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Abstract. The general theory of relativity is a remarkably accurate theory
of gravitation, describing phenomena from the level of isolated bodies to
the universe as a whole. The mathematical study of this theory leads to
fascinating problems connecting the areas of partial differential equations,
geometry and topology with physics. The talks of the workshop illustrated
the rapid progress in this subject over the last few years.
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Introduction by the Organisers

The workshop Mathematical Aspects of General Relativity was organized by Mi-
halis Dafermos (Cambridge/Princeton), Jim Isenberg (Eugene) and Hans Ring-
ström (Stockholm). The almost 50 participants represented a wide selection of
different research areas connected to the general theory of relativity, and roughly
half of them gave talks at the workshop.

Black holes have long been at the centre of interest in general relativity. Two of
the most fundamental open problems in the subject are the question of the exterior
stability of the classical vacuum black hole solutions (Schwarzschild and Kerr) and
the question of the interior structure of generic black hole solutions. The latter
is related to the question of strong cosmic censorship, originally formulated by
Penrose.

In the previous meeting of this series, definitive results concerning the property
of the wave equation on the general subextremal Kerr background were presented.
Interest has moved to the actual problem of linearised gravity. In his talk, Holzegel
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presented a proof of the stability of Schwarzschild in linearised gravity and gave
an overview of the current status quo for the problem of black hole stability.

The extremal case has continued to attract much interest, after the discovery
of the Aretakis instability, discussed already at the last meeting of the series. New
results were presented by Aretakis concerning stability properties of semilinear
equations on extremal Reissner–Nordström, which become quite subtle in view of
the non-decay of transversal derivatives. His talk also presented a general charac-
terization of null hypersurfaces admitting conservation laws for the wave equation.

Concerning the interior structure of black holes, Luk presented the theorem
that any dynamical vacuum black hole which settles down to Kerr in the exterior
will have a piece of Cauchy horizon in its interior across which the metric is con-
tinuously extendible. In particular, if the Kerr family is indeed proven stable in
the exterior, this will falsify some original formulations of strong cosmic censor-
ship which required that for generic initial data, the maximal Cauchy development
be inextendible as a continuous Lorentzian metric. Interestingly, the latter inex-
tendibility problem was not previously known even for the case of Schwarzschild;
a proof of this was in fact presented in the talk of Sbierski.

Trapped null geodesics play an important role in the black hole stability prob-
lem. It is interesting to know whether Schwarzschild is in some sense uniquely
characterized by the structure of its photon sphere of trapped null geodesics. The
talk of Cederbaum presented such a result.

A problem intimately related to stability issues is the problem of excluding
non-trivial “time periodic” solutions of the Einstein equations. Previously, it has
been shown that under the assumption of analyticity, such solutions must neces-
sarily be stationary. Schlue presented some recent results where the assumption
of analyticity is dropped.

Again on the theme of stability, Huneau in her talk returned to the classical
problem of stability of Minkowski space, but in the context where spacetime is
assumed to have a translational symmetry. The data are thus not asymptotically
flat in the traditional sense, and the monumental theorem of Christodoulou and
Klainerman does not apply. Huneau presented a proof of “almost global existence”,
using a modified harmonic gauge.

Finally, the study of the problem of black hole stability has inspired renewed
interest in understanding the propagation of waves on simpler examples of space-
times without trapping or event horizons. Tataru presented some upcoming results
which in particular characterize the spectral obstructions to decay properties on
such spacetimes.

The first step in studying solutions of Einstein’s equations via the Cauchy prob-
lem is to understand the parametrization and the construction of sets of initial data
which satisfy the Einstein constraint equations. The conformal method has long
been recognized to be an important tool for carrying out such analyses, and there
have been talks regarding the successes and the limitations of its application in
all six of the Oberwolfach meetings on mathematical relativity. However, there
is still much to learn about what the conformal method can and cannot do, and
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what might replace it in studying those solutions of the constraints for which this
method is ineffective.

Allen’s talk considered a class of initial data sets for which the conformal method
is effective. He discussed constant mean curvature (CMC) sets which are asymp-
totically hyperbolic and which are shear-free (an asymptotic condition which is
needed for evolving data into spacetime solutions with well-defined null infinity
structure). His talk introduced a generalized notion of weakly asymptotically
hyperbolic data, and showed that the conformal method readily constructs and
parametrizes CMC shear-free data sets of this sort which satisfy the constraints.
In Dilts’ talk, the focus was on asymptotically Euclidean (AE) data sets. He de-
scribed his recent results with Maxwell which elucidate the Yamabe classes for AE
geometries, and used these results together with the conformal method to study
CMC and near-CMC solutions.

While the conformal method has generally been very useful in working with
CMC and near-CMC data sets, its success to date in working with far-from-CMC
data sets has been much more limited. Holst discussed some of the far-from-
CMC cases in which the conformal method has proven to be useful, and noted the
techniques used for proving these results. He also noted the observation of Ngo,
which shows that in fact these far-from-CMC results can be obtained from near-
CMC results by a scaling argument. On the other hand, Nguyen’s talk presented
new results which do seem to indicate far-from-CMC cases in which the conformal
method leads to solutions of the constraints. These results are an extension of
the limit equation criterion of Gicquaud and his collaborators. Besides obtaining
far-from-CMC cases in which the conformal method produces solutions, Nguyen’s
also finds other far-from-CMC cases in which the conformal method produces no
solutions, and still others in which multiple solutions are obtained. The conformal
method is expected to be ineffective for studying general far-from CMC initial
data sets, and Maxwell has begun to develop ideas for going beyond the conformal
method. Some of these ideas were presented in his talk.

Apart from constructing and parametrizing initial data, one would like to un-
derstand its global properties. While there has been considerable work on the
total mass and energy-momentum of AE data sets, much less is understood about
angular momentum. Based on some of his work on quasi-local quantities, Wang
discussed in his talk some new ideas on defining angular momentum, both glob-
ally and quasi-locally, and illustrated some of the desirable properties of his new
definitions.

Though not directly related to general relativity, geometric heat flows have been
very successfully used as analytic tools for studying general relativistic problems
such as the Penrose inequality relating the mass of AE initial data sets and the
areas of black holes contained in such data sets. In Huisken’s talk, he discussed
some of his recent new ideas concerning mean curvature flow; in particular, he
discussed a comprehensive approach for evolving past singularities in such flows
on AE 3 dimensional geometries using surgery.
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The solutions to Einstein’s equations that are used to model the universe are
exactly spatially homogeneous and isotropic. However, it is clear that there are
spatial inhomogeneities in the universe. It is therefore of interest to analyze the
effect of the inhomogeneities on the solution (the so-called backreaction). Robert
Wald presented a result giving quite general conditions ensuring that the backre-
action, if it occurs, behaves like matter satisfying the weak energy condition. This
is an indication that the effects of dark energy cannot be obtained as a result of
backreaction, contrary to what has been suggested by several authors. Piotr Bi-
zon described new results on the instability of anti-de Sitter space. In particular,
he presented a simplified system (the so-called resonant system), which models
the behaviour of solutions to the spherically symmetric, five dimensional Einstein-
massless scalar field system in the case of a negative cosmological constant. Bizon’s
analysis yields the conclusion that the resonant system develops an oscillatory sin-
gularity in finite time. Since the actual system of interest is well modelled by the
resonant system, this gives an indication of how to proceed to prove instability
in the anti-de Sitter setting. In higher dimensions, the argument justifying the
introduction of Einstein’s field equations admit a wider range of equations, the so-
called Lovelock theories of gravity. Harvey Reall presented results concerning the
mathematical properties of these theories. In particular, he discussed the issues of
causality, hyperbolicity and the occurrence of shock formation in these theories.
Frans Pretorius reviewed recent progress that has been made in the subject of
ultra-relativistic collisions, in particular in the context of formation of black holes.

One ingredient in the current models of the universe is dark matter. One impor-
tant justification for its existence is based on studies of rotation curves for galaxies.
It is therefore of interest to obtain good models for galaxies, in particular for their
rotation curves. In his talk, H̊akan Andréasson described models for disc galaxies.
In particular, he presented a large class of flat axially symmetric solutions to the
Vlasov-Poisson system with flat rotation curves, something which was previously
not expected in the absence of dark matter. In many contexts, it is of interest to
model matter using kinetic theory. However, the methods normally used in dealing
with the resulting equations in the non-general relativistic setting are sometimes
not so appropriate in the general relativistic setting. Jacques Smulevici described
how to apply vector field methods to transport equations in order to obtain a per-
spective more suited to generalization. Describing how a free boundary of a fluid
evolves over time is of great interest in astrophysics, where such a model can be
used to describe, e.g., a star. However, controlling the behaviour at the boundary
is quite delicate. Todd Oliynyk presented a priori estimates for solutions to the
equations describing a relativistic liquid body. Deriving such estimates is the first
step in obtaining a local existence theory for the relevant system of equations. In
the study of cosmological singularities, it has long been conjectured that “matter
doesn’t matter”. This is a conjecture which comes with a few caveats; certain
matter models do matter, and they have to be excluded. However, in the case of
the Einstein-Euler system, there is a wide range of equations of state for which
the matter is expected not to matter. Florian Beyer presented a construction of
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a family of solutions to the Einstein-Euler system for which the conjecture holds.
Peter Hintz presented global existence results for solutions to quasi-linear wave
equations on Kerr-de Sitter spacetimes. Some ingredients of the argument were
a compactification of the spacetime at future infinity, microlocal analysis and a
Nash-Moser iteration.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

C
0 stability of the Kerr Cauchy horizon

Jonathan Luk

(joint work with Mihalis Dafermos)

The two-parameter family of Kerr spacetimes are explicit solutions to the Einstein
vacuum equations

Ric(g) = 0

which are parametrized by (M,a), the mass and the specific angular momentum
respectively. For |a| < M , these spacetimes contain black hole regions, which are
not connected to future null infinity via causal curves. The exterior regions, i.e.,
the complement of the black holes, of these spacetimes are widely conjectured to
be nonlinearly dynamically stable.

It turns out that the interior regions of the black holes are very different for
the Schwarzschild case (when a = 0) and for the case with non-vanishing specific
angular momentum (i.e., 0 < |a| < M). In the former case, the maximal globally
hyperbolic development of Schwarzschild data terminates with a spacelike singu-
larity, and the spacetime is in fact inextendible as a Lorentzian manifold with a
continuous metric [7]. On the other hand, when 0 < |a| < M , the maximal globally
hyperbolic development of Kerr data terminates with a smooth Cauchy horizon.
As a consequence, the spacetime is extendible non-uniquely(!) as a smooth solu-
tion to the Einstein vacuum equations. Partly due to this unsettling breakdown
of determinism, Penrose conjectured that this behavior is non-generic:

Conjecture 1 (Strong cosmic censorship conjecture). For generic asymptotically
flat initial data for the Einstein vacuum equations, the maximal globally hyperbolic
development is inextendible as a suitably regular Lorentzian manifold.

In particular, if the strong cosmic censorship conjecture is true, then the afore-
mentioned breakdown of determinism associated to the smooth Cauchy horizon
should be unstable against small perturbations of Kerr spacetime. Moreover, it is
often expected that a perturbation of Kerr initial data would moreover give rise
to a “Schwarzschild-type singularity”, which motivates the following formulation
of the conjecture:

Conjecture 2 (C0 formulation of the strong cosmic censorship conjecture). For
generic asymptotically flat initial data for the Einstein vacuum equations, the max-
imal globally hyperbolic development is inextendible as a Lorentzian manifold with
a continuous metric.

In a joint work with Mihalis Dafermos, we study the question of the stability
of the Kerr Cauchy horizon (without any symmetry assumptions), posed as a
characteristic initial value problem where the initial data are perturbations of the
Kerr event horizons. We show in particular that in this setting, there are no
“Schwarzschild type singularities”. More precisely, we have the following theorem:
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Theorem 1 (Dafermos-L. [3, 4, 5]). Consider the characteristic initial value prob-
lem on two affine complete null hypersurfaces H+

A and H+
B transversely intersect-

ing at a 2-sphere S0. Let (MA, aA), (MB, aB) be such that 0 < |aA| < MA and
0 < |aB| < MB. Suppose the data on both H+

A and H+
B are smooth and approach

the event horizons of the Kerr spacetimes with parameters (MA, aA) and (MB, aB)
respectively at a sufficiently fast rate. Assume moreover that the data are every-
where close to that of the Kerr spacetime with parameters1 (MA, aA). Then the
maximal globally hyperbolic development to the data on H+

A ∪ H+
B has a bifurcate

Cauchy horizon across which the metric is continuously extendible. Moreover, the
metric is everywhere C0-close to the Kerr metric with parameters (MA, aA).

An analogue of this theorem is previously known for the Einstein-Maxwell-scalar
field system in spherical symmetry for characteristic initial data approaching the
event horizon of the Reissner-Nordström spacetime [1, 2]. In contrast, Theorem 1
holds without any symmetry assumptions.

On one hand, the proof of Theorem 1 uses estimates in studying “weak null
singularities” in [6]. This is because (see Conjecture 3 below) the spacetime may
potentially be singular near the Cauchy horizon and we need to capture the null
structure of the system of equations in order to control the solution in this low
regularity setting. On the other hand, the proof also draws on insights obtained
in studying the linear wave equation in the interior of the Kerr black hole. In
particular, in order to close the argument, it is important to prove an integrated
local energy decay estimate.

We remark that while we have not spelt out the precise decay rates in Theorem
1 in this abstract, they are consistent with (and in fact much weaker than) the
expected rate of approach for spacetimes arising from small perturbations of the
Cauchy data of Kerr spacetime. Thus, if the exterior region of the Kerr spacetime
is indeed stable as is widely expected, then our theorem gives an open set of
initial data whose maximal globally hyperbolic developments are extendible with
continuous Lorentzian metrics. We therefore obtain the following corollary:

Corollary 1. If the exterior region of the Kerr spacetime is stable (with quantita-
tive decay rates), then the maximal globally hyperbolic developments of small per-
turbations of the 2-ended Kerr initial data have bifurcate Cauchy horizons across
which the metrics are continuously extendible. In particular, the C0-formulation
of the strong cosmic censorship conjecture is false.

Moreover, the proof of the main theorem can also be “localized” near the event
horizon for data which asymptotes to Kerr but are not necessarily close to Kerr
everywhere. In this case, one does not get a global Cauchy horizon, but can still
guarantee that there is a non-trivial component of the Cauchy horizon “sufficiently
near timelike infinity”. This applies for instance to spacetimes which are far away
from Kerr but approach Kerr in the exterior region, as is expected to occur in
astrophysical systems.

1This in particular demands that (MA, aA) and (MB, aB) are close to each other.
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Corollary 2. Consider the characteristic initial value problem with two smooth
null hypersurfaces H+ and H intersecting on a 2-sphere S0. Assume that H+

is affine complete and the data on H+ approach that of the Kerr event horizon
sufficiently fast. Suppose that L′ is a geodesic null generator of H and for ǫ
sufficient small define H ′ ⊂ H to be H ′ := ∪τ∈[0,ǫ]ϕτ (S0), where ϕτ is the one-

parameter family of diffeomorphisms generated by L′. Then there exists ǫ > 0
sufficiently small such that the causal future of H+∪H ′ has a non-trivial component
of the Cauchy horizon across which the metric is continuously extendible.

While our main theorem guarantees that the metric can be extended contin-
uously beyond the Cauchy horizon, it does not give much further information
regarding the regularity/singularity of the Cauchy horizon as the null boundary of
the maximal globally hyperbolic development. However, the proof of the theorem,
which requires the use of estimates that degenerate at the Cauchy horizon, sug-
gests that for generic perturbations of Kerr spacetime, the Cauchy horizons may
in fact be “weak null singularities”. This motivates the following conjecture:

Conjecture 3. For a generic subclass of perturbations in Theorem 1, the maximal
globally hyperbolic development is inextendible with a Lorentzian metric in C0 ∩
W 1,2

loc .

If this is indeed the case, then any continuous extensions of the metric (which
exist by Theorem 1) cannot be made sense of as a weak solution to the Einstein
vacuum equations. In particular, one can hope that the following weaker formu-
lation of the strong cosmic censorship conjecture, due to Christodoulou, may still
hold:

Conjecture 4. For generic asymptotically flat initial data for the Einstein vacuum
equations, the maximal globally hyperbolic development is inextendible as a weak
solution to the Einstein vacuum equations.
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Ultra-relativistic Collisions and Black hole formation

Frans Pretorius

I will review what has been learnt in recent years about the ultra-relativistic
collision problem in classical general relativity. This area has connections to Super-
Planck scale particle collisions and the interaction of gravitational shock waves,
and addresses questions pertinent to cosmic censorship, black hole formation and
the Hoop conjecture. I will discuss some open questions and problems for future
research.

Mean curvature flow with surgery in asymptotically flat 3-manifolds

Gerhard Huisken

(joint work with Simon Brendle)

Spacelike maximal slices of Lorentzian manifolds modelling isolated gravitating
systems that satisfy the weak energy condition lead to asymptotically flat Rie-
mannian 3-manifolds (N3, ḡ) of non-negative scalar curvature R ≥ 0. We assume
that (N3, ḡ) is an exterior domain, i.e. the exterior of some compact set in N3

is diffeomorphic to the complement of a ball in R3 s via a coordinate chart {xi}
where the metric and its derivative satify suitable decay conditions towards the
Euclidean metric and the boundary ∂N3 =

⋃·
1≤L Σ2

i consists of finitely many
minimal surfaces Σi. We assume that there are no other closed minimal surfaces
contained in (N3, ḡ), such that ∂N3 may be interpreted as the outermost horizon
of the isolated system. It is known that the condition R ≥ 0 ensures that all
components of the boundary are topological spheres.

The lecture outlines recent work by Simon Brendle and the author on mean
curvature flow with surgery of embedded, meanconvex 2-surfaces in Riemannian
3-manifolds in [6], [1]. Smooth mean curvature flow is the quasi-linear parabolic
evolution system

d

dt
F =

−→
H

for the position of an evolving hypersurface,
−→
H being the mean curvature vector.

”Surgery” is a precise quantitative algorithm removing small cylindrical necks
from the surface just before a singularity occurs, thereby reducing the curvature
by a large factor and allowing a continuation of the flow after surgery. When
applying the results of [6], [1] in an exterior domain as desribed above we obtain
in particular:

Starting from any large coordinate sphere M2
0 = ∂Br(0) in an exterior domain

(N3, ḡ) (or indeed from any embedded, meanconvex hypersurface that is homolo-
gous to the coordinate spheres near infinity), there exists a mean curvature flow
M2

t , 0 ≤ t < T ≤ ∞ with at most finitely many surgeries sweeping out the region
interior to the initial surface. If N3 has no boundary, the flow becomes extinct in
finite time T <∞, otherwise the flow will become smooth after some time T0 <∞
and converges smoothly to ∂N3 as t→ ∞.
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The proof is based on a priori estimates for the geometry of the evolving hyper-
surfaces that allow classification and quantitative control of all singularities. In
particular we use a convexity estimate from [7], non-collapsing estimates from [2]
and a gradient estimate from [3]. In addition we prove a pseudo-locality estimate
and a self-improvement estimate for evolving necks to enable the surgery algorithm
from [7].

As the scale at which surgery is performed tends to zero, the number of surgeries
may tend to infinity. It was shown however in [5] and [4] that in the limit these flows
with surgery converge to the level-set (weak) solution of mean curvature flow. This
information is combined with the regularity theory of meanconvex mean curvature
flow due to B. White [9] to prove large time regularity and convergence to weakly
stable minimal surfaces of the flow with surgery.

If the initial data of the flow tend to the sphere at ∞, an ancient solution to
mean curvature flow as in [8] will result.
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Quasi-local angular momentums and their limits at infinity

Mu-Tao Wang

(joint work with Po-Ning Chen, Shing-Tung Yau)

The notion of angular momentum is of most fundamental importance in any branch
of physics. However, there have been great difficulties in finding physically accept-
able definition of this concept in general relativity except for a few cases. In this
talk, I introduced new definitions of angular momentum at both the quasi-local
and total level [1, 2]. The construction was based on previous work on quasi-local
mass and optimal isometric embeddings [4, 5], which anchors the reference system.
The new definition of total angular momentum satisfies desirable properties such
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as tge invariance in the Kerr spacetime and the conservation along the Einstein
equation. At last, a new Bondi type mass loss formula and a new definition of
total angular momentum were introduced in the asymptotically hyperbolic setting
[3].
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Volumetric Momentum and the Conformal Method

David Maxwell

The conformal method is the workhorse tool for generating solutions of the Ein-
stein constraint equations. Despite its effectiveness in generating constant mean
curvature solutions of the Einstein constraint equations, there is a growing body of
evidence that even in vacuum and without a cosmological constant, the method is
not an effective parameterization in the far-from CMC regime [2][1]. Hence we are
lead to examine alternative possibilities, starting with the CMC conformal method
as a starting point. The work presented here is is part of a program [3][4][5] aimed
at finding an alternative.

As a first step to doing this, it is helpful to frame the conformal method in
terms that emphasize the conformal geometry and deemphasize the role played by
any particular representative of a conformal class. To describe this, suppose Mn

is a compact manifold, and let α be a fixed volume form on M , which we will call
the volume gauge. Now suppose (gab,Kab) are a metric and second fundamental
form on M . These determine unambiguously a conformal class [gab] and a mean
curvature τ = gabKab. These are two of the parameters of the conformal method;
the third is a little more involved to describe and depends on the choice of volume
gauge α.

A conformal momentum on M is an equivalence class of pairs (gab, σab) where
gab is a metric and σab is transverse traceless with respect to gab, i.e. σab is
symmetric, trace-free, and divergence-free with respect to gab. If φ is a positive
function then

(1) (gab, σab) ∼ (φq−2gab, φ
−2σab)
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where q = 2n/(n − 2) is the critical Sobolev exponent for dimension n. Confor-
mal momenta can be thought of as elements of the cotangent space of the set of
conformal classes, modulo diffeomorphisms.

The conformal momentum of (gab,Kab) is computed as follows. Let Aab be the
trace-free part of Kab and use York splitting to decompose

(2) Aab = σab +
1

2N
(LW )ab

where σab is transverse traceless, W a is a vector field, L is the conformal Killing
operator, and where N is the ratio of the metric volume form ωg with the volume
gauge α, so N = ωg/α. The conformal momentum of (gab,Kab) measured by α is
the equivalence class of (gab, σab).

The conformal method can then be framed as follows. Given a conformal class
g, a conformal momentum σ, and a mean curvature τ , find a solution of the
vacuum Einstein constraint equations (gab,Kab) such that

(i) [g] = g.
(ii) The conformal momentum of (gab,Kab) measured by α is σ.
(iii) gabKab = τ .

When τ is constant, the conformal method is effective; in all but certain non-
generic and easily detected cases, a conformal data set (g,σ, τ) generates exactly
one solution of the constraints. In the far-from CMC regime, things are poorly
understood, and there is a lack of examples to aid generating good conjectures. In
[4] we examined how the the conformal method parameterizes (S1)n−1 symmetric
solutions of flat Kasner spactimes, and were able to completely describe the sit-
uation in the far from CMC setting. Specifically, we examined data of the form
(g0, µσ0, τ) where g0 is the conformal class of the flat metric on the torus, µ is a
constant, σ0 is a certain conformal momentum, τ is an arbitrary function of one
factor S1, and the volume gauge α similarly depends only on the single factor.
In most settings, such conformal data determines exactly one (S1)n−1 symmetric
slice of a flat Kasner spacetime. However, if µ = 0 then no solution is generated,
except for certain mean curvatures all satisfying

(3) τ∗ =

∫
τNωg∫
Nωg

= 0

where gab is the solution metric and N = ωg/α. The difficulty with this condition
is that it is hard to detect from (g0, µσ0, τ), and one must essentially know the
solution metric gab before one can verify if τ∗ = 0 or not.

It turns out that τ∗ can be interpreted (up to multiplication by a dimensional
constant) as a kind of momentum for volume forms completely parallel to con-
formal momentum. The volumetric momentum of (gab,Kab) measured by α is
−2n−1

n τ∗ where we decompose

(4) τ = τ∗ +
1

N
divV
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for some vector field V a. The one-parameter families of solutions for the flat
Kasner spacetimes are then signaled by the condition that both the conformal
and the volumetric momentum vanish. This suggests seeking alternatives to the
conformal method that prescribe conformal and volumetric momentum directly,
and efforts in this direction can be found in [5].
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New evidence for the instability of the anti-de Sitter spacetime

Piotr Bizoń

(joint work with Maciej Maliborski and Andrzej Rostworowski)

In [1] we gave numerical evidence that anti-de Sitter (AdS) spacetime is unstable
against black hole formation for a large class of arbitrarily small perturbations.
More precisely, we showed that for a perturbation with amplitude ε a black hole
forms on the timescale O(ε−2). Using nonlinear perturbation analysis we conjec-
tured that the instability is due to the turbulent cascade of energy from low to
high frequencies. Since the computational cost of numerical simulations rapidly
increases with decreasing ε, our conjecture was based on extrapolation of the ob-
served scaling behavior of solutions for small (but not excessively so) amplitudes,
which left some room for doubts whether the instability will persist to arbitrarily
small values of ε. In my talk I described the new work [5] in which we validated
and reinforced the above extrapolation with the help of a recently proposed res-
onant approximation [2, 3, 4]. The key feature of this approximation is that the
underlying infinite dynamical system (referred to as the resonant system) is scale
invariant: if its solution with amplitude 1 does something at time t, then the
corresponding solution with amplitude ε does the same thing at time t/ε2. More-
over, the latter solution remains close to the true solution (starting with the same
initial data) for times . ε−2 (provided that the errors due to omission of higher
order terms do not pile up too rapidly). Thus, by solving the resonant system we
were able to probe the regime of arbitrarily small perturbations (whose outcome
of evolution is beyond the possibility of numerical verification).

Using the analyticity strip method [6] we showed that for typical initial data the
solution of the resonant system develops an oscillatory singularity in finite time.
We also gave numerical evidence that this solution acts as a universal attractor
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for blowup. This result hints at a possible route to establishing instability of AdS
under arbitrarily small perturbations. The key open question is how to transfer
this blowup result from the resonant system to the full system. Nonetheless, the
fact that solutions of the resonant system blow up in finite time (for typical initial
data) strongly indicates that the corresponding solutions of the full system collapse
on the timescale O(ε−2).
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Linear Stability of the Schwarzschild Metric under Gravitational

Perturbations

Gustav Holzegel

(joint work with Mihalis Dafermos, Igor Rodnianski)

The two-parameter Kerr-family of axisymmetric stationary black hole solutions to
the vacuum Einstein equations,

(1) Ric [g] = 0

for a Lorentzian metric g, plays a central role in general relativity. Establishing
its non-linear stability, however, remains a fundamental open problem. Important
progress has been made in the past ten years by considering the linear scalar
wave equation on fixed Kerr backgrounds [6, 1, 10, 7]. In particular, the subtle
interplay of the physical phenomena of trapping, superradiance and the redshift
and their role for the dispersion of waves on black hole spacetimes has now been
mathematically fully understood [7].

In this talk, we move away from the scalar wave equation and consider the
actual linearization of the vacuum Einstein equations (1) with respect to the
Schwarzschild metric, which is a one-parameter subfamily of the Kerr family.
Clearly, this will form a key ingredient for the non-linear stability problem. More
specifically, we linearize the following equations which fully capture the analytical
content of (1):

(2) divgW = 0 the Bianchi equations for the Weyl tensor W ,
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(3) ∇Γ + ΓΓ =W the structure equations for the connection coefficients Γ.

Linearizing (2) and (3) with respect to Schwarzschild leads to a complicated
coupled system for the linearized dynamical fields

(
Γ(1),W (1)

)
. A particularly

tractable form of the equations is obtained if (2) and (3) are first decomposed
with respect to a null-frame as in [3] and then linearized. We call the resulting
system the system of gravitational perturbations.1 It is easily seen to be well-posed
for general asymptotically flat characteristic initial data on a double null cone.2

We collect three key insights before stating our main theorem, which will assert
that the Schwarzschild metric is linearly stable.

(I) The diffeomorphism invariance of the full non-linear theory reflects itself
in special “pure gauge” solutions of the linearized system. These can be
identified and understood explicitly. Adding them to a solution may be
thought of as the same solution expressed in different coordinates.

(II) The fact that the Schwarzschild family embedds as a subfamily into the
larger Kerr family is reflected in the fact that there are special solutions
of the linearized system describing evolution to “linearized Kerr”. Again,
these solutions can be identified (in fact at the level of initial data) and
understood explicitly.

(III) There exists gauge-invariant quantities (i.e. quantities remaining invariant
upon adding a solution from (I)) of the system of gravitational pertur-
bations which satisfy decoupled (wave) equations. This has long been
known for the null-curvature components α and α (the extremal complex
Newman-Penrose scalars) but it was not known whether solutions to the
Bardeen-Press equations satisfied by them remain uniformly bounded.

We are now ready to give an informal version of the main theorem:

Theorem 1. Consider a solution of the equations of linearised gravity around
Schwarzschild arising from general asymptotically flat characteristic initial data
on a double null cone.

(i) Quantitative boundedness and inverse polynomial decay holds for the gauge
invariant quantities, in fact for general solutions of the Teukolsky equa-
tions.

(ii) In a gauge determined by initial data, all quantities of the system of lin-
earised gravity remain bounded by a constant times their initial values.

(iii) In a gauge determined by the future, i.e. after addition of a pure gauge
solution normalised to the event horizon behaviour, all quantities of the
system decay inverse polynomially to a member of the 4-dimensional family

1This system is closely related to gravitational perturbations studied in the Newman-Penrose
formalism in the physics literature [2]. In general, there is a large physics literature studying
gravitational perturbations starting with the work of [9], which is however restricted mostly to

the study of individual modes. In particular, no statement of uniform boundedness or decay of
general perturbations is known.

2The choice of characteristic data is merely for convenience, in particular to simplify the
constraint equations.
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of standard linearised Kerr solutions. The final linearised Kerr solution
can be read off from initial data and the pure gauge solution normalised to
the future is bounded by initial data.

We conclude with a few words about the proof. Details can be found in [5].
The first important observation is the existence of a second order transformation
of the aforementioned curvature components α and α, which transforms solutions
of the Bardeen-Press equation into solutions of the well-known Regge-Wheeler
equation [4].3 On the other hand, it is well etablished (see e.g. [8]) how one
can obtain boundedness and decay for solutions to the Regge-Wheeler equations
exploiting the geometric insights for the scalar wave equation.4 Once decay for
the transformed quantities has been established one can use transport equations
to prove decay for α and α themselves. This yields (i) in the main theorem.

To obtain (ii), the basic technique is to integrate the (linearized) null-structure
and Bianchi equations as transport equations. Care has to be taken with respect
to the weights appearing near the horizon and null-infinity. In particular, the
redshift effect needs to be exploited.

Finally, for (iii) one needs to construct, from the dynamical solution, a pure
gauge solution which forces all geometric quantities in the new gauge to decay.
Remarkably, this can be done by solving an ODE (for the linearized lapse) along the
event horizon. The estimates obtained in (ii) are sufficiently strong to guaranteee
boundedness of the pure gauge solution that has been added.

Final Remark. While one needs to generalize Theorem 1 to gravitational
perturbations of the Kerr family in order to address the full non-linear stability
problem, there is an interesting non-linear setting which can already be studied in
the context of Theorem 1: The evolution of axisymmetric initial data with zero
angular momentum is expected to converge to a member of the Schwarzschild
family, hence the linearization in Theorem 1 is in principle sufficient. Work on
this problem is currently in progress.
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Backreaction in Cosmology

Robert M. Wald

(joint work with Stephen Green)

My talk reviewed work with Stephen Green [1]-[4] on backreaction by small scale
inhomogeneities in cosmology. The context for this phenomenon concerns a sit-
uation where the actual spacetime metric gab has large curvature fluctuations on

small scales but, nevertheless, gab can be well approximated by a metric g
(0)
ab that

does not have large curvature fluctuations. Although our analysis is valid in a
much more general context, the main situation we have in mind is where gab is

the actual metric of the universe and g
(0)
ab is a metric with FLRW symmetry.

The issue at hand in whether the small scale inhomogeneities of gab can con-

tribute nontrivially to the dynamics of g
(0)
ab . A priori, this is possible even though

γab ≡ gab−g(0)ab is assumed to be small: Einstein’s equation for gab contains deriva-
tives of γab, which need not be small even when γab is small. Consequently, the

Einstein tensor, Gab, of gab need not be close to the Einstein tensor, G
(0)
ab , of g

(0)
ab .

Thus, although gab is a assumed to be an exact solution of Einstein’s equation

with some stress-energy source Tab, it is possible that g
(0)
ab may not be close to a

solution to Einstein’s equation with a suitably averaged stress-energy source T
(0)
ab .

If this occurs, we say that there is a substantial backreaction effect of the small

scale inhomogeneities on the effective dynamics of g
(0)
ab .

In order to analyze such backreaction effects, we needed an approximation
scheme where γab may be assumed to be small but derivatives of γab need not
be small. We developed such a scheme by adopting to the non-vacuum case a
framework proposed by Burnett [5], which itself is a mathematically precise ver-
sion of Isaacson’s [6, 7] treatment of backreaction of gravitational radiation. Our
framework considers a one-parameter family of metrics gab(λ) that satisfies the
following assumptions:

(i) Einstein’s equation holds for all λ > 0, i.e., we have

(1) Gab(g(λ)) + Λgab(λ) = 8πTab(λ),

where Tab(λ) satisfies the weak energy condition, i.e., for all λ > 0 we have
Tab(λ)t

a(λ)tb(λ) ≥ 0 for all vectors ta(λ) that are timelike with respect to
gab(λ).
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(ii) There exists a smooth positive function C1(x) on M such that

(2) |γab(λ, x)| ≤ λC1(x),

where γab(λ, x) ≡ gab(λ, x) − gab(0, x).
(iii) There exists a smooth positive function C2(x) on M such that

(3) |∇cγab(λ, x)| ≤ C2(x).

(iv) There exists a smooth tensor field µabcdef on M such that

(4) wlimλ→0 [∇aγcd(λ)∇bγef (λ)] = µabcdef ,

where “wlim” denotes the weak limit.

Assumptions (i)–(iv) allow us to rigorously derive an equation by g
(0)
ab of the

form of Einstein’s equation with an additional source, t
(0)
ab , which is given by an

explicit formula in terms of µabcdef . Thus, t
(0)
ab may be interpreted as the effective

stress-energy produced by the small scale inhomogeneities. In [1], we then proved

two theorems constraining t
(0)
ab :

Theorem 1. Given a one-parameter family gab(λ) satisfying assumptions (i)–(iv)

above, the effective stress-energy tensor t
(0)
ab is traceless,

(5) t(0)aa = 0.

Theorem 2. Given a one-parameter family gab(λ) satisfying assumptions (i)–(iv)

above, the effective stress-energy tensor t
(0)
ab satisfies the weak energy condition, i.e.,

(6) t
(0)
ab t

atb ≥ 0

for all ta that are timelike with respect to g
(0)
ab .

In essence, these theorems show that only those small scale metric inhomo-
geneities corresponding to gravitational radiation can have a significant backreac-
tion effect; see [1] for further discussion. In particular, it should be noted that in

the case where g
(0)
ab has FLRW symmetry, even when short wavelength gravitational

radiation is present and backreaction effects are large, the effective stress-energy
tensor must be of the form of a P = 1

3ρ fluid, and therefore cannot mimic dark
energy.

This research was supported in part by NSF grants PHY-1202718 and PHY-
1505124 to the University of Chicago.
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The C
0-inextendibility of the Schwarzschild spacetime

Jan Sbierski

We recall that a connected Lorentzian manifold (M, g) is called Ck-inextendible, if

there does not exist a connected Lorentzian manifold (M̃, g̃) (of the same dimension
as M) with a Ck-regular metric g̃ in which M isometrically embeds as a proper
subset.

Here, we consider the maximal analytic Schwarzschild spacetime, the Penrose
diagram of which is given below:

r = 0 i+

i0

i−

I +

I−

r = 0

i+

i0

i−
I −

I+

I

II

III

IV

It is well-known that the maximal analytic Schwarzschild spacetime is C2-
inextendible. This follows directly from the observation, that every future in-
extendible timelike geodesic is either i) future complete or ii) the Kretschmann
scalar blows up along the geodesic. In [2], the following stronger statement is
proven:

Theorem 1. The maximal analytic Schwarzschild spacetime is C0-inextendible.

Before we discuss some elements of the proof, we briefly put the above theorem
in the wider context: The investigation of low-regularity inextendibility results
of Lorentzian manifolds is motivated by the strong cosmic censorship conjecture,
which can be stated as follows:

(2)

For generic asymptotically flat initial data for the vacuum
Einstein equations Ric(g) = 0, the maximal globally hy-
perbolic development is inextendible as a suitably regular
Lorentzian manifold.

Note that in the above formulation, the regularity class, in which the maximal
globally hyperbolic development is conjectured to be generically inextendible, is
not fixed. The physical motivation of the conjecture suggests, however, that the
maximal globally hyperbolic development should be generically inextendible in all
regularity classes that admit a local existence result for the Einstein equations (in
a weak form). The recent resolution of the bounded L2 curvature conjecture, [1],
thus suggests that one should prove inextendibility in a regularity class that is
in particular rougher than C2. So far, however, nearly all known inextendibility
results for Lorentzian manifolds are at the level of C2. This motivates the study
of low-regularity inextendibility criteria which is initiated in [2].
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The proof of Theorem 1 is by contradiction; one assumes that there is a C0-
extension of the maximal analytic Schwarzschild spacetime (Mmax, gmax), i.e., a

connected Lorentzian manifold (M̃, g̃) of the same dimension as Mmax with a

continuous metric g̃ together with an isometric embedding ι :Mmax →֒ M̃ , where
ι(Mmax) is a proper subset of M̃ . Under these assumptions, one shows that there
is a timelike curve leaving the maximal analytic Schwarzschild spacetime:

Lemma 3. There exists a timelike curve γ̃ : [0, 1] → M̃ such that γ̃
(
[0, 1)

)
⊆

ι(Mmax) and γ̃(1) ∈ M̃ \ ι(Mmax).

Let γ := ι−1 ◦ γ̃
∣∣
[0,1)

and let us without loss of generality assume that γ is future

directed in (Mmax, gmax). This timelike curve can leave Mmax then only ‘through’
region I, II, or IV . Since region I and IV are isometric, it suffices to distinguish
the following two cases:

(1) There exists an s0 ∈ (0, 1) such that γ
∣∣
[s0,1)

is contained in region

I.
We recall that the timelike diameter of a time-oriented Lorentzian man-

ifold (M, g) with a continuous metric g is given by

diamt(M) := sup
p,q∈M

q∈I+(p,M)

sup
σ:[0,1]→M future directed timelike

curve with σ(0)=p and σ(1)=q

{∫ 1

0

√
−g

(
σ̇(s), σ̇(s)

)
ds
}
.

Here, I+(p,M) denotes the future of p in M . One now chooses a time-

oriented neighbourhood Ũ of γ̃(1) in M̃ such that in particular

diamt

(
I+

(
γ̃(s), Ũ

)
∩

⋃

s<s′<1

I−
(
γ̃(s′), Ũ

))
<∞ for all s close to 1.

On the other hand one shows

diamt

(
I+

(
γ(s),Mmax

)
∩

⋃

s<s′<1

I−
(
γ(s′),Mmax

))
= ∞ for all s close to 1.

The future one-connectedness of region I, that is, that any two future
directed timelike curves with the same endpoints are homotopic with fixed
endpoints via timelike curves, then ensures that

ι
(
I+

(
γ(s),Mmax

)
∩

⋃

s<s′<1

I−
(
γ(s′),Mmax

))
⊆ I+

(
γ̃(s), Ũ

)
∩

⋃

s<s′<1

I−
(
γ̃(s′), Ũ

)

holds for all s close to 1, which yields a contradiction.

(2) There exists an s0 ∈ (0, 1) such that γ
∣∣
[s0,1)

is contained in region

II.
We introduce the spacelike diameter of a globally hyperbolic Lorentzian

manifold (N, g) with a continuous metric g, defined by

diams(N) := sup
Σ Cauchy

hypersurface of N

sup
p,q∈Σ

inf
γ:[0,1]→Σ

piecewise smooth curve
with γ(0)=p and γ(1)=q

∫ 1

0

√
g
(
γ̇(s), γ̇(s)

)
ds .
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One can prove the following theorem:

Theorem 4. Let (Ũ , g̃) be a (d+1)-dimensional time-oriented Lorentzian

manifold with a C0-regular metric and Ñ ⊆ Ũ an open and globally hy-
perbolic subset. Moreover, assume that Ñ is precompact in Ũ and that
ψ : Rd ⊇ B2(0) →֒ Ũ is a smooth embedding of B2(0) such that ψ|B1(0) :

B1(0) →֒ Ñ ⊆ Ũ is a Cauchy hypersurface in (Ũ , g̃).

Then one has diams(Ñ) <∞.

The final step now is to choose a time-oriented neighbourhood Ũ ⊆ M̃
of γ̃(1) and to construct a globally hyperbolicN ⊆Mmax with diams(N) =
∞ (this subset N ‘touches the curvature singularity at r = 0’) such that

ι(N) =: Ñ is precompact in Ũ and one can find a Cauchy hypersurface
which one can slightly extend as an embedded hypersurface (this is the
second assumption of Theorem 4). The above theorem then implies the

contradiction diams(Ñ) <∞. This concludes the proof of Theorem 1.

Let us conclude by mentioning that an interesting open problem in the realm
of C0-extensions is to show the conjectured C0-inextendibility of cosmological
spacetimes with a big bang singularity (in particular of the FRW spacetimes).

References

[1] Klainerman, S., Rodnianski, I., and Szeftel, J. The Bounded L2 Curvature Conjecture.
arXiv:1204.1767v2 (2012).

[2] Sbierski, J. The C0-inextendibility of the Schwarzschild spacetime and the spacelike diam-
eter in Lorentzian geometry. arXiv:1507.00601 (2015).

Stability in exponential time of Minkowski space-time with a

space-like translation symmetry

Cécile Huneau

In vacuum Einstein equations can be written

(1) Rµν = 0.

A trivial solution in R3+1 is given by Minkowski space-time equipped with the
Minkowski metric

m = −(dt)2 + (dx1)2 + (dx2)2 + (dx3)2.

In [4], Christodoulou and Klainerman proved that this solution is stable in the
following sense : for initial data (R3, ḡ, K) sufficiently smooth, such that ḡ is closed
to e, K small, and asymptotically flat, the Cauchy development is geodesically
complete, and the solution converges at infinity to Minkowski solution. An other
proof of the stability has been given later by Lindblad and Rodnianski in harmonic
gauge (see [7]). In [6], we are also interested in the stability of Minkowski space-
time, but under a particular symmetry assumption.

The translation symmetry, studied by Choquet-Bruhat and Moncrief in [3] al-
lows to reduce the 3 + 1 dimensional problem to a 2 + 1 dimensional one. More
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precisely, we look for solutions of the 3+1 vacuum Einstein equation, on manifolds
of the form Σ× Rx3 × Rt, where Σ is a 2 dimensional manifold, equipped with a
metric of the form

g = e−2φg + e2φ(dx3)2,

where φ a scalar function, and g a Lorentzian metric on Σ×R, all quantities being
independent of x3. For these metrics, Einstein vacuum equations are equivalent
to the 2 + 1 dimensional system

(2)

{
�gφ = 0
Rµν = 2∂µφ∂νφ,

where Rµν is the Ricci tensor associated to g. Here we will work in the case
Σ = R2. Then a particular solution is given by Minkowski solution itself. It
corresponds to φ = 0 and g equals to the Minkowski metric in dimension 2+ 1. A
natural question one can ask is the stability of this solution.

In [6] we prove the existence of solutions in exponential time : for initial data
for φ in some weighted Sobolev spaces, of size ε small, there exist solutions to (2)

for times t ≤ exp
(

C√
ε

)
. We recall the definition of weighted Sobolev spaces

‖u‖Hm
δ

=
∑

|β|≤m

‖(1 + |x|2)
δ+|β|

2 Dβu‖L2.

Theorem 1. Let 0 < ε < 1. Let N ≥ 40, 1
2 ≤ δ ≤ 1 and 0 < ρ < 1

2 . Let

(φ0, φ1) ∈ HN+1
δ ×HN

δ+1 such that

‖φ0‖HN+1
δ

+ ‖φ1‖HN
δ+1

= ε

There exists a constant C such that if T ≤ exp
(

C√
ε

)
and ε is small enough, there

exist a coordinate system (t, x1, x2) and a solution (φ, g) of (2) on [0, T ]×R2 such
that

(φ, ∂tφ)|t=0 = (φ0, φ1),

and we have the estimates
|gαβ −mαβ | . ε,

|gαβ −mαβ | .
ε

(1 + t)
1
2−ρ

, for r ≤ t

2
,

where mαβ is Minkowski metric on R2+1.

For a more precise statement of Theorem 1, we refer to [6].

Comments on this theorem.

• The initial data for g must satisfy the constraint equations. The only
freedom in this solving is the choice of the initial hypersurface. The con-
struction of solutions to the constraint equations for this problem is done
in [5].

• The perturbations we consider are not asymptotically flat in 3 + 1 di-
mension, since asymptotic flatness is not compatible with a translation
spacelike symmetry.



1892 Oberwolfach Report 33/2015

• The method used to prove this theorem is by using a wave gauge. In this
sense it is similar to Lindblad and Rodnianski proof of the stability of
Minkowski. However the weak decay of the solutions to the wave equation
in 2 + 1 dimension makes the problem a little more intricate.

• The solutions we construct do not tend to Minkowski metric at space-like
infinity. Instead they tend to

gb = −dt2 + dr2 + (r + b(θ)(r − t))2dθ2.

This behaviour can be seen as a generalisation of Einstein-Rosen waves (see
[2] or [1]). In the Fourier decomposition b(θ) = b0+b1 cos(θ)+b2 sin(θ)+. . .,
the component b0 corresponds to the deficit angle, and the vector (b1, b2)
can be seen as the ADM linear momentum. Both are imposed by the
resolution of the constraint equations.
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Nonexistence and Nonuniqueness Results for solutions to the Vacuum

Einstein Conformal Constraint Equations

The-Cang Nguyen

In general relativity, a space-time is a (n + 1)−dimensional Lorentzian manifold
(M, h) (i.e, h has signature − + + . . . +), with n ≥ 3 which satisfies the Einstein
equations

(1) Richµν − Rh

2
hµν =

8πG
c4

Tµν ,

where Rich and Rh are respectively the Ricci and the scalar curvatures of of h, G
is Newton’s constant, c is the speed of light and T is the stress-energy tensor of
non-gravitational fields (i.e. matter fields, electromagnetic field...).
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Einstein equations are roughly speaking hyperbolic of order 2. Hence all solu-
tions can be obtained from their initial values at some “time t=0”, the metric ĝ
induced on a Cauchy hypersurface M ⊂ M, and its initial velocity, the second
fundamental form K̂ of the embedding M ⊂ M. By the Gauss and Codazzi equa-
tions, the choice of (M, ĝ, K̂) from (1) must satisfy the so-called Einstein constraint
equations. In the vacuum case, i.e. when T ≡ 0, these equations are

(2)
Rĝ − |K̂|2ĝ +

(
trĝK̂

)2

= 0,

K̂ − dĝ trĝK̂ = 0.

Constructing and classifying solutions of this system is an important issue. For a
deeper discussion of (2) , we refer the reader to the excellent review article [1]. One
of most efficient methods to find initial data satisfying (2) is the conformal method
developed by Lichnerowicz [9] and Y. Choquet-Bruhat-Jr. York [2]. The idea of
this method is to effectively parameterize the solutions to (2) by some reasonable
parts and then solve for the rest of the data. More precisely, we assume given
some seed data: a Riemannian manifold (M, g) which we will assume compact, a
mean curvature τ (a function), a transverse-traceless tensor σ (i.e. a symmetric,
trace-free, divergence-free (0, 2)-tensor). Then we look for a positive function ϕ
and a 1−form W such that

ĝ = ϕN−2g, K̂ =
τ

n
ϕN−2g + ϕ−2(σ + LW )

is a solution to the vacuum Einstein constraint equations (2). Here N = 2n
n−2 and

L is the conformal Killing operator defined by

LWij = ∇iWj +∇jWi −
2

n
∇kWkgij ,

where ∇ is the Levi-Civita connection associated to the metric g.

Equations (2) can be reformulated in terms of ϕ and W as follows:

4(n− 1)

n− 2
∆gϕ+Rgϕ =− n− 1

n
τ2ϕN−1 + |σ + LW |2gϕ−N−1(3a)

[Lichnerowicz eq.],

−1

2
L∗LW =

n− 1

n
ϕNdτ [vector eq.],(3b)

where ∆g is the nonnegative Laplace operator and L∗ is the formal L2−adjoint of
L. These coupled equations are called the conformal constraint equations.

During the past decades, many existence and uniqueness results for (3) were
proven. When τ is constant, the system (3) becomes uncoupled (since dτ ≡ 0 in
the vector equation) and a complete description of the situation was achieved by J.
Isenberg [7]. The near CMC case (i.e. when dτ is small) was addressed soon after.
Most results can be found in [1]. For arbitrary τ however, the situation appears
much harder and only two methods exist to tackle this case. The first one, obtained
by Holst-Nagy-Tsogtgerel [6] and Maxwell [10], shows that the system (3) admits
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a solution, provided g has positive Yamabe invariant and σ 6≡ 0 is small enough.
The second one, introduced by Dahl-Gicquaud-Humbert [3], states that if τ has
constant sign and if the limit equation

(4) −1

2
L∗LV = α

√
n− 1

n
|LV |dτ

τ

has no non-zero solution V , for all values of the parameter α ∈ [0, 1], then the set
of solutions (ϕ,W ) to (3) is not empty and compact. This criterion holds true e.g.
when (M, g) has Ric ≤ −(n−1)g, with

∥∥dτ
τ

∥∥
L∞ <

√
n (see also [5] for an extension

of this result to asymptotically hyperbolic manifolds). An unifying point of view
of theses results is given in [4] and [12].

Conversely, nonexistence and nonuniqueness results for (3) are fairly rare. The
only model of nonuniqueness of solutions is constructed on the n−torus by D.
Maxwell [11] while the only nonexistence result, achieved by J. Isenberg-Murchadha
[8] and later strengthened in [3] and [4], states that the system (3) with σ ≡ 0 has
no solution when Yg ≥ 0 and dτ/τ is small enough. This assertion together with
experimentations on the torus led D. Maxwell to pose a question that whether the
non-zero assumption of σ is a necessary condition for existence of solution to the
conformal equations (3) with positive Yamabe invariant (see [11]).

In this study, we first give another version of the main theorem in [3], which
allows α in the limit equation (4) to be set to 1. More precisely, we show that

Theorem 1 (Control of the parameter). If τ has constant sign, then at least one
of the following assertions is true

(i) The conformal constraint equations (3) admits a solution (ϕ,W ) with ϕ >

0. Furthermore, the set of solutions (ϕ,W ) ∈W 2,p
+ ×W 2,p is compact.

(ii) There exists a nontrivial solution W ∈W 2,p to the limit equation

(5) −1

2
L∗LW =

√
n− 1

n
|LW |dτ

τ
.

(iii) For all continuous function f > 0 the (modified) conformal constraint
equations

4(n− 1)

n− 2
∆ϕ+ fϕ =− n− 1

n
τ2ϕN−1 + |LW |2ϕ−N−1(6a)

−1

2
L∗LW =

n− 1

n
ϕNdτ(6b)

has a (non-trivial) solution (ϕ,W ) ∈W 2,p
+ ×W 2,p. Moreover if the corre-

sponding Yamabe invariant Yg > 0, there exists a sequence {ti} converging
to 0 s.t. the conformal constraint equations (3) associated to data (g, tiτ, σ)
has at least two solutions.

Comparing with the original version of Dahl-Gicquaud-Humbert, the price to
pay for control of the parameter (α = 1) in (4) is the addition of (iii). However,
this assertion is necessary by the following theorem.



Mathematical Aspects of General Relativity 1895

Theorem 2 (Nonexistence of solution). Assume that there exists c = c(g) > 0 s.t.∣∣L
(
dτ
τ

)∣∣ ≤ c
∣∣dτ
τ

∣∣2. Let V be a given open neighborhood of the critical set of τ . If
σ 6≡ 0 and supp{σ} (M \ V , then neither the conformal constraint equations (3)
nor the limit equation (5) associated to initial data (g, τa, σ

ǫa) admits (nontrivial)

solution, provided a−1, ǫa > 0 are small enough.

It is worthy noting that [3, Proposition 1.6] provides the existence of such
assumptions. In fact, our proof for Theorem 2 is the extension of arguments in [3,
Proposition 1.6].

As direct consequences of Theorem 1 and 2, we also obtain the following results.

Corollary 3 (An answer to Maxwell’s question). Let (M, g, τ) be given in as-
sumptions of Theorem 2. If Yg > 0, then the conformal constraint equations (3)
associated to (g, τa, 0) has a (nontrivial) solution for all a > 0 large enough.

Corollary 4 (Nonuniqueness of solutions). Assume that (M, g, τ, σ, a, ǫ) is given
in Theorem 2. If Yg > 0, then there exists a sequence {ti} converging to 0 s.t.
the conformal constraint equations (3) associated to initial data (g, tiτ

a, σ
ǫa) has at

least two solutions.
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[8] J. Isenberg and N. Ó Murchadha, Non-CMC conformal data sets which do not produce so-
lutions of the Einstein constraint equations, A spacetime safari: essays in honour of Vincent
Moncrief, Class. Quantum Grav., 21, 2004, 3, S233-S241.
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The Conformal Constraint Equations on Asymptotically Euclidean

Manifolds

James Dilts

In general relativity, spacetime is described as a Lorentzian manifold with the
metric satisfying the Einstein equations, which relate curvature with matter and
energy. On a spacelike (i.e., Riemannian) hypersurface, the Gauss and Codazzi
equations reduce these to the constraint equations, which in the vacuum case are

R+ (trK)2 − |K|2 = 0

divK −∇(trK) = 0,

where R is the scalar curvature of the induced metric, K is the second funda-
mental form of the hypersurface, and all quantities are taken with respect to the
induced metric. Choquet-Bruhat proved that, given a Riemannian manifold and
a second fundamental form, there is a spacetime satisfying the Einstein equations
with that manifold as a hypersurface, with appropriate induced metric and second
fundamental form.

Since a metric and symmetric 2-tensor have 12 components (in 3 dimensions)
but there are only 4 constraint equations, the constraint equations are underde-
termined. Thus, a valuable goal is to parameterize all solutions of the constraint
equations. The main tool towards this goal, and, indeed, finding solutions of the
constraint equations in general, is called the conformal method.

I will present the Hamiltonian conformal thin sandwich version of this method,
as described by Maxwell in [1]. In this method, one is given a metric g (repre-
senting a conformal class), a function N > 0 (representing the densitized lapse),
a symmetric, trace-free, divergence-free 2-tensor σ (representing a conformal mo-
mentum with respect to the given representative g), and a function τ (representing
the mean curvature of the embedding). One then seeks to find all solutions (φ,W )
(a function and vector respectively) of the conformal constraint equations,

−8∆φ+Rφ+
2

3
τ2φ5 =

∣∣∣∣σ +
1

2N
LW

∣∣∣∣φ−7(1)

−1

2
L∗ 1

2N
LW =

2

3
dτφ6,(2)

where L is the conformal Killing operator,

LW := ∇iWj +∇jWi −
2

3
∇kW

kgij .

Given such (φ,W ), then

ḡ = φ4g

K̄ = φ−2

(
σ +

1

2N
LW

)
+
τ

3
ḡ

solve the constraint equations. The hope for a parameterization is that, given
(g,N, σ, τ), such (φ,W ) exist are are unique. Such is obviously not true, eg. if
R, τ, σ ≡ 0, but one hopes such cases are simple, as it is in the given example.
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Asymptotically Euclidean (AE) manifolds are useful for describing Riemannian
hypersurfaces of spacetimes containing compact objects such as stars. An AE
manifold contains a compact set, outside of which the manifold is diffeomorphic to
some finite number of Euclidean spaces minus a ball; each such component is called
an end. On each end, the metric and its derivatives are assumed to decay at some
rate (usually polynomial in the radial coordinate) to the Euclidean metric. For
the constraint equations, we also want K to decay sufficiently fast to zero. Thus,
we need g, σ, τ and W to decay to zero, while φ,N need to decay to constants.

Before we can understand the full system (1)-(2), we must first understand
each equation individually. The vector equation (2) is well understood on AE
manifolds. Since there are no decaying conformal Killing fields on (sufficiently
regular) AE manifolds, the operator L∗ 1

2NL is an isomorphism on appropriately
weighted Sobolev or Hölder spaces. Thus, given a φ, the vector equation is always
uniquely solvable.

The Lichnerowicz equation (1) is more complicated. We have the following
results.

• (D., Gicquaud, Isenberg) The Lichnerowicz equation is solvable if and only
if there is a ψ > 0 such that ψ4g has scalar curvature −τ2.

• (D., Maxwell) Such a ψ exists if and only if the zero set of τ2 is Yamabe
positive.

The Yamabe constant is usually given only for manifolds, but we generalize it to

Y (V ) = inf

∫
M |∇u|2 +Ru2

‖u‖26
,

where the infimum is taken over {u : u 6≡ 0, u|M\V = 0}. An important note is
that sufficiently “small” sets (which include neighborhoods of infinity) are Yamabe
positive.

The simplest case for the full system is the constant mean curvature (CMC)
case. Since τ must decay, the only such constant is τ ≡ 0. The vector equation in
this case is fixed, and so W ≡ 0. Thus, only the Lichnerowicz equation must be
solved. By our previous result, there is a solution if and only if (M, g) is Yamabe
positive. This turns out to be a topological restriction; as for closed manifolds,
not all AE manifolds allow Yamabe positive metrics. Indeed, the restrictions are
essentially the same. For instance, T 3 with a point removed does not allow a
Yamabe positive AE metric.

The next simplest is perturbations off these solutions, i.e., the near-CMC case.
Choquet-Bruhat, Isenberg and York showed one can perturb off these solutions
using the implicit function theorem. However, this case is still restricted to Yamabe
positive manifolds, and requires |τ |+ |dτ | to be sufficiently small.

A usual strategy for solving the full system is to use a fixed point theorem.
Given a φ, one solves the vector equation for W , then uses that W to find a
solution to the Lichnerowicz equation. Under certain conditions, one can show
this map has a fixed point. The rest of the results are proved using this method.
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A different kind near-CMC condition leads to solutions for all Yamabe classes. If
‖dτ‖ is sufficiently small compared to τ2, then the conformal constraint equations
have a solution, as proven by D., Isenberg, Mazzeo and Meier. Unfortunately,
since τ must decay to zero, there are not τ ’s with ‖dτ‖ arbitrarily small compared
to τ2, and so this condition may be vacuous, except trivially (τ ≡ 0).

For arbitrary τ , we also showed that for (M, g) Yamabe positive and σ suffi-
ciently small, there is a solution. However, a later result of Nguyen showed that one
can scale τ and σ in opposite directions if one scales the solutions as well. Thus,
these solutions are really rescalings of the near-CMC perturbation solutions.

The final general result is the first that guarantees that Yamabe nonpositive
AE manifolds allow any solutions of the conformal constraint equations. For large
r > 0, τ ’s that are constant on Br and vanish outside B2r and behave well in
between give rise to solutions of the conformal constraint equations. Perturbations
of these τ ’s similar lead to solutions, so the zero set of τ is not essential.

Other techniques, such as the limit equation of Dahl, Gicquaud and Humbert
have been attempted, but so far have not lead to any results.
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The vector field method for transport equations with applications to

classical and relativistic systems

Jacques Smulevici

(joint work with David Fajman, Jérémie Joudioux)

The vector field method of Klainerman [1] is a very powerful tool to obtain robust
decay estimates for solutions to wave equations. The aim of our work is to explain
how such a method can be adapted to the study of kinetic transport equations.
Consider for instance the relativistic transport equations

(1)
[(
m2 + |v|2

)1/2
∂t + vi∂xi

]
f = 0,

where the parameter m ≥ 0 is the mass of the particles and f = f(t, x, v) with
x ∈ Rn and v ∈ Rn if m > 0 corresponding to massive particles , v ∈ Rn \ {0}
if m = 0, corresponding to massless particles. Since (1) is a transport equation,
f is preserved along the characteristics associated to the equation. However, the
macroscopic quantities obtained by integrating f in v, such as

(2) ρ[f ](t, x) ≡
∫

v

f(t, x, v)
dv√

m2 + |v|2
,

are only conserved as functions of t in L1
x, and will enjoy decay properties as

t → +∞ in L∞
x . To prove this, the standard method, which follows earlier work

of Bardos-Degond for the classical transport operator [2], consists in writing ex-
plicitly the solution in terms of its initial data using the conservation of f along
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characteristics, and then estimating directly the v-integral in (2). For the massive
case m > 0, this leads to an estimate of the form, for all t > 0 and all x ∈ Rn

x ,

ρ[|f |](t, x) ≤ C(V )

tn
||f(t = 0)||L1(Rn

x×Rn
v )
,

where C(V ) is a constant depending on an upper bound V of the size of the
support in v of the initial data, for instance, assuming the data to be smooth and
compactly supported,

V = sup {λ ∈ R+ : ∃(x, v) ∈ Rn
x × Rn

v : λ = |v| and f(0, x, v) 6= 0} .
Note that C(V ) → +∞ as V → +∞, so that, unless more refined estimates are
used, this method requires compact support of the initial data to work. We prove
instead the estimate

Theorem 1 (Decay estimates for velocity averages of massive distributions, see
[3]). For any regular distribution function f solution to (1) with m > 0, any

x ∈ Rn and any t ≥
√
1 + |x|2, we have

(3) ρ[|f |](t, x) ≤ C

(1 + t)n
∑

|α|≤n

Zα∈P̂
|α|

∣∣∣
∣∣∣Ẑα(f)|Hn

1 ×Rn
v
vαν

α
1

∣∣∣
∣∣∣
L1(Hn

1 ×Rn
v )
,

where Hn
1 denotes the unit hyperboloid Hn

1 :=
{
(t, x) ∈ Rt × Rn

x / 1 = t2 − x2
}
,

Ẑα(f)|Hn
1 ×Rn

v
is the restriction to Hn

1 × Rn
v of Ẑα(f), vαν

α
1 is the contraction of

the 4-velocity (
√
m2 + |v|2, vi) with the unit normal ν1 to Hn

1 and where the Ẑα are
differential operators obtained as a composition of |α| vector fields of the algebra

P̂.

The algebra of vector fields P̂ is obtained by taking the complete lifts of the
usual Killing vector fields of Minkowski space, a classical operation in differential
geometry. For instance, the complete lift of a rotation vector field xi∂xj − xj∂xi

is given by the vector field xi∂xj − xj∂xi + vi∂vj − vj∂vi .
Note that in the above estimates, there is no requirements of compact support in

v of the initial data. Moreover, using finite speed of propagation type arguments,
one can easily see that for solutions arising from smooth initial data of compact
support in x and decaying sufficiently fast in v (but not necessarily of compact
support in v) given at t = 0, the norm on the right-hand side of (3) is finite, so
that the usage of hyperboloids is mostly technical.

In the case of massless particles (m = 0), a similar estimate holds with the
decay rates being weaker near the light-cone, as in the case of the wave equation.

In the second part of the talk, I then presented several applications of these
decay estimates to the Vlasov-Nordström systems, also contained in our article
[3]. This system is composed of a relativistic transport equation coupled to a
scalar wave equation. When the particles are massless, our decay estimates lead
to sharp asymptotics of the solutions for all data in dimension n ≥ 4 and for
small data in dimension n = 3 where a version of the null condition is uncovered
and exploited to close the estimates. This should be compared with the work of
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Dafermos on the study of compactly supported small data solutions spherically
symmetric massless Einstein-Vlasov system [4] and its recent, major, extension to
the full stability of the Minkowski space for the same system without symmetry
assumptions by Taylor [5].

In the massive case, our method allows us to obtain sharp asymptotics of the
solutions in dimension n ≥ 4 under some small data assumptions. Even with the
extra decay coming from the high dimensions, a special, new treatment is needed to
close the high order estimates. The case n = 3 requires a refinement of our methods
due to slower decay of the non-linear terms. One possible approach consists in
using modified vector fields, which are perturbations of the standard vector fields
with the perturbations depending themselves on the solutions, in order to improve
the commutation relations. This strategy has already been implemented to study
small data solutions of Vlasov-Poisson system. For this classical system, one can
use a vector field method similar to the one described above. Again, an approach
using the standard vector fields (this time associated with the Galilean invariance
of the equations) can only handle the dimensions n ≥ 4. However, we showed in
[6] how modified vector fields could be used to treat the n = 3 case and it is very
likely that these techniques can be extended to treat the n = 3 Vlasov-Nordström
system.

As a conclusion, we believe that we now possess sufficiently robust techniques
to study other non-linear systems beyond the Vlasov-Nordström system, such as
the massive Einstein-Vlasov equations (or the massless Einstein-Vlasov equations
without any compactness assumptions on the initial data).
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Local Energy Decay for Scalar Fields on Time Dependent

Non-trapping Backgrounds

Daniel Tataru

(joint work with Jason Metcalfe, Jacob Sterbenz)

The aim of this work is to contribute to the understanding of local energy decay
bounds for the wave equation on non-trapping, asymptotically flat space-times.
From a relativistic perspective, this is a stepping stone toward understanding the
similar problem on black hole backgrounds.

This is a well understood question if one considers small perturbations of the
Minkowski space-time. Our aim here, instead, is to consider large perturbations.
In that, our goals are two-fold.

First we consider the stationary case, i.e. where the coefficients are time in-
dependent. There we provide a full spectral characterization of the local energy
decay estimates in terms of the eigenvalues and resonances of the corresponding
elliptic problem, which can be viewed as poles/singular points of an associated
resolvent operator. There are three such objects which are of interest to us:

• Complex eigenvalues outside the continuous spectrum R and in the lower
half-space,

• Zero eigenvalues/resonances, and
• Nonzero resonances embedded inside the continuous spectrum.

Our main result here asserts that local energy decay holds iff none of these three
obstructions occurs.

One significant simplification occurs in the symmetric case, where no nonzero
resonances can occur inside the continuous spectrum. There our results are con-
sistent with the standard spectral theory for self-adjoint elliptic operators. In that
case, we also consider the problem of continuity of our spectral assumptions along
one parameter families of operators; the main idea being that complex eigenvalues
can only emerge via the zero mode. If complex eigenvalues do occur, a slightly
more complicated picture emerges, and the flow splits into two finite dimensional
subspaces where exponential growth, respectively decay occurs, and a bulk part
with uniform energy bounds.

Secondly, we study the case of time dependent operators and show that the
results in the stationary case are stable with respect to perturbations. More pre-
cisely, we consider almost symmetric, almost stationary operators which satisfy a
quantitative zero spectral assumption uniformly in time, but allowing for eigen-
values off the real axis. Then we establish an exponential trichotomy, splitting the
energy space as a direct sum of three subspaces as follows:

• A finite dimensional subspace of spatially localized, exponentially increas-
ing solutions, associated to eigenvalues in the lower half-space

• A finite dimensional subspace of spatially localized, exponentially decreas-
ing solutions, associated to eigenvalues in the upper half-space
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• A remaining infinite dimensional subspace of bounded energy solutions
with good local energy bounds.

If there are no eigenvalues off the real axis then only the last subspace is nontrivial,
and local energy decay holds globally.

One key intermediate step of our approach here is to establish a weaker bound,
which we call two point local energy decay, and which uses energy bounds at both
ends of the time interval. This has the advantage that it allows for nonreal eigen-
values; however, it prohibits nonzero resonances in the symmetric case. The proof
of this weaker bound is naturally split into three ranges:

• Low time frequencies, where we argue perturbatively starting from the
zero resolvent bound.

• Medium time frequencies, where we rely heavily on Carleman type esti-
mates.

• Large time frequencies, where we use positive commutator estimates based
on the nontrapping property of the associated Hamilton flow.
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Causality, hyperbolicity and shock formation in Lovelock theories of

gravity

Harvey Reall

(joint work with Norihiro Tanahashi, Benson Way, Giuseppe Papallo)

The Einstein equation relates the curvature of spacetime to the energy-momentum
tensor of matter:

(1) Gab + Λgab = 8πTab
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The form of the LHS of this equation is dictated by Lovelock’s theorem [1]. This
states that, in four dimensions, the most general symmetric, divergence-free, sec-
ond rank tensor that is a function only on the metric and its first and second
derivatives, is a linear combination of the Einstein tensor and a cosmological con-
stant term.

In d > 4 dimensions, this result is not valid and Lovelock showed [1] that
additional terms can appear on the LHS:

(2)
∑

p≥2

kpδ
ac1...c2p
bd1...d2p

Rc1c2
d1d2 . . . Rc2p−1c2p

d2p−1d2p = 8πT a
b

where kp are constants. The antisymmetry ensures that the sum is finite: 2p+1 ≤
d. We normalize so that k1 = −1/4 and define k0 = Λ so that we recover (1) when
d = 4. Theories with the p ≥ 2 terms are referred to as Lovelock theories. The
Einstein equation is obtained only if one adds the additional criterion that the
equation of motion should be linear in second derivatives of the metric, i.e. that
the equation of motion is quasilinear.

Causal properties of a PDE are determined by its characteristic hypersurfaces.
In GR, a hypersurface is characteristic iff it is null. It has been known for some
time that this is not the case in Lovelock theories: characteristic hypersurfaces
can be spacelike or null so gravity can propagate faster, or slower, than light
[2, 3]. However, rather little is known about the properties of these characteristic
hypersurfaces so in Ref. [4] we determined such surfaces for various solutions of
Lovelock theories.

First we considered Ricci flat spacetimes with a Weyl tensor of algebraic type
N. Any such spacetime is a solution of any Lovelock theory. We showed that there
exist d(d− 3)/2 Lorentzian metrics, which we called ”effective metrics”, such that
a surface is characteristic iff it is null w.r.t. one of the effective metrics. (Note
that d(d− 3)/2 is the number of degrees of freedom of the gravitational field in d
dimensions. Equivalently, it is the number of distinct physical polarizations of a
graviton.) The null cones of the effective metrics form a nested set so, for this class
of spacetimes, causality is determined by the effective metric with the outermost
null cone.

Second we considered static, spherically symmetric, black hole solutions of Love-
lock theories. We determined the characteristic hypersurfaces by considering the
equations governing linearized perturbations of such black holes. Such perturba-
tions can be decomposed into scalar, vector and tensor parts, and each satisfies
a decoupled ”master equation”. From this one can determine the characteristic
surfaces. For each type of perturbation (scalar, vector or tensor) one can define
an effective metric. A hypersurface is characteristic iff it is null w.r.t. one of these
effective metrics.

For a large enough black hole (compared to the length scales defined by the
Lovelock coupling constants), the effective metrics are all Lorentzian and their
null cones for a nested set. However, for a small black hole it can happen that one
of the effective metrics becomes degenerate at a certain radius, outside the event
horizon, and changes signature at smaller radius. This implies that the equation
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of motion is not hyperbolic in such spacetimes. The initial value problem for linear
perturbations is not well-posed when this happens.

Such spacetimes are stationary so the violation of hyperbolicity is present for all
time. However, it is interesting to ask whether hyperbolicity-violation can occur
dynamically, i.e., if one starts from initial data for which the equation of motion
is hyperbolic, can the equation become non-hyperbolic under time evolution? The
answer is yes: one can consider a large black hole solution, for which the equation
of motion is hyperbolic everywhere outside the horizon. Inside the black hole,
the equation of motion becomes non-hyperbolic in a region near the singularity.
Hence if one starts with the black hole initial data on a surface of constant t
(i.e. an Einstein-Rosen bridge) then the equation of motion is initially hyperbolic
but becomes non-hyperbolic after a certain time. Now, in analogy with cosmic
censorship, we can ask whether this phenomenon is generic, i.e., what happens if
we perturb the initial data? Ongoing work with G. Papallo indicates that generic
linear perturbations blow up immediately inside the region where hyperbolicity is
violated. This suggests that nonlinear effects may prevent, generically, violation
of hyperbolicity.

In Ref. [5] we discussed shock formation in Lovelock theories. We considered
solutions which are smooth apart from a discontinuity in curvature across a hy-
persurface. Such a hypersurface is necessarily characteristic. We showed that the
amplitude of the discontinuity is governed by a transport equation: an ODE along
each bicharacteristic curve. For GR, this equation is linear but in a Lovelock the-
ory it is nonlinear. One can show that the solution will blow up in finite time if the
initial amplitude is large enough, unlike in GR. We argued that this is analogous
to shock formation in a compressible perfect fluid. However, unlike the case of
a fluid (in 3+1 dimensions), it seems to be a large data effect. Indeed, a heuris-
tic argument suggests that Minkowski spacetime is nonlinearly stable in Lovelock
theories.

The most important outstanding issue concerning these theories is their well-
posedness. Can one establish local existence and uniqueness of solutions, and
continuous dependence on initial data? Of course one would have to restrict to
initial data for which the equation of motion is hyperbolic. Alternatively, could
one demonstrate that these theories are not well-posed?
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A priori estimates for the relativistic Euler equations

Todd A. Oliynyk

The relativistic Euler equations are defined by

∇µT
µν = 0

where

T µν = (ρ+ p)vµvν + pgµν

is the perfect fluid stress energy tensor,

g = gµνdx
µdxν

is a Lorentzian metric of signature (−,+,+,+), ∇µ is the Levi-Civita connection
of gµν , v

µ is the fluid four-velocity normalized by

gµνv
µvν = −1,

ρ is the proper energy density of the fluid, and p is the pressure.
Barotropic liquids are characterised by equations of state

ρ = ρ(p)

satisfying

ρ(0) = ρ0 > 0

for some positive constant ρ0. Since timelike matter-vacuum boundaries for fluid
bodies with compact support are defined by the vanishing of the pressure, it follows
that liquid bodies must have a jump discontinuity in the proper energy density at
the fluid-vaccuum interface.

The free nature of the matter-vacuum boundary presents severe analytic dif-
ficulties that must be overcome in order to establish the local-in-time existence
and uniqueness of solutions representing dynamical compact liquid bodies. In the
non-relativistic setting, these analytic difficulties have been handled and a number
of existence and uniqueness results are available; for example, see [5, 2, 1, 3, 4, 6]
and references therein. In contrast, there is only one general, local-in-time exis-
tence and uniqueness result that applies to relativistic liquids and is given in [8].
In that article, the local existence and uniqueness of solutions is established using
the theory of symmetric hyperbolic systems. The energy estimates derived from
the symmetric hyperbolic theory involve a derivative loss that is repaired using a
Nash-Moser iteration scheme. The derivative loss is due to sub-optimal estimates
near the boundary and results in a high requirement on the regularity of the initial
data in order to close the iteration scheme. We also note that derivative loss in the
energy estimates has consequence beyond regularity issues such as in implementing
summation-by-parts numerical schemes that are based on the energy estimates.

Here, we report on a new method for deriving a priori estimates for sufficiently
smooth solutions of the relativistic Euler equations that represent dynamical com-
pact liquid bodies. A precise statement of the a priori estimates can be found
in [7]. The approach we take to establishing a priori estimates starts by showing
that, in Lagrangian coordinates, sufficiently smooth solutions of the relativistic
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Euler equations satisfy a system of non-linear wave equations and acoustic bound-
ary conditions. The advantage of our wave formulation is that it is well suited to
deriving energy estimates without derivative loss in the presence of a free matter-
vacuum boundary. This is due, in part, to the wave structure of the equations,
and in part, to the nature of the acoustic boundary conditions. Indeed in [7], we
first establish a local existence and uniqueness theory for linear systems of wave
equations with acoustic boundary conditions. This linear theory then provides the
key technical result needed to establish our a priori estimates. We anticipate that
this linear theory may also be of independent interest as it can be applied more
generally to other systems of wave equations with acoustic boundary conditions.
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Weakly asymptotically hyperbolic manifolds and the constraint

equations

Paul T. Allen

(joint work with James Isenberg, John M. Lee, Iva Stavrov Allen)

We discuss a weak version of asymptotic hyperbolicity, recently introduced in [1],
and present results of [2], in which solutions to the Einstein constraint equations
are constructed in the weakly asymptotically hyperbolic setting. We emphasize
that [1, 2] contain a number of results beyond those presented here.

First, recall the “usual” notion of asymptotic hyperbolicity: Assume M is the
interior of a compact 3-manifold M with boundary ∂M and fix a C∞ defining
function ρ : M → [0,∞) such that ρ−1(0) = ∂M and dρ 6= 0 along ∂M . A
Riemannian metric g is Ck,α conformally compact if g = ρ2g extends to a Ck,α

metric onM ; such a metric is Ck,α asymptotically hyperbolic if |dρ|g → 1 as ρ→ 0,
thus ensuring that the curvature operator of g approaches −Id at ∂M .
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In general relativity, asymptotically hyperbolic metrics arise in the study of
asymptotically flat spacetimes. If such a spacetime is conformally compact (of
suitable regularity) then the metric g induced on a spacelike slices transversely
meeting future null infinity is asymptotically hyperbolic. If K is the second fun-
damental form induced on such a slice, then (g,K) necessarily satisfy the Einstein
constraint equations

(1) R[g]− |K|2g + (trgK)2 = 0, DivgK − d(trgK) = 0.

(For simplicity we work in vacuum; in [2] Maxwell fields and fluid sources are also
considered.) Our goal here is to construct hyperboloidal initial data sets—solutions
(g,K) to (1) whose asymptotic geometry is compatible with having spacetime
development admitting a conformal compactification at future null infinity.

We restrict to the constant-mean-curvature (CMC ) case; under our sign con-
vention this implies that K = −g +Σ, where trgΣ = 0. We construct initial data
sets by means of the conformal method: We fix a free data set (λ, µ), consisting of
a Riemannian metric λ and a symmetric traceless covariant 2-tensor µ, and seek
a solution to (1) of the form

(2) g = φ4λ K = −g + φ−2(µ+DλW );

here the function φ and vector field W are unknown, and DλW = 1
2LWλ −

1
3 (DivλW )λ. The fields (g,K) given by (2) satisfy (1) if φ and W satisfy

(3) LλW = −Divλµ, ∆λφ =
1

8
R[λ]φ− 1

8
|µ+DλW |2λφ−7 +

3

4
φ5,

where LλW = D∗
λDλW = −Divλ(DλW )♯ is the self-adjoint vector Laplace operator

and our convention for the scalar Laplacian is ∆λφ = trλHessλφ.
The existence and regularity of solutions to (3) has been previously studied

under the hypothesis that λ is C2 asymptotically hyperbolic in [6, 7]. These works
make clear that if the free data λ and µ satisfy λ = ρ2λ, µ = ρµ ∈ C∞(M), then
the resulting fields g = ρ2g and Σ = ρΣ are smooth on M , but may not extend
smoothly to M . Rather, “typical” CMC solutions to (1) have polyhomogeneous
asymptotic expansions at ρ = 0, given in terms of powers of both ρ and log ρ.

The origins of the log terms in these expansions is examined in [5], where it is
shown that if (g,K) is a solution to (1) with asymptotically hyperbolic geometry,
then in order for any corresponding spacetime development to admit a conformal
infinity it is necessary that the shear-free condition

(4) Σ
∣∣
∂M

=

[
Hessg(ρ)−

1

3
(∆gρ)g

]

∂M

be satisfied. This suggests that, when working in the conformally compact setting,
the condition (4) be required for initial data to be considered physically reasonable.

In [5] it is shown that the CMC solutions to (1) constructed in [6] from C∞

conformally compact free data does not generically (with respect to the “unphysi-
cal” C∞(M) topology) satisfy (4). However, if we consider the “physical” Ck(M)
topology given by the metric g we have the following.
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Theorem 1 (joint with Iva Stavrov Allen; see [3]). Suppose (g,K) is a polyhomo-
geneous asymptotically hyperbolic CMC solution to (1). Then for each sufficiently
small ε > 0 there exists a solution (gε,Kε) to (1) that satisfies (4), is smoothly
conformally compact (i.e. gε,Σε ∈ C∞(M)), and is such that gε → g and Kε → K
in the Ck(M) topology for any k ≥ 0.

The gap between the Ck(M) and Ck(M) topologies motivates us to seek a space
of metrics g on M (preferably an open subset of a Banach space) such that (i) the
shear-free condition (4) is closed, (ii) is compatible with elliptic theory suitable for
solving (3), and (iii) is as weak as possible—in particular, we would like to consider
tensor fields having considerably less regularity at ∂M than in the interiorM . We

remark that the weighted spaces Ck,α
δ (M) = ρδCk,α(M) are insufficient—if the

weight δ is sufficiently high for Hessg(ρ) to be defined at ∂M , then the conformal
structure at ∂M cannot vary continuously.

To define a suitable class of metrics, we fix a background metric h on M such
that |dρ|h = 1 along ∂M , and denote by ∇ the associated Levi-Civita connection.
We then consider metrics g = ρ−2g on M such that

(5) g ∈ Ck,α
2 (M), ∇g ∈ Ck−1,α

3 (M).

The regularity (5) implies that g ∈ C0,1(M), and thus that |dρ|g ∈ C0,1(M). If (5)
holds and if |dρ|g = 1 along ∂M , then we say that g is weakly Ck,α asymptotically
hyperbolic; denote the collection of such metrics by Mk,α;1.

The mapping properties of elliptic operators arising from asymptotically hy-
perbolic metrics are studied in [9, 4, 8], with applications to (1) addressed in [6];
all these results assume metrics are at least C2 conformally compact. In [1] we
generalize the Fredholm results of [8] to the weakly asymptotically hyperbolic case.

Theorem 2. Suppose P is a second-order geometric (in the sense of [8]) self-

adjoint elliptic operator determined by g ∈ Mk,α;1; let P̆ be the corresponding
operator on hyperbolic 3-space H. Suppose also that there exists compact K ⊂ M
such that ‖u‖L2(M) ≤ C‖Pu‖L2(M) for all u ∈ C∞

c (M \ K). Finally, suppose

P̆ : Ck,α
δ (H) → Ck−2,α

δ (H) is Fredholm. Then so is P : Ck,α
δ (M) → Ck−2,α

δ (M).

One may in fact explicitly compute those values of δ for which P is Fredholm;
see [1]. In [2] we use Theorem 2 to construct weakly initial data.

Theorem 3. If (λ, µ) ∈ Mk,α;1×Ck−1,α
1 (M) then there exists unique φ,W solving

(3) such that (g,K) given by (2) satisfy (1), with g ∈ Mk,α;1 and Σ ∈ Ck−1,α
1 (M).

The solutions to (1) given by Theorem 3 are much less regular than those
constructed in [6]—if g ∈ Mk,α;1 then Hessg(ρ) ∈ L∞(M) and the shear-free
condition need not even be defined. Thus we introduce Mk,α;2, those metrics

g ∈ Mk,α;1 such that ∇2g ∈ Ck−2,α
4 (M); for such metrics Hessg(ρ) ∈ C0,1(M).

We furthermore introduce a conformally covariant tensor Hλ̄(ρ) that character-
izes the shear-free condition and seek solutions to (3) with µ = ρ−1Hλ̄(ρ) + ν.

Theorem 4. If (λ, ν) ∈ Mk,α;2×Ck−1,α
2 (M) then there exists unique φ,W solving

(3) such that (g,K) satisfy (1) and (4), with g ∈ Mk,α;2 and Σ ∈ Ck−1,α
1 (M).
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In fact Σ = ρΣ ∈ C0,1(M), thus ensuring (4) is defined. Furthermore, (λ, ν) 7→
(g,K) is a continuous projection to an appropriate space of hyperboloidal initial
data.
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Linear and non-linear wave equations on black hole backgrounds

Stefanos Aretakis

(joint work with Yannis Angelopoulos and Dejan Gajic)

One of the main outstanding open problems in mathematical general relativity
is the stability of the Kerr black hole family in the context of the initial value
problem to the Einstein-vacuum equations. The Kerr family is a two-parameter
family Ma,M , 0 ≤ |a| ≤ M, of stationary axisymmetric spacetimes which contain
astrophysically relevant black hole regions.

As a first step in resolving the above conjecture one needs to investigate the evo-
lution of solutions to linear and non-linear wave equations on such backgrounds. In
this direction, Dafermos and Rodnianski [12], Blue and Andersson [1] and Tataru
and Tohaneanu [21] have independently provided quantitative decay rates for so-
lutions to the wave equation in the exterior region of slowly rotating Kerr black
holes. Dafermos, Rodnianski and Shlapentokh-Rothman [13] presented analogous
rates for the general subextremal Kerr family. These decay rates hold for solutions
and all their derivatives up to and including the event horizon. Related non-linear
results have been obtained by Luk [16] and Yang [22]. Moreover, recent work of
Dafermos, Holzegel and Rodnianski has established the stability of the linearized
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Einstein equations around the Schwarzschild sub-family which corresponds to the
limit |a| → 0.

This report addresses the above stability conjecture in the extremal limit |a| →
M by investigating the evolution of linear and non-linear scalar fields on such
backgrounds. Extremal black holes are characterized by the vanishing of the surface
gravity on the event horizon. Geometrically, this means that if V is Killing and
null normal on the horizon then

∇V V = 0.

For the problem at hand, the fundamentally new aspect (compared to the subex-
tremal case) is the degeneracy of the so-called redshift effect on the horizon.

For simplicity in this report we will only consider the extremal Reissner–Nord-
ström (eRN) spacetimes, which constitute a one-parameter spherically family of
spherically symmetric (extremal) black holes MM , M > 0, which satisfy the
Einstein–Maxwell equations.

Part I: The linear wave equation on eRN

The story begins with the following Morawetz (integrated local energy decay)
estimate [8, 9] for solutions ψ to the wave equation on eRN:

(1)

∫ ∞

0

dt

∫

Σt

(r − rhor) · (r − rtrap)
2 · r−σ · |∂ψ|2 ≤ Cσ

∫

Σ0

|∂ψ|2,

where σ > 4 and {r = rhor} is the location of the event horizon and {r = rtrap}
of the trapped geodesics.

The degenerate at infinity factor r−σ can be removed by restricting to hyper-
boloidal slices Σt, which terminate at null infinity I+, and inserting the growing
weight r on the right hand side. This result was first demonstrated by Dafermos
and Rodnianski [11] and has led to the establishment of dispersive estimates for a
wide class of hyperbolic equations.

The degenerate factor (r− rtrap)2 is a feature of hyperbolic trapping that takes
place in the intermediate region {rhor + ǫ ≤ r ≤ R} for some large R > 0 and small
ǫ and can be removed by adding the initial energy of higher order derivatives of ψ
on the right hand side.

On the other hand, the degenerate at the event horizon factor (r − rhor) is an
entirely new aspect of the problem in the extremal case. Let us postpone the
detailed analysis of this factor and focus first on the corollaries of this estimate.

It can be shown that if ǫ > 0 then all (translation-invariant) derivatives ∂kψ
decay for r ≥ rhor+ǫ asymptotically towards the future. We further obtain |ψ| → 0
along the event horizon H. On the other hand, higher order stability results do
not hold along H. Indeed, it can be shown that if Y is a translation-invariant
transversal to the horizon vector field then the quantity

H [ψ] =

∫

Sv

Y ψ +
1

M
ψ
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is conserved, i.e. independent of v, where Sv is a foliation of spherical sections
of the horizon. Futher extensions of this conservation law have been obtained in
[10, 15, 17].

The above immediately imply that for generic initial data we have Y ψ does

not decay along the horizon. Furthermore, we obtain the following blow-up

result: |∂kψ| → ∞, k ≥ 2 along H.
In collaboration with Angelopoulous and Gajic [7] we have recently shown that

the degeneracy of the Morawetz estimate (1) at the horizon can be removed if
one loses derivatives (reminiscent of the structure of hyperbolic trapping) and
if the conserved quantity H [ψ] = 0. If, on the other hand, H [ψ] 6= 0 then∫
rhor≤r≤rhor+ǫ |∂ψ|2 = ∞. This work crucially uses an appropriate singular vec-

tor field construction and exploits a special structure of the wave operator on
extremal backgrounds. On other hand, we have shown shown that degenerate
horizons exhibit higher order stable trapping since no higher order Morawetz es-
timate holds: for generic smooth initial data (supported away from H) we have∫
rhor≤r≤rhor+ǫ |∂kψ|2 = ∞, k ≥ 2.

Part II: Non-linear wave equations with null condition on eRN

Clearly all previous instabilities pose serious difficulties in proving global existence
for non-linear equations. The first global well-posedness result for non-linear wave
equations on such backgrounds was established by Angelopoulos [2] by restricting
in spherical symmetry.

The general case is significantly harder. Specifically, in view of the growth
of several higher order derivatives of ψ, one needs to derive improved decay for
the quantities that do decay (e.g. for ψ itself). The required improved rates had
previously been predicted in the numerical analysis of Reall et al [14] and Ori [19].

In collaboration with Angelopoulos and Gajic, we have derived a new physical
space method [6] that allows us to obtain sharp quantitative decay rates. This
result is also of use for the study of linear waves in the interior of the black hole
region (c.f. upcoming work of Gajic).

In fact, in an upcoming series of papers [3, 5, 4] we have shown that our method
allows us to obtain sharp lower and upper bounds for the radiation field on spher-
ically symmetric asymptotically flat spacetimes. Tataru [20] had previously ob-
tained sharp estimates for the radiation field in a more general context using,
however, a large number of derivatives. Our method avoids the use of the funda-
mental solution and hence it is geared towards non-linear applications.

Returning to the study of non-linear wave equation on degenerate backgrounds,
in collaboration with Angelopoulos we have obtained the following result:

Consider the equation

�gψ = A(ψ)gαβ∂αψ∂βψ,

for A a bounded function and with small enough data given on a spacelike hy-
persurface crossing the event horizon H+. Then, without the assumption of
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spherical symmetry, we have global well-posedness in the domain of outer com-
munications up to and including H+ of an extremal Reissner–Nordström space-
time, and the following asymptotic behaviour:

(1)

‖ψ(t)‖L∞ ≤ 1

t1−δ
as t→ ∞, ‖∂ψ‖L∞ ≤ C,

(2)

|∂kψ| → ∞ for k ≥ 2 across the event horizon.

Numerical results on the instability of eRN in the fully non-linear context have
been obtain by Murata, Reall and Tanahashi [18].
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Photon sphere uniqueness and the static n-body problem

Carla Cederbaum

Generalizing a phenomenon well-know in Schwarzschild and other spherically sym-
metric spacetimes, we give a geometric definition of photon spheres in static asymp-
totically flat spacetimes [2]. Photon spheres are relevant in the analysis of black
hole stability and in gravitational lensing. We then use this definition to prove
that static vacuum asymptotically flat spacetimes possessing a single [2] or multi-
ple photon spheres – together with Gregory J. Galloway [3] – must be isometric to
the Schwarzschild spacetime in the exterior region of the photon sphere. In partic-
ular, multiple photon spheres cannot occur in the same static vacuum asympt. flat
spacetime.

The two methods used in these two approaches can be extended to the elec-
trostatic electro-vacuum setting, which has been done by Yazadjiev and Lazov [6]
for a single and in joint work with Gregory J. Galloway [4] for multiple photon
spheres, respectively. Here, the unique electro-vacuum asymptotically flat space-
time possessing an electrically charged photon sphere is the Reissner-Nordström
spacetime, which is again spherically symmetric.

The uniqueness proofs in [2, 6] adapt and generalize the single (electro-)static
black hole uniqueness proofs going back to Israel and will not be further dis-
cussed here. The proofs in [3, 4] modify and generalize arguments given for static
black hole uniqueness by Bunting and Masood-ul-Alam [1] in the vacuum and by
Masood-ul-Alam [5] in the electro-vacuum case, see below.

The uniqueness results for multiple photon spheres [3, 4] can easily be extended
to include additional non-degenerate Killing black hole horizons. They can be
re-interpreted as saying that there are no (electro-)static configurations of k ∈ N

black holes and n ∈ N ‘very compact’ bodies with k + n > 1. Here, a body is
considered ‘very compact’ if it is surrounded by a photon sphere; a property that
astrophysicists expect to hold for suitably compact bodies.

In the following, we will restrict our attention to the non-charged case for sim-
plicity of the exposition. We define a photon sphere P3 in a (standard) static
spacetime (R ×M3,−N2dt2 + g) to be a timelike umbilic hypersurface on which
the static lapse function N – the length of the static Killing vector field – is con-
stant. Here, umbilicity captures that any null geodesic initially tangent to P3 is
tangent to P3 throughout. Constancy of N ensures that every null geodesic tan-
gent to P3 has constant potential energy logN , or, equivalently, that its energy
E – and color/frequency ν – as observed by the static observers is constant. The
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latter property is essential to characterize photon spheres as will be shown in joint
work with Gregory J. Galloway elsewhere.

From this definition and the vacuum Einstein equations, we then derive quasi-
local geometric properties of a photon sphere in a static vacuum spacetime:

Proposition 1 (Cederbaum [2]). Let (R ×M3,−N2dt2 + g) be a static vacuum
spacetime and let (P3, p) →֒ (R×M3,−N2dt2 + g) be a photon sphere. Write

(1)
(
P3, p

)
=

(
R× Σ2,−N2dt2 + σ

)
=

I⋃

i=1

(
R× Σ2

i ,−N2
i dt

2 + σi
)
,

where each P3
i = R × Σ2

i is a connected component of P3. Then the embedding
(Σ2, σ) →֒ (M3, g) is totally umbilic with constant mean curvature Hi on the
component Σ2

i . The scalar curvature of the component (Σ2
i , σi),

σiR, is a non-
negative constant, namely σiR = 3

2H
2
i . Moreover, the normal derivative of the

lapse function N in direction of the outward unit normal ν to Σ2, ν(N), is also
constant on every component (Σ2

i , σi), ν(N)i := ν(N)|Σ2
i
. For each i ∈ {1, . . . , I},

either Hi = 0 and Σ2
i is a totally geodesic flat torus or Σ2

i is an intrinsically and
extrinsically round CMC sphere for which the above constants are related via

(2) NiHi = 2ν(N)i, (riHi)
2
=

4

3
,

where ri :=

√
|Σ2

i |σi

4π denotes the area radius of Σ2
i .

Using Proposition 1, we obtain the following theorem:

Theorem 1 (Cederbaum–Galloway [3]). Let (R×M3,−N2dt2+g) be a static vac-
uum asymptotically flat spacetime that possesses a (possibly disconnected) photon
sphere (P3, p) →֒ (R×M3,−N2dt2+g), arising as the inner boundary of R×M3.
Let m denote the ADM-mass of (M3, g). Then m > 0 and (R×M3,−N2dt2 + g)
is isometric to the region {r ≥ 3m} exterior to the photon sphere {r = 3m} in
the Schwarzschild spacetime of mass m. In particular, (P3, p) is connected and a
cylinder over a topological sphere.

Before sketching the proof of Theorem 1, let us very quickly review the proof
by Bunting–Masood-ul-Alam [1]. In short, they double the asympt. flat static
3-manifold (M3, g) across its black hole inner boundary ∪I

i=1Σ
2
i to obtain a new

manifold (M̄3, ḡ) which is smooth away from a finite set of gluing 2-surfaces Σ2
i ,

C1,1 across them, and has two asympt. flat ends. They then conformally modify
the manifold (M̄3, ḡ) such that the original asymptotic end transforms to have
vanishing ADM-mass and the doubled end can be one-point compactified. By
construction, the new manifold (M̃3, g̃) has vanishing scalar curvature, is geodesi-
cally complete, and is asympt. flat with vanishing ADM-mass. By the rigidity
statement of the positive mass theorem – more precisely, a weak version due to
Bartnik –, the conformally modified manifold (M̃3, g̃) must be isometric to Eu-
clidean space. In other words, the original manifold (M3, g) is conformally flat.
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Combining this with the static equations, it follows that (R×M3,−N2dt2 + g) is
necessarily isometric to the Schwarzschild spacetime.

For the proof of Theorem 1, we proceed as follows: Each photon sphere com-
ponent Σ2

i is assigned a Schwarzschild mass µi := ri/3 > 0 computed from its
area radius ri. We then show via Proposition 1 that the neck (2ri, µi]× S2 of the
Schwarzschild spatial slice (2ri,∞)×S2 with metric ϕi(r)

−2dr2+r2Ω can be glued
to (M3, g) across Σ2

i in a C1,1 fashion. Here, Ω is the canonical metric on the unit

sphere and ϕi(r) =
√
1− 2µi/r as usual. In order to glue the lapse function N

of (M3, g) to the Schwarzschild lapse function ϕi across Σ2
i , more care needs to

be taken: We exploit the lapse scaling invariance of the static vacuum equations
△N = 0, ∇2N = N Ric, and glue N to 3miϕi/ri, with mi :=

∫
Σ2

i

ν(N)i dσi/4π

the pseudo-Newtonian mass of Σ2
i . In this way, we obtain a new static vacuum

asympt. flat 3-manifold (M̂3, ĝ) with black hole inner boundary. This manifold

(M̂3, ĝ) is smooth away from the gluing 2-surfaces Σ2
i and C1,1 across them. The

Bunting–Masood-ul-Alam method can then be applied to (M̂3, ĝ) after ensuring
that the conformal factor stays positive. The claim of Theorem 1 follows.

In a forthcoming paper, the author will combine the ideas described above
with new geometric and PDE arguments, in particular a new class of metrics
generalizing the Schwarzschild class of metrics, to prove the following theorem:

Theorem 2 (Cederbaum, to appear). Let (Mn, g) be a smooth, asymptotically flat
Riemannian manifold of non-negative scalar curvature and ADM-mass m and let
N :Mn → R+ be harmonic function on (Mn, g) that tends to 1 at infinity. Assume
that (Mn, g) has an inner boundary ∪I

i=1Σ
n−1
i such that each (Σn−1

i , σi) is umbilic,
has constant mean curvature Hi and constant scalar curvature σiR > 0. Assume
moreover that N |Σn−1

i
=: Ni and its normal derivative ν(N)|Σn−1

i
=: ν(N)i are

constant on Σn−1
i and that there exist constants 0 ≤ ci < (n− 1)/(n− 2) such that

ciν(N)i = HiNi

(
1− n− 2

n− 1
ci

)
and H2

i = ci
σiR,(3)

I∑

i=1

mi = m, where mi :=
1

4π

∫

Σ2
i

ν(N)i dσi.(4)

Then (Mn, g) is isometric to n-dim. Schwarzschild-Tangherlini of mass m.

Theorem 2 can be applied to re-prove static vacuum black hole uniqueness
in n + 1 spacetime dimensions (reproducing a result by Gibbons, Ida, and Shi-
romizu), and to prove static vacuum photon sphere uniqueness in n+1 spacetime
dimensions, generalizing Theorem 1. It does not appeal to the full static vacuum
equations but instead to a generalization of the assertions in Proposition 1.
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Non-existence of time-periodic vacuum spacetimes

Volker Schlue

(joint work with Spyros Alexakis, Arick Shao)

In my talk I presented a recent result that rules out genuinely time-periodic be-
haviour in general relativity.

The question of existence of time-periodic dynamics arose in the study of iso-
lated self-gravitating systems, in particular the 2-body problem in general rela-
tivity. In the earliest treatment due to Einstein, Infeld and Hoffman [10] it was
found that in the context of the post-Newtonian approximation circular (and thus
time-periodic) orbits are possible. It was only later with a complete understanding
of the higher orders in the post-Newtonian expansion, due to Damour, Deruelle
and Blanchet, see e.g. [9, 4], that circular orbits could be ruled out, at least in
the context of approximations. It is also clear from their work (c.f. derivation
of the “radiation reaction force”) that the underlying mechanism which prevents
periodic motion is the emission of gravitational waves.

In our approach we consider asymptotically flat spacetimes (M3+1, g) which are
solutions to the Einstein vacuum equations in the exterior of a spatially compact
set (which can be thought of as containing the sources of the emitted gravitational
waves); see Figure 1 (L). We recall that a detailed description of the asymp-
totics (towards null infinity) of dynamical vacuum spacetimes was obtained by
Christodoulou and Klainerman in [5], see also [6].

We shall use a purely geometric notion of “time-periodicity”, c.f. [3], which can
also be localised to a neighborhood of infinity.

Definition 1. An asymptotically flat spacetime (M, g) is called time-periodic
if it admits a discrete isometry ϕ with time-like orbits, i.e. a map ϕ such that
ϕ(p) ∈ I+(p), and ϕ∗g = g.

In [1] we have obtained the following non-existence result:
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Theorem 1. Any asymptotically flat spacetime (M, g) arising as a solution to
the vacuum equations Ric(g) = 0 from regular initial data, which is assumed to be
time-periodic (near infinity), is in fact stationary near infinity.

The theorem asserts that there exists a time-like Killing vectorfield near infinity,
namely a time-like vectorfield T such that LT g = 0 on D, see Figure 1 (R). Thus
any discrete isometry with time-like orbits is in fact induced by a continuous
isometry, and thus genuinely time-periodic solutions do not exist, at least in a
neighborhood of infinity. Here the domain D is an arbitrarily small neighborhood
of infinity, which as we shall see is related to the positive mass property of a
non-trivial spacetime.

In the cosmological (spatially closed) setting, there are conclusive results that
rule out time-periodic solutions due to Galloway [11]; (in that setting one can even
prove that the spacetime is static). In the asymptotically flat setting the first re-
sults are due to Papapetrou [12]. More recently, Bičák, Scholtz, and Tod obtained
a precursor of the above theorem [3], however under the very restrictive assump-
tion of analyticity of the spacetime at infinity. Theorem 1 in particular removes
the analyticity assumption and applies under physically relevant conditions.

As already indicated, the heuristic reason Theorem 1 is true is energy dissi-
pation: Any self-gravitating system should lose energy due to the emission of
gravitational waves, and thus approach a stationary state. We are thus led to the
more ambitious question if a dynamical spacetime is stationary under a weaker
“no radiation” condition:

Definition 2. An asymptotically flat spacetime is called non-radiating if the Bondi
mass is constant along null infinity.

The Bondi mass M(u) is a non-negative number associated to each “retarded
time” u, and known to be dynamically non-increasing which justifies its interpre-
tation as the amount of energy contained in the system at time u; see [6, 7] for
the relevant concepts.

Ric(g)=0

I
+

I
−

ι
0

source

: future null infinity

: spacelike infinity D
T

ι
0

Figure 1. Left: Self-gravitating system in general relativity.
Right: Stationary domain in a neighborhood of infinity.
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In [1] we have proven that non-radiating spacetimes are indeed time-independent
far away from the sources, at least if an additional regularity is assumed at infinity.

Theorem 2. Any asymptotically flat vacuum spacetime (M, g) arising from reg-
ular initial data, which is assumed to be non-radiating, is stationary near infinity,
provided the spacetime is also smooth at infinity.

Here “smooth at infinity” means that all geometric quantities admit a complete
asymptotic expansion along null infinity in powers of 1/r, which is well behaved
towards spacelike infinity. Note that this assumption is not needed in Theorem 1,
where all regularity properties of null infinity are inherited from regularity as-
sumptions on the data by virtue of time-periodicity. It remains an open question
if Theorem 2 is true without additional regularity assumptions at infinity.

The proofs of Theorems 1, 2 rely crucially on a uniqueness result for the exten-
sion of a “candidate” Killing vectorfield from infinity in Ricci flat manifolds. In
[2] we have proven a unique continuation from infinity result for linear waves on
asymptotically flat spacetimes, which seems of independent interest:

Theorem 3. Let (M, g) be an asymptotically flat spacetime with positive mass,
and L = �g + a · ∇+ V a linear operator with decaying coefficients. Suppose φ is
a solution to Lφ = 0 which moreover is assumed to vanish to all orders at infinity.
Then φ ≡ 0 in a neighborhood of infinity.

The theorem in particular allows for a localisation to an arbitrarily small neigh-
borhood of spacelike infinity. This is intimately related to the positivity property
of the mass of the spacetime, and it can easily seen to be false in the case of vanish-
ing mass, namely for solutions to linear wave equations on Minkowski space. The
proof of Theorem 3 exploits the behaviour of null geodesics in spacetimes with
positive mass, which can be seen to “bend more quickly” towards null infinity,
than in the case of vanishing, or negative mass. This approach is reminiscent of
ideas of Penrose, who sought to characterise the positive mass property purely by
the behaviour of null gedesics near null infinity [13]; see also [8].
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tivitätstheorie, Ann. Physik (6) 20 (1957), 399–411.

[13] Penrose, R. and Sorkin, R.D. and Woolgar, E., A Positive Mass Theorem Based on the
Focusing and Retardation of Null Geodesics,arXiv:gr-qc/9301015.

“Matter does not matter” for self-gravitating perfect fluids?

Florian Beyer

(joint work with Philippe G. LeFloch)

It is a longstanding conjecture in general relativity that the gravitational dynam-
ics close to a cosmological singularity is governed by an effective equation where
rapidly decaying spatial derivatives terms in the field equations are neglected rela-
tive to time derivatives; this phenomenon is sometimes referred to as velocity term
dominance [7]. Similarly, it is conjectured that terms involving matter variables
become small (except for certain extreme forms of matter, e.g. scalar fields and
stiff fluids [8]): the matter does not matter hypothesis. In this short abstract here,
we discuss a result [4] where the relationship and relative significance of these two
conjectures are studied and compared for the first time.

Theorem 1. Pick arbitrary data functions v0∗ > 0, v1∗, 1 > k > 0, P∗, Q∗, Q∗∗ in
C∞(T 1), and constants γ ∈ (1, 2) and M∗∗ ∈ R such that

M∗(x) =M∗∗

+

∫ x

0

(
2k(ξ)e2P∗(ξ)Q∗∗(ξ)Q

′
∗(ξ)− k(ξ)P ′

∗(ξ) −
2γv1∗(ξ)(v

0
∗(ξ))

1−2γ
γ−1

γ − 1

)
dξ,

is 2π-periodic. Moreover set

v̂1∗(x) = v1∗(x)e
2−γ

2(γ−1)M∗(x).

Then there exists a constant δ > 0 and a solution of the Einstein-Euler equations
with equation of state p = (γ − 1)ρ determined by the following properties:

(1) The metric is Gowdy symmetric and, in appropriate coordinates (t, x, y, z),
asymptotically local Kasner for the data functions k, M∗, P∗, Q∗, Q∗∗.

(2) The fluid is Gowdy symmetric, i.e., the fluid vector field vα is of the form

vα = v0(t, x)∂αt + v1(t, x)∂αx ,
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and the functions v0, v1 ∈ C∞((0, δ]× T 1) have the property that for each
sufficiently large integer q there exists a constant C > 0 such that
∥∥∥t−µ1

[F]
(
v0(t)t−Γ − v0∗

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ2

[F]
(
v1(t)t−2Γ − v̂1∗

)∥∥∥
Hq(T 1)

≤ C

for all sufficiently small t > 0. Here µ1
[F], µ

2
[F] > 0 are some exponents and

Γ := 1
4

(
3γ − 2− (2− γ)k2

)
.

Let us first clarify some of the terms and assumptions. We restrict to Gowdy
symmetric [5] fluids and spacetimes. Since the spatial topology is assumed as
T 3, this means that the spatial dependence of all functions is described by one
spatial coordinate x ∈ T 1. In fact, previous studies of the analogue vacuum situa-
tion suggest that the behavior of more general classes of solutions can be strongly
oscillatory and therefore beyond the reach of current mathematical techniques.
Regarding the first statement of our theorem, we call a Gowdy symmetric space-
time asymptotically local Kasner for data k, M∗, P∗, Q∗, Q∗∗ if, with respect to
given coordinates (t, x, y, z), (i) the metric has the form

g =g00(t, x)dt
2 + 2g01(t, x)dtdx + g11(t, x)dx

2

+R(t, x)
(
eP (t,x)(dy +Q(t, x)dz)2 + e−P (t,x)dz2

)
,

where each function is assumed to be smooth, and (ii) if for each sufficiently large
integer q there exists a constant C > 0 such that

∥∥∥t−µ1
[G]

(
g00(t)t

−(k2−1)/2 + eM∗

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ1

[G]D
(
g00(t)t

−(k2−1)/2
)∥∥∥

Hq(T 1)

+
∥∥∥t−µ2

[G]

(
g11(t)t

−(k2−1)/2 − eM∗

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ2

[G]D
(
g11(t)t

−(k2−1)/2
)∥∥∥

Hq(T 1)

+
∥∥∥t−µ3

[G]g01(t)t
−(k2−1)/2

∥∥∥
Hq(T 1)

+
∥∥∥t−µ3

[G]Dg01(t)t
−(k2−1)/2

∥∥∥
Hq(T 1)

+
∥∥∥t−µ4

[G]
(
R(t)t−1 − 1

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ4

[G]D
(
R(t)t−1

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ5

[G]

(
eP (t)tk − eP∗

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ5

[G]D
(
eP (t)tk

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ6

[G]
(
(Q(t)−Q∗)t

−2k −Q∗∗
)∥∥∥

Hq(T 1)
+
∥∥∥t−µ6

[G]D
(
(Q(t)−Q∗)t

−2k
)∥∥∥

Hq(T 1)

≤ C

for all sufficiently small t > 0 and some collection of exponents µi
[G] > 0. Here we

write D := t∂t. A particular consequence of our hypothesis and the asymptotically
local Kasner property is that all solutions of the theorem have a curvature singu-
larity in the limit t ց 0 and that the above mentioned velocity term dominance
holds.

Regarding the second statement of the theorem, note that we describe the
fluid by a (in general not normalized) timelike vector field vα in accordance with
the formalism in [6], which renders the Euler equations as explicitly symmetric
hyperbolic. The anticipated two degrees of freedom of the fluid are represented
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by the two fluid data functions v0∗ and v1∗ . Since the restrictions on k and γ imply
that the quantity Γ is strictly positive, the second statement of the theorem can be
translated as follows: (i) the energy density associated with the fluid diverges in
the limit tց 0 (as expected) and (ii) the physical fluid velocity measured by freely
falling timelike observers approaches zero for tց 0 (possibly less expected). While
this behavior of the fluid is universal for the class of models covered by our theorem,
we remark that some additional freedom in the choice of the data for half-polarized
Gowdy models (given byQ∗ = const) gives rise to a new critical phenomenon which
can be interpreted as the competition between highly anisotropic gravitational
forces close to the singularity and, by definition, isotropic fluid counter-forces.
These details, which are not covered by the theorem above, are described in [4].

In the vacuum limit v0∗ → ∞, the integral constraint and the equation for M∗
in the theorem reduce to their vacuum analogues, cf. e.g. [3]. The asymptotic local
Kasner property therefore implies that the metric variables have the same qualita-
tive leading-order behavior in the vacuum and in non-vacuum case. However, the
fact that the fluid data occur explicitly in the above equation for M∗ implies that
it is impossible to match a non-vacuum solution of the theorem with a vacuum
solution of the theorem in a way that the two metrics are asymptotically local
Kasner for the same data. Nevertheless, it is possible to match a non-vacuum
solution of the theorem with a vacuum solution of the theorem so that the metric
variables agree in leading order at a single fixed spatial coordinate point x. Hence,
while “matter does not matter” is therefore not a uniform property, it holds for
any single timelike observer who approaches the singularity. In [4] we provide
more details of all these statements. A particular fact is that the fluid variables
are less negligible than spatial derivatives in a well-defined sense which puts the
two conjectures above into context.

We conclude with a few technical remarks. The proof of our theorem makes
essential use of the Fuchsian theory introduced in [3, 1]. A key new technique was
introduced in [4] that allows us to cover the full interval k ∈ (0, 1) by requiring
only some finite differentiability of the data. Our theorem can therefore in fact be
written more generally for Cl data where l is a sufficiently large integer. Another
important remark is that [4] makes significant use of techniques developed in [2]
where the Fuchsian method is applied to the wave gauge formalism of Einstein’s
equations. In this formalism, while the equations are explicitly hyperbolic, they
are also significantly more complex than in earlier treatments, where e.g. areal
coordinates were used, and subtle cancellations need to be taken into account.
Moreover, the analysis of the constraints and the subsidiary system are more
involved. We hope that the results in [2] regarding these issues are useful also for
other future studies, in particular, of U(1)-symmetric vacuum solutions.
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Quasilinear wave equations on Kerr-de Sitter spacetimes

Peter Hintz

(joint work with András Vasy)

In a series of works [8, 7, 9], we have developed a general framework for the global
analysis of nonlinear wave equations on geometric classes of Lorentzian manifolds,
ultimately based on Vasy’s recent breakthrough [13]. The main examples of mani-
folds that fit into this framework are cosmological spacetimes such as de Sitter and
Kerr-de Sitter spacetimes, and perturbations of these. In particular, we establish
the global solvability of semilinear and quasilinear wave equations on cosmologi-
cal black hole spacetimes and obtain the asymptotic behavior of solutions using
a novel approach to the global study of nonlinear hyperbolic equations. The key
advance is overcoming the problems caused by the normally hyperbolic trapping, in
the present context realized by Wunsch and Zworski [14], by combining microlocal
analysis and a Nash-Moser iteration.

For concreteness, we focus on the special case of Kerr-de Sitter space here, but
it is important to keep in mind that the setting is more general. We work on a
neighborhood Ω◦ of the domain of outer communications of a Kerr-de Sitter black
hole, see Figure 1, and use a function t∗, roughly equal to the Boyer-Lindquist
coordinate t away from the horizons, but finite up to the horizon, to measure
decay.

Figure 1. Setup for quasilinear wave equations on Kerr-de Sitter space.
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Theorem 1. Consider the equation

(1) �g(u,du)u = q(u, du) in Ω◦,

where g(0, 0) is a Kerr-de Sitter metric with cosmological constant Λ > 0, mass
M and very small angular momentum a, i.e. |a| ≪ M ; further g(u, du) does not
depend explicitly on t∗ (only implicitly via u). Moreover, q(u, du) is a polynomial
in u and its derivatives, has no explicit t∗-dependence, and each of its summands
contains at least 1 factor of du.

Under these assumptions and for small initial data, the equation (1) has a
unique global solution u of the form u = u0 + ũ, u0 ∈ R, |ũ(t∗)| . e−αt∗, with
α = α(Λ,M, a) > 0.

See [9] for details. To our knowledge, this is the first global existence result for
quasilinear perturbations of black holes. We note however that Dafermos, Holzegel
and Rodnianski [2] have constructed backward solutions for Einstein’s equations
on the Kerr background; for backward constructions the trapping does not cause
difficulties.

Traditionally [10], such non-linear global existence results are established by
showing the existence of (almost) conserved energy-type quantities and combin-
ing this with the well-known local well-posedness, using a continuous induction
argument. Our approach is to instead gain a precise understanding of the linear
equation globally, i.e. with respect to both global regularity and asymptotics/decay,
and then to use an iteration scheme for solving the PDE (1) in which one solves a
linear equation globally at each step.

The linear analysis takes place on a compactification of the spacetime at future
infinity: We define τ = e−t∗ and add τ = 0 to Ω◦, hence obtaining a manifold
with boundary Ω; the stationary Kerr-de Sitter metric g = g(x, dt∗, dx) becomes
a Lorentzian b-metric g = g(x, dττ , dx), and correspondingly the wave operator �g

is a b-differential operator, i.e. a linear combination of products of τDτ and Dx,
degenerating in a controlled manner at the boundary τ = 0. Melrose’s b-calculus
[11] provides powerful microlocal tools to analyze such operators: The natural
function spaces are b-Sobolev spaces Hs,α

b = ταHs
b = e−αt∗Hs

b, which measure
regularity under τDτ and Dx relative to an exponentially weighted (spacetime!)
L2 space; in particular, local Hs,α

b regularity near a point in τ = 0 corresponds to
uniform (in t∗ → ∞) regularity in a weighted space in the non-compact picture.
The regularity analysis for the linear equation �gu = f then uses the propagation
of singularities theorem of Duistermaat and Hörmander [4], propagating regularity
from the Cauchy hypersurface along null-geodesics (lifted to the (b-)cotangent
bundle, where singularities are measured microlocally), with the caveat that τ = 0
is still ‘at infinity’, i.e. no null-geodesic in τ > 0 reaches τ = 0 in finite time.
However, the null-geodesic flow extends to τ = 0 as well, and in fact exhibits a
saddle point structure where the horizons intersect future infinity (Figure 2). A
propagation result there, which can be thought of as a microlocal version of the
redshift estimates of Dafermos and Rodnianski [3], allows one to conclude Hs,α

b

regularity there for u for a suitable range of regularities s and weights α. Further,
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there is normally hyperbolic trapping, and we use the work of Wunsch and Zworski
[14] and Dyatlov [6] for the propagation of singularities there; in particular, there is
a loss of differentiability in u compared to the usual hyperbolic gain of 1 derivative
relative to f .

Figure 2. Null-geodesic flow near future infinity on the com-
pactified spacetime.

For asymptotics and decay, we use the Mellin transform in τ (equivalently,
the Fourier transform in −t∗); then, the resonances, also known as quasinormal

modes, which are the poles of the meromorphic continuation of �̂g(σ)
−1, encode

the asymptotic behavior of waves [1, 5, 13]. For scalar waves �gu = f on Kerr-de
Sitter backgrounds, we thus obtain u = u0 + ũ, where u0 ∈ R, due to a simple
resonance at 0, and ũ ∈ Hs,α

b , provided f ∈ Hs,α
b , for α > 0 small and s ∈ R large.

For quasilinear equations of the form (1) then, one needs to analyze regularity
and asymptotics for metrics of the form g = g(u, du) with such u; hence, g equals
a stationary metric g(u0, 0) modulo an exponentially decaying perturbation. This
was first done in [7], with improvements given in [9] to facilitate tame estimates,
which are the crucial ingredients in the Nash-Moser iteration scheme [12] used to
deal with the loss of derivatives. —

Our framework directly applies to nonscalar problems as well, and we obtain
linear and nonlinear results both for scalar equations and for equations on natural
vector bundles. To a large extent, our work is motivated by the black hole stability
problem for cosmological spacetimes, and we expect the resolution of this problem
to be within reach now: Indeed, in suitable gauges, Einstein’s equation becomes
a principally scalar quasilinear hyperbolic system which satisfies all the require-
ments of our framework, possibly except for a natural condition on the resonances,
commonly referred to as mode stability; the crucial task thus is to find a gauge in
which the linearized Einstein equation has well-behaved resonances.
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et Applications. Springer, 1997.

[11] Richard B. Melrose. The Atiyah-Patodi-Singer Index Theorem. Research Notes in Mathe-
matics, Vol 4. Peters, 1993.

[12] Xavier Saint Raymond. A simple Nash-Moser implicit function theorem. Enseign. Math.
(2), 35(3-4):217–226, 1989.

[13] András Vasy. Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces
(with an appendix by Semyon Dyatlov). Inventiones mathematicae, pages 1–133, 2013.

[14] Jared Wunsch and Maciej Zworski. Resolvent estimates for normally hyperbolic trapped
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On the rotation curves for axially symmetric disk solutions of the

Vlasov-Poisson system

Håkan Andréasson

(joint work with Gerhard Rein)

The rotation curve of a galaxy depicts the magnitude of the orbital velocities of
visible stars or gas particles in the galaxy versus their radial distance from the
center. In the pioneering observations by Bosma [2] and Rubin [4] it was found
that the rotation curves of spiral galaxies are approximately flat except in the
inner region where the rotation curves rise steeply. Independent observations in
more recent years agree with these conclusions. The flat shape of the rotation
curves is an essential reason for introducing the concept of dark matter. Let us
cite from [3]: ”Perhaps the most persuasive piece of evidence [for the need of
dark matter] was then provided, notably through the seminal works of Bosma and
Rubin, by establishing that the rotation curves of spiral galaxies are approximately
flat [2, 4]. A system obeying Newton’s law of gravity should have a rotation curve
that, like the Solar system, declines in a Keplerian manner once the bulk of the
mass is enclosed: Vc ∝ r−1/2.”

The last statement is heuristic and it is therefore essential to construct self-
consistent mathematical models which describe disk galaxies and study the cor-
responding rotation curves. For this purpose it is natural to consider the Vlasov-
Poisson system which is often used to model galaxies and globular clusters.
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The Vlasov-Poisson system is given by

∂tF + v · ∇xF −∇xU · ∇vF = 0,

∆U = 4πR, lim
|x|→∞

U(t, x) = 0,

R(t, x) =
∫
R3 F (t, x, v) dv.

Here F : R×R3 ×R3 → R+
0 is the density function on phase space of the particle

ensemble, i.e., F = F (t, x, v) where t ∈ R and x, v ∈ R3 denote time, position,
and velocity respectively. The mass of each particle in the ensemble is assumed
to be equal and is normalized to one. The mass density is denoted by R and the
gravitational potential by U . The latter is given by

U(t, x) = −
∫

R3

R(t, y)

|x− y| dy.

In this investigation we are interested in extremely flattened axially symmetric
galaxies where all the stars are concentrated in the (x1, x2)-plane. We therefore
assume that

F (t, x, x3, v, v3) = f(t, x, v)δ(x3)δ(v3),

where from now on x, v ∈ R2 and δ is the Dirac distribution. The stars in the
plane will only experience a force field parallel to the plane, and the Vlasov-Poisson
system for the density function f = f(t, x, v), x, v ∈ R2, takes the form

∂tf + v · ∇xf −∇xU · ∇vf = 0,(1)

U(t, x) = −
∫

R2

ρ(t, y)

|x− y| dy,(2)

ρ(t, x) =
∫
R2 f(t, x, v) dv.(3)

It should be noticed that the system (1)-(3) is not a two dimensional version of the
Vlasov-Poisson system but a special case of the three dimensional version where
the density function is partially singular.

The above system is solved numerically and a large class of solutions is con-
structed with the property that the corresponding rotation curves are approxi-
mately flat, slightly decreasing or slightly increasing. In addition, the numerically
constructed rotation curves are compared with measurements from real galaxies.
In [5] data for a number of spiral galaxies belonging to the Ursa Major Cluster are
given. The measured rotation curves for the galaxies NGC3877 and NGC3917 are
depicted by open circles in Figure 1 and Figure 2 respectively. The uncertainties in
the observational data are tabulated in [5] and are shown as error bars. The solid
curve corresponds to the numerically constructed solution. It is clear that satisfac-
tory agreement is obtained. This raises the question whether the observed rotation
curves for disk galaxies may be explained without introducing dark matter. For
details about this investigation we refer to [1].
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Figure 1. Comparison with the galaxy NGC3877
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Figure 2. Comparison with the galaxy NGC3917
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Conformal properties of the extremal Schwarzschild-de Sitter

spacetime

Juan A. Valiente Kroon

(joint work with Edgar Gaspeŕın)

The Schwarzschild-de Sitter spacetime is the spherically symmetric solution to the
Einstein field equations

R̃ab = λg̃ab λ > 0.

given in static coordinates (t, r, θ, ϕ) by

g̃ = F (r)dt2 − F (r)−1dr2 − r2σ, F (r) ≡ 1− 2m

r
+

1

3
λr2

where σ is the standard metric on the 2-sphere S2 and t ∈ (−∞,∞), r ∈
(0,∞), θ ∈ [0, π], ϕ ∈ [0, 2π). This solution reduces to the de Sitter spacetime
when m = 0 and to the Schwarzschild solution when λ = 0. Moreover, whenever
0 < −9λm2 < 1, the polynomial r − 2m+ λr3/3 has two distinct positive roots.
These correspond, respectively, to a black hole-like horizon and a Cosmological-like
horizon. The extremal Schwarzschild de-Sitter spacetime (eSdS) is then obtained
by setting λ = −1/9m2. If the extremal condition holds, then the black hole and
Cosmological horizons degenerate into a single Killing horizon at r = 3m. More-
over, one has that the hypersurfaces of constant coordinate r are spacelike while
those of constant t are timelike and there are no static regions. Finally, at r = 0
it can be verified that the spacetime has a curvature singularity —in particular,
the scalar C̃abcdC̃

abcd, with C̃a
bcd the Weyl tensor of the metric g̃, blows up. The

basic conformal structure of the eSdS spacetime and its Penrose diagram has been
discussed in [3].

The conformal Einstein field equations are a powerful tool for the analysis of
the stability and global properties of asymptotically simple spacetimes —see e.g.
[1, 2]. They provide a system of field equations for geometric objects defined on
a 4-dimensional Lorentzian manifold (M, g), the so-called unphysical spacetime,

which is conformally related to a spacetime (M̃, g̃), the so-called physical space-
time, satisfying the Einstein field equations. One of the key unknowns in these
field equations is the so-called rescaled tensor dabcd obtained from conformally
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invariant tensor C̃a
bcd by dividing by the conformal factor. The conformal frame-

work allows to recast global problems in the physical spacetime as local problems
in the unphysical one. Despite their use in the analysis of asymptotically simple
spacetimes, very little analysis of more complicated solutions to the Einstein field
equations (e.g. containing Cosmological or black hole singularities) by means of
the conformal Einstein field equations has been carried out.

The eSdS spacetime provides a convenient solution in which to explore the use
of the conformal Einstein field equations to analyse global and stability properties
of spacetimes containing black holes and singularities. In the project reported
in this abstract we have undertaken an analysis of the the eSdS spacetime as a
solution to the conformal Einstein field equations.

One of the key features of the extremal Schwarzschild spacetime is that it al-
lows the formulation an asymptotic initial value problem in which suitable Cauchy
data is prescribed at the spacelike conformal boundary. The basic pieces of the
asymptotic initial data consist of the intrinsic metric of the conformal boundary,
a divergence free symmetric and trace free 3-dimensional tensor dij encoding the
electric part of the rescaled Weyl tensor dabcd and gauge dependent scalar field
encoding information about the embedding of the conformal boundary in the un-
physical spacetime —in particular, its extrinsic curvature. For the eSdS spacetime
there exists a conformal representation of in which each of the sections of the
conformal boundary is topologically and metrically S3. The associated tensor dij
is singular at two points corresponding to the North and South poles of S3. The
singular behaviour of this key piece of the asymptotic data constitutes the essen-
tial difficulty in the analysis of the eSdS spacetime as a solution to the conformal
field equations. It constitutes an essential obstruction to the reconstruction of the
whole spacetime from asymptotic initial data. In view of this singular behaviour a
more accurate description of the topology of a given component of the conformal
boundary of the eSdS spacetime is that of S3 with two points removed.

To analyse the evolution of asymptotic initial data for the eSdS spacetime, we
have expressed the conformal field equations in terms of a gauge based on the
properties of conformal geodesics —a so-called conformal Gaussian system. The
essential dynamics of the evolution system is governed by a core system of three
equations involving the sole non-vanishing component of the rescaled Weyl tensor,
a component of the Schouten tensor and a component of the connection. This core
system is of interest on its own as it serves as a model of the mechanism for the
formation of curvature singularities —its key equation is a Ricatti equation. We
have analysed in detail the properties of this system. We expect that the insights
obtained from this analysis can be extended to the discussion of the full conformal
field equations.

The conformal representation of the eSdS spacetime obtained from the analysis
of the evolution system governed by the core system can be used to analyse non-
linear perturbations of the exact solution in the past domain of dependence of the
regular part conformal boundary —this particular analysis is work under progress.
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Overview of Recent non-CMC Results for the Conformal Method

Michael Holst

(joint work with Ali Behzadan, Vyacheslav Kungurtsev, Caleb Meier, Gabriel
Nagy, Gantumur Tsogtgerel)

In this lecture, we begin with a brief overview of the 1973-1974 conformal method,
and briefly review the CMC (constant mean curvature) and near-CMC results
that had been established during the period 1973 through 2007. We then give an
overview of the new framework that was developed in 2008 for removing the near-
CMC condition, and outline the generalizations made to the framework from 2009
to 2013 (vacuum, rough metrics, manifolds with boundary, AE manifolds, and the
limit equation). We review in a some detail some representative results for closed
manifolds from 2008-2009, compact manifolds with boundary from 2013-2014, and
asymptotically Euclidean manifolds from 2014-2015. We also give a summary of
the results for rough metrics in each of these cases through 2015, and describe some
results that examine non-uniqueness in the non-CMC case through the use of ana-
lytic bifurcation theory. We finish by describing two interesting developments that
have substantially changed the direction of the field: the emergence of degeneracies
in the so-called far-from-CMC cases (beginning in 2010), and the observation that
some non-CMC results can be obtained with implicit function arguments around
zero mean curvature, without resorting to near-CMC conditions.
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