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Abstract. Efficiently analyzing functions, in particular multivariate func-
tions, is a key problem in applied mathematics. The area of applied harmonic
analysis has a significant impact on this problem by providing methodologies
both for theoretical questions and for a wide range of applications in technol-
ogy and science, such as image processing. Approximation theory, in partic-
ular the branch of the theory of sparse approximations, is closely intertwined
with this area with a lot of recent exciting developments in the intersection
of both. Research topics typically also involve related areas such as convex
optimization, probability theory, and Banach space geometry. The workshop
was the continuation of a first event in 2012 and intended to bring together
world leading experts in these areas, to report on recent developments, and
to foster new developments and collaborations.
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Introduction by the Organisers

The workshop Applied Harmonic Analysis and Sparse Approximation was orga-
nized by Ingrid Daubechies (Durham), Gitta Kutyniok (Berlin), Holger Rauhut
(Aachen) and Thomas Strohmer (Davis). This meeting was attended by 57 par-
ticipants from 11 countries and 3 continents.

Applied Harmonic Analysis provides one key approach towards the problem of
efficiently representing, decomposing, and analyzing univariate and multivariate
functions. Its applications range from theoretical ones such as the decomposition
of specific operators to more practical ones such as image and signal processing as
well as inverse problems. Research is typically driven by real-world applications
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leading to mathematically highly challenging questions, thereby also significantly
advancing the mathematical understanding of harmonic analysis itself and in turn
impacting the respective application.

The area of sparse approximation with its daughter compressed sensing consti-
tutes an even more recent development which is closely intertwined with applied
harmonic analysis, but also has roots in other areas such as statistics, optimiza-
tion, Banach space geometry and random matrix theory. Despite its young age,
this field has already reached a mature state and is nowadays considered a math-
ematical discipline of its own. Some parts of the core theory are nowadays es-
tablished, which led to the fact that research in this area has gained even more
momentum with many exciting new research directions such as structured dictio-
nary learning, matrix completion, novel methods for phaseless reconstruction, and
high-dimensional function reconstruction.

One key focus of research in applied harmonic analysis is the introduction and
analysis of representation systems which are designed according to their Fourier
domain behavior with constraints such as to derive optimally sparse approxima-
tions of curvilinear singularities. Examples are Gabor systems, wavelets, and
also the novel representation systems of curvelets and shearlets. Such systems
are typically utilized for and have impacted both theoretically oriented questions
such as sparse expansions of Fourier integral operators and application oriented
areas such as image processing. A very recent development just in this year was a
first approach to providing a unifying mathematical framework called parabolic
molecules for all directional representation systems based on parabolic scaling
such as curvelets and shearlets. But even for the single systems such as shear-
lets, many key questions are far from being solved, such as the introduction and
characterization of associated function spaces. Also associated functional analytic
properties are often far from being well understood, since most of such systems do
not constitute orthonormal bases but form redundant systems for which a natural
concept with additional stability properties is the notion of a frame. Interestingly,
frame theory – which might be even considered a theory of its own, studying
various aspects of redundancy as a mathematical concept – provides another link
to the area of sparse approximations elaborated upon below. Besides structured
representation systems, one main novel focus is also on dictionary learning, i.e.,
the generation of data-dependent sparsifying systems. Due to the highly complex
nature of this problem, and with it the highly unstructured systems which are
generated, the mathematical theory is at its beginning. Recently, structured
dictionary learning has become one new focus of research in an attempt to
bridge the gap between structured systems and dictionary learning, and so-called
α-shearlets might be regarded as one such development.

The paradigms of sparsity and sparse approximations have had a tremen-
dous impact on various areas in applied mathematics such as imaging sciences and
signal processing. It states that functions and signals which come from applica-
tions typically exhibit the property of admitting an (approximate) representation
in a suitable orthonormal basis or frame. Suitable representation systems were and
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are still being developed in the areas of applied harmonic analysis such as Gabor
systems, wavelets, curvelets, or shearlets. Although compression schemes such as
JPEG as well as denoising via thresholding might be considered the first break-
throughs of this general approach, quite recently, the new area of compressed
sensing revealed another use of sparse representations with tremendous impact.
Roughly speaking, it showed that signals exhibiting a sparse approximation can
be recovered efficiently from what would previously have been considered highly
incomplete measurements. This discovery has led to a canon of fundamentally
new approaches for various previously considered almost insolvable problems, for
instance, for signal and image recovery problems. Remarkably, good strategies for
designing the measurement process known so far are based on randomness, and
the mathematical research in compressed sensing uses also tools, sometimes quite
sophisticated, from probability theory and the geometry of Banach spaces.

Several new directions have emerged on the heels of compressed sensing: Low-
rank matrix recovery aims at recovering a matrix with small rank from incom-
plete data. In particular, matrix completion recovers the matrix from only a
small fraction of its entries. Since low-rank structures arise in numerous applica-
tions, one can expect an enormous impact. Phase retrieval aims at reconstruc-
tion of signals from measurements where the phase information is missing. While
previous methods both lack stability and provable reconstruction guarantees, re-
cent reconstruction algorithms based on ideas from matrix completion do provide
both of these features. Such methods are expected to have a major impact in ap-
plications such as X-ray cristallography. Many challenging mathematical problems
remain open in these areas.

Interesting recent developments have also occurred at the intersection of har-
monic analysis, high-dimensional manifolds, and large data sets. Traditional
reconstruction methods suffer from the curse of dimension which predicts that the
required number of samples scales exponentially in the number of variables. Based
on similar ideas as in sparse approximation, recent approaches are able to circum-
vent this phenomenon and work with much fewer samples. In a different direction,
certain data processing applications model the data as being elements of a high-
dimensional manifold. Tools from harmonic analysis are very useful in describing
and processing such manifolds. Yet another very promising direction in this con-
text is to apply concepts from harmonic analysis to graphs and complex data
sets.

The workshop featured 29 talks, thereof 9 longer overview talks. Moreover, a
session of short presentations of 3 minutes took place on Monday, which we called
the 3 Minutes of Fame (following Andy Warhol’s concept of 15 minutes of fame).
Every participant had the possibility to contribute to this session, and this session
worked out very well. It provided a quick overview on what the participants are
presently working or would like to discuss with other participants.

Some highlights of the program included:

• Multiscale geometric methods for high-dimensional data analy-
sis: Mauro Maggioni gave an overview on multiscale methods for building
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up efficient representations for data in high dimensions, where the assump-
tion consists in the data being (almost) contained in a low dimensional
manifold. He presented various interesting applications such as learn-
ing metastable dynamical systems from short time simulations, dictionary
learning via multiscale SVDs.

• Variable bandwidth: Several mathematical approaches for formulating
the concept of a function which has a bandwidth that varies over time have
been formulated in the last decades. All of these have certain shortcom-
ings. Karlheinz Gröchenig presented an elegant new approach to this topic
and showed that, in contrast to previous approaches, natural analogs of the
sampling theorem hold in this context. This work represents a promising
new direction in applied harmonic analysis.

• Sparse approximation: Several contributions to sparse approximation
were presented: A first analysis of ℓ1-support vector machine (Jan Vy-
biral), a deterministic sparse Fourier algorithm (Gerlind Plonka), sparse
analysis for art conservation (Ingrid Daubechies), advances on sparse dic-
tionary learning (Karin Schnass),

• Low rank recovery in quantum mechanics: David Gross offered
a nice introduction to quantum mechanics and the use of low rank ap-
proximation techniques for quantum state tomography. Building on this,
Richard Küng presented a brand new application in the design of quantum
optical curcuits, where techniques of low rank matrix recovery (extensions
of compressed sensing) may be very important.

The organizers would like to take the opportunity to thank MFO for providing
support and a very inspiring environment for the workshop. The magic of the place
and the pleasant atmosphere contributed greatly to the success of the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Non-unique games over compact groups

Afonso S. Bandeira

(joint work with Yutong Chen and Amit Singer)

Let G be a compact group and let fij ∈ L2(G). The Non-Unique Games (NUG)
problem is defined as

(1)
minimize
g1,...,gn

n∑

i,j=1

fij
(
gig

−1
j

)

subject to gi ∈ G,
Many inverse problems can be solved as instances of (1). A simple example is

angular synchronization [18, 5], where one is tasked with estimating angles {θi}i
from information about their offsets θi − θj mod 2π. The problem of estimating
the angles can then be formulated as an optimization problem depending on the
offsets, and thus be written in the form of (1). In general, many inverse problems,
where the goal is to estimate multiple group elements from information about
group offsets, can be formulated as (1).

One of the simplest instances of (1) is the Max-Cut problem, where the objective
is to partition the vertices of a graph as to maximize the number of edges (the
cut) between the two sets. In this case, G ∼= Z2, the group of two elements {±1},
and fij is zero if (i, j) is not an edge of the graph and

fij(1) = 0 and fij(−1) = −1,

if (i, j) is an edge. In fact, the semidefinite programming based approach to-
wards (1) discussed here is inspired by — and can be seen as a generalization of—
the semidefinite relaxation for the Max-Cut problem by Goemans and Williamson
[12].

Another important source of inspiration was the semidefinite relaxation of the
Max-2-Lin(ZL) problem, proposed in [9], for the Unique Games problem, a central
problem in theoretical computer science [14, 15]. Given integers n and L, an
Unique-Games instance is a system of linear equations over ZL on n variables
{xi}ni=1. Each equation constraints the difference of two variables. More precisely,
for each (i, j) in a subset of the pairs, we associate a constraint

xi − xj = bij mod L.

The objective is then to find {xi}ni=1 in ZL that satisfy as many equations as
possible. This can be easily described within our framework by taking, for each
constraint,

fij(g) = −δg≡bij ,

and fij = 0 for pairs not corresponding to constraints.
The semidefinite relaxation for the unique games problem proposed in [9] was

investigated in [6] in the context of the signal alignment problem, where the fij
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are not forced to have a special structure (but G ∼= ZL). This framework can be
seen as a generalization of the approach in [6] to other compact groups G.

Besides the signal alignment problem treated in [6] the semidefinite relaxation
to the NUG problem coincides with other effective relaxations. When G ∼= Z2 it
coincides with the semidefinite relaxations for Max-Cut [12], little Grothendieck
problem over Z2 [3, 17], recovery in the stochastic block model [2, 4], and Syn-
chronization over Z2 [1, 4, 11]. When G ∼= SO(2) and the functions fij are linear
with respect to the representation ρ1 : SO(2) → C given by the ρ1(θ) = eiθ, it
coincides with the semidefinite relaxation for angular synchronization [18]. Sim-
ilarly, when G ∼= O(d) and the functions are linear with respect to the natural
d-dimensional representation, then the NUG problem essentially coincides with
the little Grothendieck problem over the orthogonal group [8, 16]. Other exam-
ples include the shape matching problem in computer graphics for which G is a
permutation group (see [13, 10]).

We refer the reader to the manuscript [7] for more on the Non-Unique Games
framework and for a description of its application to the problem of orientation
estimation in Cryo-Electron Microscopy.
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Solving equations using nonlinear approximations

Gregory Beylkin

The usual approach to solving partial differential and integral equations is to select
a basis (possibly a multiresolution basis) or a grid, project equations onto such
basis and solve the resulting discrete equations. An alternative is to look for the
solution within a large class of functions (larger than any basis) by constructing
optimal or near optimal approximations at every step of an (iterative) algorithm
for solving the equations. We present two examples of such solvers, one for the
viscous Burgers’ equation [6] and, another, for solving the Hartree-Fock equations
of quantum chemistry [2], and discuss the merits of the approach.

The choice of the Burgers’ equation allows us to thoroughly test algorithms for
constructing rational approximations with (near) optimally small L∞ error. When
the viscosity ν is small, solutions of Burgers’ equation develop sharp (moving)
transition regions of width O (ν), which presents a challenge for standard numerical
methods.

In solving the Hartree-Fock equations, we present a new approach [2] to elec-
tronic structure calculations based on recently developed algorithms for computing
near optimal approximations [5, 1, 4]. We maintain a functional form for the spa-
tial orbitals consisting of linear combinations of products of decaying exponentials
and spherical harmonics centered at the nuclear cusps. While such representa-
tions are similar to the classical Slater-type orbitals, in the course of computation
we optimize both the exponents and the coefficients in order to achieve an effi-
cient representation of solutions and to obtain guaranteed error bounds. In this
way, we combine the efficiency of traditional Slater-type representations with the
adaptivity of current multiresolution methods [3, 7, 8].
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Robust and stable compressive phase retrieval

Bernhard G. Bodmann

(joint work with Nathaniel Hammen)

This abstract is concerned with the problem of recovering a signal from magnitude
measurements. In our formulation of this so-called phase retrieval problem, we
represent the signal as a d-dimensional vector x ∈ Cd and take noisy measurements
as bi = |〈x, fi〉|2+ǫi for some set of measurement vectors {fi}Mi=1 and measurement
noise {ǫi}Mi=1. In this setting, the objective is to stably recover an approximation
to the vector x from the measurements {bi}Mi=1, up to an overall unimodular factor.

Often, there are fewer measurements that are feasibly available than the di-
mension of the signal to be recovered. Phase retrieval allows recovery of a vector
from fewer linear measurements than the dimension of the vector, if the vector
is known to be sparse. Thus, we would like to combine phase retrieval results
with compressive sensing results. To do this, we represent noisy measurements as
bi = |〈Ax, fi〉|2 + ǫi for some matrix A that allows underdetermined recovery of
a sparse vector and some set of measurement vectors {fi}Mi=1 and measurement
noise {ǫi}Mi=1. In this case, a phase retrieval algorithm can recover the vector Ax,
and then a compressive sensing algorithm can recover the vector x. This type of
procedure has been shown to have an error bound that is linear in terms of the
input noise [2].

The recovery result presented here is stable with respect to input noise and
also allows the assumption of sparsity to be only approximately satisfied. The
estimates are an improvement over prior work [1] and include the treatment of
sparsity. To define the notion of approximate sparsity, we recall the following
definitions.

For any vector x ∈ CN , we define the error of best s-term approximation to x
by

σs(x)1 = min
z∈CN ,‖z‖0≤s

‖x− z‖1

and a best s-term approximation to x is given by

Hs(x) = arg min
z∈CN ,‖z‖0≤s

‖x− z‖1 .
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Note that this best s-term approximation is not necessarily unique for a given x,
but that the error σs(x) and the norm ‖Hs(x)‖2 are independent of the choice of
Hs(x).

Next, we state the main result. Let N ≥ d ≥ s. Let x ∈ CM , let η0, η1, η2 ∈
R2N−1, and let Φ ∈ Cd×M satisfy the ℓ2-robust null space property of order s with

constants 0 < ρ < 1 and τ > 0. If υ = e
2iπ

2N−1 and ν = e
2iπ
d , let B ∈ C(6N−3)×d be

given by

Bj,k =





υj(k−1) if 1 ≤ j ≤ 2N − 1,
υj(k−1) − (υjν)k−1 if 2N ≤ j ≤ 4N − 2,

υj(k−1) − i(υjν)k−1 if 4N − 1 ≤ j ≤ 6N − 3

and let ǫ ∈ R6N−3 be given by

ǫj =





(η0)j if 1 ≤ j ≤ 2N − 1,
(η1)j−(2N−1) if 2N ≤ j ≤ 4N − 2,
(η2)j−(4N−2) if 4N − 1 ≤ j ≤ 6N − 3 .

Let r = sin( 2π
(d−1)d2 ), 0 < α < 1, and β =

r
(d−1)d

2 ( d−1
2d )d 2

d−1

(
∏d−1

k=1(r
k+1))

. If the noise is bounded

by ‖η0‖2 ≤
√
2N−1√
2d−1

αβ2‖p‖22 and x satisfies the approximate sparsity requirement

ρσs(x)1 <
√
s‖Hs(x)‖2

then an approximation x# for x can be reconstructed from the vector |BΦx|2 + ǫ
(where | • |2 is taken component-wise), such that

‖c0x− x#‖2 ≤ C1√
s
σs(x)1 +

C2√
2N − 1

‖ǫ‖2
‖Hs(x)‖2 − ρ√

s
σs(x)1

where C1 = (1+ρ)2

1−ρ , and C2 =
√
2(3+ρ)τ2

1−ρ

∥∥w
(
C, 1dβ

2(1 − α)
)∥∥

2
with

C =
(1 +

√
2)

√
2d−1√
2N−1

max0≤l≤2{‖ηl‖2}+ d‖x‖22
β2(1− α)‖x‖22

√
d

and

w(C,m)j =





∑d
k=2

Ck−2(1+
√

2
2 )

m1
+
∑d

k=1
Ck−1

2
√
m1

if j = 1
∑d−j

k=1
Ck−1(1+

√
2

2 )

mj
+
∑d−j

k=0
Ck

√
2

2

mj−1
if 2 ≤ j ≤ d

∑2d−j
k=1

Ck−1

2mj−d
if d+ 1 ≤ j ≤ 2d− 1

∑3d−1−j
k=1

Ck−1

2mj+1−2d
if 2d ≤ j ≤ 3d− 2

and c0 ∈ C, |c0| = 1 is a remaining undetermined unimodular factor, .
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Adaptive signal processing, Hilbert transform, and a problem of
Ul’yanov

Holger Boche

(joint work with Volker Pohl)

Let T : B1 → B2 be a bounded linear operator between Banach spaces B1 and
B2. An important problem in analysis with many applications in engineering and
science is the approximation of T by a sequence {TN}N∈N of linear, bounded
operators TN : B1 → B2. Practical problems often imply more or less stringent
restrictions on TN . In digital signal processing for example, one naturally requires
that the calculation of TNf is based on a finite number {f(λn,N)}MN

n=1 of samples
of f . The question is then whether the sequence {TNf}N∈N, with the required
structure of TN , converges to Tf for every f ∈ B1. For many important problems,
TNf converges to Tf for f in a dense subset of B1 but fails to converge for all
f ∈ B1. Such negative results are often stated as

(1) lim sup
N→∞

∥∥TNf∗ − Tf∗‖B2 = ∞ for some f∗ ∈ B1 .

A sequence {TN}N∈N satisfying (1) has bad subsequences {TNk
}k∈N such that

TNk
f∗ does not converge to Tf∗ for some f∗ ∈ B1. However, this behavior does

not exclude the existence of good subsequences such that {TNk
f}k∈N converges to

Tf for all f ∈ B1. More precisely, (1) does not exclude

lim inf
N→∞

∥∥TNf − Tf
∥∥
B2
<∞ or even lim inf

N→∞

∥∥TNf − Tf
∥∥
B2

= 0

for all f ∈ B1. If a convergent subsequence exists, it depends generally on the
actual f ∈ B1. So the selection of a good subsequence {Nk(f)}k∈N such that

(2) lim
k→∞

∥∥TNk(f)f − Tf
∥∥
B2

= 0

can be regarded as an adaption of {TN}N∈N to the actual function f ∈ B1.
The following interesting problem arises: Given a sequence of approximation

operators {TN}N∈N satisfying (1) and which converges on a dense subset of B1. Is
it possible to find for every f ∈ B1 a subsequence {Nk(f)}k∈N such that (2) holds?
To investigate this problem, the notion of strong divergence was introduced in [1].

Definition 1 (Strong divergence). Let B1 and B2 be Banach spaces, and let
{TN}N∈N be a sequence of bounded linear operators TN : B1 → B2. We say
that {TN}N∈N diverges strongly if

lim
N→∞

‖TNf∗‖B2 = ∞ for some f∗ ∈ B1 .

If {TN}N∈N diverges strongly then no convergent subsequence exists. It is an
interesting problem to investigate sequences which satisfy (1) whether they diverge
strongly i.e. whether all subsequences diverge. This contribution investigates this
problem for the so-called Hilbert transform.
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Strong divergence of Hilbert transform approximations

Let T be the additive group of real numbers modulus 2π. For any f ∈ L1(T), its
Hilbert transform is defined by

(3)
(
Hf

)
(t) = lim

ǫ→0

1

2π

∫

ǫ≤|τ |≤π

f(τ + t)

tan(τ/2)
dτ ,

where the limit on the right hand side exists for almost all t ∈ T. This transforma-
tion plays a very important role in many different areas of science and engineering
[5]. We consider H on the Banach space B :=

{
f ∈ C(T) : Hf ∈ C(T)

}
equipped

with the norm ‖f‖B := max{‖f‖∞, ‖Hf‖∞}.
Our goal is to approximate (3) by a sequence {HNf}∞N=1, where each HN be-

longs to L(B), the set of bounded linear operators on B. Moreover, each HN should
be computational feasible, i.e. defined on a finite number of samples of f . More
precisely, we require that {HN}N∈N ⊂ L(B) has the following natural properties:

(A) Concentration on a finite sampling set: For every N ∈ N there is a finite
set ΛN = {λn,N : n = 1, . . . ,MN} ⊂ T such that for all f, g ∈ B we have:
f(λ) = g(λ) for all λ ∈ ΛN implies (HNf)(t) = (HNg)(t) for all t ∈ T.

(B) Convergence on a dense subset: We have limN→∞
∥∥HNf −Hf

∥∥
∞ = 0 for

all f ∈ C∞(T), i.e. for all infinitely differentiable functions.
(C) Generation by a sampling series: There is {AN}N∈N ⊂ L(B) such that

limN→∞
∥∥ANf − f

∥∥
∞ = 0 for all f ∈ B and such that HNf = HANf .

The following known result [2] shows that every sequence {HN}N∈N with prop-
erties (A), (B), (C) diverges weakly on B.
Theorem 1. Let {HN}N∈N

⊂ L(B) be a sequence with properties (A), (B), (C).
There is a residual set Dw ⊂ B so that lim supN→∞ ‖HNf‖∞ = ∞ for all f ∈ Dw.

We strongly believe that all sequences {HN}N∈N
⊂ L(B) with properties (A),

(B), and (C) not only diverge weakly but diverge strongly.

Conjecture 1. Let {HN}N∈N
⊂ L(B) be a sequence with properties (A), (B),

(C). There exists an f∗ ∈ B such that limN→∞ ‖HNf∗‖∞ = ∞.

This conjecture is supported by two results. First it is shown that the sampled
Fejér means diverge strongly. The corresponding operators are defined by

(4)
(
HF

Nf
)
(t) =

N−1∑

n=0

f
(
n 2π

N

)
F̃N

(
t− n 2π

N

)
(t ∈ T) ,

where the conjugate Fejér kernel is given by

F̃N(τ) =
N sin(τ)− sin(Nτ)

2
[
N sin(τ/2)

]2 =
1

N

(
1

tan(τ/2)
− sin(Nτ)

2N sin2(τ/2)

)
.

It is easy to see that {HF
N}N∈N ⊂ L(B) has properties (A), (B), and (C).

Theorem 2. Let {HF
N}N∈N be the sequence of sampled conjugate Fejér means as

defined in (4). There exists an f∗ ∈ B such that limN→∞
(
HF

Nf∗
)
(π) = ∞.
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The second result in support of our conjecture shows that for any {HN}N∈N

with properties (A), (B), (C) there is an f∗ ∈ B such that ‖HNf∗‖∞ exceeds any
given bound for any given number of sufficiently large consecutive indices N .

Theorem 3. Let {HN}N∈N ⊂ L(B) be a sequence with properties (A), (B), (C).
Then there exists a function f∗ ∈ B with ‖f∗‖B ≤ 1 and the following property: For
all M,N0 ∈ N and every δ ∈ (0, 1) there exists two integers N (1) = N (1)(M,N0, δ)
and N (2) = N (2)(M,N0, δ) with

N (2) > N (1) ≥ N0 and
[
N (2) −N (1)

]
/N (2) > 1− δ

such that ‖HNf∗‖∞ > M for all N ∈ [N (1), N (2)].

A problem of Ul’yanov

Theorem 3 has a close relation to a problem on Fourier series due to Ul’yanov
[4, 6]. This problem may be generalized and reformulated to the approximation
of arbitrary operators T ∈ L(B1,B2) where L(B1,B2) is the set of bounded linear
operators between the Banach spaces B1 and B2.

Problem 1 (Ul’yanov-Type Problem). Let {TN}N∈N ⊂ L(B1,B2) be an approx-
imation method of T ∈ L(B1,B2). Does there exist a strictly increasing sequence
{Nk}k∈N ⊂ N such that for every f ∈ B1 there is a strictly increasing sequence

{N̂k}k∈N ⊂ N so that for all k ∈ N

N̂k ≤ Nk and sup
k∈N

∥∥TN̂k
f − Tf

∥∥
B2
<∞ ?

For sampling based approximations of the Hilbert transform (3) the answer is
negative and we can prove the following result [3].

Theorem 4. Let {HN}N∈N ⊂ L(B) be a sequence with properties (A), (B), (C),
and let {Nk}k∈N ⊂ N be an arbitrary strictly increasing sequence. There exists a
function f∗ ∈ B such that

lim sup
k→∞

min
N∈(Nk,Nk+1]

∥∥HNf∗
∥∥
∞ = ∞ ,

and the Ul’yanov-Type Problem has no positive solution.
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Blind spikes deconvolution with lifting

Yuejie Chi

In many applications, the goal is to estimate the set of delays and amplitudes
of point sources contained in a sparse spike signal x(t) from its convolution with
a band-limited or diffraction-limited point spread function (PSF) g(t), which is
either determined by the nature or designed by the practitioners. This describes
the problem of estimating target locations in radar and sonar, firing times of
neurons, direction-of-arrivals in array signal processing, etc.

When the PSF is assumed perfectly known, many algorithms have been de-
veloped to retrieve the spike signal, ranging from subspace methods [1] to total
variation minimization [2]. However, in many applications, the PSF is not known
a priori, and must be estimated together with the spike model, referred to as blind
spikes deconvolution. A related problem is blind calibration of uniform linear ar-
rays [3], where it is desirable to calibrate the gains of the array antennas in a blind
fashion.

In this work, we study the problem of blind spikes deconvolution, where we
want to joint estimate the PSF and the spike signal composed of a small number
of delayed and scaled Dirac functions. We start by sampling the Fourier transform
of the convolution which gives a measurement vector y = g ⊙ x ∈ CN , where ⊙
denotes point-wise product, g ∈ CN is the sampled Fourier transform of the PSF,
x ∈ C

N is the sampled Fourier transform of the spike signal, which is a sum of K
complex sinusoids with frequencies determined by the corresponding delays, K is
the number of spikes.

Motivated by [4], we assume that the PSF g lies in a known low-dimensional
subspace B ∈ CN×L, i.e. g = Bh, h ∈ CL, where the orientation of g in
the subspace, given by h, still needs to be estimated. This assumption is quite
flexible and holds, at least approximately, in a sizable number of applications
[4]. We introduce a novel application of the lifting trick, i.e. yi = xi · gi =

(eTi x)(b
T
i h) = eTi (xh

T )bi, where yi, xi and gi are the ith entry of y, x and g,
ei and bi are the ith row of the identity matrix I and B, respectively. It is now
obvious we can translate the measurement vector into a set of linear measurements
with respect to the matrix Z⋆ = xhT ∈ CN×L, i.e. y = X (Z⋆). While it is
tempting to directly recover Z⋆ from the above linear system of equations, it is
under-determined no matter how large N is since we have more unknowns, NL,
than the number of observations, N . Fortunately, note that the columns of Z⋆

can be regarded as an ensemble of spectrally-sparse signals with the same spectral
support, it is therefore possible to motivate this structure in the solution using the
recently proposed atomic norm for spectrally-sparse ensembles [5, 6]. Specifically,
we seek the matrix with minimum atomic norm that matches the set of linear
measurements. The proposed algorithm is referred to as AtomicLift. AtomicLift
can be efficiently implemented via semidefinite programming using off-the-shelf
solvers. Moreover, the spikes can be localized by identifying the peaks of a dual
polynomial constructed from the dual solution of AtomicLift.
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To establish rigorous performance guarantees of AtomicLift, we assume that
each row of B is identically and independently drawn from a distribution that
obeys a simple isotropy property and an incoherence property, which is motivated
by Candès and Plan in their development of a RIPless theory of compressed sensing
[7]. This implies the PSF to have certain “spectral-flatness” property, so that the
PSF has on average the same energy at different frequencies. Moreover, this
assumption is flexible to allow the entries in each row of B to be correlated. On
the other hand, we assume the minimum separation between spikes is at least
1/M , where N = 4M + 1. This condition is the same as the requirement in [2, 8]
even when the PSF is known perfectly. Under these conditions, we show that, with
high probability, AtomicLift recovers the spike signal model up to a scaling factor
as soon as N is on the order of O(K2L) up to logarithmic factors. Our result do
not make randomness assumptions on the spike signal x nor the orientation of the
PSF in the subspace h. Recall that when the PSF is known exactly, it is capable
to resolve K spikes as soon as N is on the order of O(K). Therefore, when both
K and L are not too large, AtomicLift is capable of blind spikes deconvolution at
a price of slightly more samples.

Our proof is based on constructing a valid vector-valued dual polynomial that
certifies the optimality of the proposed convex optimization algorithm with high
probability. Our construction is inspired by [2, 8], where the squared Fejer’s ker-
nel is an essential building block in the construction. Nonetheless, significant, and
nontrivial, modifications are necessary since our dual polynomial is vector-valued
rather than scalar-valued as in the existing works, which is additionally compli-
cated by the special linear operator induced from lifting. The details of the proof
can be found in [9].

Our approach is inspired by the pioneering work of [4, 3], which applied the lift-
ing trick to bilinear inverse problems such as blind deconvolution. Unfortunately,
the results therein do not apply to our setting since the locations of the spikes do
not necessarily lie on any a priori defined grid, x cannot be approximated by a
sparse signal. An interesting future direction is to consider blind spikes deconvo-
lution without subspace constraints on the PSF, by allowing more measurement
vectors, e.g. yi = diag(g)xi, i = 1, . . . , p, which draws an interestingly connection
to dictionary learning with translation-invariant constraints.
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Forecasting with high-dimensional time series

Christine De Mol

(joint work with Domenico Giannone, Lucrezia Reichlin)

We consider the problem of predicting a given time series, representing for example
a macroeconomic or financial variable, based on the information contained in a
large ensemble of time series, strongly correlated with the series to forecast.

Let Xt be a high-dimensional time series, with (cross-sectional) dimension N ,
composed e.g. of N macroeconomic or financial variables, observed at discrete
time intervals t = 1, 2, . . . , e.g. every day, month, quarter or year. Each individual
time series in Xt is assumed to be a stationary process, having zero mean and unit
variance. The aim is to forecast a given economic variable yt (in general included
in Xt), e.g. inflation, unemployment or GDP growth, based on the information
contained in the whole set of series, and not only based on the past of yt. At a
given time T , we want an estimate of yT+h, i.e. a forecast at some given horizon
h, based on the information available at time T . This information consists of the
input data (predictors) {xn t}, for n = 1, 2, . . . , N and t = 1, 2, . . . , T , ranged in
a T by N matrix X, and of the observed response or dependent variable yt+h for
each t = 1, 2, . . . , T − h, ranged in a vector y = (y1+h, y2+h, . . . , yT )

′ (the prime
denoting the transpose). We assume a linear dependence between yt+h and Xt,
namely yt+h =

∑
n βnxn t for t = 1, 2, . . . , T − h, or, in matrix form, y = Xβ.

Let us remark that to model the possible dependence of yt+h on past values of the
predictors, we can augment Xt with the p lagged time series Xt−1, Xt−2, . . . , Xt−p,
as done in Vector Autoregressive (VAR) models. Hence, to simplify, and without
loss of generality, we can set p = 0. We can also set h = 0 by using a proper
redefinition of the time labels. To cope with noisy observations, we include a
zero-mean error term e in the model,

y = Xβ + e ,

and we reformulate the problem as a classical linear regression problem, which
amounts to the minimization of the quadratic loss function L(β) = ‖y − Xβ‖2,
where ‖y‖2 =

∑
t |yt|2 is the squared L2-norm of y. When X′X is full-rank,

the minimizer is the well-known ordinary least-squares (OLS) solution β̂ols =
(X′X)−1X′y, which, typically, becomes numerically unstable for large N and T
due to ill-conditioning and, moreover, is not feasible as soon as N is larger than
T , a common instance for macroeconomic data. The standard remedy to this



2206 Oberwolfach Report 38/2015

problem, proposed in the econometric literature, is Principal Component Regres-
sion (PCR), or equivalently truncated singular value decomposition (TSVD) where
only the K largest eigenvalues of X′X are taken into account (see e.g. [4], and also
[3] for dynamic principal components, i.e. principal components in the Fourier
domain). These papers address the question of whether the accumulation of time
samples and of series can help forecasting the target variable, and, under a fac-
tor model assumption, derive asymptotic convergence rates for both T → ∞ and
N → ∞.

In [2], as an alternative to the PCR paradigm, we have considered other types
of regularization of the problem, namely penalized least-squares such as ridge and
lasso regression. We recall that in ridge regression, the estimator for β is given by

β̂ = argminβ

{
1

NT
‖y−Xβ‖2 + λ‖β‖2

}
i.e. β̂ =

(
X′X

NT
+ λI

)−1
X′y

NT
,

where λ is a positive regularization parameter. From this expression, we get the
following “bias-variance” decomposition:

β̂ − β = −λ
(
X′X
NT

+ λI

)−1

β +

(
X′X
NT

+ λI

)−1
X′e
NT

.

Under fairly general assumptions, standard for time series, one can show that
‖X′e‖√
NT

= O(1) as N, T → ∞, whence the following bound for the estimation of β:

‖β̂ − β‖ ≤ ‖β‖+O

(
1

λ

1√
NT

)
,

a bound which will not vanish asymptotically unless the norm of β vanishes. More
relevant for prediction is the Mean Square Forecast Error (MSFE), bounded by

1√
T
‖Xβ̂ −Xβ‖ ≤ 1√

T

√
λ
√
NT‖β‖+ 1√

T

1√
λ
O(1) .

The value of λ which minimizes this bound, equally balancing the two terms, is
λ ∼ 1√

T
√
N‖β‖ and the resulting asymptotic rate for the MSFE is

1√
T
‖Xβ̂ −Xβ‖ ≤ N1/4

T 1/4

√
‖β‖ ,

which increases with N . Therefore consistency results seem hard to obtain without
further assumptions about the data-generating model.

A way of modelling strong comovement is provided by so-called “factor models”,
assuming that the high-dimensional time series is driven by a small number of
factors spanning a subspace of (fixed) dimension K and can be written as the sum
of a common component governing the global evolution and of an idiosyncratic
component proper to each individual series:

Xt = ΛFt + ξt ,
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where the factors Ft are a K-dimensional stationary process, with covariance ma-
trix EFtF

′
t = IK and the idiosyncratic components ξt are a N -dimensional sta-

tionary process, orthogonal to the factors, with covariance matrix Eξtξ
′
t = Ψ, of

full rank for every N . The matrix Λ loading the factors is a non-random matrix
of dimension N ×K, assumed to be of full rank K for every N . Moreover, all the
eigenvalues of Λ′Λ are supposed to grow asymptotically as N , which means that
all predictors are informative on the factors. As a consequence, the spectrum of
the population covariance matrix given by ΣXX = E(XtX

′
t) = ΛΛ′ + Ψ (here we

take Ψ = IN , for simplicity) presents two clusters of eigenvalues separated with
a spectral gap which increases with N . Under the previous assumptions, one can
show [2] that ‖β‖ ∼ 1√

N
, yielding a decay rate proportional to T−1/4 for the MSFE

and to N−1/2 for the norm of the estimation error on β.
In recent work in progress, we have been able to improve the asymptotic rates

derived in [2]. The principle of the somewhat technical proof is to take into account
the spectral gap and to use Weyl’s perturbation lemma to control the difference
between the eigenvalues of the population and sample covariance matrices. In such
a way, when setting λ ∼ 1√

T
, we can show that

|X ′
tβ̂ −X ′

tβ| ≤ O(
1√
N

) +O(
1√
T
) .

This asymptotic bound establishes consistency for N → ∞ and T → ∞, along any
path in (N, T ). The rate for ridge regression is the same as the rate which would
be obtained with principal component regression, when K, the number of factors,
is known. However, the estimation of K is a hard problem, widely discussed in
the literature.

The framework described above can be generalized in various ways. A first ex-
tension allows to deal with “approximate” factor models in which the idiosyncratic
components are mildly correlated (Ψ 6= IN ). Next, weights can be introduced in
the L2-norm of the residuals and of the penalty. The setting can also be extended
to other linear regularization methods based on “spectral filtering”. Finally, let
us mention that a closely related methodology has been used to deal with large
“Bayesian VAR” models [1].
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Dimensionality reduction with sparse Johnson-Lindenstrauss
transforms

Sjoerd Dirksen

(joint work with Jean Bourgain, Jelani Nelson)

In a wide variety of disciplines, such as statistics, machine learning, numerical
linear algebra and compressed sensing, one is faced with computational tasks on
data sets that are not only large, but also high-dimensional. Unfortunately, the
high-dimensionality leads to a large storage consumption and, since many algo-
rithms have a running time depending at least linearly on the dimension, a large
computational burden. For this reason, one would like to embed the data into a
lower-dimensional space. Depending on the computational task, the embedding
needs to preserve certain properties in order to be able to make inference about
the original data. We consider the situation where we want to embed the data
with a map that is linear and preserves inter-point Euclidean distances. We also
require that the map is generated independently of the data (i.e., non-adaptively).

Formally, consider a set X of vectors in a high-dimensional space Rn. We want
to find a matrix Φ ∈ Rm×n such that

(1) (1− ε)‖x− y‖22 ≤ ‖Φx− Φy‖22 ≤ (1 + ε)‖x− y‖22, for allx, y ∈ X.

If T = {(x − y)/‖x − y‖2 : x, y ∈ X} is the set of normalized differences, then
the constant

εT = sup
x∈T

|‖Φx‖22 − 1|,

which is called the restricted isometry constant of Φ on T , is exactly the smallest
possible ε that one can take in (1).

A classical theorem due to Gordon [1] states that if Φ is an m × n matrix
filled with i.i.d. mean-zero Gaussian entries with variance 1/m and T ⊂ Sn−1,
then εT ≤ ε with probability at least 1− η if m & ε−2(w2(T ) + log(η−1)), where
& hides an absolute constant. The parameter w(T ) := E supx∈T 〈x, g〉, where g
is an n-dimensional standard Gaussian vector, is known as the Gaussian width
and describes the ℓ2-geometric complexity of T . Gordon’s theorem can be con-
sidered as an instance-optimal version of the Johnson-Lindenstrauss lemma, since
w2(T ) . log |T |, where |T | is the cardinality of T , but the Gaussian width can be
much smaller. For example, if T is the set of all k-sparse vectors in Sn−1, then
w2(T ) . k log(n/k).

Thanks to Gordon’s result, good dimensionality reduction guarantees are known
for Gaussian matrices. However, a clear downside of these matrices is that they
are densely populated and therefore matrix-vector multiplication is slow. In many
applications of ε-isometries it is desirable or even necessary that the embedding
matrix Φ supports fast matrix-vector multiplication. One ‘fast’ construction is
the sparse Johnson-Lindenstrauss transform (SJLT) [2, 3]. One possible way to
construct the SJLT (cf. [3]) is as follows: start with a random sign matrix. For
each column independently, pick exactly s entries uniformly at random without
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replacement and put the rest to zero. Finally, rescale the matrix by 1/
√
s. Since

the resulting matrix Φ has exactly s non-zeros per column, one can compute Φx
in time O(s‖x‖0) instead of O(m‖x‖0) for a dense matrix.

We consider the following general question: given T ⊂ Sn−1, how should we set
m and s to guarantee that the restricted isometry constant εT of the SJLT is small
in expectation? Our answer can be considered as a sparse analogue of Gordon’s
theorem.

Theorem 1. [4, 5] Let T ⊂ Sn−1 and Φ be an SJLT with column sparsity s.
Define the complexity parameter

κ(T ) = max
q≤m

s log s

{ 1√
qs

(
Eη

(
Eg sup

x∈T

∣∣∣
n∑

j=1

ηjgjxj

∣∣∣
)q)1/q}

,

where (gj)
n
j=1 are i.i.d. standard gaussian and (ηj)

n
j=1 i.i.d. Bernoulli with mean

qs/(m log s). Suppose that s >
∗ ε

−2, where >
∗ hides a polylog-factor. Then EεT ≤ ε

holds as long as s,m are such that κ(T ) <
∗ ε.

The parameter κ(T ) can be seen as a new complexity measure that replaces the
Gaussian width featuring in Gordon’s theorem. It may look daunting at first, but
it can in fact be controlled using standard tools from high-dimensional probability
for all data structures of interest. In particular, Theorem 1 qualitatively (i.e. up to
log-factors) unifies all known results for specific data sets T ⊂ Sn−1, and yields new
sparse dimensionality reduction results for (possibly infinite) unions of subspaces.
Moreover, we find the first (and in a certain sense optimal) guarantees for the
SJLT to preserve geodesic distances on a manifold up to a multiplicative error. In
addition, we obtain novel results for using the SJLT to accelerate approximately
solving convexly constrained least squares programs such as the Lasso.
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Consistency of probability measure quantization by means of power
repulsion-attraction potentials

Massimo Fornasier

In this talk we present the study of the consistency of a variational method for
probability measure quantization, deterministically realized by means of a mini-
mizing principle, balancing power repulsion and attraction potentials. The proof
of consistency is based on the construction of a target energy functional whose
unique minimizer is actually the given probability measure to be quantized. Then
we show that the discrete functionals, defining the discrete quantizers as their
minimizers, actually Gamma -converge to the target energy with respect to the
narrow topology on the space of probability measures. A key ingredient is the
reformulation of the target functional by means of a Fourier representation, which
extends the characterization of conditionally positive semi-definite functions from
points in generic position to probability measures. As a byproduct of the Fourier
representation, we also obtain compactness of sublevels of the target energy in
terms of uniform moment bounds, which already found applications in the asymp-
totic analysis of corresponding gradient flows. To model situations where the given
probability is affected by noise, we additionally consider a modified energy, with
the addition of a regularizing total variation term and we investigate again its
point mass approximations in terms of Gamma -convergence. We show that such
a discrete measure representation of the total variation can be interpreted as an
additional nonlinear potential, repulsive at a short range, attractive at a medium
range, and at a long range not having effect, promoting a uniform distribution of
the point masses. Inspired by these results we eventually sketch a model of social
inclusion/exclusion and redistribution of resourced for balancing social and wealth
inequality in societies.
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Diamond norm as regularizer for low rank matrix recovery

David Gross, Richard Kueng

(joint work with Martin Kliesch, Jens Eisert)

In the common approach to low-rank matrix recovery [1, 2, 3], one uses the nu-
clear norm as a convex surrogate for rank. Geometric proof techniques like Tropp’s
Bowling scheme [4] or Mendelson’s small ball method [5, 6] bound the reconstruc-
tion error in terms of the descent cone of the norm at the matrix that is to be
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recovered. Moreover, these arguments suggest that the error would decrease if
another convex function be used, which has a smaller descent cone at the set of
matrices of interest. Here, we construct such an improved convex function based
on the diamond norm [7, 8]. We characterize those low-rank matrices for which
we expect improved recovery, demonstrate the increased performance numerically,
and point out applications to learning quantum channels. This is an extended
abstract of [9].

The objects we aim to recover are linear maps on a tensor product of Hilbert
spaces L(V ⊗V ) with V ≃ C

n for some dimension n. On this space, we introduce
the norm

(1) ‖Z‖ := n sup
‖A‖F=‖B‖F=1

‖(A⊗ I)Z (B ⊗ I)‖∗ .

Here, ‖ · ‖F is the Frobenius norm and ‖ · ‖ the nuclear norm. Up to an elementary
but notoriously confusing shuffling of indices (the partial transpose, which we shall
not introduce here), the resulting function is the diamond norm [8], which in turn
is dual to the norm of complete boundedness studied in operator theory [10]. We
point out that

(2) ‖Z‖∗ ≤ ‖Z‖ ∀Z,
because setting A = B = 1√

n
I is a feasible point in the optimization on the right

hand side of (1), which recovers exactly the nuclear norm. Moreover, although
the definition relies on an optimization over two continuous sets of matrices, the
function can be cast into the form of an SDP [8, Section 3.2]. Hence (1) can be
evaluated computationally efficiently.

It is the main message of this work that for certain low-rank recovery prob-
lems, replacing the nuclear norm regularizer by the norm function (1) can improve
performance. To see why, note that the norm is a supremum over many different
convex functions n‖ (A⊗ I) · (B ⊗ I) ‖∗, one of them being the nuclear norm itself.
Elementary convex analysis [9] then reveals that the norm’s descent cone obeys

(3) D (‖ · ‖, Z) ⊂
⋂

(A,B) active

D (‖ (A⊗ I) · (B ⊗ I) ‖∗, Z) ∀Z ∈ L (V ⊗ V ) ,

where we call (A,B) active if the supremum in (1) is attained for A,B.

If now Z is such that ‖Z‖ = ‖Z‖∗ holds (i.e. the pair
(

1√
n
I, 1√

n
I

)
is active),

then (3) implies

(4) D (‖ · ‖, Z) ⊂ D (‖ · ‖∗, Z) .
Consequently, the norm’s descent cone at Z is at most as large as the corresponding
one of the nuclear norm.

A main result of [9] is the characterization of the set of matrices for which
equality holds. To state it, we need the partial trace

tr2 : L(V ⊗ V ) 7→ L(V )
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Figure 1. Number of successful low rank matrix reconstructions out of 100 trials
by means of nuclear norm minimization (red) and diamond norm minimization (green)
in the absence of noise. As test matrices, we have considered matrices of the form
X = (U ⊗ I)

∑n
i,j=1 eie

∗
j ⊗ eie

∗
j (V ⊗ I), where U, V ∈ U(n) are independent Haar-

random unitaries. Test matrices of this form have rank one and approximately obey
‖X‖ = ‖X‖∗ by construction (if V = U∗, they obey this relation exactly). We con-
sidered a single recovery to be successful, if the Frobenius distance of minimizer of the

respective optimization problem to the original target matrix was closer than 10−5. As
measurements we considered both independent Gaussian measurements and also certain
structured measurements that are well motivated by quantum mechanical applications.
The two plots illustrate such experiments for n = 7 and n = 8. In both cases and for
the two different types of measurement matrices (Gaussian and structured ones), the di-
amond norm minimization clearly outperforms its well-established nuclear norm counter-

part.

which is defined by linearly extending its action on tensor products:

tr2(X ⊗ Y ) = X tr Y.

We then have:

Theorem 1 ([9]). The equality ‖Z‖ = ‖Z‖∗ holds if and only if both tr2
√
ZZ∗

and tr2
√
Z∗Z are proprtional to the identity matrix.

It is natural to ask whether maps satisfying this extremality condition play any
role in practice? They do – at least for practitioning quantum physicsits. Indeed,
the so-called “Choi matrix of a quantum channel” [13, 12] (see also [14, Lecture 5]
for a concise introduction) fulfills the condition of Theorem 1. (Channels are the
quantum analogue of stochastic maps in classical probability theory. The condition
above amounts to requiring the quantum channels preserve the normalization of
quantum probability distributions, see e.g. [14, Lecture 5: Theorem 5.4]).

The discussion above suggests that our norm might outperform the recovery of
quantum channels with an associated low-rank Choi matrix (which are important
in practice). Numerical simulations suggest that this is indeed the case. We have
summarized the results of two such studies in Figure 1. Further appications will
be presented in [9].
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What is variable bandwidth?

Karlheinz Gröchenig

(joint work with Andreas Klotz)

A function or signal f ∈ L2(R) has bandwidth Ω > 0, if its Fourier transform

f̂(ξ) =
∫
R
f(x)e−ixξ dx vanishes outside the interval [−Ω,Ω]. The number Ω is the

maximal frequency contributing to f and is called the bandwidth of f . According
to Shannon the bandwidth is also an information-theoretic quantity.

In the context of time-frequency analysis, it is perfectly plausible to assign
different local bandwidths to different segments of a signal. This becomes even
more obvious in the often cited metaphor of music: the highest frequency of musical
piece is time-varying. However, a rigorous definition of variable bandwidth is
difficult, perhaps even elusive, because bandwidth is global by definition and the
assignment of a local bandwidth is in contradiction with the uncertainty principle.

So what is a function of variable bandwidth?
Before giving a precise definition, we need to single out the distinctive features

of bandlimited functions. In our view the essence of bandwidth is encapsulated in
three fundamental theorems about bandlimited functions:
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(1) the Shannon-Whittaker-Kotelnikov sampling theorem and its variations,
(2) the existence of a critical density (Nyquist rate in engineering terms), and
(3) some inherent analyticity.

We propose a new notion of variable bandwidth. It is based on the spectral
theory of the differential operator

(1) Ap = − d
dx

(
(p(x) d

dx

)
,

where p > 0 is the bandwidth-parametrizing function. By imposing mild assump-
tions on p and choosing a suitable domain, Ap becomes a positive, unbounded,
self-adjoint operator on L2(R). Its spectral representation enables us to make the
following definition.

Definition 1. Let Λ ⊆ R+ be a fixed compact spectrum. A function is Ap-
bandlimited with spectrum Λ, if f ∈ cΛ(Ap)L

2(R). The range of the spectral
projection cΛ(Ap)L

2(R) is called the Paley-Wiener space with respect to Ap and
spectrum Λ and will be denoted by PWΛ(Ap).

If p ≡ 1 and Ap = − d2

dx2 , then PW[0,Ω](−D2) consists exactly of the classical

bandlimited functions with bandwidth
√
Ω.

We will show that this definition is indeed a meaningful notion of variable
bandwidth. First, functions of variable bandwidth admit sampling theorems.

Theorem 1 (Sampling theorem for PWΛ(Ap)). Fix Λ ⊆ R+ compact and set
Ω = maxΛ. Assume that 0 < c ≤ p(x) for all x ∈ R. Let X = (xi)i∈Z be an
increasing sequence with limi→±∞ xi = ±∞ and infi(xi+1 − xi) > 0. If

(2) δ = sup
i∈Z

xi+1 − xi

infx∈[xi,xi+1]

√
p(x)

<
π√
Ω
,

then there exist A,B > 0 such that, for all f ∈ PWΛ(Ap),

(3) A‖f‖22 ≤
∑

i∈Z

|f(xi)|2 ≤ B‖f‖22

Theorem 1 supports our interpretation that p(x)−1/2 is a measure for the local
bandwidth. If p is constant on an interval I, p|I = p0, then the local gap con-

dition (2) reads as xi+1 − xi ≤ δ
√
p0 <

π
√
p0√
Ω

for xi ∈ I. This is precisely the

sufficient condition on the maximal gap that arises for bandlimited functions with
bandwidth (Ω/p0)

1/2. In other words, f ∈ PW[0,Ω](Ap) behaves like a (Ω/p0)
1/2-

bandlimited function on I.
The second result is a necessary density condition for sampling in the style of

Landau [4]. For the formulation we need an adaptation of the Beurling density
to variable bandwidth. As in (2) we impose a new measure or distance on R

determined by the bandwidth parametrization p, namely µp(I) =
∫
I
p−1/2(u) du

and define the Beurling density of a set X ⊆ R as

D−
p (X) = lim

r→∞
inf

µp(I)=r

#(X ∩ I)
r

,

where the infimum runs over all bounded intervals I ⊆ R.
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Theorem 2. Assume that p ∈ C2 and that, for some a > 0, p(x) = p− for x ≤ −a
and p(x) = p+ for x ≥ a. Fix Λ ⊆ R+ with finite (Lebesgue) measure. If X ⊆ R

is a separated set such that the sampling inequality

A‖f‖22 ≤
∑

i∈I

|f(xi)|2 ≤ B‖f‖22

holds for all f ∈ PWΛ(Ap), then D
−
p (X) ≥ |Λ|1/2

π .

Theorem 2 is again consistent with our interpretation of PWΛ(Ap) as a space
of functions with variable bandwidth. If p is constant on an interval I, p|I = p0,
and Λ = [0,Ω], then µp(I) = |I|/√p0 and we obtain

#(X ∩ I) ≥ Ω1/2|I|
π
√
p0

.

Comparing with Landau’s classical result for bandlimited function, this is ex-
actly the minimum number of samples in I required for a bandlimited function
with bandwidth (Ω/p0)

1/2. Again, f ∈ PW[0,Ω](Ap) behaves like a (Ω/p0)
1/2-

bandlimited function on I.

Methods. Whereas the formulation of these theorems is almost the same as
the standard theorems for classical bandlimited functions, the proofs require input
from two areas, namely the applied harmonic analysis of sampling theory and the
detailed spectral analysis of Sturm-Liouville operators and Schrödinger operators.
The methodical input from sampling theory is the oscillation method from [2] for
the proof of Theorem 1, and the proof of Theorem 2 follows the outline of Nitzan
and Olevski [5] in which a (discrete) frame of reproducing kernels is compared
to a continuous resolution of the identity. The second methodical input is from
the theory of Sturm-Liouville problems and of (one-dimensional) Schrödinger op-
erators. In the proof of Theorem 1 we need a version of the Wirtinger-Poincaré
inequality. The main effort will be devoted to finding appropriate estimates and
cancellation properties of the reproducing kernel of PWΛ(Ap). These are derived
by means of spectral theory of Sturm-Liouville operators. The detailed analysis
of the spectral measure of Ap yields a representation of functions in PWΛ(Ap) as

f(x) =

∫

Λ

F (λ) · Φ(λ, x) dρ(λ)

where Φ(λ, x) =
(
Φ1(λ, x),Φ2(λ, x)

)T
is a set of fundamental solutions of −DpDΦ

= λΦ, ρ is the 2×2-matrix-valued spectral measure, and F ∈ L2(Λ,R2, ρ). Though
not as explicit as the Fourier transform, this spectral representation of functions of
variable bandwidth will enable us to derive the essential properties of PWΛ(Ap).
For the proof of the density theorem we will switch to an equivalent Schrödinger
equation and use the scattering theory of the Schrödinger equation.
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Related work and other notions of variable bandwidth. In the literature
one finds several approaches to variable bandwidth. Among them are time-warping
(e.g., [7]), the time-frequency methods of Aceska and Feichtinger [1], and the proce-
dural concept of Kempf [3]. Perhaps closest to our approach is Pesenson’s deep and
original work on abstract bandlimitedness [6]. Given an unbounded, self-adjoint
operator on a Hilbert space H , the spectral subspaces cΛ(A)H are considered ab-
stract spaces of bandlimited vectors. If A is the Laplace-Beltrami operator on
a manifold and thus the corresponding Paley-Wiener spaces are concrete func-
tion spaces, for which Pesenson and Zayed have already shown the existence of
qualitative sampling theorems.
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Certifying linear optical circuits via phaseless estimation techniques

Richard Kueng

(joint work with Daniel Suess, David Gross)

The problem of retrieving a complex-valued signal from measurements that are
ignorant towards phase information has a long history in many different branches
of science. In a discrete (digital) setting, this problem is usually phrased as the
task of inferring a complex signal x ∈ Cn from measurements of the form

(1) yi = |〈ai, x〉|2 + ǫi i = 1, . . . ,m,

where a1, . . . , am ∈ Cn are measurement vectors and ǫ1, . . . , ǫm ∈ R models ad-
ditive noise. Clearly, all phase information is lost in such a measurement process
which is why the inverse problem is ill-posed. Recently, the mathematical struc-
ture of such a problem has received considerable interest in its own right and many
efficient recovery procedures for certain types of measurements have been proposed
[1, 2, 3, 4]. In this work we shall focus on PhaseLift [5, 6] – one such approach
that is based on recasting the phase retrieval problem as a particular instance of
low rank matrix recovery [10, 11]. For Gaussian measurement vectors, the results
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Figure 1. Sketch of a linear optical circuit with n incoming and n outgoing wires
followed by n light intensity detectors. On the right hand side, the incoming and outgoing
light configurations are represented as vectors lin, lout ∈ C

n. Also, the n corresponding
detector measurements are listed as I1, . . . , In.

in [7, 8, 9] assure that m = Cn measurements1 of the form (1) suffice with high
probability (w.h.p.) to reconstruct any signal x ∈ Cn via a convex optimization
problem. In addition to being uniform (one choice of measurement vectors w.h.p.
suffices to reconstruct any signal) this recovery is stable towards additive noise in
the measurement process.

In this note we propose to employ this recently established phaseless recovery
method to a seemingly very different problem: certifying the performance of linear
optical circuits. In quantum mechanics, these devices have received considerable
attention over the past years since they might function as elementary circuits of a
future universal quantum computer [12]. Unlike other physical realizations of these
elementary quantum logical gates, optical devices have the prospect of scalability
by including many elementary gates in a single integrated chip. Doing so and
accurately certifying that such a device performs the way it is supposed to is an
important milestone in quantum optics [13] and motivated the work presented
here.

In classical optics2 a linear optical circuit is an optical device which maps a
light configuration localized in n optical fibres linearly onto a different n-wire
outcome configuration. In order to characterize such a circuit, one measures the
outputted light configuration with light intensity detectors positioned at each wire.
This setup is illustrated in Figure 1. It is quite straightforward to formulate such a
configuration mathematically: input and output configurations can be represented
by vectors lin, lout ∈ Cn, where the k-th component of lin encapsulates intensity
and phase of the incoming light configuration at the k-th wire and an analogous
identification holds for lout. Since the optical circuit is linear, it can be described
by a complex n × n matrix T and, in particular, lout = T lin is true for any input
configuration lin. Finally, the individual detectors simply measure the intensity of
lout at the different wires. So, upon feeding in a certain light configuration lin, the

1Here, C denotes an absolute constant of sufficient size.
2For the sake of simplicity, here we shall content ourselves with certifying classical optical

devices. Although less general than the full quantum problem, classical circuits still make up the
bulk of state-of-the art quantum optical circuits [13].
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the k-th detector outcome corresponds to
(2)

Ik (lin) = |〈ek, lout〉|2 = |〈ek, T lin〉|2 = |〈T ∗ek, lin〉|2 = |〈t̄k, lin〉|2 =
∣∣〈l̄in, tk〉

∣∣2 ,

where tk denotes T ’s k-th row tk and t̄k its complex conjugate. Consequently, the
different detectors single out the corresponding rows of T , up to complex conju-
gation. Moreover, the mathematical structure of the k-th detector measurement
(2) exactly resembles a “traditional” phaseless measurement (1) of t̄k ∈ C

n, where
the input configuration lin assumes the role of a single measurement vector a.

Since we can choose the input light configuration lin at will and are able to
perform such an experiment multiple times for different input configurations, the
structure of (2) in combination with PhaseLift suggests the following protocol for
estimating T :

(1) Prepare m = Cn light configurations l
(1)
in , . . . , l

(m)
in that resemble indepen-

dently chosen complex standard Gaussian vectors.
(2) Successively feed the complex conjugate light configurations into the opti-

cal circuit and record the corresponding measurement outcomes Ik

(
l̄
(i)
in

)
=

∣∣∣〈l(i)in , tk〉
∣∣∣
2

for 1 ≤ i ≤ m separately in n different data arrays (one for each

detector 1 ≤ k ≤ n).
(3) Perform n independent instances of PhaseLift to reconstruct the different

rows tk individually from these data arrays up to a global phase each.

Stacking the recovered rows t1, . . . , tn back together yields the sought for matrix T
up to left-multiplication with a diagonal unitary matrix. Note that such a degree
of freedom is inherent in the problem’s structure and cannot be avoided. For such
a procedure to work, it is crucial that the recovery for PhaseLift is both uniform
and stable. This in turn assures that recovering all n rows tk from a common
set of m Gaussian input configurations indeed works w.h.p. Moreover, estimating
T in such a way assures stability towards noisy detector measurements. This
is arguably the greatest advantage of our proposed recovery scheme over more
traditional estimation methods for linear optical circuits [14] which, by and large,
require interactive measurements and are very prone to error propagation.

Our protocol overcomes both these issues at the cost of a higher number of
Gaussian input light configurations. Indeed, note that the constant C in the sam-
pling rate of PhaseLift is not explicitly specified. However, numerical experiments
suggest that a number of m = 4n− 4 different input configurations suffices for our
protocol to work properly. The results of these studies can be found in Figure 2
and underline the prospect of our novel protocol to estimate linear optical circuits.
We conclude with mentioning an ongoing collaboration with J.O. Brien’s quan-
tum photonics group in Bristol with the aim of employing such a PhaseLift-based
protocol to certify the performance of spick-and-span universal optical circuit [13].
The results of this experimental collaboration will be presented elsewhere.
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Figure 2. Phase transition diagrams for the recovery of Haar random unitary test
matrices T via our protocol. The x-axis indicates the problem’s dimension n (i.e. the
number of incoming and outgoing wires), while the y-axis denotes the number of different
Gauss random input light configurations. The frequency of successful recovery over 100
independent runs appears color-coded from black (zero) to white (one). The plot on
the right hand side considers recovery in the absence of noise, while on the right hand
side additive Gaussian noise with mean zero and variance 0.001 has been added to each
detector measurement. We have considered an individual recovery to be successful, if
the reconstructed matrix is – up to left multiplication with a diagonal unitary matrix –

sufficiently close in Frobenius distance to the original test matrix (10−5 in the noiseless

case and 10−2 in the noisy setting). In both plots, the dashed line indicates m = 4n−4.
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Integral geometry and phase transitions in conic optimization

Martin Lotz

(joint work with Dennis Amelunxen, Michael B. McCoy, Joel A. Tropp)

More than 10 years ago, foundational work in compressive sensing established
that sparse or compressible signals could be reconstructed efficiently, using convex
optimization, from a number of observations nearly proportional to the sparsity of
the signal, rather than the ambient dimension. In addition, an interesting phase
transition phenomenon has been observed: the probability that the optimization
problem minx ‖x‖1 subject to Ax = b recovers an s-sparse, or all s-sparse, solutions
of Ax = b for random A jumps from almost 0 to almost 1 as the number of rows
of A passes a certain threshold. Donoho and Tanner accurately described the
phase transition location [9], and their work was confirmed using an (at the time)
seemingly unrelated approach by Stojnic [20]. The observed phase transitions
are not unique to ℓ1 minimization; they are a feature of convex optimization
problems with random constraints. More generally, the optimality conditions in
convex optimization can usually be formulated as intersection conditions of certain
subdifferential cones associated to the problem; for example, the problem min f(x)
subject to Ax = b has x̂ as unique solution if and only if the cone spanned by the
subdifferential ∂f(x̂) intersects the image imA⊤ nontrivially (or the descent cone
of f at x̂ does not intersect the kernel of A nontrivially). The general geometric
question is then: given two or more cones, randomly rotated according to the Haar
measure on the orthogonal group, what is the probability that they intersect?

Classical integral geometry, going back to the work of Santaló and Blaschke,
is tailor made to address such questions (see [19] for a modern treatment). Via
the principal kinematic formula, it provides exact expressions for the probability
that various randomly moved geometric objects intersect in terms of geometric
invariants, the intrinsic volumes of the objects involved. For the case of two cones
C and D and random orthogonal Q it takes the form

(1) P{C ∩QD 6= {0}} = 2
∑

k odd

∑

i+j=d+k

vi(C)vj(D).

Not surprisingly, integral geometry has played a role in many fields such as the
probabilistic analysis of condition numbers [8, 4, 16], complexity of optimization
problems [21, 5], statistics [1], or the analysis of randomized algorithms [17], to
name a few. A special case of the kinematic formula, applied to descent cones of
the ℓ1 norm at sparse vectors, also formed the basis for the asymptotic estimates by
Donoho and Tanner [9]. In [3], it was shown that the integral-geometric approach
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naturally leads to an explanation of the phase transition phenomenon in convex
optimization. The key is the observation that the intrinsic volumes of convex cones
form a probability distribution, and that the intersection probability, given by the
kinematic formula (1), is described by a convolution of this discrete distribution.
Using an extension of the classical Steiner formula, it was shown that the intrinsic
volume distribution concentrates around its mean, the statistical dimension δ(C),
from which the existence of the phase transitions, and their location, immediately
follows. More precisely, given cones C and D (for example, C descent cone of a
norm and D the kernel of a Gaussian matrix),

δ(C) + δ(D) . d =⇒ P
{
C ∩QD = {0}

}
≈ 1

δ(C) + δ(D) & d =⇒ P
{
C ∩QD = {0}

}
≈ 0.

The statistical dimension is the unique, orthogonal invariant and continuous val-
uation on the set of convex cones that coincides with the dimension on linear
subspaces. Moreover, it coincides with the expected squared projected length of
a Gaussian vector on the cone, a quantity that has appeared in many contexts
(for example, in [6]), and is closely related to the Gaussian width. In the case
when one of the cones is the kernel of a Gaussian matrix, then accurate bounds
on the intersection probability are given by Gordon’s escape through the mesh
argument, and the corresponding lower bounds can be derived from a duality ar-
gument. The integral-geometric approach, however, does not make reference to
the representation of the random transformation operator as a Gaussian matrix,
and can be seen as a direct generalization of the basic fact from linear algebra that
subspaces intersect nontrivially (almost surely) if an only if their dimensions add
up to more than the ambient dimension, without reference to their representation
as matrices. When dealing with robustness questions, however, an analysis of the
cone-restricted smallest singular value of a random matrix using probabilistic tools
becomes important, see [7] or [11, Chapters 8-9] for an analysis of linear inverse
problems based on the Gaussian width and Gordon’s inequality or [2] for some
discussion of links to integral geometry and the analysis of condition numbers.

Despite the importance of the intrinsic volumes for understanding the statis-
tics of random convex cones, many of their features are still not fully understood.
An important contribution has been the recent work by Goldstein, Peccati and
Nourdin [12], who established a central limit theorem, including a Berry-Esseen
type bound, for the intrinsic volume distribution. A consequence is that the phase
transitions can be understood in terms of Gaussian distributions associated to the
individual cones. A natural question is whether the conic intrinsic volumes are log-
concave, i.e., satisfy an Alexandrov-Fenchel inequality vi(C)

2 ≥ vi−1(C)vi+1(C).
It is known [15] that the average of the i-th intrinsic volume of the chambers of a
hyperplane arrangement is determined by the i-th coefficient of the characteristic
polynomial of the arrangement, the value of a Möbius function. Recent work by
June Huh has shown that the (absolute) coefficients of the characteristic poly-
nomial of a hyperplane arrangement are log-concave [13], solving a long-standing
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open problem by Rota. Another question is whether, among cones with a fixed sta-
tistical dimension, the intrinsic volumes of circular cones have the largest variance.
Finally, there is the question of universality: do the phase transitions, and their
location, persist for more general distributions, as extensive experiments [10, 14]
suggest? The answer appears to be yes [18].
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[12] Larry Goldstein, Ivan Nourdin, and Giovanni Peccati. Gaussian phase transitions and conic
intrinsic volumes: Steining the steiner formula. arXiv preprint arXiv:1411.6265, 2014.

[13] June Huh. Milnor numbers of projective hypersurfaces and the chromatic polynomial of
graphs. Journal of the American Mathematical Society, 25(3):907–927, 2012.

[14] Jakob Sauer Jørgensen and EY Sidky. How little data is enough? phase-diagram
analysis of sparsity-regularized x-ray computed tomography. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
373(2043):20140387, 2015.

[15] Caroline J Klivans and Ed Swartz. Projection volumes of hyperplane arrangements. Discrete
& Computational Geometry, 46(3):417–426, 2011.

[16] Martin Lotz. On the volume of tubular neighborhoods of real algebraic varieties. Proceedings

of the American Mathematical Society, 143(5):1875–1889, 2015.
[17] Oren Mangoubi and Alan Edelman. Integral geometry for markov chain monte carlo: over-

coming the curse of search-subspace dimensionality. arXiv preprint arXiv:1503.03626, 2015.
[18] Samet Oymak and Joel Tropp. Private communication, 2015.
[19] Rolf Schneider and Wolfgang Weil. Stochastic and Integral Geometry. Springer series in

statistics: Probability and its applications. Springer, 2008.
[20] Mihailo Stojnic. Various thresholds for ℓ1-optimization in compressed sensing. preprint,

2009. arXiv:0907.3666.



Applied Harmonic Analysis and Sparse Approximation 2223

[21] Anatoly M Vershik and Piotr V Sporyshev. An asymptotic estimate of the average number
of steps of the parametric simplex method. USSR Computational Mathematics and Mathe-
matical Physics, 26(3):104–113, 1986.

Signal decomposition and analysis via extraction of frequencies

Hrushikesh N. Mhaskar

(joint work with Charles K. Chui)

Time-frequency analysis is central to signal processing, with standard adaptation
to higher dimensions for imaging applications, and beyond. However, although
the theory, methods, and algorithms for stationary signals are well developed,
mathematical analysis of non-stationary signals is almost nonexistent. For a real-
valued signal defined on the time-domain R, a classical approach to compute its
instantaneous frequency (IF) is to consider the amplitude- frequency modulated
(AM–FM) formulation of its complex (or analytic) signal extension, via the Hilbert
transform.

In a popular paper by Huang et.al. [1], the so-called empirical mode decompo-
sition (EMD) scheme is introduced to separate such a signal as a sum of finitely
many intrinsic mode functions (IMF’s), with a slowly oscillating signal as the
remainder, so that more than one IF’s of the given signal can be computed by
extending each IMF to an AM-FM signal component. Based on the continuous
wavelet transform (CWT), the notion of synchrosqueezing transform (SST), in-
troduced by Daubechies and Mae in 1996, and further developed by Daubechies,
Lu, and Wu (DLW) in a 2011 paper [2], provides another approach to extract
more than one IF’s of the signal on R. Furthermore, by introducing a list of fairly
restrictive conditions on the adaptive harmonic (AHM) signal model, the DLW
paper also derives a theory for estimating the signal components according to this
model, by using the IF’s with estimates The objective of our present paper is to
introduce another mathematical theory, along with rigorous methods and compu-
tational schemes, to achieve a more ambitious goal than the SST approach, first to
extract the polynomial-like trend from the source signal, then to compute the ex-
act number of signal components according to a less restrictive AHM model, then
to obtain better estimates of the IF’s and instantaneous amplitudes (IA’s) of the
signal components, and finally to separate the signal components from the (blind)
source signal. Furthermore, our computational scheme can be realized in near
real-time, and our mathematical theory has direct extension to the multivariate
setting.
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Recent advances in mathematical data science

Dustin G. Mixon

(joint work with Afonso S. Bandeira, Takayuki Iguchi, Jesse Peterson, Benjamin
Recht, Soledad Villar)

This talk describes recent work on three different problems of interest in mathe-
matical data science, namely, compressive classification, k-means clustering, and
deep learning.

First, compressive classification is a problem that comes on the heels of com-
pressive sensing. In compressive sensing, one exploits the underlying structure of
a signal class in order to exactly reconstruct any signal from the class given very
few linear measurements of the signal. However, many applications do not require
an exact reconstruction of the image, but rather a classification of that image (for
example, is this a picture of a cat, or of a dog?). As such, it makes intuitive sense
that the classification task might succeed given far fewer measurements than are
necessary for compressive sensing.

Much like compressive sensing, compressive classification must exploit some
notion of simplicity of the data set. For this talk, we consider data sets which are
linearly separable, that is, one may distinguish two classes of points A,B ⊆ Rn by
thresholding an inner product:

x ∈ A =⇒ 〈x, v〉 < θ,

x ∈ B =⇒ 〈x, v〉 > θ.

In particular, given sets A and B and tolerance η, we seek the smallestm such that
PA and PB are linearly separable for a random m× n matrix P with probability
≥ 1− η. This establishes a minimal number of measurements necessary to classify
in the compressed domain. To approach this problem, we note that PA and PB
are linearly separable if and only if the null space of P trivially intersects the cone
generated by the Minkowski difference A−B. As such, we may leverage Gordon’s
theory of escape through a mesh [5], or more recently, the approximate kinematic
formula from conic integral geometry [1]. With these tools, we find estimates in
the special cases where A and B are Euclidean balls, and more generally, when
they are ellipsoids (see [3] for details).

The second problem we discuss is k-means clustering. Here, given a point cloud
P ⊆ Rn, one is asked to partition the points into k clusters C1, . . . , Ck such that the
corresponding cluster centers exhibit the smallest possible sum of squared error:

minimize

k∑

t=1

∑

x∈Ct

∥∥∥∥x− 1

|Ct|
∑

y∈Ct

y

∥∥∥∥
2

subject to C1 ⊔ · · · ⊔Ck = P
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Unfortunately, minimizing the so-called k-means objective is NP-hard in gen-
eral [9]. However, Lloyd’s algorithm, which alternates between finding cluster
centers for a proto-partition and reassigning points to the nearest cluster center,
performs well in practice. Unfortunately, there is currently no guarantee that such
an algorithm finds the k-means-optimal clustering.

In this talk, we consider a semidefinite relaxation of the k-means problem.
Denoting p = |P |, we define the p × p matrix D by Dij := ‖xi − xj‖2. Next,
letting 1Ct denote the p-dimensional indicator vector of Ct, then a straightforward
manipulation gives

k∑

t=1

∑

x∈Ct

∥∥∥∥x− 1

|Ct|
∑

y∈Ct

y

∥∥∥∥
2

=
1

2
Tr

(
D

k∑

t=1

1

|Ct|
1Ct1

⊤
Ct

)
.

Writing X :=
∑k

t=1
1

|Ct|1Ct1
⊤
Ct
, we identify several convex constraints that X

satisfies, and we may optimize subject to these constraints in order to produce a
polytime-solvable program:

minimize Tr(DX)

subject to Tr(X) = k

X1 = 1

X ≥ 0

X � 0

In general, we can expect the value of this relaxed program to be smaller than the
value of the original k-means program. However, if the relaxed optimizer happens

to be integral, meaning the optimal X has the form
∑k

t=1
1

|Ct|1Ct1
⊤
Ct
, then we

may conclude that the corresponding clustering C1, . . . , Ck is k-means optimal.
Amazingly, when the data is drawn randomly from a reasonable model (the so-
called stochastic ball model, introduced in [13]), one may show that the relaxed
optimizer is integral with high probability (see [2] and [8]). It remains to find
faster-than-SDP algorithms which enjoy a similar performance guarantee.

The last problem we consider is deep learning. Today, deep learning is the
state-of-the-art technique for several important classification tasks [15, 7, 6]. For
each of these problems, given a labeled training set, one is tasked with producing
a labeling function that not only matches the training set, but is also simple
enough to generalize well to a test set. For deep learning, the labeling function
is implemented by a deep neural network, which amounts to a large circuit of
neurons, where each neuron linearly combines the outputs of its parent neurons,
and then outputs a nonlinear function of this combination. To learn this labeling
function, practitioners locally optimize the function parameters so as to fit the
training set. To date, there is little theory to explain why this should perform as
well as it does in practice.

Our approach to deep learning is motivated by an analogy with Boolean cir-
cuits. These circuits are similar to neural nets, except neurons are replaced by
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Boolean gates (such as AND, OR, or threshold gates). Interestingly, Boolean cir-
cuits of simple structure tend to implement Boolean functions f : {±1}n → {±1}
of concentrated spectra [11, 14], that is, {aS}S⊆[n] is nearly sparse, where

f(x1, . . . , xn) =
∑

S⊆[n]

aS
∏

i∈S

xi ∀(x1, . . . , xn) ∈ {±1}n.

Passing through the analogy, we hypothesize that learnable neural nets are neces-
sarily simple, and furthermore, Boolean functions that are well approximated by
such neural nets necessarily have concentrated spectra. If this hypothesis is true,
then the deep learning problem can be relaxed to a sparse approximation problem.
We test this hypothesis by classifying the zeros and ones in the MNIST database of
handwritten digits [10] by way of sparse approximation (indeed, deep neural nets
currently hold the record for classifying MNIST digits [4]). In our experiment, we
managed to obtain a misclassification rate of 0.74%, thereby proving the concept
of classification by sparse approximation (see [12] for details). Unfortunately, our
näıve method of sparse approximation does not scale well, and so it remains to
find a scalable alternative to implement on other instances of binary classification.
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Shearlet systems on bounded domains

Philipp Petersen

(joint work with Philipp Grohs, Gitta Kutyniok, Jackie Ma)

Driven by an overwhelming amount of applications, numerical approximation of
partial differential equations was established as one of the core areas in applied
mathematics. During the last decades a trend for the solution of PDEs emerged,
that focuses on employing systems from applied harmonic analysis for the adaptive
solution of these equations. Most notably wavelet systems have been used, which
lead for instance to provably optimal solvers for elliptic PDEs, see [1]. Inspired by
this success story also other systems with various advantages in different directions
should be employed in various discretization problems. For instance, ridgelets
where recently successfully used in the discretization of linear transport equations,
see [4].

Another famous system is that of shearlets, [7], which admits optimal repre-
sentations of functions that have singularities along smooth curves and, perhaps
more importantly for the solution of PDEs, they also provide drastically improved
approximation rates when compared with wavelets of functions that have first or
higher order cartoon-like derivatives, see [8]. The main bottleneck in developing
shearlet, or ridgelet-based PDE solvers is the fact that originally these systems
are constructed as representation systems, or frames, for functions defined on Rd.
On the other hand, most PDEs are defined on a finite domain Ω ⊂ R

d which
implies that the development of effective PDE solvers crucially depends on the
construction of anisotropic representation systems on finite domains, satisfying
various boundary conditions. Hence it is necessary to have a system on a bounded
domain Ω, which fulfills the following desiderata

[D1] yields a frame for L2(Ω),
[D2] is able to incorporate boundary conditions,
[D3] gives rise to optimal approximation rates for functions with anisotropic

structures,
[D4] characterizes Sobolev spaces by weighted ℓ2 norms.

Although there have been first approaches to construct shearlet systems for the
solution of PDEs on bounded domains, e.g. [6], they fail to satisfy all the desiderata
above.
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1. Construction

In this talk we proposed a new construction of a shearlet system for the adaptive
solution of PDEs. We start with a compactly supported shearlet frame for R2, as
constructed in [5]. Let for j, k ∈ Z

Aj := diag (2j, 2
j
2 ) :=

(
2j 0

0 2
j
2

)
, and Sk :=

(
1 k
0 1

)
,

denote the parabolic scaling matrix and shearing matrix. Let φ, ψ, ψ̃ ∈ L2(R2),
c = [c1, c2]

T ∈ R2 with c1, c2 > 0. Then the cone-adapted shearlet system is
defined by (ψj,k,m,ι)(j,k,m,ι)∈Λ, where

Λ :=
{
(j, k,m, ι) : ι ∈ {−1, 0, 1}, |ιj| ≥ j ≥ 0, |k| ≤ |ι|

⌈
2

j
2

⌉
, m ∈ Z

2
}
.

and

ψ0,0,m,0 := φ(· − c1m),

ψj,k,m,1 := 2
3j
4 ψ(SkAj · −Mcm),

ψj,k,m,−1 := 2
3j
4 ψ̃(ST

k Ãj · −Mc̃m),

with Mc := diag(c1, c2), Mc̃ = diag(c2, c1), and Ã2j = diag(2
j
2 , 2j).

Of this shearlet system (ψj,k,m,ι)j,k,m,ι∈Λ we only keep the frame elements whose
support is fully contained in Ω. Clearly this system is not complete in L2(Ω).
For this reason we augment the aforementioned shearlet subsystem by boundary
wavelets as constructed for instance in [2]. To be more precise we have the following
definition:

Definition 1. [3] For t ∈ Z we denote by Γt the part of Ω that has distance less

than 2−
t
2 from ∂Ω, i.e. Γt := {x ∈ Ω : d(x, ∂Ω) < 2−

t
2 }.

Let (ψj,k,m,ι)j,k,m,ι∈Λ be a shearlet system. Further, let t ∈ N and W be an
orthonormal bases of wavelets on L2(Ω) and Wt := {ωj,m ∈ W : supp ωj,m ∩
Γj−t 6= ∅}. Then, the boundary shearlet system with offset t is defined as

(ϕn)n∈N := {ψj,k,m,ι : supp ψj,k,m,ι ⊆ Ω} ∪Wt.

2. Properties

We can describe some properties of the boundary shearlet system (ϕn)n∈N. In
particular it fulfills all desiderata [D1] - [D4] mentioned in the introduction. Un-
der appropriate assumptions on smoothness and vanishing moments of the wavelet
ONB and the shearlet system (ψj,k,m,ι)j,k,m,ι∈Λ we get

Theorem 1. [3] There exists t ∈ N such that the boundary shearlet system (ϕn)n∈N

with offset t′ > t has the property, that there exist 0 < A ≤ B < ∞ such that for
all s ≤ N we have

A‖f‖2Hs(Ω) ≤
∑

n∈N

22jns| 〈f, ϕn〉 |2 ≤ B‖f‖2Hs(Ω), for all f ∈ Hs(Ω)

In particular this holds for s = 0.
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This yields [D1] and [D4]. The incorporation of boundary conditions, [D2],
is possible due to the fact, that this can be done by the wavelet bases used in
the construction. Concerning the optimal approximation rates of [D3] we get the
following result which we state slightly informal, since we do not want to introduce
to much notation. Under appropriate assumptions on smoothness and vanishing
moments of the wavelet ONB and the shearlet system (ψj,k,m,ι)j,k,m,ι ∈ Λ we get.

Theorem 2. [3] Let (ϕn)n∈N be a boundary shearlet system and let f be a C2

function apart from finitely many disjoint C2 discontinuity curves, that touch the
boundary of Ω only finitely many times. Then we have

‖f − fN‖2L2(Ω) ≤ CN−2 log(N)3 for N → ∞,

where fN is the best N -term approximation of f with respect to the boundary
shearlet system (ϕn)n∈N and C is a constant.
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A deterministic sparse FFT algorithm for vectors with short support

Gerlind Plonka

(joint work with Katrin Wannenwetsch)

We consider sparse signals x ∈ C
N which are known to vanish outside a support

interval of length bounded by m < N . For the case that m is known, we propose
a deterministic algorithm of complexity O(m logm) for reconstruction of x from
its discrete Fourier transform x̂ ∈ CN .

Introduction. Fast algorithms for the computation of the discrete Fourier trans-
form of a vector of length N have been known for many years. These FFT algo-
rithms have an arithmetical complexity of O(N logN). Recently, there has been a
strong interest in Fourier algorithms for sparse vectors with sublinear complexity.
Randomized sparse Fourier algorithms achieving a complexity of O(m logN) resp.
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O(m logm) for m-sparse vectors can e.g. be found in [3] resp. [5], [6]. An overview
of the methods of randomized sparse Fourier transforms is given in [2]. Previous
deterministic approaches (see e.g. [1, 4]) also lead to sublinear algorithms having
polynomials costs in m and logN .

Here, we present a deterministic FFT algorithm and restrict ourselves to vectors
with a short support interval. Such vectors occur in different applications, such as
in X-ray microscopy, where compact support is a frequently used a-priori condition
in phase retrieval, as well as in computer tomography reconstructions.

Let x = (xk)
N−1
k=0 ∈ CN . We define the support length m = |suppx| of x as

the minimal integer m for which there exists a µ ∈ {0, . . . , N − 1} such that the
components xk of x vanish for all k /∈ I := {(µ+ r) mod N, r = 0, . . . ,m− 1}.
The index set I is called support interval of x. We always have xµ 6= 0 and
xµ+m−1 6= 0, but there may be components of x equal to zero within the support

interval. Observe that if m ≤ N
2 , the support interval and hence the first support

index µ of x is uniquely determined.
We define the discrete Fourier transform of a vector x ∈ CN by x̂ = FNx, where

the Fourier matrix FN is given by FN := (ωjk
N )N−1

j,k=0, ωN := e−
2πi
N . In the following,

we describe a deterministic algorithm for the reconstruction of x of length N = 2J

from Fourier data x̂ ∈ CN . The algorithm is based on the idea that the (at most)
m nonzero components of x can already be identified from a periodization of x
of length 2L ≥ m. Hence for the complete reconstruction it remains to determine
the support interval (i.e., the first support index) of x.

Reconstruction of x with short support interval. Let N := 2J for some

J > 0. We define the periodizations x(j) ∈ C2j of x by

x(j) = (x
(j)
k )2

j−1
k=0 =




2J−j−1∑

ℓ=0

xk+2j ℓ




2j−1

k=0

(1)

for j = 0, . . . , J . The discrete Fourier transform of the vectors x(j), j = 0, . . . , J ,
can be described in terms of x̂. According to the following lemma, it can be
obtained by just picking suitable components of x̂.

Lemma 1 (see [7]). For the vectors x(j) ∈ C2j , j = 0, . . . , J , in (1), we have the
discrete Fourier transform

x̂(j) := F2jx
(j) = (x̂2J−jk)

2j−1
k=0 ,

where x̂ = (x̂k)
N−1
k=0 = FNx is the Fourier transform of x ∈ C

N .

Assume that the Fourier data x̂ = FNx ∈ CN and |suppx| ≤ m for some
given m. Choose L such that 2L−1 < m ≤ 2L. By Lemma 1 we have x̂(L+1) =

(x̂2J−(L+1)k)
2L+1−1
k=0 . Thus, we can compute x(L+1) using inverse FFT of length

2L+1.
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The resulting vector x(L+1) has already the same support length as x, since
|suppx| ≤ m ≤ 2L, and for each k ∈ {0, . . . , 2L+1 − 1} the sum in

(2) x
(L+1)
k =

2J−L−1−1∑

ℓ=0

xk+2L+1ℓ

contains at most one nonvanishing term. Therefore, the support of x(L+1) and
its first index µ(L+1) are uniquely determined. For reconstruction of the complete
vector x it is now sufficient to determine the first support index µ(J) = µ of the
support interval of x. Then the components of x are given by

x(µ(J)+k)modN =

{
x
(L+1)

(µ(L+1)+k)mod 2L+1 k = 0, . . . ,m− 1,

0 k = m, . . . , N − 1.
(3)

In order to find µ(J), we observe that µ(J) = µ(L+1) + ν2L+1 for some ν ∈
{0, . . . , 2J−L−1} since x(L+1) is a periodization of x. In order to find ν, we first
construct x̃ ∈ CN from x(L+1) by setting ν = 0. Then the desired vector x is
obtained from x̃ by a (periodic) shift of all components by ν2L+1. Using the
properties of the DFT of a shifted vector, we can now obtain ν by comparing a
suitable Fourier component of x̃ with the corresponding given Fourier component
of x.

Theorem 1 (see [7]). Let x ∈ CN , N = 2J , have support length m (or a support
length bounded by m) with 2L−1 < m ≤ 2L. For L < J − 1, let x(L+1) be the
2L+1-periodization of x. Then x can be uniquely recovered from x(L+1) and one

nonzero component of the vector (x̂2k+1)
N/2−1
k=0 .

Sparse FFT Algorithm. We summarize the reconstruction of x from Fourier
data x̂ in the following algorithm.

Algorithm (see [7]) (Sparse FFT for vectors with short support)

Input: x̂ ∈ CN , N = 2J , |suppx| ≤ m < N .

• Compute L such that 2L−1 < m ≤ 2L, i.e., L := ⌈log2m⌉.
• If L = J or L = J − 1, compute x = F−1

N x̂ using an FFT of length N .

• If L < J − 1:

(1) Choose x̂(L+1) := (x̂2J−(L+1)k)
2L+1−1
k=0 and compute x(L+1) := F−1

2L+1 x̂
(L+1)

using an FFT of length 2L+1.
(2) Determine the first support index µ(L+1) ∈ {0, . . . , 2L+1 − 1} of x(L+1)

such that x
(L+1)

µ(L+1) 6= 0 and x
(L+1)
k = 0 for k /∈ {(µ(L+1) + r)mod 2L+1, r =

0, . . . ,m− 1}.
(3) Choose a Fourier component x̂2k0+1 6= 0 of x̂ and compute the sum

a :=

m−1∑

ℓ=0

x
(L+1)

(µ(L+1)+ℓ)mod2L+1 ω
(2k0+1)(µ(L+1)+ℓ)
N .
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(4) Compute b := x̂2k0+1/a that is by construction of the form b = ωp
2J−L−1

for some p ∈ {0, . . . , 2J−L−1 − 1}, and find ν ∈ {0, . . . , 2J−L−1 − 1} such
that (2k0 + 1) ν = pmod2J−L−1.

(5) Set µ(J) := µ(L+1) + 2L+1ν, and x := (xk)
N−1
k=0 with entries

x(µ(J)+ℓ)modN :=

{
x
(L+1)

(µ(L+1)+ℓ)mod2L+1 ℓ = 0, . . . ,m− 1,

0 ℓ = m, . . . , N − 1.

Output: x.

Our algorithm has an arithmetical complexity of O(m logm). This can be seen
as follows: In the first step, an FFT algorithm of this complexity is performed.
All further steps require at most O(m) operations. Moreover, the algorithm needs
less than 4m Fourier values. More detailed results can be found in [7] where we
also propose an algorithm for noisy input data. In this case the evaluation of
µ(L+1) and of µ(J) is stabilized using additional Fourier values and O(m logN)
arithmetical operations. Furthermore, if the nonzero entries of x are assumed to
be real and positive, then a similar sparse FFT algorithm can be derived that does
not require a priori knowledge of the support length m.

Acknowledgement. We gratefully acknowledge the funding of this work by the
DFG in the project PL 170/16-1.
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Multiscale basis dictionaries on graphs and some of their applications

Naoki Saito

(joint work with Jeff Irion)

1. Introduction

We previously introduced two multiscale transforms for signals on graphs: the
Hierarchical Graph Laplacian Eigen Transform (HGLET) [1] and the Generalized
Haar-Walsh Transform (GHWT) [2], both of which utilize a recursive partition-
ing of a graph to generate overcomplete dictionaries of orthonormal bases and
corresponding expansion coefficients. The HGLET and GHWT can be viewed as
generalizations of the hierarchical block Discrete Cosine Transform (DCT) and the
Haar-Walsh Wavelet Packets, respectively, to the setting of signals on graphs.

Since these overcomplete dictionaries contain a huge number of possible or-
thonormal bases, it is important for us to be able to select the most suitable one
(as well as the corresponding expansion coefficients of an input signal) for our
task at hand. To do so, we generalized the classical best-basis algorithm [3] to the
setting of our graph-based transforms. In [2], we have demonstrated how our trans-
forms can be used to achieve good denoising of signals on graphs. Here, we apply
our graph-based transforms to tackle two problems: simultaneous segmentation
and denoising of classical 1-D signals and matrix data analysis.

2. Simultaneous Segmentation and Denoising of Classical 1-D
Signals

Given a 1-D noisy signal sampled on regular grids, our goal here is three-fold:
1) to divide the signal into segments of similar characteristics; 2) to reduce the
noise in the signal; and 3) to achieve better approximation and compression of
the underlying signal. Our proposed method below can be viewed as a significant
improvement over our previous attempt [4] where we used conventional tools with-
out the graph setting. Here we fully utilize our graph-based transforms by viewing
such a 1-D signal as data on a path graph. Doing so affords us more flexibility in
our segmentation, as we no longer have to work within a dyadic constraint on the
segment lengths.

The first step in our algorithm is to recursively partition the unweighted path
graph. Next, we use the three HGLET variations (using the unnormalized, random-
walk-normalized, and symmetrically-normalized graph Laplacian matrices [5]) to
analyze each segment of the signal. We note that there is no need to compute the
eigenvectors of these matrices because on unweighted path graphs they are known
to be three different types of DCT, i.e., the DCT Type II, the weighted version
of the DCT Type I, and the DCT Type I, respectively. From these three sets of
expansion coefficients, we select a hybrid best basis using the minimum description
length (MDL) criterion [6, 7] as our cost functional, which was also used in [4]. We
note that we quantize the expansion coefficients with a threshold for denoising,
but the appropriate quantization resolution and the threshold are automatically
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selected by the MDL criterion. In addition, the model parameters to be deter-
mined are: 1) the segmentation configuration of the signal (i.e., the set of disjoint
intervals, which we also quantize via the levels list description method [8]) and 2)
a flag to specify the HGLET variation used for each segment. Thus, by using the
MDL cost functional to perform the best basis search, we are searching for the
segmentation whose structure is choosable from the current partitioning tree that
allows us to most efficiently approximate the underlying signal in the noisy input
data.

The MDL-guided best basis search yields two outputs: a segmentation of the
signal and the corresponding set of quantized expansion coefficients. Utilizing the
segmentation obtained by the best basis algorithm, we modify the edge weights
of the graph. The purpose of doing so is to encourage edges between regions of
similar characteristics to be preserved in the next iteration and to encourage those
edges between regions of different characteristics to be cut. Whereas we began
with an unweighted path graph, we now have a weighted one. We then iterate
this process. We generate a new recursive partitioning of the signal, which will
differ from the previous recursive partitioning due to the modified edge weights.
We analyze the signal again using the three HGLET variations although we treat
the graph as being unweighted. This is because the purpose of modifying the edge
weights is to influence the partitioning while preserving the relationship between
the HGLET on a path graph and the block DCTs. As the recursive partitioning
of the signal is different, the expansion coefficients will be different as well. We
then find a new best basis and corresponding segmentation, and we modify the
edge weights as before. We repeat this process until it converges to a particular
basis, which gives us both a segmentation of the signal and a set of quantized
and thresholded coefficients from which we can reconstruct the denoised signal.
Empirically, we have observed that convergence occurs between 6 and 15 iterations
for all the signals (both synthetic and real) that we have examined so far.

3. Matrix Data Analysis

Next, we want to analyze and efficiently approximate or denoise scrambled matri-
ces that are typical for ratings/reviews databases using our graph-based tools. As
in [9], our first step is to discover the underlying structure of the input matrix. To
do this, we generate recursive partitioning trees on both the rows and the columns
of the matrix based on appropriately defined affinities (e.g., the regularized inverse
Euclidean distances) among rows and columns.

Equipped with these recursive partitionings, we analyze the matrix using the
GHWT. Specifically, we first expand each column of the matrix into the GHWT
best basis computed on the rows, and then we expand those coefficients into the
GHWT best basis on the columns. Thus, our orthonormal best basis is the tensor
product of the best basis on the row partitioning and the best basis on the column
partitioning.

Using the same Science News database reported in [9] as an input data matrix,
we compared the performance in data approximation of our GHWT best basis with
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that of the classical Haar wavelet basis and the classical Haar-Walsh wavelet packet
best basis using the same sparsity criterion (i.e., ℓ1-norm minimization) as in our
GHWT best basis. Whereas the classical Haar wavelet basis is a non-adaptive
transform, meaning that the basis is fixed, both the classical Haar-Walsh wavelet
packet best basis and the GHWT best basis are data-adaptive. The difference
between the latter two is that the classical Haar-Walsh wavelet packet dictionary
considers only homogeneous dyadic partitions of rows and columns, whereas the
GHWT does not impose such a constraint on row and column partitions. As such,
the GHWT does a better job of capturing the underlying structure of the matrix
and achieves better approximation than the classical transforms. With only 2%
of the coefficients retained, the relative ℓ2 errors were 16.3%, 15.6%, and 8.2%
for the Haar basis, Haar-Walsh wavelet packet best basis, and GHWT best basis,
respectively. Retaining 10% of the coefficients, those numbers became 4.5%, 4.4%,
and 2.1%.

Acknowledgment

This research was partially supported by ONR grant N00014-12-1-0177 and NSF
grant DMS-1418779, and was conducted with Government support under contract
FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of
Scientific Research, National Defense Science and Engineering Graduate (NDSEG)
Fellowship, 32 CFR 168a.

References

[1] J. Irion and N. Saito, Hierarchical graph Laplacian eigen transforms, JSIAM Letters, 6
(2014), 21–24.

[2] J. Irion and N. Saito, The generalized Haar-Walsh transform, in: Proc. 2014 IEEE Workshop
on Statistical Signal Processing, pp. 472–475, 2014.

[3] R. R. Coifman and M. Wickerhauser, Entropy-based algorithms for best basis selection,
IEEE Trans. Inform. Theory, 38 (1992), 713–718.

[4] N. Saito and E. Woei, Simultaneous segmentation, compression, and denoising of signals us-
ing polyharmonic local sine transform and minimum description length criterion, in: Proc.
13th IEEE Workshop on Statistical Signal Processing, pp. 315–320, 2005.

[5] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput. 17(4) (2007), 395–416.
[6] J. Rissanen, Stochastic Complexity in Statistical Inquiry, World Scientific, Singapore, 1989.
[7] P. D. Grünwald, The Minimum Description Length Principle, The MIT Press, Cambridge,

MA, 2007.
[8] M. W. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, A K Peters, Ltd.,

Wellesley, MA, 1994.
[9] R. R. Coifman and M. Gavish, Harmonic analysis of digital data bases, in: Wavelets and

Multiscale Analysis (J. Cohen and A. I. Zayed, eds.), Birkhäuser, pp. 161–197, 2011.
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Dictionary learning - fast and dirty

Karin Schnass

In this talk we gave a small introduction to fast dictionary learning algorithms
with local convergence guarantees. Many problems in signal/data processing and
analysis can be efficiently solved if the signals are sparse in a dictionary. There-
fore it is desirable to have an automated way to learn this sparsifying dictionary
directly from a few training signals of the data class of interest, that is, a dictio-
nary learning algorithm. To be more precise we have two requirements on a good
dictionary learning algorithm, first that it is fast or computationally cheap and
second that we have some guarantees that the algorithm will recover an underly-
ing dictionary Φ if the data is known to be sparse in the dictionary. Currently
there are mainly two promising directions. On one hand there are graph clustering
algorithms and sums of squares methods, [2, 5, 6], which have global convergence
guarantees but are computationally very costly. On the other hand there are (alter-
nating) optimisation schemes, [8, 3, 10, 1, 11], which are computationally efficient,
experimentally globally convergent but in the overcomplete case only have local
convergence guarantees. For a recent solution to the basis learning case see [17],
and for a more comprehensive introduction into dictionary learning see [12, 16].
The starting point for the probably most famous alternating optimisation dictio-
nary learning algorithm - K-SVD, [3], is the following optimisation programme,

min
Ψ∈D,X∈XS

‖Y −ΨX‖2F ,(1)

where Y = (y1 . . . yN) collects the N training signals on its columns, D := {Ψ =
(ψ1 . . . ψK), ψk ∈ Rd, ‖ψk‖2 = 1} is the set of admissable dictionaries and XS :=
{X = (x1 . . . xN ), xn ∈ RK , ‖xn‖0 ≤ S} the set of columnwise S-sparse coefficient
matrices. If the data are generated from an S-sparse random coefficient model in
combination with a unit norm tight frame Φ it can be shown that Φ is at/near
a local minimiser of (1), [14]. In the special case S=1 this means that K-SVD
locally converges to the generating dictionary. The fact that the K-SVD principle
seems to have difficulties in recovering non-tight frames together with the fact
that K-SVD itself is still quite computationally costly led to the development of a
simpler optimisation criterion, which can be interpreted as a generalisation of the
K-means criterion,

max
Ψ∈D

∑

n

max
I

‖Ψ⋆
Iyn‖1,(2)

Given enough training samples, this criterion locally identifies also a non-tight
dictionary Φ up to arbitrary precision, provided the sparsity level scales as S =
O(µ−1), where µ is the coherence of Φ, that is, µ := maxi6=j |〈φi, φj〉|. This
local identification property is stable for S = O(µ−2), non exact sparsity and large
(random) noiselevels, [13]. With the criterion the following very simple alternating
optimisation algorithm, called Iterative Thresholding and K (signal) Means, can
be associated.
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ITKsM Algorithm (one iteration)
Given an input dictionary Ψ and N training signals yn do:

• For all n find ItΨ,n = argmaxI:|I|=S ‖Ψ⋆
Iyn‖1.

• For all k calculate

ψ̄k =
1

N

∑

n:k∈It
Ψ,n

yn · sign(〈ψk, yn〉).

• Output Ψ̄ = (ψ̄1/‖ψ̄1‖2, . . . , ψ̄K/‖ψ̄K‖2).
The main advantage of ITKsM over K-SVD is that it is computationally much
cheaper, of the order O(dKN) corresponding to the matrix vector calculations
Ψ⋆yn. The signals can be processed sequentially, so the algorithm can be used
online or in parallel. The disadvantage is that it is not globally convergent and with
a random initialisation will only recover most but not all atoms of the generating
dictionary.
To remedy this problem ITKsM was modified to use residual rather than signal
means, leading to an algorithm called Iterative Thresholding and K (residual)
Means.
ITKrM Algorithm (one iteration)
Given an input dictionary Ψ and N training signals yn do:

• For all n find ItΨ,n = argmaxI:|I|=S ‖Ψ⋆
Iyn‖1.

• For all k calculate

ψ̄k =
∑

n:k∈It
n

[
I− P (ΦIt

n
) + P (ψk)

]
yn · sign(〈ψk, yn〉),

where P (M) denotes the orthogonal projection onto the rowspan of a
matrix M .

• Output Ψ̄ = (ψ̄1/‖ψ̄1‖2, . . . , ψ̄K/‖ψ̄K‖2).
ITKrM can be regarded as a hybrid between K-SVD and ITKsM, as it uses residu-
als like K-SVD and means like ITKsM. As a hybrid it inherits all the desirable prop-
erties of its parents. Given O(K logKε−2) training samples it can locally recover
a generating dictionary up to precision ε if the sparsity level scales as S = O(µ−1)
and up to precision ε = K−ℓ if the sparsity scales as S = O(µ−2/(ℓ logK)). It
is still computationally very cheap O(dN(K + S2)) and sequential and on top of
that experimentally globally convergent, [15].
Another advantage of ITKrM as well as a currently investigated weighted variant,
where sign(〈ψk, yn〉) is replaced by 〈ψk, yn〉, is that it is very easy to incorporate
additional information. Thus in ongoing work with V. Naumova we are currently
investigating how to learn dictionaries from corrupted/missing data, which can for
instance be applied to inpainting.
Several other questions are also under scrutiny at the moment. Is the generating
dicitionary the global optimum of (1/2)? Are there efficient initialisation strate-
gies for S = O(µ−2)? (For S = O(µ−1) recently a polynomial time algorithm has
been found, [4].) Can we extend the convergence radius of ITKsM resp. ITKrM

from O(1/ logK) resp. O(1/
√
S) to O(1), as suggested by experiments? How do
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we transfer the local convergence proof for ITKM to a local convergence proof for
K-SVD, especially in the non-tight but experimentally stable case. An interesting
question that arises in this context is the calculation/estimation of the expectation

EI:k∈I,|I|=S

[
(I− ΦIΦ

†
I)ΦΦ

⋆φk

]
.

Finally to improve our results to signals with large dynamic range of the coefficients
we need to redive into the investigation of performance guarantees for average case
sparse approximation including stability under perturbation of the dictionary, the
best candidates being iterative thresholding, [7], or hard thresholding pursuit, [9].
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Dynamic optimal transport for RGB image processing

Gabriele Steidl

(joint work with Jan Henrik Fitschen, Friederike Laus)

In this paper we deal with the interpolation between two color images in the
RGB space using the concept of dynamic optimal transport. We mention that the
problem can be also tackled by other techniques such as metamorphoses, cf. [8]
which are not within the scope of our paper. RGB images of size N1 × N2 are
usually given by three N1×N2 matrices with values in {0, . . . , 255}. To explain the
idea behind dynamic optimal transport let us consider the images as continuous
three-dimensional density functions f0 and f1 of probability measures µ0 = f0dx,
µ1 = f1dx which are absolutely continuous with respect to the Lebesgue measure.
In particular, we have

∫
Rd f0dx =

∫
Rd f1dx = 1. We assume that the density

functions are finitely supported in the two spatial dimensions. Due to the human
color perception the functions should be periodic in the third dimension. More
generally, let us consider d-dimensional distributions, where d = 3 in our specific
application. We assume that the measures µ1 and µ2 belong to a Wasserstein
space

Pp(R
d) := {µ ∈ P(Rd) :

∫

Rd

|x|pdµ(x) < +∞}, p ∈ [1,∞)

equipped with a distance function, the so-called Wasserstein distance

Wp(µ0, µ1) := min
ν∈Π(µ0,µ1)

∫

Rd

|x− y|p dν(x, y).

Indeed, the joint probability measure ν which minimizes the Wasserstein distance
exists for p ∈ [1,∞) and is uniquely determined for p > 1. It is called optimal
transport map between µ0 and µ1. Wasserstein spaces (Pp,Wp) are geodesic space.
In particular there exists for any µ0, µ1 ∈ Pp(R

d) a geodesic γ : [0, 1] → Pp(R
d)

with γ(0) = µ0, γ(1) = µ1. For interpolating our images we ask for µt = γ(t),
t ∈ [0, 1].

At least theoretically there are several ways to compute µt. If the optimal
transport map ν is known, then µt = Lt#ν := ν ◦L−1

t , where Lt : R
d×Rd → Rd is

the linear interpolation map Lt(x, y) := (1− t)x+ ty. This requires the knowledge
of the optimal transport map and of L−1

t . At present there are efficient ways for
computing optimal transport map for one-dimensional distributions by an ordering
procedure and for Gaussian distributions in the case p = 2. For p = 2 one can
also use the fact that ν is indeed induced by a transport plan T : Rd → Rd,
i.e., ν = (id, T ) having a potential ψ, i.e., T = ∇ψ which fulfills the Monge-
Ampere equation. However, this is a second order nonlinear elliptic PDE which
is numerically hard to solve. For the analysis of the Monge-Ampere equation
we refer to papers of Caffarelli, e.g. [3]. Moreover there exit numerical results
for the (simplified) semi-geostrophic equation. For other numerical approaches
to compute optimal transport maps, see, e.g., [1, 5]. Another approach relaxes
the condition of minimizing a Wasserstein distance by using instead an entropy
regularized Wasserstein distance. Such distances can be computed more efficiently
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by the Sinkhorn algorithm and were applied within a barycentric approach by
Cuturi et al. [4].

In the talk we will apply the fluid dynamic formulation of the dynamic optimal
transport problem for p ∈ (1, 2], i.e., we minimize:

∫ 1

0

∫

Rd

1

p
|v(t, x)|pf(t, x) dxdt

subject to

∂tf(t, x) +∇x · (v(t, x)f(t, x)) = 0,

f(0, ·) = f0, f(1, ·) = f1.

Further we have to suppose ∪t∈[0,1]suppf(t, ·) ⊆ [0, 1]d with appropriate boundary
conditions. Benamou and Brenier [2] suggested to substitute the momentum m =
fv which makes the problem convex in f,m. We provide a discrete model based
on a staggered grid discretization as it was also proposed by Papadakis et al. [7] for
p = 2. In particular, we provide a sound matrix-vector notation of the problem by
using the tensor product notation. Moreover, we modify the model by penalizing
the continuity constraint:

Constrained Transport Problem:

argminm,f,u,v‖Jp(u, v)‖1,
subject to Smm = u, Sff + f+ = v,

(Dm|Df)

(
m
f

)
= f−, f ≥ 0.

Penalized Transport Problem (λ > 0):

argminm,f,u,v

{
‖Jp(u, v)‖1 + λ‖(Dm|Df)

(
m
f

)
− f−‖22

}
,

subject to Smm = u, Sff + f+ = v, f ≥ 0.

Here D∗ are appropriate difference matrices and S∗ are averaging matrices. More-
over,

Jp(x, y) :=





1
p

|x|p
yp−1 if y > 0,

0 if (x, y) = (0, 0),

+∞ otherwise

and |x| := (
∑d

i=1 x
2
i )

1
2 .

We suggest to solve the minimization problem by primal-dual minimization al-
gorithms. It turns out that one step of the algorithm requires the solution of a 4D
Poisson equation which includes simultaneously zero-, mirror- and periodic bound-
ary conditions. This can be efficiently realized by fast Sine-, Cosine- and Fourier
transforms. Another step involves the finding of a somehow uniquely determined
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root of a function which by a Newton method. With an appropriately defined ini-
tialization quadratic convergence the method is ensured. We provide interesting
numerical results which demonstrate the good performance of our algorithms.
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Nonlinear phase unwinding of functions

Stefan Steinerberger

(joint work with Ronald R. Coifman)

Blaschke factorization is a classical tool in complex analysis: any ‘sufficiently nice’
holomorphic function F : C → C can be written as F = B · G, where G has no
roots inside the unit disk D and B is a Blaschke product, i.e. of the form

B(z) = zm
∏

j

z − αj

1− αjz

for some m ∈ N and αi ∈ D. Note that

|B(z)| = 1 whenever |z| = 1

and hence |F (z)| = |G(z)| on ∂D. A rough interpretation would be that

B ∼ phase and G ∼ amplitude.

In the mid-1990s it was observed by one of the authors (Coifman) that Blaschke
factorization could be iteratively applied if we subtract a suitable constant (i.e.
the value at the origin) after each step. This gives rise to a nonlinear analogue of
Fourier series, an unwinding series of the form

F ∼ α0B0 + α1B0B1 + α2B0B1B2 + . . .
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Fast computation of the Blaschke factorization can be accomplished without ex-
plicitely computing the roots via a method first discussed by Guido & Mary Weiss
[13] in 1962. Extensive numerical investigation by Michel Nahon [6] suggested

• that the formal series converges
• that this seems to (at least generically) happen with an exponential rate
• and that the method is very stable.

The method was further studied by Letelier & Saito [5] who applied it to un-
derwater acoustics problems and studied regularization methods and Healy [3, 4].
Recently, the method has been independently discovered by Tao Qian and collab-
orators [7, 8, 9, 10, 11, 12]. However, so far the convergence of the purely formal
series has not been studied from a rigorous mathematical viewpoint.

Our main result in the most general form is as follows. Let 0 = γ0 ≤ γ1 ≤ . . .
be an arbitrary monotonically increasing sequence of real numbers and let X be
the subspace of L2(T) for which

∥∥∥∥∥∥

∑

n≥0

anz
n

∥∥∥∥∥∥

2

X

:=
∑

n≥0

γn|an|2 <∞.

We define a norm Y (merely a semi-norm whenever γ is not strictly increasing)
∥∥∥∥∥∥

∑

n≥0

anz
n

∥∥∥∥∥∥

2

Y

:=
∑

n≥0

(γn+1 − γn)|an|2.

Our main statement is that the Blaschke factorization acts nicely on these spaces.
The first part of our statement is known (being ascribed to Digital Signal Pro-
cessing in [8]) and can be equivalently phrased as follows: given a Blaschke de-
composition F = B ·G and assuming both functions are expanded into a Fourier
series

F (z) =

∞∑

n=0

fnz
n and G(z) =

∞∑

n=0

gnz
n,

then, for every N ∈ N
∞∑

n≥N

|gn|2 ≤
∞∑

n≥N

|fn|2.

Phrased differently, inner outer factorization shifts the energy to lower frequencies
in a strictly monotonous way. Our main tool will be a refinement of that inequality.

Theorem 1. If F ∈ H2 has a Blaschke factorization F = B ·G, then
‖G(ei·)‖X ≤ ‖F (ei·)‖X .

Moreover, if F (α) = 0 for some α ∈ D, we even have

‖G(ei·)‖2X ≤ ‖F (ei·)‖2X − (1 − |α|2)‖G(ei·)‖2Y .
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An iterative application combined with telescoping yields that the sequence
converges in Y for initial values in X . The case γn = n recovers the Dirichlet
space D and allows to reprove a formula of Carleson [1]. Our recent paper [2] also
discuss other new phenomena, for example the following curious stability property:
when doing Blaschke factorization F = BG numerically, we will introduce some
roundoff errors; even though we never actually compute the roots of the functions,
this roundoff error can be imagined as perturbing the roots a little bit. We have
the following curious and purely algebraic pointwise stability statement.

Theorem 2. Suppose F1, F2 : C → C are polynomials having the same roots out-
side of D and the same number of roots inside D. Then the Blaschke factorizations

F1 = B1G1 and F2 = B2G2,

satisfy

|G1(z)−G2(z)| = |F1(z)− F2(z)| for all z ∈ ∂D.
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Tensor theta norms

Željka Stojanac

(joint work with Holger Rauhut)

We are interested in the problem of low rank tensor recovery via small number of
measurements. In other words, we want to recover a low rank dth order tensor
X ∈ Rn1×n2×···×nd from a linear measurement map Φ : Rn1×n2×···×nd → Rm and
measurement vector b ∈ Rm, where b = Φ (X) and m ≪ n1n2 · · ·nd. We con-
sider a generalization of the matrix singular value decomposition called canonical
decomposition (or CP-decomposition) and the corresponding notion of rank and
norm (tensor nuclear norm). A dth order tensor X ∈ Rn1×n2×···×nd is a rank one
tensor if and only if there exist d vectors uj ∈ Rnj , for j ∈ [d] = {1, 2, . . . , d} such
that

X (i1, i2, . . . , id) = u1 (i1)u2 (i2) · · ·ud (id) , for all ip ∈ [np] , p ∈ [d] .

The rank of a dth order tensor is the smallest number of rank one tensors that
sum up to the original tensor. The tensor nuclear norm is a generalization of the
matrix nuclear/trace norm, i.e., for a tensor X ∈ R

n1×n2×···×nd

‖X‖∗ = inf
{ r∑

k=1

|ck| : X =

r∑

k=1

ck u
k
1 ⊗ uk

2 ⊗ · · · ⊗ uk
d,

r ∈ N, ‖uk
i ‖ℓ2 = 1, for i ∈ [d] , k ∈ [r]

}
.

Unfortunately, the set of rank-r tensors (for r > 1) is not closed and thus deter-
mining the rank as well as the nuclear norm of a given tensor is in general NP-hard,
see [4, 5].

To tackle this problem, we suggest an approach based on theta bodies which
were recently introduced in real algebraic geometry. As a result, we obtain new
tensor norms (called theta tensor norms) that can be computed via semidefinite
programming. This idea was first proposed in paper [2].

Next, we explain the idea behind the theta bodies. In the following, R [x] =
R [x1, x2, . . . , xn] denotes the set of all real polynomials in variables x1, x2, . . . , xn
and R [x]k denotes the set of all real polynomials of degree at most k in the same
variables. The central problem in optimization is finding a maximum of a linear
functional over a given set S, i.e., solving the problem

(1) max
x

〈c,x〉 s.t. x ∈ S

which is equivalent to solving

max
x

〈c,x〉 s.t. x ∈ conv (S),

where conv (S) denotes the closure of the convex hull of the set S. For example, in
linear programming the set S is of the form S = {x : Ax ≤ b} . We are interested
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in the case where the set S is the real algebraic variety of the polynomial ideal
I ∈ R [x], i.e., in the set

νR (I) = {x ∈ R
n : f(x) = 0, for all f ∈ I} .

Recall, the set conv (νR (I)) can be described as

conv (νR (I)) =
{
x ∈ R

n : ℓ (x) ≥ 0, for all ℓ affine s.t. ℓ |νR(I)≥ 0
}
.

However, checking only for one fixed affine polynomial ℓ whether it is nonnegative
on the set S = νR (I) can be a tedious task. The idea is to find a relaxation T
of the set conv (νR (I)) such that the corresponding optimization problem (1) over
the set T (instead of S) can be solved via semidefinite programming. Rather than
considering all affine polynomials ℓ which are nonnegative on the set S, we restrict
our search to its subset. That is, we consider only affine polynomials ℓ which can
be written as

(2) ℓ (x) =
t∑

i=1

h2i (x) + g (x) , hi ∈ R [x] , g ∈ I, t ∈ N.

Clearly, every polynomial ℓ defined as in (2) is nonnegative on the set S = νR (I)
since h2i (x) ≥ 0 and g(x) = 0, for every x ∈ νR (I). Theta bodies form a hierarchy
of sets and were introduced first by Lovász in [6] and later analyzed in [3]. The
k-th theta body takes into account only the affine polynomials ℓ which are k-sos1

mod I, i.e., affine polynomials ℓ as in (2) with

deg (hi) ≤ k, for all i ∈ [t] , and g ∈ I.

It results in the following definition of the k-th theta body (for k ∈ N)

THk (I) := {x ∈ R
n : f (x) ≥ 0, for every f affine and k-sos mod I} .

Theta bodies are closed, convex sets and satisfy the following nestedness property

TH1 (I) ⊇ TH2 (I) ⊇ · · · ⊇ conv (νR (I)).

The idea is to define an ideal I such that

(3) νR (I) = {all rank-one, Frobenius norm-one tensors} .
Then, for every k ∈ N, the k-th theta body defines a new tensor unit θk-norm ball
which is a relaxation of the tensor unit nuclear norm ball and can be computed
for a fixed tensor X via

‖X‖θk =
{
inf
t
t s.t. X ∈ tTHk (I)

}
.

Computing theta norms relies heavily on computing a Groebner basis of the cor-
responding ideal I. We have used the so called grevlex ordering (graded reverse
lexicographic ordering, see [1]) and after some tedious computations, we end up
with the combinatorial moment matrix MBk

(X,y), see [7] for details.

1sos = sum of squares
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Given the combinatorial moment matrix MBk
(X,y), computing the θk-norm

of a given tensor X is given by the semidefinite program

min
y
t subject to MBk

(X,y) � 0, y0 = t

and the tensor recovery via θk-norm minimization is given by the following semi-
definite program

argmin
y,Z

t subject to MBk
(Z,y) � 0, y0 = t and Φ(Z) = b.

For a matrix case, we need to find an ideal IM such that its real algebraic variety
is νR (IM ) = {X ∈ Rn1×n2 : rank (X) = 1, ‖X‖F = 1}. Here, we work in the set
of all real polynomials in variables which correspond to the entries of a matrix X
denoted as R [x] = R [X11, X12, . . . , Xn1n2 ]. Since a matrix is rank one if and only
if all its 2 × 2 minors vanish, we define the corresponding ideal IM through its
basis BM

BM =





⋃

i<k,j<l

{XilXkj −XijXkl} ∪





n1∑

i=1

n2∑

j=1

X2
ij − 1







 .

In this case, all θk-norms are equal to the matrix nuclear norm.
For a third order tensor case, we define the polynomial ideal I ∈ R [x] =

R [X111, X112, . . . , Xn1n2n3 ] satisfying (3) through its reduced Groebner basis B

B =
{
f ijkîĵk̂
1 = −XijkXîĵk̂ +Xijk̂Xîĵk, i < î, j ≤ ĵ, k < k̂,

f ijkîĵk̂
2 = −XijkXîĵk̂ +XiĵkXîjk̂, i ≤ î, j < ĵ, k < k̂,

f ijkîĵk̂
3 = −XijkXîĵk̂ +Xiĵk̂Xîjk, i < î, j < ĵ, k ≤ k̂,

g =
∑

i,j,k

X2
ijk − 1, f ijkîĵk̂

1 , f ijkîĵk̂
2 , f ijkîĵk̂

3 , g ∈ R [X]
}
.

Every matricization of a rank one tensor is a rank one matrix. Thus, the ideal
I should contain all 2 × 2 minors of every matricization. Since B is the reduced
Groebner basis of I, it contains only the subset of all 2 × 2 minors. However,
every other 2× 2 minor not contained in B can be obtained as a difference of two
polynomials in B and thus is contained in the ideal I.

Finally, in Table 1 we present some numerical results for third order ten-
sor recovery via θ1-norm minimization from a random Gaussian measurement
map Φ : Rn1×n2×n3 → Rm. For fixed tensor dimensions, rank and number of
measurements m we performed 200 trials. We say that a tensor X is recov-
ered if the entry-wise difference between the original tensor X and the tensor
X∗ = argminZ:Φ(Z)=Φ(X) ‖Z‖θ1 is at most 10−6. With mmax we denote the max-
imal number of measurements m for which we did not manage to recover any out
of 200 tensors and with mmin we denote the minimal number of measurements m
for which we managed to recover all 200 tensors. The last column contains the
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tensor dimensions rank mmax mmin deg. of freedom

2× 2× 3 1 4 12 12
3× 3× 3 1 7 21 27
3× 4× 5 1 10 31 60
4× 4× 4 1 12 34 64
4× 5× 6 1 18 42 120
5× 5× 5 1 18 43 125

3× 4× 5 2 38 47 60
4× 4× 4 2 31 51 64
4× 5× 6 2 41 85 120

Table 1. Numerical results of third order tensor recovery

minimal number of independent measurements which would always be enough for
tensor recovery.
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Compressed sensing meets harmonic analysis

Vladimir Temlyakov

A generic problem of mathematical and numerical analysis is to approximately
represent a given function. It is a classical problem that goes back to the first
results on Taylor’s and Fourier’s expansions of a function.

The first step in solving the representation problem is to choose a representa-
tion system. Traditionally, a representation system has natural features such as
minimality, orthogonality, simple structure and nice computational characteristics.
The most typical representation systems are the trigonometric system {eikx}, the
algebraic system {xk}, the spline system, the wavelet system and their multivari-
ate versions. In general we may speak of a basis Ψ = {ψk}∞k=1 in a Banach space
X .
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The second step in solving the representation problem is to choose a form of an
approximant that is built on the base of the chosen representation system Ψ. In a
classical way that was used for centuries, an approximant am is a polynomial with
respect to Ψ:

(1) am :=

m∑

k=1

ckψk.

The complexity of the approximant am is characterized by the order m of the
polynomial. It is well known in approximation theory that approximation by
polynomials is closely related to smoothness properties of a function being ap-
proximated. Approximation of this type is referred to as linear approximation
theory because, for a fixed m, approximants come from a linear subspace spanned
by ψ1, . . . , ψm.

It was understood in numerical analysis and approximation theory that in many
problems from signal/image processing it is more beneficial to use an m-term
approximant with respect to Ψ than a polynomial of order m. This means that
for f ∈ X we look for an approximant of the form

(2) am(f) :=
∑

k∈Λ(f)

ckψk

where Λ(f) is a set of m indices which is determined by f . The complexity of
this approximant is characterized by the cardinality |Λ(f)| = m of Λ(f). Ap-
proximation of this type is referred to as nonlinear approximation theory because,
for a fixed m, approximants am(f) come from different linear subspaces spanned
by ψk, k ∈ Λ(f), which depend on f . The cardinality |Λ(f)| is a fundamental
characteristic of am(f) called sparsity of am(f) with respect to Ψ. It is now well
understood that we need to study nonlinear sparse representations in order to
significantly increase our ability to process (compress, denoise, etc.) large data
sets. Sparse representations of a function are not only a powerful analytic tool but
they are utilized in many applications in image/signal processing and numerical
computation.

The third step in solving the representation problem is to choose a method
of construction of an approximant of desired form. The fundamental question of
nonlinear approximation is how to devise good constructive methods (algorithms)
of approximation. This problem has two levels of nonlinearity. The first level of
nonlinearity is m-term approximation with regard to bases. In this problem one
can use the unique function expansion with regard to a given basis to build an
approximant. Nonlinearity enters by looking for m-term approximants with terms
(i.e. basis elements in approximant) allowed to depend on a given function. On the
second level of nonlinearity, we replace a basis by a more general system which is
not necessarily minimal (for example, redundant system, dictionary). This setting
is much more complicated than the first one (bases case), however, there is a solid
justification of importance of redundant systems in both theoretical questions and
in practical applications.
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Recent results have established that greedy type algorithms are suitable meth-
ods of nonlinear approximation in both m-term approximation with regard to
bases and m-term approximation with regard to redundant systems. It turns out
that there is one fundamental principal that allows us to build good algorithms
both for arbitrary redundant systems and for very simple well structured bases like
the Haar basis. This principal is the use of a greedy step in searching for a new el-
ement to be added to a given m-term approximant. By a greedy step, we mean one
which maximizes a certain functional determined by information from the previous
steps of the algorithm. We obtain different types of greedy algorithms by varying
the above mentioned functional and also by using different ways of constructing
(choosing coefficients of the linear combination) the m-term approximant from the
already found m elements of the dictionary.

In the case of nonlinear approximation with respect to a basis the Threshold-
ing Greedy Algorithm is the simplest and the most studied one. The following
question is very natural and fundamental. Which bases are suitable for the use of
the Thresholding Greedy Algorithm (TGA)? Answering this question researchers
introduced several new concepts of bases of a Banach space X : greedy bases, quasi-
greedy bases, almost greedy bases. The greedy bases are the best for application
of the TGA for sparse approximation – for any f ∈ X the TGA provides after
m iterations approximation with the error of the same order as the best m-term
approximation of f . If a basis Ψ is a quasi-greedy basis then it merely guarantees
that for any f ∈ X the TGA provides approximants that converge to f but does
not guarantee the rate of convergence. It turns out that the wavelet type bases
are very good for the TGA. However, it is known that the TGA does not work
well for the trigonometric system.

It was discovered recently, that the Weak Chebyshev Greedy Algorithm (WCGA)

works much better than the TGA for the trigonometric system. We discuss and
compare approximation by the TGA and the WCGA. We present some Lebesgue-
type inequalities for the Weak Chebyshev Greedy Algorithm. The main message
of the talk is that it is time to conduct a deep and thorough study of the WCGA
with respect to bases in a style of the corresponding study of the TGA.

Non-asymptotic analysis of ℓ1-SVM

Jan Vyb́ıral

(joint work with Anton Kolleck – TU Berlin)

Support vector machines (SVM) are a group of popular classification methods
in machine learning. Their input is a set of data points x1, . . . , xm ∈ Rd, each
equipped with a label yi ∈ {−1,+1}, which assigns each of the data points to
one of two groups. SVM aims for binary linear classification based on separating
hyperplane between the two groups of training data, choosing a hyperplane with
separating gap as large as possible.
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Since their introduction by Vapnik and Chervonenkis [9], the subject of SVM
was studied intensively. We will concentrate on the so-called soft margin SVM [2],
which allow also for misclassification of the training data.

In its most common form (and neglecting the bias term), the soft-margin SVM
is a convex optimization program

min
w∈R

d

ξ∈R
m

1

2
‖w‖22 + λ

m∑

i=1

ξi subject to yi〈xi, w〉 ≥ 1− ξi

and ξi ≥ 0(1)

for some tradeoff parameter λ > 0 and so called slack variables ξi. It will be more
convenient for us to work with the following equivalent reformulation of (1)

min
w∈Rd

m∑

i=1

[1− yi〈xi, w〉]+ subject to ‖w‖2 ≤ R,(2)

where R > 0 gives the restriction on the size of w. We refer to monographs
[7, 10, 11] and references therein for more details on SVM and to [4, Chapter B.5]
and [3, Chapter 9] for a detailed discussion on dual formulations.

As the classical SVM (1) and (2) do not use any pre-knowledge about w, one
typically needs to have more training data than the underlying dimension of the
problem, i.e. m≫ d. Especially in analysis of high-dimensional data, this is usually
not realistic and we typically deal with much less training data, i.e. with m ≪ d.
On the other hand, we can often assume some structural assumptions on w, in
the most simple case that it is sparse, i.e. that most of its coordinates are zero.
Motivated by the success of LASSO [8] in sparse linear regression, it was proposed

in [1] that replacing the ℓ2-norm ‖w‖2 in (2) by its ℓ1-norm ‖w‖1 =
∑d

j=1 |wj |
leads to sparse classifiers w ∈ Rd. This method was further popularized in [12] by
Zhu, Rosset, Hastie, and Tibshirani, who developed an algorithm that efficiently
computes the whole solution path (i.e. the solutions of (2) for a wide range of
parameters R > 0).
ℓ1-SVM (and its variants) found numerous applications in high-dimensional

data analysis, most notably in bioinformatics for gene selection and microarray
classification. Finally, ℓ1-SVM’s are closely related to other popular methods of
data analysis, like elastic nets, or sparse principal components analysis.

For the non-asymptotic analysis of ℓ1-SVM, we shall make the following
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Standing assumptions:

(i) a ∈ Rd is the true (nearly) sparse classifier with ‖a‖2 = 1, ‖a‖1 ≤ R,
R ≥ 1, which we want to approximate;

(ii) xi = rx̃i, x̃i ∼ N (0, id), i = 1, . . . ,m are i.i.d. training data points
for some constant r > 0;

(iii) yi = sgn(〈xi, a〉), i = 1, . . . ,m are the labels of the data points;
(iv) â is the minimizer of the ℓ1-SVM

min
w∈Rd

m∑

i=1

[1− yi〈xi, w〉]+ subject to ‖w‖1 ≤ R.(3)

(v) Furthermore, we denote

K = {w ∈ R
d | ‖w‖1 ≤ R},

fa(w) =
1

m

m∑

i=1

[1− yi〈xi, w〉]+,

where the subindex a denotes the dependency of fa on a (via yi).

In order to estimate the difference between a and â we adapt the ideas of [6].
First we observe

0 ≤ fa(a)− fa(â) =
(
Efa(a)− Efa(â)

)
+
(
fa(a)− Efa(a)

)
−
(
fa(â)− Efa(â)

)

≤ E(fa(a)− fa(â)) + 2 sup
w∈K

|fa(w) − Efa(w)|,

i.e.

E(fa(â)− fa(a)) ≤ 2 sup
w∈K

|fa(w) − Efa(w)|.(4)

Hence, it remains

• to bound the right hand side of (4) from above and
• to estimate the left hand side in (4) by the distance between a and â from
below.

Both these task can be done with success by standard concentration arguments,
cf. [5]. In this way, we obtain the following

Theorem 1. Let d ≥ 2, 0 < ε < 0.18, r >
√
2π(0.57 − πε)−1 and m ≥

Cε−2r2R2 ln(d) for some constant C. Under the “Standing assumptions” it holds
∥∥∥a− â

‖â‖2

∥∥∥
2

〈a, â
‖â‖2

〉 ≤ C′
(
ε+

1

r

)

with probability at least

1− γ exp (−C′′ ln(d))

for some positive constants γ, C′, C′′.
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Wavelet transform modulus: phase retrieval and scattering

Irène Waldspurger

(joint work with Stéphane Mallat)

This talk presents the results described in my PhD thesis about the wavelet trans-
form modulus operator, in particular its inversion and its use in the deep repre-
sentation named scattering transform.

A wavelet family (ψj)j∈Z is defined by:

∀j ∈ Z, t ∈ R, ψj(t) = 2−jψ(2−jt)

where ψ ∈ L1 ∩ L2(R,C) is any function such that
∫
R
ψ(t)dt = 0. We call wavelet

transform the operator:

W : f ∈ L2(R,C) → {f ⋆ ψj}j∈Z ∈ (L2(R))Z

The wavelet transform modulus is the composition ofW and a pointwise modulus:

|W | : f ∈ L2(R,C) → {|f ⋆ ψj |}j∈Z ∈ (L2(R))Z

Under mild conditions on ψ, W is invertible and its inverse is uniformly con-
tinuous. Do the same properties hold for |W |? To what extent is it possible to
reconstruct f ∈ L2(R,C) from |W |f , up to multiplication by a global phase?

This is an inverse problem whose main motivations come from audio processing.
Indeed, the wavelet transform modulus (or scalogram) is a widespread represen-
tation of acoustic signals, similar to the spectrogram. It possesses the essential
property that two signals have almost identical wavelet transform modulus if and
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only if they are indistinguishable for a human ear. Initiated in the eighties [7, 13],
the study of the inverse problem provides a theoretical framework to this empirical
property. Moreover, many sound processing applications (like blind source sepa-
ration [14]) operate in the scalogram domain. In order to obtain audible results,
it is thus necessary to invert the wavelet transform modulus operator.

This problem belongs to the class of phase retrieval problems, where one aims at
reconstructing an unknown object from the modulus of linear measurements. Main
theoretical questions raised by these problems are the uniqueness of reconstruction
and its stability to measurement noise. They are well-understood in the case where
measurements are randomly chosen according to some probability distributions [3,
2]. However, they are in general difficult when the measurements are deterministic
and imposed by practical considerations.

For the wavelet transform, they can be precisely answered if the wavelets are
assumed to be Cauchy wavelets, that is:

∀ω ∈ R ψ̂(ω) = ωpe−ω1ω≥0 for some p > 0.

In this case, we prove that any analytic function of L2(R,C) is uniquely determined
by its wavelet transform modulus, up to a global phase [12]. The corresponding
inverse operator is continuous, but not uniformly continuous: the reconstruction is
not stable to measurement noise in a strong sense. Nevertheless, it satisfies a local
stability property: if two wavelet transforms are approximately equal in modulus,
then they are approximately equal up to a global phase in a neighborhood of each
point (t, j) ∈ R × Z of the time-frequency plane, except maybe around points
where the modulus is close to zero.

The proof of this result is driven by the same techniques as in [1, 8].

From a numerical point of view, as phase retrieval problems are non-convex,
most generic reconstruction algorithms suffer from a local optima phenomenon;
even with no measurement noise, they do not always return the correct solution.
Methods by convexification [3] seem more robust to this problem, but their com-
putational cost is prohibitive.

In the case of the wavelet transform, we propose an algorithm avoiding these
drawbacks. It relies on a reformulation of the phase retrieval problem involving the
holomorphic extension of the wavelet transform. Additionnally, the reconstruction
is performed in a multiscale manner, from low to high frequencies; each wavelet
scale begins to be reconstructed after the reconstruction for the coarser scales has
converged. The resulting algorithm is accurate and sufficiently fast to be applied
to audio signals.

In the second part of the talk, we discuss the integration of the wavelet transform
modulus in a deep representation, the scattering transform, defined by Mallat [11].

The scattering transform is a cascade of wavelet transform modulus, followed
by convolutions with a low-pass filter φJ . To a signal f ∈ L2(R), it associates
scattering coefficients, of the form:

|...||f ⋆ ψj1 | ⋆ ψj2 |... ⋆ ψjn | ⋆ φJ
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The index n is called the order of the coefficient.
Since its introduction, the scattering transform has been applied to many data

analysis tasks [5]. It performs on par with or better than deep learned transforma-
tions. But compared to these transformations, the scattering transform does not
require any learning. It is thus easier to analyze mathematically, and can provide
interesting insights on the behavior of deep representations.

Mallat proved that the scattering transform is stable to small deformations and
translations, and preserves the norm, provided that the wavelets satisfy a so-called
admissibility condition [11].

We explain that, in the norm preservation theorem, the admissibility condition
can be removed. Moreover, we can give an upper bound of the energy contained

in the n-th order scattering coefficients of f , as a function of the decay of |f̂ |.
For band-limited signals, this result implies that the energy decays exponentially
with the order. It matches empirical observations according to which, in most
applications, scattering coefficients of order n ≥ 3 carry a negligible amount of
information.

It is then natural to focus our analysis on coefficients with order n = 1 or n = 2.
First-order scattering coefficients are simply the wavelet transform modulus,

convolved with the low-pass filter, as studied in the first part of this talk. At this
level, the scattering transform is close to many widely-used representations. It
corresponds to dynamic features [6] in prior audio processing work. In computer
vision, Histograms Of Gradients (HOG) [4] and, to some extent, Scale-Invariant
Feature Transforms (SIFT) [10], behave similarly to a wavelet transform modulus.
The first layer of most convolutional neural networks also consists in wavelet-like
filters [9], followed by a nonlinearity comparable to a complex modulus.

A better understanding of second-order coefficients, and their relation to other
deep representations, needs to be addressed in future work.
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Global solutions to k-means and k-median clustering objectives

Rachel Ward

The k-means clustering objective aims to partition a set of n points into k clus-
ters in such a way that each observation belongs to the cluster with the nearest
mean, and such that the sum of squared distances from each point to its nearest
mean is minimal. In general, this is a hard optimization problem, requiring an
exhaustive search over all possible partitions of the data into k clusters in order
to find the optimal clustering. At the same time, fast heuristic algorithms for
the k-means optimization problem are often applied in many data processing ap-
plications, despite having few guarantees on the clusters they produce. In this
talk, we will introduce a semidefinite programming relaxation of the k-means op-
timization problem, along with geometric conditions on a set of data such that
the algorithm is guaranteed to find the optimal k-means clustering for the data.
For points drawn randomly within separated balls, the important quantities are
the distances between the centers of the balls compared to the relative densities of
points within them, and at sufficient density, the SDP relaxation is guaranteed to
resolve such clusters at arbitrarily small separation distance. We will also discuss
certain convex relaxations and recovery guarantees for another geometric cluster-
ing objective, k-median clustering. We will conclude by discussing several open
questions related to this work. References are [1, 2, 3].
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Data assimilation

Przemyslaw Wojtaszczyk

(joint work with Peter Binev, Albert Cohen, Wolfgang Dahmen, Ron DeVore,
Guergana Petrova)

We tried to understand and put in a more general framework the work of Yvon
Maday and coworkers on data assimilation; in particular the paper [3]. The general
framework behind this work is the following:

We are given V1 ⊂ V2 ⊂ · · · ⊂ VN ⊂ H a sequence of finite dimensional
subspaces and sequence of numbers ǫ1 ≥ ǫ2 ≥ · · · ≥ ǫN > 0 a Hilbert space H. We
are also given a linear measurement map M : H → Rm. We always assume that
M maps H onto Rm. We want to approximate u ∈ H given the information

(1) dist(u, Vj) ≤ ǫj for j = 1, 2, . . . , N
(2) M(u) = w where w ∈ Rm is known.

We also consider the case when instead of a Hilbert space H we have a Banach
space X . The case when N = 1 (one-space case) is special and receives a different
treatment.

Such a setup and a name comes from the following considerations: We have a
natural process which is describe by a model but we do not know the parameters of
the models. Quite often e.g. using a reduced basis method our information which
comes from the model is in the form (1). On top of this we have t he additional
information coming from measurements, this is modeled by w. We want to use
them together.

Thus we want to have an algorithm A : Rm → H such that

• A(w) satisfy 1. and 2. or it tells us that such a u does not exists (i.e.
something is wrong).

• We want a’priori and a’posteriori error bounds for best possible algorithm.
• We want A to be the best or almost the best.

We denote N =: kerM and Nw =M−1(w) and K = {h ∈ H : dist(h, V ) ≤ ǫ}.

Kw = K ∩Nw

If dimV ∩ N ≥ 1 than either Kw = ∅ or K contains a line so we always assume
V ∩ N = {0}. This forces m ≥ dim V . For a set S ⊂ H we define

diam(S) = supx,y∈S‖x− y‖

rad(S) = inf
y∈S

sup
x∈S

‖y − x‖.

The center of S is any y for which inf is attained.
The best algorithm is:

A(w) equals the center of Kw and the error is rad(Kw).

More geometry: We put µ(N , V ) = supx∈N ; y∈V
‖x‖

‖x−y‖ . Also diam(Kw) ≤
diam(K0).
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In Hilbert and Banach one space case we have rad(K0) = ǫµ(N , V ). In the
Hilbert case rad(Kw) ≤ ǫµ(N , V ) and in the Banach case rad(Kw) ≤ 2ǫµ(NH, V )

Using only SVD and Gram-Schmidt orthogonalisation we define an orthonormal
basis in H. Using this basis we describe Kw explicitely. It is an elipsoid in Nw,
we have the center and the radius equals ǫµ(N , V )Φ(w). This gives a numerical
algorithm in one space Hilbert case.

In the multispace case the set Kmulti
w of all x ∈ H or X such that 1. and 2.

holds equals

Kmulti
w =

N⋂

j=1

({x : dist(x, Vj) ≤ ǫj} ∩ Nw) .

We have diam(Kmulti
w ) ≤ 2rad(Kmulti

0 ). Clearly
The best algorithm possible is A(w) equals the center of Kmulti

w

Unfortunately in this case we do not know how to calculate the center of Kmulti
w

or its radius even in the Hilbert case. It is known to be NP hard. Kmulti
w is a finite

intersection of convex sets so alternating projection algorithm generally works. In
Banach space it is rather theoretical.

In Hilbert space the closest point projection CPj onto {x : dist(x, Vj) ≤ ǫj}
is defined as

CPj(x) = PVj (x) + α(x− PVj (x))

where α = min{1, ǫj‖x − Pj(x)‖−1
2 } and CPw onto Nw is the affine orthogonal

projection. We put

uk+1 =: CPNCPN−1 . . . CP1CPw(u
k).

If Kmulti
w 6= ∅ then uk → u ∈ Kmulti

w and ‖u − uk‖ = O(k−1/2). This u is not a
center but the error ≤ diamKmulti

w

The obvious estimate diamKmulti
w ≤ minj diamKj

w = 2minj ǫjµ(N , Vj) is far
from optimal.

Now we discuss the Banach space case: On Rm we introduce the new
norm (quotient norm) as

‖w‖M = inf{‖x‖X : M(x) = w}.
We fix a lifting ∆ : Rm → X i.e. a map such that M(∆(w) = w for all w ∈ Rm

and ∆(tw) = t∆(w) for t ≥ 0. We put

‖∆‖ = sup
‖w‖M≤1

‖∆(w)‖.

Note that ‖∆‖ <∞ does not implies that ∆ is continuous. We define L ⊂ Rm as
L =M(V ). M |V is 1-1 from V onto L so we calculate the inverse map M−1.

Given w ∈ Rm we find Λ(w) ∈ L which is (almost) the best approximation to
w in L in ‖.‖M , say

‖w − Λ(w)‖M ≤ λ inf{‖w − ℓ‖M : ℓ ∈ L}.
We define

A(w) :=M−1(Λ(w)) + ∆(w − Λ(w)).
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Let w =M(x). We have

(1) A(w) ∈ Nw i.e. M(A(w)) = w
(2) dist(A(M(x)), V ) ≤ λ‖∆‖dist(x, V )

so if λ = 1 = ‖∆‖ and x ∈ Kw then A(w) ∈ Kw and supx∈Kw
‖x − A(w)‖ ≤

2rad(Kw).

• Norm ‖.‖M generally is difficult to compute. Formulas exists in excep-
tional cases. To compute ‖w‖M up to given accuracy may require expo-
nential in m number of functionals. Finding approximation Λ is a convex
minimization problem but in ‖.‖M . Theoretically Λ with λ = 1 exists.

• Lifting ∆ with ‖∆‖ = 1 may not exists. Continuous ∆ with ‖∆‖ ≤ 1 + η
exists for every η > 0 (Bartle-Graves theorem) but are not linear and with
bad modulus of continuity. In nice Banach spaces (uniformly convex e.g.
Lp with 1 < p <∞) continuous ∆ with ‖∆‖ = 1 exists.

• When X is a Hilbert space, ‖.‖M is euclidean norm so Λ is an orthogonal
projection and λ = 1. ∆ is linear unitary map and we get the optimal
algorithm discussed earlier.

• When X = C(S) and M(f) = (f(s1), . . . , f(sm)) then ‖(wj)‖M = maxj |wj |.
We fix functions (φj)

m
j=1 such that φj(sj) = 1 and

∑n
j=1 |φj(s)| ≤ 1 for

all s ∈ S. Then ∆(w) =:
∑m

j=1 wjφj is a linear lifting with ‖∆‖ = 1. We
have

Λ(w) = Argminℓ∈Lmax
j

|lj − wj |
which gives

M−1(Λ(w) = Argminv∈V max
j

|v(sj)− wj |.
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Physikalisches Institut
Universität Freiburg
Hermann-Herder-Str. 3a
79104 Freiburg i. Br.
GERMANY

Dr. Jan Lellmann

Centre for Mathematical Sciences
University of Cambridge
Wilberforce Road
Cambridge CB3 0WA
UNITED KINGDOM

Lizao Li

Department of Mathematics
University of Minnesota
504 Vincent Hall
206 Church Street S. E.
Minneapolis, MN 55455
UNITED STATES

Shuyang Ling

Department of Mathematics
University of California, Davis
1, Shields Avenue
Davis, CA 95616-8633
UNITED STATES

Dr. Martin Lotz

Department of Mathematics
The University of Manchester
Manchester M13 9PL
UNITED KINGDOM

Jackie Ma

Institut für Mathematik
Sekr. MA 5-4
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
GERMANY

Dr. Mauro Maggioni

Department of Computer Science
Duke University
117 Physics Building
P.O. Box 90320
Durham, NC 27708-0320
UNITED STATES

Prof. Dr. Madhusudan Manjunath

Department of Mathematics
University of California, Berkeley
970 Evans Hall
Berkeley CA 94720-3840
UNITED STATES



2262 Oberwolfach Report 38/2015

Prof. Dr. Shahar Mendelson

Department of Mathematics
Technion
Haifa 32000
ISRAEL

Prof. Dr. Hrushikesh N. Mhaskar

Institute for Mathematical Sciences
Claremont Graduate University
Claremont, CA 91125
UNITED STATES

Dr. Dustin G. Mixon

Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson, OH 45433
UNITED STATES

Prof. Dr. Kasso Okoudjou

Department of Mathematics
University of Maryland
College Park, MD 20742-4015
UNITED STATES

Philipp Petersen

Institut für Mathematik
Sekr. MA 4-1
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
GERMANY

Prof. Dr. Gerlind Plonka-Hoch

Institut f. Numerische & Angew.
Mathematik
Universität Göttingen
Lotzestrasse 16-18
37083 Göttingen
GERMANY

Prof. Dr. Holger Rauhut

Lehrstuhl für Mathematik C (Analysis)
RWTH Aachen
Pontdriesch 10
52062 Aachen
GERMANY

Dr. Jose Luis Romero

Fakultät für Mathematik
Universität Wien
Oskar-Morgenstern-Platz 1
1090 Wien
AUSTRIA

Prof. Dr. Naoki Saito

Department of Mathematics
University of California, Davis
1, Shields Avenue
Davis, CA 95616-8633
UNITED STATES

Dr. Karin Schnass

Institut für Mathematik
Universität Innsbruck
Technikerstr. 13
6020 Innsbruck
AUSTRIA

Prof. Dr. Gabriele Steidl

Fachbereich Mathematik
Technische Universität Kaiserslautern
67653 Kaiserslautern
GERMANY

Dr. Stefan Steinerberger

Department of Mathematics
Yale University, Rm. 456 L
P.O. Box 208283
New Haven CT 06520
UNITED STATES

Zeljka Stojanac

Hausdorff Center for Mathematics
Institute for Numerical Simulation
Endenicher Allee 60
53115 Bonn
GERMANY



Applied Harmonic Analysis and Sparse Approximation 2263

Prof. Dr. Thomas Strohmer

Department of Mathematics
University of California, Davis
1, Shields Avenue
Davis, CA 95616-8633
UNITED STATES

Prof. Dr. Vladimir N. Temlyakov

Department of Mathematics
University of South Carolina
Columbia, SC 29208
UNITED STATES

Dr. Ulrich Terstiege

Lehrstuhl C für Mathematik
RWTH Aachen
Pontdriesch 10
52062 Aachen
GERMANY

Felix Voigtlaender

Lehrstuhl A für Mathematik
RWTH Aachen
Templergraben 55
52062 Aachen
GERMANY

Dr. Jan Vybiral

Department of Mathematical Analysis
Faculty of Mathematics & Physics
Charles University
Sokolovská 83
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