynamic asymp-
totic dimension of the action (up to the usual additive constants ‘+1’ that
usually arise in dimension theory).

(2) If the dynamic asymptotic dimension of the action of G on X is finite,
then the Baum-Connes conjecture is true for G with coefficients in C(X).

We are currently writing up generalizations of the second theorem to the setting
of algebraic K-theory and L-theory: combined with new descent techniques, this
should lead to new results on the associated Novikov-type conjectures for the
integral group ring Z[G].
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An Analytic Grothendieck Riemann Roch Theorem

Tang, Xiang

(joint work with Ronald G. Douglas and Guoliang Yu)

In my talk, I presented a generalized Toeplitz index theorem in [7], which can be
viewed as an analytic version of the Grothendieck Riemann Roch theorem.

Let D be the unit disk inside C. Consider the Hilbert space L2
a(D) of square

integrable analytic functions on D with respect to the Lebesgue measure. Let
z be the coordinate function on C. We are interested in the Toeplitz operator
Tz ∈ B(L2

a(D)) of the following form,

(1) Tz : L2
a(D) −→ L2

a(D), Tz(f)(x) := xf(x), ∀x ∈ D.

Let T ∗
z ∈ B(L2

a(D)) be the adjoint of Tz. It is not hard to check the commutator

[Tz, T
∗
z ] := TzT

∗
z − T ∗

z Tz ∈ B
(
L2
a(D)

)

is a compact operator. Furthermore, let K
(
L2
a(D)

)
be the C∗-algebra of compact

operators on L2
a(D), and T(S1) be the unital C∗-algebra generated by Tz and

K
(
L2
a(D)

)
. We have the following short exact sequence

0 −→ K
(
L2
a(D)

)
−→ T(S1) −→ C(S1) −→ 0,

where C(S1) is the C∗-algebra of continuous functions on S1. The above sequence
gives an extension class [T(S1)] ∈ Ext(S1). The classical Toeplitz index theorem
[2], [3] states that in the K-homology group of S1, the class [T(S1)] can be identified
with the one associated to the selfadjoint elliptic differential operator [ 1√−1

d
dθ ] on

S1.
In literature, there are many attempts to generalize this Toeplitz index theo-

rem. The most notable is the Boutet de Monvel index theorem for manifolds with
strongly pseudoconvex boundaries [15], [3], [2]. For example, let Bm be the open
unit ball inside the complex plane Cm. Consider the Hilbert space L2

a(B
m) of

square integrable analytic functions on Bm with respect to the Lebesgue measure.
Let z1, · · · , zm be the coordinate functions on Cm. Consider the Toeplitz operator
Tzi ∈ B

(
L2
a(D)

)
, i = 1, · · · ,m defined in the same way as Eq. (1). The above

compact commutator property has a natural generalization, i.e.

[Tzi, T
∗
zj ] ∈ K

(
L2
a(B

m)
)
, i, j = 1, · · · ,m.

In [7], we generalize the above index theorem on Bm by emphasizing the role of
subvarieties. Let A = C[z1, · · · , zm] be the polynomial ring of m variables. Let I
be an ideal of A generated by p1, · · · , pM . Define

ZI = {(z1, · · · , zm) ∈ Cm : a(z1, · · · , zm) = 0, ∀a ∈ I}.
We point out that the analytic space ZI may have singularities. Let ∂Bm :=
B
m\Bm be the boundary of Bm, the unit sphere S2m−1. Denote ZI ∩ Bm by

ΩI . The analytic space ΩI is naturally a (singular) submanifold of Bm with the
boundary ∂ΩI := ΩI\ΩI = ZI ∩ ∂Bm.
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Let I be the closure of I in L2
a(B

m). As I is an ideal of A, I is closed under
the Toeplitz operator Tzi, i = 1, · · · ,m. Denote Tzi|I (i = 1, · · · ,m) to be the

restriction of Tzi on I. We proved the following theorem [7] for the operators Tzi|I ,
(i = 1, · · · ,m).

Theorem I. Assume

(1) The Jacobian matrix (∂pi/∂zj)i,j is of maximal rank on the boundary
∂ΩI = ZI ∩ ∂Bm;

(2) m−M ≥ 2;
(3) ZI intersects ∂Bm transversely.

The commutator between Tzi|I and Tzj |∗I on I is compact, i.e.

[Tzi|I , Tzj |∗I ] ∈ K(I), i, j = 1, · · · ,m.

Theorem I confirms the conjecture by Arveson [1] and the first author [5] that
the ideal Ī is an essentially normal A-module when I satisfies the assumption of
Theorem I. We refer the reader to [8], [11]–[13], and [10] for related results.

Let QI = L2
a(B

m)/I be the quotient Hilbert space. The operator Tzi (i =
1, · · · ,m) naturally descends to a bounded operator on QI . We denote the asso-
ciated operator on QI by Tzi|QI

, i = 1, · · · ,m. As a corollary of Theorem I, we
know that the commutator between Tzi|QI

and Tzj |∗QI
on QI is compact, i.e.

[Tzi|QI
, Tzj |∗QI

] ∈ K(QI), i, j = 1, · · · ,m.
Let T(QI) be the unital C∗-algebra generated by Tzi|QI

, i = 1, · · · ,m and
K(QI). We studied in [7] the extension class associated to T(QI). Under the
assumption of Theorem I, ΩI is an analytic space of complex dimension k :=
m−M ≥ 2 and complex codimensionM . ΩI has a smooth strongly pseudoconvex
boundary ∂ΩI = ZI ∩ ∂Bm and (possibly) a finite number of isolated singulari-
ties away from the boundary. As ∂ΩI is smooth and strongly pseudoconvex, the
restriction of the complex structure to the boundary defines a CR-structure and
therefore a spinc structure on ∂ΩI . Let D∂ΩI

be the Dirac operator associated to
this spinc structure, a fundamental class of K1(∂ΩI).

Theorem II. Under the assumption of Theorem I, the C∗-algebra T(QI) defines
an extension class on ∂ΩI. In K1(∂ΩI), this class is equal to the one defined by
the spinc Dirac operator D∂ΩI

on ∂ΩI .

As a special example of Theorem II, we consider the following polynomial

pk(z1, · · · , z5) = z21 + z22 + z23 + z34 + z6k−1
5 ∈ C[z1, · · · , z5], k ≥ 1.

The zero variety Zpk
of pk has an isolated singularity at the origin, and when ǫ > 0

is sufficiently small, Zpk
intersects with the sphere S9ǫ = ∂B5

ǫ = B
5

ǫ\B5
ǫ transversely

[4], [14], where B5
ǫ is the open ball of radius ǫ around the origin. Hence the

conditions of Theorem II are satisfied on B5
ǫ . We conclude that QIk gives the
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fundamental class of the boundary ∂Ωǫ
Ik

= Zpk
∩ ∂B5

ǫ . The boundary ∂Ωǫ
Ik

is

a topological 7-sphere S7. When k = 1, · · · , 28, the differentiable structures on
Zpk
∩ ∂B5

ǫ give all the different differentiable structures on S7. Theorem II offers
a possibility to use operator algebra tools to study differentiable topology on S7.

References

[1] Arveson, W., The Dirac operator of a commuting d-tuple. J. Funct. Anal. 189 (2002), no.
1, 53–79.

[2] Baum, P., Douglas, R., and Taylor, M., Cycles and relative cycles in analytic K-homology.
J. Differential Geom. 30 (1989), no. 3, 761–804.

[3] Boutet de Monvel, L., On the index of Toeplitz operators of several complex variables.
Invent. Math. 50 (1978/79), no. 3, 249–272.

[4] Brieskorn, E., Beispiele zur Differentialtopologie von Singularitäten. Invent. Math. 2 (1966)
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Higher Signatures of Witt spaces

Zhizhang Xie

(joint work with Nigel Higson)

The signature is a fundamental invariant for oriented manifolds. The Hirzebruch
signature theorem expresses the signature of an oriented manifold M in terms of
characteristic classes:

sig(M) = 〈L(M), [M ]〉 ∈ Z,

where L(M) ∈ H∗(M ;Q) is the L-class of M , a certain power series in the Pontr-
jagin classes. Since the definition of the signature only depends on the cohomology
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ring of the manifold, it is clearly a homotopy invariant. Now suppose M is not
simply connected with π1(M) = Γ. Let BΓ be the classifying space for Γ and
f : M → BΓ be a continuous map. For each cohomology class [x] ∈ H∗(BΓ;Q),
one has the following characteristic number, called a higher signature number:

sig[x](M, f) = 〈L(M) ∪ f∗[x], [M ]〉 ∈ Q.

The Novikov conjecture states that every higher signature number is homotopy
invariant, that is, for all orientation preserving homotopy equivalences g : N →M
of closed oriented manifolds and all continuous maps f :M → BΓ,

sig[x](M, f) = sig[x](N, g ◦ f).
This conjecture has been proved for a large class of groups [11, 6, 5, 16, 13, 14, 17,
18, 12, 4]. A common theme of the proofs for most of these cases is to first prove
the strong Novikov conjecture by using mtheods from noncommutative geometry.
The original Novikov conjecture follows as a consequence from the strong Novikov
conjecture. Recall that the strong Novikov conjecture says the following map,
called the Baum-Connes assembly map, µ : KΓ

i (EΓ) → Ki(C
∗
r (Γ)) is injective,

where i = 0, 1. Here EΓ is the universal space for proper Γ-actions, andKΓ
i (EΓ) is

the i-th Γ-equivariant K-homology of EΓ. Roughly speaking, every K-homology
class in KΓ

i (EΓ) can be represented by a Dirac type operator on some closed
manifold. What the assembly map µ does is to map each of these Dirac type
operators to its corresponding K-theoretical higher index.

When the assembly map is applied to the signature operator of a manifold, we
call the resulting K-theoretical higher index the higher signature index class of
the manifold. The higher signature index class is one of the most fundamental
invariants for studying manifolds. In this talk, I presented how to generalize
the notion of higher signature index class from manifolds to a class of spaces
with singularities, called Witt spaces. The signature for Witt spaces was first
studied by Siegel [15], based on the work of Goresky and MacPherson [7]. This
was also studied by Cheeger in the L2-cohomology setting [2, 3]. More recently,
by generalizing Cheeger’s work, Albin, Leichtnam, Mazzeo and Piazza used an
analytic approach to study the higher signature index class for Witt spaces [1].
In my joint work with Nigel Higson, we took a conceptual and combinatorial
approach by using noncommutative geometric methods. Our approach is very
much inspired by the work of Higson and Roe on mapping surgery exact sequence in
topology to analytic exact sequence inK-theory [9, 10, 8]. Our main methods are a
combination of the techniques from the original approach of Goresky, MacPherson
and Siegel [7] [15], and techniques from noncommutative geometry.

Here is a brief summary of the main results. Suppose X is a pseudomanifold
with a triangulation T . We denote the first barycentric subdivision of T by T ′.
Consider the stratification of X given by the skeleton of T ,

X = |Tn| ⊃ Σ = |Tn−2| ⊃ |Tn−3| ⊃ · · · ⊃ |T0|.
Define Rp̄

i to be the subcomplex of T ′ consisting of all simplices which are (p̄, i)-
allowable with respect to this stratification, where p̄ is a certain perversity. Let
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W p̄
i (X) be the vector space spanned by those simplicial i-chains with boundary

supported on Rp̄
i−1. We define W i

p̄(X) = Homfin(W
p̄
i (X),C) the space of finitely

supported (p̄, i)-allowable simplicial i-cochains. We denote the corresponding chain
complex by (W p̄

∗ (X), b) and (W ∗
p̄ (X), b∗) respectively. We prove that if X is an

orientedWitt space, thenX naturally gives rise a geometrically controlled Poincaré
complex.

Theorem 1. Every n-dimensional oriented Witt space X is a geometrically con-
trolled Poincaré pseudomanifold of dimension n, that is, the duality chain map
P : (W ∗

m̄(X), b∗) → (W m̄
n−∗(X), b) associated to the fundamental class [X ] is a

chain equivalence in the geometrically controlled category. Here m̄ is the lower
middle perversity.

The theorem above allows us to define the higher signature index class for Witt
spaces. More precisely, suppose X is a closed oriented Witt space of dimension n.

Let X̃ be a Γ-covering of X determined by a continuous map f : X → BΓ. Here
BΓ is the classifying space of Γ. Consider the following analytically controlled
Γ-equivariant Hilbert-Poincaré complex:

Em̄
0 (X̃)

b←− Em̄
1 (X̃)

b←− · · · b←− Em̄
n (X̃),

where Em̄
i (X̃) is the Hilbert space completion of W m̄

i (X̃). We denote the asso-
ciated higher signature index class in Kn(C

∗
r (Γ)) by sigΓ(X, f). Once casted in

this framework, then the following invariance properties of the higher signature
follow immediately from the general machinery for Hilbert-Poincaré complexes [8,
Section 4 and Section 7].

Theorem 2. (i) Higher signatures of Witt spaces are invariant under Witt
cobordism. More precisely, suppose X1 and X2 are two closed oriented Witt
spaces with continuous maps f1 : X1 → BΓ and f2 : X2 → BΓ. If X1 and
X2 are Γ-equivariantly cobordant, then

sigΓ(X1, f1) = sigΓ(X2, f2)

in Kn(C
∗
r (Γ)), where n = dimX1 = dimX2.

(ii) Higher signatures of Witt spaces are invariant under stratified homotopy
equivalence. More precisely, X and Y are two closed oriented Witt spaces,
and f : Y → BΓ is a continuous map. If ϕ : X → Y is a stratified homotopy
equivalence, then sigΓ(X, f ◦ ϕ) = sigΓ(Y, f).

One naturally wonders whether the higher signature index class in our approach
is equivalent to the higher signature index class defined by Albin, Leichtnam,
Mazzeo and Piazza [1]. Indeed, by adapting some ideas of Cheeger from [2], we
prove that the two approaches give rise to the same higher signature index class
for Witt spaces.
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Non-rigidity of manifolds and K-theory of group C∗-algebras

Guoliang Yu

(joint work with Shmuel Weinberger)

In this talk, we use information about the K-theory of group C∗-algebras to esti-
mate the degree of non-rigidity of manifolds.

Let G be a countable group. An element g ∈ G is said to have order d if d is
the smallest positive integer such that gd = e, where e is the identity element of
G. If no such positive integer exists, we say that the order of g is ∞.
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If g ∈ G is an element in G with finite order d, then we can define an idempotent
in the group algebra QG by:

pg =
1

d
(

d∑

k=1

gk).

For the rest of this paper, we denote the maximal group C∗-algebra of G by

C∗(G). We define Kfin
0 (C∗(G)), the finite part of K0(C

∗(G)), to be the abelian
subgroup of K0(C

∗(G)) generated by [pg] for all elements g 6= e in G with finite
order.

Conjecture 1. If {g1, · · · , gn} is a collection of elements in G with distinct finite
orders such that gi 6= e for all 1 ≤ i ≤ n, then
(1) {[pg1 ], · · · , [pgn ]} generates an abelian subgroup of Kfin

0 (C∗(G)) with rank n;

(2) any nonzero element in the abelian subgroup of Kfin
0 (C∗(G)) generated by

{[pg1 ], · · · , [pgn ]} is not in the image of the assembly map µ : K0(BG) ≃ KG
0 (EG)

→ K0(C
∗(G)), where EG is the universal space for proper free G-actions.

In fact, we can state a stronger conjecture in terms of K-theory elements coming
from finite subgroups and the number of conjugacy classes of nontrivial finite order
elements. Such a stronger conjecture follows from the strong Novikov conjecture
but would not survive inclusion into large groups.

The following concept is due to Gromov.

Definition 2. A countable discrete group G is said to be coarsely embeddable into
Hilbert space H if there exists a map f : G→ H satisfying
(1) for any finite subset F ⊆ G, there exists R > 0 such that if g−1h ∈ F , then
d(f(g), f(h)) ≤ R;
(2) for any S > 0, there exists a finite subset E ⊆ G such that if g−1h ∈ G − E,
then d(f(g), f(h)) ≥ S.

The class of groups coarsely embeddable into Hilbert space includes amenable
groups, hyperbolic groups, and linear groups. However, Gromov’s monster groups
are not coarsely embeddable into Hilbert space. The importance of the concept
of coarse embeddability is due to the theorem that the strong Novikov conjecture
holds for groups coarsely embeddable into Hilbert space. Kasparov and Yu intro-
duced a weaker condition, coarse embeddability into Banach spaces with Property
H, and proved the strong Novikov conjecture for groups coarsely embeddable into
Banach spaces with Property H.

The following concept is more flexible than coarse embeddability into Hilbert
space.

Definition 3. A countable discrete group G is said to be finitely embeddable into
Hilbert space H if for any finite subset F ⊆ G, there exists a group G′ coarsely
embeddable into H such that there is a map φ : F → G′ satisfying
(1) φ(gh) = φ(g)φ(h) if g, h ∈ F and gh ∈ F ;
(2) if g is a finite order element in F , then order(φ(g)) = order(g).
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We mention that the class of groups finitely embeddable into Hilbert
space include all residually finite groups, amenable groups, hyperbolic groups,
Burnside groups, Gromov’s monster groups, virtually torsion free groups (e.g.
Out(Fn)), and any group of analytic diffeomorphisms of an analytic connected
manifold fixing a given point. Narutaka Ozawa, Denise Osin and Thomas Delzant
have independently constructed examples of groups which are not finitely embed-
dable into Hilbert space. We can similarly define a concept of finite embeddability
into Banach spaces with Property H.

The general validity of the above conjecture is still open. The following result
proves this conjecture for a large class of groups.

Theorem 4. The above conjecture holds for groups finitely embeddable into Hilbert
space.

We define Nfin(G) to be the cardinality of the following subset of positive
integers:

{d : ∃ g ∈ G s. t. g 6= e, order(g) = d}.
IfM is a compact oriented manifold, the structure group S(M) in the topologi-

cal category is the abelian group of equivalence classes of all pairs (f,M ′) such that
M ′ is a compact oriented manifold and f : M ′ →M, is an orientation preserving
homotopy equivalence. The rank of S(M) measures the degree of non-rigidity for
M .

The following result explains why it is interesting to study the finite part of
K0(C

∗(G)).

Theorem 5. LetM be a compact oriented manifold with dimension 4k−1 (k > 1)
and π1(M) = G. If Conjecture 1.1 holds for G, then the rank of the structure group
S(M) is greater than or equal to Nfin(G).

The following result is a consequence of the above theorems.

Corollary 6. LetM be a compact oriented manifold with dimension 4k−1 (k > 1)
and π1(M) = G. If G is finitely embeddable into Hilbert space, then the rank of
the structure group S(M) is greater than or equal to Nfin(G).

We conjecture that elements of the structure group distinguished by the method
of this paper are actually different manifolds. We shall make this precise in the
following few paragraphs.

Let M be a compact oriented manifold. Let S0(M) be the abelian subgroup of
S(M) generated by elements [(f,M ′)] − [(ψ ◦ f,M ′)], where f : M ′ → M , is an
orientation preserving homotopy equivalence and ψ : M → M, is an orientation
preserving self homotopy equivalence. We define the reduced structure group
S̃(M) to be the quotient group S(M)/S0(M) (it is the coinvariants of the action
of orientation preserving self homotopy equivalence of M on S(M)).

The following conjecture gives a lower bound on the “size” of the set of different
manifolds in the structure group.
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Conjecture 7. IfM is a compact oriented manifold with dimension 4k−1 (k > 1)

and π1(M) = G, then the rank of the reduced structure group S̃(M) is greater than
or equal to Nfin(G).

In an interesting case, we can prove this conjecture.

Theorem 8. If G has a homomorphism φ to a residually finite group such that
kernel(φ) is torsion free, then the above conjecture holds.
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