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Introduction by the Organisers

The workshop Partial differential equations, organised by Alice Chang (Princeton),
Camillo De Lellis (Zürich), and Peter Topping (Warwick) was held August 2-8,
2015. The meeting was well attended by 51 participants, including 7 females,
with broad geographic representation. The program consisted of 21 talks and left
sufficient time for discussions.

There were several contributions to regularity of solutions of elliptic partial differ-
ential equations and geometric flows, in particular concerning minimal surfaces,
harmonic maps, Ricci flow, mean curvature flow and nonlinear wave equations.
Other talks dealt with the underlying variational structure of some geometric
problems, such as the existence of Riemannian manifolds with extremal eigen-
values, the construction of hypersurfaces with constant mean curvature and the
existence of solutions to Toda-type systems.

A number of experts in conformal geometry have attended the workshop. Here
new results were presented in the existence of conformal Willmore tori, in the study
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of conformal invariance in conformally compact Einstein manifolds and generalized
Perelman’s functional, the mean-field equation and the Q-curvature.

Finally, a group of talks dealt with the theory of optimal transport maps and
its applications, ranging from metric geometry to random matrices.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Bozhidar Velichkov)
BV estimates in optimal transportation and applications . . . . . . . . . . . . . . 2093

Aaron Naber
Singular set of harmonic maps and minimal surfaces . . . . . . . . . . . . . . . . . 2095

Miles Simon
Some integral curvature estimates for the Ricci flow in four dimensions 2096

Gerhard Huisken (joint with Simon Brendle)
A fully nonlinear flow for two-convex hypersurfaces . . . . . . . . . . . . . . . . . . 2099

Tobias Lamm (joint with Reiner M. Schätzle)
Conformal Willmore Tori in R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2100



2068 Oberwolfach Report 36/2015

Ben Sharp (joint with L. Ambrozio and A. Carlotto)
Compactness of the space of minimal hypersurfaces with bounded index . 2102

Emanuele Spadaro (joint with Camillo De Lellis, Luca Spolaor)
The singular set of two-dimensional almost minimal integral currents . . 2104

Jeffrey Case
A notion of the weighted σk-curvature for manifolds with density . . . . . . 2108

Jie Qing
On conformally compact Einstein manifolds with conformal infinities of
large Yamabe constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2111

Christine Breiner (joint with Nicos Kapouleas)
Gluing constructions for constant mean curvature hypersurfaces . . . . . . . 2112

Yi Wang (joint with Paul Yang)
Finite total Q-curvature in conformal geometry and the CR geometry . . 2114

Michael Struwe
Scattering for a critical nonlinear wave equation in two space dimensions 2116



Partial Differential Equations 2069

Abstracts

An extremal eigenvalue problem for surfaces

Richard Schoen

In this lecture we introduce the variational problem of finding a Riemannian met-
ric g on a compact surface M which maximizes λ1A, where λ1 is the first nonzero
eigenvalue of g and A is the area of g. We describe the connection of this problem
with the problem of finding minimal immersions of M into a sphere by first eigen-
functions. We summarize the known results on the problem which include the
cases when M is S2, RP2, T 2, and the Klein bottle. We then describe upper and
lower bounds in terms of the genus for orientable surfaces. We go on to describe
our recent theorem which shows that the supremum value λ∗(γ) for a surface of
genus γ satisfies λ∗(γ + 1) > λ∗(γ) provided that λ∗(γ) is achieved. We give two
corollaries of the theorem. First we show how this, together with known results,
implies that λ∗(γ) is achieved for all γ ≥ 1 since it implies that the conformal
structures do not degenerate for a maximizing sequence of metrics. Secondly we
show that the upper bound given by P. Yang and S.T. Yau is not achieved for odd
values of γ. Finally we give a sketch of the proof which involves carefully choosing
the geometry of a handle which is added to a surface of genus γ to obtain a surface
of genus γ + 1 so that the change in area and first eigenvalue can be controlled.

A transportation approach to random matrices

Alessio Figalli

Large random matrices appear in many different fields, including quantum me-
chanics, quantum chaos, telecommunications, finance, and statistics. One of the
main question in the field consists in understanding how the asymptotic properties
of the spectrum depend on the fine details of the model.

The most classical model of random matrices are the so-called Wigner matrices.
These are N×N Hermitian matrices with independent identically distributed real
or complex entries, with zero mean and covariance 1/N . Let λ1, . . . , λN denote
the eigenvalues of such a matrix.

If the entries are Gaussian, then the eigenvalues’ distribution is given by

dPN
γ (λ1, . . . , λN ) :=

1

ZN
γ

∏

1≤i<j≤N

|λi − λj |
βe−N

∑N
i=1

λ2

i dλ1 . . . dλN ,

where

β =

{
1 for real entries,

2 for complex entries.

The main question is: what is the distribution of λi as N → ∞?

A natural step to begin is to look at the empirical measure 1
N

∑N
i=1 δλi

. Notice
that, since we have random matrices, this measure is random too. The following
result holds [6]:
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Theorem 1.

1

N

N∑

i=1

δλi
⇀ ρsc(x) dx a.s.,

where

ρsc(x) :=
1

2π

√
4 − x2 χ[−2,2](x) is the semicircle law.

This result tells us that, with very high probability, the eigenvalues are all
contained in the interval [−2, 2]. Since there are N eigenvalues, at least in the
interior of this interval it is natural to expect that the average distance between
two consecutive eigenvalues should be of order 1/N .

To formalize this, let us order the eigenvalues so that λ1 ≤ . . . ≤ λN . Then the
following holds:
- At the edge (that is, when i ≤ C), the random variable N2/3(λi+1 − λi) is of
order 1, and in the limit as N → ∞ it follows the Tracy-Widom law.
- In the bulk (that is, when i ∈ [ǫN, (1− ǫ)N ] for some ǫ > 0), the random variable
N(λi+1−λi) is of order 1, and in the limit as N → ∞ it follows the sine-Kernel law.

These results have been first proven for Gaussian matrices, and then extended
to general Wigner matrices by many authors (see for instance [1, 4] for more
references).

Our goal is to extend these results to general β-ensembles: this corresponds to

replace the quadratic potential t2/2 appearing in the Gaussian distribution e−t2/2

by a general potential V : R → R. In other words, we assume that the eigenvalues
are distributed as

dPN
V (λ1, . . . , λN ) :=

1

ZN
V

∏

1≤i<j≤N

|λi − λj |
βe−N

∑N
i=1

V (λi) dλ1 . . . dλN ,

with V : R → R smooth and uniformly convex, and we want to understand what
survives of the previous results.

Concerning the empirical measure, one can prove that this roughly behaves as
in the Gaussian case:

1

N

N∑

i=1

δλi
⇀ ρV (x) dx a.s.,

ρV (x) = SV (x)
√

(x− a)(b− x)χ[a,b](x), SV ≥ c > 0.

Hence the main question becomes understanding the distribution

N(λi+1 − λi) in the bulk, N2/3(λi+1 − λi) at the edge.

The basic idea is to try to find a “nice” change of variable to parameterize the
eigenvalues distributed accordingly to PN

V in terms of the ones distributed accord-
ingly to PN

γ .
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To state our result we first introduce some notation: we denote by T0 : R → R

the monotone rearrangement of ρsc onto ρV , that is

(1)

∫ x

−∞
ρsc(y) dy =

∫ T0(x)

−∞
ρV (y) dy ∀x ∈ R.

Also, for α ∈ (0, 1) we define γα ∈ (−2, 2) at the unique number satisfying
∫ γα

−∞
ρsc(y) dy = α.

Then, we can prove that the following result holds [1]:

Theorem 2. Let i/N → α ∈ (0, 1) and f : Rm → R be a Lipschitz function, with
m ≤ N1/2. Then, for any η ∈ (0, 1/6),
∣∣∣∣
∫
f
(
N(λi+1 − λi), . . . , N(λi+m − λi)

)
dPN

V

−

∫
f
(
T ′
0(γα)N(λi+1 − λi), . . . , T

′
0(γα)N(λi+m − λi)

)
dPN

γ

∣∣∣∣

≤ Cη
(m+Nη) logN

N1/2

(
‖f‖∞ + ‖∇f‖∞

)
.

Notice that, choosing m = 1, we discover that asymptotically the law of
N(λi+1 − λi) is the same (up to a dilation) under the two measures PN

V and PN
γ .

Hence, since N(λi+1 − λi) follows the sine-Kernel law for the Gaussian model we
deduce that the same holds for any potential V . In other words, the fluctuations
of the eigenvalues are independent of the model (this phenomenon is known as
universality).

We mention that the above result holds also at the edge with a bound of the
form Cm,η N

−1/3+η [1]. Also, we note that similar results have also been obtained
independently by Bourgade-Erdös-Yau and Shcherbina [2, 3, 5]. However, an
advantage of our method is that it is extremely robust, and applies also to several-
matrix models. For instance, as a corollary of the results in [4], the following
holds:

Theorem 3. Let {Xi}di=1 be independent N ×N -Gaussian matrices and set

Yi = Xi + ǫ Pi(X1, . . . , Xd),

where P1, . . . , Pd are self-adjoint polynomials.
There exists ǫ0 > 0 such that, for ǫ ∈ [−ǫ0, ǫ0], as N → ∞ the eigenvalues of

the matrices {Yi}1≤i≤d fluctuate in the bulk and at the edge as when ǫ = 0, up to
rescaling.
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Variational theory for SU(3) Toda Systems

Andrea Malchiodi

(joint work with Luca Battaglia, Aleks Jevnikar, Sadok Kallel, Cheikh Ndiaye,
David Ruiz)

The following Toda system of coupled Liouville equations has been extensively
studied because of its role in Chern-Simons models of superconductivity, see [12],
[13] (we also refer to the references in the bibliography for a more complete account
on results on the subject). Given a boundary-less Riemannian surfaces (Σ, g) we
consider

(1)





−∆u1 = 2ρ1

(
h1e

u1∫
Σ
h1eu1dVg

− 1
)
− ρ2

(
h2e

u2∫
Σ
h2eu2dVg

− 1
)
,

−∆u2 = 2ρ2

(
h2e

u2∫
Σ
h2eu2dVg

− 1
)
− ρ1

(
h1e

u1∫
Σ
h1eu1dVg

− 1
)
.

Here h1, h2 are smooth positive functions on Σ and ρ1, ρ2 are real parameters. Flat
tori might model for example periodic physical systems in the plane. The above
system also appears in the description of holomorphic curves in projective spaces.

Problem (1) has variational structure, and the corresponding Euler functional
Jρ : H1(Σ) ×H1(Σ) → R has the expression

(2) Jρ(u1, u2) =

∫

Σ

Q(u1, u2) dVg +

2∑

i=1

ρi

(∫

Σ

uidVg − log

∫

Σ

hie
uidVg

)
,

where ρ = (ρ1, ρ2), and where Q(u1, u2) is the positive-definite quadratic form

(3) Q(u1, u2) =
1

3

(
|∇u1|

2 + |∇u2|
2 + ∇u1 · ∇u2

)
.

It is well-known that H1(Σ) embeds into any Lp space, and that indeed the em-
bedding can be pushed to exponential class via the Moser-Trudinger inequality.
Concerning the functional Jρ a sharp inequality has been found in [8].

Theorem 1. ([8]) For ρ = (ρ1, ρ2) the functional Jρ : H1(Σ)×H1(Σ) is bounded
from below if and only if both ρ1 and ρ2 satisfy ρi ≤ 4π.

By the latter theorem we have that when both ρ1, ρ2 < 4π the functional Jρ is
coercive, and solutions can be found by minimization via the direct methods of
the calculus of variations. When one of the ρi’s exceeds 4π the energy becomes
unbounded from below, and solutions have to be found as saddle points. One
result in this direction is the following one.
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Theorem 2. ([9], [10]) Suppose m is a positive integer, and let h1, h2 : Σ → R

be smooth positive functions. Then for ρ1 ∈ (4πm, 4π(m + 1)) and for ρ2 < 4π
problem (1) is solvable.

The above theorem was proved in [9] for m = 1 when Σ has positive genus: it
was then extended in [10] to the remaining cases of the theorem. It turns out that,
under the above conditions, when Jρ(u) is large negative then eu1 concentrates
near at most m points of Σ. Using improved versions of the Moser-Trudinge
rinequality, this was noticed in [5], where the prescribed Q-curvature problem in
four dimension is studied, and induces to consider the family Σm of formal sums

(4) Σm =

{
m∑

i=1

tiδxi
:

m∑

i=1

ti = 1, ti ≥ 0, xi ∈ Σ, ∀ i = 1, . . . ,m

}
.

called the barycentric sets of Σ of order m. Using the fact that this set is never
contractible, one can then employ min-max arguments on Jρ (using the compact-
ness results from [9] and [4]).

We are interested here in the situation when both the ρi’s exceed the threshold
coercivity value 4π. Using again improved inequalities, it is possible to prove that
if ρ1 < 4(m+ 1)π, ρ2 < 4(n+ 1)π, m,n ∈ N, and if Jρ(u1, u2) is sufficiently low,
then either eu1 is close to Σm or eu2 is close to Σn in the distributional sense. This
(non-mutually exclusive) alternative can be expressed in term of the topological
join of Σm and Σn. Recall that, given two topological spaces A and B, their join
A ∗B is defined as the family of elements of the form (see [6])

(5) A ∗B =
{(a, b, s) : a ∈ A, b ∈ B, s ∈ [0, 1]}

E
,

where E is an equivalence relation given by

(a1, b, 1)
E
∼ (a2, b, 1) ∀a1, a2 ∈ A, b ∈ B

and

(a, b1, 0)
E
∼ (a, b2, 0) ∀a ∈ A, b1, b2 ∈ B.

This construction allows to map low sublevels of Jρ into Σm ∗ Σn, with the join
parameter s expressing whether distributionally eu1 is closer to Σm or whether eu2

is closer to Σn. This construction allowed to prove the following theorem.

Theorem 3. ([1]) Suppose ρi 6∈ 4πN for both i = 1, 2 and that Σ has positive
genus. Then system (1) is solvable.

The assumption on the genus is used to construct suitable test functions with
low energy whose components concentrate on two distinct curves on Σ, and such
that there exist global retractions of Σ onto these curves. This condition is used
to minimize the interaction term in the quadratic form Q, that penalizes con-
centration of both components at the same time. To analyse this phenomenon a
couple of new, scaling invariant, inequalities have been derives, allowing to prove
the following existence result for surfaces of any genus.
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Theorem 4. ([11], [7]) Let h1, h2 be two positive smooth functions and let Σ be any
compact surface. Suppose that ρ1 ∈ (4mπ, 4(m + 1)π),m ∈ N and ρ2 ∈ (4π, 8π).
Then problem (1) has a solution.

It would be interesting to remove the upper bound on the second parameter
ρ2, as well as to understand the case when some parameter ρi is a multiple of 4π
(and compactness fails). It would be also interesting to consider the problem (1)
in presence of singularities, modelling vortex or ramification points. Some partial
progress, but only in special situations, is available in [2], [3].

References

[1] L. Battaglia, A. Jevnikar, A. Malchiodi, D. Ruiz, A general existence result for the Toda
System on compact surfaces, preprint, 2013.

[2] L.Battaglia, Existence and multiplicity result for the singular Toda system, J. Math. Anal.
Appl. 424 (2015), no. 1, 49–85.

[3] L.Battaglia and A.Malchiodi, Existence and non existence results for the SU(3) singular
Toda system on compact surfaces, preprint, 2015.

[4] L.Battaglia and G.Mancini, A note on compactness properties of the singular Toda system,
Rend. Lincei, to appear.

[5] Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature,

Annals of Math., 168 (2008), no. 3, 813–858.
[6] A. Hatcher, Algebraic Topology, Cambridge University Press 2002.
[7] A.Jevnikar, S.Kallel and A.Malchiodi, A topological join construction and the Toda system

on compact surfaces of arbitrary genus, preprint, 2015.
[8] J. Jost and G. Wang, Analytic aspects of the Toda system I. A Moser-Trudinger inequality,

Comm. Pure Appl. Math. 54 (2001), 1289–1319.
[9] J. Jost, C. S. Lin and G. Wang, Analytic aspects of the Toda system II. Bubbling behavior

and existence of solutions, Comm. Pure Appl. Math. 59 (2006), 526–558.
[10] A. Malchiodi and C. B. Ndiaye, Some existence results for the Toda system on closed

surfaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18
(2007), no. 4, 391–412.

[11] A. Malchiodi and D. Ruiz, A variational Analysis of the Toda System on Compact Surfaces,
Comm. Pure Appl. Math., 66 (2013), no. 3, 332–371.

[12] G. Tarantello, Self-Dual Gauge Field Vortices: An Analytical Approach, PNLDE 72,
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From Ginzburg-Landau Equations to n-harmonic maps

Yuxin Ge

Let Ω ⊂ Rn be a bounded smooth domain. Given g : ∂Ω → Sn−1 a smooth
prescribed map with the degree d = deg(g, ∂Ω, Sn−1) we consider the functional

(1) Eε(u,Ω) =

∫

Ω

[
|∇u|n

n
+

1

4εn
(
1 − |u|2

)2
]

dx
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for u ∈ W 1,n
g (Ω,Rn) =

{
w ∈W 1,n (Ω,Rn) : w|∂Ω = g

}
. The critical points satisfy

the so called generalized Ginzburg-Landau system

(2)

{
−div

(
|∇uε|

n−2 ∇uε
)

= 1
εn

(
1 − |uε|2

)
uε in Ω

uε = g on ∂Ω .

In the case of n = 2, the minimizers and critical points of this functional were
studied by F.Bethuel, H.Brezis and F.Hélein [1] and many authors after them.

Several authors have studied the sequences of minimizers of Eε in the case
n ≥ 3, namely P.Strzelecki [8], M-C.Hong [5] and Z-C.Han and Y-Y.Li [3]. We
define a constant

(3) κn =
1

n
(n− 1)

n
2 ωn

where ωn = |Sn−1|. Let us recall the main results in [3].

Theorem (HL). Assume d > 0, n ≥ 3. For any sequence εk → 0, let {uk} ⊂
W 1,n

g (Ω,Rn) be the corresponding sequence of minimizer for Eεk . Then there
exists a subsequence {uk′}, a collection of d distinct points {a1, a2, · · · , ad} ⊂ Ω,
and an n-harmonic map u∗ : Ω \ ∪i {ai} → Sn−1 such that

uk′ → u∗ strongly in W1,n
loc (Ω̄ \ ∪i {ai} ;Rn),(4)

uk′ → u∗ in C0
loc(Ω̄ \ ∪i {ai} ;Rn),(5)

uk′ → u∗ strongly in W1,p(Ω;Rn) for all 1 ≤ p < n.(6)

Furthermore, deg(u∗, ∂Bσ, S
n−1) = 1 for all 1 ≤ j ≤ d and σ > 0 small

enough.
When d = 0, uk′ converges to u∗ strongly in W1,n ∩C0.

Our first result proves that the singularities of u∗ minimize a renormalized en-
ergy. This renormalized energy was actually introduced by R.Hardt, F-H.Lin and
C-Y.Wang [4] as follows. Given d distinct points in Ω denoted a = {a1, a2, · · · , ad},
and for δ > 0, let

Ωa,δ = Ω \ ∪d
i=1Bδ(ai).

Then define for any δ small enough

Wa,δ =
{
w ∈ W 1,n(Ωa,δ; S

n−1) : w|∂Ω = g, deg(w, ∂Bδ(ai)) = 1 for all i
}
.

The renormalized energy of a = {a1, a2, · · · , ad} is defined to be

(7) Wg(a) := lim
δ→0

(
min

w∈Wa,δ

En(w,Ωa,δ) − dκn| ln δ|

)
,

where

En(w,Ωa,δ) =

∫

Ωa,δ

|∇w|n

n
dx.

From now on we will assume the dimension n ≥ 3. We have the following result.
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Theorem 1. Let a = {ai}
d
i=1 be the limit singular points of Theorem (HL), then

Eε(uε,Ω) = dκn| ln ε| +Wg(a) + dγ + o(1) as ε→ 0,

where γ is a constant. Moreover, the configuration {ai}
d
i=1 minimizes Wg.

The results above deal only with sequences of energy-minimizers. The ones
below deal with limits of solutions to the system (2), whose energy is in the same
range as that of minimizers.

Theorem 2. Assume that for each ε > 0 the map uε, is a critical point of Eε

that for some M > 0 independent of ε it holds that

(8) Eε(uε,Ω) ≤ dκn |ln ε| +M.

Then there exists a subsequence {ε} tending to zero, a collection of d distinct points
{a1, a2, · · · , ad} ⊂ Ω, a finite subset U of Ω̄, and a stationary n-harmonic map
u0 : Ω0 := Ω \ {a1, a2, · · · , ad} → Sn−1, such that

uε → u0 strongly in W1,n
loc (Ω0 \ U,R

n)

and for any 1 ≤ p < n

uε ⇀ u0 weakly in W1,p(Ω,Rn).

Furthermore, deg(u0, ∂Bσ(aj), S
n−1) = 1, for 1 ≤ j ≤ d and any small enough

σ > 0.

It was proved by R. Jerrard in [6] that the upper bound condition (8) is sufficient
to guarantee the local weak convergence in Ω0 of a subsequence. Here we improve
this to strong convergence for solutions of the system (2). However, contrary to
the case n = 2 we need to remove a finite set S corresponding to the bubbling-off
of nontrivial finite energy n-harmonic maps from Rn to Sn−1 which do not exist
when n = 2.

In the case n = 3 an example of such a map is the Hopf fibration, and recently
T.Rivire in [7] showed that there exists in fact many of them. This multiplic-
ity arises in particular from a richer topology, due to the non-trivial fundamental
group π3(S2), for which the Hopf map is a generator. This hints at the fact that
the moduli space of critical points of the generalized Ginzburg-Landau equations
for small parameter ε could be quite rich too. For n > 3 the same situation is
expected because of homotopy groups of the spheres, for example, π7(S4), π15(S8),
or other topological invariants.

Theorem 2 contains a criticality condition satisfied by the points {a1, a2, · · · , ad}
hidden in the word “stationary n-harmonic map” that we now define.

Definition 3. Let u : Ω0 → Sn−1 be an n-harmonic map, where Ω0 = Ω \
{a1, a2, · · · , ad}. We say u is a stationary n-harmonic map if its stress-energy
tensor

Ti,j := |∇u|n−2 〈∂iu, ∂ju〉 −
1

n
|∇u|n δi,j
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satisfies ∑

i

∂iTi,j = 0

in Ω0, and if for any 1 ≤ k ≤ d and ρ > 0 such that ∂Bρ(ak) ⊂ Ω0 it holds that

(9)

∫

∂Bρ(ak)

∑

i

Ti,jνi = 0,

where ν = (ν1, · · · , νn) is the outward-pointing normal to ∂Bρ(ak).
When both conditions are satisfied we say that Tij is divergence free in Ω0.

The following proposition links the property of being a stationary n-harmonic
map with the vanishing gradient property. Unfortunately it is not clear yet whether
its assumptions are satisfied for the stationary n-harmonic maps arising as limits
of critical points of the Ginzburg-Landau functional in dimension n.

Proposition 4. Assume u : Ω0 ⊂ Rn → Sn−1 is a stationary n−harmonic map in
the above sense, where Ω0 = Ω \ ({a1, · · · , ad}, and that deg(u, ak) = 1 . Assume
that around each singular point ak, one has the asymptotic expansion

u(x) = eBk(x)
x− ak
|x− ak|

where Bk(x) ∈ so(n) is an antisymmetric matrix satisfying Bk(ak) = 0 such that
x→ Bk(x) is C1 in a neighborhood of ak. Then

(10)
n∑

i=1

∂iBk(ak)ei = 0,

where (e1, · · · , en) is the canonical basis in Rn. Moreover, we have the expansion

(11) u(x) =
x− ak
|x− ak|

+
Qk(x− ak)

|x− ak|
+O(|x− ak|

2
),

where Qk(x) is a harmonic polynomial of degree 2. In particular, when n = 2, we

have Bk(x) = O(|x− ak|
2
).

Finally we will construct an example of a sequence of non-minimizing critical
points.

Theorem 5. Let n = 3. There exists a domain Ω ⊂ R3, a boundary map g :
∂Ω → Sn−1, and for every small enough ε > 0 a non minimizing critical point uε
of the functional Eε(u,Ω) such that the energy bound (8) holds.

The above results are contained in the preprint [2].
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Analyzing the rate of convergence of geometric flows

Alessandro Carlotto

(joint work with Otis Chodosh and Yanir Rubinstein)

Over the last three decades there has been huge interest in studying various kind
of properties of geometric flows, by which we shall mean here parabolic evolution
equations for the Riemannian metric on a compact manifold M (of dimension
n ≥ 3) without boundary. In this lecture, we shall be concerned with the question
whether, in case the flow in question is known to exist for all (positive) times and
to converge, in a suitably strong sense, to a limit metric g∞ one can in fact produce
a systematic analysis of the corresponding rate of convergence. We can provide
a rather complete answer to this question under the assumption that the flow is
a gradient flow: we characterize the rate of convergence of the flow in terms of
Morse theoretic properties of the limiting metric g∞. We shall take the Yamabe
flow as our model to work with, even though some of our results do have a rather
direct counterpart for other relevant flows, for instance for the Calabi flow.

Therefore, given (M, g0) and denoted by Rg the scalar curvature of a metric
g on M and with rg its mean value, we shall deal with the geometric evolution
problem {

∂g
∂t = −(Rg − rg)g

g(0) = g0.

This describes the evolution of Riemannian metrics inside a volume-normalized
conformal class on M . The flow was introduced by R. Hamilton to solve the
Yamabe problem [14, 7]: given (M, g0) as above is there g ∈ [g0] having constant
scalar curvature? Such problem was solved by variational methods through the
combined effort of Aubin [2], Trudinger [13] and Schoen [9], yet the question of
convergence for such a flow turned out to be surprisingly delicate and is still
partially open. Indeed, while long-time existence had been settled by Hamilton in
the early 80s, unconditional convergence results have been obtained only in 2005
by Brendle for 3 ≤ n ≤ 5 in [3] with earlier significant contributions by Chow [6],
Ye [15] and Schwetlich-Struwe [11] among others. A rather general convergence
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result also holds when n ≥ 6 and a technical assumption on the conformal class
of g0 is made, see [4]. The problem of analyzing the rate of convergence for the
(volume-normalized) Yamabe flow was explicitly posed by R. Ye in 1994.

In the setting above, g∞ is a critical point of the Yamabe functional, which is
defined by

Y(g) := Vol(M, g)−
2

N

∫

M

Rg dVg , for N =
2n

n− 2
.

We consider the restriction of Y(·) to the unit volume conformal class [g∞]1: if
g = wN−2g∞, we have that the first variation of Y = Y(w) is given by

1

2
DY(w)[v] =

∫

M

[
−(N + 2)∆g∞w +Rg∞w − rwN−2g∞w

N−1
]
v dVg∞

=

∫

M

(RwN−2g∞ − rwN−2g∞)wN−1v dVg∞ .

and the second variation is described by the self-adjoint operator L∞ that is defined
by means of the formula

−(N − 2)

∫

M

wL∞v dVg∞ :=
1

2
D2Y(g∞)[v, w]

for v ∈ C2(M) so that (via a simple computation)

L∞v = (n− 1)∆g∞v +Rg∞v.

We define Λ0 := kerL∞ ⊂ L2(M, g∞). Spectral theory shows that Λ0 is finite

dimensional (it is the eigenspace of the Laplacian for the eigenvalue
Rg∞
n−1 ). We will

write Λ⊥
0 for the L2(M, g∞)-orthogonal complement. Let us denote by CSC1 the

set of unit volume, constant scalar curvature metrics in the normalized conformal
class [g∞]1. We shall recall the following two definitions:

• For g∞ ∈ CSC1, we say that g∞ is degenerate if Λ0 is not trivial;
• For g∞ ∈ CSC1, we say that g∞ is integrable if for all v ∈ Λ0, there

is a path w(t) ∈ C2((−ǫ, ǫ) × M, g∞) so that w(t)N−2g∞ ∈ CSC1 and
w(0) = 1, w′(0) = v.

Our first theorem in [5] ensures exponential convergence to integrable critical
points (in particular, this holds for non-degenerate g∞) and that the slowest the
convergence occurs is polynomially.

Theorem 1. Assume that g(t) is a Yamabe flow that is converging in C2,α(M, g∞)
to g∞ as t → ∞ for some α ∈ (0, 1). Then, there is δ > 0 depending only on g∞
so that

(1) If g∞ is an integrable critical point, then the convergence occurs at an
exponential rate

‖g(t) − g∞‖C2,α(M,g∞) ≤ Ce−δt,

for some constant C > 0 depending on g(0).
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(2) In general, the convergence cannot be worse than a polynomial rate

‖g(t) − g∞‖C2,α(M,g∞) ≤ C(1 + t)−δ,

for some constant C > 0 depending on g(0).

Our proof relies on the  Lojasiewicz inequality (see [8] for the finite-dimensional
version) together with a preliminary Lyapunov-Schmidt reduction (in the analytic
category) of the Yamabe functional Y at g∞. So, there is ǫ > 0 and Φ : Λ0 ∩ {v :
‖v‖L2 < ǫ} → C2,α(M, g∞) ∩ Λ⊥

0 so that Φ(0) = 0, DΦ(0) = 0 and defining
Ψ(v) = 1 + v + Φ(v), we have Vol(M,Ψ(v)N−2g∞) = 1

projΛ⊥
0

[DY(Ψ(v))] =projΛ⊥
0

[(
RΨ(v)N−2g∞ − rΨ(v)N−2g∞

)
Ψ(v)N−1

]
= 0

projΛ0
[DY(Ψ(v))] =projΛ0

[(
RΨ(v)N−2g∞ − rΨ(v)N−2g∞

)
Ψ(v)N−1

]
= DF,

where F : Λ0∩{v : ‖v‖L2 ≤ ǫ} → R is defined by F (v) = Y(Ψ(v)). The intersection
of CSC1 with a small C2,α(M, g∞)-neighborhood of 1 is

S0 := {Ψ(v) : v ∈ Λ0, ‖v‖L2 < ǫ,DF (v) = 0} .

It is readily seen that the function F is locally constant if and only if g∞ is
integrable: if that is not the case we shall consider the power-series expansion
F (v) = F (0) +

∑
j≥p Fj(v) and call p order of integrability of g∞ (a direct check

ensures that p ≥ 3). Following the works [12, 1] on the analysis of isolated singu-
larities of minimal subvarieties and harmonic maps, we say that g∞ satisfies the
Adams–Simon positivity condition, ASp for short, if it is non-integrable and one
has that Fp|Sk attains a positive maximum for some v̂ ∈ Sk ⊂ Λ0. We can then
provide an abstract existence result for slowly converging Yamabe flows:

Theorem 2. Assume that g∞ is a non-integrable critical point of the Yamabe
energy with order of integrability p ≥ 3. If g∞ satisfies the Adams–Simon positivity
condition ASp, then there exists a metric g(0) conformal to g∞ so that the Yamabe
flow g(t) starting from g(0) exists for all time and converges in C∞(M, g∞) to g∞
as t→ ∞. The convergence occurs “slowly” in the sense that

C−1(1 + t)−
1

p−2 ≤ ‖g(t) − g∞‖C2,α(M,g∞) ≤ C(1 + t)−
1

p−2 ,

for some constant C > 0.

The proof of this theorem is quite long and technical and relies on a separate
analysis of the coupled system of two flows: the kernel-projected flow and the ker-

nel orthogonal-projected flow. To leading order, the former can be solved explicitly,
and then the residual kernel-projected flow is a system of ODEs in a diagonalizing
basis for D2Fp(v̂) while the kernel-orthogonal projected flow is a perturbed linear
parabolic equation, with the RHS terms that are coupled and complicated, but
for which one can derive good a priori estimates. Then the conclusion comes by a
suitable contraction mapping argument in parabolic setting.

In order to ensure the actual existence of slowly converging Yamabe flows we
need to be able to identify critical points of the Yamabe functional Y that satisfy
the following three conditions:
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(1) degeneration

(2) non-integrability

(3) Adams-Simon positivity of order p ≥ 3.

The first of these conditions is already non-generic so we need to detect some
sporadic pheonomena for the Yamabe functional. We construct two classes of
examples, the former satisfying AS3 and the second ASp for some p ≥ 4 even.

Proposition 3. Fix integers n,m > 1 and a closed m-dimensional Riemann-
ian manifold (Mm, gM ) with constant scalar curvature RgM ≡ 4(n + 1)(m + n −
1). We denote the complex projective space equipped with the Fubini–Study met-
ric by (CPn, gFS), where the normalization of gFS is fixed so that the fibration
S2n+1(1) → (CPn, gFS) is a Riemannian submersion. Then, the product metric
(Mm × CPn, gM ⊕ gFS) is a degenerate critical point satisfying AS3.

The second example is produced by following ideas of Schoen [10]: we choose
the radius of the first factor below in a way that the corresponding conformal class
does have the product metric as unique (hence isolated), but degenerate solution
of the Yamabe problem.

Proposition 4. Let n > 2. The product metric on S1
(

1√
n−2

)
× Sn−1(1) is a

non-integrable critical point satisfying ASp for some p ≥ 4.

Of course, we expect most trajectories converging to a non-integrable costant
scalar curvature metric to converge rapidly (i. e. exponentially) anyway: what
the main theorems in [5] ensure is that slowly converging flow exist and that the
polynomial estimates above are effective.
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Area bounds for minimal surfaces

Brian White

Consider a sequence of m-dimensional minimal varieties Mi in a Riemannian man-
ifold N (not necessarily complete) such that the measures of the boundaries are
bounded (independent of i) on compact subsets of N . Let Z be the area blowup
set for the sequence Mi:

Z = {p ∈ N : lim sup
i

area(Mi ∩B(p, r)) = ∞ for all r > 0}.

We prove that Z behaves in some ways like a minimal variety without boundary.
In particular, it satisfies the same maximum and barrier principles that are sat-
isfied by a smooth, m-dimensional, minimal submanifold without boundary. For
example, if f : N → R is a C2 function and if the restriction of f to Z has a local
maximum at p ∈ Z, then

Tracem(D2f(p)) ≤ 0

where Tracem(D2f(p)) is the sum of the m lowest eigenvalues of the Hessian of f
at p. For suitable open subsets W of N , this allows one to show that if the areas
of the Mi are uniformly bounded on compact subsets of W , then the areas are in
fact uniformly bounded on all compact subsets of N .

As an application, we prove a form of Allard’s Boundary Regularity Theorem
that does not assume any area bounds. According to Allard’s theorem, the fol-
lowing holds:

Theorem 1. Suppose that M ⊂ N is a smooth, embedded, connected m-dimen-
sional submanfold with smooth, nonempty boundary. Suppose M1,M2, . . . is a
sequence m-dimensional minimal varieties in N such that

(1) Mi is supported in {x ∈ N : dist(x,M) < ǫi}, where ǫi → 0,
(2) ∂Mi is smooth (with multiplicity 1) and converges smoothly to ∂M , and
(3) The Radon measures µMi

converge weakly to µM .

Then the Mi converge smoothly to M . In other words, if U ⊂⊂ N and if ∂U is
transverse to M , then Mi ∩ U is smooth for all sufficiently large i and converges
smoothly to M ∩ U as i→ ∞.

Our theorem about area blow up sets allows us to prove theorem 1 without
assuming any area bounds. In particular, the assumption (3) is not necessary.
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Super-Ricci flow for metric measure spaces

Karl-Theodor Sturm

A super-Ricci flow of smooth Riemannian manifolds is a time-dependent family
(M, gt)t∈I s.t.

Ricgt ≥ −
1

2
∂tg ∀t ∈ I.

This includes all static manifolds of nonnegative Ricci curvature as well as all
solutions to the Ricci flow equation. We extend this concept to the setting of metric
measure spaces. This new approach builds upon the theory of metric measure
spaces with synthetic lower Ricci bounds in the sense of Lott-Sturm-Villani. Our
main results states that the following are equivalent:

(i) the Boltzmann entropy Ent(·|mt) is dynamically convex on (P(X),Wt);
(ii) the backward heat flow is contracting

Ws(P
s
t µ, P

s
t ν) ≤Wt(µ, ν) ∀s < t;

(iii)

∇t|P
s
t u|

2 ≤ P s
t |∇su|

2 ∀s < t;

(iv) Bakry-Energy

Γ2,t(u) ≥
1

2
∂tΓt(u).

A formal Riemannian structure on conformal classes and the inverse
Gauss curvature flow

Matthew J. Gursky

(joint work with Jeffrey Streets)

In this talk I presented some aspects of an ongoing research project with J. Streets
(UC-Irvine), in which we define a formal Riemannian metric on the set of metrics
in a conformal class with positive (or negative) curvature. Namely, let (M, g0) be
a compact Riemannian surface with positive Gauss curvature K0 > 0, and let [g0]
denote the conformal class of g0. Define

Γ+
1 = {gu = e2ug0 ∈ [g0] : Ku = Kgu > 0},(1)
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the space conformal metrics with positive Gauss curvature. Formally, the tangent
space to [g0] at any metric gu ∈ [g0] is given by C∞(M). Let Ku denote the Gauss
curvature of gu ∈ Γ+

1 . We define for φ, ψ ∈ C∞(M),

〈φ, ψ〉u =

∫

M

φψKudAu,(2)

where dAu is the area form of gu. In other words, we weight the standard L2 metric
with the Gauss curvature of the given conformal metric. If the Gauss curvature
of g0 is negative, we define

Γ−
1 = {gu = e2ug0 ∈ [g0] : Ku = Kgu < 0},(3)

and the metric associated to this space is given by

〈φ, ψ〉u =

∫

M

φψ(−Ku)dAu.(4)

This definition is loosely inspired by the Mabuchi-Semmes-Donaldson metric
[3, 5, 2] of Kähler geometry, wherein a formal Riemann metric is put on a Kähler
class by imposing on the tangent space to a given Kähler potential the L2 metric
with respect to the associated Kähler metric. As observed in [3], this metric
enjoys many nice formal properties, for instance nonpositive sectional curvature.
Moreover, it has a profound relationship to natural functionals in Kähler geometry
such as the MabuchiK-energy and the Calabi energy, as well as their gradient flow,
the Calabi flow. Based on these excellent formal properties Donaldson proposed
a series of conjectures on the existence of geodesics, geodesic rays, as well as the
existence properties of the Calabi flow.

There is a tight analogy in many respects between the Mabuchi metric and the
metric defined in (2). Formal calculations derived using either the path deriva-
tive or variations of the length functional yield that a one-parameter family of
conformal factors u : [a, b] → Γ+

1 is a geodesic if and only if

∂2u

∂t2
+

|∇0
∂u

∂t
|2

K0 − ∆0u
= 0.(5)

This is a degenerate elliptic fully nonlinear equation, and existence and regular-
ity are therefore delicate. We remark that one-parameter families of conformal
transformations are automatically geodesics.

After establishing the existence of C1,1 geodesics, we show that the length of
the unique regularizable geodesic connecting any two points does indeed define a
metric space structure (Γ+

1 , d), and that this metric space is nonpositively curved
in the sense of Alexandrov:

Theorem 1. Let (M2, g0) be a compact Riemann surface. Then (Γ±
1 , d) is a

length space, with any two points connected by a unique regularizable C1,1 geo-
desic. Moreover, it is nonpositively curved in the sense of Alexandrov.
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Furthering the analogy with the Kähler setting, the metric (2) is closely asso-
ciated with the gradient flow of the normalized Liouville energy F . Previously
Osgood-Phillips-Sarnack [4] studied the negative gradient flow, but with respect
to the L2 metric, yielding an equation which is similar to Ricci flow. With the
ambient geometry given by the weighted L2 metric on Γ+

1 , we arrive at a different
evolution equation, expressed in terms of the conformal factor as

∂u

∂t
= − 1 +

K̄u

Ku
,

where K̄ is the average Gauss curvature. This is a fully nonlinear parabolic equa-
tion for u. On Γ−

1 we arrive at

∂u

∂t
= 1 −

K̄u

Ku
.

Generically we will refer to these as inverse Gauss curvature flow. Our primary
results are as follows:

Theorem 2. Fix (M2, g) a compact Riemann surface and u ∈ Γ±
1 .

(1) The solution to IGCF with initial condition u exists on [0,∞).
(2) The normalized Liouville energy is convex in time along the flow line, i.e.

d2

dt2
F [u(t)] ≥ 0.

(3) Given v(x, t) another solution to IGCF, the distance between flow lines is
nonincreasing, i.e.

d

dt
d(u(t), v(t)) ≤ 0.

(4) If u ∈ Γ−
1 , then the solution converges as t → ∞ in the C∞ topology to

the unique conformal metric of constant scalar curvature.
(5) If u ∈ Γ+

1 and (M2, g) ∼= (S2, gS2), then the solution converges weakly in
the distance topology to a minimizer for F in the completion (Γ̄+

1 , d̄).

Properties (2) and (3) are directly analogous to results relating the K-energy,
Mabuchi metric, and Calabi flow ([1]). We emphasize that the point of the hy-
pothesis (M2, g) ∼= (S2, gS2) is that we are NOT yet able to use the IGCF to
provide an a priori proof of the Uniformization Theorem. We require the exis-
tence of a constant scalar curvature metric to ensure the convergence of the flow
in the distance topology.

Although our results are in the setting of two dimensions, this is actually a
special case of a more general construction on even dimensional manifolds. In
dimensions n ≥ 4, one can define a Riemannian structure on subsets of conformal
classes satisfying an admissibility condition which naturally arises in the study
of the σn

2
-Yamabe problem. As in the case of surfaces, the underlying metric is
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closely associated to a functional whose critical points ‘uniformize’ the conformal
class.
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Sharp and rigid isoperimetric inequalities in metric-measure spaces
with lower Ricci curvature bounds

Andrea Mondino

(joint work with Fabio Cavalletti)

The isoperimetric problem, having its roots in myths of more than 2000 years ago,
is one of the most classical and beautiful problems in mathematics. It amounts to
answer the following natural questions:

(1) Given a space X what is the minimal amount of area needed to enclose a
fixed volume v?

(2) Does an optimal shape exist?
(3) In the affermative case, can we describe the optimal shape?

There are not many examples of spaces where the answer to all the three ques-
tions above is known. If the spaceX is the euclidean N -dimensional space RN then
it is well known that the only optimal shapes, called from now on isoperimetric
regions, are the round balls; if X is the round N -dimensional sphere SN then the
only isoperimetric regions are metric balls, etc. To the best of our knowledge, the
spaces for which one can fully answer all the three questions above either have a
very strong symmetry or they are perturbations of spaces with a very strong sym-
metry. For an updated list of geometries admitting an isoperimetric description
we refer to [24, Appendix H]. Let us also mention that the isoperimetric problem
has already been studied in presence of (mild) singularities of the space: mostly
for conical manifolds [37, 41] and polytopes [40].

Besides the euclidean one, the most famous isoperimetric inequality is probably
the Lévy-Gromov inequality [31, Appendix C], which states that if E is a (suffi-
ciently regular) subset of a Riemannian manifold (MN , g) with dimension N and
Ricci bounded below by K > 0, then

(1)
|∂E|

|M |
≥

|∂B|

|S|
,
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where B is a spherical cap in the model sphere, i.e. the N -dimensional sphere
with constant Ricci curvature equal to K, and |M |, |S|, |∂E|, |∂B| denote the
appropriate N or N − 1 dimensional volume, and where B is chosen so that
|E|/|M | = |B|/|S|. In other words, the Lévy-Gromov isoperimetric inequality
states that isoperimetry in (M, g) is at least as strong as in the model space S.

Let us observe next that the isoperimetric problem makes sense in the larger
class of metric measure spaces. A metric measure space (X, d,m), m.m.s. for
short, is a metric space1 (X, d) endowed with a Borel probability measure m. In
the standard situation where the metric space is a compact Riemannian manifold,
m is nothing but the normalized volume measure. Notice that in the Lévy-Gromov
inequality (1) one considers exactly this normalized volume measure.
Regarding the m.m.s. setting, it is clear that the volume of a Borel set is replaced
by its m-measure, m(E); the boundary area of the smooth framework instead can
be replaced by the Minkowski content

(2) m
+(E) := lim inf

ε↓0

m(Eε) −m(E)

ε
,

where Eε := {x ∈ X : ∃y ∈ E such that d(x, y) < ε} is the ε-neighborhood of E
with respect to the metric d. So the isoperimetric problem for a m.m.s. (X, d,m)
amounts to finding the largest function I(X,d,m) : [0, 1] → R

+ such that for every
Borel subset E ⊂ X it holds m

+(E) ≥ I(X,d,m)(m(E)).

The main goal of the talk is to prove that the Lévy-Gromov isoperimetric in-
equality holds in the general framework of metric measure spaces. In order the
problem to make sense, we also need a notion of “Ricci curvature bounded below
by K and dimension bounded above by N” for m.m.s..

1.1. Ricci curvature lower bounds for metric measure spaces. The inves-
tigation about the topic began with the seminal papers of Lott-Villani [34] and
Sturm [46, 47], though has been adapted considerably since the work of Bacher-
Sturm [7] and Ambrosio-Gigli-Savaré [3, 4]. The crucial property of any such
definition is the compatibility with the smooth Riemannian case and the stability
with respect to measured Gromov-Hausdorff convergence. While a great deal of
progress has been made in this latter general framework from both the analytic,
geometric and structural points of view, see for instance [1, 2, 3, 4, 5, 6, 7, 11, 12,
15, 25, 26, 28, 30, 29, 22, 38, 48], the isoperimetric problem has remained elusive.

The notion of lower Ricci curvature bound on a general metric-measure space
comes with two subtleties. The first is that of dimension, and has been well
understood since the work of Bakry-Emery [8] and Bakry-Ledoux [9]: in both the
geometry and analysis of spaces with lower Ricci curvature bounds, it has become
clear the correct statement is not that “X has Ricci curvature bounded from below
by K”, but that “X has N -dimensional Ricci curvature bounded from below by
K”. Such spaces are said to satisfy the (K,N)-Curvature Dimension condition,

1We assume (X, d) to be complete, separable and proper
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CD(K,N) for short; a variant of this is that of reduced curvature dimension bound,
CD

∗(K,N). See [7, 8, 9, 47] for more on this.
The second subtle point is that the classical definition of a metric-measure space

with lower Ricci curvature bounds allows for Finsler structures (see the last theo-
rem in [48]), which after the aforementioned works of Cheeger-Colding are known
not to appear as limits of smooth manifolds with Ricci curvature lower bounds.
To address this issue, Ambrosio-Gigli-Savaré [4] introduced a more restrictive con-
dition which rules out Finsler geometries while retaining the stability properties
under measured Gromov-Hausdorff convergence, see also [1] for the present simpli-
fied axiomatization. In short, one studies the Sobolev space W 1,2(X) of functions
on X . This space is always a Banach space, and the imposed extra condition
is that W 1,2(X) is a Hilbert space. Equivalently, the Laplace operator on X is
linear. The notion of a lower Ricci curvature bound compatible with this last
Hilbertian condition is called Riemannian Curvature Dimension bound, RCD for
short. Refinements of this have led to the notion of RCD∗(K,N)-spaces, which is
the key object of study in this talk.

1.2. Main results. Our main result is that the Lévy-Gromov isoperimetric in-
equality holds for m.m.s. satisfying N -Ricci curvature lower bounds:

Theorem 1 (Lévy-Gromov in RCD
∗(K,N)-spaces). Let (X, d,m) be an

RCD
∗(K,N) space for some N ∈ N and K > 0. Then for every Borel subset

E ⊂ X it holds

m
+(E) ≥

|∂B|

|S|
,

where B is a spherical cap in the model sphere (the N -dimensional sphere with
constant Ricci curvature equal to K) chosen so that |B|/|S| = m(E).

Remark 1. • Theorem 1 is a particular case of a more general statement
[13] including any lower bound K ∈ R on the Ricci curvature and any
upper bound N ∈ [1,∞) on the dimension. In order to state the result
one needs some model space to compare with: the same role that the round
sphere played for the Lévy-Gromov inequality. The model spaces for gen-
eral K,N have been discovered by E. Milman [36] who extended the Lévy-
Gromov isoperimetric inequality to smooth manifolds with densities, i.e.
smooth Riemannian manifold whose volume measure has been multiplied
by a smooth non negative integrable density function. Milman detected
a model isoperimetric profile IK,N,D such that if a Riemannian manifold
with density has diameter at most D > 0, generalized Ricci curvature at
least K ∈ R and generalized dimension at most N ≥ 1 then the isoperimet-
ric profile function of the weighted manifold is bounded below by IK,N,D.
In [13] we extend such Lévy-Gromov-Milman inequality to RCD

∗(K,N)
spaces with diameter at most D > 0.

• Theorem 1 holds in the more general framework of essentially non branch-
ing CD

∗(K,N)-spaces. but we decided to state it in this form so to give a
unified presentation also with the rigidity statement below.
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• A first natural question is rigidity: if for some v ∈ (0, 1) it holds
I(X,d,m)(v) = IK,N,∞(v), does it imply that X has a special structure?
The answer is YES, indeed in case K > 0, if for some v ∈ (0, 1) the lower
bound in Theorem 1 is attained then the space X must be a spherical sus-
pension. Moreover in this case we classify completely the isoperimetric
regions: they are the ”spherical caps centered at the poles of the spherical
suspension”.

• A last question is the almost rigidity: if (X, d,m) is an RCD
∗(K,N) space

such that I(X,d,m)(v) is close to IK,N,∞(v) for some v ∈ (0, 1), does this
force X to be close to a spherical suspension? The answer is again YES,
for a precise statemetent we again refer to [13].

Remark 2 (Notable examples of spaces fitting in the assumptions of the main
theorems). The class of RCD

∗(K,N) spaces include many remarkable family of
spaces, among them:

• Measured Gromov Hausdorff limits of Riemannian N -dimensional mani-
folds satisfying Ricci ≥ K. Despite the fine structural properties of such
spaces discovered in a series of works by Cheeger-Colding [17, 18, 19] and
Colding-Naber [20], the validity of the Lévy-Gromov isoperimetric inequal-
ity (and the above generalizations and rigidity statements) has remained
elusive. We believe this is one of the most striking applications of our re-
sults. For Ricci limit spaces let us also mention the recent work by Honda
[33] where a lower bound on the Cheeger constant is given, thanks to a
stability argument on the first eigenvalue of the p-Laplacian for p = 1.

• Alexandrov spaces with curvature bounded from below. Petrunin [44]
proved that the lower curvature bound in the sense of comparison angles is
compatible with the optimal transport type lower bound on the Ricci curva-
ture given by Lott-Sturm-Villani (see also [49]). Moreover it is well known
that the Laplace operator on an Alexandrov space is linear. It follows
that Alexandrov spaces with curvature bounded from below are examples of
RCD

∗(K,N) and therefore our results apply as well. Let us note that in
the framework of Alexandrov spaces the best result regarding isoperimetry
is a sketch of a proof by Petrunin [43] of the Lévy-Gromov inequality for
Alexandrov spaces with (sectional) curvature bounded below by 1.

A last class of spaces where Theorem 1 apply is the one of smooth Finsler manifolds
where the norm on the tangent spaces is strongly convex, and which satisfy lower
Ricci curvature bounds. More precisely we consider a C∞-manifold M , endowed
with a function F : TM → [0,∞] such that F |TM\{0} is C∞ and for each p ∈ M
it holds that Fp := TpM → [0,∞] is a strongly-convex norm, i.e.

gpij(v) :=
∂2(F 2

p )

∂vi∂vj
(v) is a positive definite matrix at every v ∈ TpM \ {0}.

Under these conditions, it is known that one can write the geodesic equations and
geodesics do not branch; in other words these spaces are non-branching. We also
assume (M,F ) to be geodesically complete and endowed with a C∞ probability
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measure m in a such a way that the associated m.m.s. (X,F,m) satisfies the
CD

∗(K,N) condition. This class of spaces has been investigated by Ohta [45]
who established the equivalence between the Curvature Dimension condition and
a Finsler-version of Bakry-Emery N -Ricci tensor bounded from below. Recalling
Remark 1, these spaces fit in the assumptions of Theorem 1, and to our knowledge
the Lévy-Gromov inequality (and its generalizations) is new also in this framework.
�

1.3. Outline of the argument. The main reason why the Lévy-Gromov type
inequalities have remained elusive in non smooth metric measure spaces is because
the known proofs heavily rely on the existence and sharp regularity properties of
isoperimetric regions ensured by Geometric Measure Theory (see for instance [31,
39]). Clearly such tools are available if the ambient space is a smooth Riemannian
manifold (possibly endowed with a weighted measure, with smooth and strictly
positive weight), but are out of disposal for general metric measure spaces.

In order to overcome this huge difficulty we have been inspired by a paper
of Klartag [23] where the author gave a proof of the Lévy-Gromov isoperimet-
ric inequality still in the framework of smooth Riemannian manifolds, but via an
optimal transportation argument involving L1-transportation and ideas of convex
geometry. In particular he used a localization technique, having its roots in a
work of Payne-Weinberger [42] and developed by Gromov-Milman [32], Lovász-
Simonovits [35] and Kannan-Lovász-Simonovits [21], which consists in reducing
an n-dimensional problem, via tools of convex geometry, to one-dimensional prob-
lems that one can handle.

Let us stress even if the approach by Klartag [23] does not rely on the reg-
ularity of the isoperimetric regions, still heavily makes use of the smoothness of
the ambient space in order to establish sharp properties of the geodesics in terms
of Jacobi fields and estimates on the second fundamental forms of suitable level
sets, all objects that are still not enough understood in general m.m.s. in order to
repeat the same arguments.

To overcome this difficulty we use the structural properties of geodesics and of
L1-optimal transport implied by the l∗(K,N) condition. Such results have their
roots in previous works of Bianchini-Cavalletti [10] and the first author [11, 12].
The first key point is to understand the structure of d-monotone sets, in particular
we prove that under the curvature condition one can decompose the space, up to
a set of measure zero, in equivalence classes called rays where the L1-transport is
performed. A second key point, which is the technical novelty of the present work
with respect to the aforementioned papers [10, 11, 12], is that on almost every ray
the conditional measure satisfies a precise curvature inequality. This last technical
novelty is exactly the key to reduce the problem on the original m.m.s. to a one
dimensional problem.
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Let us end by mentioning that the techniques presented in the seminar have
been recently used by the authors in a subsequent paper [14] to prove functional
inequalities like spectral gap, Poincaré and log-Sobolev inequalities, the Payne-
Weinberger/Yang-Zhong inequality, among others. Some of these inequalities are
consequences of the four functions theorem of Kannan, Lovász and Simonovits that
we will establish as well. Some of these inequalities were open problems proposed
in the celebrated Optimal Transport book of Villani [48].
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BV estimates in optimal transportation and applications

Guido De Philippis

(joint work with Alpár Mészáros, Filippo Santambrogio and Bozhidar Velichkov)

In several applications it is interesting to establish regularity properties for mini-
mizers of the following variational problem:

(1) min
ν∈W2(RN )

1

2
W 2

2 (µ, ν) + F (ν).

Here W2(RN ) is the set of probability measures on RN with finite second moment,
µ is a given element in W2(RN ), W2(µ, ν) is the Wassertstein distance between µ
and ν and F : W2(RN ) → R ∪ {+∞} is defined as

F (ν) =

{∫
h(̺(x))dx if ν = ̺dx

+∞ otherwise

for some convex and superlinear function h : R+ → R ∪ {+∞}.

Let us mention some applications related to (1):

• Solutions of (1) can be used to build a discrete in time approximation to solutions
of the following degenerate parabolic PDE

∂t̺t −∇ · (̺th
′′(̺t)∇̺t) = 0,

see [1, 2, 4, 7].

• The choice of

h(̺) =

{
0 if 0 ≤ ̺ ≤ 1

+∞ otherwise

reduces (1) to

(2) min
ν∈K1

W 2
2 (µ, ν),

where

K1 :=
{
ν ∈ W2(RN ) : ν = ̺dx and 0 ≤ ̺ ≤ 1

}

is the set of probability measures with density bounded by 1. Hence the solu-
tion ν̄ of (2) is the Wasserstein projection of µ on K1. Besiede its own interest,
the Wasserstein projection problem naturally arises in some continuous models of
crowd motion, see [5, 6].
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More in general, given a function f : R
N → R+ with

∫
f > 1, one can also

consider the more general projection problem

(3) min
ν∈Kf

W 2
2 (µ, ν),

where

Kf :=
{
ν ∈ W2(RN ) : ν = ̺dx and 0 ≤ ̺(x) ≤ f(x) for a.e. x

}

is the set of probability measures with density bounded by f .
The main result in [3] is the validity of the following a-priori BV bound for

solutions of (1):

Let µ ∈ BV (RN ) ∩ W2(RN ), i.e. µ = ˆ̺dx with ˆ̺ ∈ BV (RN ). Then for any
minimizer ν̄ of (1) (the minimizer actually turns out to be unique), ν̄ = ¯̺dx,
¯̺ ∈ BV (RN ) and one has the estimate

(4)

∫
|∇ ¯̺| ≤

∫
|∇ ˆ̺|.

Note that the above estimate does not depend on the regularity of h and thus
can be extended also to the projection problem (2). In the case of the projection
problem with a general density ,(3), one instead obtains

(5)

∫
|∇ ¯̺| ≤

∫
|∇ ˆ̺| + 2

∫
|∇f |.

The key ingredient of the proof of (4) and (5) is the following general lemma,
see [3, Lemma 3.1]:

Lemma 1. Suppose that ̺1, ̺2 ∈ L1 are smooth compactly supported probability
densities, which are bounded away from 0 and infinity and let H be a convex
function. Then we have the following inequality

(6)

∫ (
̺1 ∇ ·

[
∇H(∇ϕ1)

]
− ̺2 ∇ ·

[
∇H(−∇ϕ2)

])
≤ 0,

where ϕ1 (resp ϕ2) is the Kantorovich potential associated to the optimal transport
problem from ̺1dx to ̺2dx (resp from ̺2dx to ̺1dx).

The optimality conditions naturally associated to (1),

∇ϕ+ h′′(¯̺)∇ ¯̺ = 0

where ϕ is the Kantorovich potential associated to the optimal transport problem
from the minimizer ν̄ = ¯̺dx to µ and the choice of H(z) = |z| in (6) then formally
give the bound (4). A similar argument (together with several approximations)
provides the proof of (5).

Let us conclude mentioning that the validity of (6) has nothing to do with the
minimization problem (1). It would be interesting to find some other applications
of (6) as well as a more “transport” proof of it, the proof in [3] being based
just on some quite “miraculous” computations related to the (−1)-concavity of
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Kantorovitch potentials. To this end let us note that in the case H(z) = |z|2,
inequality (6) is actually equivalent to the convexity of the entropy functional

E(̺) =

∫
̺ log ̺

along Wasserstein geodesics.

References

[1] L. Ambrosio, Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis.
Natur., 113 (1995), 191–246.
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Singular set of harmonic maps and minimal surfaces

Aaron Naber

The talk focused on the regularity of stationary and minimizing harmonic maps
f : B2(p) ⊆M → N between Riemannian manifolds. More specifically, recall that
Sk(f) ≡ {x ∈M : no tangent map at x is k+ 1-symmetric} is kth-stratum of the
singular set of f . In this case it is well known that dimSk ≤ k, however little else
about the structure of Sk(f) is understood in any generality. The first result we
discussed is for a general stationary harmonic map, where we prove that Sk(f)
is k-rectifiable. In fact, we prove more and show that for k-a.e. point x ∈ Sk(f)
that there exists a unique k-plane V k ⊆ TxM such that every tangent map at x is
k-symmetric with respect to V . This is a slightly subtle point in that the tangent
map may not be unique, but the plane of symmetry is.

We also discussed the case of minimizing harmonic maps, and showed that the
singular set S(f), which is well known to satisfy dimS(f) ≤ n − 3, is in fact
n− 3-rectifiable with uniformly finite n − 3-measure. We even discussed packing
content estimates for the set. An effective version of this allows us to prove that
|∇f | has estimates in L3

weak, an estimate which is sharp as |∇f | may not live in L3.

The above results are in fact just the main applications of a new class of es-
timates we prove on the quantitative stratifications Sk

ǫ,r(f) and Sk
ǫ (f) ≡ Sk

ǫ,0(f).
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Roughly, Sk
ǫ ⊆ M is the collection of points x ∈ Sk

ǫ for which no ball Br(x) is
ǫ-close to being k + 1-symmetric. We show that Sk

ǫ is k-rectifiable and satisfies
the Minkowski estimate V ol(Br S

k
ǫ ) ≤ Crn−k. It turns out that using the equality

Sk =
⋃
Sk
ǫ one can recover the rectifiable statement for Sk from this, and using

an ǫ-regularity one can recover the main results on minimizing maps as well.

The proofs require a new L2-subspace approximation theorem for stationary
harmonic maps, as well as new W 1,p-Reifenberg and rectifiable-Reifenberg type
theorems, which we spent some time discussing. These results are generalizations
of the classical Reifenberg, and give checkable criteria to determine when a set is
k-rectifiable with uniform measure estimates. The new Reifenberg type theorems
may be of some independent interest. The L2-subspace approximation theorem we
prove is then used to help break down the quantitative stratifications into pieces
which satisfy these criteria.

Some integral curvature estimates for the Ricci flow in four dimensions

Miles Simon

abstract

We consider solutions (M4, g(t)), 0 ≤ t < T , to Ricci flow on compact, four dimen-
sional manifolds without boundary. We prove integral curvature estimates which
are valid for any such solution. In the case that the scalar curvature is bounded
and T <∞, we show that these estimates imply that the (spatial) integral of the
square of the norm of the Riemannian curvature is bounded by a constant inde-
pendent of time t for all 0 ≤ t < T and that the space time integral over M× [0, T )
of the fourth power of the norm of the Ricci curvature is bounded.

1. Introduction

The results of this talk may be found in [3] and [4]. The first part of the talk is
concerned with proving general integral curvature estimates for any smooth Ricci
flow (M4, g(t))t∈[0,T ), T < ∞ on a closed four dimensional manifold. The second
part of the talk considers the special case that the absolute value of the scalar
curvature R is bounded on [0, T ), that is supM×[0,T ) |R|(·, ·) <∞. In this case we
obtain estimates on the regular region and the singular region. x ∈ M is in the
regular region if there exists an r = r(p) > 0 such that

∫

tBr(p)

|Riem |2(·, t)dµg(t) ≤ ǫ0

for all times t ∈ [0, T ), where ǫ0 > 0 is a small fixed constant depending on
(M4, g(0)) and T . The singular region is the complement of the regular region.

Using the estimates on the singular and regular region, we show that (M,d(g(t)))
approaches an C0-Riemannian orbifold (X,h) with finitely many orbifold points,
and that it is possible to flow this orbifold by the orbifold Ricci flow.
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2. Report

We consider smooth closed solutions (M4, g(t))t∈[0,T ) to Ricci flow, ∂
∂tg = −2Rc(g)

on a four manifold with T < ∞. The Ricci flow was introduced and first studied
by R. Hamilton, [2]. By scaling the solution once, we may assume without loss of
generality, that R(·, ·) > − 1

2 . This enables us to consider the evolution equation

of the smooth function f := |Rc|2
R+1 . Using the generalised Gauss-Bonnet Theorem,

∫

M4

|Riem |2 − 4|Rc|2 + R2 = 32π2χ,

the evolution equations (see [2])

∂

∂t
|Rc|2 = ∆|Rc|2 − 2|∇Rc|2 + 4 Rmikjl RcijRckl

∂

∂t
R = ∆R + 2|Rc|2,

(1)

and Young’s inequality, we show that

d

dt
(e−64t

∫

M

fdµg) ≤ e−64t28π2χ+ e−64t

∫

M

(−f2 + 210R2) dµg.

Integrating in time from 0 to S, we get
∫

M

|Rc|2(·, S)

(R(·, S) + 1)
dµg(S) +

∫ S

0

∫

M

|Rc|4(·, t)

(R(·, t) + 1)2
dµg(t)dt

≤ 22π2χ(e64S − 1) + e64S
∫

M

|Rc|2(·, 0)

(R(·, 0) + 1)
dµg(0)

+210e64S
∫ S

0

∫

M

R2(·, t)dµg(t)dt

=: c0(M, g(0), S) + 210e64S
∫ S

0

∫

M

R2(·, t)dµg(t)dt,(2)

for all S < T . In the case that |R| ≤ c1 on M × [0, T ), (2) implies
∫

M

|Riem |2 ≤ c1(M, g0, T )(3)

for all t ∈ [0, T ) and

∫ T

0

∫

M

|Rc|4 ≤ c1(M, g0, T ).(4)

A result of the type (3) was independently onbtained in [1] using different methods.
A point p ∈ M is a regular point in M (or p ∈ M is regular) if there exists an
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r = r(p) > 0 such that
∫

tBr(p)

|Riem |2(·, t)dµg(t) ≤ ǫ0

for all times t ∈ [0, T ), where ǫ0 > 0 is a small fixed constant depending on
(M4, g(0)) and T .
A point p ∈ M is a singular point in M (or p ∈ M is singular) if p ∈ M is not a
regular point.
Let t ∈ (0, T ). We say p ∈ Regt(M) if

∫

tBR
√

T−t(p)

|Riem |2(·, t)dµg(t) ≤ ǫ0,

where ǫ0 is as above, and R is a large constant depending only on (M, g(0)) and
T .
A point t ∈ [0, T ) is a good time if

∫
M

|Rc|(·, t) ≤ 1
T−t . From (4), we see that

for every given 0 < t̃ < T near enough T, there is a nearby good time t with

t̃ < t < t̃+ (T−t̃)
2 .

We obtain the following, and give some of the proof ideas in the talk:

(i) If p0 ∈ Regt(M) and t is a good time near enough to T , then
(tB(R/2)

√
T−t(p0), g(s)) satisfies uniform estimates for all s > t, and

(tB(R/2)
√
T−t(p0), g(s)) approaches some smooth limit as sր T .

(ii) Singular regions concentrate at finitely many points and don’t move around
too much : there are fixed constants J0 < J1 < J2 such that the fol-
lowing holds. For all good times t near enough to T , we find points
p1(t), p2(t), . . . , pL(t), L is independent of t, such that
Sing(M) ⊆ ∪L

j=1
tB√

T−tJ1
(pj(t)) and rB√

T−tJ0
(pj(t)) ⊆ tB√

T−tJ1
(pj(t))

⊆ sB√
T−tJ2

(pj(t)) for all t ≤ r, s < T for all j = 1, . . . , L.
(iii) There is a Gromov-Hausdorff limit (X,h) := limGHtրT (M,d(g(t))) where

(X,h) is a C0 Riemannian orbifold with at most finitely many orbifold
points. The limit (and the limiting process) is smooth away from the
orbifold points.

(iv) It is possible to flow (X,h) for a short time using the orbifold Ricci flow,
the solution becomes smooth instantaneously.

Results related to (i) and (iii) were obtained independently using different meth-
ods by Q. Zhang and R. Bamler in [1].
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A fully nonlinear flow for two-convex hypersurfaces

Gerhard Huisken

(joint work with Simon Brendle)

Consider a closed embedded hypersurface F0 : Mn → (Nn+1, ḡ) in a smooth Rie-
mannian manifold without boundary, where n ≥ 3. We say that the hypersurface
is 2-convex if the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of the second fundamental form
satisfy λ1 + λ2 > 0. We then solve the evolution system

d

dt
F = −Gν,

where ν is the (outer) unit normal to the hypersurface and the normal velocity G
is the harmonic mean of the 2-sums of the principal curvatures:

G =
(∑

i<j

1

λi + λj

)−1

.

This flow is a fully nonlinear, parabolic system on 2-convex hypersurfaces and has
a smooth solution at least for short time in this class. It has the property that 2-
convex hypersurfaces remain 2-convex provided that the ambient curvature tensor
satisfies R̄ikik + R̄jkjk ≥ 0 in any orthonormal frame. This distinguishes the flow
in a crucial way from mean curvature flow, where 2-convexity is only preserved
in locally symmetric spaces. Huisken-Sinestrari [5] have shown that for 2-convex
hypersurfaces in Euclidean space there existss a mean curvature flow modified by
finitely many surgeries that becomes extinct in finite time. We show that the fully
nonlinear flow above has this property in general Riemannian manifolds satisfying
the curvature condition mentioned above:

Theorem 1. [4] Let M0 = ∂Ω0 be a closed, embedded, 2-convex hypersurface in a
compact Riemannian manifold. Given any T > 0, there exists a surgically modified
flow with velocity G which starts fromM0 and is defined on the time interval [0, T ).
Moreover, if the ambient manifold satisfies R̄ikik + R̄jkjk ≥ 0 at each point in Ω0,
then the flow becomes extinct in finite time.

In the proof we follow Andrews [1] to establish a lower bound for G and the
ratio (λi + λj)/H . We then prove convexity estimates and cylindrical estimates
using the Michael-Simon Sobolev inequality and Stampacchia iteration. In a next
step we prove a non-collapsing estimate for the inscribed radius, exploiting the
embeddedness of the initial surface. In the Euclidean case such a non-collapsing
estimate was shown by Andrews-Langford-McCoy [2] and we are able to overcome
the error terms occurring in the general Riemannian setting.

The most difficult a priori estimate necessary for the application of the surgery
technique in [5] is a gradient estimate for the second fundamenrtal form: We show
that the quantity G−2|∇A| + G−3|∇2A| is uniformly bounded from above at all
points where the curvature is sufficiently large. The corresponding estimate for
mean curvature flow was first established by White [6] in the mean cinvex case and
by Huisken-Sinestrari [5] with an argument using the maximum principle in the
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2-convex case. For our fully nonlinear flow we combine the non-collapsing estimate
with the convexity estimate, the cylindrical estimate and regularity estimates for
radial graphs while using a point picking argument of Perelman to derive the
desired gradient estimates for the curvature, see [4] for the details.

We finally remark that these results can be extended to Riemannian mani-
folds admitting some negative curvature: If the ambient manifold satisfies R̄ikik +
R̄jkjk ≥ −2κ2, κ ≥ 0, everywhere and if λ1 + λ2 > 2κ holds everywhere on the
initial hypersurface, then the results of the theorem can be established for the flow
with velocity

Gκ =
(∑

i<j

1

λi + λj − 2κ

)−1

.
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Conformal Willmore Tori in R4

Tobias Lamm

(joint work with Reiner M. Schätzle)

For an immersion f : Σ → Rn of a Riemann surface Σ the Willmore energy is
defined to be

W(f) =
1

4

∫

Σ

|H |2dµ,

where H and dµ are the mean curvature resp. the induced area element of the
immersion. Critical points of W are called Willmore immersions. The global
minimum value of W among all immmersions from a closed surface is 4π and it
is attained by round spheres. The minimum of the Willmore energy among all
immersions f : T 2 → R3 from a two-dimensional torus is equal to 2π2 and it is
attained by the stereographic image of the Clifford torus S1( 1√

2
) × S1( 1√

2
) ⊂ S3.

This is the famous Willmore conjecture which was recently proved by Marques
and Neves [5]. Here we are interested in whether the infimum of the Willmore
energy is also attained in every conformal class of tori, or even more generally,
if the infimum is attained for every closed Riemann surface Σ of genus g ≥ 1.
The immersions minimizing the Willmore energy in a fixed conformal class are
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called conformally constrained Willmore minimizers. Various existence results for
conformally constrained Willmore minimizers were obtained in [2], [3], [6] and
[7]. In this talk we focused on an existence result for conformal Willmore tori in
higher codimension n ≥ 4 . Any torus is conformally equivalent to a quotient
T 2
ω := C/(Z + ωZ) with the euclidean metric geuc and

ω ∈ M := {a+ ib | b > 0, 0 ≤ a ≤ 1/2, a2 + b2 ≥ 1 },

and we put

(1) Mn(ω) := Mn,1(ω) := inf{W(f) | f : T 2
ω → R

n conformal }

for ω ∈ M . Our first main result is an existence statement for conformal Willmore
tori in every conformal class with a prescribed energy value.

Theorem 1. For any conformal class ω ∈ M and k ∈ N0, k ≥ 3, there exist
conformal Willmore immersions fω,k : T 2

ω → R4 with exactly one point of
density k and

W(fω,k) = 4kπ for k ≥ 3.

We complement this result with a non-existence statement for conformal Will-
more tori with at least one double point and Willmore energy 8π.

Theorem 2. For every torus T 2 there is no immersion f0 : T 2 → R4 which has
at least one double point and for which W(f0) = 8π.

The particular implication of Theorem 1 that for any conformal class ω ∈ M
there exists a conformal Willmore immersion T 2

ω → R4 is already known, as
Bryant showed in [1] that any closed Riemann surface Σ admits a conformal
minimal, even a superminimal, immersion Σ → S4 , which then is Willmore
as well. Moreover, he constructed the immersions as a Twistor projection T :
CP 3 → S4 of a holomorphic horizontal curve Φ : Σ → CP 3 and he showed that
the Willmore energy of the superminimal immersion has to be a multiple of 4π.
Note however, that Bryant only obtained the existence of one such surface, whereas
our result shows the existence of infinitely many Willmore immersions on every
torus.

Our construction of the conformal Willmore immersions works via an inversion
of suitable conformal minimal immersions in R4 with ends of multiplicity one.
More precisely, we construct these immersions via a pair of meromorphic functions
(f, h) : T 2

ω → R4 with exactly k ≥ 3 simple poles and no common branch points.
The existence of these functions follows basically from the Riemann-Roch theorem.
It then remains to show that by inverting the immersion (f, h) one obtains an
immersion as claimed in the theorem.

We also classify all branched conformal immersions from T 2
ω, for every ω ∈ M,

into R4 with at least one branch point and Willmore energy 8π. We show that
modulo Möbius transformations these immersions are given by a branched double
cover T 2

ω → S2 × {0}.
In our third main result we derive an estimate from above for Mn.
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Theorem 3. For any conformal class ω ∈ M , we have

M4(ω) ≤ 8π.

We show this result by using a perturbation argument which slighly resembles
the constructions of counterexamples to rigidity results in [4]. More precisely,
close to the branch points of the branched double cover we add a small multiple
of a suitably localized holomorphic function in the second component and the new
immersion is conformal everywhere. The drawback of this construction is that
this might change the conformal class of the torus and we cope with this problem
by showing that the induced Teichmüller class is surjective if the perturbation is
small enough. Altogether, this yields a sequence of conformal immersions from
every torus whose Willmore energy converges to 8π from above.
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Compactness of the space of minimal hypersurfaces with bounded
index

Ben Sharp

(joint work with L. Ambrozio and A. Carlotto)

Given a closed Riemannian manifold (Nn+1, g) of dimension less than eight, we
present compactness results for the space of closed, embedded minimal hypersur-
faces satisfying a volume bound and; either an index bound or a uniform lower
bound on the p−th Jacobi eigenvalue for p ≥ 1. All the results stated below can
be found in [2].

The type of compactness we consider is with respect to smooth graphical con-
vergence away from a finite set Y ⊂M , where M is the limit hypersurface (which
is always a smooth minimal hypersurface). If the multiplicity of the convergence
is one and then Y = ∅ and we say the convergence is smooth in the Ck topology
for all k.
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Such compactness results can be seen as generalisations of classical compact-
ness where one assumes a bound on the volume and the total curvature, or more
specifically a strong compactness result of Choi-Schoen (see [3]).

These results are relevant to us since we know the class M
n(N) (of connected,

closed, smooth and embedded minimal hypersurfaces M ⊂ N) is not empty when-
ever 2 ≤ n ≤ 6 due to work of Almgren-Pitts [5] (and Schoen-Simon [6]). Moreover
when RicN > 0 we now know that M

n(N) contains infinitely many distinct ele-
ments due to Marques and Neves [4].

The general form of result goes as follows

Theorem 1. Let 2 ≤ n ≤ 6 and Nn+1 a smooth, closed Riemannian manifold.
Denote by M

n(N) the class of closed, smooth and embedded minimal hypersurfaces
M ⊂ N . Let λp(M) denote the p-th eigenvalue of the Jacobi operator for M ∈
M

n(N). Given any 0 < Λ <∞ and 0 ≤ µ <∞, define the class

Mp(Λ, µ) := {M ∈ M
n(N) : Hn(M) ≤ Λ, λp(M) ≥ −µ}.

Given a sequence {Mk} ⊂ Mp(Λ, µ) there exists M ∈ Mp(Λ, µ) such that Mk →
M in the varifold sense and furthermore:

(1) if p = 1 then Mk →M locally in the sense of smooth graphs;

(2) if p ≥ 2 then there exists a finite set Y = {yi}
P
i=1 with P ≤ p− 1 such that

the convergence Mk → M is smooth and graphical for all x ∈ M \ Y; if
the number of leaves of the convergence is one then Y = ∅.

The above theorem allows one to recover the results in [7], moreover we have
the following strong compactness results which follow easily from the above result.

Corollary 2. see also [3, when n = 2], and [7, in the case of bounded index]
Suppose RicN > 0. Then given any 0 < Λ < ∞ and 0 ≤ µ < ∞ and p ≥ 1 the
class Mp(Λ, µ) is compact in the Ck topology for all k ≥ 2.

Corollary 3. Suppose that there are no one-sided minimal hypersurfaces M ⊂
N (e.g. if N is simply connected with an arbitrary metric). Then M1(Λ, µ) is
compact in the Ck topology for all k ≥ 2.

Finally, we are able to characterise how the spectrum behaves along certain
sequences of smooth hypersurfaces with bounded index, giving analytical informa-
tion that is hitherto very difficult to calculate.

Corollary 4. Let {Mk} ⊂ M
n(N) be a sequence satisfying a uniform volume

bound, so that Mk →M for some stationary integral varifold M in N - see [1].

• If M is not smooth, then λp(Mk) → −∞ as k → ∞ for every p ≥ 1
provided RicN > 0.

• If the convergence to M is of multiplicity ≥ 2 then λp(Mk) → −∞ as
k → ∞ for every p ≥ 1.

• If M is smooth, let Y ⊂ M denote the set where the convergence is not
smooth and graphical. Then λp(Mk) → −∞. for all 1 ≤ p ≤ |Y|. In
particular if |Y| = ∞ then λp(Mk) → −∞ as k → ∞ for every p ≥ 1.
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In the above results we are always assuming a bound on volume of our minimal
hypersurfaces. However in the case that we have some control on the spectrum
of the Jacobi operator (e.g. a bound on the index) and the ambient manifold is
positively curved, we have the following conjecture posed to the author by André
Neves and Fernando Codá Marques

Conjecture 1. Let M ∈ M
n(N) and suppose index(M) = I. If we assume that

the sectional curvatures σN > 0 of N are strictly positive then there exists some
C = C(N, I) such that

Hn(M) ≤ C.

Thus given a sequence {Mk} ⊂ M
n(N) with index(Mk) = Ik ≤ I then we must

have that Hn(Mk) is uniformly bounded above independently of k.
Moreover, if we assume N to be as above and we are given a sequence {Mk} ⊂

M
n(N) with Hn(Mk) → ∞, then index(Mk) → ∞.
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The singular set of two-dimensional almost minimal integral currents

Emanuele Spadaro

(joint work with Camillo De Lellis, Luca Spolaor)

In this talk we discuss the optimal interior regularity of the integer rectifiable
currents Ti for i = 1, 2, 3 satisfying one of the following conditions (we adopt
classical notation and terminology in Geometric Measure Theory, cp. [16]):

(a) T1 is two-dimensional and locally mass minimizing in a Riemannian man-
ifold Σ2+n;

(b) T2 is two-dimensional and semi-calibrated in a Riemannian manifold Σ2+n,
i.e. there exists a two-dimensional differential form ω on Σ with comass
‖ω(x)‖c ≤ 1 for every x ∈ Σ such that

〈~T (x), ω(x)〉 = 1 for ‖T ‖-a.e. x ∈ Σ;
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(c) T3 is a mass minimizing three-dimensional cone in R
2+n.

We denote by Reg(T ) the set of regular points of a current T : namely, x ∈
Reg(T ) if there exists r > 0 such that Br(x) ∩ spt(T ) is an embedded subman-
ifold of class C2 (where Br(x) is the metric ball centered in x and radius r);
correspondingly

Sing(T ) := spt(T ) \
(
Reg(T ) ∪ spt(∂T )

)
.

The main theorem, proved in a series of papers [12, 13, 14, 15] in collaboration
with C. De Lellis and L. Spolaor, is the following.

Theorem 1 (De Lellis, Spolaor and S., 2015). Assume that the Riemannian man-
ifold Σ is of class C3,ε0 and the differential form ω of class C2,ε0 for some ε0 > 0.
Then,

H0(Sing(Ti) ∩K) < +∞ ∀ K ⊂⊂ Σ \ spt(∂Ti) i = 1, 2,

H1(Sing(T3) ∩K) < +∞ ∀ K ⊂⊂ R
n \ spt(∂T3).

This regularity result is optimal in the case of higher co-dimension n ≥ 2, since
there are explicit examples of currents T1 and T2 as in (a) and (b) with an arbitrary
finite number of interior singularities (see, for instance, the currents induced by
holomorphic varieties, cp. [16, 5.4.19]), as well as three-dimensional cones T3 with
arbitrarily many lines of singularities (consider for example the Cartesian products
of the union of intersecting complex planes with a line).

The Main Theorem establishes an unified approach to the regularity of two-
dimensional integer rectifiable currents which solve the above variational problems
(note that the case of the three-dimensional cones reduces indeed to the study of
their traces on a sphere).

The result for mass minimizing currents (a) has been established by Chang [6]
under a more restrictive regularity assumption on Σ, building upon the pioneering
work by Almgren [2]. However, Chang’s arguments are not entirely complete.
Indeed, a substantial part of the proof, namely the approximation of the current
over the so-called branched center manifold, is only sketched in an appendix of
[6], while it requires a careful and intricate analysis which goes beyond Almgren’s
monograph (cp. [14]). In our papers we establish the estimates which are needed
for such approximations in the three cases considered in the Main Theorem, thus
providing a complete proof of the regularity of mass minimizing currents.

The case (b) settles a question which has been considered recently in the lit-
erature in connection to several problems in differential geometry, see, e.g., the
introductions to the papers by Rivière and Tian [21] and Pumberger and Rivière
[19]. The notion of semi-calibrations extends that of calibration to the generic case
of forms ω which are not necessarily closed. In particular, contrary to calibrated
currents, the generic semi-calibrated current fails to be mass minimizing in its
homological class.

Due to their geometric relevance, the question of the regularity for calibrated
and semi-calibrated currents has been considered independently from the Almgren-
Chang theory. Alternative proofs of the regularity were already known for some
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classes of calibrated currents, e.g. positive (1-1)-currents in Kähler manifolds,
cp. the work by King [18], or have been given recently, see for instance the works by
Taubes [22] and Rivière and Tian [20, 21] on almost complex two-dimensional cur-
rents in a manifold satisfying the locally symplectic property (see also the papers
by Harvey and Shiffman [17] and Alexander [1] for the integrable case). For two-
dimensional semi-calibrated currents which are not mass minimizing, Pumberger
and Rivière [19] proved the uniqueness of tangent cones at every point (recently
also reproved by Bellettini [3, 4]), and Bellettini and Rivière [5] the structure of
the singular set in the case of special Legendrian cycles in S

5. Our Main Theorem
provides a general interior regularity result for semi-calibrated two-dimensional
currents which in particular implies all the known cases in the literature.

Finally, case (c) establishes the first optimal regularity result for a class of three-
dimension mass minimizing currents which goes beyond Almgren’s estimate of the
Hausdorff dimension. Note that the the special Legendrian cycles considered by
Bellettini and Rivière [5] arise also as spherical cross-sections of 3-dimensional
special Lagrangian cones, and are therefore also included in our class (c).

In the proof of the Main Theorem we follow the approach pioneered by Almgren
and Chang, as revisited in the first two authors’ previous works [7, 8, 9, 10, 11].
Indeed, the Main Theorem is established through a suitable “blow-up argument”
which requires the theory of multiple valued functions (cp. [7, 8]).

The proof of the Main Theorem is given in four papers, where several additional
results are established:

(1) Uniqueness of tangent cones for 2-dimensional almost minimizing currents
[12];

(2) Regularity for 2-dimensional almost minimal currents I: Lipschitz approx-
imation [13];

(3) Regularity for 2-dimensional almost minimal currents II: branched center
manifold [14];

(4) Regularity for 2-dimensional almost minimal currents III: blowup [15].

In [12] we show the uniqueness of the tangent cones at the interior points of a large
class of almost minimizing two-dimensional integer rectifiable currents, namely any
current T for which there exists constants r0, α, C > 0 such that

‖T ‖(Br(x)) ≤ ‖T + ∂S‖(Br(x)) + C r2+α

for all x /∈ spt(T ), for all 0 < r < r0 and for all integral 3-dimensional integer
rectifiable currents S supported inBr(x). The uniqueness of tangent cone is by now
a classical theorem of White [23] for area-minimizing 2-dimensional currents in the
Euclidean space, extended by Chang [6] for currents in a Riemannian manifold, and
by Pumberger and Rivière [19] to semi-calibrated currents, as already mentioned.
Our paper [12] gives a unified proof to these existing results and establishes also the
uniqueness of blowups for the cross-sections of three-dimensional mass minimizing
cones.

In [13] we prove a strong approximation (with errors given by superlinear powers
of the excess) for integer rectifiable currents T of any dimension m satisfying a
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Ω-minimizing condition:

M(T ) ≤ M(T + ∂S) + ΩM(S)

for every (m+ 1)-dimensional integer rectifiable current S with compact support.
This result extends the strong approximation for mass minimizing currents by
Almgren as proved in [9].

Finally, [14, 15] contain the main part of the proof and deal exclusively with
the classes of currents in the statement of the Main Theorem. In particular,
[14] concerns the construction of a branched center manifold and [15] the blowup
analysis.
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A notion of the weighted σk-curvature for manifolds with density

Jeffrey Case

One of Perelman’s contributions to the Ricci flow was his introduction of the W-
functional [7], defined on a Riemannian manifold (Mn, g) by

W1(g, φ, τ) :=

∫

M

(
τ
(
R + 2∆φ− |∇φ|2

)
+ φ− n

)
(4πτ)

−n
2 e−φdvol

for all φ ∈ C∞(M) and all τ ∈ (0,∞). Consider

R̃φ := R+ 2∆φ− |∇φ|2 +
1

τ
(φ− n)

as the weighted scalar curvature of the manifold with density (Mn, g, e−φdvol).
Critical points of W1 in the class

C1(g) :=

{
(φ, τ) ∈ C∞(M) × (0,∞) :

∫

M

(4πτ)−
n
2 e−φdvol = 1

}

are such that R̃φ is constant; critical points within
⋃

g C1(g) are shrinking gradient
Ricci solitons, namely solutions of

Ricφ := Ric + ∇2φ =
1

2τ
g;

shrinking gradient Ricci solitons are local minimizers of W1; and if the ν-entropy
infC1

W1 is finite, then (Mn, g) is κ-noncollapsed. Moreover, the gradient flow of
W1 is the Ricci flow [7].

The aforementioned properties of Perelman’s W-functional are all analogous
to properties of the total scalar curvature functional: Critical points within a
conformal class [g]1 of metrics with fixed volume have constant scalar curvature;
critical points within

⋃
g[g]1 are Einstein metrics, namely solutions of Ric = λg;

Einstein metrics with positive scalar curvature locally minimize the total scalar
curvature functional; and the positivity of the Yamabe constant implies that the
manifold is noncollapsed. Viaclovsky proposed studying the σk-curvatures, namely
the k-th elementary symmetric functions of the eigenvalues of the Schouten tensor,
as analogues of the scalar curvature [9]. Indeed, the behavior of the σk-curvatures
within a conformal class is controlled by a fully nonlinear second-order PDE in
the conformal factor, and it is known that the total σk-curvature functional shares
all of the same properties as the total scalar curvature functional [5, 8, 9], with
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the important caveat that the former is variational if and only if k ∈ {1, 2} or the
conformal class is locally conformally flat [1].

Formally, the weighted scalar curvature can be identified as the limit

R̃φ = lim
m→∞

σ1

(
Mn × Sm(1/mτ), g ⊕ e−

2φ
m h

)

where (Fm(1/mτ), h) is the simply-connected spaceform of sectional curvature
1/mτ . Similarly, given (Mn, g, e−φdvol) and λ ∈ R, we define the weighted scalar
curvature σ̃k,φ by

σ̃k,φ := lim
m→∞

σk

(
Mn × Fm(λ/m), g ⊕ e−

2φ
m h

)
.

A more rigorous definition is given in [3]. The most important special cases are

σ̃1,φ =
1

2

(
R+ 2∆φ− |∇φ|2 + 2λ(φ− n)

)
,

σ̃2,φ =
1

2

(
(σ̃1,φ)2 − |Ric + ∇2φ− λg|2

)
.

With the analogue of a conformal change of metric being a change of the measure
(4πτ)−

n
2 e−φdvol, the weighted σk-curvature has all of the same properties as the

σk-curvature, thus generalizing Perelman’s observations for σ̃1,φ. In particular,
the variational status of the weighted σk-curvatures is completely understood:

Theorem 1 ([3]). Let (Mn, g) be a Riemannian manifold and fix λ ∈ R and a
positive integer k ≤ n. Then the weighted σk-curvature σ̃k,φ is variational if and
only if k ∈ {1, 2} or the Riemann curvature tensor of g vanishes identically.

This makes it meaningful to study the functional

W2(g, φ, τ) :=

∫

M

τ2σ̃2,φ (4πτ)
−n

2 e−φdvolg;

Critical points of W2 within C1(g) are such that σ̃2,φ − 1
2τ σ̃1,φ is constant, and

shrinking gradient Ricci solitons are critical points of W2 within
⋃

g C1(g). More-

over, shrinking gradient Ricci solitons locally maximize W2 within C1(g):

Theorem 2 ([3]). Let (Mn, g, e−φdvol) be a shrinking gradient Ricci soliton with
Ricφ = 1

2τ g and let {(φt, τt)}t∈(−ε,ε) ⊂ C1(g) be a smooth variation of (φ, τ). Then

(1)
d2

dt2
W2 (g, φt, τt)

∣∣∣∣
t=0

≤ 0.

Moreover, equality holds in (1) for nontrivial variations (φt, τt) ∈ C1(g) if and only
if (Mn, g, e−φdvol) factors as an isometric product with a Gaussian.

In fact, critical points of W2 are completely classified on Euclidean space in
terms of shrinking Gaussians:
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Theorem 3 ([3]). Suppose that (φ, τ) ∈ C∞(Rn)× (0,∞) is a critical point of the
functional W2 : C1(dx2) → R. Suppose additionally that

σ̃1,φ <
1

2τ
,(2)

σ̃2,φ >
1

2τ
σ̃1,φ −

1

8τ2
,(3)

1 =

∫

M

(4πτ)−
n
2 e−φdx.(4)

Then there is a point x0 ∈ Rn such that

φ(x) =
|x− x0|2

4τ
.

The cone Γ∞
2 ⊂ C1(g) consisting of pairs satisfying (2) and (3) is important

because the equation σ̃2,φ = f is elliptic within this cone. The assumption (4) is
used to obtain estimates at infinity on φ; it is not clear if this assumption can be
removed (cf. [2]). The key ingredient in the proof of Theorem 3 is the divergence
structure coming from the variational structure of σ̃2,φ.

One expected topological consequence of the weighted σ2-curvature is the va-
lidity of the Hitchin–Thorpe inequality.

Conjecture 1. Let (Mn, g) be a compact Riemannian manifold. If supΓ∞
2

W2 <

∞, then there is a metric ĝ ∈ [g] such that R̂, σ̂2 > 0. In particular, if (M4, g) is
a compact gradient Ricci soliton, then

χ(M4) >
3

2

∣∣τ(M4)
∣∣ .

Conjecture 1 is based on the validity of the similar relationship between the ν-
entropy and the Yamabe constant (cf. [4]). The Hitchin–Thorpe inequality follows
immediately from the existence of a metric ĝ ∈ [g] such that σ̂2 > 0 (cf. [6]).

While I expect W2 to be relevant to the study of certain geometric flows, it
is not clear what form that should take. I expect it either gives rise to a new
monotone quantity along the Ricci flow or it gives rise to a new and interesting
geometric flow in its own right.

Conjecture 2. Let (Mn, g) be a compact Riemannian manifold. At least one of
the following is true:

(a) supΓ∞
2

W2 is monotone along the Ricci flow; or

(b) The negative gradient flow of W2 is well-posed within Γ∞
2 .

If the Obata-type argument used to prove Theorem 3 can be extended to general
shrinking gradient Ricci solitons, it would yield the first claim of Conjecture 2. Un-
fortunately, it is not even known if the analogous Obata-type theorem for Einstein
metrics and the σ2-curvature.
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On conformally compact Einstein manifolds with conformal infinities
of large Yamabe constant

Jie Qing

In this paper we first obtain a gap theorem for a class of conformally compact
Einstein manifolds with a renormalized volume that is close to the maximum. We
also use the blow-up method to derive curvature estimates for conformally com-
pact Einstein manifolds with large renormalized volume. The major part of this
paper is on the study of how a property of the conformal infinity influences the
geometry of the interior of a conformally compact Einstein manifold. Specifically
we are interested in conformally compact Einstein manifolds with conformal in-
finities of large Yamabe constants. Based on the approach initiated in the work
of Shi and Tian, and Dutta and Javaheri, we present the complete proof of the
relative volume inequality on conformally compact Einstein manifolds. This leads
to not only the complete proof of the rigidity theorem for conformally compact
Einstein manifolds in general dimensions with no spin structure assumption but
also the new curvature pinch estimates for conformally compact Einstein manifolds
with conformal infinities of Yamabe constants that are close to the maximum. In
particular it implies the all conformally compact Einstein manifolds including the
ones constructed by Graham and Lee for conformal infinities that are perturba-
tions of the round sphere are all negatively curved. We also derive the curvature
estimates for conformally compact Einstein manifolds with conformal infinities of
large Yamabe constants.
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Gluing constructions for constant mean curvature hypersurfaces

Christine Breiner

(joint work with Nicos Kapouleas)

We outline a generalized gluing construction for constant mean curvature (CMC)
hypersurfaces. The work builds on the analogous result for surfaces, [5].

CMC hypersurfaces Σn ⊂ Rn+1 are critical points for the area functional subject
to an enclosed volume constraint. The variational condition corresponds to a
pointwise condition of the form

nH =
n∑

i=1

κi

where the κi’s are the principle curvatures of the hypersurface Σ. Until the late
1980’s, the only known examples in Euclidean space were the round sphere, the
Wente torus [2], and the surfaces of Delaunay [1]. In 1990, Kapouleas [6] deter-
mined a very general gluing construction for CMC surfaces that produced infinitely
many new examples. The work of [5] refines and simplifies the previous construc-
tion and guarantees embeddedness for a much larger class of surfaces. In the
current work, we extend the results of [5] to produce infinitely many new exam-
ples of CMC hypersurfaces.

The gluing outline proceeds as follows. First, we consider a “background struc-
ture” Γ consisting of a collection of vertices, edges, and rays, where each edge and
ray comes equipped with a parameter τi 6= 0. We construct an initial hypersurface
M by positioning a round hypersphere at each vertex and a Delaunay piece of
the appropriate parameter along each edge and ray. We transition between these
hypersurfaces with a smooth function and call the resulting hypersurface M . Be-
cause we hope to find a CMC hypersurface near M and because we know the
singular behavior of the Delaunay pieces, we expect the structure Γ to satisfy a
few criteria. First, the singular behavior of the Delaunay model implies that we
want all of our edges to have even integer lengths. Second, CMC hypersurfaces
satisfy a force balancing condition. The condition translates to the structure in a
convenient way because of our choice of immersion for the Delaunay pieces. More
specifically, given any CMC hypersurface Σn, let C ⊂ Σ be an (n− 1)-chain and
Kn ⊂ Rn+1 such that ∂K = C. Then

Force(C) :=

∫

C

η ds− n

∫

K

NK dV

is a homological invariant. Here η is the conormal to C and NK is the normal
to K. For a Delaunay piece with parameter τ , one can easily calculate the force
along any C by considering C = {rmin} × Sn−1 where rmin denotes the smallest
radius. If the Delaunay piece is positioned with axis in the direction of e1, then

Force(C) = ωn−1τe1.

(We choose a parameterization so that the two terms that appear in the force
calculation add up conveniently.)
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The force calculation relates to the structure of Γ in the following way. Consider
any vertex in Γ and let vi denote the unit directions of the edges and rays ema-
nating from this vertex. Let τi denote the corresponding τ -parameters associated
to each edge or ray. The force contribution for each Delaunay piece positioned
around the hypersphere will then be ωn−1τivi. The homological invariance of the
force for CMC hypersurfaces implies that if we want the initial surface M to sat-
isfy the force condition, then at each vertex of Γ we must satisfy the balancing
condition ∑

i

τivi = 0.

The final condition on the structure Γ is more technical and comes because of
the nature of our construction. We solve the problem not on the hypersurface
M but instead on a hypersurface nearby M . Roughly, we require that Γ satisfies
enough flexibility to admit a large class of nearby hypersurfaces.

Given Γ satisfying the conditions described, we are able to find a CMC hy-
persurface. The rough idea comes from the fact that for f ∈ C2,α(M), we may
calculate

HMf
= HM + LMf +Qf

where HM is the mean curvature of M , LM is the stability operator on M , Mf is
the normal graph over M by f , and Qf are quadratic and higher terms in f and
its derivatives. Therefore, we hope to find f such that

LMf = 1 −HM −Qf .

Unfortunately, we cannot solve this problem directly. Both the dependence on f
on the right hand side and the obstructions to invertibility of LM cause problems.
Therefore, rather than trying to solve the problem directly on M , we show that
there exists a hypersurface in a family of hypersurfaces near M and a function
defined on that hypersurface that solves the problem.

Let F(M) denote a family of hypersurfaces near M , where every member of
this family will arise by the choice of two parameters that completely describe
the modification of M . (In this abstract, we will not be any more precise in
the definition of “near”.) We then show that there exists a space of functions

K ⊂ C2,α(M) such that for all M̃ ∈ F(M) and E ∈ C0,α(M̃) there exist w ∈ K

and φ ∈ C2,α(M̃) such that L
M̃
φ = E + w. Note that w is defined on M , but as

M and M̃ have the same domain, we may think of w as being defined on every
hypersurface in F(M).

We then show that, given w ∈ K, there exists M̃ ∈ F(M) and Φw ∈ C2,α(M)
such that

L
M̃

Φw = 1 −H
M̃

+ w.

Of course, we do not show this exactly but that we can solve this problem for some
w̄ sufficiently close to w.

We define a Banach space B ⊂ C2,α(M) × K with an appropriate weighted
norm on M and show that there exists a map J : B → B that satisfies the criteria
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to invoke Schauder’s fixed point theorem. Specifically, J(u,w) := (u′, w′) where
v = Φw − u and L

M̃
u′ = Qv + w′. Therefore, at a fixed point we have that

L
M̃
v = L

M̃
Φw − L

M̃
u = 1 −H

M̃
+ w −Qv − w = 1 −H

M̃
−Qv.

We mention just a few of the differences from the surface case. First, the
operator LM no longer scales well under conformal change. Therefore, solving
the linear problem requires some new techniques. We simplify how we solve the
linear problem on the Delaunay pieces by realizing that we can project the linear
operator onto the eigenspaces for Sn−1 and thus treat the problem as an ODE on
each eigenspace.

Going forward, there are a few questions one might consider. First, can we
extend such a construction to more general manifolds? What requirements will be
needed for Γ and what restrictions will need to be placed on the ambient manifold?
Second, can one extend the hypersurface construction to include hypersurfaces
with infinite topology? (This question is fairly straightforward and could be done
by a graduate student.) Third, are the hypersurfaces that we construct non-
degenerate? An affirmative answer would let us appeal to [4] to conclude that there
exists a neighborhood in the moduli space that is a smooth manifold. One then
might attempt to produce stronger fixed point estimates (contraction mappings)
so that modifications to Γ result in surfaces that vary along a curve in the moduli
space.
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Finite total Q-curvature in conformal geometry and the CR geometry

Yi Wang

(joint work with Paul Yang)

1. Background

The study of non-compact complete surfaces with finite total Gaussian curvature
dates back to the early 1930s. The works of Fiala, Huber, Cohn-Vossen demon-
strate that the integral of the Gaussian curvature has rigid geometric consequences.
The famous Fiala-Huber isoperimetric inequality states that if the integral of the
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positive part of Gaussian curvature is less than that on the half cylinder, then the
isoperimetric inequality is valid on this complete surface. In higher dimensions,
PDE aspect of Q-curvature has been intensively studied. However, the geometric
implication of the Q-curvature has always been a mystery. It was conjectured
by Bonk, Heinonen, Saksman that on conformally flat manifolds if the integral
of the Q-curvature is less than that on the half cylinder, then the manifold is bi-
Lipschitz to the Euclidean space. A few years ago, I proved this conjecture, with
some non-uniform isoperimetric constant. Later, I improved this result by showing
the full analog of Fiala-Huber type isoperimetric inequality on higher dimensional
manifolds.

2. Isoperimetric inequality and Q-curvature in conformal geometry

The main result that I have presented is the following.

Theorem 1. (W. ’13) Suppose (Mn, g) = (Rn, e2u|dx|2) is a noncompact complete
Riemannian manifold with normal metric. If its Q-curvature satisfies

(1) α
def
=

∫

Mn

Q+
g dvg < cn

and

(2) β
def
=

∫

Mn

Q−
g dvg <∞,

then the manifold satisfies the isop inequality:

(3) |Ω|g ≤ C(α, β, n)|∂Ω|n/(n−1)
g .

In order to prove this theorem, I adopt some techniques from harmonic analysis.
More precisely, the theory of Ap weights, especially the strongA∞ weight is applied
to solve the problem.

The Q-curvature is generally believed to have very rich geometric meanings. In
a recently prepared preprint, I prove that under certain curvature conditions the
integral of Q-curvature is quantized.

Theorem 2. (W. ’15) Suppose (M4, g) = (R4, e2u|dx|2) is a noncompact complete
Riemannian manifold with normal metric. If M4 embeds in R5 with

(4)

∫

M4

|L|4dvg <∞,

with L being the second fundamental form, then
∫

M4

Qgdvg = 4π2
Z.

Q-curvature is related to asymptotic behavior of the ends of local conformally
flat manifolds. In the long run, it would be interesting to understand volume
growth estimates, geodesic distance estimates, etc. using Q-curvature.
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3. Q′-curvature in CR geometry

In CR geometry, if one considers conformally Heisenberg manifolds, it is known
that the Q-curvature’s integral is equal to zero. Therefore, the Q-curvature’s
integral is not the right quantity to study geometric properties. Recently, Case and
Yang defined P ′

4 on general three dimensional CR manifolds. This is an operator
which only acts on pluriharmonic functions. It satisfies the transformation law in
a manner similar to that of the Q-curvature in the Riemannian setting, modular
the space of pluriharmonic functions. Namely, for conformal change θu = euθ0,

P ′
4(f) = e2u(Pu)′4(f) mod P+,

for all pluriharmonic functions f . The corresponding Q′
4-curvature satisfies

P ′
4(u) +Q′

4 = e2u(Qu)′4 mod P+.

Theorem 3 (joint with Paul Yang, ’15). Suppose the CR Q′
4-curvature of (H1, euθ)

is nonnegative. The Webster scalar curvature is nonnegative at infinity, and u is
a pluriharmonic funcion on H1. If

(5)

∫

H1

Q′
4e

2udx < c1,

then e2u is an A1 weight. Thus on such a conformal Heisenberg group, the isoperi-
metric inequality is valid. Moreover, the isoperimetric constant depends only on
the integral of the Q′

4-curvature.

In our theorem, we provide further evidence that P ′
4 operator is the correct

analogue on CR manifolds. First, analogous isoperimetric inequality holds when
Q′

4 is nonnegative. Also, nonnegativity of Webster scalar curvature at infinity
implies the metric is normal.
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Scattering for a critical nonlinear wave equation in two space
dimensions

Michael Struwe

abstract

In joint work with Martin Sack we show that the solutions to the Cauchy problem
for a wave equation with critical exponential nonlinearity in 2 space dimensions
scatter for arbitrary smooth, compactly supported initial data.



Partial Differential Equations 2117

1. Introduction

Consider the initial value problem for the equation

(1) utt − ∆u+ u
(
eu

2

− 1 − u2
)

= 0 on R× R
2 .

with smooth Cauchy data

(2) (u, ut)|t=0
= (u0, u1) ∈ C∞

c (R2).

Observe that for a classical solution u of (1), (2) the energy

(3) E(u(t)) =
1

2

∫

{t}×R2

(
|ut|

2 + |∇u|2 + F (u)
)
)dx

is conserved, where F (u) = eu
2

− 1− u2 − u4/2 (up to a factor 2) is a primitive of

the nonlinear term f(u) = u
(
eu

2

− 1 − u2
)
.

For the related problem when f(u) is replaced by the nonlinearity n(u) = ueu
2

Ibrahim, Majdoub, and Masmoudi in [3] showed that whenever the corresponding
initial energy is at most 2π the Cauchy problem (1), (2) admits a global smooth
solution. Together with Nakanishi, in [5] the same authors also showed that when

f(u) is replaced by l(u) = u(eu
2

− u2) the solution scatters, again assuming the
associated initial energy to be bounded by 2π. The constant 2π is related to
the best constant in the Moser-Trudinger inequality [6], [12], which defines the
limit case of Sobolev’s embedding of the space H1(R2). It was conjectured in [5]
that this number also marks an energy threshold for the onset of “super-critical”
behavior in (1) and its variants. This conjecture was partially confirmed through
the examples given in [4], showing that the solutions no longer depend in a locally
uniformly continuous fashion on the data when the initial energy exceeds the value
2π.

In contrast with these expectations, however, Struwe [10] showed that the initial
value problem for equation (1) has a global smooth solution for smooth Cauchy
data (u0, u1) with arbitrarily large energy. This result was originally demonstrated

when f(u) is replaced by the nonlinearity n(u) = ueu
2

but the proof is valid also
for all the above variants of equation (1).

Moreover, by building on the techniques developed in [10], Sack [7] was able to
show scattering for any solution u of (1), (2) for arbitrarily large smooth, com-
pactly supported data with rotational symmetry. Here, by definition, a solution u
to (1) scatters if for the solution v to the homogeneous linear wave equation

(4) vtt − ∆v = 0 on R× R
2

for suitable “scattering data”

(5) (v, vt)|t=0
= (v0, v1) ∈ Ḣ1 × L2(R2)

there holds

(6) ||Du(t) −Dv(t)||L2(R2) → 0 as t→ ∞,

where Du = (ut,∇u) is the space-time differential of u.
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Combining the insights of [7] and [10], in joint work with Martin Sack [8] we
establish scattering in the general (non-symmetric) case.

Theorem 1. For any u0, u1 ∈ C∞
c (R2) there exist (v0, v1) ∈ Ḣ1 × L2(R2) such

that the solution u to (1), (2) scatters to the solution v of (4), (5) in the sense of
(6).

For the proof of Theorem 1, as in [7] it suffices to show finiteness of the scattering
norm

‖utt − ∆u‖L1,2
t,x

= ‖f(u)‖L1,2
t,x

=

∫ ∞

0

‖f(u(t))‖L2(R2)dt

of the solution u to (1), (2) for given data. In [7] this already was partially
achieved by applying the techniques of [10] to the function U obtained from u
through conformal inversion, which satisfies an equation similar to (1). Conformal
inversion also is a key element in the proof of Theorem 1 in the present paper, and
we crucially exploit the fact that the wave operator and nonlinear terms of degree
5 and higher are well-behaved under this transformation. Even though our proof
therefore cannot be extended to the case when f(u) is replaced by the nonlinearity

l(u) = u(eu
2

− u2), it is to be expected that the analogue of Theorem 1 also holds
in this case, since scattering properties should only improve in the presence of a
mass term. However, it is not clear if scattering holds when f(u) is replaced by

the nonlinearity n(u) = ueu
2

since the cubic term seems difficult to treat even in
the small energy regime.

Note that also when f(u) is replaced by either l(u) or n(u), by [10] the solutions
to the Cauchy problem (1), (2) for smooth data always are globally regular.

2. Higher dimensions

Theorem 1 provides the analog of scattering results for critical nonlinear wave
equations

(7) utt − ∆u+ f(u) = 0 on R× R
n

with smooth, compactly supported Cauchy data and power-type nonlinearities
f(u) = u|u|p−2, 2 < p ≤ 2∗ := 2n/(n− 2) in dimensions n ≥ 3; see Grillakis [1] for
the case n = 3, or Tao [11] for a survey of well-posedness results for the general
case.

It is a highly challenging and largely open problem if the Cauchy problem for
equation (7) is well-posed also for more general nonlinearities f that are defocusing
in the sense that f(u)u ≥ 0 for all u ∈ R.
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