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Introduction by the Organisers

Stochastic effects play an increasingly important rôle in the mathematical modeling
of many physical systems. On the mathematical side, this creates the need to
combine analytic and stochastic techniques. In addition, a number of challenging
and important problems only become tractable when methods from analysis and
probability are combined.

In recent decades, more and more researchers in both of these areas became
aware of the increasing need to interact with and learn from each other, and many
of them took up serious attempts to contribute. The organisers feel that this de-
velopment is very promising, is likely to bear many qualitatively new results and
research directions in future, and should therefore be strongly supported. This
is why already in 2005, when the need for collaboration between analysis and
probability was less noticed than it is now, the organisers (in a different compo-
sition) applied for the first Oberwolfach workshop focused on this aspect. This
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and forthcoming applications lead to the organisation of two such workshops in
2008 and 2012. We like to think that these workshops helped significantly to pro-
mote collaboration between the two fields. Their positive effects became especially
clear during the present workshop, the third one on the interplay of analysis and
stochastics in Oberwolfach. It had a very lively and inspiring atmosphere and
clearly showed that in the meantime the two communities have got accustomed
with each other, and that there is nowadays a lot of high-level exchange between
them. Very helpful in this respect was the partial substitution of some of the
proposers for the present workshop, which brought in new aspects and research
directions.

The aim of this workshop was to bring together analysts and probabilists to
foster an exchange of expertise between statistical physics, analysis and proba-
bility. There were a number of themes where connections between the different
disciplines arise naturally. An example is stochastic averaging, where analytic
methods (Γ-convergence and Young measures) are used to describe the effective
macroscopic behaviour of systems with micro- or mesoscopic stochasticity (Ci-

calese and Sandier). These approaches were complemented by quantitative
estimates for stochastic homogenisation (Neukamm). The treatment of many par-
ticle quantum mechanics using statistical mechanics is another example (Sütő,
Lukkarinen).

A further natural link between analysis and probability is provided by diffusion
processes. On this workshop, various aspects were covered, both on the level of
Brownian motions (Berger) and on the level of the Fokker-Planck equations and
their numerical treatment (Pavliotis). The treatment of viscid flows via an opti-
mal transport problem involving the Nelson derivative broadened the perspective
to fluid mechanics (Léonard). The metric structure given by the Wasserstein
distance also proved essential in the convergence result of Kac’s model of elastic
collisions to the homogeneous Boltzmann equation (Norris).

Large deviations underpinned a number of talks, including compactness ques-
tions for the mean-field polaron model (Mukherjee), rate functionals for chemi-
cal reactions (Renger), and a new passage from particles to hydrodynamic limits
(Fathi). The latter approach also relies on Γ-converging, thus bridging method-
ologically to some of the homogenisation approaches discussed above. Two recent
and technically quite sophisticated Wulff shape results for an important model
from statistical mechanics (bond percolation on the square lattice) were discussed
(Biskup). Applications of the large deviation theory by Freidlin and Wentzell to
rare events for turbulent atmosphere jets were presented (Bouchet). In many, if
not all, of these examples, the structure of the variational formula and the char-
acteristic equations for the zeros of the rate function, particularly non-gradient
terms, play a central rôle.

A different approach to study metastability and transition probabilities relies on
capacity estimates (Schlichting). This is one of several examples where similar
problems were studied by different parts of the community, and the intention of the
workshop was to foster the exchange. Further work on metastability, in the context
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of Kawasaki dynamics in Ising spin systems with Kac potentials, was presented
(de Masi).

A number of talks were devoted to the aim of understanding the emergence
of structures in multi-agent systems. Examples are condensation in stochas-
tic networks (Dereich, Mörters), crystallisation in the low-temperature limit
(Jansen), emergence of phases in complex networks (Radin), ground state anal-
ysis of interaction energies appearing in particle dynamics such as flock formation
(Cañizo).

Combinatorial problems were behind a number of ingredients of arguments,
with entropy being only the most obvious example. These problems also were
discussed as challenges in their own right, often with application from physics
in mind (Aurzada, Gnedin, Zeindler). The formulation often was in term
of fundamental limit laws of probability distributions, like central limit theorems
and point process convergence; another example was such a convergence result
for the extremes of bivariate point processes, derived by means of Stein’s method
(Cipriani).

There were a number of talks by young participants (Duhart, Einav, Flegel,

Mönch, Stamatakis, Taggi, Williams); the quality of their results and talks
was impressive. The stimulating environment of Oberwolfach helped foster a num-
ber collaborations during the workshop, and new results were obtained during the
meeting.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Marek Biskup in the “Simons Visiting Professors” pro-
gram at the MFO.
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Abstracts

Emergence of condensation in a self-organised growth model

Peter Mörters

(joint work with Steffen Dereich and Cécile Mailler)

The general purpose of our project is to study a range of population models, in
which every individual carries a fitness chosen according to a distribution µ on the
interval (0, 1). Across a range of model parameters the population grows in such
a way that a positive proportion of the appropriately weighted population have
fitness converging to one, forming a condensate. The remaining positive proportion
have an asymptotic fitness distribution absolutely continuous with respect to µ, we
call those the bulk. The simultaneous occurence of condensate and bulk constitutes
a phenomenon of self-organisation. Models fitting our description occur in the
context of preferential attachment networks, random permutations, and branching
processes. Our interest is focussed on the emergence of condensation, in particular
the question how the system behaves at large finite times.

My talk focusses on a branching process model with selection and mutation. It
has two parameters

• a mutation probability β ∈ [0, 1],
• a mutant fitness distribution µ, that is a probability measure on (0, 1) with
essential supremum equal to one.

The model is a branching process in continuous time, such that

• the initial particle has a random fitness chosen according to µ;
• particles with fitness f live forever and produce single offspring at rate f ;
• every particle born either

– inherits the fitness of the parent with probability 1− β, or
– mutates with probability β in which case its fitness is drawn from µ.

This is a stochastic house-of-cards model for a population with a balance of genetic
selection and mutation. We let

N(t) = #{particles alive at time t}

and Ξt be the empirical fitness distribution at time t given by

Ξt(A) =
#{particles with fitness in A at time t}

#particles alive at time t
.

The long-time behaviour of the process (Ξt) depends on the condition

β

∫
1

1− x
µ(dx) > 1.

If it holds, then there exists a unique λ∗ ∈ (1− β, 1] such that

β

∫
x

λ∗ − (1 − β)x
µ(dx) = 1,
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which is a Malthusian parameter for the model. By general branching process
arguments one can see that N(t) grows exponentially with rate λ∗, and the em-
pirical fitness distribution Ξt converges to a limit measure p, which is absolutely
continuous with respect to µ. There is no condensation.

We are interested in the condensation case, which occurs if the mutations have
a small ability to produce fit particles, i.e.

β

∫
1

1− x
µ(dx) < 1.

We let λ∗ := 1− β, which is the exponential rate of growth of the system, but the
growth is not strictly exponential and finding the corrections necessary to prove a
limit theorem is a rather difficult open problem. The empirical fitness distribution
now converges to the measure

p(dx) =
β

1− x
µ(dx) + γ(β)δ1(dx),

where γ(β) := 1− β
∫
(1 − x)−1µ(dx) > 0 is the size of the condensate. This can

be proved by approximation using processes without condensation.
From now on we make a regularity assumption on the mutant fitness distribu-

tion, i.e. that

µ(1− ǫ, 1) = ǫαℓ(ǫ),

for some parameter α > 0 and function ℓ slowly varying at zero. We split the
population alive at time t into families, each consisting of a mutant and all its not
mutated offspring. This allows us to write the empirical fitness distribution as

Ξt =

M(t)∑

n=1

Zn(t)δFn ,

where

• M(t) is the number of families or mutants,
• Zn(t) is the size of the nth born familiy at time t,
• Fn is the fitness of all individuals in the nth born family.

Following van den Berg, Lewis and Pulé [2] we say that there is macroscopic
occupancy by the nth family if

Zn(t)

N(t)
−→ X > 0,

and if there is condensation but no macroscopic occupancy, this is called non-
extensive. The problem of macroscopic occupancy versus non-extensive conden-
sation has been discussed in the physics literature on a non-rigorous level using
a network model equivalent to our branching process. Bianconi and Barabási [1]
claim that there is macrocopic occupany by the largest family, and no other family
is macroscopic. Godrèche and Luck [4] argue that there is macroscopic occupancy
by an infinite number of families. By contrast to both, we believe that no state is
macrosopically occupied and there is extensive condensation. In the talk I sketch
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the argument that the size of the largest family is negligible relative to the overall
population size, i.e.

lim
t→∞

max
M(t)
n=1 Zn(t)

N(t)
= 0, in probability.

As a byproduct we get asymptotic results for the size, fitness and birth time of
the largest family.

An interesting open problem is to identify the shape of the wave becoming the
condensate. We conjecture for our model that

lim
t↑∞

Ξt

(
1−

x

t
, 1
)

=
γ(β)

Γ(α)

∫ x

0

e−yyα−1 dy,

i.e. the shape of the wave follows a gamma distribution. This conjecture is based on
the analysis of a simple mean-field model, which is carried out in [3]. I summarise
this analysis and conclude by briefly mentioning two current developments in the
context of this project. On the one hand this is work in progress with Betz,
Dereich and Ueltschi aiming to analyse the shape of the condensing wave for a
range of differential equations exhibiting condensation, and on the other hand this
is recent work of Dereich analysing a stochastic growth model where condensation
does not self-organise but can be enforced by chosing critical parameters, see his
contribution to this volume.
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Large deviation theory and the Eyring–Kramers formula for non
gradient dynamics. Applications to abrupt transitions for turbulent

atmosphere jets

Freddy Bouchet

(joint work with Julien Reygner, Eric Simonnet and Tomas Tangarife)

Many natural and experimental turbulent flows display a bistable behavior: rare
and abrupt dynamical transitions between two very different subregions of the
phase space. The most prominent natural examples are probably the Earth mag-
netic field reversals (over geological timescales), the Kuroshio bistability, or the
Dansgaard-Oeschger events that have affected the Earth climate during the last
glacial period, and are probably due to several attractors of the turbulent ocean
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dynamics. Recent results show that similar bistability occur also in the turbu-
lent dynamics of atmosphere jets. Those abrupt transitions are extremely rare
events that change drastically the nature of the flow and are thus of paramount
importance.

The first part of the talk will be mainly mathematical. We will review the
Freidlin-Wentzell theory that describes large deviations for dynamical systems
with weak noise, and the Eyring-Kramers relation for the transition rates between
two attractors for gradient dynamics. We will present our recent generalization of
the Eyring-Kramers relation for non gradient dynamics. This result will be useful
for any non-equilibrium dynamics, including turbulent flows, in the regimes of rare
transitions. The second part will focus on turbulent flows, including experimental
and numerical studies. Most of this part will focus on theoretical, mathematical,
and numerical works in the framework of the quasi-geostrophic barotropic model.
This is the simplest turbulence model to set up the theoretical and numerical tools
to study these phenomena. From a numerical point of view, those events can not
be studied directly because they are too rare. We will first discuss the use of a
rare event algorithm, Adaptive Multilevel Splitting, in order to sample from direct
numerical simulation such rare transitions.

In quasigeostrophic models, the classical eddy-mean flow interactions are in-
volved to explain the evolution of the large scale flow. The issue is then to un-
derstand and predict those eddy-mean flow configurations that lead to the rare
fluctuations that trigger rare transitions. We will present the proper mathemati-
cal framework to analyze those rare events: large deviation theory for dynamical
systems with a separation of time scales. We will discuss the development of
this framework and the computation of rare transitions for the barotropic quasi-
geostrophic model.
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Low-temperature Lennard-Jones chains

Sabine Jansen

(joint work with Wolfang König, Bernd Schmidt, Florian Theil)

We consider a chain of N atoms on a line, with positions 0 ≤ x1 ≤ · · · ≤ xN ≤ L.
They interact via a pair potential v(|xi − xj |) which can be, for example, the
Lennard-Jones potential v(r) = r−12 − r−6. Let β > 0, the inverse temperature.
In the canonical ensemble, the distribution of particles is

1

ZN(β, L)
exp
(
−β

∑

1≤i<j≤N

v(|xi − xj |)
)
dx1 . . .dxN(1)

where the canonical partition function ZN(β, L) ensures that the measure (1) is a
probability measure on 0 ≤ x1 ≤ · · · ≤ xN ≤ L. We take the thermodynamic limit
N,L→∞ at fixed β and fixed particle density ρ = N/L and wish to understand
the limiting measure at low temperature β →∞. We also analyze the free energy
f(β, ρ) = − limN,L→∞(βL)−1 logZN (β, L).

If we took the low-temperature limit before the thermodynamic limit, the mea-
sure (1) concentrates on minimizers of the energy. Let

EN = min
x1,...,xN∈R

∑

1≤i<j≤N

v(|xi − xj |), e0 = lim
N→∞

EN
N

.(2)

For the Lennard-Jones potential it is known that the ground state energy per
particle e0 exists and is given by the unique minimizer a of r 7→

∑∞
k=1 v(kr), and

energy minimizers approach, in the bulk, a regular lattice of spacing a [1].
At small but non-zero temperature, it is common to approximate the energy by

a quadratic form around the periodic lattice, i.e., write xj = ja + ϕj with small
displacement ϕj and replace the measure (1) by

1

Z̃
exp
(
−
β

2

N∑

k=1

N−k∑

j=1

v′′(ka)(ϕj+k − ϕj)
2
)
dϕ1 · · · dϕN ,(3)

leading to the topic of Gibbs (gradient) fields [2]. The sum over k is often trun-
cated so that only finitely many neighbors interact, sometimes higher-order (an-
harmonic) terms are taken into account.

A systematic comparison of the measures (1) and (3) has recently been un-
dertaken by Shapeev and Luskin [4], however their work applies to next nearest
neighbor interactions with fast increase at infinity only. The condition of increase
is quite common in atomistic models of elasticity and contrasts the decay condi-
tions usually imposed in the statistical mechanics of particles [3]. As a consequence
the measures (1) and (3) may exhibit quite different behavior and it becomes in-
teresting to study anharmonic effects.

We focus on systems large enough to accommodate the optimum grid of spacing
a, i.e., low densities ρ < a−1. At positive temperature entropic effects cause the
chain to break up: most bonds xj+1 − xj will be close to a but some of them will
be very large. We wish to understand the precise distribution broken bonds.
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The results come in three parts and concern the surface energy at zero temper-
ature, the defect-free chain at positive temperature, and the distribution of broken
bonds. We change variables and work with the spacings zj = xj+1 − xj , z1 = x1,
zN+1 = xN − L rather than particle positions. Let

Esurf
(
(zj)j∈N

)
=

∞∑

j=1

∞∑

k=1

(
v(zj + · · ·+ zj+k−1)− v(ka)

)

for square-summable strains
∑∞

j=1(zj − a)
2 < ∞, and Esurf((zj)) = ∞ otherwise.

Esurf represents the energy of a semi-infinite chain, normalized so that the grid
zj ≡ a has energy 0.

Theorem 1. The limit esurf = limN→∞(EN −Ne0) exists and is given by

esurf = 2min Esurf −
∞∑

k=1

kv(ka).

The surface functional Esurf has a unique minimizer.

Let R > a. Consider the restricted Gibbs measure

Q
β
N (A) =

1

QN (β)

∫

[0,R]N−1

1A(z) e
−β

∑N−1
k=1

∑N−k
j=1 v(zj+···+zj+k−1)dz1 · · · dzN−1.

Theorem 2. Under suitable assumptions on the pair potential,

(1) The limits

e0(β) = − lim
N→∞

(βN)−1 logQN (β)

and

esurf(β) = lim
N→∞

(−β−1 logQN(β) −Ne0(β))

exist.
(2) The measure Q

β
N converges in a suitable sense to a uniquely defined prob-

ability measure Qβ on [0, R]N.
(3) As β →∞, we have e0(β)→ e0 and esurf(β)→ esurf.
(4) As β →∞, the measure Qβ satisfies a large deviations principle with rate

β and rate function Esurf −min Esurf .

Items (1) and (2) follow standard techniques of statistical mechanics, items (3)
and (4) are new.

Finally we come back to the full Gibbs measure (1), again for the spacings zj
rather than positions xj , at low density ρ < a−1. We call a bond broken if zj > R.
Let M be the total number of broken bonds, Γr the number of broken bonds with
length zj ≥ r, and

q(β) =
√
ρ−1 − a exp

(
−
β

2
esurf(β)

)
.

Write Pβ,L,N for the Gibbs measure.
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Theorem 3. Fix ρ ∈ (0, a−1). Under suitable assumptions on the pair poten-
tial v(r) and sufficiently large (but β-independent) truncation parameter R, the
following holds:

(1) As β →∞, f(β, ρ)/ρ = e0(β)− (1 + o(1))β−1q(β).
(2) There is a function δ(β) going to zero as β →∞ such that

lim
N,L→∞

Pβ,L,N

(∣∣∣M/N

q(β)
− 1
∣∣∣ ≤ δ(β)

)
= 1,

lim
N,L→∞

Pβ,L,N

(∣∣∣
Γr/λ(β)

M
−

∫ ∞

r

e−udu
∣∣∣ ≤ δ(β)

)
= 1, λ(β) =

q(β)

ρ−1 − a
.

So in particular the fraction of broken bonds is exponentially small in β—how
small is determined by the surface energy esurf—and the length of broken bonds
is approximately exponentially distributed with large expectation 1/λ(β).
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Convergence of gradient flows: probabilistic applications

Max Fathi

(joint work with Marielle Simon)

In this talk, I explained how the Sandier-Serfaty approach to convergence of gra-
dient flows can be combined with the gradient flow structure of reversible Markov
chains on finite spaces discovered by Maas and Mielke to prove convergence to
the hydrodynamic limit for the symmetric simple exclusion process on the discrete
torus.

A gradient flow on Rd is an ODE of the form

ẋt = −∇V (xt).

Solutions to this ODE are the only curves satisfying

V (xT )− V (x0) +
1

2

∫ T

0

|ẋt|
2 dt+

1

2

∫ T

0

|∇V (xt)|
2 dt = 0.(1)

De Giorgi pointed out in [2] how such functionals could be given a meaning in the
setting of metric spaces, and hence one could use this structure to define gradient
flows in metric spaces.

When using this notion in the space of probability measures on Rd equipped
with the optimal transport (or Wasserstein) distance, this notion can be used to
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reformulate Fokker Planck equations, which govern the evolution in time of the law
of diffusion processes as the gradient flow of the entropy ([9, 1]). An analogous
structure for Markov chains was discovered independently by Maas and Mielke
([6, 8]).

The Sandier-Serfaty approach to proving convergence of a sequence of gradient
flows to some limit ([10, 11]) consists in passing to the limit in (1) by proving
Γ-convergence of each term, and then identifying the limit as the gradient flow of
an asymptotic energy functional with respect to an asymptotic metric structure.

The symmetric simple exclusion process on the discrete torus Z/NZ is a system
of K particles performing simple random walks independently, but with the added
constraint that if a particle attempts to jump on a site that is already occupied,
the jump is cancelled. It is a reversible Markov chain with respect to the uniform
measure on the space of configurations of K particles. To go to the scaling limit
as N goes to infinity and the density K/N converges to some α ∈ (0, 1), we scale
the system diffusively, i.e. we speed up the time-scale by a factor N2.

If we denote by ηi ∈ {0, 1} the number of particles on site i, we say that a
sequence of (random) configurations weakly converges to a deterministic profile
m ∈ L2(T) if, for any smooth test function J : T −→ R and any ǫ > 0 we have

P

[∣∣∣∣∣
1

N

N∑

i=1

ηi J(i/N) −

∫

T

m(θ)J(θ) dθ

∣∣∣∣∣ > ǫ

]
−→ 0.

The gradient flow approach allows us to recover a classical result on convergence
to the hydrodynamic limit for this model: if the initial data converges to a de-
terministic profile m0 and is well-prepared, then at any later time the systems
converges to mt, and the evolution of mt is given by the heat equation

∂tm = ∆m.

The gradient flow structure for the heat equation that arises in the limit is given
by the functional

∫

T

h(mT ) dθ −

∫

T

h(m0) dθ

+
1

2

∫ T

0

||∂tm||
2
−1,mt

dt +
1

2

∫ T

0

∫

T

m(1−m) (∂θh
′(m))

2
dθ dt

where h(m) = m logm+ (1−m) log(1−m)− α logα− (1−α) log(1−α) and the
metric structure is given by

||u||2−1,m = sup
J

2

∫
Ju dθ −

∫
m(1−m)(∂θJ)

2 dθ.

For a general function h, this functional corresponds to the gradient flow structure
for the parabolic equation

∂tm = ∂θ(m(1−m) ∂θh
′(m)).

The fact that this structure yields the heat equation follows from the relation
m(1−m)h′′(m) = 1.
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The technique is fairly general, and can be adapted to many other interacting
particle systems. Recent results obtained using it include the large-volume limit
for systems of chemical reaction equations [7], convergence of mean field particle
systems on graphs [3] and large deviations for continuous spin systems [5].
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The order of large random permutations with cycle weights

Dirk Zeindler

(joint work with Julia Storm)

This talk considers the order On(σ) of a random permutation and bases on two
joint papers with Julia Storm, see [1, 2]. The order On(σ) of a permutation σ of n
objects is the smallest integer k ≥ 1 such that the k-th iterate of σ gives the iden-
tity. A remarkable result about the order of a uniformly chosen permutation is due
to Erdős-Turán who proved in 1965 that logOn satisfies a central limit theorem.
We show that the Erdős-Turán Law can be extended to random permutations
chosen according to the so-called generalized Ewens measure and to a generalized
weighted measure with polynomially growing cycle weights. Furthermore, we es-
tablish for the generalized Ewens measure a local limit theorem as well as, under
some extra moment condition, a precise large deviation estimate and also show
that the expectation of the logarithm of the order has a remarkable connection
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with the Riemann hypothesis. In addition, we provide a precise large deviation
estimate for random permutations with polynomial growing cycle weights.
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An entropic interpolation problem for incompressible viscid fluids

Christian Léonard

(joint work with Marc Arnaudon, Ana Bela Cruzeiro and Jean-Claude Zambrini)

Notation. The sets of all probability measures on a set Z is denoted by P(Z).
The state space X of the fluid is the flat torus X = Tn := Rn/[0, 1]n, the set of
all continuous paths on X is denoted by Ω := C([0, 1],X ) and Ωa is the subset
of all absolutely continuous paths. The canonical process is: Xt(ω) = ωt ∈ X ,
ω = (ωt)0≤t≤1 ∈ Ω. We also denote Pt := (Xt)#P ∈ P(X ) the law of the position
at time t and P01 = (X0, X1)#P the joint law of the initial and final positions.

Incompressibility, inviscidity. The incompressibility property equally trans-
lates in terms of

• the vanishing of the divergence of the velocity field v: ∇ · v = 0, or
• the evolution of a flow (gt)0≤t≤1 of diffeomorphisms which preserve the
volume, i.e. (gt)#vol = vol, for all t, or
• the evolution of a stochastic process whose path measure P ∈ P(Ω) is such
that its time marginals satisfy: Pt = vol, for all t.

The inviscidity property is reflected in the Euler equation (Eu)-(i) below by the
absence of viscosity force. The viscosity term ∆v/2 will be introduced later in the
Navier-Stokes equation (NS)-(i).

Euler equations. The system of Euler equations is

{
(i) (∂t + v · ∇)v(t, z) = −∇pt(z), 0 ≤ t ≤ 1, z ∈ X

(ii) ∇ · v = 0, 0 ≤ t ≤ 1, z ∈ X
(Eu)

where the unknown is the couple (v, p). The first identity (i) is Newton’s equation
which identifies the acceleration of any element of fluid with the gradient of the
pressure p and (ii) is the incompressibility condition.
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Brenier’s problem. As the Cauchy problem associated with (Eu) is very diffi-
cult, one can think of some easier to investigate geodesic variant. After Arnold’s
paper [1] in 1966 who proposed to represent the evolution of an incompressible
fluid as the geodesic flow in the manifold of volume preserving diffeomorphisms,
in 1989 Brenier addressed in [2] the following relaxation of Arnold’s problem.

Let us fix some endpoint configuration π ∈ P(X )X with

π0 = π1 = vol.(1)

Such a π is a coupling of the volume measure with itself. Brenier’s problem is

EP

∫ 1

0

|Ẋt|
2/2 dt → min; P ∈ P(Ω) : [Pt = vol, ∀ t], P01 = π.(Br)

It is proved in [2] that any P ∈ P(Ω) satisfying the marginal constraints Pt = vol
for all t, P01 = π, and such that the Newton equation

Ẍt +∇pt(Xt) = 0, ∀ t P -a.e.(2)

is satisfied for some pressure field p, solves (Br). Since (2) is the analogue of (Eu)-
(i) and the constraint Pt = vol, ∀t is the analogue of (Eu)-(ii), Brenier’s problem
is very close to the Euler equations (Eu).

Navier-Stokes equations. Adding the viscosity force ∆v/2 on the right hand
side of Euler equation (Eu)-(i) gives the system of Navier-Stokes equations

{
(i) (∂t + v · ∇)v(t, z) = 1

2 ∆vt(z)−∇pt(z), 0 ≤ t ≤ 1, z ∈ X

(ii) ∇ · v = 0, 0 ≤ t ≤ 1, z ∈ X
(NS)

where the unknown is the couple (v, p). The viscosity term ∆v/2 suggests that
replacing the absolutely continuous paths of previous section by Brownian sample
paths could be of some help for deriving a variational problem related to (NS)
instead of (Eu).

Relative entropy, backward velocity. We need a stochastic analogue of the
kinetic action EP

∫
[0,1]
|Ẋt|2/2 dt which appears in (Br). Let R ∈ P(Ω) be the

Markov path measure with initial marginal R0 = vol and generator ∆/2. It is the
law of the reversible Brownian motion on X = Tn. Girsanov’s theory ensures that
any probability measure P ∈ P(Ω) which is absolutely continuous with respect to
R is the solution of the backward martingale problem with final measure P1 ≪ vol
and

d∗Xt =
←−v Pt (X[0,t]) dt+ d∗

←−
MP

t , 0 ≤ t ≤ 1, P -a.s.

where d∗
←−
MP is the increment of a local backward P -martingale and

←−v Pt (X[t,1]) = lim
h→0+

1

h
EP (Xt −Xt−h | X[t,1])(3)
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is the backward velocity of P . For any P ∈ P(Ω) with P1 = vol, the relative
entropy H(P |R) of P with respect to the reference path measure R is

H(P |R) := EP log

(
dP

dR

)
= EP

∫

[0,1]

|←−v Pt |
2/2 dt.

An entropy minimization problem. This suggests to introduce the following
analogue of Brenier’s problem:

H(P |R) → min; P ∈ P(Ω) : [Pt = vol, ∀ t], P01 = π.(4)

Note that as in (Br), π must verify (1) for the second constraint to be consistent
with the first incompressibility constraint. Remark that both (Br) and (4) are
convex minimization problems. But unlike (Br), the entropy minimization problem
(4) is strictly convex. Therefore, if it admits some solution, it is unique.

Applying formally the method of Lagrange multipliers to (4), one expects that
its solution is

P = exp

(
η(X0, X1) +

∫

[0,1]

pt(Xt) dt

)
R(5)

for some measurable functions η : X × X → R and p : [0, 1] × X → R. It is
not Markov in general, but it is reciprocal. In particular, for any y ∈ X , the
conditioned path measure P y := P (· | X1 = y) is Markov. With (3) and the
reciprocal property we have

←−v Pt (X[t,1]) = lim
h→0+

1

h
EP
[
Xt −Xt−h | X[t,1]

]

= lim
h→0+

1

h
EPX1

[
Xt −Xt−h | Xt

]
=←−v P

X1

t (Xt).

The main formal statements are the following.

• For P1-almost all y ∈ X and for all 0 ≤ t < 1,

←−v P
y

t (z) = ∇θyt (z), for P yt -almost all z ∈ X ,

where θyt (z) := − logERy

[
exp

(
[η(X0, y) +

∫ t
0
ps(Xs) ds

)
| Xt = z

]
and

∂t
←−v P

y

+ ←−v P
y

· ∇←−v P
y

= ∆←−v P
y

/2−∇p,(6)

where the pressure p is the same for all y.
• The average vector field ṽPt (z) := EP [

←−v Pt (X[t,1]) | Xt = z] satisfies

ṽPt (z) =

∫

X

←−v P
y

t (z)P (X1 ∈ dy | Xt = z) = 0, ∀t, z.

Let us conclude with some comments.

- The identity (6) is the Newton equation (NS)-(i) of the system of Navier-
Stokes equations, but of course←−v P

y

does not satisfy the incompressibility
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condition (NS)-(ii): ∇ · ←−v P
y

6= 0. Nevertheless, the incompressibility is
recovered by integrating the conditioned path measures P y since

P (·) =

∫
P y(·) vol(dy) and Pt = vol, ∀ t.

- The average backward velocity field ṽP coincides with the backward ve-
locity field ←−v R = 0 of the reference measure R. Of course it is a trivial
solution of the Navier-Stokes system of equations (NS).

- This is a work in progress. Everything is granted except the existence of
a function p in the representation (5).
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Wick polynomials and time-evolution of cumulants

Jani Lukkarinen

(joint work with Matteo Marcozzi and Alessia Nota)

The question of time evolution of a random field is central to applications of sta-
tistical and stochastic methods, for instance, in many-particle systems in Physics.
If the initial state of the system is chaotic, in the precise sense that field values
in far-apart spatial regions are essentially independent, it is natural to use the cu-
mulants of the fields, the correlation functions, to characterize the time-evolution.
Namely, if ψ(x) and ψ(x′) are independently distributed, their joint cumulants
will vanish but their joint moments are typically not zero.

The above observation allows to quantify the “chaoticity” of a random field on
an infinite lattice in terms of the speed of decay of the corresponding correlation
functions. If the decay leads to uniform ℓp-summability, we call the state ℓp-
clustering: the precise condition is

sup
x∈Zd

∑

y∈(Zd)n−1

|κ[ψ(x), ψ(x + y1), . . . , ψ(x+ yn−1)]|
p <∞, for all n ∈ N.

For instance, high-temperature thermal equilibrium Gibbs states often are ℓ1-
clustering; see [1], and the references therein, for explicit examples.

Consider now an ℓp-clustering random initial data for ψ0(x) and for any time
t > 0 define a random field ψt(x) as the unique solution to a deterministic evolution
equation. (We will use the discrete nonlinear Schrödinger equation later as an
explicit example of such a system.) How will the cumulants evolve in this case?

This question is addressed in [3], a joint work with M. Marcozzi. It turns
out that polynomials of the field values are naturally replaced by so called Wick
polynomials when studying the time-evolution of the correlation functions. The
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following argument highlights the relation in the simplest situation where gen-
erating functions can be used. Consider some finite sequence J of points xj ,
j = 1, . . . , n. For notational simplicity, let ψ(x)J := (ψ(x1), . . . , ψ(xn)) and
ψ(x)J :=

∏n
j=1 ψ(xj) =

∏
x∈J ψ(x). If the random variables in ψ(x)J have joint

exponential moments, then moments, cumulants, and Wick polynomials of subse-
quences of ψ(x)J can be generated by using the generating functions

Gm(λ) := E[eλ·ψ], gc(λ) := lnGm(λ) and Gw(λ;ψ) :=
eλ·ψ

E[eλ·ψ ]
= eλ·ψ−gc(λ),

where λ · ψ :=
∑

x∈J λxψ(x). Namely, then for any subsequence I of J we have

E[ψ(x)I ] = ∂IλGm(0), κ[ψ(x)I ] = ∂Iλgc(0) and :ψ(x)I : = ∂IλGw(0;ψ),

where “∂Iλ” is a shorthand notation for
∏
x∈I ∂λx . Here :ψI : denotes the Wick

polynomial associated to the random variable sequence ψ(x)I . (Its highest order
term is always given by ψ(x)I , and the lower order terms have coefficients which
depend on the distribution of ψ(x)I . Hence the “powerlike” notation :ψ(x)I : which
was introduced in quantum field theory. For further details about the standard
definition and basic properties of Wick polynomials, see [2]. In [3], we show how
Wick polynomials can also be defined combinatorially, as the unique choice which
removes all “internal contractions” from the related cumulant expansions.)

These relations immediately imply that, for instance, whenever t 7→ ψt(x) is a
continuously differentiable function at every x, we have

∂tκ[ψt(x)J ] = ∂Jλ∂tgc(λ)
∣∣
λ=0

= ∂JλE[λ · ∂tψtGw(λ;ψt)]
∣∣
λ=0

=
∑

y∈J

E[∂tψt(y) ∂
J\y
λ Gw(ψt, 0)] =

∑

y∈J

E[∂tψt(y) :ψt(x)
J\y :].

Therefore, Wick polynomials naturally appear in the study of time evolution of
cumulants. In [3], we apply them to derive an evolution hierarchy for cumulants,
and present three alternative forms for an evolution hierarchy for the Wick poly-
nomials.

The rest of the talk concerns more speculative applications of these methods to
evolution by the discrete nonlinear Schödinger equation (DNLS) with ℓ1-clustering
and gauge invariant initial data. We first recast the evolution equation in a regu-
larized form, called “pairing truncated” form in [5]. In terms of Wick polynomials,
the evolution equations for ψt(x, 1) = ψt(x) and ψt(x,−1) = ψt(x)

∗ are

iσ∂tψt(x, σ)

=
∑

y

α(x−y) :ψt(y, σ): +2λρt(x) :ψt(x, σ): +λ :ψt(x,−1)ψt(x, σ)ψt(x, 1): .

Here λ > 0 denotes the nonlinear coupling, and the function α : Zd → R is called
the hopping amplitude which we assume to be symmetric and exponentially de-
creasing. The function ρt(x) is equal to the ℓ2-density of the field, ρt := E[ |ψt(x)|2].

In [5], the simplest field-field time-correlator was considered assuming that the
initial data is given by a canonical Gibbs measure. This case leads to important
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simplifications since the initial data is then both invariant under spatial transla-
tions and stationary in time. In this case, a suitable “renormalization” of the field
ψ allows taking a kinetic scaling limit of the time-correlator yielding an explicit
evolution equation for time-scales O(λ−2).

As discussed in [3], the time-evolution of spatially inhomogeneous initial data
requires careful consideration of timescales O(λ−1) which cannot be handled by
a renormalization with simple compensating factors, unlike in the spatially ho-
mogeneous case. In a forthcoming work [4], we consider the time-evolution of
the Wigner function of the field assuming that the state has only weak spatial
variation. Explicitly, if we define

Wt(x, k) =
∑

y∈Zd

e−i2πk·yκ[ψt(x)
∗, ψt(x+ y)],

W
(4)
t (x, k) =

∑

y∈(Zd)3

e−i2πk·yκ[ψt(x)
∗, ψt(x+ y1), ψt(x+ y2)

∗, ψt(x+ y3)] ,

then

∂tWt(x, k) = −i
∑

z

α(z)ei2πk·z (Wt(x, k)−Wt(x − z, k))

−i2λ
∑

z

(ρt(x+ z)− ρt(x))

∫
dk′ ei2πz·(k

′−k)Wt(x, k
′)

−iλ

∫
d k′1dk

′
2

(
W

(4)
t (x, k′1, k

′
2, k − k

′
1 − k

′
2)−W

(4)
t (x, k′1, k

′
2, k)

)
.

Here ω(k) denotes the Fourier transform of α which yields also the dispersion
relation of the unperturbed discrete wave equation.

The equation can be integrated and, if one keeps only the lowest order terms

in coupling and in spatial derivatives also in the corresponding equation for W
(4)
t ,

it yields an approximate evolution equation

∂tWt(x, k) +
1

2π
∇kω(k) · ∇xWt(x, k)− 2λ∇xρt(x) ·

1

2π
∇kWt(x, k)

= λ2C[Wt(x, ·)](k) ,

where now x ∈ Rd. Here C[W ] is the phonon Boltzmann collision operator asso-
ciated with DNLS evolution equation (an explicit form for the collision operator
is given for instance in [3, Equation (5.14)]). The main difference compared to
the standard kinetic scaling limits is the appearance of a Vlasov-type term on the
left hand side. This term is lower order than the collision operator if the spatial
variation occurs only at kinetic length scales O(λ−2), but it becomes stronger than
the collision term if the variation is faster than O(λ).

Finally, we also briefly mentioned a possibility of estimating the accuracy of
scaling limit models, such as Boltzmann equations, by establishing a stability
of the limit equation under time-dependent perturbations of the source terms,
tailored to match with known a priori bounds for the correction terms. More
details and comments about the procedure can be found in [3, Section 6.2]. Its
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main benefit would be to circumvent the taking of a scaling limit of the solution,
and hence it could be used in situations for which the limit either does not exist or
is difficult to control. These cases include also the above mentioned inhomogeneous
Boltzmann-Vlasov equation.
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Can metastable states be stable?

Anna De Masi

(joint work with Errico Presutti and Dimitrios Tsgkarogiannis)

This talk is about the stationary Dirichlet problem for a gradient conservative
dynamics derived by Giacomin and Lebowitz, [4], from Kawasaki dynamics in
Ising spin systems with Kac potentials. I present the results in [1] and work in
progress. We study the solution m(r) ∈ [−1, 1], r ∈ [−ǫ−1ℓ, ǫ−1ℓ], ℓ ≥ 1, ǫ > 0 of

d

dx
I = 0, I = −κ(m)

d

dx

(
δFLP

δm

)
, m(±ǫ−1ℓ) = u±(1)

the coefficient κ(m) is the mobility that in our model is given by κ(m) = β(1−m2).
The functional FLP, known as the Lebowitz-Penrose functional, is a non local
version of the scalar Ginzburg-Landau functional.

FLP(m) =

∫
φβ(m) +

1

4

∫ ∫
J(|x− x′|) [m(x) −m(x′)]2

where J(|r|) ≥ 0 is smooth and normalized
∫
J(|r|) = 1,

φβ(m) = −
1

2
m2 −

1

β
S(m), β > 0,

−S(m) =
1 +m

2
log

(
1 +m

2

)
+

1−m

2
log

(
1−m

2

)
.

For β < 1, φβ is a single well with minimum at 0. For β > 1, φβ is a dou-
ble well with minima at the points ±mβ where mβ > 0 solves the “mean field
equation” mβ = tanh{βmβ}. For β > 1, φ′′β < 0 in the interval (−m∗,m∗) with

m∗ =
√
1− 1/β. The interval (−m∗,m∗) is called unstable region and the set
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(−mβ,−m
∗) ∪ (m∗,mβ) is the metastable region. In the thermodynamic free

energy all the values inside the interval (−mβ,mβ) are “forbidden”.
By choosing u− < −mβ and u+ > mβ we force the solution m of (1) to have

values also in the metastable and unstable phases. However we prove in [1] that
as ǫ → 0 m converges to the stationary solution u of the heat equation in [−ℓ, ℓ]
with boundary conditions u(±ℓ) = u± and diffusion coefficient

D0
β(u) = 1− β(1 − u2) = κ(u)φ′′β(u), for u2 ≥ m2

β ,

D0
β(u) = 0, for u2 < m2

β .

This solution increases from u− to −mβ then it jumps to mβ at a point r0 and
then increases again from mβ to u+. The current is constant for all r 6= r0:

j = −D0
β(u)

du

dr
, ∀r 6= r0(2)

The physics described by the model is about an open system in contact with two
magnetization reservoirs which fix the values at the boundaries equal to u±. Since
u− < u+ there is a negative current j given in (2) constant in the whole interval,
in agreement with the Fourier law. The metastable and unstable values do not
appear in the macroscopic profile since u has a discontinuity from −mβ to mβ at a
point r0. u is the stationary solution of the Stefan problem, the free boundary r0
does not move because the current, being constant, does not jump at r0. At the
mesoscopic level the profile m is smooth since at the transition it is the instanton.
Indeed we prove that the solution m of (1) with u− < −mβ and u+ > mβ is close
to a profile obtained by expressing the macroscopic profile u in mesoscopic units
and putting the instanton at the discontinuity.

We come now to the problem mentioned in the title namely what happens if we
take u± in the metastable region. For instance u− ∈ (−mβ ,−m∗) and u+ = −u−.
Our first result proved in [1] is: there exists a stationary solution m of (1) which
converges as ǫ→ 0 to a stationary solution u of the heat equation with boundary
conditions u(±ℓ) = u± and with diffusion

D∗
β(u) = 1− β (1 − u2) = κ(u)φ′′β(u), for u2 ≥ (m∗)2,

D∗
β(u) = 0, for u2 < (m∗)2.

u decreases from u− to −mβ then it jumps to mβ at 0 and then decreases again
from mβ to u+. The current j is a positive constant equal to

j = −D∗
β(u)

du

dr
, ∀r 6= 0

As opposite to the previous case the whole region is metastable except the point 0.
There is a problem with the Fourier law because the current is positive even though
u− < u+. This is not the only paradox because we have also other “strange”
solutions. Take u− ∈ (−mβ ,−m∗) and u+ ∈ (m∗,mβ), then there exists a solution
m of (1) which converges as ǫ→ 0 to a stationary solution u of the heat equation
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with diffusion D∗
β(u) as above and boundary conditions u(−ℓ) = u− but with

lim
r→ℓ−

u(r) = m− ∈ (−mβ,−m
∗)

u is monotone in (−ℓ, ℓ), the value of m− is determined by the bump q solution of
the equation in (−∞, 0)

q = tanh{βJ ⋆ q + βh∗}, lim
x→−∞

q(x) = m−

q(0) = u+ for some positive h⋆. Using the results in [2] and [3] we prove (work
in progress) the existence for some values of u+ and we conjecture that for all
u+ ∈ (m∗,mβ), h

∗ and m− are uniquely determined.
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On minimisers of the interaction energy

José A. Cañizo

(joint work with José A. Carrillo and Francesco Patacchini)

We study minimisers of the energy functional E : P(Rd) → R ∪ {+∞}, d ≥ 1,
defined on the set P(Rd) of probability measures on Rd by

E(ρ) =
1

2

∫

Rd×Rd

W (x− y) dρ(x) dρ(y), ρ ∈ P(Rd),(1)

where W : Rd → R ∪ {+∞} is a pointwise defined and measurable function called
the interaction potential, which is allowed to take the value +∞. Our motivation
for studying these minimisers has mainly come from the recent interest in the field
of collective behaviour regarding the steady states of the aggregation equation

∂tρ = ∇ · (ρ(∇W ∗ ρ)),(2)

where ρ = ρ(t, x) is a function (possibly a measure) defined for t ≥ 0 and x ∈ Rd.
Since E is a Lyapunov functional for Equation (2) (in fact, (2) is the gradient
flow of E with respect to the Wasserstein transport distance) its minimisers (if
they exist) are natural candidates for a steady state of (2), and they are also
natural candidates to represent the typical asymptotic behaviour of (2) as t →
+∞. Equations of the form (2) appear in granular flow and as mentioned before
in swarming models (see [3] and the references therein).
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It is easy to see that if a minimiser ρ happens to be regular enough then it must
satisfy the corresponding Euler-Lagrange equation, namely

W ∗ ρ = C on supp ρ,

for some C ∈ R. Consequently, it must be a stationary state of (2), again assuming
that ρ is regular enough for the right-hand side of (2) to be meaningful.

Under the following hypotheses we are able to show existence of minimisers of
the energy (1):

(1) W is bounded from below by a finite constant Wmin < 0.
(2) W is locally integrable (that is,

∫
B
|W | < +∞ for any open ball B ⊂ Rd).

(3) W is symmetric (that is, W (x) =W (−x) for all x ∈ Rd).
(4) W is lower semi-continuous.
(5) There is R′ ≥ 0 such thatW is strictly increasing on Rk−1×[R′,∞)×Rd−k

as a function of its k-th variable, for all k ∈ {1, . . . , d}.
(6) The following limit exists:

E∞ :=
1

2
lim

|x|→∞
W (x)

and there exists ρ ∈ P(Rd) such that E(ρ) < E∞.

We can the latter condition instability, in agreement with naming in statistical
mechanics literature. In [6] a discrete collective behaviour model was studied, and
it was noticed in numerical simulations that its large-time asymptotics seemed to
depend on whether the potential satisfies a classical condition known as stability
or H-stability in classical statistical mechanics, which is the complementary of the
last condition above. This was one of our original motivations for studying this
problem.

Our main result is the following:

Theorem 1. Assume that W : Rd → R∪{+∞} satisfies Hypothese (1)–(5) above.
Then there exists a global minimiser ρ ∈ P(Rd) of the energy E. In addition,
there exists K > 0 (depending only on W and the dimension d) such that every
minimiser of E has compact support with diameter at most K.

We point out that an explicit estimate on the size of the support can be re-
covered from the proof of the above theorem, though we do not expect it to be
sharp.

Simione, Slepčev & Topaloglu [11] have independently proved a similar result
by a different method based on Lions’ concentration compactness principle while
this paper was being prepared. Their method does not give any estimate on the
support or properties of the minimisers; on the other hand, their conditions for
existence of minimisers are slightly sharper than the ones in Theorem 1.

Local minimisers of the energy (1) in several transport distances (i.e., minimisers
in a small ball around them) were studied in [1], where bounds on the dimension
of their support were given under some assumptions controlling the strength of
the repulsion at the origin.
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In order to place the problem in context, let us briefly mention some of the
known rigorous results on the existence, uniqueness, and other properties of these
minimisers in some remarkable cases. An often studied case is that in which the
potential W is a sum of powers:

W (x) =
|x|a

a
−
|x|b

b
, x ∈ Rd,

for some a, b ∈ R with −d < b < a, and the understanding that |x|0/0 ≡ log |x|.
Here the term |x|a/a is the attractive one (being an increasing function of |x|,
regardless of the sign of a), and |x|b/b is the repulsive one (since it is a decreasing
function of |x|). For b = 2−d the repulsive term is called the Newtonian potential.
It is not difficult to check that this class of potentials satisfies our hypotheses.

The case a = 2 simplifies the problem a lot since the attractive part of the
interaction can be reduced to an external quadratic confinement by expanding
the square. The case b = 2 − d, a = 2 is actually relatively well-known among
probabilists: up to translations, the unique global minimiser is the characteristic
of a ball with an appropriate radius. A closely related result with a compact
confinement is proved in [9], and the 2-dimensional case can be found for example
in [10, Theorem 6.1, p. 245]. The interest in this problem on these references
comes from its links to the capacity of sets and applications to random matrix
theory.

The case a = 2, b = 2s − d for 0 < s < 1 was studied in [4] in relation to
the asymptotic behaviour of eq. (2), referred to as the fractional porous medium
equation. The authors there showed that there is a unique steady state (up to
translations) to (2), which they called a modified Barenblatt profile.

On the other hand, there have been many works devoted to the study of the
steady states and long-time behaviour of eq. (2) (see [7, 8, 1] and the references
therein). Steady states for the case b = 2 − d, a > 0 were studied in [8], where
it was proved that there exists a unique radial compactly supported steady state
(up to translations). The asymptotic behaviour of (2) in the case b = 2− d, a = 2
was studied in [8, 2], and the case −d < b < 2 − d, a = 2, as already remarked,
was considered in [4].

Finally, other particular interesting potentials are Morse-like potentials [6, 3],
for which there is a huge numerical evidence of the existence of compactly sup-
ported global minimisers. To our knowledge, a proof of this existence was not
previously available.
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Atomistic-to-continuum variational analysis of random lattice systems

Marco Cicalese

(joint work with Roberto Alicandro and Matthias Ruf)

In this talk we focus on the coarse-graining of a model for magnetic polymer
composite materials commonly used for bio-magnetic separations processes. At a
microscopic level these materials can be described as magnetic particles embedded
into a polymer matrix. At a macroscopic level they are characterized by the
formation of magnetic Weiss domains, whose structural properties are affected by
the intrinsic randomness of the geometry of the polymeric matrix. The aim of the
talk, which describes the results contained in [3], is to rigorously relate the micro
and macro scales energetic models by a variational analysis.

We model a magnetic polymer composite materials by defining first a polymer
matrix and then an interaction energy between the magnetic particles. We consider
the polymer matrix to be a random network having the cross-linked molecules as
nodes and we suppose that the set of the nodes of the network is an admissible
stochastic lattice according to the following definition. A countable set of points
Σ = {xi}i∈N in Rn is said to be admissible if

(i) there exists R > 0 such that infz∈Rn #(Σ ∩ B(z,R)) ≥ 1 (i.e., arbitrarily
big empty regions are forbidden),

(ii) there exists r > 0 such that inf{|x−y|, x, y ∈ Σ, x 6= y} ≥ r (i.e., clusters
are forbidden).

Then, given a probability space (Ω,F ,P), a random variable L : Ω → (Rn)N is
called an admissible stochastic lattice if, uniformly with respect to ω ∈ Ω, L(ω) is
an admissible set of points.
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To every stochastic lattice L(ω) we associate a Voronoi tesselation V(L(ω)) and
define the set of nearest neighboring points, namely NN (ω), as the set of those
pairs of points of the stochastic lattice L(ω) which share a (n − 1)-dimensional
edge of the associated Voronoi tessellation. Let now D ⊂ Rn be a bounded open
set, and ε > 0 be a small parameter (the limit ε → 0 will be referred to as the
continuum limit). We assume that the magnetic state of the particles in D is
described by a classical spin variable u : εL(ω) ∩ D → {±1} and we model the
interactions between the spins via an Ising type energy. Our energy model takes
into account the interactions among all the particles and may distinguish between
short-range (between the nearest-neighbors particles) and long-range interactions.
The total energy of the system for a given configuration u has the form

Fε(ω)(u) := Fnn,ε(ω)(u,D) + Flr,ε(ω)(u,D),

where

Fnn,ε(ω)(u,D) =
∑

(x,y)∈NN(ω)
εx,εy∈D

εn−1cεnn(x, y)|u(εx)− u(εy)|,

Flr,ε(ω)(u,D) =
∑

(x,y)/∈NN (ω)
εx,εy∈D

εn−1cεlr(x, y)|u(εx)− u(εy)|.

For cεnn, c
ε
lr : R

n×Rn → [0,+∞) we assume that there exist C > 0 and a decreasing
function Jlr : [0,+∞)→ [0,+∞) with

∫

Rn

Jlr(|x|)|x| dx = J < +∞

such that, for all ε > 0 and all x, y ∈ Rn,

1

C
≤ cεnn(x, y) ≤ C and cεlr(x, y) ≤ Jlr(|x− y|).

As the average distance between the nodes of the network εL(ω) is of order ε, the
prefactor εn−1 in the energy means that Fε(ω)(u) is the magnetic energy per unit
surface area of the network εL(ω) ∩D for a given magnetization u.

We identify the field u with its piecewise-constant interpolation taking the
value u(x) on the Voronoi cell centered at x, we regard the energies as defined
on L1(D, {±1}) and we perform the Γ-limit as ε → 0 in this space. We first
prove a deterministic compactness result, asserting that, for fixed ω ∈ Ω, up to
subsequences, the family Fε(ω) Γ-converges with respect to the L1(D)- topology
to a continuum energy F : L1(D)→ [0,+∞] which is finite only on BV (D, {±1})
where it takes the form

F (ω)(u) =

∫

S(u)∩D

φL(ω)(x, νu) dH
n−1,

where S(u) denotes the jump set of u, νu ∈ Sn−1 its measure theoretic inner
normal and Hn−1 the (n−1)-dimensional Hausdorff measure. The result is proved
by the abstract methods of Gamma-convergence and makes use of the integral
representation theorem in [6]. We explore the dependence of the continuum energy
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on the randomness induced by the stochastic lattice assuming further that the
stochastic lattice is stationary, that is, for all z ∈ Zn, L(ω) and L(ω) + z have the
same statistics and that there exist two functions cnn, clr : Rn → [0,+∞) such
that

cεnn(x, y) = cnn(y − x), cεlr(x, y) = clr(y − x).(1)

These assumptions, which play the same role as periodicity in the case of the deter-
ministic periodic lattice considered in [4], turn the problem of the characterization
of the continuum limit energy into a stochastic homogenization problem.

We prove that the functionals Fε(ω) Γ-converge with respect to the L1(D)-
topology to the functional Fhom(ω) : L1(D) → [0,+∞] which is finite on
BV (D, {±1}) and it takes the form

Fhom(ω)(u) =

∫

S(u)∩D

φhom(ω; νu) dH
n−1

where, for P-almost every ω and for all ν ∈ Sn−1, φhom(ω; νu) is given by an
asymptotic homogenization formula. In the case L is ergodic the limit energy is
proven to be deterministic and its energy density φhom(ν) is obtained by averaging
over the probability space:

φhom(ν) =

∫

Ω

φhom(ω; νu) dP(ω).

The proof of this last result uses two main ingredients: the abstract methods of
Γ-convergence and the subadditive ergodic theorem by Ackoglu and Krengel in [1].
The combination of these two results in the framework of discrete-to-continuum
limits is already contained in [2] and draws ideas from the pioneering paper [7].
It consists in proving that the sequence of minimum problems characterizing the
energy density of the Γ-limit at a certain point in the space and in a given direction
agrees (up to lower order terms) with a sequence of subadditive stochastic processes
for which the main result in [1] applies. It is at this point that one strongly uses
the assumptions on the stationarity of the lattice together with (1). This step of
the proof is the most delicate one and requires new arguments with respect to the
Sobolev case in [2] and in particular the generalization to higher dimensions of the
translation invariance of the first passage percolation formula in [5].
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Persistence of activity in critical scale free Boolean networks

Christian Mönch

Introduction. Scale free Boolean networks (SFBNs) generalise Kauffmann’s mo-
del [7] of gene regulation to networks with power law degree distribution. SFBNs
can be viewed as deterministic dynamical systems with random initial configura-
tion: The dynamics run on a random directed graph GN = ([N ], EN ) with vertex
set [N ] = {1, . . . , N}. Every vertex x ∈ [N ] is in a certain state ηt(x) ∈ {0, 1} = F2

for times t = 0, 1, 2, . . .. At t = 0 we assign to each vertex x an intial state η0(x)
and a randomly chosen update rule σ(x) which computes the state ηt(x) at times
t ≥ 1 from the states {ηt−1(y) : (y, x) ∈ EN}. Updating occurs simultaneously
for all x ∈ [N ]. After the intial setup the graph and the rules are fixed and
only the configurations ηt = {ηt(x), x ∈ [N ]} change over time. One basic ques-
tion in the study of SFBNs is to determine the asymptotic size, as N → ∞, of
Nnf = {x ∈ [N ]; ∀ t ∈ N ∃ s > t : ∆ηs(x) = 1}, where ∆ηt = ηt+1 − ηt ∈ FN2 . The
set Nnf is usually referred to as the non-frozen core of the network.

In the literature (see e.g. [4] for a survey) the model is usually studied under
the following assumptions:

• the underlying network has a power law in- and outdegree distribution
with respective exponents τ in, τout > 2,
• in- and outdegree of a vertex are (asymptotically) independent.

If the dynamics additionally satisfy a certain criticality assumption, simulations
suggest that for the canonical distribution on p-biased update rules and indepen-
dently and uniformly chosen η0 ∈ FN2 , with high probability as N →∞,

|Nnf| = Nρ+o(1), where ρ =




1 + 1

τout∧3 −
2

τ in∧3 , if τ in ≤ τout;

1−
1− 3−(τout∧3)

τout

2(τ in∧3)−3 , if τ in > τout.
(1)

In [5] these exponents have also been derived by a non-rigorous analysis of a “con-
tainer algorithm” which simultaneously constructs the frozen part of the network
and the network itself.

Due to their quenched nature, the dynamics of SFBN are hardly tractable by
rigorous means. It is thus common practice to work with the “annealed approxi-
mation” to (ηt)

∞
t=0, introduced in [3]. The fixed rule ensemble σ = {σ(x), x ∈ [N ]}

is here replaced by an i.i.d. sequence (σt)
∞
t=0. In this approximation the process

(∆ηt)
∞
t=0 becomes a (discrete time) threshold contact process (TCP) (ξt)

∞
t=0 and

Nnf is well approximated by the range of infection R = {x ∈ [N ]; ∃ t > 0 : ξt(x) =
1}, given that ξ0 contains enough well-connected infected sites. Persistence of the
supercritical TCP on a uniform random graph with fixed indegree r ≥ 3 has been
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studied in [2, 9] and recently the analysis has been extended to random graphs
with very general joint in- and outdegree distributions [1].

Our motive is twofold: firstly, to rigorously verify relationship (1) with Nnf

replaced by R. Secondly, to obtain new critical scaling exponents for SFBNs with
dependent in- and outdegrees from the TCP via the annealed approximation. Our
approach is similar in spirit to the one adopted in [1, 2, 9]. We aim to couple the
growth of R to a branching process. However, a different choice of the underlying
graph model simplifies the analysis considerably and enables us to use results about
the component sizes in critical random graphs, see [6], via explicit couplings.

Model and results. The actual random graph model we use is a Poissonian
inhomogeneous random graph with i.i.d. weights. The graph is parameterised
by weights (Λx)x∈N, which are i.i.d. copies of some generic bivariate r.v. Λ =
(Λin,Λout) ∈ N2 with 1 < λ = EΛin = EΛout < ∞. Conditionally on the weights,
we obtain GN = ([N ], EN ) by introducing each off-diagonal edge (x, y) ∈ [N ]2 into
EN independently of all other edges with probability

1− exp
(
−
Λout
x Λin

y

LN

)
, where LN =

N∑

x=1

Λin
x + Λout

x

2
.

Thus the limiting in-/outdegree distribution of GN is mixed Poisson(Λin/out) and
follows a power law with exponent τ in/out if and only if Λin/out does. We further
denote, for x ∈ [N ], by C→(x) the set of all vertices which can be reached from x
following edges in EN .

The TCP on GN is defined as follows:

ξ0 = δargmaxx∈[N ] |C→(x)|,

i.e. we infect the “most connected” vertex and, for t ≥ 1,

ξt(x) =

{
1 with probability q ∈ (0, 1), if ∃ (y, x) ∈ EN : ξt−1(y) = 1,

0, otherwise,

independently for all x ∈ [N ]. The special choice of ξ0 is for the purpose of
exposition. As previously stated, ξ approximates the Boolean activity ∆η for the
special choice of p-biased update functions, where p, q satisfy q = 2p(1 − p). To
obtain a critical TCP/SFBN q has to be chosen as

q =

∑
k,l kP(Λ

in = k,Λout = l)
∑

k,l lkP(Λ
in = k,Λout = l)

.

In this setup, a perfect coupling between ξ and a local exploration process in a
suitably chosen random graph allows us to infer variants of (1) for two special
cases:

Theorem 1 (Range of critcal TCP [8]). Let ξ be the critical TCP on GN and let
R = {x ∈ [N ]; ∃ t > 0 : ξt(x) = 1}. Then the following holds, with high probability
as N →∞:
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• if Λin and Λout are independent and follow the same power law with expo-
nent τ > 2, then

|R| = N
(τ∧3)−1

τ∧3 +o(1),

• if Λin = Λout follows a power law with exponent τ > 3, then

|R| = N
(τ∧4)−2
(τ∧4)−1

+o(1).

Observe that the first statement of the theorem coincides with (1) and that
the second statement applies to a situation which is not covered by (1), since in-
and outdegree are not independent. It is most likely that the techniques used
to establish the theorem can also be applied to the case in which Λin,Λout have
different distributions and are indepedent. This would completely recover (1) in
the annealed approximation.

The second statement together with the results of [1] make it very plausible that
the analysis may be extendend to obtain scaling exponents even in the situation
where the in- and outdegree of the underlying network are arbitrarily correlated.
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Capacitary inequalities in discrete setting and application to
metastable Markov chains

André Schlichting

(joint work with Martin Slowik)

Capacitary inequalities were introduced by V. Ma’zya [4] to prove many results
and fine properties about Sobolev functions in Rn. We carry over one of these
inequalities to discrete state spaces and use them to explicitly characterize Poincaré
and logarithmic Sobolev constants of Markov chains in terms of capacities.

We consider a Markov process on a countable state space S with transition
probabilities p : S × S → [0, 1]. Its generator is given for any bounded function
f : S → R by

(Lf)(x) :=
∑

y∈S

p(x, y) (f(y)− f(x)) .

We assume this process to be positive recurrent and reversible with respect to the
probability measure µ. Further, the equilibrium potential hA,B is defined for any
two disjoint subsets A,B ⊂ S as the solution of

{
LhA,B = 0 , on (A ∪B)c

hA,B = 1A, on A ∪B,

where 1A is the indicator function on A. Therewith, the capacity between two
disjoint sets A,B ⊂ S is defined by

cap(A,B) := 〈−LhA,B, hA,B〉 = E(hA,B),

where E is the Dirichlet form associated to the generator L. The capacitary in-
equality can now be stated in the form

Theorem 1 (Capacitary inequality [8]). For f : R → S define by At ⊂ S its
super-level sets At := {|f | > t}. Moreover, assume, that f |B ≡ 0, then it holds

∫ ∞

0

2t cap(At, B) dt ≤ 4E(f).

From this result, we can deduce Poincaré inequalities for certain Orlicz norms.
These norms can be compared to the variance and relative entropy and the fol-
lowing statements can be deduced.

Proposition 1 (Poincaré inequality [8]). Let ν ∈ S and b ∈ S. Then, there exist
Cvar, CPI > 0 satisfying

ν[b]Cvar ≤ CPI ≤ 4Cvar

such that the following statements are equivalent:

a) For all A ⊂ S \ {b} it holds the inequality

ν[A] ≤ Cvar cap(A, b).
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b) It holds the mixed Poincaré inequality

varν [f ] ≤ CPI E(f).

Proposition 2 (Logarithmic Sobolev inequality [8]). Let ν ∈ P(S) and b ∈ S.
Then, there exist CEnt, CLSI > 0 satisfying

ν[b]

ln(1 + e2)
CEnt ≤ CLSI ≤ 4CEnt

such that the following statements are equivalent:

a) For all A ⊂ S \ {b} it holds the inequality

ν[A] ln

(
1 +

e2

ν[A]

)
≤ CEnt cap(A, b).

b) It holds the logarithmic Sobolev inequality

Entν [f
2] ≤ CLSI E(f).

The above results can be seen as a the generalization of the Muckenhoupt crite-
rion which is used to characterize the Poincaré and logarithmic Sobolev constant
in the one dimensional case [7, 2, 6, 1].

Moreover, the results can be especially applied in the setting of metastable
dynamics. In the potential theoretic approach, see [3, 9], metastability can be
characterized in terms of hitting probabilities.

Definition 1 (̺-metastable Markov chain). The Markov process {X(t) : t ≥ 0}
is called ̺-metastable with respect to a set of metastable pointsM, if

maxm∈M Pm
[
τM\m < τm

]

minA⊂S\M PµA

[
τM < τA

] ≤ ̺ ≪ 1,

where µA[x] := µ[x|A] denotes the conditional probability.

Hitting probabilities are connected to capacities by

cap(A,B) = µ[A]PµA [τB < τA].

A set of metastable points induces a partition into metastable valleys. A point
x ∈ S belongs to the metastable valley Vm of the metastable point m, if its hitting
probability is the largest among all other metastable points. Therewith, we can
decompose the variance into local variances inside the valleys and global ones
between the valleys and analogously for the entropy (cp. [5]).

The Propositions above allow us to show that the contribution of the local
variances and relative entropies to the total Poincaré and logarithmic Sobolev
constant is negligible. The global one can be reduced to capacities between single
points. Therewith, the final result stated for simplicity in the case |M| = 2 only
reads
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Theorem 2 (Poincaré and logarithmic Sobolev constants for metastable Markov
chains [8]). The Poincaré constant CPI for a metastable Markov chain satisfies

CPI =
µ[Vm]µ[Vm̃]

cap(m, m̃)

(
1 +O

(√
̺|M|

))
.

Moreover, the logarithmic Sobolev constant CLSI satisfies

CLSI ≤
µ[Vm]µ[Vm̃]

Λ (µ[Vm], µ[Vm̃]) cap(m, m̃)

(
1 +O

(√
̺|M|

))
,

where Λ(a, b) =
∫ 1

0 a
sb1−s ds is the logarithmic mean for a, b ≥ 0.

A matching lower bound for the logarithmic Sobolev constant can be obtained
under further assumptions on the mass distribution among the metastable valleys.
A test function leading to a universal matching lower bound has still to be obtained.
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Applied Probability, Functional Inequalities and Kacs Model

Amit Einav

(joint work with Kleber Carrapatoso)

One of the most influential equations in the kinetic theory of gases is the so-called
Boltzmann equation, describing the time evolution of the probability density of a
particle in dilute gas. While widely used, a rigorous validation to the equation,
one that is true for mesoscopic time scales, is still unavailable and is one of the
hardest open problems in kinetic theory. In his 1956 work, [8], Marc Kac presented
an attempt to do the above for the spatially homogeneous equation by considering
a linear stochastic model of N indistinguishable particles, with one-dimensional
velocities, that undergo a random binary collision process. Under the property
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of ’chaoticity’, which means that the particles become ’more and more indepen-
dent’ as the number of particles goes to infinity, Kac managed to show that the
equation of the first marginal of the N−particle density function converges to a
one-dimensional variant of the Boltzmann equation, the so-called Boltzmann-Kac
equation, as N goes to infinity.

Kac was very hopeful that this mean field approach will lead to new understand-
ing in the study of the Boltzmann equation. He suggested that one can investigate
the simple, many particle, linear equation and attempt to take the limit as N goes
to infinity. One of the biggest problem he hoped to resolve in this manner was
finding the rate of convergence to equilibrium.

In our short talk we will introduce Kac’s model and the question of trends
to equilibrium, and will see how functional inequalities and local central limit
theorems are connected to them. To begin with we will investigate the question of
existence of so-called chaotic states, and will show how that problem is intimately
connected to the study of Gaussian and Lévy type local central limit theorems
that measure possible concentration of the sum of i.i.d variables on an appropriate
sphere. This part of the talk is based on the work done in [3, 4].

We will then continue with the convergence to equilibrium problem and intro-
duce the associated spectral gap problem, its inadequacy to deal with the problem
and the associated entropy method solution. We will discuss the invalidity of the
desired Cercignani’s conjecture by mentioning the works of Villani and the Speaker
(see [5, 6, 9]). We will show that the aforementioned conjecture is strongly related
to a subadditivity type inequality for the entropy on the sphere (see [1]) and will
discuss known results by Carlen, Lieb and Loss ([2]) on which the above relies. We
will finish by presenting recent new improvements to the ’subadditivity’ inequality
([7]) that may hold the key to finding the right subspace under which one can
gain a uniform in N exponential rate of convergence for the entropy. The new
’almost’ subadditivity of the entropy on the sphere draws much of its intuition
from kinetic related quantities, such as moments, as well as the right choice of
distances - involving optimal transportation quantities in the mix.
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Two recent Wulff-shape theorems

Marek Biskup

(joint work with Oren Louidor, Eviatar Procaccia, Ron Rosenthal)

Limit shapes are a topic of recurring interest in both probability and statistical
mechanics. One successful approach to these came up in the 1990s under the
banner of theWulff construction. There one was interested in the asymptotic shape
of a “droplet” of one equilibrium phase (e.g., the minus phase of the Ising model
at inverse temperature β) immersed in another (the plus Ising phase) subject to a
restriction on the overall order parameter (the magnetization, or the total number
of plus spins, in the Ising case). In this case, the asymptotic shape is determined
by a solution of an isoperimetric problem; namely,

inf
{
P(U) : U ⊂ Rd open, Leb(U) = 1

}
(1)

where Leb(U) is the Lebesgue measure of U while P(U) is a suitable “perimeter
functional” given as an integral with respect to the (d− 1)-dimensional Hausdorff
measure on the boundary ∂U of U of a normal-vector dependent quantity called
the surface tension.

The work to be reported here deals with other instances where a closely related
limit theorem appeared in recent years. There are actually two separate projects
to be discussed; one dealing with isoperimetric shapes in random environment, the
other with random walks interacting through their boundary.

Part I: Isoperimetry on supercritical percolation cluster

Consider the bond percolation on Z2 with parameter p > pc. It is well known that
almost every realization of the percolation process will contain a unique infinite
open cluster C∞ with density θp > 0. Applications to mixing of the random walk
on this component, and other geometrical questions in general, naturally lead to
the consideration of an anchored isoperimetric profile,

Φ(r) := min

{
|∂ωU |

|U |
: 0 ∈ U ⊂ C∞, U connected, |U | < r

}
,(2)

where |∂ωU | stands for the size of the open-edge external boundary of U and |U | is
the cardinality of U . (The definition assumes containment in the event {0 ∈ C∞}.)

Let M(r) denote the set of minimizers in (2). The questions we address are:
(1) the asymptotic behavior of Φ(r) and (2) the asymptotic shape of the sets
U ∈ M(r), both in the limit as r → ∞. The salient portion of our results is
summarized in:
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Theorem 1. For each p > pc there exists a norm ρp on R2 such that the following
holds almost surely on the event {0 ∈ C∞}: First,

lim
r→∞

r1/2Φ(r) = θ−1/2
p ϕp,(3)

where θp is as above and ϕp is the value of the infimum in (1) for P(U) being the
arclength of ∂U with respect to the norm ρp.

Second, if Wp denotes a minimizer of the perimeter functional P(U) — the one
defined using ρp — over open sets U ⊂ R2 with Leb(U) = 1, then, using distH to
denote the Hausdorff distance on subsets of R2,

max
U∈M(r)

inf
x∈R2

distH
(
r−1/2U, x+ θ−1/2

p Wp

)
−→
r→∞

0

and

max
U∈M(r)

∣∣∣∣
|U |

r
− 1

∣∣∣∣ −→r→∞
0.

We remark that, by classical results in geometric measure theory, the mini-
mizer Wp is determined uniquely up to spatial shifts. The conclusion (3) solves
a version of a conjecture due to Itai Benjamini. A key point of the proof is the
construction, and control, of the norm ρp which requires techniques from combina-
torics of planar graphs, ergodic theory and concentration of measure. See the joint
paper with O. Louidor, E.B. Procaccia and R. Rosenthal [1] for further details.

Part II: Limit shapes for interacting random walks

The second problem to be discussed concerns interacting random walks. Consider
the continuous-time simple random walk {Xt : t ≥ 0} on Zd with jump rate 2d
and let P x be its law for P x(X0 = x) = 1. Denote by R(t) to be the hull —
namely, the complement of the unique infinite connected component — of the set
of vertices visited by the random walk by time t. For β > 0 consider the Gibbs
measure Qxβ,t on the path space defined by

Qxβ,t(A) :=
1

Z(β, t)
Ex
(
1A e−β|∂R(t)|

)
,

where ∂R(t) is the external vertex boundary of R(t) and Z(β, t) := Ex
(
e−β|∂R(t)|

)
,

with Ex denoting expectation with respect to P x, is the normalizing constant. The
problem we wish to address is the asymptotic shape of the set R(t) for t large.

Random walks interacting through the shape of their support have been studied
since the mid 1990s. For the case of |∂R(t)| replaced by the cardinality of the
support, Bolthausen [3] proved that the asymptotic shape of the support is an

Euclidean ball of radius of order t
1

d+2 . The current setting has been addressed by
Berestycki and Yadin [4] who identified the typical linear scale of the support as

r(t, β) :=
( t
β

) 1
d+1

.
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Our contribution is a proof of a shape theorem. Unfortunately, as it turns out, we
are only able to do this for d = 2 and in the limit β →∞. The precise statement
is as follows:

Theorem 2. Let d = 2. There exists a bounded open set U0 ⊂ Rd such that the
following holds: For each ǫ > 0 there is β0(ǫ) <∞ such that for all β > β0(ǫ),

lim
t→∞

Q0
β,t

(
inf
x∈Rd

distH

(
r(t, β)−1R(t), x+ U0

)
> ǫ

)
= 0.

Moreover, U0 is the unique minimizer up to shifts of the map

U 7→ λ(U) + P(U)(4)

where λ(U) is the principal Dirichlet eigenvalue of the negative Laplacian in U
and P(U) is the perimeter of U measured using the ℓ∞-distance.

As it turns out, the second part of the theorem is actually hiding a far simpler
conclusion: The limit shape U0 is an ℓ1-ball. However, this reflects rather strongly
the choice of the interaction: If ∂R(t) is taken to mean the external edge boundary
of R(t), then P(U) is the perimeter measured using the ℓ1-distance and U0 is
an ℓ∞-ball. This still sounds as if the minimizer of (4) coincided with that of
(1); however, we know this to be false in general. We refer to a joint paper with
E.B. Procaccia [2] for a shape theorem for rather general versions of the interaction
as well as full analysis of the variational problem for the functional (4) under a
general choice of the underlying norm. This is still restricted to d = 2 and β →∞;
the case of finite β and/or d ≥ 3 is at present open.
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Total momentum of quantum systems: three applications of Galilean
invariance

András Sütő

Galilean invariance for N quantum particles of unit mass on a d-torus means that
both the spectrum and the set of eigenvectors of the Hamiltonian are preserved,
when the system is set into motion of a constant velocity v, chosen from a discrete
group. The only effect of the transformation is that it permutes the eigenvalues
among the eigenvectors. This happens because the eigenvectors of the Hamilton-
ian are also eigenvectors of the total momentum operator, and the velocity boost
only adds Nv to the momentum of each eigenvector, mapping the group onto
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itself. Galilean invariance has some interesting consequences, three of which are
discussed in my talk. First, it is possible to derive some results about the proba-
bility distribution of the eigenvalues of the total momentum operator in thermal
equilibrium. In one dimension, the total momentum has normal fluctuations of
variance ∼ N about the zero mean, in two dimensions one can prove only that the
tail distribution is normal of variance ∼ N , and for d ≥ 3 one can only derive an
even weaker result. Second, one can show that Landau’s criterion for excitations
in moving superfluids is an in some cases correct result of an erroneous derivation.
Third, the ground state of one-dimensional systems becomes highly degenerate in
the limit of infinite length and, under some conditions on the interaction, these
states are periodically ordered. I also speak about a possible relation between
the probability distribution of the total momentum in the thermodynamic limit
and the type of the thermodynamic phases. For superfluids I conjecture that the
total momentum is zero with a positive asymptotic probability. Based on this
hypothesis, I discuss the dissipative flow of superfluids, and derive a temperature-
dependent critical velocity. Details can be found in Ref. [1].
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Quantitative stochastic homogenization of elliptic equations

Stefan Neukamm

(joint work with Antoine Gloria and Felix Otto)

We are interested in quantitative results for stochastic homogenization of

−∇ · (a( ·
ε )∇uε) = f in H1

0 (Ω),(1)

where Ω ⊂ Rd is a bounded domain and a(x) ∈ Rd×d denotes a coefficient matrix
that is uniformly elliptic (in the sense that there exists λ > 0 s.t. for all x ∈ Rd

and all ξ ∈ Rd we have |a(x)ξ| ≤ ξ and a(x)ξ · ξ ≥ λ|ξ|2). The qualitative
theory of stochastic homogenization of (1), first considered 1979 by Papanicolaou
& Varadhan and by Kozlov, is well understood and states: If the coefficients a
in (1) are random with a stationary and ergodic law (with respect to shifts from
Rd), then there exists a deterministic, uniformly elliptic matrix a0 such that in
the limit ε ↓ 0, uε weakly converges to u0 ∈ H1

0 (Ω), the solution to

−∇ · (a0∇u0) = f in H1
0 (Ω).

The homogenized coefficients a0 are defined by the average

∀ξ ∈ Rd : a0ξ = lim
L↑∞

1

|BL|

∫

BL

a(∇φξ + ξ) dx,

where the so called corrector φξ = φξ(a, ·) : Rd → R is defined as a solution to

−∇ · (a(∇φξ(a, ·) + ξ)) = 0 in Rd and for a.e. a,(2)
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such that ∇φξ is stationary, in the sense of ∇φξ(a, · + z) = ∇φξ(a(· + z), ·), has
finite second moment and vanishing expectation, and

∫
B
φdx = 0 for a.e. a.

We are interested in the following quantitative questions:

• Estimates on the corrector. By uniform ellipticity, standard energy esti-
mates show that 〈|∇φξ|2〉 ≤ C(d, λ)|ξ|2. Moreover, thanks to 〈∇φξ〉 = 0,
the corrector φξ grows sublinearly in the sense of

lim
L→∞

L−2 1

|BL|

∫

BL

∣∣∣∣φξ −
1

|BL|

∫

BL

φξ

∣∣∣∣
2

= 0.

Can we prove boundedness of higher moment bounds for ∇φξ? Can we
prove bounds on moments of φξ(x) that are either independent of x (which
would yield existence of a stationary solution to (2)) or that diverge as
|x| → ∞ with a precise rate (quantifying the sublinear growth of the
corrector)?
• Quantitative two-scale expansion. A formal argument suggests that uε
admits the two-scale expansion

uε = u0 + ε

d∑

i=1

φi(
·
ε ) ∂iu0 + zε

where φi stands short for φei and the remainder zε is of higher order. In

the case of periodic coefficients, classical results show that ‖zε‖H1
<
∼ ε

(away from the boundary of the domain and for sufficiently smooth data).
Can we prove a similar estimate in the case of stochastic homogenization?

These quantitative questions require to strengthen the assumption of ergodicity.
For this purpose in [6], [4], inspired by [7], we assume a Spectral Gap Inequality
(SG) to quantify ergodicity. More precisely, we consider a discrete setting where
Rd is replaced by the lattice Zd and prove the following statement:

Theorem 1 (see [6],[4]). Suppose the law of {a(x)}x∈Zd satisfies (SG) in the sense
that for all random variable ζ(a) with vanishing expectation:

〈ζ2〉 ≤
∑

x∈Zd

〈(
∂ζ

∂a(x)
)2〉.(SG)

Then for any T ≥ 1 the bounded solution φT to

1

T
φT +∇∗(a(∇φT + ξ)) = 0 in Zd,

(i.e. the massive term approximation to (2)) satisfies for all p <∞ the estimates

〈|∇φT |2p〉
1
2p ≤ C(d, λ, p)|ξ| and

〈φ2pT 〉
1
2p ≤ C(d, λ, p)|ξ| ×

{
log

1
2 T for d = 2,

1 for d > 2.

Moreover in [4] we prove a sharp result on the decay rate of the semigroup
generated by ∇∗(a∇), seen as an operator acting on the L2p-space of stationary
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random fields. These results are optimal (in terms of their dependence on the
parameter T and in terms of the decay rate, respectively), and imply that under
the assumption of (SG) (which is fulfilled in the case when {a(x)}x∈Zd are i.i.d.)
the corrector equation (2) admits a stationary solution for d > 2. For d = 2
existence of stationary correctors is not expected. A key ingredient in the proof
of these results is elliptic regularity theory of De Giorgy-Nash-Moser type. It is
used to establish estimates on the gradient of the elliptic Green’s function (resp.
heat kernel), which hold uniformly in a. In contrast to these results, which are
restricted to scalar elliptic equations that satisfy a maximum principle, in [3] we
obtain the same bounds for elliptic equations without appealing to the maximum
principle and thus cover the case of non-symmetric a; see also [1] for systems.

The results discussed above rely on variants of (SG) and thus are restricted to
coefficients with integrable correlations. In [5] we treat elliptic systems in Rd with
coefficients that might have arbitrarily slow-decaying correlations, for example
coefficients based on Gaussian fields satisfying for some parameter β ∈ [0, 1):

∫

Rd

| cov(a(x), a(0))| (|x| + 1)−βd dx <∞.(3)

We get a family of estimates

• on the decay of averages of the gradient of the corrector,
• on the sublinear growth of the corrector,
• on the error of the two-scale expansion.

The scaling of these estimates is sensitive to the parameter β and the dimension.
In particular, we identify a critical exponent β̄ = 1− 2

d , below which we get uniform
bounds on the corrector and existence of stationary solutions to (2), while at or
above β̄ the sublinear corrector grows logarithmically (resp. with an algebraic
rate).

The analysis in [5] relies on a novel regularity theory for elliptic operators with
random (stationary & ergodic) coefficients, which is of independent interest and
is inspired on the one hand by very recent work of Armstrong and Smart [2] and
on the hand by the philosophy of Avellaneda and Lin to gain regularity for the
equation on the ε-level from the good regularity properties of the homogenized
equation. We introduce a critical radius r∗, which is defined in a natural way in
form of a smallness condition on the sublinear growth of the corrector. We then
argue that

• on length scales above r∗ the operator −∇ · a∇ has “good” regularity
properties, e.g. a-harmonic functions u are Lipschitz continuous, in the

sense of 1
|Br |

∫
Br
|∇u|2

<
∼ 1

|BR|

∫
BR
|∇u|2 for R ≥ r ≥ r∗,

• r∗ is finite almost surely, if we assume ergodicity and stationarity of the
coefficients, and r∗ has stretched exponential moments, if correlations of
the coefficients are (possibly slowly) decaying in the spirit of (3).

The above mentioned results on quantitative stochastic homogenization are then
obtained by combining these regularity properties with a sensitivity estimate that
monitors the effect of (localized) perturbations of the coefficients a on φξ.
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Fluid limits for population processes with a continuum of types: an
example from gas kinetics

James Norris

We discuss the combination of two classical ideas. The first is the use of hierar-
chichal decompositions for test-functions in estimating the Wasserstein distance
of a probability measure from its sample empirical distribution. The second is the
use of martingale estimates to show convergence of Markov chains to solutions of
differential equations. The ideas can be combined because the techniques used for
sample empirical distributions extend naturally to martingale measures associated
to a Markov chain.

The driving example is Kac’s stochastic mean-field model for velocity exchange
by elastic collision in a dilute gas of spherical particles, say in dimension 3. In
this model, a vector of N velocities (v1, . . . , vN ) evolves as follows: for each pair
of velocities v, v∗, say, at rate |v− v∗|, we draw a sphere with poles at v, v∗, choose
randomly a new axis for the sphere, and replace v, v∗ by the poles of this new axis.

We are able to show a new estimate, of the following form: with probability
exceeding 1− ε, for all t ≤ T ,

W
(
µNt , µt

)
≤ C N−1/3.

Here, µNt is the normalized empirical distribution of velocities from Kac’s model
and µt is the solution to the spatially homogeneous Boltzmann equation with
collision kernel |v − v∗| starting from µN0 . The constant C may be chosen to

depend only on ε > 0, p > 8, T <∞ and any upper bound for 1
N

∑N
i=1 |vi|

p.
Details may be found in [1].



2034 Oberwolfach Report 35/2015

References

[1] J. Norris, A consistency estimate for Kac’s model of elastic collisions in a dilute gas ,
Preprint (2014), arXiv:1405.2742, to appear in Ann. Applied Probab.

Random walk in balanced random environments

Noam Berger

(joint work with Jean-Dominique Deuschel, Xiaoqin Guo, Alejandro F. Ramı́rez)

We consider random walk in a balanced random environment. This is defined
as follows. Let Md denote the space of all probability measures on the nearest

neighbors of the origin {±ei}di=1 and let Ω = (Md)Z
d

. An environment is a point
ω ∈ Ω, we denote by P the distribution of the environment on Ω. We restrict our
attention to cases where P is translation invariant, ergodic and balanced, i.e. for
every z, every e ∈ {e1, . . . , ed} and P -almost every ω, ω(z, e) = ω(z,−e).

For a given environment ω ∈ Ω, the Random Walk on ω is a time-homogenous
Markov chain jumping to the nearest neighbors with transition kernel

Pω
[
Xn+1 = z + e

∣∣ Xn = z
]
= ω(z, e) ≥ 0,

∑

e

ω(z, e) = 1.

The quenched law P zω is defined to be the law on (Zd)N induced by the kernel Pω
and P zω [X0 = z] = 1. We let Pz = P ⊗P zω be the joint law of the environment and
the walk, and the annealed law is defined to be its marginal

Pz =

∫

Ω

P zω dP (ω).

This model was first studied by Lawler [4], who proved a CLT in the uniformly
elliptic case (i.e. ω(z, e) is bounded away from zero) using ideas which first ap-
peared in [5]. Later, Guo and Zeitouni [3] proved a CLT in the i.i.d. elliptic case
and for the general ergodic cases with some moment assumptions on ω(z, e)−1.
Berger and Deuschel [1] proved a CLT in the general i.i.d. case. Those cases do
not cover the entire spectrum. Therefore, the talk began with an example (which
appears in [1]) of a mixing and elliptic environment that supports no CLT, not
even a degenerate one. The example is described as follows.

For every point z ∈ Z2 we have Bernoulli variables (Xz,ver)n∈N and (Xz,hor)n∈N.
Those variables are all independent, and P [Xz,ver

n = 1] = P [Xz,hor
n = 1] = 3−n.

Then, for every z ∈ Z2, if Xz,ver
n = 1, then the 2n vertices directly above z all get

chance 1− e−2n to move in the vertical direction and chance e−2n to move in the
horizontal direction. If Xz,hor

n = 1, then the 2n vertices directly to the right of z
all get chance 1−e−2n−1 to move in the horizontal direction and chance e−2n−1 to
move in the vertical direction. If a point hasn’t been spoken for, it gets probability
1
4 to go in each direction. If a point has been spoken for more than once, it gets
the highest value assigned to it.

The main result presented is an improvement of all previous results. To state
it, we first need to borrow the notion of the rescaling stopping time from [1]. We
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define Ti := inf{n : Xn − Xn−1 ∈ {ei,−ei}}, and the rescaling stopping time is
defined as T = maxT1, . . . , Td. The new result is that if E

[
T d−1

]
<∞, then there

is a CLT, albeit with a random diffusion matrix. This covers all known cases, and
also proves a CLT in several new cases, e.g. two dimensional systems with fast
enough polynomial mixing.

Now we wish to deal with the issue of whether the diffusion matrix is deter-
ministic. This is beyond what was given in the talk, due to time limitations. In
dimension 2, our condition guarantees that the diffusion matrix is indeed deter-
ministic. In higher dimensions we have examples where the diffusion matrix is
truly random. Therefore we introduce another condition, similar to the finite en-
ergy condition from Percolation Theory (see [2]), under which the diffusion matrix
is deterministic. All known cases fall under this condition.
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Emergence of phases in complex networks

Charles Radin

(joint work with Richard Kenyon, Kui Ren, Lorenzo Sadun)

There is a rich and distinguished history of combinatorial problems in which one
analyzes asymptotically-large discrete systems with extreme values of certain con-
straints, for instance large permutations which do not include certain patterns.

It is useful to consider the relation of such discrete extremum problems with
the older analysis of asymptotically large configurations of interacting particles
with minimum energy, or of the densest packings of many unit spheres. This
suggests how to generalize the combinatorial problems to nonextreme values of
constraints by an appropriate use of entropy, as in statistical physics, with the
goal of determining the structure of ‘most’ large systems with fixed nonextreme
constraints.

In a series of papers with Rick Kenyon, Kui Ren and Lorenzo Sadun [4, 5, 6, 2]
we have analyzed the asymptotics of large simple graphs with constraints on the
values of the densities of one or more subgraphs (for instance edges and triangles),
obtaining the structure of typical large constrained simple graphs. Furthermore
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we show that these systems exhibit phases and phase transitions as the values of
the densities are varied.

Our basic tool is a variational formulation of entropy, which we proved using
the graphon formalism of Lovász et al. [3], and a large deviations theorem of
Chatterjee/Varadhan [1]. For further detail see arXiv:1405.0599 and references
therein.

References

[1] S. Chatterjee and S.R.S. Varadhan, The large deviation principle for the Erdős-Rényi ran-
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Persistence probabilities

Frank Aurzada

Introduction. Persistence concerns the behaviour of a stochastic process when
it has a long excursion. The first point to analyse here is the probability of not
passing a boundary, which is called persistence probability. To be more precise,
let X = (Xt)t≥0 be a real-valued stochastic process, say with X0 = 0. Then we
are interested in

P

[
sups∈[0,T ]Xs ≤ 1

]
, when T →∞.

If the process X is self-similar (e.g. Brownian motion, fractional Brownian mo-
tion, etc.) then one expects the behaviour of the persistence probability to be
polynomial of order T−θ+o(1), where θ is called the persistence exponent of X .
Similarly, if one deals with stationary processes X then one expects exponential
decrease with rate θ, also called persistence exponent. Both cases are related via
exponential time-rescaling (so-called Lamperti transform).

Apart from analysing the persistence probability one can ask for properties of
the conditional law:

L
(
(Xs)s∈[0,T ]

∣∣∣ sups∈[0,T ]Xs ≤ 1
)
.

As an example, let us look at Brownian motion, which is exceptionally easy: by

the reflection principle sups∈[0,T ]Xs
d
= |XT |

d
= T 1/2|N (0, 1)|, from which the per-

sistence probability can be worked out, leading in particular to θ = 1/2 for the
persistence exponent. Similarly, many things can be said about the conditional
law for Brownian motion.



Interplay of Analysis and Probability in Applied Mathematics 2037

However, the only cases where these questions are reasonably well understood
are Brownian motion, Lévy processes, random walks, and diffusions. Apart from
that, the problem is wide open, and no general methods are available. In particular,
even for Gaussian processes, only a few scattered results are known.

Besides being a classical and difficult problem in probability theory, the question
of persistence is studied intensively in theoretical physics. Here, the point of view
is often as follows: consider a physical system with a certain dynamics, started
in some disordered state, and observe it on its way to equilibrium. Then one
asks for the probabiliy that at a particular site e.g. the sign has not changed.
For example, one can consider the heat equation ∆u(x, t) = ∂tu(t, x), x ∈ Rd,

t ≥ 0, with white noise initial condition u(x, 0) = Ẇ (x). It is known that for the
probability P

[
sups∈[0,T ] u(x0, s) ≤ 0

]
= T−θ(d)+o(1), where the exponents θ(d) are

unknown and of relevance in physics, [7]. Similarly, many other physical models
are considered, for example the Ising model started at infinite temperature and
run with a Glauber dynamics; and one asks for the probability that the spin at
some particular site has not flipped until time T , which is a persistence probability.

Persistence probabilities also turn up at a number of different occasions in
statistical mechanics, for example, in wetting models. There, via a Gibbs approach
one defines a process that has a certain interaction and, additionally, the constraint
to be non-negative. The interaction and the constraint are competing effects that
produce phase transitions in the limit. The partition function of the model is
exactly the persistence probability for a process resulting from the interaction, cf.
[6].

Results for Fractional Brownian motion (FBM). In the following, (Xt)t≥0

will denote a Fractional Brownian motion, which is a centered Gaussian process
with covariance

E
[
XtXs

]
=

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0,

where 0 < H < 1 parametrises the family. For H = 1/2 this is just ordinary
Brownian motion, and thus FBM generalises BM. For example, FBM is H-self-
similar, i.e. (Xct)t≥0 has the same distribution as (cHXt)t≥0. Also, FBM has
stationary increments, but no independent increments. Most importantly, FBM
for H 6= 1/2 is not a Markov process.

For the persistence probability for FBM, the following result is valid ([8, 1]):

Theorem 1. For FBM one has for some c > 0 and any T ≥ 2,

T−(1−H)(logT )−c ≤ P

[
sups∈[0,T ]Xs ≤ 1

]
≤ T−(1−H)(logT )c.

For the conditional law, very little is known ([2]):

Theorem 2. For FBM one has for some c > 0 and any T ≥ 2 and s > 0,

−sH(logT )c ≤ E

[
Xs

∣∣∣ sups∈[0,T ]Xs ≤ 1
]
≤ −sH(logT )−c.
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Similar results can be shown in the discrete-time setup, in particular for the
discrete-time analog of FBM, which are sums of stationary Gaussian sequences
with correlations exhibiting long-range dependence. Furthermore, one can consider
random walks in random scenery (RWRS), see [3].

Let us give a few comments on how to prove these theorems. The main idea is
to relate the persistence probability to the exponential functional

I(T ) := E

[
1

∫ T
0
eXs ds

]
.

The asymptotic order of I and the persistence probability are the same for
FBM (possibly up to lower order terms), which can be proved via the following
route:

I(T ) = E

[
1

∫ 1

0
eXTs Tds

]
= E

[
1

∫ 1

0
eTHXsT ds

]
.

Now, a careful and technical analysis of the integral shows that it is in fact a

Laplace integral and thus governed by eT
H sups∈[0,1] Xs , c.f. [1]. Therefore, one can

control I by E[e−T
H sups∈[0,1] Xs ]. This however is a Laplace transform of a non-

negative random variable, and by Tauberian theorems it is related to the lower
tail of that random variable: P

[
sups∈[0,1]Xs ≤ T−H

]
= P

[
sups∈[0,T ]Xs ≤ 1

]
.

On the other hand, computing the asymptotic rate of I turns out to be possible,
[8]. Note that using a time-reversal argument:

d

dT
E

[
log

∫ T

0

eXs ds

]
= E

[
eXT

∫ T
0 eXs ds

]
= E

[
1

∫ T
0 eXs ds

]
= I(T ).

The integral on the the left-hand side again is a Laplace integral and after-rescaling

it is governed by eT
H sups∈[0,1]Xs . Taking logarithms of this and differtiating w.r.t.

T one obtains the asymptotic rate of I and thus the persistence probability, which
turns out to be TH−1.

Open problems. Despite much progress in the last 5 years on this subject, the
essential nature of persistence-type problems is still not very well understood, and
there are many easy-to-formulate open questions. We refer to the surveys [4]
(for the mathematics literature) and [5] (for the physics literature) for extensive
discussions, a literature overview, and many open problems.

Let us outline one interesting open problem. Let B be a standard Brownian

motion and define multiply integrated Brownian motion by: A
(1)
t :=

∫ t
0
Bsds and

A
(d)
t :=

∫ t
0 A

(d−1)
s ds. These processes are perfectly nice Gaussian processes. It can

be shown that the rate of decay of their persistence probability is polynomial with
persistence exponent θd, respectively. The only known exponent is θd = 1/4, and
computing θd for d ≥ 2 is a challenging open problem, which is of great interest
for a number of related problems – in particular, those for the heat equation with
random initial condition and the wetting models mentioned in the introduction,
respectively – and for other problems in theoretical physics.
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Large deviations for reacting particle systems: the empirical and
ensemble process

Michiel Renger

(joint work with Robert Patterson and Mark Peletier)

A recent and growing body of work has revealed a close connection between large
deviations of microscopic particle systems and macroscopic gradient flow struc-
tures, see for example [1, 7]. On the other hand, the discrete counterpart of the
transport distance, first discovered in [2, 4], can be fruitfully generalised to obtain
a gradient structure for non-linear reaction rate equations [3]. Motivated by this,
we study a microscopic system of reacting particles and prove a dynamic large
deviation principle. One abstraction level higher, we study the large deviations
of the empirical measure of concentrations [6]. This result is particularly useful
to approximate the probability on concentrations. As a side-product, these large
deviations can be used to improve the efficiency of Monte Carlo simulations via
importance sampling. Both large deviation principles will be used to derive a
‘natural’ gradient structure for the reaction rate equation in a separate paper [5].

It turns out that the spaces of bounded variation provide natural topologies for
both processes. In fact, the usage of these topologies in large deviations is not
very common and therefore, hopefully, interesting in its own right.

Particle systems: the empirical and ensemble processes. For a large vol-

ume V > 0, we consider the empirical process C(V ) : t 7→ 1
V

∑V c(0)
i 11Yi(t) of

random particles Yi(t) in a countable space Y of chemical species, that can react
to form new particles according to any of the given reactions:

∑

y∈Y

α(r)
y Ay ⇋

∑

y∈Y

β(r)
y Ay, r ∈ R.
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Assuming α(r), β(r) ∈ l1(Y) for each reaction r ∈ R, this process is Markov in
l1(Y) with generator

(Q(V )Φ)(c) =
∑

r∈R

k
(r,V )
fw (c)

(
Φ(c− 1

V α
(r) + 1

V β
(r))− Φ(c)

)

+ k
(r,V )
bw (c)

(
Φ(c− 1

V β
(r) + 1

V α
(r))− Φ(c)

)
.

If V −1k
(r,V )
fw,bw(c) → k̄

(r)
fw,bw(c) as V → ∞, then the measures C(V )(t) converge to

the deterministic solution of the reaction rate equation,

ċ(t) =
∑

r∈R

(
k̄
(r)
fw

(
c(t)
)
− k̄

(r)
fw

(
c(t)
))(

β(r) − α(r)
)
.

Similarly, we study the ensemble process ρ
(V,N)
t := 1

N

∑N
i=1 δC(V,i)(t) in P

(
l1(Y)

)

of independent copies C(V,i) of the empirical process. As V,N →∞, this measure
converges to the solution of the Liouville equation,

ρ̇t(c) + divc

(
ρt(c)

∑

r∈R

(
k̄
(r)
fw (c)− k̄

(r)
bw(c)

)(
β(r) − α(r)

))
= 0.

Spaces of bounded variation. For trajectories of the empirical process we use
the space of functions of bounded variation BV

(
0, T ; l1(Y)

)
, equipped with the

hybrid topology induced by:

c(V ) ⇀→ c :⇐⇒ ‖c(V ) − c‖L1(0,T ;l1(Y)) → 0 and
∫ T

0

φ̇(t) · c(V )(t) dt→

∫ T

0

φ̇(t) · c(t) dt ∀φ ∈ C1
c

(
0, T ; l∞(Y)

)
.

Since l1(Y) is countable-dimensional, we need to generalise a well-known compact-
ness result for functions of bounded variation. The generalised result says that for

any compact family
(
k(t)

)T
t=0
⊂ l1(Y), any c ∈ BV

(
0, T ; l1(Y)

)
and L > 0, the set

{
ĉ ∈ BV

(
0, T ; l1(Y)

)
: ‖ĉ− c‖L1(0,T ;l1(Y)) + epvar(ĉ− c) ≤ L and ĉ(t) ∈ k(t)∀t

}

is compact in the hybrid topology.
For trajectories of the ensemble process we use the space BV

(
0, T ; BL(l1(Y))∗

)
,

equipped with the weak-* topology induced by:

ρ(V ) ∗
⇀ ρ :⇐⇒

∫ T

0

〈Φ̇(t), ρ
(V )
t 〉dt→

∫ T

0

〈Φ̇(t), ρt〉dt ∀Φ ∈ C
1
c

(
0, T ; BL(l1(Y))

)
.

As a consequence of the Kantorovich representation theorem, the ensemble process
automatically lies in this space as soon as each copy C(V,i) lies in BV

(
0, T ; l1(Y)

)
.

Large deviations. Under suitable assumptions, we prove that the empirical pro-
cess C(V )(t) satisfies a large-deviation principle in BV

(
0, T ; l1(Y)

)
with good rate

functional
∫ T
0
L
(
c(t), ċ(t)

)
dt, where L(c, s) = supξ c · s−H(c, ξ) and

H(c, ξ) =
R∑

r=1

k̄
(r)
fw (c)

(
eξ·(β

(r)−α(r)) − 1
)
+ k̄

(r)
bw(c)

(
eξ·(α

(r)−β(r)) − 1
)
.
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The proof is by a usual change-of-measure technique, where the proof of the expo-
nential tightness is based on the generalised compactness result described above.

In the second main result, we prove that the ensemble process ρ
(V,N)
t satis-

fies a large-deviation principle in BV
(
0, T ; BL(l1(Y))∗

)
with good rate functional∫ T

0
L(ρt, ρ̇t) dt, where L(ρ, S) = supΞ

∫
Ξ(c)S(dc)−H(ρ,Ξ) and

H(ρ,Ξ) =

∫

l1(Y)

H
(
c,∇Ξ(c)

)
ρ(dc).

To show this, we first prove a large-deviation principle for the empirical measure on

trajectories Θ(V,N)(dc(·)) := 1
N

∑N
i=1 δC(V,i)(·), and then prove that the projection

P(BV
(
0, T ; l1(Y)

)
→ BV

(
0, T ; BL(l1(Y))∗

)
is continuous so that we can apply

the contraction principle.
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Hydrodynamic Limit of Condensing Zero Range Processes with
sub-critical initial profiles

Marios G. Stamatakis

In this short talk we discuss the hydrodynamic behaviour of symmetric nearest
neighbour (n.n.) condensing Zero Range Processes (ZRPs). ZRPs are interacting
particle systems such that each particle X jumps at an exponential rate g(k) that
depends only on the number k of particles that occupy the same site as particle X
through some function g : Z+ → R+, which is called the local jump rate. Particles
that jump move to a nearest neighbour with equal probability. For particular
choices of local jump rate functions g they exhibit phase transition phenomena
and such ZRPs are called condensing.

We are interested in the hydrodynamic limit of ZRPs on the flat torus Td

and thus we consider ZRPs whose particles evolve in the finite lattice TdN :=
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{0, . . . , N − 1}d with periodic boundary conditions. In this case the ZRP with
jump rate g : Z+ → R+ and elementary step distribution p on Zd is the Markov
jump process on the state space

Md
N := Z

T
d
N

+

of configurations of particles on the discrete torus TdN with generator LN given by

LNf(η) =
∑

x,y∈Td
N

(
f(ηx,y)− f(η)

)
g(ηx) p(y − x),

where

ηx,yz =





ηz , if z 6∈ {x, y}

ηx − 1, if z = x

ηy + 1, if z = y

,

if ηx 6= 0 and, say, ηx,y = η otherwise, and p is the n.n. kernel, i.e. p(y − x) = 1
2 if

y = x ± ej for some j = 1, . . . , d. Note the total mass of p is equal to d. This is
done to obtain the probabilist’s diffusion equation as the hydrodynamic limit.

For particular decreasing local jump rate functions g there exists a critical value
ρc = ρc(g) < +∞ of the density such that there exist product and translation equi-
librium states characterized by the density ρ iff ρ ≤ ρc. To be more precise, solving
the equation νLN = 0 that yields the equilibrium states under the assumption that
ν is translation invariant and product, one obtains that ν is the product measure
with common marginal ν̄1ϕ on Z+ given by

ν̄1ϕ{k} =
1

Z(ϕ)

ϕk

g!(k)
, k ∈ Z+, ϕ :=

∫
g(η(0)) dν,

where g!(k) := g(1) · . . . · g(k) and Z(ϕ) is the normalizing constant. Of course
in order for ν̄1ϕ to be a probability measure the normalising constant Z(ϕ) must

be finite, i.e. the partition function Z(ϕ) =
∑∞

k=0
ϕk

g!(k) must converge at ϕ. It is

known that the mean density

R(ϕ) =

∫
η(0) dν̄Nϕ

of the occupation variable under ν̄1ϕ is smooth strictly increasing function of ϕ and

so by reparametrizing the equilibrium distributions by its inverse Φ := R−1 we
obtain the grand canonical ensemble

νNρ = ν̄NΦ(ρ), for ρ ≥ 0 such that Z(Φ(ρ)) < +∞.

We will refer to ZRPs for which the radius of convergence ϕc of the partition
function Z is infinite as non-condensing. ZRPs such that

ϕc < +∞ and ρc := sup
ϕ<ϕc

R(ϕ) = +∞
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will be called weakly condensing, while ZRPs for which ρc < +∞ will be called
strictly condensing. A particular example of a jump rate g that defines condensing
ZRPs (see [2]) is the Evans jump rate gb, b ≥ 0, given by

gb(k) = 1 +
b

k
, k ≥ 1, gb(0) = 0

with critical fugacity ϕc ≡ ϕc(b) = 1 for all b ≥ 0 and critical density

ρc ≡ ρc(b) =

{
+∞ if 0 ≤ b ≤ 2
1
b−2 if b > 2

.

The lack of equilibrium states corresponding to densities ρ > ρc constitutes a main
problem in the description of the hydrodynamic behaviour of strictly condensing
ZRPs, since the formulation via the notion of local equilibrium faces difficulty
in observing densities higher than the critical density. Furthermore, even weakly
condensing ZRPs exhibit pathological behaviour.

So far two main methods have been applied to prove the hydrodynamic be-
haviour of ZRPs. The Entropy method developed by Guo, Papanikolaou and
Varadhan which and the Relative Entropy method developed by Yau. The En-
tropy method has been applied to non-condensing ZRPs with super-linear jump
rate function g(k) ≥ a0k for some a0 > 0 when starting from an initial distribution
with integrable profile ρ0 ∈ L1(Td), while the Relative Entropy method has been
applied when starting from an initial distribution with a C2+θ profile, under the
additional assumption

lim
ϕ→ϕc

Z(ϕ) = +∞(1)

which forces the critical density to be infinite. For example, in the Evans model
assumption (1) is satisfied only for b ∈ [0, 1] and our main aim in this short talk is
to remove this assumption. Both methods yield the non-linear diffusion equation

{
∂tρ = 1

2∆xΦ(ρ)

ρ(0, ·) ≡ ρ0
(2)

as the hydrodynamic equation. An exposition of the proofs is contained in chapters
5 and 6 of [1], respectively.

In this short talk we decribe an extension of the Relative Entropy method to
n.n. condensing ZRPs with bounded jump rates, by interpreting the boundedness
assumption on the initial profile as boundedness away from the critical density.
This is achieved by extending the One-Block estimate, a main tool in all known
approaches to the hydrodynamic limit of ZRPs, to condensing ZRPs. This exten-
sion of the One-Block estimate is made possible by the equivalence of Ensembles
proved in [2, Th. 1]. As was already noted in [2, 4], the equivalence of ensembles
indicates that the fugacity function Φ := R−1 should be extended to be equal
to Φ(ρc) for densities ρ > ρc. With this extension of Φ the one-block estimate
remains valid for condensing ZRPs with bounded jump rates:
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Proposition 1 (One-Block Estimate). Suppose the local jump rate g of the ZRP is

bounded and that the limit inferior ϕc = lim infk→+∞
k
√
g!(k) defining the critical

fugacity exists as a limit. Let µN0 be any sequence of initial distributions on Md
N

satisfying the O(Nd)-entropy assumption, i.e. such

lim sup
N→∞

1

Nd
H(µN0 | ν

N
ρ∗) < +∞,

for some (and thus for any) ρ∗ ∈ (0, ρc) ⊆ R+. Then

lim
ℓ→∞

lim sup
N→∞

EN
∣∣∣∣
∫ T

0

1

Nd

∑

x∈Td
N

G
(
t,
x

N

)(
g(ηt(x))− Φ

(
ηℓt (x) ∧ ρc

))
dt

∣∣∣∣ = 0

for all functions G ∈ C([0, T ]×Td), T > 0, where EN denotes the expectation with
respect to the diffusively accelerated law of the ZRP starting from µN0 .

Using this version of the one-block estimate one can apply H. T. Yau’s relative
entropy method to conclude that when starting from a sequence of initial distribu-
tions µN0 of profile ρ0 ∈ C2+θ(Td) with values in (0, ρc) the hydrodynamic equation
(in the diffusive scaling) is still given by (2). See [5] for the precise result.
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Rates of convergence for extremes of geometric random variables and
marked point processes

Alessandra Cipriani

(joint work with Anne Feidt)

We use the Stein-Chen method to study the extremal behaviour of the problem of
extremes for univariate and bivariate geometric laws. It is known that for an i.i.d.
sample of random variables X1, . . . , Xn no non-degenerate limit distribution may
be found for X(n), the maximum of the sample. Using a result from the Stein-Chen
method for Poisson approximation by [1], we determine bounds on the error, in
the Kolmogorov distance, of the approximation of the maximum, under different
normalisations, of i.i.d. geometric random variables by the Gumbel distribution.
Our results show that convergence is faster and requires no conditions on the dis-
tributional parameter when approximating by a discretised Gumbel distribution,
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in comparison to [5]. We similarly determine an error bound for the approximation
of the joint law of maxima of random pairs, following the bivariate Marshall-Olkin
geometric distribution [2], by an appropriate discrete limit. We similarly find a
rate of convergence for the law of maxima of bivariate Marshall-Olkin geometric
random pairs when approximating by a discrete limit law. We further use the
Stein-Chen method for Poisson process approximation to determine bounds on
the error, in a suitable probability metric, of the law of a marked point process of
exceedances (MPPE), defined by

Ξu,n :=

n∑

i=1

I{Xi∈A} δXi ,

by that of a Poisson process whose mean measure equals that of the MPPE, where
the Xi are i.i.d. geometric random variables and A is a subset of extreme values
of the marks’ state space. Though the MPPE does not mark the points that
exceed a threshold in the way that a point process of exceedances (PPE) of the
form

∑n
i=1 I{Xi∈A}δin−1 does, it contains more information relevant to the study

of extreme values than a marked point process (MPP) of the form
∑n

i=1 δXi , as it
is not only a random configuration of points in space, but specifically a random
configuration of points exceeding a threshold. For both cases, the estimate for the
actual “Poisson approximation” comes easily. The reason for this is that we use
i.i.d. samples X1, . . . , Xn and i.i.d. indicators I{X1∈A}, . . . I{Xn∈A}. This allows
us to apply a result by [4], which reduces the problem to the approximation of
a binomial by a Poisson distribution. However, as the marks have geometric,
and thereby discrete margins, the mean measure will live on a lattice and be
rather tedious to work with in practical applications. We would therefore prefer
to approximate by a further Poisson process with a continuous mean measure.
Since the total variation distance is too strong for this kind of approximation, we
use the weaker d2-distance instead, which is not as sensitive towards small changes
in the positions of the points of the point processes. Our main effort thus lies in
determining error bounds on the approximation of a Poisson process by another
more suitable Poisson process.
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Localization of the first Dirichlet eigenvector in the heavy-tailed
random conductance model

Franziska Flegel

Our goal is to find almost-sure asymptotics for the first Dirichlet eigenvalue and
eigenvector of the random walk generator Lw of the (variable speed) random
conductance model

(Lwf)(x) =
∑

y : y∼x

wxy(f(y)− f(x)), f : Zd → R,

where the conductances wxy are i.i.d. with law P, symmetric (wxy = wyx), and
P [0 < w ≤ 1] = 1. We assume zero Dirichlet boundary conditions outside the box
Bn = [−n, n]d ∩ Zd and are concerned with the limit n → ∞. The first Dirichlet
eigenvalue λ(n) is given by the variational formula

λ(n) =
1

2
inf

suppf⊆Bn,
‖f‖2=1

∑

x∼y

wxy (f(x)− f(y))
2 ,(1)

where the minimizer is the corresponding eigenvector ψ(n).
We are interested in the question whether there is a dichotomy between the

scenarios where ψ(n) behaves macroscopically or microscopically. More precisely:
Under what conditions is the shape of the eigenvector ψ(n) homogeneous and when
is it localized? In particular, does the invalidity of a quenched local central limit
theorem on the entire Zd imply localization of the first eigenvector and vice versa?

Here, we give an example of how a P-a.s. counter scenario to a local CLT
implies the concentration of ψ(n) on a sparse subset of the box Bn. For the sake
of simplicity, we restrict ourselves to the special case where the conductances are
Pareto-distributed near zero, i.e., P[w ≤ a] = aγ for some γ > 0 and all a ∈ (0, 1].
Note that the conditions can be made more general [1]. In the Pareto case, the
authors of [2] prove the validity of a local CLT for γ > 1/4 and construct a P-a.s.
counter scenario for γ < 1/4. We obtain the following theorem: If d ≥ 2 and
γ < 1/4, then

(i) P-a.s. λ(n) = n− 1
2γ +o(1) and

(ii) there exists a sparse set In ⊂ Bn of disconnected sites such that P-a.s.
∥∥∥ψ(n)

∣∣
Bn\In

∥∥∥
2
→ 0 as n→∞.

The upper bound in (i) is obtained by inserting a suitable test function into Eq.
(1). Here we use of the counter scenario of [2]: It can be shown that P-a.s.
there exists a site z∗n ∈ Bn such that all incident conductances are smaller than

n− 1
2γ +o(1). Then the test function δz∗n gives the desired upper bound. For the

proof of the lower bound we use the estimate

λ(n) ≥

(
sup
x∈Bn

Ewx [τ∂Bn ]

)−1
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from [3], where Ewx [τ∂Bn ] is the quenched expected escape time from the box Bn
of a random walker starting in site x. Although we do not have an upper bound
for Ewx [τ∂Bn ] in the case γ < 1/4, we can apply Jensen’s inequality to Eq. (1) to
lift the conductances to a law with parameter γ′ > 1/4. For such laws the authors
of [2] proved that the expected escape time is P-a.s. bounded by cn2 where c > 0
is a constant. After some technical steps, we obtain the matching lower bound on
λ(n).

Statement (ii) can be proved by contradiction. We use Eq. (1) and the upper
bound on λ(n) from part (i) of our theorem. For δ ∈ (0, (17γd)−1), let In be the

set of sites in Bn that are surrounded by conductances smaller than n− 1
2γ +δ. If

ψ(n) was not asymptotically concentrated on In, the upper bound on λ(n) would
be false.
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Rotational Symmetry Breaking in Two Dimensions

Luke D. Williams

(joint work with Florian Theil)

In this short talk we prove a simplified version of a rigidity estimate based on the
work of Müller et al. for a specific class of functions. These functions are used in a
statistical mechanical model of a crystal. With this tool we demonstrate orienta-
tional ordering in the strong sense of Aumann & Heydenrich et al. an improvement
on current literature where only a “weak” ordering was demonstrated.

In order do demonstrate that a system is ordered, we assume we have some field
V which describes the rotation and dilation of some system at any given point.
For the purposes of the abstract, a geometric rigidity theorem of the following can
be stated, from [1]. It is a generalisation of work by Müller et al in [2]

Theorem 1 (Geometric Rigidity). Let Ω be a simply connected, Lipschitz domain.
Let V ∈ L2(Ω,R2×2) be such that curlV ∈ L2(Ω,R2). Then there exists a rotation
R ∈ SO(2) such that

‖V −R‖L2(Ω) ≤ C1 ‖ dist(V, SO(2))‖L2(Ω) + C2 ‖ curlV ‖L2(Ω).

This inequality shows that we can compare V to some specific rotation R, and
bound how far V is from a rotation globally by its pointwise difference from any
rotation, plus a term describing the curl of V . If a function is equal to one rotation
in part of a domain, and another rotation elsewhere, if the field is continuous there
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must be a region in between in which V takes on intermediate values, and in this
region V has non-zero curl.

When we wish to show the ordering in a crystal, typically we consider a family
of problems, roughly corresponding to making a bigger crystal each time. In the
above, then the domain Ω gets larger. It is vital that, when the domain changes,
it is known how the constants involved in the estimate above change.

A simple scaling argument gives the following. If Ω = BN (0), then we can
choose constants C1 and C2 such that

‖V −R‖L2(Ω) ≤ C1 ‖ dist(V, SO(2))‖L2(Ω) + NC2 ‖ curlV ‖L2(Ω)

as was done in [1]. However, for many defects this is not optimal. The above takes
into consideration when, on a macroscopic level, V is equal to different rotations
with a long strip in between. These “grains” necessitate possessing a large curl.
The above is not optimal if, say, suppcurlV = B1(0), and V = Id everywhere
outside this ball. The distance ‖V − I‖L2(Ω) = O(1) regardless of domain size.

If we wish to show orientational ordering, to begin with we only grow a crystal
possessing a single grain. In this case, by bounding the possible size of regions
of non-zero curl and demanding they posses separation, we arrive at a class of
admissible functions: for V as above, and for r > 0

Ar(Ω) =
{
V : supp curlV ⊂ ∪Mi=1Br(xi), |xi − xj | > 2r, dist(xi, ∂Ω) > 2r

}
,

That is, the curl of V can be covered by disjoint balls of fixed size, with a minimum
separation between each other and the boundary of Ω.

For this class of functions, we have the following rigidity estimate:

‖V −R‖L2(Ω) ≤ C1 ‖ dist(V, SO(2))‖L2(Ω) + C(r) ‖ curlV ‖L2(Ω).

The point here is that we only allow defects of a fixed size, and place them into
large domains, an exclude the formation of grains. This removed the dependency
on system size in the final term.

If σ > 0 given is some term given which penalises the formation of defects, β
inverse temperature, and N the diameter of an appropriate family of domains ΩN
we can then show that in the framework of [1] that

lim
β→∞

lim sup
N→∞

sup
σ>σ0

EN,β,σ

[
infR∈SO(2)

‖V −R‖2L2(ΩN )

N2

]
,

where V ∈ Ar(ΩN ). Expectation is taken with respect to the standard Boltzmann
measure, with some Hamiltonian H satisfying H(R) = 0 for any rotation, and
H(M) ≥ Cdist(M, SO(2)) for matrices “near” SO(2).

Due to the scaling argument mentioned, previous work required that σ > cN2

for some c > 0: that is, defects became vanishingly unlikely for large crystals. The
above estimates are uniform and represent an improvement on existing ones.
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Large deviation principle for the empirical density of a semi-infinite
TASEP via matrix products

Horacio G. Duhart

(joint work with Peter Mörters and Johannes Zimmer)

In this talk I present the work of my PhD [1] which finds explicitly the rate function
for a large deviation principle of the semi-infinite totally asymmetric simple exclu-
sion process via the description found by Großkinsky [3] of the invariant measures
based on the work by Derrida, Lebowitz and Speer [2].

The proof relies on finding an upper bound using functional analytic techniques
and a lower bound from a combinatorial approach.
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On recent developments in compactness and large deviations

Chiranjib Mukherjee

(joint work with S. R. Srinivasa Varadhan, Erwin Bolthausen and Wolfgang
König)

We are motivated by the classical mean-field polaron problem coming from statis-
tical mechanics. The mathematical layout of the problem is to consider the tilted
measure

dP̂t =
1

Zt
exp

{
tH(Lt)

}
dP

where P is the three dimensional Wiener measure, Zt is the total mass and the
Hamiltonian

H(µ) =

∫ ∫
1

|x− y|
µ(dx)µ(dy)
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acts on the normalized occupation measures Lt =
1
t

∫ t
0 δWsds. The first key result

is the following variational formula for the free-energy:

lim
t→∞

1

t
logZt = sup

‖ψ‖2=1

{∫ ∫

R3×R3

ψ2(x)ψ2(y)

|x− y|
−

1

2
‖∇ψ‖22

}
.

It turns out that the set of maximizing functions m of the variational formula
above is a singleton modulo spatial shifts. Given these two facts, one expects Lt
to “localize” around m with high P̂t probability.

Large deviation theory plays the central role in the proof. As is well-known, in
large deviation estimates, lower bound for open sets and upper bound for compact
sets are essentially local estimates. However, upper bounds for all closed sets often
require the compactness of the ambient space or exponential tightness, which is
often absent in many cases (for example, distributions of Lt).

Motivated by the aforementioned problem, we present a robust theory of “trans-
lation-invariant compactification” of orbits of probability measures in Rd. This
enables us to prove a full large deviation principle on this compactified space.
Thanks to shift-invariance of the above problem, we are able to reduce this abstract
theory painlessly to probability measures in Rd and fully determine localization of

Lt under P̂t (based on [1], [2] and [3]).
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Condensation in preferential attachment models with fitness

Steffen Dereich

A popular network model is the preferential attachment model which gained pop-
ularity in the late 90’s. Its success was mainly triggered by the fact that it gives
a simple explanation for the appearance of power laws in real world networks.
Mathematically, one considers a sequence of random graphs that is built dynam-
ically: in each step a new vertex is added and linked randomly by a random or
deterministic number of edges to the vertices already present in the system. In
this process, links to vertices with high degree are preferred.

In 2001 Bianconi and Barabási [1] introduced a variant of preferential attach-
ment that additionally assigns individual vertices independent fitnesses that effect
the likelihood to be linked to by new vertices. They argue that such network
models feature an intriguing condensation phenomenon which was later rigorously
confirmed in [2]. In this talk we discuss explicitly the scaling window of vertices
that are responsible for the condensation phenomenon in a particular Poissonized
variant of preferential attachment with fitness. We stress that the model is closely
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related to the condensation models studied in the talk by P. Mörters and we refer
the reader to the corresponding abstract. This talk is based on [3].

In general the graphs under consideration are directed graphs and we denote
for a vertex v of a graph G by

impG(v) = 1 + indegreeG(v)

the so called impact of vertex v in G. We introduce a variant of preferential
attachment with fitness with adaptive normalisation depending on two parameters

• a distribution µ on (0, 1) with essential supremum equal to one (fitness
distribution) and
• λ > 0 (activity parameter).

We let (Fn)n∈N denote a sequence of independent µ-distributed random variables
and construct a sequence (Gn)n∈N of labelled random graphs as follows: G1 consists
of a single vertex labelled by 1 and no edges. Further given Gn (together with the
whole sequence (Fn)) the graph Gn+1 is obtained from Gn by

• insertion of a vertex labelled n+ 1 and
• insertion of an independent Poisson-distributed number of directed edges
n+ 1→ k with parameter

Fk impGn
(k)

n F̄n

for each old vertex k ∈ {1, . . . , n}, where

F̄n =
1

λn

n∑

j=1

Fj impGn
(j).

The random adaptive normalisation guarantees that each new vertex establishes
an independent Poisson-distributed number of edges with parameter λ. As shown
in [4] such a network shows condensation, if

∫
x

1− x
µ(dx) < λ.

In this case the empirically weighted fitness distribution

Ξn =
1

n

n∑

k=1

impGn
(k) δFk

converges almost surely in the weak sense to the deterministic measure Ξ with

Ξ(dx) =
1

1− x
µ(dx) +

(
1 + λ−

∫
1

1− f
µ(df)

)
δ1(dx).

Hence as n→∞ the random measures Ξn accumulate mass in the essential supre-
mum of µ although there are no vertices with fitness equal to one. This raises
immediately the following question.

Which vertices form the condensate?
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Unfortunately we cannot answer this question in the model with adaptive nor-
malisation and we modify the dynamics of the network formation by replacing
the random adaptive normalisation (F̄n) by a deterministic one. We consider the
regime where µ has regularly varying tails in one meaning that there exists α > 0
and a slowly varying function ℓ at zero such that

µ(1− x, 1) = xα ℓ(x), for x > 0.(1)

In order to prove a limit theorem for the condensation window we grow the network
exponentially fast in time and assign the network of size n ∈ N the time

tn :=
n−1∑

j=1

1

j
=
(
1 + o(1)

)
logn,

where generally o and O denote the Landau symbols. For t ∈ [0,∞), we denote by
N(t) ∈ N the number of vertices in the network at time t, that is N : [0,∞)→ N

is the generalized right continuous inverse of (tn)n∈N given by

N(t) = max{n ∈ N : tn ≤ t}.

The number of vertices in the network increases exponentially in the time t and
there exists a constant CN > 0 such that

N(t) =
(
CN + o(1)

)
et.

In terms of the time t ≥ 0 we set F̄t := F̄N(t). As seen below the condensate at
time t will be carried by vertices born at time of order

T (t) := max{α log t, 1}.

The choice of the normalisation (Fn) is very subtle and a technical assumption is
that F̄t = 1 − αt−1 + o(t−1) with α as in (1). By [3, Thm. 1.2] existence of the
limit

w := lim
t→∞

T (t) e
∫ t
T (t)

(1−F̄u) du−T (t) ∈ [0,∞)(2)

implies that

lim
t→∞

Ξt = Ξ, in the weak topology,

in probability, where Ξ is the measure on [0, 1] with

Ξ(dx) =
1

1− x
µ(dx) +

α

α− 1
Γ(α)w δ1(df)

and Γ(α) denotes the Gamma function with argument α. Hence we can replicate
the behaviour of the condensation phase by choosing (F̄t) in such a way that (2)
holds with a strictly positive limit w.

To understand the type of vertices inducing the condensation phenomenon we
look at the random measure

Γn =
1

n

n∑

k=1

impGn
(k) δ(tk/T (tn),(1−Fk)tn)
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on [0,∞)2 and denote by γα the measure on [0,∞)2 with Lebesgue density

dγα(s, x) = α1[1,∞)×[0,∞)(s, x) s
−α xα−1 e−x ds dx.

By [3, Thm. 1.4] one has

lim
n→∞

Γn = w γα

in the weak topology induced by continuous, compactly supported test functions,
in probability. The accumulated impact outside this condensation window does
not contribute to the condensate.

Altogether we conclude that with increasing size of the network the contribution
to the condensate stems from an increasing number of vertices whose time of birth
and fitness are located in a particular scaling window. Individual vertices typically
have no significant contribution and we refer the reader to the talk by P. Mörters,
where the strongest vertices are analysed in a different but closely related model.
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Random Permutations and Queues

Alexander Gnedin

1. When a deck of n cards is shuffled, the probability that none of the cards remain
in the original position is about e−1. This theorem, due to de Montmort, is one of
the oldest limits of probability theory. In modern terms, the result concerns the
event A1(n) = 0, where A1(n) is the number of fixed points in permutation σn
uniformly distributed over the symmetric group Sn. See [2] for recent variations
on the theme.

Here, we add to de Montmort’s problem a new twist. Suppose σ1, σ2, . . . are
viewed as snapshots of a permutation-valued growth process. What are the path-
wise properties of A1? For instance, how often does the event A1(n) = 0 occur
as n varies? Naively, one might think that the long-run frequency of the event is
e−1, and this clearly holds true for σn’s independent uniform permutations. How-
ever, the e−1-rule is not so obvious and even may fail for natural processes where
permutations grow incrementally, by minor updates.
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2. In the Dubins-Pitman Chinese Restaurant Process (CRP) [7], the transition
from σn to σn+1 amounts to updating the cycle notation of permutation: with
probability θ/(θ + n) a 1-cycle (n+ 1) (fixed point) is appended to σn, otherwise
an element of σn is chosen uniformly at random and integer n + 1 is inserted
clockwise next into the cycle of this element. The algorithm generates σn with
Ewens’ distribution, which is uniform on Sn for θ = 1, and for θ 6= 1 has the mass
function depending on the number of cycles. The cycle partition of permutation
under Ewens’ distribution has been thoroughly studied [1], in particular it is well
known that the limit law for A1(n) is Poisson(θ), so P(A1(n) = 0)→ e−θ.

Now, in the CRP scenario the process A1 is a nonstationary Markov chain with
possible jumps

a1 →

{
a1 + 1, with probability θ

θ+n ,

a1 − 1, with probability a1
θ+n

(1)

for a1 ∈ Z+. As the permutation grows, the jumps of A1 become more rare and
sojourns longer, implying that the ratio #{n′ ≤ n : A1(n

′) = 0}/n oscillates hence
the e−θ-rule fails.

The stationarity is achieved by a simple time-change. Define X1 to be a birth-
death process with transitions

a1 →

{
a1 + 1, at rate θ,

a1 − 1, at rate a1,
(2)

and interpolate A1 by a piecewise constant function. Comparing (1) and (2) it is
seen that A1 and X1 have identical embedded jump-chains, thus to render closer
similarity we only need to adjust the sojourn times.

Proposition 1. As ν → ∞, the process (A1(νe
t), t ≥ 0) converges weakly to X1,

provided A1(ν) = X1(0) is some fixed initial state.

The p.g.f. of X1(t) given X1(0) = a1 is

g(z, t) = (1 + (z − 1)e−θt)a1 exp
(
θ(z − 1)(1− e−t)

)

(a convolution of binomial and Poisson), implying the Poisson(θ) invariant distri-
bution, as is also easy to check directly along with reversibility. The stationarity
implies that the e−θ-rule holds for X1, hence approximately for time-changed A1.

The process X1 has many interpretations, notably as the length of a infinite-
server queue of the typeM/M/∞. Results on the behaviour ofX1 can be borrowed
from the extensive literature on queueing theory and re-stated in terms of A1 by
the virtue of Proposition 1. For instance, given A1(ν) = 1 define τν = inf{t :
A1(νe

t) = 0}. By continuity arguments, for ν large τν is approximable by the
duration τ of the queue busy period. We have Eτ = (eθ − 1)/θ, and from [5] the
Laplace transform is given in terms of the confluent hypergeometric function as

E
[
e−sτ

]
=
s+ θ

θ
+

1

1F1(1, s,−θ)
.
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Further results on passage times and excursions of X1 above given threshold c ≥ 0
(congestion period) are found in [8].

3. Continuing the CRP thread, we let A1(n), A2(n), . . . , Am(n) to be the counts
of 1-,2-,. . . ,m-cycles in σn, respectively. Note that n+ 1 joining a j-cycle triggers
the transition of the cycle counts (a1, . . . , am) → (. . . , aj − 1, aj+1 + 1, . . . ) (with
obvious adjustment for the edge cases j = 1,m), which can be regarded as migra-
tion of a j-cycle to the population of (j + 1)-cycles. Similarly to (1), this kind of
transition occurs with probability jaj/(θ + n) (for j > 1)

Proposition 2. With the time change n = νet and fixed state at time ν the process
(A1, . . . , Am) has a weak limit (X1, . . . , Xm), as ν →∞.

The limit process has interpretation as a tandem ofM/M/∞ queues with expo-
nential service rate j at node j = 1, . . . ,m. See [11] for other interpretations and
survey of transient characteristics, and [10] for properties of the queue at times
of new arrivals. The tandem is the simplest Jackson’s network, having in equi-
librium the Poisson output from each node, and with the equilibrium state being
the product of Poisson(θ/j). This confirms the limit law for small-cycle counts
(A1(n), . . . , Am(n)), derived in the literature by other methods [1].

Defining the busy period τ as the time needed to reach (0, . . . , 0) starting from
(1, 0, . . . , 0), we may regard τ as the duration of busy period of a M/G/∞ queue∑m

j=1Xj(t) with the generic service time of the kind
∑m

j=1 Ej/j, where Ej ’s inde-
pendent exponential variables. The distribution of τ can be derived by specialising
formulas from [9]. Combinatorially, the empty queue corresponds to permutation
with no cycles shorter than m (the generalised derangement [3, p. 122]).

4. Resorting to the more general Pitman [7] two-parameter CRP(α, θ), for α > 0
we lose the Markov property of the fixed-point count and, more importantly, face
very different behaviour caused by a power-like growth of A1(n). The following
two variations keep closer to de Montmort’s finding.

Ewens’ permutations σ1, σ2, . . . are intrinsically related to sampling from a dis-
crete distribution with random masses Pj =W1 · · ·Wj−1(1−Wj), where Wj ’s are
i.i.d. beta(θ, 1), see [1, 7]. Replacing beta by some other distribution for the ‘stick-
breaking’ factors Wj still results in permutations that have (A1(n), . . . , Am(n))
converging in distribution and with moments [4], so that, in particular, EAj(n)→
j−1E| logW |. However, the nice Markovian properties inherent to the CRP con-
struction of permutation are lost, and it is not clear if more general models of the
queueing theory can be of some use to study the evolution of short cycles.

The second variation concerns yet another way to update the uniform permuta-
tion. Suppose σn+1 obtains by inserting n+1 uniformly at random in the one-row
notation of σn. The transition may change the number of fixed points dramati-
cally, and A1 is not Markovian. But the e−1-rule seem to holds literally, like for
the independent σn’s.
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Two-scale Γ-convergence for Random Nonconvex Homogenization

Etienne Sandier

(joint work with Leonid Berlyand and Sylvia Serfaty)

Random homogenization of convex functionals was studied in the seminal papers
of Dal Maso and Modica [2, 3] which generalized the homogenization of random
linear elliptic equations. Here we are interested in the homogenization of energies
where non convex lower order terms are allowed. The basis of our approach is
to extend, in a way inspired by the abstract method in [4, 5] (itself following a
suggestion of Varadhan), the notion of Young measure on micropatterns introduced
by Alberti-Müller in [1]. Young measures on micropatterns encode the profiles (or
shapes) of an oscillating sequence of functions at a certain predetermined scale.

This is done by addition to these measures the oscillating profiles of a sequence
of functionals. In the case of a Lagrangian of the type aε(x)|∇u(x)|2 this reduces
to the profiles of the oscillating function aε. However, using the idea from Dal
Maso-Modica of metrizing the space of functionals endowed with the topology of
Γ-convergence, this can be done in the utmost abstract setting, leading to what
we consider to be the natural lower-bound for abstract two-scale Γ-convergence.

Random Homogenization. A possible way to express the fundamental result
in linear random homogenization is the following. Consider a random stationary
ergodic n × n matrix A(ω, x) depending on the random parameter ω ∈ Ω and
x ∈ G, where G is a smooth bounded open set in Rn — stationary ergodic mean-
ing that A(ω, x + y) = A(Tyω, x), where {Ty}y is a group of measure-preserving
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transformations on the probability space Ω for which the only invariant sets have
measure 0 or 1.

If we assume that A(ω, x) is uniformly elliptic with respect to ω, x, then there
exists a matrix Ah (the h stands for homogenized) such that the following holds
for a.e. ω:

First, for any sequence {ε} of real numbers tending to 0 and any bounded
sequence {uε} in H1(G) converging weakly to u,

lim inf
ε→0

∫

G

〈A(ω, x/ε)∇uε,∇uε〉 ≥

∫

G

〈Ah∇u,∇u〉.(1)

Second, given any u ∈ H1(G) and any {ε} tending to 0, there exists {uε} converg-
ing weakly to u such that

lim sup
ε→0

∫

G

〈A(ω, x/ε)∇uε,∇uε〉 ≤

∫

G

〈Ah∇u,∇u〉.(2)

Dal Maso and Modica [2, 3] have generalized this to lagrangians of the form
f(ω, x/ε,∇uε) which are convex in the last variable, stationary ergodic, and satisfy
suitable growth conditions. They prove that, again, there exists a homogenized
lagrangian fh(q) which is convex and satisfies the same growth conditions.

Young measures on micropatterns. The Young measures on micropatterns
introduced in [1] are defined, given a sequence of functions {uε} defined on G ⊂ Rn,
as the limit of

Pε =
(
x→ (x, uε(x + ε·))

)
♯
dx|G

|G|
,

meaning that what is encoded in Pε is not the values uε(x) taken by uε but the
profiles uε(x+ ε·) at the scale ε (other ways of rescaling are allowed). If the scale
of oscillations is ε, then the limit of {Pε} exists and is nontrivial, it is a measure P
on G×X , where X is a suitable function space to which uε belongs and on which
the sequence {uε} is bounded.

Let us use these measures for the following toy model. For any sawtooth func-
tion u on R (i.e. piecewise affine and s.t. u′ = ±1) let

Eε(u) = ε‖u′′‖+

∫ 1

0

u2,

where ‖u′′‖ is the total variation of the measure u′′. Then, given a sequence {uε},
and letting vε,x(y) = ε−1/3uε(x+ ε1/3y), we may write for small ε, using Fubini’s
Theorem and a change of variables

Eε(uε) ≈

∫ 1

0

(
−

∫ x+ε1/3

x−ε1/3
uε

2 + ε|u′′ε |

)
dx = ε2/3

∫
f(v) dPε(x, v),(3)

where Pε is the push-forward of the Lebesgue measure on [0, 1] by x → (x, vε,x)

and f(v) = 1
2

∫ 1

−1
|v′′|+ v2.
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One may then pass to the limit in (3) to deduce that, letting P := limε Pε and
using the translation-invariance of P ,

lim inf
ε

ε−2/3Eε(uε) ≥

∫
f(v) dP (x, v) =

∫ (
lim sup
R→+∞

−

∫ R

−R

|v′′|+ v2

)
dP (x, v).

(4)

This lower-bound is the equivalent of (1) for our toy model, we generalize it in
the next section. The equivalent of (2) could be proved as usual by constructing
a recovery sequence, this step is more problem-specific and we do not try to cast
it in an abstract setting.

Young measures on micropatterns and functionals. We adapt the approach
above as follows. First we define an extended functional to be a map f : X×Rn →
R+, where X is a space of functions on Rn. One should think of f(v, y) as the local
average of a lagrangian of v around the point y. In our toy model, for instance,

we would let f(v, y) = −
∫ y+1

y−1
|v′′|+ v2.

Then we consider a family {fω,xε } depending on the small parameter ε (which
represents the scale of oscillations, see below), on a random parameter ω ∈ Ω and
on the slow variable x ∈ G, where G is a smooth compact subset of Rn. We
assume this family is stationary ergodic, i.e. that there is an ergodic group of
measure-preserving transformations {Tz}z∈Rn on Ω such that

fTzω,x
ε (v, y) = fω,xε (v(· − z), y + z).

Then we let, given a sequence {uε} in X ,

Eωε (uε) = −

∫

G

fω,xε (uε, x/ǫ) dx.

We have the following equivalent of (3)

Theorem 1. Assume suitable compactness, equi-coercivity and regularity assump-
tions on the stationary ergodic family {fω,xε }, and assume {Eωε (uε)} is bounded.
Then the image Pωε of the normalized Lebesgue measure on G by the map

x→
(
x, f

Tx/εω,x
ε , uε(x/ε+ ·)

)

converges as ε → 0 to a probability measure Pω on G × X × F , where F is a
compact space of functionals. Moreover,

lim inf
ε→0

Eωε (uε) ≥

∫ (
lim sup
R→+∞

−

∫

BR

f(u, y) dy

)
dPω(x, f, u).

Here the Young measure Pω shows up in the limiting process. An easy corollary
of this somewhat mysterious statement is

Theorem 2. Assuming moreover that fω,xε → fω,x as ε → 0 uniformly with
respect to ω, x, we have for almost every ω
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lim inf
ε→0

Eωε (uε) ≥ −

∫

G

min
u∈X

(
lim sup
R→+∞

−

∫

BR

fω,x(u, y) dy

)
dx,

and the right-hand side is independent of ω up to a set of probability 0.

The above abstract framework applies in particular to a random version of the
variational model investigated in [1] (to which our toy model above is closely re-
lated) and we believe it can be effective in the homogenization of many variational
problems involving singular perturbations.
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Faculté des Sciences et Technologie
UPEC
61, Ave. du Genéral de Gaulle
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