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Abstract. The development of reliable numerical methods for the simula-

tion of real life problems requires both a fundamental knowledge in the field
of numerical analysis and a proper experience in practical applications as well
as their mathematical modeling.

Thus, the purpose of the workshop was to bring together experts not only
from the field of applied mathematics but also from civil and mechanical
engineering working in the area of modern high order methods for the solution
of partial differential equations or even approximation theory necessary to
improve the accuracy as well as robustness of numerical algorithms.
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Introduction by the Organisers

The workshop Recent Developments in the Numerics of Nonlinear Hyperbolic Con-
servation Laws, organised by Rémi Abgrall (Zürich), Willem Hundsdorfer (Ams-
terdam), Andreas Meister (Kassel) and Thomas Sonar (Braunschweig) was held
September 14th–September 19th, 2015. This meeting was well attended with over
50 participants with broad geographic representation from all continents.

Since modern numerical methods like Discontinuous Galerkin or Spectral Ele-
ment Finite Difference methods are based on orthogonal polynomials on simplices
and use modal filters as well as methods for edge detection and many more math-
ematical devices from different areas of research we decided to invite renowned
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researchers from numerical methods for partial differential equations and approxi-
mation theory. Furthermore, to couple mathematical precision with a large range
of applicability we also invited scientist from engineering departments working in
the field of numerical schemes.

The talks ranged from new Runge-Kutta solvers, new filters and edge detection
algorithms, Discontinuous Galerkin methods, Spectral Difference methods, Finite
Difference operators, implicit solvers, and finite volume methods to the modeling
of shallow water flow, viscous as well as inviscid fluid flow and solid mechanics.
Discussions were lively and many different research areas met for the first time
resulting in interesting talks and contacts.

The workshop was a tremendous success and we are looking forward to repeat
this kind of conference in Oberwolfach again in a few years.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Remove the mass matrix from finite element calculations of covection
dominated transport equations

Rémi Abgrall

(joint work with P. Bacigaluppi, S. Tokareva)

We are interested in the numerical approximation of problems of the type: find
the solution u : Ω×R+ → Rp, where Ω is a regular open set of Rd, d = 1, 2, 3 and
p ∈ N of:

∂u

∂t
+ div f(u) = 0

u(x, 0) = u0(x) in x ∈ Ω

u = g on ∂Ω

(1)

Let us give a more precise meaning to this. In order to impose a condition
u = g on the inflow boundary, we assume, for any real a and b, and any vector n,
the existence of ∇uf (a, b) such that

• ∇uf(a, a) = ∇uf(a) · n and,

• f(b) · n− f(b) · n = ∇uf (a, b) (b− a).

This is a reminscence of the Roe average. As soon as f is C1, such average exists
and is unique. Then the boundary conditions are set such that

(2) max
(
0,∇uf(u, g) · n

)
(u− g) = 0 on Γ = ∂Ω

We introduce the flux F defined by:

F(a, b) =
1

2

(
f(a) · n+ f(b) · n+

∣∣∇uf
∣∣(a, b)

)
.

Solutions of (1) should be understood in the weak sense. We introduce the
space

C1
0,t(Ω× R+) = {ϕ ∈ C1(Ω× R+) such that there exists Tufor which for any

x ∈ Ω, u(x, t) = 0 when t > Tu}.
The weak form of (1) is: find u ∈ L1(Ω × R+) ∩ L∞

loc(Ω × R+) such that for any
ϕ ∈ C1

0,t(Ω× R+)
(3)∫

Ω×R+

∇ϕ·f(u)dxdt+
∫

Ω

ϕ(x, 0)u0(x)dx−
∫

Γ×R!+
ϕ(x, t)

(
f(u)·n−F(u, g,n)

)
dω = 0

Typical examples of (1) are the Burgers equation where p = 1, d = 2 and

f(u) =
(
u2

2 , u
)
, the Kurganov-Petrov-Petrova system where p = 1, d = 2 and

f(u) =
(
cosu, sinu

)
, the Euler equations of fluid dynamics where d = 1, 2, 3,

p = 2 + d in the simplest case, u = (ρ, ρ~v, E)T where ρ is the density, ~v the
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velocity field and E the total energy, i.e. the sum of the internal energy e and the
kinetic energy. The flux is then

f(u)




ρ~v
ρ~v ⊗ ~v + p Id(

E + p)~v


 .

The system is closed by the equation of state p = p(e, ρ) which has itself to satisfy
convexity assumptions [7]. In what follows, for ease of exposition, we are only
interested in scalar solutions, i.e p = 1, but the extension to the general case is
straightforward.

When one is interested in solving the unsteady problem (1) using a finite el-
ement method, several choices need to be made. First, one has to define the
approximation space V h in which we are looking for the approximate solution. In
order to define it, one first need to consider a tessellation Th of Ω, i.e. a set of
elements (typically simplices or more complicated geometrical objects) such that
the intersection of two elements has empty interior when they are not identical,
and such that they cover Ω 1.Once this choice is met, V h is usually defined as:

V h = { for any K,uh|K is polynomial of degree k}.
Here again we assume that the polynomial degree is the same on any element, but
this assumption might not be essential. The next step is to decide whether we are
interested in globally continuous function, and in that case V h must be replaced
by

V h = { for any K,uh|K is polynomial of degree k} ∩C0(Ω),

or if the global continuity requirement is not required.
In order to approximate the weak form (2), discretization choices need to be

made according to the structure of V h. In the discontinuous case,a typical ex-
ample is the Discontinuous galerkin method, see [6, 5]. In the continuous case,
a typical example is the stabilized Galerkin methods, i.e. either the stream-line
diffusion method [8, 9], or [4] where different stabilisation technique are used or
the purely nonlinear method [3, 1, 2] which is is original design to compute steady
discontinuous solutions.

In most cases, one arrives to solving problems of the type

(4) M
dU

dt
+ F = 0

where U is the vector of unknowns, F is the approximation of the divergence term
and M is a mass matrix. When the Discontinuous Galerkin method is employed,
M is block diagonal, so computing M−1 is not a big deal. This is not the case in
the continuous setting where M is only sparse. After that, one can use standard
ODE solvers.

The purpose of the talk was to show how to avoid to invert the mass matrix,
extending the work of [10]. More precisely, instead of considering (4), we introduce
a slight modification of it which does not need any inversion of mass matrix, and

1Here we implicitely make the assumption that Ω is polygonal, but this is not essential.
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this modification has the property that the original accuracy is kept, as well as the
conservation properties of the method. With respect to a standard approximation,
one has to slightly change the approximation representation: the basis functions
ϕσ associated to any degree of freedom σ must be such that for any K contained
in the support of ϕσ, we must have

∫

K

ϕσdx > 0.

This condition is not met in general for Pk simplifies elements , except for k = 1,
but in the case k > 0 one can replace them, without modifying V h, by Bézier basis
functions. In the case of Qk elements, the degree of free

We have show several examples, in the linear (station case) and the non linear
case (KPP problem), that the method is effective and lead to the expected accuracy
(for linear problems).
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Efficient Time Integration of IMEX Type using Exponential
Integrators for Compressible, Viscous Flow Simulation

Veronika Diba

(joint work with Andreas Meister, Sigrun Ortleb, Philipp Birken)

The simulation of unsteady compressible, viscous flow in real applications such as
the flow around a windturbine or gas quenching is still a challenging task due to
the geometrical complexity and the size of the resulting systems [7, 8]. The spatial
discretization of the compressible Navier-Stokes equations using the Discontinuous
Galerkin method leads to a large system of ordinary differential equations (ODEs)

(1)
d

dt
U(t) = F(U(t)), U : R → RN , F : RN → RN , t ∈ [t0, T ].

That system suffers from the so-called geometry-induced stiffness due to the dras-
tically varying scales of the grid elements. Accordingly, explicit time integration
methods become inefficient, since their time step size is determined by the smallest
grid element to ensure stability [1]. Implicit time integration allows much greater
time step sizes but at a crucial increase of the computational cost and memory
requirement per step. As shown by Kanevsky et. al. [2] the key to an efficient time
integration scheme in that scope promises to be the domain-based implicit-explicit
(IMEX) idea, which suggests to split the computational domain into a stiff region
associated with an implicit time integration scheme and a nonstiff region linked to
explicit time stepping, see figure 1. The stiff region consists of the smallest grid
elements and the nonstiff of the bigger ones.

Figure 1. IMEX idea Figure 2. Wind turbine

Our goal is the construction of an IMEX type method, which is efficient even
without preconditioning and thus allowing for good parallelization. The recently
developed EPIRK schemes by Tokman [6] seem to be suited for the application
on the implicit region. They belong to the class of exponential integrators while
applying Krylov subspace projections and other strategies to gain efficiency. Their
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advantages are that they are theoretically unconditionally A-stable, do not need
a preconditioner, can be implemented in a Jacobian-free mode, and are shown to
be more efficient than cassical schemes like explicit Runge-Kutta (RK), BDF or
Rosenbrock methods for sufficiently stiff problems [3].

An EPIRK scheme of stage s with a set of coefficients bi, aij , gij , psij for i, j ∈
{1, 2, . . . , s} can be written as

Un+1 = Un + b1ψs1(gs1Anh)hFn + h

s∑

k=2

bkψsk(gskAnh)∆
(k−1)Rn(Un)(2)

Yi = yn + ai1ψi1(gi1Anh)hFn + h
i∑

j=2

aijψij(gijAnh)∆
(j−1)Rn(Un),(3)

i = 1, . . . , s − 1, where Rn(Y) := F(Y) − Fn − An(Y − Un), h denotes the time
step size, An := F′(Un) and ∆jRn(Un) is the j-th forward difference through the
nodes Un,Y1, . . . ,Yj . At last, the functions ψjk for j, k = 1, . . . , s are defined by

ψjk(z) :=

s∑

i=1

pjkiϕi(z) and ϕi(z) :=

∞∑

k=0

zk

(k + i)!
, i = 0, 1, . . . , s.

Of great importance for applying those schemes in an IMEX context are the
Courant-Friedrichs-Lewy (CFL-) stability, the conservativity, and the stability in
practice, which have been examined by us.

As for the A-stability, we figured out that it is not given in practice any more,
since we are approximating the ϕ-functions by a Krylov projection Pm into the
Krylov subspace Km

ϕk(Anh)Fn ≈ Pm(ϕk(Ah)Fn) =

m−1∑

i=0

(hAn)
i

(i + k)!
Fn,

k = 0, 1, . . . , s. Consequently, the stability function consists of the Krylov projec-
tion Pm of eλh:

Un+1 = Pm(eλh)Un.

The stability region can be determined by computing the roots z ∈ C of

m−1∑

j=0

zj

j!
− eiθ, θ ∈ [0, 2π).

Obviously, the stability region depends on the dimensionm of the Krylov subspace
and increases with increasing m.

The CFL-stability also depends on m, which was shown by us for the one-
dimensional advection-diffusion equation discretized by Finite Differences. The
CFL-condition for a linear advection with speed a discretized on an equidistant
grid with mesh width ∆x was shown to be given by h ≤ m∆x

|a| . Unconditional

CFL-stability is given for m ≥ N−1, if N is the size of the resulting ODE system.
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Now let’s have a look at the conservativity. We call a time stepping scheme
conservative, if

(4)

N∑

j=1

(Un+1)j =

N∑

j=1

(Un)j ∀ n ∈ N0

holds for a system (1) with a right-hand side satisfying

N∑

j=1

(
F(U)

)
j
= 0 ∀ U ∈ RN .

We showed that the EPIRK schemes fulfill that property (4).
Now we can apply those schemes in an IMEX-context, what means that we first

split the right-hand side of the ODE system (1) in the following way:

F(U) = FE(U) + FI(U).

In FE we put all the terms connected to the nonstiff region, i.e. all integrals over
the larger grid elements and the other terms will be collected in the implicit part
FI .

Our first idea was to apply an explicit Runge-Kutta method to the vector FE

and an EPIRK scheme to FI . That IMEX-EPIRK scheme turned out to be of at
most first order of convergence and can be written as

(5) Un+1 = Un + h(FE + ϕ1(hA
I
n)F

I
n).

It is conservative, if the so-called flux-splitting strategy [5] is applied to F. On the
implicit region it is CFL-stable for sufficiently high Krylov subspace dimension m
and is theoretically A-stable. In practice the stability region for the implicit part
corresponds to that of the underlying EPIRK scheme resulting from FE = 0.

To construct methods of higher order than one in our IMEX context utilizing
exponential integrators, consider the splitEPIRK schemes [4]: Given a split system
of ODEs of the form

d

dt
U(t) = F(U) = LU(t) + N(U(t)), L ∈ RN×N ,

the splitEPIRK schemes are given as in equations (2),(3) with the difference that
the matrix L is used instead of A and the function N replaces R. To apply those
methods in the domain-based IMEX-manner, first split F into two parts F(U) =

FE(U)+FI(U) as before using the flux splitting strategy to ensure conservativity.
Now define

Ln = (FI)′(Un), N(U) = F(U)− LnU,

so that the application of the splitEPIRK method to F(U) = LnU + N(U) is
feasible. Those IMEX-splitEPIRK schemes have similar properties as the IMEX-
EPIRK schemes on the implicit region and can be written as an RK scheme on
the explicit region. Therefore, the CFL-condition for the underlying RK scheme
determines the global time step size.
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First numerical experiments for the flow around a wind turbine profile in two
dimensions (see figure 2) were carried out showing the experimental order of con-
vergence two for the IMEX-EPIRK scheme (5) in that test case. The reason for
that is that the underlying EPIRK scheme is already of second order and is applied
to the implicit region, where the main changes of the numerical solution seem to
be located. Extensive numerical experiments and comparison with other schemes
is subject of our current and future work as well as the task of finding criteria for
deviding the domain into an explicit and an implicit region.
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Space-time discontinuous Galerkin method for nonlinear hyperbolic
conservation laws: residual error estimates

Vı́t Dolejš́ı

(joint work with Filip Roskovec, Miloslav Vlasák)

We deal with the numerical solution of nonlinear hyperbolic problems with the
aid of the fully implicit space-time discontinuous Galerkin method (STDGM). This
technique is based on piecewise polynomial but discontinuous approximation which
provides sufficient accurate and stable numerical solutions, see [3]. Moreover, it
offers a great flexibility in mesh adaptation, namely it simply treats different grids
on different time levels.

The numerical solution of nonlinear partial differential equations (PDEs) by the
space-time discontinuous Galerkin method (STDG) is influenced by three types of
errors:
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• space (or spatial) error resulting from the space semi-discretization of the
given PDEs by the DG method,

• time (or temporal) error resulting from the discretization of the arising
ODEs system with the aid of the time DG scheme,

• algebraic error (including rounding errors) resulting from the inexact so-
lution of the corresponding nonlinear algebraic systems at each time step.

In order to ensure the accuracy as well as the efficiency of the numerical method,
these errors should be balanced.

In [4], we developed a residual based error estimation technique, which is able
to identify the spatial, temporal and algebraic errors for convection-diffusion prob-
lems. Here, we present its extension to purely hyperbolic problems. These esti-
mates are based on supremum

η := sup
ψ∈Xh ψ 6=0

Ah(w̃hτ , ψ)

‖ψ‖X
,(1)

where Ah is the form representing the STDG discretization of the given problem,
w̃hτ is the approximate solution and ψ is the test function. By a suitable choice
of the (finite-dimensional) space Xh, we define

• space-time-algebraic error,
• space-algebraic error,
• time-algebraic error,
• algebraic error.

The delicate is the choice of the norm ‖·‖X in (1). Based on theoretical considera-
tions and numerical experiments, we use the broken H1(0, T ;H1(Ω))-norm which
leads to the estimate of the error in the L2(0, T ;L2(Ω))-norm. The presented
numerical experiments verify that these estimates identify the corresponding in-
gredients of the total error.

Moreover, we developed an efficient algorithm which

• stops an iterative algorithm, which solves the arising nonlinear algebraic
system at each time step, when the computational error is not essentially
influenced by the algebraic error,

• chooses the size of the time step such that the computational error is not
essentially influenced by the temporal error,

• adapts the given triangular grid such that the error estimate is under the
given tolerance.

DGM can simply handle with different polynomial approximation degree and
also with anisotropic grids. The use of the so-called anisotropic hp-adaptation
can considerably decrease the number of degrees of freedom of many hyperbolic
problems, where the exact solution is typically piecewise regular but discontinuous.

In [1], we developed the anisotropic hp-adaptation approach for the solution of
boundary value problems. This technique is based on the optimization of a given
hp-grid such that the interpolation error measured in the Lq(Ω)-norm (q ≥ 1)
is under a given tolerance. This technique was extended in [2] to the numerical
solution of non-stationary problems, where a sequence of hp-meshes is generated
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such that the interpolation error in the discrete L∞(0, T ;Lq(Ω))-norm is limited.
If an “unsuccessful time step” is detected, then a re-meshing has to be carry out.
Here it is advantageous to use STDGM which couples two time slaps in a weak
sense. The preliminary numerical example is presented.
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Skew-Symmetric Entropy-Stable Discontinuous Galerkin Methods for
Hyperbolic Problems with Source Terms

Gregor Gassner

(joint work with Niklas Wintermeyer, Andrew Winters, David Kopriva)

Fluid flows in lakes, rivers, and near coastlines are of interest in oceanography and
climate modelling. For such flows the vertical scales of motion are much smaller
than the horizontal scales. From this and the assumption of hydrostatic balance,
the Euler equations can be simplified to the shallow water equations. If the fluid
flows over a non-constant bottom topography the shallow water equations may be
written as a hyperbolic system of balance laws

(1) ∂tu+ ∂xf + ∂yg = s.

For problems with non-constant bottom topographies s 6= 0 the preservation of
non-trivial steady-state solutions is an important feature of a numerical approx-
imation. Such preservation is particularly troublesome for discontinuous bottom
topographies. One important steady-state for the shallow water equations is the
so-called “lake at rest” solution, where a non-moving flat surface stays flat for all
times. Discretisations which exactly preserve such steady-state solutions are said
to be “well balanced”. This is an important property when simulating problems,
where the solution is a small perturbation of such a steady-state. If the method is
not well balanced, this may result in numerically generated perturbations that are
larger in magnitude the the actual perturbations of the solution, i.e. a so-called
“numerical storm”.

Besides the specific steady-state preservation, a general aspect of a numerical
method is its robustness and hence the ability to produce accurate and stable
results, even in the presence of non-linear discontinuities. While robustness is
often relative straight forward for low order approximations such as e.g. first or
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second order finite volume discretisations, it still remains an open challenge for
many so-called high order methods, such as e.g. the nodal discontinuous Galerkin
method. Due to variational crimes, Galerkin discretisations with high polynomial
degree approximations suffer from aliasing errors. They suffer, because a positive
benefit of high order polynomial approximations is a resulting low inherent nu-
merical dissipation. Thus, while low numerical dissipation is certainly desired for
accuracy reasons it is at the same time the reason that errors due to variational
crimes are not masked and hence have an impact on the stability of the resulting
discretisation. In a Galerkin type discretisation, aliasing errors typically occur
when non-linear functions are approximated by polynomial interpolation and not
by polynomial L2-projection. If the number of interpolation (or quadrature) points
are not sufficiently high to resolve the function, parts of higher modes of the func-
tion are transferred to lower modes, see [1]. This issue gets magnified in situations
where the approximation is unresolved, e.g. shocks or vortical driven flows (turbu-
lence). Without proper de-aliasing techniques, aliasing errors then accumulate in
every time step and can even drive non-linear instabilities, i.e. cause simulations
to crash, e.g. [1, 2].

A clean de-aliasing technique is the proper projection of non-linear functions
onto the polynomial space by choosing the number of interpolation (quadrature)
points sufficiently large to recover the analytical projection. This so-called poly-
nomial de-aliasing is quite common in spectral methods and was first proposed in
the context of discontinuous Galerkin methods by Kirby and Karniadakis in 2003.
At first glance, this technique is quite simple (to implement) and the cleanest de-
aliasing technique as it removes the source of aliasing, i.e. the variational crimes.
It is consequently quite effective in stabilising computations e.g. shown in [2]. A
practical issue for this type of de-aliasing is the actual choice of number of sample
points to remove the interpolation errors. The right number depends on the type
of function that is projected and on the polynomial approximation space. Due to
computational efficiency, it is desired that the number of evaluation points is as
small as possible. A strategy where the number of points are chosen arbitrarily
“high enough” to be on the safe side is obviously not recommended. However,
the task to determine the minimum amount of evaluation points to guarantee sta-
bility is in the general case very difficult, and in some cases even impossible. If
we consider for instance the compressible Euler equations, the Galerkin Ansatz
is a piecewise polynomial for all conservative quantities. The Galerkin discretisa-
tion needs to project the non-linear flux function onto the space of polynomials.
However, the flux function of the compressible Euler equations are rational poly-
nomials with respect to the conservative quantities. Thus, independent of the
number of interpolation (quadrature) points, the projection is never analytically
exact. As we are dealing with computers anyway, one can relax the exactness
of the projection to achieving machine round-off errors. However, it is clear in
this case that then the number of necessary evaluation points highly depend on
the actual solution. For very smooth and well resolved parts of the solution it
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is expected that the number is much smaller in comparison to parts of the solu-
tion containing e.g. shocks. Thus, ideally, an automatic and adaptive approach
would be required to rigorously satisfy the “machine round-off” requirement. It is
clear that such an approach would substantially complicate the discretisation (for
instance load balancing in a parallel computation). Thus, up to now, the most
common approach in the community is to choose the number of evaluation points
in a pre-processor step of the simulation by an educated guess (or with trial and
error, i.e. user experience) and hope for the best during the simulation. It can
then be observed that in certain cases one can get away with a much lower num-
ber of evaluation points while retaining highly accurate results, e.g. [2]. While
polynomial de-aliasing seems to be the natural and cleanest way of de-aliasing
for discontinuous Galerkin methods, there are still many open questions left and
further research is necessary.

Recently, another de-aliasing technique was introduced for (nodal) discontinu-
ous Galerkin discretisations. The starting point is to accept that the projection
is not a proper L2-projection but rather an interpolation. We get highly effective
nodal discontinuous Galerkin methods for smooth problems, if we collocate the
polynomial Ansatz and the interpolation operator. Thus, the number of interpo-
lation points are chosen assuming that the non-linear flux is of same polynomial
degree as the polynomial Ansatz. As discussed above, this obviously introduces
aliasing errors and for strongly non-linear problems the stability issues are severe.
However, by restricting the discontinuous Galerkin discretisation to this specific
case, it is possible to show the summation-by-parts property of the resulting oper-
ator [3]. This enables the construction of nodal collocated discontinuous Galerkin
discretisation based on skew-symmetric formulations of the underlying partial dif-
ferential equations, e.g. [3, 4]. These new skew-symmetric nodal discontinuous
Galerkin discretisations are provably entropy/energy stable without the assump-
tion of an exact evaluation of the projection.

In case of hyperbolic balance laws, i.e the shallow water equations, it is pos-
sible to derive specific skew-symmetric formulations that are not only provable
entropy stable, but also compatible with the well balanced property [5]. It can
be shown that for numerical robustness, both properties of the discretisation are
desirable [6]. By augmenting the skew-symmetric formulation with suitable sur-
face discretisations of the fluxes and the sources, it is possible to extend the novel
skew-symmetric discontinuous Galerkin method to handle bottom topographies
with (grid aligned) discontinuities on unstructured curvilinear quadrilateral grids
[7].
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Mimetic discretization of the Lie derivative

Marc Gerritsma

(joint work with Jeroen Kunnen)

The Lie derivative LXω(k) of a differential k-form ω(k) on a manifold M represents
convective transport along the flow generated by the vector fieldX ∈ X(M). Using
Cartan’s magic formula we have

LXω(k) = ιXdω(k) + dιXω
(k); ,

where ιX is the interior product – contraction of the vector field with the k-form
– and d represents the exterior derivative.

A discrete representation of the exterior derivative is given by the coboundary
operator, δ, see [1, 2]. This fully discrete representation is possible because the
exterior derivative is an intrinsic operator, i.e. coordinate independent and metric
free. One therefore hopes that a similar construction is possible for the Lie deriv-
ative, because the Lie derivative is also an intrinsic operator. By imposing that
the discrete Lie derivative is linear in the differential forms, linear in the vector
fields and satisfies a Leibniz rule

LX(ω(k) ∧ η(l)) = LX(ω(k)) ∧ η(l) + ω(k) ∧ LX(η(l)) ,

we present a discrete Lie derivative LX which commutes with reduction operator
R

Λk(M)
LX−−−−→ Λk(M)

R

y
yR

Ck
LX−−−−→ Ck

This reuiqres that also the reduction operator R need to be redefined. For a
0-form f (0) the reduction consisted of sampling the function values at discrete
points. In the new reduction operator we sample the function values of f (0) with
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all its partial derivatives gi = ∂f(p)/∂xi. Where the old reduction mapped onto
real-valued 0-cochains, the new reduction produces vector-valued 0-cochains which
are essentially jet spaces. By a suitable choice of multiplication of such vector-
valued cochains the Leibniz rule is satisfied at the purely discrete level. In the 1
dimensional case, this construction can be extended to 1-forms.

Preliminary results of this approach were shown during the workshop.
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Challenges and Opportunities in Long-Time Simulations of PDEs on
Modern Parallel Computing Platforms

Matthias K. Gobbert

(joint work with Jonathan S. Graf, Samuel Khuvis, Bradford E. Peercy, Stefan
Kopecz, Andreas Meister)

Advection-diffusion-reaction equations occur in a wide variety of applications, for
instance fluid flow, heat transfer, spread of pollutants, and transport-chemistry
problems. We consider a very general framework of this problem as a testbed to
investigate the choices of numerical methods in the face of Dirac delta distributions
among the source terms. We also demonstrate the ability of memory-efficient
parallel implementations of these methods to solve the problem on extremely fine
meshes efficiently using a cluster with state-of-the-art CPU nodes and cutting-
edge hybrid CPU/GPU nodes. Our consideration of this problem is inspired by
the need to simulate Calcium Induced Calcium Release (CICR) in a heart cell
[4]. CICR describes a physiological process within a cell where calcium is able to
activate calcium release from the sarcoplasmic reticulum into the cytosol, which
is crucial for excitation-contraction coupling in the cardiac muscle.

As a testbed, we consider the system of coupled, non-linear, time-dependent
advection-diffusion-reaction equations

(1) u
(i)
t −∇ ·

(
D(i) ∇u(i)

)
+ β(i) ·

(
∇u(i)

)
= q(i), i = 1, . . . , ns,

with functions u(i) = u(i)(x, t), i = 1, . . . , ns, of space x ∈ Ω ⊂ R3 and time
0 ≤ t ≤ tfin representing the concentrations of the ns species. The diffusivity

matrices D(i) = diag(D
(i)
11 , D

(i)
22 , D

(i)
33 ) ∈ R3×3 consists of positive entries and are

assumed to dominate the advection velocity vectors β(i) ∈ R3, so that numerical
methods for parabolic problems are always justified. The right-hand side q(i) in
(1) is written in a way that distinguishes the different dependencies and effects as

(2) q(i)(u(i), . . . , u(ns),x, t) = s(i)(u(i),x, t) + r(i)(u(1), . . . , u(ns)).
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The reaction terms r(i)(u(1), . . . , u(ns)) are, in general, non-linear autonomous
functions of all species and couple the reaction equations in the system (1). The
terms s(i)(u(i),x, t) in (2) contain many thousands of point sources modeled by
Dirac delta distributions on a large lattice throughout the cell. This crucial fea-
ture of the model is responsible for many of the challenges, including the need
to discretize the domain of the cell with a very fine mesh to accommodate the
large number of point sources, since they are the crucial driver of the physiological
effects.

In [4], a finite volume method for advection-diffusion-reaction systems with
smooth and non-smooth sources was introduced. Efficient parallel computing is
necessary to enable long-time simulations of complex nonlinear models on high-
resolution meshes, such as for calcium induced calcium release in a heart cell mod-
eled by a system of advection-diffusion-reaction equations in three space dimen-
sions. A method of line approach with sophisticated time-stepping and matrix-free
Newton-Krylov methods is well suited for parallel computing. With demands to
push performance further, we need to use modern parallel hardware with hierar-
chical memory access, data transmission via InfiniBand, and more, whose optimal
use is inherently challenging.

The UMBC High Performance Computing Facility has a cluster with over
300 nodes. The newest 72 nodes include hybrid nodes with high-end NVIDIA
GPUs as well as with cutting-edge 60-core Intel Phi accelerators, which offer great
research opportunities and potentially significant speedup of the computational
kernels in simulation tools such as PDE solver for time-dependent problems.

Table 1 shows a historical comparison of observed wall clock run times for the
application problem on clusters purchased in years ranging from 2009 to 2013.
For context, the ODE solver NDFk, 1 ≤ k ≤ 5, uses 73,123 time steps, and
the linear solver is BiCGSTAB. The timings of the CPU runs show dramatic
improvement over time for the serial run as well as by using up to 32 nodes
with up to 16 computational cores per node. However, the application demands
a longer final time than the 1,000 ms here as well as demands more than the
3 chemical species modeled here. Therefore, yet better, more efficient, parallel
code is needed. Specifically, it is an interesting research opportunity to study
sophisticated numerical methods and parallelization that take full advantage of
available state-of-the-art architectures!

Table 2 shows the complete CPU performance study up to 32 nodes on the
2013 portion of the cluster, from which the summary data in the previous table
are taken. We see here that the needed run times for a finer mesh become excessive,
namely more than the maximum allowed run time of 5 days on the cluster. The
power of parallel computing is visible when the run time can be reduced to about
27 hours by using all cores on 1 node or even to about 1:40 hour on 32 nodes (all
16 cores per node).

Table 3 in turn shows the power of using hybrid CPU/GPU nodes for the same
meshes as in the previous table. Specifically, focusing on the finest mesh, the first
row in the table starts with the run time of about 27 hours using all 16 CPU
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Table 1. Historical comparison of observed wall clock times
in HH:MM:SS for parabolic nonlinear three-species application
problems: CPU only results. Mesh resolution Nx × Ny × Nz =
64× 64× 256, system dimension 3,257,475 [2]. Asterisk indicates
use of 8 processes per node to enable run.

Cluster, method serial (1 node) 32 node 32 node
1 core all cores 1 core per node all cores
time time (speedup) time (speedup) time (speedup)

tara (2009), FEM 67:04:28 09:17:32 (7.22) 02:15:03 (29.80) 00:29:06 (138.29)
tara (2009), FVM 47:46:46 07:31:51 (6.34) 01:41:46 (28.17) 00:25:54 (110.68)
maya (2009), FVM 32:02:14 05:49:56 (5.49) 01:05:40 (29.27) 00:17:57 (107.09)
maya (2010), FVM 30:51:54 05:46:48 (5.34) 01:04:22 (28.77) 00:20:37 (89.83)
maya (2013), FVM 25:02:01 02:25:55 (10.29) 00:53:17 (28.19) 00:18:33 (80.97)*

Table 2. Observed wall clock times in HH:MM:SS for parabolic
nonlinear three-species application problems on maya 2013 on
CPU nodes by number of nodes [2]. ET indicates “excessive time
required” (more than 5 days), N/A indicates that the case is not
feasible.

(a) Mesh resolution Nx ×Ny ×Nz = 32× 32× 128, DOF = 421,443
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 proc. per node 02:22:19 01:10:46 00:36:09 00:19:17 00:10:54 00:06:37
2 proc. per node 01:11:43 00:35:48 00:19:13 00:10:45 00:06:47 00:04:48
4 proc. per node 00:37:52 00:19:27 00:11:07 00:06:59 00:05:18 00:04:41
8 proc. per node 00:21:35 00:11:28 00:07:24 00:05:41 00:05:36 N/A
16 proc. per node 00:12:58 00:07:24 00:06:30 00:07:26 N/A N/A

(b) Mesh resolution Nx ×Ny ×Nz = 64× 64× 256, DOF = 3,257,475
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 proc. per node 25:02:01 12:25:01 06:10:14 03:07:33 01:37:56 00:53:17
2 proc. per node 12:25:07 06:11:38 03:08:20 01:37:41 00:52:27 00:30:36
4 proc. per node 06:32:39 03:16:02 01:41:55 00:55:03 00:31:50 00:21:03
8 proc. per node 03:52:48 01:53:44 01:00:20 00:34:24 00:22:30 00:18:33
16 proc. per node 02:25:55 01:10:26 00:39:04 00:25:46 00:21:29 N/A

(c) Mesh resolution Nx ×Ny ×Nz = 128× 128 × 512, DOF = 25,610,499
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 proc. per node ET ET 69:15:37 34:51:02 17:31:44 08:59:06
2 proc. per node ET 69:46:29 35:16:03 17:45:06 09:00:47 04:47:14
4 proc. per node 72:31:51 36:34:34 18:36:29 09:32:04 05:01:44 02:50:34
8 proc. per node 42:01:27 26:23:03 11:03:41 05:46:44 03:09:23 01:56:47
16 proc. per node 26:53:37 13:56:38 07:21:17 03:54:47 02:17:48 01:40:35

cores on 1 node. Using instead one GPU reduces this time to about 15:32 hours,
showing the advantage possible with this state-of-the-art accelerator. The numbers
in parentheses show speedup over the 1 node/16 processes run time, and it becomes
apparent that using two GPUs in the hybrid node is even more advantageous. On
the one hand, continuing to look at the speedups over the 1 node/16 processes
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Table 3. Observed wall clock times in HH:MM:SS for parabolic
nonlinear three-species application problem on maya 2013 with
CPU and hybrid CPU/GPU nodes. Wall clock time (speedup)
against one 16-core node using the finite volume method with
BiCG-STAB [1]. CPU-only on 128 × 128 × 512: 01:40:35 on 32
nodes (16 cores).

nodes (GPU/node) 32 × 32× 129 64× 64× 256 128 × 128 × 512

1 node (16 cores) 00:12:58 02:25:55 26:53:37
1 node (1 GPU) 00:16:47 (0.77) 01:44:13 (1.40) 15:32:34 (1.73)
1 node (2 GPUs) 00:11:47 (1.10) 00:59:53 (2.44) 08:18:18 (3.24)

2 nodes (16 cores) 00:07:24 01:10:26 13:56:38
2 nodes (1 GPU) 00:12:20 (1.05) 00:58:12 (2.51) 08:14:26 (3.26)
2 nodes (2 GPUs) 00:09:27 (1.37) 00:35:31 (4.11) 04:25:55 (6.07)

4 nodes (16 cores) 00:06:30 00:39:04 07:21:17
4 nodes (1 GPU) 00:09:46 (1.33) 00:34:36 (4.22) 04:20:56 (6.18)

4 nodes (2 GPUs) 00:08:25 (1.54) 00:24:21 (5.99) 02:28:00 (10.90)

8 nodes (16 cores) 00:07:26 00:25:46 03:54:47
8 nodes (1 GPU) 00:08:32 (1.52) 00:24:58 (5.84) 02:24:46 (11.15)
8 nodes (2 GPUs) 00:08:10 (1.59) 00:20:27 (7.14) 01:31:22 (17.66)

16 nodes (16 cores) N/A 00:21:29 02:17:48
16 nodes (1 GPU) 00:08:19 (1.56) 00:20:45 (7.03) 01:30:06 (17.91)
16 nodes (2 GPUs) 00:08:11 (1.58) 00:19:57 (7.31) 01:06:17 (24.34)

run shows that it pays to use all available 16 hybrid nodes with two GPUs each.
On the other hand, also comparing run times with and without GPUs on the
same number of nodes shows a clear advantage of combing CPUs and GPUs over
just using CPUs. In fact, the final number of about 1:06 hour using 16 hybrid
CPU/GPU nodes is faster than the time of about 1:40 hours using 32 CPU nodes!
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Invariant domains and first-order continuous finite element
approximation for hyperbolic systems

Jean-Luc Guermond

(joint work with Bojan Popov)

1. Introduction

We propose a numerical method to solve general hyperbolic systems in any space
dimension using forward Euler time stepping and continuous finite elements on
non-uniform grids. The properties of the method are based on the introduction of
an artificial dissipation that is defined so that any convex invariant sets containing
the initial data is an invariant domain for the method. Our technique extends to
continuous finite elements the work of [Hoff(1979), Hoff(1985)], and [Frid(2001)].
The invariant domain property is proved for any hyperbolic system provided a
CFL condition holds. The solution is also proved to satisfy a discrete entropy
inequality for every admissible entropy of the system. The method is formally
first-order accurate in space and can be made high-order in time by using any
Strong Stability Preserving technique.

1.1. The problem. Consider the following hyperbolic system

(1)

{
∂tu+∇·f(u) = 0, for (x, t) ∈ Rd×R+.

u(x, 0) = u0(x), forx ∈ Rd.

where the dependent variable u takes values in Rm and the flux f takes values in
(Rm)d. Here u is considered as a column vector u = (u1, . . . , um)

T. The flux is
a matrix with entries fij(u), 1 ≤ i ≤ m, 1 ≤ j ≤ d and ∇·f is a column vector
with entries (∇·f)i =

∑
1≤j≤d ∂xj

fij . For any n = (n1 . . . , nd)
T ∈ Rd, we denote

f(u)·n the column vector with entries
∑

1≤l≤d nlfil(u), where i ∈ {1:m}.
To simplify questions regarding boundary conditions, we assume that either

periodic boundary conditions are enforced, or the initial data is compactly sup-
ported. In both cases we denote by D the spatial domain where the approximation
is constructed. In the case of periodic boundary conditions, D is the d-torus. In
the case of the Cauchy problem, D is a compact, polygonal portion of Rd large
enough so that the domain of influence of u0 is always included in D over the
entire duration of the simulation.

1.2. Assumptions and definitions. We assume that (1) is such that there is
a clear notion for the solution of the Riemann problem. That is to say there
exists an (nonempty) admissible set A ⊂ Rm such that for any pair of states
(uL,uR) ∈ A×A and any unit vector n in Rd, the following one-dimensional
Riemann problem

(2) ∂tu+ ∂x(f(u)·n) = 0, (x, t) ∈ R×R+, u(x, 0) =

{
uL, if x < 0

uR, if x > 0,
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has a unique (physical) solution, which we henceforth denote u(n,uL,uR). We
make the following assumption:

(3)

The unique solution of (2) has a finite speed of propagation for any n,

i.e., there is λmax(n,uL,uR) such that

u(x, t) =

{
uL, if x ≤ −tλmax(n,uL,uR)

uR, if x ≥ tλmax(n,uL,uR).

We now introduce the notions of invariant sets and invariant domains. Our
definitions are slightly different from those in [Chueh et al.(1977)], [Hoff(1985)],
[Smoller(1983)], [Frid(2001)]. We will associate invariant sets only with solutions
of Riemann problems and define invariant domains only for an approximation
process of (1).

Definition 1 (Invariant set). We say that a set A ⊂ A ⊂ Rm is invariant for
(1) if for any pair (uL,uR) ∈ A×A, any unit vector n ∈ Rd, and any t > 0, the
average of the entropy solution of the Riemann problem (2) over the Riemann fan,

say, 1
t(λ+

m−λ−

1 )

∫ λ+
mt

λ−

1 t
u(n,uL,uR)(x, t) dx, remains in A.

Note that, the above definition implies that given t > 0 and any interval I such
that (λ−1 t, λ

+
mt) ⊂ I, we have that 1

I

∫
I u(n,uL,uR)(x, t) dx ∈ A.

We now introduce the notion of invariant domain for an approximation process.
Let Xh ⊂ L1(Rd;Rm) be a finite-dimensional approximation space and let Sh :
Xh ∋ uh 7−→ Sh(uh) ∈ Xh be a discrete process over Xh. Henceforth we abuse
the language by saying that a member of Xh, say uh, is in the set A ⊂ Rm when
actually we mean that {uh(x) | x ∈ R} ⊂ A.

Definition 2 (Invariant domain). A convex invariant set A ⊂ A ⊂ Rm is said to
be an invariant domain for the process Sh if and only if for any state uh in A, the
state Sh(uh) is also in A.

For scalar conservation equations the notions of invariant sets and invariant
domains are closely related to the maximum principle. In the case of nonlinear
systems, the notion of maximum principle does not apply and must be replaced
by the notion of invariant domain. To the best of our knowledge, the definition of
invariant sets for the Riemann problem was introduced in [Nishida(1968)], and the
general theory of positively invariant regions was developed in [Chueh et al.(1977)].
Applications and extensions to numerical methods were developed in [Hoff(1979),
Hoff(1985)] and [Frid(2001)].

2. The method

2.1. The finite element space. We want to approximate the solution of (1)
with continuous finite elements. Let (Th)h>0 be a shape-regular sequence of affine
matching meshes. The elements in the mesh sequence are assumed to be generated

from a finite number of reference elements denoted K̂1, . . . , K̟̂. For example,
the mesh Th could be composed of a combination of triangles and parallelograms
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in two space dimensions (̟ = 2 in this case); it could also be composed of a
combination of tetrahedra, parallelepipeds, and triangular prisms in three space

dimensions (̟ = 3 in this case). The affine diffeomorphism mapping K̂r to an

arbitrary element K ∈ Th is denoted TK : K̂r −→ K and its Jacobian matrix
is denoted JK , 1 ≤ r ≤ ̟. We now introduce a set of reference Lagrange finite

elements {(K̂r, P̂r, Σ̂r)}1≤r≤̟ (the index r ∈ {1:̟} will be omitted from now
on to alleviate the notation). Then we define the scalar-valued and vector-valued
Lagrange finite element spaces

P (Th) = {v ∈ C0(D;R) | v|K◦TK ∈ P̂ , ∀K ∈ Th}, P (Th) = [P (Th)]m.(4)

where P̂ is the reference polynomial space defined on K̂ (note that the index r

has been omitted). Denoting nsh := dim P̂ and denoting by {âi}i∈{1:nsh} the

Lagrange nodes of K̂, we assume that the space P̂ is such that

(5) min
1≤ℓ≤nsh

v̂(âℓ) ≤ v̂(x̂) ≤ max
1≤ℓ≤nsh

v̂(âℓ), ∀v̂ ∈ P̂ , ∀x̂ ∈ K̂.

Denoting by P1 and Q1 the set of multivariate polynomials of total and partial

degree at most 1, respectively; the above assumption holds for P̂ = P1 when K is

a simplex and P̂ = Q1 when K is a parallelogram or a cuboid. This assumption
holds also for first-order prismatic elements in three space dimensions.

Let {ai}i∈{1:I} be the collection of all the Lagrange nodes in the mesh Th,
and let {ϕi}i∈{1:I} be the corresponding global shape functions. Recall that
{ϕi}i∈{1:I} forms a basis of P (Th) and ϕi(aj) = δij . The Lagrange interpola-

tion operator in P(Th) is denoted Πh : C0(D) −→ P(Th). Recall that Πh(v) =∑
1≤i≤I v(ai)ϕi. We denote by Si the support of ϕi and by |Si| the measure of Si,

i ∈ {1:I}. We also define Sij := Si∩Sj the intersection of the two supports Si and
Sj . Let E be a union of cells in Th; we define I(E) := {j ∈ {1:I} | |Sj ∩ E| 6= 0}
the set that contains the indices of all the shape functions whose support on E is
of nonzero measure.

Let M ∈ RI×I be the consistent mass matrix with entries
∫
Sij

ϕi(x)ϕj(x) dx,

and let ML be the diagonal lumped mass matrix with entries

(6) mi :=

∫

Si

ϕi(x) dx.

The partition of unity property implies that mi =
∑

j∈I(Si)

∫
ϕj(x)ϕi(x) dx, i.e.,

the entries of ML are obtained by summing the rows of M.

2.2. The scheme. Let uh0 ∈ P(Th) be a reasonable approximation of u0 (we
shall be more precise in the following sections). Let n ∈ N, τ be the time step, tn

be the current time, and let us set tn+1 = tn + τ . Let unh =
∑I

i=1 U
nϕi ∈ P(Th)

be the space approximation of u at time tn. We propose to compute un+1
h =
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∑I
i=1 U

n+1ϕi by

(7) mi
U
n+1
i −U

n
i

τ
+

∫

D

∇·(Πhf(unh))ϕi dx−
∑

j∈I(Si)

dijU
n
j = 0,

where the lumped mass matrix is used for the approximation of the time derivative.
The coefficient dij is an artificial viscosity defined as follows for i 6= j:

(8) dij := max(λmax(nij ,Ui,Uj)‖cij‖ℓ2 , λmax(nji,Uj ,Ui)‖cji‖ℓ2),
where recall that λmax(nij ,Ui,Uj) is defined in the assumption (3), and dii :=∑

i6=j∈I(Si)
−dji. The vector-valued coefficient cij ∈ Rd is defined by

(9) cij =

∫

D

ϕi∇ϕj dx,

Remark 1 (Conservation). The definition dii :=
∑

i6=j∈I(Si)
−dji implies that∑

j∈I(Si)
dji = 0, which in turn implies conservation, i.e.,

∫
D
un+1
h dx =

∫
D
unh dx+∫

D∇·(Πhf(unh)) dx since dij = dji.

2.3. Stability results. Upon defining hK := diam(K), the global maximummesh
size is denoted h = maxK∈Th

hK . The local minimum mesh size, hK , for any
K ∈ Th is defined as follows:

(10) hK :=
1

maxi6=j∈I(K) ‖∇ϕi‖L∞(Sij)
,

and the global minimum mesh size is h := minK∈Th
hK . Due to the shape regu-

larity assumption, the quantities hK and hK are uniformly equivalent, but it will
turn out that using hK instead of hK gives a sharper estimate of the CFL number.
Let nsh := card(I(K)) and let us define ϑK := 1

nsh−1 . Note that

(11) 0 < ϑmin := min
(Th)h>0

min
K∈Th

ϑK < +∞,

since there are at most ̟ reference elements defining the mesh sequence. We also
introduce the mesh-dependent quantities
(12)

µmin := min
K∈Th

min
i∈I(K)

1

|K|

∫

K

ϕi(x) dx, µmax := max
K∈Th

max
i∈I(K)

1

|K|

∫

K

ϕi(x) dx.

Note that µmin = µmax = 1
nsh

= 1
d+1 for meshes uniquely composed of simplices

and µmin = µmax = 2−d for meshes uniquely composed of parallelograms and
cuboids. The main result is as follows:

Theorem 1. Let A ⊂ A be an invariant set for (1) in the sense of Definition 1.
Assume that λmax(A) := maxn∈Sd−1(0,1) maxuL,uR∈A λmax(n,uL,uR) < ∞ and

A is convex. Assume that uh0 ∈ A and τ is such that 2τ λmax(A)
h

µmax

µminϑmin
≤ 1, then

(i) A is an invariant domain for the solution process unh 7−→ un+1
h for all n ≥ 0.

(ii) Given n ≥ 0 and i ∈ {1:I}, let B ⊂ A be a convex invariant set such that

U
n
l ∈ B for all l ∈ I(Si), then U

n+1
i ∈ B.
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(iii) The following discrete entropy inequality holds for any admissible entropy
pair (η, q), any n ≥ 0 and any i ∈ {1:I}:
mi

τ
(η(Un+1

i )− η(Uni )) +

∫

D

∇·(Πhq(unh))ϕi dx+
∑

i6=j∈I(Si)

dijη(U
n
j ) ≤ 0.
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Asymptotic theory of reduced MHD models for fusion plasmas

Hervé Guillard

Magnetohydrodynamics (MHD) is a macroscopic theory describing electrically
conducting fluids. An important application of MHD is the study of the sta-
bility of fusion plasmas in tokamak machines. A tokamak is a toroidal device in
which hydrogen isotopes in the form of a plasma reaching a temperature of the
order of the hundred of millions of Kelvins is confined thanks to a very strong
applied magnetic field.
In its simplest form (ideal MHD and barotropic fluid) the hyperbolic MHD system
writes :

ρ(p)
D

Dt
u+∇(p+B2/2)− (B.∇)B = 0 (1.1)

D

Dt
B − (B.∇)u +B∇.u = 0 (1.2)

1

γp

D

Dt
p+∇.u = 0 (1.4)

In these equation, u the velocity, B the magnetic field and p is the pressure and
ρ is the density that, thanks to the barotropic assumption is only a function of
pressure. The notation D./Dt stands for the material derivative that is defined
by D · /Dt = ∂t ·+(u.∇)·.
Instead of the system (1) the plasma fusion community has introduced the so-called



2426 Oberwolfach Report 41/2015

reduced MHD systems. A prototypical example of these models is the following
one introduced by Strauss in [1].

∂U

∂t
+ [ϕ,U ]− [ψ, J ]− ∂

∂z
J = 0 (2.1)

∂ψ

∂t
+ [ϕ, ψ]− ∂ϕ

∂z
= 0 (2.2)

Here, φ is the electric potential, ψ the magnetic flux and U and J are defined by :

U = ∇2
⊥ϕ and J = ∇2

⊥ψ

The notation [., .] is a poisson bracket defined by [f, g] = ez.∇⊥f ×∇⊥g where ez
denote the unit vector in the toroidal direction while ∇⊥ and ∇2

⊥ are respectively
the gradient and Laplace operator in the poloidal direction (the term poloidal
denotes the plane perpendicular to ez i.e the plane generated by the unit vectors
ex and ey).

Using the theory of singular limit of hyperbolic PDE with a large parameter
introduced in [2], I show that (2) is a rigorous approximation of the full system
(1) when the magnetic field is high. More precisely, I prove the following result :
Theorem 2 : Let ε be the ratio of the poloidal magnetic field over the toroidal
magnetic field and assume that the initial velocity, magnetic field and pressure are
defined by : 




u(0,x)/VA = ε(v0(x) + εv1(ε,x))
B(0,x)/B0 = ez + ε(B0(x) + εB1(ε,x))
p(0,x)/p0 = p̄+ ε(q0(x) + εq1(ε,x))

where p̄ is a constant, the functions v0,B0, q0 and v1,B1, q1 are bounded in Hs

and where the 0-th order initial data verifies :



∇⊥.v
0(x) = 0 (3.1)

∇⊥.B0
⊥(x) = 0 (3.2)

∃f(z) such that B0
z(x) = f(z)− q0(x) (3.3)

then the solution of the full MHD system (1) exists for a time T independent of ε
and this solution converges in Hs−1 to the solution of the reduced system. Details
can be found in [3]
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Thermo-mechanically coupled systems using high-order schemes

Stefan Hartmann

Constitutive models in solid mechanics frequently are formulated by means of or-
dinary differential equations or differential-algebraic equations, which determine
the evolution of so-called internal variable. Some of these internal variables are
embedded in the stress-strain relation, where the stress has to be inserted into the
balance of linear momentum (partial differential equation determining the defor-
mation of the material body). In quasi-static formulations the weak form of the
balance of linear momentum is used for drawing on finite elements. This concept
of applying the principle of virtual displacements and a time-integration step of
Backward-Euler type is mainly attributed to [1]. In the theses of [2, 3] this concept
is interpreted as the application of the method of vertical lines, where in the first
step the spatial discretization is carried out, followed by the time-discretization
drawn on the internal variable of the constitutive equations of evolutionary-type.
The classification and the relation to models of small strains is proposed in [4].
There, the resulting system of differential-algebraic equations (DAE-system) is
solved using stiffly accurate, diagonally-implicit Runge-Kutta methods, where the
resulting coupled system of equations is solved using the Multilevel-Newton algo-
rithm, see [5, 6].

In temperature-dependent problems, the constitutive equations additionally de-
pend on the temperature, which is connected to the balance of energy resulting in
the transient heat equation. Here, it is exemplarily referred to [7]. The extension to
the interpretation of applying the method of vertical lines is, for example, applied
in [8], where the weak form of the heat equation defines a system of differential
equations of first order as well yielding

(1) F(t, y(t), ẏ(t)) :=





g(t,u,Θ,q)
Cp(t,u,Θ,q)Θ̇(t)− rΘ(t,u, u̇,Θ,q)

q̇(t) − rq(t,u,Θ,q)



 = 0.

g defines the discretized equilibrium conditions, u the unknown nodal displace-
ments, Θ the nodal temperatures, q the internal variables at all spatial integration
points, Cp the heat capacity matrix and t denotes the time.

In the second step of the method of vertical lines, the time-discretization has
to be exploited, i.e. an appropriate method to solve the DAE-system (1) has to
be looked for. In [8] SDIRK-methods are applied combined with the p-version
of finite elements, where high-order polynomial approach in the spatial domain
is performed. Of course, further methods can be investigated. BDF-methods are
discussed in [9], see the literature cited therein as well. In [10] a comparison
between DIRK, Rosenbrock and half-explicit Runge-Kutta methods is carried out
indicating that a DIRK-method of 2nd order combined with time-adaptivity is an
appropriate scheme for a huge number of applications (in this respect see [11] as
well). All these investigations have been carried out using a monolithic approach
using one code, i.e. nodal displacements and temperatures are solved in the same
step. The question, whether there is a connection to staggered solution schemes
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(partitioned approach), is treated in [12]. There, accelerating techniques of Gauss-
Seidel schemes solving the resulting coupled non-linear system is discussed.

In the case of considering inertia effects, Eq.(1)1 must be written in the form

(2) Mü(t)− g(t,u,Θ,q) = 0,

i.e. the problem under consideration changes to a coupled system of ODEs of
1st and 2nd order. In the presentation two approaches are discussed. First, the
transformation of 2nd order ODEs into a system of 1st order ODE, to which a
DIRK-method is applied, and, second, a modification of the generalized-α method
proposed in [13] is considered, see [14]. Both methods work for specific problems
well.
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Development of an industrial simulation tool based on the
discontinuous Galerkin Method in view of LES of turbomachinery.

Koen Hillewaert

(joint work with Corentin Carton de Wiart, Jean-Sbastien Cagnone, Michel
Rasquin)

Skin friction on the blade of the T106C cascade at Re=110.000,
computed by 4th order accurate DGM using Argo

The present contribution details key aspects in the development of a simulation
platform, Argo, based on the discontinuous Galerkin method (DGM), in view of
Large Eddy Simulation (LES) of turbulent flows in turbomachinery. The aim is
to exploit the capacity of DGM to guarantee high precision, required for reliable
LES, on unstructured meshes, needed for representing the complex geometry of
the machine. The algorithmic compacity and structured nature of the DGM can
furthermore be exploited to provide excellent serial and parallel efficiency, a very
important issue considering the computational resource requirements of LES. The
industrial interest for the LES of turbomachinery flows stems from the need for
predicting off-design regimes, transitional flow, instabilities and noise but also
from the decreased reliability of the Reynolds Averaged Navier Stokes (RANS)
turbulence models due to high increases in blade loading.

An important part of the research is focused on computational efficiency. An im-
plicit time integration is used, in combination with Jacobian-free Newton-GMRES,
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preconditioned with block Jacobi or block ILU. By freezing the preconditioner over
several Newton iterations or even time steps, the computational cost is mainly de-
termined by residual assembly and the application of the preconditioner.

Optimal data structures that exploit the underlying structured nature of DGM
are then explained. During residual assembly, the storage of the solution in the
form of matrices allows to use matrix-matrix products to provide highly efficient
parametric operations. A simple reinterpretation of these matrices subsequently
results in excellent data alignment for the element specific operations and the
evaluation of the constitutive laws. A dedicated matrix format has been devel-
oped which is much more efficient for the block-sparse matrices with very large
entries, characteristic for the residual Jacobian of DGM, than off-the-shelve pack-
ages. Finally by hiding ghost cell communication behind the volume operations,
high parallel strong scaling is obtained, allowing to use the largest available ma-
chines.

An equally important part concerns turbulence modeling. Heuristic arguments
are presented to indicate the need for high precision discretizations for LES in
order to minimize interaction between the discretization and the Subgrid Scale
(SGS) turbulence model. This interaction is unavoidable - even for non-dissipative
schemes - since LES are by definition severely underresolved. Furthermore an ex-
planation for the success of Implicit LES (ILES) modeling strategies - in which the
discretisation replaces an explicit SGS model - for DGM is provided. The accu-
racy of the DGM/ILES approach is then illustrated on canonical test cases, both
on high and low quality meshes, indicating similar accuracy as tailored academic
codes. Finally some practical turbomachinery applications are shown.

To conclude important topics of future numerical research are outlined. These
include the study of the interaction between shock capturing strategies and turbu-
lence modeling, the development of wall-modeling strategies in combination with
ILES and finally the elaboration of adaptation criteria for statistical data resulting
from LES computations, where due to the underresolution, classical error estimates
can not be used.
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Strong stability preserving linear multistep methods with variable
step size

David I. Ketcheson

(joint work with Yiannis Hadjimichael, Adrian Németh, & Lajos Lóczi)

A linear multistep method (LMM) provides an approximate numerical solution to
the initial value problem

u′(t) = f(u(t)) u(t0) = u0.(1)

With a fixed step size, the method takes the form

un =

k−1∑

j=0

(αjun−k+j + hβjf(un−k+j)) n ≥ k.(2)

Strong Many authors have studied and developed strong stability preserving (SSP)
LMMs. These LMMs are high order methods that guarantee the preservation of
properties like positivity, contractivity, or monotonicity (relative to any convex
functional), provided that the same property is satisfied under a forward Euler
step. The SSP method provides this guarantee under the step size restriction

h ≤ Ch0,(3)

where C is the SSP coefficient of the method and h0 is the step size for strong
stability when using the forward Euler method.

In practical numerical integration, it is often useful to adapt the step size based
on local (in time) accuracy or stability considerations. This is true in particular for
SSP methods, since the value h0 typically depends on the solution u. A variable
step size LMM takes the form

un =

k−1∑

j=0

(αj,nun−k+j + hnβj,nf(un−k+j)) .(4)

In the present work we generalize some existing optimal SSP LMMs to allow for
variation of the step size while maintaining the SSP property. This is challenging
since the SSP coefficient depends on the method coefficients α, β, the method
coefficients depend on the step size sequence, and the step size sequence depends
on the SSP coefficient. Nevertheless, we are able to develop methods of second
and third order that are provably convergent, optimal in a greedy sense (they
maximize the size of allowed SSP step at each step), and for which the integration
is guaranteed to terminate in a finite number of steps. The last result is non-
trivial due to the nonlinear feedback between the previous step size sequence and
the permissible size of the next step.

Details of this work can be found in the preprint [1].
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Quantification of spurious mixing and dissipation and the effect of
vertically adaptive meshes

Knut Klingbeil

(joint work with Mahdi Mohammadi-Aragh, Ulf Gräwe, Hans Burchard)

Truncation errors in numerical models can cause the violation of basic conserva-
tion properties of the continuous solution. The discretisation in terms of Finite-
Volumes (FVs) offers the straightforward implementation of advection schemes
conserving global first moments (momentum and tracer). But, usually for mono-
tonicity reasons, these schemes do not conserve the associated global second mo-
ments (kinetic energy and tracer variance). The local quantification of spurious
variance decay is essential for detecting hotspots of spurious dissipation and mix-
ing as well as the comparison with their physically induced counterparts. For
the first-order upstream (FOU) scheme Morales Maqueda and Holloway (2006)
quantified the local variance decay as the variance destroyed by the final recombi-
nation of advected subvolumes inside one FV-cell. Burchard and Rennau (2008)
generalised an alternative derivation for the variance decay of the 1D FOU scheme
and proposed a diagnostic method (hereafter BR08) for arbitrary 3D advection
schemes. The application of this method to quantify spurious dissipation in 1D
was demonstrated by Burchard (2012).

Klingbeil et. al. (2014) argued for a general analysis method (hereafter K14)
of discrete variance decay (DVD) that can be used for the quantification of both,
spurious and physically induced variance decay. It was shown that the BR08
approach does not recover a physically sound definition of discrete variance within
a FV-cell. In contrast, the K14 method extends the idea of Morales Maqueda and
Holloway to arbitrary transport schemes by considering also the possible variance
growth during the decomposition of a FV-cell into subvolumes (see Fig. 1).

Considering the discrete second moments associated with the subvolumes, it is

possible to calculate the DVD rate χ
(n+1)
i (ϕ) within a single FV-cell,

(1)

V
(n+1)
i

(
ϕ
(n+1)
i

)2
− V

(n)
i

(
ϕ
(n)
i

)2

△t +
[
Ai′
(
Jϕ2

)
i′

]i′=i+1/2

i′=i−1/2
= −V (n+1)

i χ
(n+1)
i (ϕ) ,

with the discrete (for brevity here only advective) fluxes of second moments(
Jϕ2

)
i+1/2

defined directly in terms of the associated fluxes of first moments

Ji+1/2 (ϕ):
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Figure 1. Advection in a FV-framework (taken from Klingbeil
et. al. (2014)): The schema shows the exemplary decomposition
of FV-cells into subvolumes, to be advected, and their recombi-
nation on a fixed grid for uniform 1D flow. V , A, u, ϕ and ϕ̃i±1/2

denote the volumes and interfacial areas of the FV-cells, the ve-
locity, the prognostic quantity and its approximated interfacial
values.

(2)
(
Jϕ2

)
i+1/2

= ϕ̃i+1/2Ji+1/2 (ϕ) = ui+1/2

(
ϕ̃i+1/2

)2
.

Based on this new analysis method Klingbeil et. al. (2014) also presented, how
the spurious dissipation of kinetic energy on 3D staggered grids can be diagnosed
from the individual DVD rates of the single velocity components.

The analysis methods have been implemented into the coastal ocean model
GETM (Burchard and Bolding, 2002; Hofmeister et. al. 2010; Klingbeil and
Burchard, 2013). By providing valuable insight into the local strength and origin of
spurious dissipation and mixing in realistic ocean modelling applications (Rennau
and Burchard, 2009; Hofmeister et. al. 2011; Gräwe et. al. 2015, Mohammadi-
Aragh et al. 2015), the analysis methods promote the assessment of advection
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schemes and subgrid-scale closures as well as the development of new numerical
techniques reducing spurious variance decay.

For example, Hofmeister et. al. (2010) developed vertically adaptive meshes
that increase the resolution in the vicinity of vertical density gradients (thereby re-
ducing truncation errors during the vertical advection) and also consider the lateral
evolution of the density field. The latter offers a tendency to isopycnal coordinates
(model layers aligned with levels of constant density), which decrease the spurious
mixing during the advection along the layers (ideally no density gradients) and
during the vertical advection (ideally no grid-related vertical transport).

Direct feedback of the diagnosed DVD rates to the transport schemes and mesh
adaptation is planned to be investigated in the future.
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[8] Klingbeil, K., Mohammadi-Aragh, M., Gräwe, U., Burchard, H., 2014. Quantification of
spurious dissipation and mixing – Discrete Variance Decay in a Finite-Volume framework.
Ocean Modelling, 81, 49–64.
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Provably Stable Nodal Discontinuous Galerkin Methods on Curved
Elements

David A. Kopriva

(joint work with Andrew R. Winters, Gregor J. Gassner)

To get accurate solutions to fluid flow problems one can use high order approxi-
mations (e.g. 4 ≤ Order . 20). High order methods have great promise, among
the most important being the potential for greatly improved computational effi-
ciency when compared to low order methods. Unfortunately, the positive features
of high order discretizations, like low dissipation, mean they often lack the robust-
ness needed for industrial level computations. For this reason, there is a need for
provably stable variants.

We are developing arbitrary order provably stable discontinuous Galerkin spec-
tral element methods for curved elements on both static and moving domains. The
starting point is the system of conservation laws

(1) qt +∇ ·~f = qt +

3∑

i=1

∂fi
∂xi

= 0

on a three dimensional domain with moving boundaries, Ω (~x, t), where ~x =
(x1, x2, x3) = (x, y, z) = xx̂ + yŷ + zẑ. Here we denote the solution and flux
vector components by bold face and spatial vectors by overbars. In this work, we
consider linear fluxes of the form fi = Aiq i = 1, 2, 3. The domain, which may
have moving boundaries is subdivided into hexahedral elements each of which is
mapped to the reference element E = [−1, 1]3. On the reference element,

(2)
∂Jq

∂τ
+

3∑

i=1

∂

∂ξi
(
Aiq

)
= 0

where

(3) Ai
(
~ξ, τ
)
= Ãi − J~ai · ~xτ I,

(4) Ãi = J~ai ·
3∑

j=1

Aj x̂j ,

J is the Jacobian of the transformation, ~ai is the contravariant basis vector and
~xτ is the change due to the motion of the mesh.

The key is to rewrite the system of equations in skew symmetric form, which on
the reference element is the average of the conservative and nonconservative form

(5)
1

2

{

∂J q

∂τ
+

∂J

∂τ
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A
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+
1

2
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3
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∂
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(

A
i
)

q+
3

∑

i=1

A
i ∂q

∂ξi

}

= 0.

A weak form is then created by multiplying by a test function ~φ ∈ L2 and
integrating over the reference element. Finally, a polynomial ansatz is made where
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the solution, flux, metric terms and Jacobian are approximated by polynomials of
degree N . All terms with derivatives of the solution are integrated by parts and
the boundary fluxes that appear are replaced by a numerical flux. The resulting
weak formulation for the solution is

1

2

(
∂IN (JQ)

∂τ
+ J

∂Q

∂τ
, ~φ

)

N

+
(
~F∗
)T
~φ

∣∣∣∣
∂E,N

− 1

2

3∑

i=1

(
~Fi,

∂

∂ξi
~φ

)

N

− 1

2

3∑

i=1


Q,

∂IN
(
IN
(
Ai
)
~φ
)

∂ξi



N

= 0,

(6)

where ~F∗ is the numerical flux, and the discrete inner products are Gauss-Lobatto
quadratures.

The main result is that the approximation is stable, and satisfies the discrete
L2 energy bound
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(7)

so that when Q∞ = 0, the approximation is stable,

(8) ‖Q(T )‖J,N 6 ‖Q(0)‖J,N
Additional properties are that the skew symmetric approximation remains conser-
vative and preserves constant states for constant coefficient problems.

Enhancements of numerical schemes with tetrahedral-based
mesh adaptation

Adrien Loseille

Metric-based mesh adaptation has been used to capture accurately anisotropic
physical phenomena while optimizing the ratio between accuracy and CPU time.
A lot of 3D successful examples on real-life problems have already proved its
efficiency [1, 2, 6]. However, one question remains: are the adaptive computations
really anisotropic or optimal ? Apart from its simplicity, this question raises,
as we will see, many other capital issues: assessment of the numerical solution,
convergence of the computation at the theoretical order, automatic detection and
capturing of all the scales of the solution, . . . Consequently, answering positively
to these questions is not straightforward as we face both theoretical and practical
difficulties. In the sequel, we review the main problematics and how we address
them with the continuous mesh framework.
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The report is organized as follows. In the first section, we motivate the use of
a continuous mesh model and state the main result to derive the optimal mesh
minimizing the interpolation error. In the second section, this framework is applied
to the case of numerical solutions, and the enhancements of mesh adaptation are
illustrated on two numerical examples.

1. Controlling the interpolation error: an ill-posed problem

In its more general form, the problem of mesh adaptation consists in finding the
mesh H of Ω that minimizes a given error for a given function u. We consider here
the linear interpolation error u− Πhu controlled in Lp norm so that the problem
reads:

(1) Find Hopt having N nodes such that E(Hopt) = min
H

‖u−Πhu‖Lp(Ω)

As it, (1) is a global combinatorial problem which turns out to be intractable
practically. Indeed, both topology and vertices location need to be optimized.
Consequently, simpler problems are considered to approximate the solution. All
these strategies have in common the resolution of a local problem. Consequently,
such error minimizations are equivalent to a steepest descent algorithm that con-
verges only to a local minimum. This drawback arises because of considering
directly the minimization on a discrete mesh. To overcome this issue, we define a
continuous mesh model and continuous interpolation. From a theoretical point of
view, (1) is then recast as a continuous problem solvable thanks to a calculus of
variations. From a practical point of view, the optimal solution is a metric-tensor
that is directly used by any adaptive mesh generator to generate a computational
adapted mesh.

A continuous mesh [3, 4] of a domain Ω is a Riemannian metric space M =
(M(x))x∈Ω, where at each point M(x) is a definite positive matrix. To emphasize
the analogy with a discrete mesh, we rewrite M as :

M(x) = d
2
3 (x)R(x)




r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)


 tR(x),

where R(x) is the eigenvectors matrix and (λi)i=1,3 the eigenvalues of M(x), the

density d is equal to: d = (h1h2h3)
−1

= (λ1λ2λ3)
1
2 , the anisotropic quotients ri

are equal to: ri = h3i (h1h2h3)
−1. The following result is then used to recast (1)

in a continuous setting:

Theorem 1.1. For any tetrahedron K such all its edges have a length one in M,
i.e., teiM ei = 1, the interpolation error of a twice differentiable function u on K
is bounded by:

(2) ‖u−Πhu‖L1(K) ≤
√
2

240
det(M− 1

2 ) trace(M− 1
2 HuM− 1

2 ),

where Hu is the Hessian of u.
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We note that the right hand side of (2) depends only on the local metric and
Hessian of the solution. It is then possible to use this bound to set a well-posed
global optimization problem where the unknown becomes the continuous mesh:

(3) Find MLp = min
M

∫

Ω

(
trace(M− 1

2 (x)Hu(x)M− 1
2 (x))

)p
dx

under the constraint:

C(M) =

∫

Ω

d = N.

The constraint on the complexity is added to avoid the trivial solution where
all hi are zero which provides a null error. The constant and term det(M− 1

2 )
of (2) are dropped off the functional as they only account for the density and are
taken into account in the constraint directly. Contrary to the discrete analysis,
this problem can be solved globally by using a calculus of variations. In [4], it
is proved that (3) admits a unique solution. Deriving practically a discrete mesh
from the optimal continuous one consists in generating a unit-mesh by using an
adaptive mesh generator [5]. In addition, the following properties hold:

Theorem 1.2. Let u be a twice continuously differentiable function defined on
Ω ⊂ R3, the optimal continuous mesh MLp(u) minimizing (3) reads locally:

(4) MLp = DLp det(|Hu|)
−1

2p+3 |Hu|, with DLp = N
2
3

(∫

Ω

det(|Hu|)
2p

2p+3

)− 2
3

.

It verifies the following properties:

• MLp(u) is unique
• MLp(u) is locally aligned with the eigenvectors basis of Hu and has the
same anisotropic quotients as Hu

• MLp(u) provides an optimal explicit bound of the interpolation error in
Lp norm:

(5) ‖u−Πhu‖Lp(Ω) = 3N− 2
3

(∫

Ω

det (|Hu|)
p

2p+3

) 2p+3
3p

.

• For a sequence of continuous meshes having an increasing complexity with
the same orientation and anisotropic quotients (MN

Lp(u))N=1...∞, the as-
ymptotic order of convergence verifies:

(6) ‖u−Πhu‖Lp(Ω) ≤
Cst

N2/3
.

2. Enhancements for the numerical schemes

When a numerical solver is used to solve a partial differential equation, the contin-
uous solution u is not known and only the numerical approximation uh is provided.
It is then impossible to apply directly the previous error estimate on uh which is
only piecewise linear. Instead, we recover a solution Rh(uh) which is a better
approximation of uh in a given norm ‖.‖:

‖u−Rhuh‖ ≤ α‖u− uh‖ where 0 ≤ α < 1 .
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Figure 1. Illustration of the second order of convergence and
early capturing on a supersonic flow inside a scramjet.

Various recovery operators exist, see [7]. Then, from the triangle inequality we
deduce:

‖u− uh‖ ≤ 1

1− α
‖Rhuh − uh‖ .

If the reconstruction operator Rh has the property: ΠhRhφh = φh for all piecewise
linear function φh, we can then bound the approximation error of the solution by
the interpolation error of the reconstructed function Rhuh:

‖u− uh‖ ≤ 1

1− α
‖Rhuh −ΠhRhuh‖ =

6N− 2
3

1− α

(∫

Ω

det (|HRhuh
|)

p
2p+3

) 2p+3
3p

.

In Figures 1 and 2, we verify that the properties of Theorem (1.2) hold for numeri-
cal solutions issued from Computational Fluid Dynamics. In Figure 1, a supersonic
flow is considered inside a scramjet geometry while in Figure 2, a supersonic flow
is computed around a F15 geometry equipped with a lowboom quiet-spike. We
observe that a second order of convergence is obtained on a sequence of adapted
meshes whereas only a convergence of order one is obtained on a sequence of uni-
form meshes due the discontinuities (shocks) in the flow field. In addition, using
adaptive meshes allows us to early capture the smallest scales of the solution, by
reducing the solver dissipation, see Figure 2.
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Figure 2. Illustration of the reduction of the numerical solver
dissipation during the propagation of small scales shock waves.
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Measure valued and Statistical solutions of systems of conservation
laws.

Siddhartha Mishra

We consider nonlinear systems of conservation laws, such as the compressible Eu-
ler equations of gas dynamics, in several space dimensions. It is well known that
discontinuities, such as shock waves, can form even when the initial data is smooth.
Hence, the solutions are sought in a weak (distributional) sense. However, weak
solutions are not unique and need to be supplemented by additional admissibil-
ity criteria, the so-called entropy conditions. Entropy solutions are shown to be
well posed for systems of conservation laws in one space dimension, at least for
initial data with sufficiently small total variation. However, there are no global
existence results in several space dimensions. Furthermore, recent work has shown
that infinitely many entropy solutions may exist for multi-dimensional systems of
conservation laws.

A variety of numerical methods have been developed to discretize systems of
conservation laws efficiently. These include finite volume (difference) schemes,
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based on Riemann solvers, non-oscillatory reconstruction procedures such as TVD,
ENO, WENO and strong stability preserving Runge-Kutta time stepping as well
as Discontinuous Galerkin finite element methods. However, very few rigorous
convergence results for these numerical methods are available.

In fact, in a recent paper [2], the authors showed that several state of the art
numerical methods may not even converge to any function as the mesh is refined.
Oscillations on finer and finer scales are observed and they impede convergence
under mesh refinement. Based on these observations, it was postulated in [2]
that entropy measure valued solutions are an appropriate solution framework for
systems of conservation laws, particularly in several space dimensions. Entropy
measure valued solutions are young measures i.e, parametrized probability mea-
sures, and were introduced by DiPerna in the mid 80s as a solution concept for
conservation laws.

The main contribution of [2] lay in the design of an efficient algorithm to com-
pute entropy measure valued solutions. This algorithm was based on exploiting
the equivalence between Random fields and Young measures and on Monte Carlo
type ensemble averaging. A set of criteria were proposed and it was shown that if
the underlying numerical discretizations satisfied these criteria, the resulting ap-
proximate young measures generated by the algorithm, converged to an entropy
measure valued solution as the mesh was refined. The arbitrary high-order ENO
based schemes of [1] and entropy stable shock capturing schemes of [4] were ex-
amples of schemes that satisfied these criteria. Hence, the results of [2] provide a
convergence framework for generic systems of conservation laws in several space
dimensions.

A large number of numerical experiments were presented in [2]. These experi-
ments validated the convergence framework by showing that statistical quantifies
of interest, such as moments and one-point pdfs, converged under mesh refinement
even when individual realizations of the approximation did not converge. Further-
more, non-atomic measure valued solutions were observed for atomic initial data.
Hence, this spreading out of the measure by the solution operator implies that one
might not be able to close the well-posedness of solutions of systems of conservation
laws within integrable functions.

However, entropy measure valued solutions are not unique. It is argued in a
recent paper [3] that the lack of information about spatial correlations in mea-
sure valued solutions allows non-uniqueness. Instead, the authors in [3] propose
a much narrower concept, that of Statistical solutions, as solution frameworks for
systems of conservation laws. Statistical solutions are time-parametrized probabil-
ity measures on Lp. It was shown in [3] that this measure on infinite dimensional
function spaces is equivalent to an infinite hierarchical family of correlation mea-
sures. Thus, the statistical solution embeds all possible correlation structures in
the flow. The well-posedness of statistical solutions for scalar conservation laws
was shown in [3]. Furthermore, it is shown that the ensemble based algorithm of
[2] actually converges to a statistical solution, with the underlying measure val-
ued solution being the first correlation marginal of the statistical solutions. As
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moments, 1-point pdfs, two-structure functions, power spectra, increment pdfs,
multi-point correlators are all admissible observables in the sense of [3], statistical
solutions promises to be an appropriate framework for describing turbulent flows.
Further properties of statistical solutions, including their well-posedness and long
time behavior, are the subject of future work.
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Well Posed Problems and Boundary Conditions in Computational
Fluid Dynamics

Jan Nordström

All numerical calculations will fail to provide a reliable answer unless the contin-
uous problem under consideration is well posed. Well-posedness depends in most
cases only on the choice of boundary conditions. In this paper we will highlight
this fact by discussing well-posedness of the most important equations in fluid
dynamics: the time-dependent compressible Navier-Stokes equations.

In particular, we will discuss i) how many boundary conditions are required,
ii) where to impose them and iii) which form they should have. The procedure is
based on the energy method and generalizes the characteristic boundary procedure
for the Euler equations to the compressible Navier-Stokes equations.

Once the boundary conditions in terms of i-iii) are known, one issue remains;
they can be imposed weakly or strongly. The weak and strong imposition is
discussed for the continuous case. It will be shown that the weak and strong
boundary procedures produce identical solutions and that the boundary conditions
are satisfied exactly also in the weak procedure.

We conclude by relating the well-posedness results to energy-stability of the
numerical approximation. It is shown that the results obtained for weak boundary
conditions in the well-posedness analysis lead directly to corresponding stability
results for the discrete problem.
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Orthogonal Polynomials and their Application in Spectral Difference
Methods

Philipp Öffner

(joint work with Thomas Sonar)

We are interested in numerical methods to solve hyperbolic conservation laws in
two space dimensions

ut(x, t) +∇ · F (u(x, t)) = 0, x ∈ Ω ⊆ R2, t ∈ R+.

We consider here the Spectral Difference Method described in [1] by the gen-
eral classical orthogonal polynomials on triangles and their specific modal filters.
The SD method is a very powerful and nowadays often used method to solve hy-
perbolic conservation laws. It combines the basic ideas of finite difference and
spectral methods and the simple formulation and the possibility to reach spec-
tral accuracy in the approximation renders it so attractive. The classical ap-
proach in the SD method uses Lagrange polynomials, but in [1] the authors em-
ploy Proriol-Koornwinder-Dubiner polynomials. We extend the method by using
Appell-Proriol-Koornwinder polynomials, which are the general classical orthogo-
nal polynomials on triangles.
These polynomials are defined on the unit triangle T := {(x, y) ∈ R2|x ≥ 0, y ≥
0, x+ y ≤ 1} and h(x, y) := xα−1yβ−1(1−x− y)γ−α−β (α, β, γ ∈ N, γ > α+β− 1
and N = {1, 2, · · · }) is the weight function, given in this domain. Note that we
only consider α, β, γ ∈ N for simplicity. In principle, α, β, γ ∈ R+

0 is possible. The
Pα,βm are the classic Jacobi polynomials.

Definition 1 The polynomials Am,l(x, y), m, l ∈ N0, defined as

Am,l(x, y) := Pα−1,2l+γ−α
m (1− 2x)P p,β−1

l

(
2y

1− x
− 1

)
(1 − x)l

on T are called Appell-Proriol-Koornwinder polynomials (APK polynomi-
als).

In the first step we present two theoretical results. We prove spectral conver-
gence for the APK series coefficients ũk of a C∞-function u. Spectral convergence
or spectral accuracy means that the ũk decay faster than any power k−j for all
j ∈ N. Furthermore we also show spectral accuracy for the truncation error in a
weighted L2-norm and in the pointwise sense. This behaviour is the justification to
utilize the APK polynomials in a spectral method as the SD method. The proofs
can be found in [2].

Theorem 1 Let u be a function in the space H2k(T, h), k ∈ N where h(x, y) =
xα−1yβ−1(1− x− y)γ−α−β is the weight with α, β, γ ∈ N.
The APK expansion of u is given by

PNu(x, y) =
∑

l+m≤N
l,m ∈N0

ũm,lAm,l(x, y); ũm,l =
(u;Am,l)L2(T,h)

(Am,l;Am,l)L2(T,h)
.
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The following estimates hold:

(Am,l;Am,l)
1
2

L2(T,h) · |ũm,l| = O(λ−km,l), (m+ l) → ∞,

||u− PNu||L2(T ,h) = O(N−2k), N → ∞.

Theorem 2 Let u be a function in the space H2k(T, h) ∩ C(T), k ∈ N where
h(x, y) = xα−1yβ−1(1− x− y)γ−α−β the weight with α, β, γ ∈ N. PNu(x, y) is the
APK expansion of u.
We have following pointwise estimate of the truncation error:

(a) for 2β − 1 < γ − α and 1 + γ−α
2 ≤ 3

4 + 3
4α+ γ−α−β

2 < k:

|u(x, y)− PNu(x, y)| = O(N−2k+ 3
2α+γ−α−β+

1
2 ), ∀(x, y) ∈ T,

(b) for 2β − 1 < γ − α and 3
4 + 3

4α+ γ−α−β
2 ≤ 1 + γ−α

2 < k:

|u(x, y)− PNu(x, y)| = O(N−2k+γ−α+ 3
2 ), ∀(x, y) ∈ T,

(c) for γ − α ≤ 2β − 1 and 1 + γ−α
2 ≤ 1

4 + 3
4α+ β

2 < k:

|u(x, y)− PNu(x, y)| = O(N−2k+ 3
2α+β−

1
2 ), ∀(x, y) ∈ T,

(d) for γ − α ≤ 2β − 1 and 1
4 + 3

4α+ β
2 ≤ 1 + γ−α

2 < k:

|u(x, y)− PNu(x, y)| = O(N−2k+γ−α+ 3
2 ), ∀(x, y) ∈ T.

We extend the SD method by the APK polynomials but have to consider another
fact in the numerical calculation. In hyperbolic conservation laws discontinuities
may arise in the solution even for smooth initial data. In spectral methods this
means that the high-frequency coefficients decay slowly and lead to spurious oscil-
lations (Gibbs phenomenon). These oscillations lead to stability issues in the SD
method.
To stabilize the SD Methods we add a small viscosity term to the equation, which
depends on the differential operator of the APK polynomials. Using a splitting
approach to solve the viscosity formulation of the conservation law in every time
step shows the equivalence to applying the extended SD Method, but at each time
step the numerical solution is filtered by the exponential filter

(1) σ

(
l +m

N

)
= e−εNN

2p∆t( l+m
N )

p
( l+m+γ

N )
p

.

The reader finds the details in [3]. Finally we mention that this filter (1) depends
on the variable γ . Hence every APK polynomial family has its specific modal
filter (1).
In two well-known test cases, one for the Burgers equation and one for the Euler
equation, we demonstrate that the selection of the APK polynomials and their
specific filter (1) may have some positive influence on the accuracy and stability
of the method. These numerical tests can be seen in [4].
In the last section we motivate why discrete orthogonal polynomials may be a good
approach to improve spectral methods. With the discrete scalar product we don’t
make numerical errors in the calculation of the coefficients. We start to investigate
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the Hahn polynomials as an example of classic discrete orthogonal polynomial and
show spectral accuracy of the coefficients.
Theorem 3 Let −1 < α, β ∈ R. Q̃n(x, α, β,N) are the normalized Hahn polyno-
mials in [0, N ]. The Hahn expansion of the function u until degree m ≤ N is given
by

Pmu(x) =

m∑

n=0

ûnQ̃n(x).

Let u ∈ C∞ ([−1, 1 +N ]). We get

|ûn| ≤
1

n2k
Cu,k.

for all k ∈ N0. Cu,k is a constant depending on u and k.
The idea of proof is partial summation and using the difference operator, for details
see [3].
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The Triangular Grid DG Scheme in SBP Framework and the
Construction of Special Purpose RK Time Integrators

Sigrun Ortleb

In this talk, we deal with the SBP framework of numerical methods for hyperbolic
conservation laws on the one hand and the construction of special time integration
methods for certain applications on the other hand.

SBP Schemes. The framework of SBP operators yields several advantages for
the numerical approximation of nonlinear hyperbolic equations. First of all, SBP
schemes are linearly stable when combined with suitable boundary and interface
treatments, second, they lead to conservative discretizations of split form conser-
vation laws and in addition they can be related to quadrature rules satisfying the
discrete divergence theorem. In this talk, popular high order schemes for nonlin-
ear hyperbolic conservation laws are revisited in the summation-by-parts(SBP)
framework. More precisely, it is shown that both the classical discontinuous
Galerkin(DG) method based on Gauss nodes and the energy stable flux recon-
struction(FR) schemes by Vincent et al. [7] can be regarded as generalized SBP
schemes using the SBP definition of Del Rey Fernández et al. in [2]. In the 1D
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case of a scalar conservation law ∂
∂tu + ∂

∂xf(u) = 0, both schemes can be put in
the form

ut +Df = M−1[(fh − f∗)Φ]xi+1
xi

on each cell [xi, xi+1], with different mass matrices M for DG or FR scheme.
Herein, a set of Lagrange basis functions Φk is used and collected in the vector
Φ = (Φ1, . . . ,Φp)

T , whereas u and f represent the corresponding nodal values of
the approximate solution and the flux function, respectively. Furthermore, fh is a
suitable interpolation of f and f∗ denotes the values of a numerical flux function.
The matrices M,D in this formulation then fulfill the requirements of generalized
SBP schemes, i.e.

• M is symmetric positive definite,
• D approximates ∂

∂x ,
• S := MD is almost skew-symmetric, i.e.
S+ ST = B with (xµ)TBxν = (xi+1)

µ+ν − (xi)
µ+ν .

In addition, a generalized SBP formulation for a discontinuous Galerkin method
on triangular grids with non-diagonal norm matrix is given based on the definition
of generalized SBP schemes on triangular grids in [4]. An SBP formulation can
also be devised for the energy stable FR schemes on triangular grids constructed in
[1]. Furthermore, as discussed with P. Vincent during the Oberwolfach Workshop,
the the extended range of energy stable FR schemes given in [8] can be put in SBP
framework as well. It may hence be conjectured that the SBP property is in fact
a prerequisite in order to obtain high order energy stable schemes.

Time Integrators for Specific Applications.
Shallow water equations. In the majority of previous work on DG schemes for
shallow water flows, explicit time stepping is implemented to deal with wetting
and drying. Linear stability then usually requires rather small time steps. Espe-
cially for locally refined grids, the stiff system resulting from space discretization
makes implicit or partially implicit time stepping absolutely necessary. As implicit
schemes require a lot of computational time solving large systems of nonlinear
equations, a much larger time step is necessary to beat explicit time stepping in
terms of CPU time. However, for stability purposes, the DG scheme applied to the
shallow water equations also has to guarantee non-negativity of the water height,
accordant with the true physical solution. At wet/dry interfaces, this requirement
also leads to restrictive time step constraints in case of implicit time integration.
In this talk, a novel approach to positivity preservation is hence based on the so-
called Patankar trick and guarantees non-negativity of the water height for any
time step size while still preserving conservativity. In the DG context, consistency
of the discretization as well as a truncation error of third order away from the
wet-dry transition can be proven, see [5].
Mechanical fluid structure interaction. The simulation of fluid structure interac-
tion(FSI) often necessitates the choice of different time step sizes for the time
integration of the fluid equations on the one hand and structure equations on the
other hand. For mechanical fluid structure interaction, Piperno devised a special
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volume-discontinuous staggered scheme to enhance the stability of subcycling pro-
cedures with large implicit structural time step and several smaller fluid steps, see
[6]. This scheme, as well as the more classical volume-continuous scheme can be
put in a multirate Runge-Kutta framework. Thereby, different splittings of the
right hand sides as well as different ordering of fluid and structure solves reflect
the differences of these schemes. In this talk, we apply the third order multi-
rate method of Günther et al. [3] to the classical piston test case of mechanical
FSI. Here, a slight increase in combined fluid and structural energy occurs due to
the non-symplectic implicit part of the time integrator. While for monolithic FSI
schemes, energy stability is possible, it is an open question if higher order energy
stable partitioned schemes can be found within the class of multirate partitioned
Runge-Kutta methods. One approach could be the construction of a predictor-
corrector scheme with a corrector specifically designed for stability. In addition,
adapted boundary procedures at the fluid structure interface could be necessary
for this purpose.
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High-Order Methods for Turbulent Flow Simulations on Deforming
Domains

Per-Olof Persson

(joint work with Luming Wang)

Introduction. A challenging problem in the numerical solution of PDEs is how
to obtain high-order accuracy in the presence of moving domains with large de-
formations. The popular Arbitrary Lagrangian-Eulerian (ALE) method [1] can
be viewed as a mapping-based approach which, together with appropriate treat-
ment of the Geometric Conservation Law (GCL), allows for arbitrarily high or-
ders of accuracy in both space and time. However, the method requires smooth
mappings between the initial (or reference) frame and the actual physical config-
uration. These can be generated for domains undergoing moderate deformations,
such as pitching and heaving airfoils, or structures with small deformations. But
many other applications require topological changes to maintain a well-shaped
mesh/transformation, e.g. rotating machinery or configurations involving multi-
ple moving objects.

In our work [2, 3], we proposed a framework for solving systems of conservation
laws on moving meshes to an arbitrary degree of accuracy in both space and time.
The method is based on the assumption that the unstructured moving meshes can
be produced by a sequence of entirely local operations [4]. This produces high-
quality meshes throughout the simulation, and provides a simple description of
the mesh changes between each timestep. Using this information we can construct
efficient numerical schemes based on high-order discontinuous Galerkin formula-
tions, and we consider both space-time and ALE/projection-based methods in 2D
and 3D.

The DistMesh mesh generator. The so-called DistMesh method [4] is based on
iterative updates of the positions of the N interior mesh nodes p(n), n = 1, . . . , N ,
driven by spring-based forces Fi for each edge i adjacent to node n, of the form:

p(n+1) = p(n) + δ
∑

i

Fi(1)

|Fi(l)| =
{
k(l − l0) if l ≥ l0,

0 if l < l0.
(2)

Here, δ is a pseudo-timestep, k is the spring constant, l0 is the desired edge length,
and l is the actual edge length. In addition, the mesh generator employs local
element topology modifications, such as the simple edge flipping in 2D or more
complex operations in 3D. Here, we assume that each element can be flipped once
during each sweep, but multiple rounds during each time step.
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Space-Time mesh generation. Noting that our moving meshes are defined by
entirely local operations (node movements and element flips), we are able to define
provably good space-time meshes. These are based on fully unstructured simplex
elements, that is, tetrahedra in 2D+time and 4D simplices in 3D+time. We restrict
our method to slab-based space-time meshing, that is, all elements have uniform
size in the temporal direction. However, extending this to adaptivity in time using
local refinement should be straight-forward, even for the 4D elements.

The method for choosing appropriate space-time elements is mostly combina-
torial, and uses node data only to allow for choosing the highest quality configu-
rations. For details, see [3].

Space-Time discontinuous Galerkin discretization. Using our space-time
meshes, we define a high-order accurate discontinuous Galerkin (DG) method as
follows. The scheme is based on a fully consistent discretization in both space and
time, and allows for arbitrary mesh deformations and topology changes.

Consider a system of conservation laws of the form

∂u

∂t
+∇X · F inv(u) = ∇X · F vis(u,∇Xu)(3)

with appropriate initial and boundary conditions. We write this in a space-time
form and use the standard technique of splitting into a first-order system:

∇XT · F̃ inv(u) = ∇X · F vis(u, q),(4)

∇Xu = q.(5)

Next, we define the broken DG spaces VhT and ΣhT associated with a triangulation
T h
[0,T ] = {K} of the space-time domain Ω[0, T ] as:

VhT = {v ∈ [L2(Ω[0, T ])]5 | v|K ∈ [Pp(K)]5 ∀K ∈ T h
[0,T ]},(6)

ΣhT = {σ ∈ [L2(Ω[0, T ])]5×3 | σ|K ∈ [Pp(K)]5×3 ∀K ∈ T h
[0.T ]},(7)

Now, discretize the first-order system using a standard DG formulation on the
space-time domain Ω[t1, t2]:

−

∫

K

F̃
inv(uh) : ∇XT v

h
dx+

∮

∂K

( ˜̂F inv · n) · vh
ds

= −

∫

K

F
vis(uh

, q
h) : ∇Xv

h
dx+

∮

∂K

( ̂F vis · ns) · v
h
ds, ∀v

h
∈ V

h
T(8)

∫

K

q
h : σh

dx = −

∫

K

u
h
· (∇X · σ

h) dx+

∮

∂K

(ûh ⊗ ns) : σ
h
ds, ∀σ

h
∈ Σh

T .

(9)
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For more details, including the details on how to assemble and solve the resulting
nonlinear systems of equations, see [2,3].

Results. To demonstrate the accuracy of our proposed methods, we consider the
standard test problem of an isentropic Euler vortex. We use polynomial degrees
p of 1, 2, and 3, and obtain numerically the expected optimal orders of accuracy
p + 1. See [2,3] for demonstrations on more complex problems, including flow
problems in both 2D and 3D which show the ability of our method to deal with
complex domain motions.
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A robust high-order Lagrange-projection like scheme with large time
steps for the isentropic Euler equations

Florent Renac

(joint work with Frederic Coquel, Christophe Chalons)

Introduction. We present an extension to high-order of a first-order Lagrange-
projection like method for the approximation of the Euler equations introduced
in Coquel et al. [2]. The method is based on a decomposition between acoustic
and transport operators associated to an implicit-explicit time integration, thus
relaxing the constraint of acoustic waves on the time step. Besides, the work
in [2] circumvents the difficulties in the treatment of nonlinearities associated to
the equation of state by using relaxation approximation [1]. The latter method
approximates the nonlinear system with a linear or a quasi-linear enlarged system
with stiff relaxation source terms.
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The method in [2] is based on a first-order finite volume approximation. We
propose here to use a discontinuous Galerkin (DG) method for the space discretiza-
tion. These are particular aspects that make the DG method well suited. First,
it is possible to use the numerical fluxes derived in [2] and therefore the present
method may be viewed as a natural extension to high-order of the first-order
method. Then, the effect of the numerical flux on the quality of the approxima-
tion is known to decrease as the polynomial degree p in the DG method increases
[3, 4]. This avoids the use of local numerical parameters tuned at each interface
of the mesh in order to lower the numerical diffusion induced by the first-order
approximation [2]. This aspect is essential in our analysis to restore the PDE prop-
erties at the discrete level and to derive a priori conditions to preserve invariant
domains and satisfy an entropy inequality by the present Lagrange-projection DG
(LPDG) scheme.
Isentropic Euler equations. The discussion here focuses on the Euler equations
for an isentropic gas in one space dimension. Let Ω = R be the space domain and
consider the following problem

(1)

{
∂tu+ ∂xf(u) = 0, in Ω× (0,∞),
u(·, 0) = u0(·), in Ω,

where u = (ρ, ρu)⊤ and f(u) = (ρu, ρu2 + p)⊤represent the conservative variables
and the nonlinear fluxes, with ρ the density and u the velocity. Equations (1) are
supplemented with an equation of state for the pressure of the form p = p(τ),
with τ = 1/ρ the specific volume. Assuming that p′(τ) < 0 and p′′(τ) > 0 for
all τ > 0, the system in (1) is strictly hyperbolic with eigenvalues associated to
nonlinear fields. Note that the total energy ρE(u) = ρe(1/ρ) + (ρu)2/2ρ, with
e′(τ) = −p(τ) the specific internal energy, is a strictly convex function. Physically
relevant solutions to (1) must hence satisfy an inequality of the form

(2) ∂tρE + ∂x(ρEu + pu) ≤ 0.

Space-time discretization. The DG method consists in defining a discrete
weak formulation of problem (1). The domain is discretized with a uniform grid
Ωh = ∪j∈Zκj with cells κj = [xj−1/2, xj+1/2], xj+1/2 = (j + 1

2 )h and h > 0 the
space step. The approximate solution to (1) is sought under the form

(3) uh(x, t) =

p∑

l=0

φlj(x)U
l
j(t), ∀x ∈ κj , κj ∈ Ωh, t ≥ 0,

where Ul
j = (ρlj , ρU

l
j)

⊤ constitute the degrees of freedom in the element κj . The

function space is spanned by using Lagrange interpolation polynomials φ0≤l≤pj in
each element κj of the mesh.

Using a one-step first-order implicit-explicit time discretization for the acoustic
and transport operators in (1), we introduce the following conservative approxi-
mation consistent in time and space with the Euler equations:

(4) Uk,n+1
j = Uk,n

j − λk

[
−
〈
f(un+1−

h ), dxφ
k
j

〉p
j
+ δk,ph

n+1−

j+ 1
2

− δk,0h
n+1−

j− 1
2

]
,
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with λk = 2λ/ωk, λ = ∆t/h, Uk,n
j = Uk

j (n∆t), and ∆t > 0 the time step. The
numerical fluxes are defined by

(5) hj+ 1
2
=

(
u⋆
j+ 1

2

ρ̂j+ 1
2

u⋆
j+ 1

2

ρ̂uj+ 1
2
+Π⋆

j+ 1
2

)
,

where a star symbol indicates the solution at interfaces of the Riemann problem
associated to the relaxation approximation of the acoustic operator, while a hat

symbol indicates an upwind flux. The time t(n+1−) corresponds to a fictious time
where the splitting between acoustic and transport operators is applied within the
interval (t(n), t(n+1)). The volume integrals in the discrete variational formulation
are approximated by using a collocated Gaus-Lobatto quadrature rule of the form

∫

κj

f(x)g(x)dx ≃ 〈f, g〉pj :=
h

2

p∑

l=0

ωlf(xl)g(xl),

with ω0≤l≤p > 0 and x0≤l≤p the weights and nodes of the quadrature.

The main results of the present work are as follows. Assume that ρ0≤k≤p,nj∈Z
> 0,

then under some CFL condition on the time step, evaluated from the transport
terms only, and one condition on the numerical parameter of the scheme, the
LPDG scheme guaranties positivity of the mean value in cell of density of the
numerical solution:

(6) ρn+1
j > 0,

and satisfies the following discrete entropy inequality

(7) ρE(un+1
j )− ρE

n

j +λ
(
u⋆j+ 1

2
(ρ̂E

n+1−

j+ 1
2

+Π⋆j+ 1
2
)− u⋆j− 1

2
(ρ̂E

n+1−

j− 1
2

+Π⋆j− 1
2
)
)
≤ 0.

The above results allow to design linear limiting procedures to restore these
properties at nodal values within elements [6]. Numerical experiments (see fig-
ure), obtained by using explicit SSP Runge-Kutta integration in time, support the
conclusions of the analysis and highlight stability and robustness of the present
LPDG scheme, though it allows the use of large time steps [5].
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Figure 1. Riemann problem with two shock waves: numerical
solution for density (left) and velocity (right) at time t = 0.3 for
polynomial degrees 1 ≤ p ≤ 3 from top to bottom, h = 1

200 .
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Coupling Parallel Lattice Boltzmann Methods and Granular
Dynamics for Complex Flows

Ulrich Rüde

(joint work with Regina Ammer, Dominik Bartuschat, Martin Bauer, Simon
Bogner, Ehsan Fattahi, Christian Godenschwager, Harald Köstler, Kristina

Pickl, Tobias Preclik, Christoph Rettinger, Florian Schornbaum)

We present new parallel algorithms for coupling the dynamics of multi-body sys-
tems and hydrodynamics with the goal of developing computational models for
two phase flows in 3D that have a fluid carrier phase and a suspended solid phase.
Differerent from other work, we study here a fully resolved approach where each
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particle is represented as an individual geometric entity. Moving particles are rep-
resented with a Lagrangian approach and are treated as rigid objects that can
interact through frictional collisions. The fluid is simulated by the Lattice Boltz-
mann method (LBM) and interacts with the particulate phase through specific
fluid-structure interaction techniques. Such fully resolved simulations can become
extremely compute intensive and thus all research relies critically on suitable par-
allel algorithms and their efficient implementation on advanced supercomputer
architectures.

For the massively parallel granular dynamics simulations on distributed mem-
ory architectures [31, 25] a domain partitioning approach is proposed [39, 40].
Special algorithms for massively parallel granular dynamics simulations [3, 22, 23]
with fully resolved rigid particles on distributed memory architectures are devel-
oped, where collisions are geometrically detected [8, 12] and the physical response
is modelled with hard contacts [30] using the paradigm of measure differential
inclusions.

The global frictional multi-contact problem leads to a complementarity problem
[3, 35] that is solved using a parallel non-linear block Gauss-Seidel method [37].
The algorithms employ a sophisticated communication protocol between proces-
sors that delegates algorithmic tasks such as contact treatment and position inte-
gration uniquely and robustly to the processors [36]. Communication overhead is
minimized through aggressive message aggregation, leading to excellent strong and
weak scaling [23]. The robustness and scalability is assessed on peta-scale super-
computers with up to 458 752 processor cores. Such granular media simulations
can reach an unprecedented resolution of up to ten billion (1010) non-spherical
particles and contacts [37].

For flow simulation, the LBM has gained popularity as an alternative to classical
Navier-Stokes solvers for computational fluid dynamics (CFD) [20, 7, 28, 13, 1].
With the LBM, the simulation domain is discretized with a uniform Cartesian
grid. If the resolution of a three-dimensional simulation must be increased in
space and time, then the total number of cells and the computational cost increase
quickly. Many implementations of the LBM [19, 32, 21, 27, 17] are therefore
designed for parallel computers. Going beyond scalability alone, a carefully crafted
architecture-aware implementation of the LBM, as realized in the waLBerla

framework [14, 10], can achieve excellent absolute performance and thus reduce
the time to solution to reach a given computational objective. The waLBerla

framework can discretize a complex flow geometry with in excess of a trillion (1012)
lattice cells on current petascale supercomputers [18].

Coupled simulations with particles embedded in the fluid become even more
compute intensive. To limit the computational effort, many previous simulations
were performed either with only few particles or in only two dimensions, or with
simplified models for the fluid-particle interaction. Our new simulation model
and its implementation, as presented here, extends these approaches and allows
fluid simulations in 3D with millions of interacting particles [15, 16] suspended in
the flow. Furthermore, our simulation framework can model particles of arbitrary
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shape [5], includes the so-called lubrication correction [26, 9] and can be extended
to include electrostatic effects [4]. Simulations of such complexity inevitably re-
quire the effective use of supercomputers. A thorough analysis demonstrates that
our techniques achieve excellent computational performance [18, 4, 11].

An increasing number of real-life applications illustrate the generality and the
power of the approach. These include the development of closure relations for
macroscopic multiphase models [6], the study of self-propelled swimmers [33, 34],
processing metal foams [24], patient specific blood flow [18], food technology [2],
and additive manufacturing [29].

Simulated model fluidized bed with thin rectangular cross section.
208 spherical particles driven by inflow from below. LBM resolution 100 × 30× 200

computed with 25 000 time steps using 64 MPI threads.
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[24] Körner, C., Pohl, T., Rüde, U., Thürey, N., Hofmann, T. (2005). FreeWIHR: Lattice Boltz-
mann methods with free surfaces and their application in material technology. In High



Numerics of Nonlinear Hyperbolic Conservation Laws 2457

Performance Computing in Science and Engineering, Garching 2004, Springer Berlin Hei-
delberg, pp. 225–236.

[25] Koziara T, Bićanić N (2011) A distributed memory parallel multibody contact dynamics
code. International Journal for Numerical Methods in Engineering 87(1–5), pp. 437–456

[26] A. J. C. Ladd, R. Verberg (2001 Lattice-Boltzmann Simulations of Particle-Fluid Suspen-
sions, J. Stat. Phys. 104 (5), pp. 1191–1251.

[27] LB3D. http://ccs.chem.ucl.ac.uk/lb3d. Accessed: 2015-10-16.
[28] L.-S. Luo (1998) Unified Theory of Lattice Boltzmann Models for Nonideal Gases, Phys.

Rev. Lett. 81 (8), pp. 1618–1621.
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Third-Order Limiter Functions in Finite Volume Methods

Birte Schmidtmann

(joint work with Manuel Torrilhon, Rémi Abgrall, Benjamin Seibold)

We are interested in the numerical solution of hyperbolic conservation laws on the
most local compact stencil consisting of only nearest neighbors. In the Finite Vol-
ume setting, the main challenge is the reconstruction of the interface values ui±1/2

which are crucial for the definition of the numerical flux functions and thus, for
the order of accuracy of the resulting scheme.
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Often, the functions of interest contain smooth parts as well as large gradients,
discontinuities, or shocks. Treating such functions with high-order schemes may
lead to undesired effects such as oscillations. However, what is required is a solu-
tion with sharp discontinuities while maintaining high-order accuracy in smooth
regions. One possible way of achieving this is the use of limiter functions, which
switch the reconstruction to lower order when necessary. In this work, we restrict
ourselves to reconstructions based on three cells, which is the most compact sten-
cil possible for higher-order reconstructions. The three input values are the cell

averages of cell i, ūi(t
n) = 1

∆x

∫ xi+∆x/2

xi−∆x/2
u(x, tn)dx and its direct neighbors ūi±1.

The left and right limits of the interface values ui±1/2 are computed by

u
(−)
i+1/2 = ūi +

1

2
φ(θi)δi+ 1

2
,(1a)

u
(+)
i−1/2 = ūi −

1

2
φ(θ−1

i )δi− 1
2
,(1b)

where δi+ 1
2
= ūi+1 − ūi, δi− 1

2
= ūi − ūi−1, θi = δi− 1

2
/δi+ 1

2
and φ is a univariate

limiter function depending on the local smoothness measure θi. For example, the
Minmod limiter reads φ(θi) = max(0,min(1, θi)) and the full-third-order recon-
struction is given by

φ3(θi) = (2 + θi)/3.(2)

In this work, we develop a new limiter function based on the function intro-
duced by Čada and Torrilhon [2]. This function was inspired by the local double
logarithmic reconstruction function of Artebrant and Schroll [1].
The new limiter function, denoted by φ3L, is third-order accurate in smooth parts
of the solution. It reads

φ3L(θi) = max

(
0,min

(
2 + θi

3
,max

(
−θi,min

(
2 θi,

2 + θi
3

, 1.5

))))
.(3)

It is easy to see that it recovers the unlimited third-order reconstruction φ3(θi)
for certain values of θi, namely for θi ≈ 1 and θi ≈ −1. Note that the function is
non-zero in part of the θi < 0 region, which means that it is not total variation
diminishing (TVD). This non-zero part is kept intentionally, to avoid the so-called
extrema clipping. Consider an extrema, this means θ ≈ −1, which corresponds
to t1, the green curve in Fig. 1. TVD limiters on the one hand, return 0 in this
case, which means that the reconstructions Eq. (1) are first order accurate and
the extremum is not captured correctly. The limiter φ3L(θi), on the other hand,
returns (2+θi)/3, which means that it resolves extrema with third-order accuracy.
The only issue concerning extrema-clipping, which φ3L(θi) does not fully resolve,
is that φ3L(θi) = const. for θi = 0 or ±∞, cf. t2, the blue curve in Fig. 1. In
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Figure 1. Two phenomena of extrema clipping of a smooth profile.

this case, the reconstruction is first order accurate. These values of θi occur when
one of the slopes δi±1/2 is zero and the other one is non-zero. This is the case for
discontinuities or large gradients but can also appear when extrema are not well-
resolved. The only difference is the value of the non-zero slope. It is large, when
discontinuities are present, however, it is small close to extrema. Thus, instead of
relying on their ratio θi, we should explicitly consider both normalized slopes and
especially the size of the vector (δi−1/2, δi+1/2).
In a first step, we introduce the two-parameter framework, which makes the use of
θi = δi−1/2/δi+1/2 unnecessary. This has the advantage, that is does not include
divisions by δi± 1

2
anymore. In this new framework, the limiter functions are now

defined as

H(δi− 1
2
, δi+ 1

2
) = φ(θi)δi+ 1

2
(4a)

H(δi+ 1
2
, δi− 1

2
) = φ(θ−1

i )δi− 1
2
.(4b)

E.g. the third-order reconstruction, Eq. (2) now reads H3(δi−1/2, δi+1/2) =
(2δi+1/2 + δi−1/2)/3 in the two-parameter framework.

Having written the limiter functions and thus, the reconstructions Eq. (1), in
the two-parameter setting now allows us to define an indicator function η which
measures the magnitude of the vector (δi−1/2, δi+1/2). In this manner, it is possi-
ble to distinguish between the case of a large gradient with one zero slope and the
case of an extrema with one zero slope. The indicator function is defined as

η =

√
δ2i−1/2 + δ2i+1/2

α∆x2
with α =

√
5

2
+O(∆x) max

x∈Ω\Ωd

|u′′0(x)|,(5)

where Ω is the computational domain and Ωd is a set of points where the initial
condition u0(x) is discontinuous. The function η measures if the vector of undi-
vided slopes is sufficiently small. In this case, the reconstruction can be switched
to the full-3rd-order reconstruction. This is summarized in the combined limiter
function

H
(c)
3L (δi−1/2, δi+1/2) :=

{
H3(δi−1/2, δi+1/2) if η < 1

H3L(δi−1/2, δi+1/2) if η ≥ 1.
(6)
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Figure 2. 3rd-order limiter function incl. the asymptotic region.

Figure 2 shows the combined limiter function H
(c)
3L .

Finally, we consider the Sod Shock Tube Problem [3] to show the excellent perfor-
mance of the new limiter function. We compare the full-third-order reconstruction

H3, the combined limiter H
(c)
3L and third-order WENO, WENO3, as introduced

by Jiang and Shu [4]. Note that α = 0 in the formulation of η, Eq. (5), which

means that H
(c)
3L reduces to H3L in this case. Fig. 3 shows the solution at time

Tend = 0.8 on a grid with N = 100 cells, CFL 0.95 and γ = 1.4. As expected,
the full-third-order reconstruction yields overshoots at the discontinuities, which

are well-removed by the limiter function H
(c)
3L . WENO3 does not yield overshoots,

however, does not approach the true solution as well as H
(c)
3L .
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On maximum principle and positivity-preserving high order schemes

Chi-Wang Shu

We give a survey of our recent work, jointly with Xiangxiong Zhang and other
collaborators, on the construction of uniformly high order accurate discontinuous
Galerkin (DG) and weighted essentially non-oscillatory (WENO) finite volume
(FV) schemes which satisfy strict maximum principle for nonlinear scalar con-
servation laws, passive convection in incompressible flows, and nonlinear scalar
convection- diffusion equations, and preserve positivity for density and pressure
for compressible Euler systems in computational fluid dynamics. These schemes
are referred to as bound-preserving high order schemes.

In [5, 6], A general framework (for arbitrary order of accuracy) is established,
which consists of the following 3 ingredients: (1) A first order accurate scheme
which has the bound-preserving property under a suitable CFL condition; (2)
a simple scaling limiter applied to the high order DG or FV method, involving
only evaluations of the polynomial solution at certain quadrature points, which
does not affect high order accuracy and guarantees the same bound-preserving
property for the first order Euler forward time discretization under a modified
CFL condition; (3) a strong stability preserving (SSP) high order Runge-Kutta
or multistep time discretization which increases time accuracy and maintains the
same bound-preserving property.

One remarkable property of this approach is that the second ingredient above is
straightforward to extend two and higher dimensions on arbitrary triangulations
[9], and the scaling limiter is local in the cell, thus it keeps the parallel efficiency of
the original algorithm. The schemes constructed in this framework are extremely
robust, especially for problems involving strong shocks or even δ-function singular-
ities [3]. We will list applicability of the method for problems including arbitrary
equations of state [1], source terms [7], shallow water equations [2], Lagrangian
schemes [1], and positivity-preserving high order finite volume scheme and piece-
wise linear DG scheme for convection-diffusion equations [4, 10]. A survey can be
found in [8].
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Numerical bifurcation analysis of the macroscopic behavior in
multiscale systems

Jens Starke

(joint work with Christian Marschler and Jan Sieber)

An implicit multiscale approach is suggested which enables numerical investiga-
tions of the macroscopic behavior of microscopically defined systems including
continuation and bifurcation analysis on the coarse or macroscopic level where no
explicit equations are available. This approach fills a gap in the analysis of many
complex real-world applications where the microscopic system is too large for di-
rect investigations and macroscopic equations cannot be obtained analytically.

This multiscale approach belongs to the so-called equation-free methods which
were suggested by Kevrekidis (see [3] and references therein). Equation-free meth-
ods take advantage of a typical property of complex systems which show pattern
formation namely that there is a fast convergence of many degrees of freedom to
a low-dimensional slow manifold. This key property can be used for analytical as
well as numerical dimension reduction, known in physics as adiabatic elimination
or slaving principle. The suggested implicit equation-free variant reduces the nu-
merical error significantly [4], [5]. It can be shown in the framework of slow-fast
dynamical systems, using Fenichel theory, that the implicitly defined coarse-level
time-stepper converges to the true dynamics on the slow manifold.

The information about the macroscopic behavior necessary for the numerical
analysis on that level (where equations of motion are not explicitly available) is
obtained by short simulations of the given microscopic model with a time de-
pendent microscopic state u(t0) ∈ RN . We assume now that the system behav-
ior converges to an attractive low-dimensional slow manifold and the goal is to
construct a macroscopic time-stepper Φ for the macroscopic behavior on the low-
dimensional slow manifold by an appropriately initialized microscopic time-stepper
M . In details, the macroscopic time-stepper Φ with x(t0 + t) = Φ(t, x(t0)), where
x(t0) ∈ Rn describes the macroscopic state on the slow manifold and n ≪ N , is
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computed by using the appropriately initialized microscopic time-stepper M with
u(t0+ t) =M(t, u(t0)). This requires to change back and forth between the micro-
scopic and macroscopic level where the map R from the microscopic description to
the macroscopic one is called restriction while the reversed map L is called lifting:

macro-level x(t0)
Φ−−−−→ x(t0 + t)

yL

xR

micro-level u(t0)
M−−−−→ u(t0 + t)

The definition of the restriction operator R is typically motivated by a problem
specific scientific question but is usually straight forward while the definition of the
lifting operator L often requires advanced problem based knowledge and intuition.
As it is in general impossible to construct a lifting that maps on the slow manifold
but only close-by, the direct application of the sketched procedure for Φ with

(1) Φ(t, x(t0)) = R(M(t0,L(x(t0))))
describes the behavior of the slowmanifold instead of on it. A so-called healing step
which brings the system state closer to the attractive slow manifold by forward
integration with time tskip improves this but changes also the position in the
macroscopic phase space such that the behavior is investigated at another position
than wanted. To avoid this and to be able to refer in the numerical evaluation to
the appropriate states in phase space the following implicit method is suggested:

(2) R(M(tskip,L(y))) = R(M(tskip + t,L(x))).
This equation defines the map Φ : x 7→ y via y implicitly (cf. Fig. 1). The implicit
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Figure 1. The yet unknown macroscopic state y defines the
macroscopic time-stepper Φ : x 7→ y. Initializing the microscopic
time-stepper M with state L(x), the macroscopic dynamics is
observed for time t after applying a healing step for time tskip.
The restricted endpoint of this, i.e. the corresponding macro-
scopic position x⋆, is compared with the likewise healed and re-
stricted position of L(y). With kind permission from Springer
Science+Business Media: [5].
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equation (2) is solved with Newton iterations. Depending on tskip an error estimate
can be given for this implicit equation-free method [4].

The approach allows one to formulate the macroscopic dynamics in an implicit
way, to perform a coarse projective integration with an implicit Euler method (in-
cluding time backward integration) as well as continuation with predictor-corrector
methods and numerical bifurcation analysis to investigate the parameter depen-
dent change of the qualitative behavior of the macroscopic dynamics. For the
special case of the computation of macroscopic equilibria see also [6].

The practical benefit of the implicit equation-free method is demonstrated by
performing a coarse bifurcation analysis of a microscopic particle model, the opti-
mal velocity model [1], describing car traffic on single lane highways. The results
include an equation-free continuation of traveling waves (cf. Fig. 2), identification
of bifurcations as well as two-parameter continuations of bifurcation points. Fur-
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Figure 2. Coarse bifurcation diagram of a microscopic traffic
model with healed quantities of standard deviation of car dis-
tances over parameter v0 (amplitude of optimal velocity function
for drivers behavior). The stable uniform flow (zero standard
deviation) becomes unstable at v⋆ where a branch of unstable
traveling waves is born which changes stability at a fold point.
Headway profiles are depicted at positions of small circles. With
kind permission from Springer Science+Business Media: [5].

ther results include an equation-free detection and two-parameter continuation of
a Hopf bifurcation point in a particle model for pedestrian flow [2].

As the approach does not depend on the specific microscopic model, it can be
used to different types and also very realistic models which makes it very powerful
for real-world applications. In addition to the presented numerical approach, the
implicit formulation might be also advantageous for analytical studies.
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(Adaptive) Tsunami Modelling with Discontinuous Galerkin Schemes

Stefan Vater

(joint work with Nicole Beisiegel, Jörn Behrens)

An important part in the numerical modeling of tsunami or storm surge events
is the accurate and robust treatment of flooding and drying at the coast. Within
the framework of the shallow water equations, such an algorithm should preserve
the steady state of a fluid at rest, be mass conservative and should preserve the
positivity of the fluid depth among other features of the exact solution.

While the inundation problem has been well investigated in the context of finite
volume discretizations, it is still an active research area for discontinuous Galerkin
(DG) methods. Here we present a novel treatment for explicit second-order Runge-
Kutta-DG schemes which is based on a limiting approach [4]. The core of the
method is a velocity based “limiting” of the momentum, which provides stable
and accurate solutions in the computation of wetting and drying events. Addi-
tional limiting of the fluid depth ensures its positivity while preserving local mass
conservation. A special flux modification in cells located at the wet/dry interface
leads to a well-balanced method, which maintains the steady state at rest.

The problem of stably computing the velocity is addressed in this study in
the context of a limiter based treatment of inundation events. The basic idea
is that the momentum variable is modified on the basis of the resulting velocity
distribution given a fixed (but already limited) distribution of the fluid depth.
This results in a stable flux computation, which usually involves the computation
of the velocity at some point. The general idea is borrowed from finite volume
methods, where limiting in other than the primary flow variables often enhances
the solution (see [2] and references therein). In case of compressible gas dynamics
this approach can easily ensure that the pressure always remains non-negative
and velocity and pressure stay constant across contact discontinuities. For shallow
water flows limiting in surface elevation generally makes sense, since this quantity
is constant for the steady state at rest [1]. Furthermore, limiting in the velocity
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instead of momentum has often been employed in these methods (see e.g. [3]).
However, in finite volume methods, these limited values are only used for the flux
computation at the cell interfaces. In discontinuous Galerkin methods, on the other
hand, the solution itself is limited and further used throughout the computations.
Therefore, the non-trivial in-cell functional behavior of the velocity, which is the
quotient of two polynomials, cannot be ignored in the limiting process. To the
authors’ knowledge this concept of limiting in other than the primary variables
has not been thoroughly transferred to discontinuous Galerkin methods, yet.

When it comes to wetting and drying, i.e., parts of the domain have water
depth h = 0, several problems arise which must be handled by the numerical algo-
rithm. First, the wet-dry transition might be within a cell and cannot be exactly
represented by a piecewise (smooth) polynomial DG discretization. The result is
the occurrence of artificial gradients in the surface elevation that can influence the
tendencies of the momentum equation and render the scheme unbalanced. For
this problem, we propose a special flux modification in these cells. Furthermore,
one must ensure that the fluid depth remains non-negative. Otherwise the shal-
low water equations are undefined at these points. To obtain such a behavior, we
follow [6] who showed that under a suitable CFL condition one gets positivity in
the mean. Positivity in the whole cell can be then obtained by the application
of a positivity preserving (PP) limiter. The third and in the author’s opinion
least investigated problem is that near the wet/dry interface, both, fluid depth
and momentum go to zero, which yields an ill-conditioned computation of the ve-
locity u = (hu)/h in these regions. This problem is solved by our velocity based
“limiting” of the momentum.

The velocity based limiting is illustrated in Fig. 1, where we have compiled a
possible configuration in surface elevation and momentum at the wet/dry interface
in the top row. The resulting velocity distribution is displayed in the rightmost
figure. As one can see, the velocity in the center cell has an unphysical extreme
value at x = 2, where both, fluid depth and momentum become small. For the
limiting, the cell mean values of h and (hu) are computed (magenta diamonds) and
upper and lower limits for the velocity are derived (dashed magenta line). This
results in two limited velocity and associated momentum distributions, which are
marked as red with triangles and green with squares at the end points. The final
distribution is the velocity distribution with the smallest in-cell variation – in this
case it is the red one with triangles. As one can see the associated momentum
distribution has a slightly bigger in-cell variation compared to the original one.

By extending the algorithm to two-dimensional triangular grids, one finds that
in each cell there are three possible limited velocity distributions to consider in-
stead of two in the one-dimensional case [5]. These arise by limiting the velocities
in two vertexes and computing the resulting velocity in the third one by fixing
the fluid depth and the mean value of the momentum. The other parts of the
algorithm are equivalent to the one-dimensional case.

The performance of the method is verified by several test cases, and results are
compared to classical second order hydrostatic reconstruction in the context of



2468 Oberwolfach Report 41/2015

Figure 1. Visualization of the velocity based “limiting” of the
momentum. Initial distribution in surface elevation, momentum
and velocity (top row) and limiting procedure (bottom row). See
the text for further explanation.

finite volume methods. These test cases demonstrate the well-balancing property
of the method and its stability in case of rapid transition of the wet/dry interface.
We also verify the conservation of mass and investigate the convergence charac-
teristics of the scheme. Finally, the wetting and drying treatment is applied to
quasi-realistic tsunami test problems.

The development of limiters for discontinuous Galerkin methods is still under
heavy development. The velocity based “limiting” of the momentum resembles the
limiting procedure in finite volume methods in other than the primary flow vari-
ables. We are optimistic that the general concept proposed might be transferable
to other problems such as DG methods for the solution of inviscid compressible
flow applications. An open question is the possibility to extend the proposed con-
cept to higher than linear discontinuous Galerkin finite elements, which will be
addressed in future research.
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Automated parameters for troubled-cell indicators using outlier
detection

Mathea J. Vuik

(joint work with Jennifer K. Ryan)

In general, solutions of nonlinear hyperbolic PDEs contain discontinuities or de-
velop shocks at a certain time. One option for improving the numerical treatment
of the spurious oscillations that occur near these artifacts is through the appli-
cation of a limiter. The cells where such treatment is necessary are referred to
as troubled cells, which are selected using a troubled-cell indicator. Three im-
portant methods for troubled-cell indication are the KXRCF shock detector [3],
the minmod-based TVB indicator [2] and the modified multiwavelet troubled-cell
indicator [5, 6]. For the multiwavelet approach, the global DG approximation on
2n elements is decomposed into a sum of a global average and finer details on
different levels:

uh(x) =

2n−1∑

j=0

k∑

ℓ=0

u
(ℓ)
j φℓ(ξj) =

k∑

ℓ=0

s0ℓ0φℓ(x) +

n−1∑

m=0

2m−1∑

j=0

k∑

ℓ=0

dn−1
ℓj ψn−1

ℓj (x).

Using scaled Legendre polynomials for the DG approximation, the multiwavelet
basis {ψℓ}kℓ=0 follows from Alpert [1]. The scaling-function and multiwavelet coef-
ficients can be efficiently computed from the DG coefficients using decomposition.

The multiwavelet coefficients of level n− 1 are related to the jumps in (deriva-
tives of) the DG approximation. We have shown that these coefficients equal

(1a) dn−1
ℓj = 2−

n−1
2

k∑

m=0

cnmℓ ·
(
u
(m)
h (x+2j+1/2)− u

(m)
h (x−2j+1/2)

)
,

with

(1b) cnmℓ =
2(−n+1)m

m!
·
∫ 1

0

xmψℓ(x) dx,
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where ℓ = 0, . . . , k, j = 0, . . . , 2n−1 − 1, and u
(m)
h is the mth derivative of uh [6].

Using a renumbering technique, we find in total 2n coefficients for each mode ℓ in
level n− 1, denoted by d̃n−1

ℓj , ℓ = 0, . . . , k, j = 0, . . . , 2n − 1.

The value of coefficient dn−1
kj suddenly increases with respect to its neighboring

values in the neighborhood of a discontinuity. This makes the coefficients useful
for troubled-cell indication. We defined the modified multiwavelet troubled-cell
indicator, which detects elements Ij and Ij+1 if

|d̃n−1
kj | > C ·max{|d̃n−1

kj |, j = 0, . . . , 2n − 1}, C ∈ [0, 1],

where C prescribes the strictness of the indicator.
In general, a troubled-cell indicator only performs well as long as a suitable,

problem-dependent parameter is chosen. Until now, these parameters could not be
chosen automatically such that the indicator works well in a variety of situations.

The choice of the parameter has impact on the approximation: it determines the
strictness of the troubled-cell indicator. An inappropriate choice of the parameter
will result in detection (and limiting) of too few or too many elements. Detection of
too few elements leads to spurious oscillations. If too many elements are detected,
then the limiter is applied too often, and therefore the method is more costly
and the approximation smooths out after a long time. The optimal parameter is
chosen such that the minimal number of troubled cells is detected and the resulting
approximation is free of non-physical spurious oscillations. In general, many tests
are required to obtain this optimal parameter for each problem.

We determined that for each troubled-cell indicator the sudden increase or
decrease of the indicator value with respect to the neighboring values is important
for detection. Indication basically reduces to detecting the outliers of a vector
(one dimension) or matrix (two dimensions). We do this by using Tukey’s boxplot
approach to detect which coefficients in a vector are straying far beyond others
[4]. In order to take the local structure of the data into account, we split our
global indication vector into local vectors (typically containing 16 coefficients).
Our outlier-detection algorithm executes the following steps:

Algorithm 1 Outlier-detection algorithm using local vectors.

Send in a suitable troubled-cell indication vector D.
Split this vector into local vectors, d.
for all local vectors do
Sort d to obtain ds.
Compute the 25th and 75th percentile of the data (Q1 and Q3, respectively).
Detect dsj in the smallest 25% of ds if dsj < Q1 − 3(Q3 − Q1), and d

s
j in the

biggest 25% of ds if dsj > Q3 + 3(Q3 −Q1).
end for
Ignore detected outliers in the left half of the local region if not detected in the
left-neighboring vector, similarly test the right half of the local region.
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The whisker length 3 is chosen such that only a few ’false positives’ are found if
the data are well behaved. Using this technique the problem-dependent parameter
that troubled-cell indicators require is no longer necessary [7].

In Figure 1 the performance of three original troubled-cell indicators can be
compared to the new outlier-detection approach for the Shu-Osher problem (Euler
equations). For this problem an initial discontinuity is moving to the right, thereby
evolving (highly oscillatory) continuous regions and developing new shocks in the
left side of the domain.

The first row of the figure consists of time-history plots of detected troubled
cells using the original indicators with optimal parameter. Note that both the
multiwavelet indicator with C = 0.01 and the minmod-based TVB indicator with
M = 100 detect the highly-oscillatory region as being discontinuous. In this case,
the KXRCF indicator gives more accurate results.

In the second row of the figure, the time-history plots are shown when the
indication vectors are used in the outlier-detection algorithm. All three indi-
cation techniques detect the correct regions, and the approximations are as ex-
pected. This means that the outlier-detection algorithm is indeed able to replace
the problem-dependent parameters in the original indicators.
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Figure 1. Detected troubled cells, Shu-Osher, k = 2, ∆x = 10/512.
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Subgrid Scale Models for Large Eddy Simulations Using
Discontinuous High-Order Methods

Zhi J. Wang

(joint work with Yanan Li and Z. J. Wang)

In large eddy simulations (LES) of turbulent flows, large scale motions are re-
solved by the numerical simulation while the effect of the small scale motions is
represented as sub-grid scale (SGS) stresses computed with SGS models. In order
to assess the performance of SGS models in the context of high-order discontinu-
ous methods, we perform a priori and a posteriori evaluations of five SGS models
for the one dimensional Burgers’ equation with the high-order flux reconstruction
(FR) or correction procedure via reconstruction (CPR) method. It is shown that
all models, except the scale similarity model (SSM) and the mixed model (MM),
demonstrate very little correlation with the DNS results. The stability of the SSM
is also investigated. The effects of numerical dissipation and the models’ influence
on LES are discussed. Based on the present study, we advocate the use of implicit
LES (ILES) in LES in the context of discontinuous high-order methods, or any
numerical methods with built-in numerical dissipation.
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Edge detection approaches in numerical methods for conservation laws

Martina Wirz

The detection of discontinuities in the numerical solution of a given conservation
law is an important tool to handle shocks or discontinuous initial data appro-
priately. In many applications the numerical data is given at non-equidistantly
distributed points, such that classical edge detectors cannot be directly used. Fur-
thermore, the correct choice of a sensible threshold value is difficult for almost all
known shock indicators.
We will thus focus on an edge detector based on the conjugated Fourier partial
sum

S̃nf(x) = −i
∑

|k|≤n

sgn(k)f̂ke
ikx = f ∗ D̃n(x) =

∫

Ω

f(t)D̃n(x− t) dt

which can be written as the convolution of a function f and the conjugated Dirich-

let kernel D̃ and has the property to converge pointwise to the jump height of f .
Considering generalized kernels instead of the Dirichlet kernel as proposed in [3]
yields to an accelaration of the convergence rate away from the discontinuity, which
has been validated in the context of spectral methods in one dimension and ex-
tended to the quasi-two-dimensional approach in [4].
In order to extend this result to the fully two-dimensional case, we follow the idea of
[7] in the classical case, where the conjugated Fourier partial sum in two variables
was considered, and apply this to our edge detection technique for the generalized
conjugated Fourier partial sum. This leads to improved convergence rates of the

generalized conjugated Fourier partial sum in two dimensions S̃σnmf(x, y) which
can be seen in various testcases.
Furthermore, we apply this edge detector efficiently in the context of general high
order methods where nodal or modal coefficients are given, e.g. for the Spectral-
Difference- or Discontinuous-Galerkin-method on triangles [5]. Here, especially
Proriol-Koornwinder-Dubiner-polynomials [2] are used due to an efficient modal
filtering procedure, for which an exact convertion to Fourier coefficients is possible.

Hence, we simply can take
∣∣∣S̃σnmf(x, y)

∣∣∣ < ε as an edge detector where ε is half

the height of the smallest discontinuity. Several testcases show superior results
of the Fourier-based detector compared to a common coefficient-based shock in-
dicator. Especially the choice of the threshold value ε is much easier as in other
approaches.
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In case of modal coefficients given, the Fourier based edge detector needs addi-
tional computation steps to convert these to Fourier coefficients. We thus will
focus on an extension of our results to generalized partial sums: How can we
recognize an underlying discontinuity from arbitrary coefficients? To his end, we
follow the idea of [6] and extend it for Jacobi polynomials, which already cover a
broad class of classical polynomials and are also used in the context of the given
Spectral-Difference- and DG-methods from [5]. Here, we especially construct a

concentration factor such that
∑

Ik

σkf̂kϕk(x) will converge to the jump height of

the function f .
Since many numerical methods are based on nodal coefficients, we will also inves-
tigate on edge detection techniques based on nodal values in further research, as
for example given in the polynomial annihilation [1].
Additionally, we start investigating the connection between modal filters and con-

centration factors, which are based on the same expansion
∑

Ik

σkf̂kϕk(x) but using

different indices Ik and filters resp. concentration factors σk.
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Università di Brescia
Via Branze, 38
25123 Brescia
ITALY

Dr. Florent Renac

DMFN/NFLU
ONERA
29, Avenue de la Division Leclerc
92320 Chatillon Hauts-de-Seine
FRANCE

Dr. Mario Ricchiuto

INRIA Bordeaux
200, Ave. de la Vieille Tour
33405 Talence Cedex
FRANCE



2478 Oberwolfach Report 41/2015

Prof. Dr. Ulrich Rüde
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