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Abstract. It was the aim of this workshop to gather a multidisclipinary and
international group of scientists at the forefront of research in econometrics,
financial time series analysis, extreme value theory, financial mathematics, in-
surance mathematics and quantitative risk management. The heterogeneous
composition of this group of researchers allowed one to discuss different facets
of the mathematics and statistics of quantitative risk management, to com-
municate the state-of-the-art in the different areas, and to point towards new
directions of research.
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Introduction by the Organisers

This meeting was well attended by more than 50 participants with broad geo-
graphic representation from five continents. The participants were statisticians,
applied probabilists, financial mathematicians, time series analysts, econometri-
cians, and economists. They represented rather different aspects of quantitative
risk management.

This meeting was the third of its kind. The first Oberwolfach Meeting on the
Mathematics and Statistics of Quantitative Risk Management, was held in March
2008, the second one in February 2012. At all these meetings we experienced an
active interaction of the participants from rather diverse areas of expertise. They
discussed a very wide spectrum of risk related questions.
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For the first time, a larger group of econometricians attended this meeting.
Naturally, this fact shifted the focus somewhat. The main topics of the talks and
discussions were modeling and prediction of prices, volatilities and interest rates
using sophisticated, often high-dimensional econometric models (Andersen, Creal,
Duan, Engle, Hautsch, Tauchen, Teräsverta, Tsay). Among these, the lecture of
the winner of the 2003 Nobel Prize, Robert F. Engle, was a special highlight of
the meeting. He addressed how the preceding financial crisis taught lessons to risk
managers that one “should account for the risk that the risk can change”. He
proposed a probability based scenario analysis as a solution to this problem. The
talk by Torben Andersen highlighted new derivative securities (so-called “week-
lies”) which can reveal information about short-term volatility and the likelihood
of negative versus positive jumps in prices. Hautsch, Teräsvirta and Tsay pre-
sented new methods and models for covariance matrices, and Creal presented a
new approach for modeling time-varying parameters in semiparametric models.
Zhou reported about progress of his work on the mathematics behind prospect
theory and Härdle talked about his contribution to the block chain technology.

A recent well-established field of risk management deals with the estimation of
volatility. Some major experts were present (Jacod, Podolskij, Tauchen, Todorov).
New topics include the determination of the rank of a spot covariance matrix
(Podolskij), testing for time-varying jump activity in asset prices (Todorov), and
“regression” methods for studying the dependence between jumps in two or more
asset prices (Tauchen).

One of the classical topics of risk analyses is the study of extremes. Various
researchers discussed modern developments in extreme value theory and statis-
tics (Blanchet, Cooley, de Carvalho, Janßen, Kabluchko, Klüppelberg, Liu, Nolan,
Segers, Strokorb). Current topics in these fields are the modeling and estimation
of multivariate and spatio-temporal extremes, the study of suitable random struc-
tures for describing spatial and temporal extremal dependence, such as max-stable
fields and graphical models.

Another classical risk-related field is insurance mathematics. Although classical
risk theory is still under investigation (Albrecher), this area is nowadays supple-
mented by financial views at solvency capital calculation (Filipović), rare event
simulation techniques (Hult) and stochastic optimization methods (Steffensen). A
major theoretical and practical problem is longevity (Loisel).

Financial mathematics is the younger brother of insurance mathematics. We
listened to talks on problems which are oriented towards real-life problems in the
field: simulation of option prices (Rogers), mathematical modeling of financial
bubbles (Protter).

Quantitative risk management is concerned with the modeling and estima-
tion of special (e.g. conditional, partial) dependence structures and the study
of aggregated risks under dependence (Chavez-Demoulin, Rüschendorf, Wang),
the numerical and statistical calculation of risk indicators such as Value-at-Risk,
expected shortfall (Hofert, Yuen) and the study of their properties such as elic-
itability (Ziegel).
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This meeting brought together a group of researchers from a variety of fields,
who discussed the state-of-the-art of mathematical, econometric and statistical
modeling, estimation, numerical and simulation techniques for quantitative risk
management. Many discussions were triggered by risk phenomena and problems
in the financial, insurance and regulatory domains. The scientific results presented
no doubt led to a better understanding of some of the important regulatory issues
facing the industry as well as society, and eventually will contribute to solutions
to some of the key questions posed.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Simple identities for randomized observations in risk theory

Hansjörg Albrecher

(joint work with Jevgenijs Ivanovs)

For a continuous-time surplus process of an insurance portfolio over time, we
consider the effects of observing the process only at discrete random times on
the resulting probabilities to detect first passage over a threshold or first passage
below zero, i.e. ruin. When the random observation times are assumed to be
epochs of an independent homogeneous Poisson process, it turns out that the
respective probabilities are related to the ones of continuous observation through
surprisingly simple identities. This holds for general Lévy processes as models
for the surplus process. Moreover, we identify a simple link between two-sided
exit problems with one continuous and one Poisson exit. Finally, Poisson exit
of a reflected surplus process is connected to the continuous exit of a surplus
process reflected at Poisson epochs (which has natural interpretations in terms of
dividend payments according to horizontal barrier strategies), and a link between
some Parisian type exit problems is established. With the appropriate perspective,
the proofs of all these relations turn out to be quite elementary. For spectrally
one-sided Lévy processes this approach enables alternative and simpler proofs for
a number of previously established identities (see e.g. [2]), providing additional
insight.

References

[1] H. Albrecher and J. Ivanovs (2015). Strikingly simple identities relating exit problems
for Lévy processes under continuous and Poisson observations. Working paper, arXiv:
1507.03848.

[2] H. Albrecher, J. Ivanovs, X. Zhou (2015). Exit identities for Lévy processes observed at
Poisson arrival times. Bernoulli, in press.

Pricing short-term market risk: evidence from weekly options

Torben G. Andersen

(joint work with Nicola Fusari and Viktor Todorov)

We study short-term market risks implied by weekly S&P 500 index options. The
introduction of weekly options has dramatically shifted the maturity profile of
traded options over the last five years, with a substantial proportion now having
expiry within one week. Economically, this reflects a desire among investors for
actively managing their exposure to very short-term risks. Such short-dated op-
tions provide an easy and direct way to study market volatility and jump risks.
Unlike longer-dated options, they are largely insensitive to the risk of intertempo-
ral shifts in the economic environment, i.e., changes in the investment opportunity
set. Adopting a novel general semi-nonparametric approach, we uncover variation
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in the shape of the negative market jump tail risk which is not spanned by mar-
ket volatility. Incidents of such tail shape shifts coincide with serious mispricing
of standard parametric models for longer-dated options. As such, our approach
allows for easy identification of periods of heightened concerns about negative
tail events on the market that are not always “signaled” by the level of market
volatility and elude standard asset pricing models.

References

[1] T.G. Andersen, N. Fusari and V. Todorov (2015). Parametric inference and dynamic state
recovery from option panels. Econometrica 83, 1081–1145.

[2] T.G. Andersen, N. Fusari and V. Todorov (2015). The risk premia embedded in index op-
tions. Journal of Financial Economics 117, 558–584.

Robust extreme value analysis

Jose Blanchet

(joint work with Karthyek Murthy)

Extreme value theory (EVT) is used in a wide range of quantitative risk man-
agement applications, including finance and insurance, among many others. EVT
informs the selection of models which allow to perform inference at scales that lie
outside the range covered by observed data. Underlying EVT there are a series
of assumptions (e.g. membership in a domain of attraction) which are challeng-
ing (sometimes impossible) to verify in practice. And, even if the assumptions
hold, the validity of the inference is only asymptotically correct, as the sample size
increases to infinity.

This talk discusses an approach aimed at robustifying the inference in the con-
text of EVT. In particular, given a performance measure of interest, say the evalua-
tion of a quantile, we propose computing the worst-case value of such performance
measure among all models which differ from a given baseline model (informed by
EVT) by some tolerance. The key words are: all, differ, and tolerance. We present
a calculus of variations approach (defining metrics between probability distribu-
tions) which is tractable (i.e., the solution can actually be evaluated in closed
form), and allows to systematically address the issue of robust inference (meaning,
the inference accounts for the possibility of violating the assumptions of EVT and
the fact that the sample size is finite). Our methodology connects EVT with areas
such as distributionally robust optimization and optimal transport.

References

[1] J. Blanchet and K. Murthy. Distributionally robust tail modeling. In preparation.
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Generalized additive models for conditional dependence structures

Valérie Chavez-Demoulin

(joint work with Thibault Vatter)

We develop a generalized additive modeling framework for taking into account
the effect of predictors on the dependence structure between two variables. We
consider dependence or concordance measures that are solely functions of the cop-
ula, because they contain no marginal information: rank correlation coefficients or
tail-dependence coefficients represent natural choices. We propose a maximum pe-
nalized log-likelihood estimator and derive its root-n-consistency and asymptotic
normality. Finally, we present the results from a simulation study and apply the
new methodology to a real dataset.

References

[1] T. Vatter and V. Chavez-Demoulin (2015). Generalized additive models for conditional de-
pendence structures. Journal of Multivariate Analysis 141, 147–167.

Black Swans, endogenous risk and price-mediated contagion

Rama Cont

(joint work with Lakshithe Wagalath)

The classical approach in quantitative risk management is to model risk as arising
from an exogenous random process, representing “market randomness”. The un-
derlying justification for this approach is that market fluctuations resulting from
the supply and demand of numerous “small” market participants acting in an
uncoordinated manner lead, through a central-limit type argyment, to a statis-
tical description of fluctuations of price, volume and other aggregate quantities.
Yet, such statistical approaches, even after accounting for the heavy tails encoun-
tered in financial data, fail to account for the huge financial losses triggered by
“market events” such as the ones encountered in recent and not-so-recent market
crises such as the October 1987 equity crash, the Quant Crash of August 2007 or
the 2008 crisis. During such episodes, the assumptions underlying such Central
Limit-type arguments break down, either through the destabilizing impact of one
or more ”large” market participants or because many market participants trade
in the same direction, due to similar portfolio constraints, leading to a lack of
’independence’ across components of the system.

These episodes have been labeled “Black Swans” or “perfect storms”, implying
a lack of predictabilty and an analogy with natural catastrophes. We argue, on
the contrary, that these –and many other– market dislocations, are in fact mani-
festations of endogenous risk arising from a destabilizing feedback mechanism in
which temporary but systematic supply-demand imbalances and price moves affect
each other to generate large price moves and spikes in volatility and correlation,
even in absence of any large exogenous shock [1].



2492 Oberwolfach Report 42/2015

We show that such feedback loops can be modeled in a simple and parsimonious
manner by integrating the market impact of supply-demand imbalance into any
standard stochastic model of price changes [2]. We study examples of such models
in a multi-asset setting and show they may be used to model the risk triggered
by liquidation events, as well as temporary spikes in volatility and correlation
which are observed in market crises. These findings have implications for the risk
management of large financial institutions: we propose simple add-ons to current
quantitative risk management models which such instituions may use to quantify
the “endogenous risk” they may generate through their own actions [3].

References

[1] R. Cont and L. Wagalath (2013). Running for the exit: distressed selling and endogenous
correlation in financial markets, Mathematical Finance, 23(4), 718–741.

[2] R. Cont, L. Wagalath (2012). Fire sale forensics: measuring endogenous risk. To appear in
Mathematical Finance, http://ssrn.com/abstract=2051013.

[3] R. Cont and L. Wagalath (2015). Risk management for whales: dealing with market impact
and endogenous risk. Working paper.

Data mining for extreme behavior with application to ground level

ozone

Dan Cooley

(joint work with Brook T. Russell)

Ground level ozone is a harmful pollutant that negatively affects people as well as
plant species, and these negative effects are intensified when ozone is at its most
extreme levels. This project aims to increase understanding of the meteorological
conditions which lead to extreme ground level ozone conditions. We are motivated
by the problem that atmospheric chemistry models are able to predict high ozone
levels, but do not predict extreme ozone levels well.

Our approach focuses only on the tail behavior by utilizing the framework of
regular variation. Our approach has two parts. The first is an optimization prob-
lem: given a set of meteorological covariates, we aim to find the linear combination
which has the highest degree of tail dependence with ozone. The second is a data
mining problem: given a long list of possible meteorological covariates, we seek to
find the ones which are linked to extreme ozone.

We use a constrained optimization procedure which maximizes a measure of
tail dependence and whose constraint enforces a requirement on the marginal dis-
tribution. Our optimization procedure requires that we consider tail dependence
estimators with a smooth threshold, rather than the hard threshold typical of ex-
tremes, and we show consistency of estimators with smoothed thresholds. Data
mining is performed within the model selection context, and because the model
space cannot be explored completely, we employ an automated model search pro-
cedure. We present a simulation study which shows that the method can detect
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complicated conditions leading to extreme responses, and further that our ap-
proach protects us from overfitting.

We apply the method to ozone data for Atlanta and Charlotte and find similar
meteorological drivers for these two Southeastern US cities. While several of these
meteorological covariates are known to be linked to ozone concentrations, our
procedure suggests some additional covariates which may influence extreme ozone
levels. We identify some covariates which are likely linked to local causes and
identify others which are common to the two cities.

References

[1] B.T. Russell, D. Cooley, W.C. Porter, B.J. Reich and C.L. Heald (2015). Data mining for
extreme behavior with application to ground level ozone. arXiv:1504.08080.

Observation-driven time-varying parameter models and the

generalized autoregressive method of moments

Drew Creal

(joint work with Siem Jan Koopman, André Lucas and Marcin Zamojski)

We gave an overview of our work on Generalized Autoregressive Score processes
that allow time-variation in the parameters of a fully parametric time series model.
Then, we introduce a new estimation framework that extends the Generalized
Method of Moments (GMM) to settings where a subset of the parameters vary
over time with unknown dynamics. To filter out the dynamic path of the time-
varying parameter, we approximate the dynamics by an autoregressive process
driven by the score of the local GMM criterion function. Our approach is com-
pletely observation driven, rendering estimation and inference straightforward. It
provides a unified framework for modeling parameter instability in a context where
the model and its parameters are only specified through (conditional) moment con-
ditions, thus generalizing approaches built on fully specified parametric models.
We provide examples of increasing complexity to highlight the advantages of our
method.

References

[1] D. Creal, S.J. Koopman and A. Lucas (2013). Generalized autoregressive score models with
applications. Journal of Applied Econometrics 28(5), 777–795.

[2] D. Creal, S.J. Koopman and A. Lucas (2011). A dynamic multivariate heavy-tailed model
for time-varying volatilities and correlations. Journal of Business & Economic Statistics
29(4), 552–563.

[3] D. Creal, S.J. Koopman, A. Lucas and M. Zamojski (2015). Generalized autoregressive
method of moments. University of Chicago Booth School of Business, working paper.
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Statistics of extremes: challenges and opportunities

Miguel de Carvalho

In this talk I provide a personal view on some recent concepts and methods of
statistics of extremes, and I discuss challenges and opportunities which could
lead to potential future developments. Measure-dependent measures are here dis-
cussed as a natural probabilistic concept for modeling bivariate extreme values,
and predictor-dependent spectral measures are discussed as a natural concept for
modeling extremal dependence structures which vary according to a covariate.
Families of g-tilted measures are introduced as a unifying device connecting some
recently proposed approaches. En passant, I discuss a new estimator for the so-
called scedasis function.

The main concepts of interest are defined below.

Probabilistic structures of interest

Definition 1. Let F be the space of all probability measures that can be defined
over (Ω0,A0). If GH is a probability measure on (Ω1,A1), for all H ∈ H ⊆ F ,
then we say that GH is a measure-dependent measure. The family {GH : H ∈ H}
is said to be a set of measure-dependent measures, if GH is a measure-dependent
measure.

Below, let H denote the space of all probability measures H which can be
defined over ([0, 1],B[0,1]), where B[0,1] is the Borel sigma-algebra on [0, 1], and

which obey the mean constraint
∫
[0,1]

wH(dw) = 1/2.

Definition 2. The family {Hx : x ∈ X} is a set of predictor-dependent spectral
measures if Hx ∈ H , for all x ∈ X .

Definition 3. Let F be the space of all probability measures that can be defined
on (Ω,A). Let gi,I : Ω 7→ R, for i = 1, . . . , I. A family of probability measures in
F , {F1, . . . , FI}, is a g-tilted family if there exists F0 ∈ F and a functional θ such
that

Φθ(y) :=

(
θ(Fi)

θ(F0)

)
(y) = gi,I(y), y ∈ Ω.

References

[1] M. de Carvalho. Statistics of extremes: challenges and opportunities inHandbook of Extreme
Value Theory and its Applications to Finance and Insurance. Edited by F.M. Longin. Wiley
(to appear 2015–2016).

[2] M. de Carvalho and A.C. Davison (2014). Spectral density ratio models for multivariate

extremes. Journal of the American Statistical Association 109, 764–776.
[3] M. de Carvalho, B. Oumow, J. Segers and M. Warcho (2013). A Euclidean likelihood es-

timator for bivariate tail dependence. Communications in Statistics—Theory and Methods
42, 1176–1192.

[4] J. H. J. Einmahl, L. de Haan and C. Zhou (2015, in press). Statistics of heteroscedastic
extremes. Journal of the Royal Statistical Society, Series B (DOI: 10.1111/rssb.12099).

[5] W. Fithian and S. Wager (2015). Semiparametric exponential families for heavy-tailed data.
Biometrika 102, 486–493.
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Non-Gaussian bridge sampling with applications

Jin-Chuan Duan

(joint work with Changhao Zhang)

This paper provides a new bridge sampler that can efficiently generate sample
paths, subject to some endpoint condition, for non-Gaussian dynamic models.
This bridge sampler uses a companion pseudo-Gaussian bridge as the proposal
and sequentially re-simulates sample paths via a sequence of tempered importance
weights in a way bearing resemblance to the density-tempered sequential Monte
Carlo method used in the Bayesian statistics literature such as in [1] and [2].
This bridge sampler is further accelerated by employing a novel idea of k-fold
duplicating a base set of sample paths followed by support boosting. We implement
this bridge sampler on a GARCH model estimated to the S&P 500 index series,
and our implementation covers both parametric and non-parametric conditional
distributions. Our performance study reveals that this new bridge sampler is
far superior to either the simple-rejection method when it is applicable or other
alternative samplers designed for paths with a fixed endpoint. Two applications
are demonstrated – computing SRISK of the NYU-Stern Volatility Institute and
infill maximum likelihood estimation.

References

[1] P. Del Moral, A. Doucet and A. Jasra (2006). Sequential Monte Carlo samplers. Journal of
the Royal Statistical Society (Series B), 68(3), 411–436.

[2] J.-C. Duan and A. Fulop (2015). Density-tempered marginalized sequential Monte Carlo
samplers. Journal of Business and Economic Statistics 33(2), 192–202.

Long run risk management: scenario generation for the term structure

Robert Engle

(joint work with Emil Siriwardane)

In the low volatility environment preceding the financial crisis, many firms in-
creased their leverage and risk. Arguably investments in illiquid positions should
have been evaluated with respect to long horizon volatility and risk. Risk man-
agers should account for the risk that the risk can change. Scenario analysis is a
solution to the need. A probability based scenario generator is developed to exam-
ine the long run risk of the US treasury term structure. It features a reduced rank
vector autoregression with Nelson Siegel factors and GARCH-DCC multivariate
disturbances. Backtests motivate model improvements.

References

[1] J. Christensen, J. Lopez and G. Rudebusch (2013). A probability based stress test of federal
reserve assets and income. Federal Reserve Bank of San Francisco, working paper.

[2] F. Diebold and G. Rudebusch (2013). Yield Curve Modeling and Forecasting: The Dynamic
Nelson Siegel Approach. Princeton University Press.
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[3] A. Monfort, F. Pegararo, J.-P. Renne and Guillaume Roussellet (2014). Staying at zero with
affine processes: a new dynamic term structure model. Banque de France, working paper.

[4] U. Müller, M. Dacorogna and P. Blum (2010). Bootstrapping the economy – a non-
parametric method of generating consistent future scenarios. SCOR, working paper.

Replicating portfolio approach to solvency capital calculation

Damir Filipović

(joint work with Mathieu Cambou)

The calculation of solvency capital for life insurance portfolios is a challenging
task, which has has not gained much attention in the literature yet.

The new European regulatory framework Solvency II and the Swiss Solvency
Test require the modeling of the profit and loss distribution of the asset-liability
portfolio on a one-year time horizon, see [1] and [2]. Solvency capital in the Swiss
Solvency Test is then determined as 99%-expected shortfall of this profit and loss
(99.5%-value at risk in Solvency II), see [3] for a definition of expected shortfall
and value at risk.

The value of the liabilities is defined as expected deflated liability cash flows.
For life insurance this requires simulations of cash flows up to 40 years and beyond.
These simulations are computationally costly. The modeling of the value of the
liabilities in one year, say L, cannot be done via nested simulations therefore.
The replicating portfolio approach consists in projecting the terminal, say time T ,
value of discounted liability cash flows, Z, onto the subspace in L2 generated by
a family of m replicating assets, whose discounted time-1 values are denoted by
A. This yields a replicating portfolio with time-1 value given by φ⊤A, for the φ
from the L2 projection, which we use as proxy for L. We show that, as m tends
to infinity, the expected shortfall of φ⊤A converges to the expected shortfall of L.
This proves that the replicating portfolio approach to solvency capital calculation
works asymptotically.

We then study the estimation error of this approximation that results from
the finite sampling of Z . We show that the simulation based estimator of φ is
unbiased and satisfies a central limit theorem as the number n of simulations tends
to infinity.

The total estimation error of the expected shortfall of L that results from ap-
proximating L by the replicating portfolio φ⊤A with m instruments and the sim-
ulation of n samples is shown to be decreasing in n. However, the estimation
error from simulation is increasing in m. As a consequence, for any simulation
time budget n there is an optimal number of replicating instruments m, to be
determined case by case. Some numerical examples illustrate our findings.

We also discuss some open issues such as the optimal choice of replicating
instruments and variance reduction of the simulation based esimator of φ, see [4].
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[3] H. Föllmer and A. Schied (2012). Stochastic Finance. Walter de Gruyter, Berlin, New York.
[4] P. Glasserman (2004). Monte Carlo Methods in Financial Engineering. Springer.

CRIX or evaluating Blockchain based currencies

Wolfgang K. Härdle

(joint work with Simon Trimborn)

More and more companies start offering digital payment systems. Smartphones
evolve to a digital wallet such that it seems like we are about to enter the era of
digital finance. In fact we are already inside a digital economy. The market of
e-x (x = ”finance”, ”money”, ”book”, you name it . . . ) has not only picked up
enormous momentum but has become standard for driving innovative activities
in the global economy. A few clicks at y and payment at z brings our purchase
to location w. Own currencies for the digital market were therefore just a matter
of time. The idea of the Nobel Laureate Hayek, see [1], to let companies offer
concurrent currencies seemed for a long time scarcely probable, but the invention
of the Blockchain made it possible to fill his vision with life. Cryptocurrencies
(abbr. cryptos) surfaced and opened up an angle towards this new level of economic
interaction. Since the appearance of bitcoins, several new cryptos spread through
the web and offered new ways of proliferation. The crypto market then fanned
out and showed clear signs of acceptance and deepening liquidity so that a closer
look at the general moves and dynamics is called for. CRIX - a CRyptocurrency
IndeX, http://crix.hu-berlin.de, has been created for this purpose, Figure 1.
CRIX follows the so-called Laspeyres’ index idea:

(1) CRIX(k)t =

∑k
i MVit · AWit

Divisor

where MVit is the market capitalization of the crypto i at time point t and k the
number of constituents. AWit is the adjusted weight, defined as

(2) AWit =
CWit

Wit

with CWit the capped weight and Wit = MVit∑
i
MVit

the weight the crypto i would

normally have in CRIX. The weight will be capped if a single crypto i would have
an influence of 50% or more in CRIX. The cap is part of the index rules since
the analysis of the trading volume showed that bitcoin has a major influence in
the market even though its trading volume, relative to all outstanding bitcoins, is
much lower than for alternative cryptocurrencies. This implies a higher interest of
interested parties in alternative cryptos than their market value suggests, which
motivates to lower the influence of bitcoin. The Divisor with the starting value

http://crix.hu-berlin.de
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Figure 1. Snapshot of the CRIX website on the 24.09.2015

∑
i MVi

1000 controls that CRIX is not affected by a shifting of its constituents, just by
price changes. To ensure this, it is adjusted when necessary:

(3)

∑
iMVi,t−1

Divisort−1
= CRIXt−1 = CRIXt =

∑
j MVj,t

Divisort
.

The index rules, which form the CRIX methodology, ensure that CRIX reacts
fast and dynamically to changes in the market, such that it gives insight into
the evolvement of cryptos which surfaced in the digital economy. CRIX relies on
liquidity measures and on the Bayesian Information Criterion (BIC), see [3]. BIC
is used to decide how many cryptos shall participate in a representative proxy of
the market. CRIX will be the perfect benchmark, if the amount of constituents
is always optimal. For this purpose, a procedure was created which compares the
difference between the total market (all market participants) and several candidate
indices,

(4) εj,t = total markett − CRIX(k)j,t,

where CRIX(k)j,t is the CRIX version j with kj constituents and εj,t is the respec-
tive difference. The total market is represented by an index of all market partici-
pants, which is computed by the formulas (1), (2) and (3). The candidate indices,
CRIX(k)j , have different amounts of constituents which fulfill k1 < k2 < k3 < · · · .
The BIC criterion evaluates the differences, εj,t, between the candidates and the
total market with the respective likelihood Lj,

(5) Lj =
∏

t

fj(εj,t),
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where fj represents the density of the εj,t over all t. It penalizes Lj with the
amount of constituents, kj , such that the following formula results:

(6) BICj = −2 logLj + kj · log(nj),

where nj is the number of observations. The density, fj, is estimated nonpara-
metrically with a Gaussian kernel. Since the same data are used to estimate fj
and the BICj , a ”leave-one-out” cross-validation procedure is performed in order
to overcome the bias; see [4]. The search for the optimal model terminates at level
j whenever

(7) BICj−1 < BICj .

The entire procedure runs every third month and the resulting number of index
members, k, will be fixed for the coming 3 months. A detailed version of the
methodology can be found on the website, http://crix.hu-berlin.de.
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Figure 2. Annualized conditional volatility in % of CRIX
and DAX

“Satoshi Nakamoto” described in “his” paper, see [2], a decentralized payment
system. While many just think about bitcoin and other cryptos as currencies, some
argue that cryptos can be seen as commodities, see e.g. [6]. Being treated as a
commodity, makes it a store of value and by this means an exchangeable, investable
product. CRIX was created to investigate this feature of cryptos by comparing
the crypto market against other investment universes and classifying CRIX in
terms of economic risk against them. We perform our analysis on data in the
time period 01.02.2014 - 01.09.2015 and observe, that the annualized conditional
volatility, measured with a GARCH(1,1) model, has a higher base level than the

http://crix.hu-berlin.de
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DAX but that the amount of high spikes in the volatility decreases, see Figure 2.
This indicates us, that CRIX bears a higher risk than the german bluechip index
but is stabilizing although on a higher level. The detected Expected Shortfall (ES)
lies far away from that of fiat fx rates, where the ES is defined as the conditional
expectation

(8) E [X |X < x0.01]

with x0.01 the 0.01-quantile and assuming the tails to follow a generalized Pareto
distribution, see [5]. The risk level, which ES indicates, lies much closer to risky
stock markets like the Greece or Russian one, see Table 1.

ES
CRIX -0.1579
SP500 -0.0528
DAX -0.0700
RTSI -0.1343
ATHEX -0.1288
EUR to USD -0.0223
RUB to USD -0.0637

Table 1. Extreme value theory based ES at α = 0.01 and with
threshold ut = 0.1 for CRIX, SP500, DAX, RTSI, ATHEX, EUR
to USD and RUB to USD.

Finally, option prices are computed to attach a price tag to the risk which CRIX
bears. Based on these insights one may conclude that if options would exist for
CRIX, they would currently be so expensive that it - most likely - doesn’t pay
out to protect ones investment with them. Besides these early findings, it ap-
pears that this market is stabilizing and qualifies itself little by little as a serious
investment alternative. CRIX and the risk statistics will be computed continu-
ously and be published on http://crix.hu-berlin.de to offer interested parties
a comprehensive overview.
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Estimating the spot covariation of asset prices – statistical theory and

empirical evidence

Nikolaus Hautsch

(joint work with Markus Bibinger, Peter Malec and Markus Reiss)

We propose a new estimator for the spot covariance matrix of a multi-dimensional
continuous semi-martingale log asset price process which is subject to noise and
non-synchronous observations. Let (Xt)t≥0 denote the d-dimensional efficient log-
price process. We assume that Xt follows a continuous Itô semi-martingale

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dBs, t ∈ [0, 1],(1)

defined on a filtered probability space
(
Ω,F , (F)t≥0 ,P

)
with drift bs, d-dimensional

standard Brownian motion Bs and instantaneous volatility matrix σs. The latter
yields the (d × d)-dimensional spot covariance matrix Σs = σsσ

⊤
s , which is our

object of interest. We consider a setting in which discrete and non-synchronous
observations of the process (1) are diluted by market microstructure noise, i.e.,

Y
(p)
i = X

(p)

t
(p)
i

+ ǫ
(p)
i , i = 0, . . . , np, p = 1, . . . , d ,(2)

with observation times t
(p)
i , and observation errors ǫ

(p)
i .

The key idea is to approximate the underlying process (1) in model (2) by a
process with block-wise constant covariance matrices and noise levels. Using spec-
tral statistics, we construct an unbiased estimator for the block-wise covariance
estimates. Computing an optimally weighted average of these block-wise statistics
across all spectral frequencies yields an efficient block-wise covariance estimate.
The optimal weights are given proportionally to the local Fisher information ma-
trices. This gives rise to a local method of moments (LMM) estimator as proposed
by [1]. The final spot estimator is then constructed by smoothing over adjacent
blocks.

We prove consistency and a point-wise stable central limit theorem for the
proposed spot covariance estimator in a general setup with stochastic volatilities,
leverage and for general noise distributions. We show that the approach attains
rate-optimality. Moreover, we allow the market microstructure noise being auto-
correlated and propose a method to adaptively infer the autocorrelations from the
data. Based on simulations we provide empirical guidance on the implementa-
tion of the estimator and show how to optimally choose the length of blocks and
the smoothing interval, and the spectral cut-off point. Moreover, we demonstrate
that the proposed procedure for estimating the order of serial dependence in the
microstructure noise process performs well under realistic conditions.

We apply the proposed estimator to high-frequency data of a cross-section of
NASDAQ blue chip stocks. Estimating spot covariances, correlations and volatil-
ities in normal but also unusual periods yields novel insights into intraday covari-
ance and correlation dynamics. We show that intraday (co-)variations (i) follow
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underlying periodicity patterns, (ii) reveal substantial intraday variability asso-
ciated with (co-)variation risk, (iii) are strongly serially correlated, and (iv) can
increase strongly and nearly instantaneously if new information arrives.
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Improved algorithms for computing worst Value-at-Risk: numerical

challenges and the adaptive rearrangement algorithm

Marius Hofert

(joint work with Amir Memartoluie, David Saunders and Tony Wirjanto)

In risk aggregation, a topic in the realm of Quantitative Risk Management, a cur-
rently discussed problem is how to compute the Value-at-Risk VaRα(L+) of the

sum L+ =
∑d

j=1 Lj of risks L1 ∼ F1, . . . , Ld ∼ Fd. The marginal distribution func-

tions F1, . . . , Fd are typically known (or can be estimated), whereas there is con-
siderable uncertainty concerning the dependence structure of (L1, . . . , Ld). When
treating the latter as unknown, the goal is to compute lower and upper bounds
on VaRα(L+) among all distributions with margins F1, . . . , Fd, i.e., VaRα(L+)
and VaRα(L+), respectively; we focus on the latter, which is also termed worst
Value-at-Risk.

In the homogeneous case, i.e., F := F1 = · · · = Fd, there are two approaches
known for computing VaRα(L+). In the present work, we highlight and solve sev-
eral numerical issues when implementing these (supposedly “explicit”) approaches
in statistical software. In particular, we construct a proper initial interval for the
root-finding procedure involved in computing VaRα(L+) with the approach of [1,
Prop. 1] for F being Pareto (i.e., F (x) = 1 − (1 + x)−θ).

In the inhomogeneous case, we consider the Rearrangement Algorithm of [2],
[3]. We study the algorithm under various scenarios and conclude with three
improvements of the algorithm. First, we build in relative (instead of absolute)
tolerances; this helps in choosing more reasonable default tolerances independently
of the actual computed VaRα(L+). Second, we introduce a joint relative tolerance;
this guarantees that the computed bounds for VaRα(L+) are sufficiently close.
And finally, we adaptively choose the number N of discretization points; this
takes away the need to choose a reasonable N (which actually also depends on
the required joint relative tolerance). The resulting algorithm is termed Adaptive
Rearrangement Algorithm and available in the R package qrmtools (besides the
approaches mentioned above).

Overall, we very often realize that there are significant hurdles to overcome in
order to apply theoretical results in practice. In particular, this includes the actual
implementation in (statistical) software, which has not been addressed before in
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the realm of Quantitative Risk Management. We started to term this new area of
research Computational Risk Management.
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Two examples of efficient importance sampling in finance

Henrik Hult

(joint work with B. Djehiche, P. Nyquist and J. Nykvist)

In this talk I will present the connection between subsolutions of first-order Hamil-
ton-Jacobi equations and design of efficient rare-event simulation algorithms. In
particular it will shown how subsolutions corresponding to efficient algorithm can
be constructed from the Mañé potential. This approach to the construction of sub-
solutions also lead to a minmax representation of viscosity solutions to Hamilton-
Jacobi equation. I will demonstrate an application to computing risk probabilities
for a portfolio of possibly path-dependent derivatives as well as an application to
computing the credit value adjustment for a portfolio of interest rate derivatives.
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Refined extremal dependence of stochastic volatility models

Anja Janßen

(joint work with Holger Drees)

There exists a large variety of models for financial time series and the different
classes of models vary in their extremal behavior. Some of these models for a sta-
tionary time series (Xt)t∈Z exhibit so-called asymptotic dependence, which means
that

(1) lim
x→∞

P (|Xt+h| > x | |Xt| > x) > 0,

for some lags h 6= 0. The popular class of GARCH(p, q) models is a prominent
example for this. Other models show asymptotic independence, i.e. the limits

http://kth.diva-portal.org/smash/get/diva2:786454/FULLTEXT01.pdf
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in (1) are equal to 0 for all lags h 6= 0. This holds in particular true for many
specifications of stochastic volatility models. It is, however, difficult to decide
which class is most appropriate for a given application because in reality we are
never able to witness the behavior of exceedances over infinitely large thresholds
and models from both classes may show clustering of the largest observed values.

We are aiming at a refined analysis of extremal dependence for time series by
investigating the joint extremal behavior of lagged observations (Xt, Xt+h) in the
framework of regular variation on cones (cf., for example, [3]). We show that
many of the common model specifications for stochastic volatility models exhibit
a very strong form of asymptotic independence (meaning that the coefficient of
tail dependence, cf. [2], equals 1/2 for all lags which is the same as for i.i.d.
observations). This motivates us to develop a new class of stochastic volatility
models with a heavy-tailed volatility sequence and light-tailed innovations which
allow for a much more flexible second order structure, cf. [1]. As an auxiliary result
of our analysis we show an extension of Breiman’s lemma to regular variation on
the cone (0,∞)d.
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Spectral functions of stationary max-stable processes

Zakhar Kabluchko

(joint work with Clément Dombry)

Consider a stationary, stochastically continuous, max-stable process (η(t))t∈T on
T = R

d. Suppose for concreteness that η has unit Fréchet margins. A fundamental
theorem of L. de Haan [1] states that η can be represented as

(η(t))t∈T
f.d.d
=

(
max
i∈N

UiYi(t)

)

t∈T

,

where (Ui)i∈N is an enumeration of the points of a Poisson point process on (0,+∞)
with intensity measure u−2du, and, independently, (Yi)i∈N are i.i.d. copies of a
non-negative process (Y (t))t∈T such that E[Y (t)] = 1. In the present talk, we
state a number of results relating ergodic properties of η to the properties of
its “spectral function” Y . For example, the process η is ergodic if and only if
lim infR→∞

1
Rd

∑
|t|≤R Y (t) = 0 almost surely. The process η is mixing if and only

if lim|t|→∞ Y (t) = 0 in probability. In the case when the sample paths of η are
locally bounded, the process η has a mixed moving maximum representation if and
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only if lim|t|→∞ Y (t) = 0 almost surely. Similar results (with integrals replaced by

sums) can be obtained for processes on T = Z
d.
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Max-linear models on directed acyclic graphs

Claudia Klüppelberg

(joint work with Nadine Gissibl)

We consider a new structural equation model, where all random variables can be
written as a max-linear function of their parents and independent noise terms.We
assume that the dependence structure can be modeled by a directed acyclic graph.
We show that the resulting multivariate distribution is max-linear and characterize
all max-linear models, which are generated by a structural equation model. We
detail the relation between the coefficients of the structural equation model and the
max-linear coefficients. This leads to the presentation of a max-linear structural
equation model as the solution of a fixed point equation, and to a unique minimal
DAG characterising the model.
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Transparent valuation and aggregation of risks

Filip Lindskog

(joint work with Jonas Alm)

I will discuss an approach to valuation of liability cash flows and the consequences
for aggregation of risks. The aim is to better assess the market-consistent value
one year from now of a sum of dependent liability cash flows. The approach
allows for separating and quantifying the effects on the future aggregate liabil-
ity value of trends and variability in (claims-/price-) inflations, inflation-adjusted
pure insurance risks, and nominal interest rate risk. Given actuarial forecasts of
inflation-adjusted pure insurance risks, and a sensible model for nominal interest
rates supported by interest rate data, what remains is just subjective modeling
decisions regarding long terms trends in inflation and nominal interest rates. The
approach presented here makes these modeling decisions visible and allows their
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effects to be easily quantified and compared to the other effects. Model selec-
tion and validation issues will be discussed. The presentation is based partly on
material in [1].
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Extremes of Gaussian and its related processes

Jingchen Liu

(joint work with Xiaoou Li and Gongjun Xu)

Gaussian processes are employed to model spatially varying errors in various sto-
chastic systems. In this talk, we consider the analysis of the extreme behaviors
for such systems. In particular, the topic covers various nonlinear functionals of
Gaussian processes including the supremum norm, integral of convex functions,
and stochastic partial differential equations with random coefficients. We present
asymptotic results for the associated rare-event probabilities.
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Modelling and managing longevity risk

Stéphane Loisel

(joint work with Nicole El Karoui and Yahia Salhi)

In this talk, we first explain challenges regarding human longevity modelling and
forecasting. In particular, we present the impact of characteristics of individuals
like education and income levels, as well as geographical location and marital
status. We then introduce an optimal stopping problem related to sequential
testing of changing longevity patterns. We show that the optimal strategy is given
by the so-called cusum strategy, when the Lorden criterion is used. We discuss
practical issues related to an illustration on a real-world longevity example.
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Semi-parametric models for multivariate extreme value distributions

John Nolan

(joint work with Anne-Laure Fougères and Cécile Mercadier)

We present a new way to estimate multivariate extreme value distributions from
data using max projections for different classes of semi-parametric models from
[1]: discrete angular measure, generalized logistic, piecewise polynomial angular
measures, and Dirichlet mixture models. The approach works in any dimension,
though computation time increases quickly as dimension increases. The procedure
requires tools from computational geometry and multivariate integration tech-
niques. An R package mvevd is being developed to implement the method for the
above classes, along with tools for simulating and calculating cumulative distribu-
tion functions.
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On the law of the iterated logarithm for sequences of m-orthogonal

random variables

Valentin V. Petrov

In Petrov [1] a theorem on the upper limit of a sequence of dependent random
variables was proved. By means of this theorem some sufficient conditions were
proved for the applicability of the law of the iterated logarithm to sequences of
m-dependent random variables with finite variances. These results were used in
Petrov [2] where the condition of m-dependence was replaced by the notion of
m-orthogonality which was introduced in the same paper.

Let m be a non-negative integer. By definition, a sequence of random variables
{Xn;n = 1, 2, . . .} on a probability space is a sequence of m-orthogonal random
variables if E[X2

n] <∞ for every n and E[XkXj] = 0 if |k− j| > m. In particular,
a sequence of 0-orthogonal random variables is a sequence of orthogonal random
variables.

Many papers have been devoted to limit theorems for sequences of m-dependent
random variables. Every sequence of m-dependent random variables with zero
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means and finite variances is a sequence of m-orthogonal random variables. This
statement remains true if we replace the condition of m-dependence by the weaker
condition of pairwise m-dependence.

Limit theorems for sequences of m-orthogonal random variables may represent
some interest. The following theorem is a generalization of a result in Petrov [2].

Theorem 1. Let {Xn} be a sequence of m-orthogonal random variables with zero
means. Put

Sn =

n∑

k=1

Xk , Bn = E[Sn] , an = (2Bn log logBn)1/2 .

Suppose that Bn → ∞, Bn/Bn+1 → 1 (n→ ∞) and

∞∑

n=1

P

(
max

[cn]≤k<[cn+1]
Sk ≥ (1 + ε) a[cn]

)
<∞

for every ε > 0 and every c > 1. Then

lim sup
n→∞

Sn/an ≤ 1 a.s.
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A test for the rank of the volatility process: the random perturbation

approach

Mark Podolskij

(joint work with Jean Jacod)

In this talk we present a test for the maximal rank of the volatility process in the
continuous diffusion framework. We consider a d-dimensional continuous diffusion
process of the form

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs, t ∈ [0, 1],

where a is d-dimensional drift process and σ is a d × d-dimensional volatility
process. The underlying model is observed at high frequency, i.e. we are given
the data points X0, X∆n

, X2∆n
, . . . , X[1/∆n]∆n

with ∆n → 0. Let r denote the
rank process of the matrix c = σσ⋆, i.e. rt = rank(ct), t ∈ [0, 1]. Our aim is to
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estimate/test the maximal rank of c during a given trading day [0, 1]. Hence, our
object of interest is given via

R = sup
t∈[0,1)

rt.

We remark that R is identical to the minimal number of independent Brownian
motions required for modelling the process X during the period [0, 1]. As such
our statistical problem is directly related to the amount of factors in continuous
factor models.

In order to approach the unknown random variable R we employ the following
perturbation method. Let A ∈ R

d×d be a given positive semidefinite matrix with
r = rank(A). We consider a positive definite matrix B ∈ R

d×d and a number
hց 0. Our main observation is the asymptotic relationship

det(A+ hB) = hd−rγA,B +O(hd−r+1)

with γA,B :=
∑

C∈MA,B
det(C) and

MA,B := {C ∈ R
d×d : Ci = Ai or Ci = Bi, A and C share r joint columns}.

When γA,B 6= 0, we deduce that

det(A+ 2hB)

det(A+ hB)
→ 2d−r as hց 0,

which gives a useful identification method of the unknown rank r. In the next
step we apply this idea to the framework of continuous diffusion model. First, we
introduce a random perturbation of the original diffusion process

Zn
t = Xt +

√
∆n Ŵt,

where Ŵ is a new Brownian motion independent of previously defined processes.
Our main test statistic S(Zn,∆n) is defined via

S(Zn,∆n) =

[1/∆n]−d+1∑

i=1

det2
(

∆n
i Z

n/
√

∆n, . . . ,∆
n
i+d−1Z

n/
√

∆n

)

with ∆n
i Z

n = Zn
i∆n

−Zn
(i−1)∆n

. When the drift a, the volatility σ and the volatility

of volatility are following a continuous diffusion model, we can prove the conver-
gence in probability ∆1+R−d

n S(Zn,∆n) → S, where S > 0 almost surely. Hence,
we immediately deduce the convergence

Tn :=
S(Zn, 2∆n)

S(Zn,∆n)
→ 2d−R in probability,

which obviously provides a consistent estimator of the unknown maximal rank
R after a suitable transformation. In the final step we prove the associated cen-
tral limit theorem, which enables us to derive a formal testing procedure for e.g.
hypotheses of the type

H0 : R = R0 vs. H1 : R 6= R0,

where R0 ∈ {0, . . . , d}.
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Recent results in the mathematical modeling of financial bubbles

Philip Protter

(joint work with Shihao Yang and Yoshiki Obayashi)

Financial bubbles are often described as when the price of a risky asset (in this
paper, we study stocks) has a market price that exceeds the price a rational person
would pay for the stock, known as the fundamental price. The price a rational
person would pay is typically considered to be the conditional expectation of the
future cash flows of the stock, considered under a risk neutral measure. This
definition is problematic, for while one can observe market prices, it is not really
possible to calculate future cash flows.

This is where mathematics comes to the rescue. In a series of research papers
it has become clear that on a finite time horizon the market price exceeds the
fundamental price if and only if the market price is a strict local martingale under
a selected risk neutral measure. Therefore to determine whether or not a given
stock has bubble pricing or not, we need only to check whether or not the market
price process is a strict local martingale, or a true martingale.

There is the issue of which risk neutral measure one should use? In simple cases
that are nevertheless sophisticated enough to be useful, we can finesse this issue.
For example, if we model the dynamic evolution of the stock price as a solution of
a stochastic differential equation of the form

(1) dXt = σ(Xt)dBt + b(Xt, Yt)dt; X0 = 1

where Y represents a stochastic process reflecting relevant market forces, then
under any one of the infinite choice of risk neutral measures Q we have that the
drift disappears via a Girsanov type transformation, to get

(2) dXt = σ(Xt)dBt; X0 = 1

and therefore it does not matter which risk neutral measure we use! Moreover in
current work, we have been able to extend this idea to equations with stochastic
volatility, although there are many caveats to this procedure:

(3) dXt = σ(Xt, νt)dBt + b(Xt, Yt)dt; X0 = 1

We present a method to detect when bubble pricing of a stock is occurring. It
is far from perfect, and quite noisy, but with some tweaks it seems to work. Using
TAQ data (Trade And Quote data) and a subsampling procedure from a large
data set, we calculate bubble lifetimes on 3,500 stocks over a 13 year period, and
are able to give the empirical distribution of the lifetimes of bubbles, which turns
out to be a generalized gamma distribution, a distribution that arises naturally in
survival analysis. We detected around 4 bubbles per stock, on average.
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We give an argument that shows it can be considered natural that bubble
lifetimes follow a generalized gamma distribution.

It would seem that this type of analysis could be useful for regulators estimat-
ing certain aspects of banking risk; for example if significant parts of a bank’s
portfolio are undergoing bubble pricing, then the risk is higher than if they are
not. Moreover by knowing the bubble lifetime distribution, one can estimate the
speed with which positions would need to be unwound.
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Bermudan options by simulation

Chris Rogers

The aim of this study is to devise numerical methods for dealing with very high-
dimensional Bermudan-style derivatives. For such problems, we quickly see that
we can at best hope for price bounds, and we can only use a simulation approach.
We use the approach of Barraquand & Martineau [1] which proposes that the
reward process should be treated as if it were Markovian, and then uses this to
generate a stopping rule and hence a lower bound on the price. Using the dual
approach introduced by Rogers [3] and Haugh & Kogan [2], this approximate
Markov process leads us to hedging strategies, and upper bounds on the price.
The methodology is generic, and is illustrated on eight examples of varying levels
of difficulty. Run times are largely insensitive to dimension.
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Risk bounds and partial dependence information

Ludger Rüschendorf

The subject of this talk is to describe some recent developments which aim to
reduce value at risk (VaR)—bounds or TVaR—bounds for joint portfolios based
on marginal information by including partial dependence information. For the
case of marginal information several tools have been developed like dual bounds,
mixing, rearrangement algorithm and convex ordering bounds to bound VaR in a
sharp way. The available results in this area are described in Embrechts, Puccetti,
Rüschendorf (2013) [4]. But it has turned out that the resulting bounds are
typically to wide too be acceptable in practice.

A natural idea is to include higher order marginal information. In papers of
Embrechts and Puccetti (2010) [3] and Puccetti and Rüschendorf (2012) [6] a
system of improved bounds called reduced bounds was introduced which reduces
the problem to a related problem with only marginal information. This reduced
problem can therefore be solved by known techniques. The amount of improvement
depends on the kind of the higher order marginals.

In Bernard, Rüschendorf and Vanduffel (2014) [1] an additional variance con-
straint of the form Var(Sn) ≤ s2 is introduced. These lead to improved bounds
which are simple to calculate. An extension of the RA-algorithm called ERA is
given in the paper. As result one finds that for small enough variance bounds
one gets a considerable reduction of the upper risk bounds. The reason for the
reduction of the upper risk bounds is, that the variance restriction implies some
global negative dependence constraint.

In the paper of Bignozzi, Puccetti and Rüschendorf (2015) [2] a series of positive
(and negative) dependence constraints is introduced. Based on a classical result on
improved Frechét bounds one gets in analytical form reduced VaR bounds. Exam-
ples show that strong forms of positive dependence restrictions yield considerable
improvements of the lower risk while the weak positive orthant dependence (POD)
assumption alone is not enough to improve VaR bounds. With the stronger PCD
(positive cumulative dependence) or the WCS (weakly conditionally increasing in
sequence) notions positive reductions of the DU-spread can be obtained.

A particular effective reduction results from the assumption that the risks are
split into a number k of independent subgroups. This assumption is investigated
in Puccetti, Rüschendorf, Small and Vanduffel (2015) [5]. In some real insur-
ance portfolios our results are in concordance with practice but in contrast to the
standard models in use in industry our bounds are based on reliable information.

A flexible reduction method uses as structural input a factor model of the form
Xi = fi(Zi, εi) with a systemic risk vector Z and without assuming the usual
independence assumption on the individual risk εi. It is shown that a consider-
able reduction of the DU-spread is obtained over the whole range of positive and
negative dependences generated by the systemic risk factor Z.
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Semi-parametric models for multivariate extreme value distributions

Johan Segers

(joint work with Axel Bücher, Ivan Kojadinovic and Tom Rohmer)

1. Change-point detection

Given a sequence X1, . . . ,Xn of d-dimensional observations, change-point detec-
tion aims at testing

H0 : ∃F such that X1, . . . ,Xn have c.d.f. F

against alternatives involving the nonconstancy of the c.d.f. Under H0 and the
assumption that X1, . . . ,Xn have continuous marginal c.d.f.s F1, . . . , Fd, the com-
mon multivariate c.d.f. F can be written in a unique way as

F (x) = C{F1(x1), . . . , Fd(xd)}, x ∈ R
d,

where the function C : [0, 1]d → [0, 1] is a copula. It follows that H0 can be
rewritten as H0,m ∩H0,c, where

H0,m : ∃F1, . . . , Fd such that X1, . . . ,Xn have marginal c.d.f.s F1, . . . , Fd,

H0,c : ∃C such that X1, . . . ,Xn have copula C.

It is our aim to construct a new test for H0 that is more powerful than its
predecessors against alternatives that involve a change in the copula. The test
is based on sequential empirical copula processes, but the crucial difference with
respect to earlier proposals lies in the computation of the ranks. Whereas in [5] and
subsequent papers, ranks are always computed with respect to the full sample, we
propose to compute the ranks with respect to the relevant subsamples. In this way,
the copulas of those subsamples are estimated more accurately, so that differences
between copulas of disjoint subsamples are detected more quickly.
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2. Test statistic

Let X1, . . . ,Xn be random vectors. For integers 1 ≤ k ≤ l ≤ n, let Ck:l be the
empirical copula of the sample Xk, . . . ,Xl. Specifically,

Ck:l(u) =
1

l − k + 1

l∑

i=k

1(Ûk:l
i ≤ u),

for u ∈ [0, 1]d, where

Û
k:l
i =

1

l − k + 1
(Rk:l

i1 , . . . , R
k:l
id ), i ∈ {k, . . . , l},

with Rk:l
ij =

∑l
t=k 1(Xtj ≤ Xij) the (maximal) rank of Xij among Xkj , . . . , Xlj .

Note that the ranks are computed within the subsample Xk, . . . ,Xl and not within
the whole sample X1, . . . ,Xn. By convention, Ck:l = 0 if k > l.

Write ∆ = {(s, t) ∈ [0, 1]2 : s ≤ t}. Let λn(s, t) = (⌊nt⌋−⌊ns⌋)/n for (s, t) ∈ ∆.
Our test statistic is based on the difference process, Dn, defined by

Dn(s,u) =
√
nλn(0, s)λn(s, 1) {C1:⌊ns⌋(u) −C⌊ns⌋+1:n(u)}, (s,u) ∈ [0, 1]d+1.

The test statistic for detecting changes in cross-sectional dependence is then

Sn = max
1≤k≤n−1

∫

[0,1]d
{Dn (k/n,u)}2 dC1:n(u).

The p-values are determined by the null distribution of Sn, whose large-sample
limit is derived in [2]. To estimate the p-values from the data, a multiplier boot-
strap method is proposed in that paper too. The limit distribution of the test
statistic under the null hypothesis is unwieldy, but approximate p-values can still
be computed via a multiplier resampling scheme. To deal with potential serial
dependence, we make use of dependent multiplier sequences, an idea going back
to [4] and revisited in [1].

A large-scale Monte Carlo simulation study confirms that the sensitivity of
rank-based tests for the null hypothesis of a constant distribution against changes
in cross-sectional dependence can be improved if ranks are computed with respect
to relevant subsamples. In many cases, the test we propose achieves a higher power
than the one proposed in [3].
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[3] A. Bücher and M. Ruppert. Consistent testing for a constant copula under strong mixing
based on the tapered block multiplier technique. J. Multivar. Anal. 116, 208–229.
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Fifty ways to hump consumption

Mogens Steffensen

In this talk, we discuss four different plausible explanations for hump-shaped de-
mand for consumption that one can find in consumer data. The first explanation
is a phenomenon that we here speak of as elasticity of biometric substitution. This
aspect of preferences is formalized in Jensen and Steffensen (2015) who obtain a
hump-shaped demand for consumption. The economic intuition is the following.
A patient individual postpones consumption to later but at high ages an opposite
effect kicks in. Then the high mortality forces him to consume while still being
alive and this bends the consumption into a hump. The elasticity of biometric
substitution is separated away from risk aversion and elasticity of intertemporal
substitution and forms a demanding, but appealing, non-linear stochastic control
problem.

The hump-shaped consumption is obtained by Jensen and Steffensen (2015)
without over- or underpricing of insurance contracts. If we allow for mispricing
of insurance contracts humps can be obtained under time- and state-additivity of
preferences. In that case it just takes insurance to be overpriced in young years
and underpriced in old years. At first glance, this sounds very unnatural but it
may not be as stupid as it sounds. Since there is a demand for positive insurance
benefits at young ages and a demand for negative insurance benefits at old ages
(life annuities) this combination of under- and overpricing is exactly what one
would expect. This mispricing of insurance contracts is our second explanation
for humps.

The third explanation is the effect of investment in education studied in Munk
et al. (2015a). They study a problem with Cobb-Douglas utility from consumption
and leisure time net of working and education hours. Time spent on education
pays off in terms of salary. For a patient individual consumption increases in
younger years. In older years the education effect kicks in: education does no
longer pay off close to retirement, the individual obtains utility from leisure and
therefore lets the consumption decrease.

The fourth effect was suggested by Munk et al. (2015b). An impatient individ-
ual is considered. Without habit formation, this individual demands decreasing
consumption. Adding habit formation to his preferences, however, scares him away
from consuming too much at the beginning in order not to get trapped at a too
high level of consumption. This effect vanishes with time and the combination of
the two effects can produce a consumption hump.

Why are four explanations enough to explain the title of the talk? Well, Paul
Simon pointed out, after giving four ways to leave your lover, that there must be
50. So, there must be . . . 50 ways to hump consumption.
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Max-stable random sup-measures with comonotonic tail dependence

Kirstin Strokorb

(joint work with Ilya Molchanov)

In this project [7], we reveal some connections between extreme value theory (max-
stable processes), stochastic geometry (random sets) and the theory of utility
functions or risk measures (comonotonic additivity).

Max-stable random sup-measures can be seen as a generalization of max-stable
processes or, if endowed with an appropriate topology, they are equivalent to max-
stable processes with upper semi-continuous sample paths [8, 9, 15]. Random sup-
measures with independent values on disjoint sets are called completely random
or having independent peaks [8, 13]. They are well understood including the
corresponding integration theory that relies on the concept of the extremal integral
[13]. The distribution of a max-stable completely random sup-measure is fully
characterized by its control measure, similarly to the situation with conventional
α-stable completely random measures studied in details in [11].

In this work we go beyond the completely random case and study properties
of general max-stable random sup-measures in relation to their tail dependence
functionals using the extremal integral from [4]. It is well-kown that, under very
mild conditions, max-stable processes allow for a Poisson process representation [1,
6, 16]. We show that the same holds true for the max-stable random sup-measures
and, motivated by [14], we single out a sub-family (the sub-family of TM sup-
measures) that arises from a very natural choice of the intensity of the underlying
Poisson process. It turns out that this choice is equivalent to a comonotonicity
property that is well-known in the theory of risk measures [2, 12].

Based on [3, 5], we obtain dual representations for the tail dependence func-
tionals of the general stable sup-measures and TM sup-measures, which is useful
in order to derive a stochastic dominance property of TM sup-measures. With
each general stable sup-measure it is possible to associate several natural TM sup-
measures. This also leads to a streamlined extension of some known properties of
the argmax-set in continuous choice models [10].
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Limit results for bivariate distributions using polar representations:

a review of recent developments

Miriam Isabel Seifert

An effective approach for the analysis of multivariate extreme values is to investi-
gate the limit behavior of random vectors given that one of the vector components
becomes large. For this purpose, the conditional extreme value (CEV) models have
been proposed by Heffernan and Tawn (2004) and further developed by Heffernan
and Resnick (2007), Das and Resnick (2011), Resnick and Zeber (2014). In the
CEV context, bivariate distributions of (X,Y ) are studied such that

(1) lim
x→∞

P (X ≤ α(x) + β(x)ξ, Y ≤ γ(x) + δ(x)ζ | X > x) = G(ξ, ζ)

holds with suitable normalizing functions α, β, γ, δ and a non-degenerate distri-
bution function G.

Following this CEV approach we discuss limit results for important families of
bivariate distributions. We start with the popular elliptical random vectors which
can be represented as

(2) (X,Y ) = R · (cosT, ρ cosT +
√

1 − ρ2 sinT )

http://arXiv.org/abs/1507.03476
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with stochastically independent polar components R ≥ 0 and T ∈ (−π, π], where
T is uniformly distributed and ρ ∈ (−1, 1).

Assume R being in the Gumbel max-domain of attraction with infinite right
endpoint which is equivalent to R being of type Γ(ψ) with some auxiliary func-
tion ψ, i.e. for all z ∈ R holds

(3) lim
x→∞

P{R > x+ zψ(x)}
P{R > x} = e−z .

For this case, Berman (1983) obtained the following conditional limit result for
ξ > 0, ζ ∈ R:

(4) lim
x→∞

P (X ≤ x + ψ(x)ξ, Y ≤ ρx + δ(x)ζ | X > x) =
(
1 − e−ξ

)
·K (ζ)

with δ(x) = x ·
( (

1 − ρ2
)
· ψ(x)

x

)1/2

, K (ζ) = Φ (ζ) .

The class Γ(ψ) covers light-tailed distributions like the normal or exponential ones
as well as mildly heavy-tailed distributions like the log-normal.

Abdous et al. (2005) complemented this limit result of Berman by investigating
the conditional limit behavior of elliptical random vectors with heavy-tailed R in
the Fréchet max-domain of attraction, where the limit distribution G(ξ, ζ) has no
longer a product form G1(ξ) ×G2(ζ) of its marginals.

Next we consider different directions to extend the class of elliptical distributions
in the context of the CEV modeling. One approach is to weaken the assumptions
on the level lines of the joint density of (X,Y ) from elliptical to more general
ones. For this purpose Balkema and Embrechts (2007) introduced the class of
rotund-exponential distributions characterized by homothetic densities with level
lines possessing a positive curvature at every point and deduced conditional limit
theorems.

In order to generalize the limit result of Berman we follow another approach
which is based on the idea to extend the elliptical representation in (2) for random
vectors (X,Y ) to even more broad polar representations

(5) (X,Y ) = R · (u(T ), v(T ))

with stochastically independent polar components R ∈ [0,∞) of type Γ(ψ) and
T with a positive, continuous density on some closed interval in R. The level
curves are characterized by quite arbitrary coordinate functions u and v, where
u takes its unique global maximum umax at t = t0. We describe the geometry of
the curve (u(t), v(t)) in some neighborhood of t = t0 by function l = umax − u
displaying the horizontal distance to the vertical ray {x = umax} and assume that
l is regularly varying at t = t0 with some variation index κ > 0. Hence, κ is the
local curve order of the level curves near the ray y = ρx with ρ := v(t0).

Under polar representation in (5) the result of Berman for the elliptical case
κ = 2 has been generalized by Fougères and Soulier (2010), who proved that for
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curve orders κ > 1 the statement in (4) holds with

δ(x) = x · C ·
(
ψ(x)

x

)1/κ

, K(ζ) = c ·
∫ ζ

−∞

exp
(
− |s|κ /κ

)
ds .

The question arises whether conditional limit statements could be obtained for
polar random vectors (X,Y ) = R · (u(T ), v(T )) for arbitrary values κ > 0.
We investigate (Seifert 2014) how the restriction κ > 1 can be dropped so that the
level curves do not have to be convex any longer. For κ = 1 they form “edges”,
for 0 < κ < 1 they form “cusps” located on the ray y = ρx. It turns out that
there is a fundamental difference between the cases κ < 1 and κ > 1; we explain
the consequences of these distinctions and analyze them geometrically.

We obtain the following important results (Seifert 2014). In the generic case
ρ 6= 0, the conventional CEV method as in (1) leads to a degenerate limit G for
κ < 1. However, using random norming, where functions bounding Y from above
are not evaluated at the threshold value x but at the actual value of X , we manage
to obtain a non-degenerate limit theorem for polar random vectors with arbitrary
curve order κ > 0 and ρ ∈ R:

(6) lim
x→∞

P
(
X ≤ x+ ψ(x)ξ, Y ≤ ρX +X · C · (ψ(X)/X) 1/κ ζ

∣∣ X > x
)

= c ·
(
1 − e−ξ

)
·
∫ ζ

−∞

exp (− |s|κ /κ) ds

for ξ > 0, ζ ∈ R. The method of random norming was implicitly introduced by
Heffernan and Tawn (2004) in their extrapolation algorithm for extreme values
and further investigated by Heffernan and Resnick (2007).
Thus, applying random norming is the way to obtain non-degenerate conditional
limit statements for the whole family of distributions with polar representations,
allowing quite different forms of the level curves and, hence, permitting a lot of
freedom for describing the asymptotic behavior of random vectors (X,Y ).

Further generalizations to non-homothetic densities are deduced by Balkema
and Embrechts (2007): they introduced a class L of functions such that the rotund-
exponential density f0 of (X,Y ) can be multiplied by them without changing the
asymptotics.
Alternatively, we investigate (Seifert 2015) how the independence assumption of
radial component R and angular component T for (X,Y ) = R · (u(T ), v(T )) can
be weakened. We propose a novel dependence measure and present convenient
criteria for validity of limit theorems which possess geometrical meaning. Such
results also verify stability of the previously discussed limit results for a certain
degree of dependence.
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Jump regressions

George Tauchen

(joint work with Jia Li and Viktor Todorov)

We develop in [1] statistical tools for studying jump dependence of two processes
from high-frequency observations on a fixed time interval. In this context, only
segments of data around a few outlying observations are informative for the in-
ference. The underlying theory draws on [2] who characterize the behavior of the
asset returns across a discrete time interval containing a jump move in the pro-
cess. We derive an asymptotically valid test for stability of a linear jump relation
over regions of the jump size domain. The test has power against general forms of
nonlinearity in the jump dependence as well as temporal instabilities. We further
propose an optimal estimator for the linear jump regression model that is formed
by optimally weighting the detected jumps with weights based on the diffusive
volatility around the jump times. We derive the asymptotic limit of the estimator,
a semiparametric lower efficiency bound for the linear jump regression, and show
that our estimator attains the latter. A higher-order asymptotic expansion for
the optimal estimator further allows for finite-sample refinements. In an empirical
application, we use the developed inference techniques to test the stability (in time
and jump size) of market jump betas.
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Testing and modelling the unconditional variance component in

multiplicative time-varying GARCH models

Timo Teräsvirta

This presentation is about extending the standard GARCH model to the case
where the underlying volatility process is no longer stationary. This extension
consists of completing the standard model by a multiplicative nonstationary com-
ponent. The nonstationary component is a positive-valued function of time (or
rescaled time). The parameterisation makes it possible to test constancy of the
unconditional variance (stationarity of the GARCH model) against the nonsta-
tionary GARCH. It also gives rise to specification issues that I have discussed and
applied in my work with Cristina Amado.

One of the specification issues is finding the ’right’ parametric form for the
nonstationary component. In Amado and Teräsvirta (in press) the test of con-
stancy of the unconditional variance is a misspecification test, that is, the test is
carried out after the GARCH component has been specified and estimated. The
resulting test is size-distorted even in rather large samples. In this presentation I
turn this around and test the null hypothesis before estimating the GARCH com-
ponent. The problem of neglected conditional heteroskedasticity appears, but the
size distortion turns out to be rather small.

This can be taken a step further. The unconditional variance component is
specified using sequential testing, see Luukkonen et al. (1988) for the idea for the
test. The whole specification process, that is, the sequence of tests, can now be
carried out without assuming any conditional heteroskedasticity. This provides
initial estimates for final estimation in which the GARCH component is estimated
by maximum likelihood jointly with the unconditional variance component. For as-
ymptotic properties of maximum likelihood estimators, see Amado and Teräsvirta
(2013). In the presentation I give an example of how this works. The results are
encouraging.

One can replace time by an exogenous random variable and use the same spec-
ification strategy. Another idea that seems worth considering is that there may
be more than one multiplicative component in the model. For example, one may
be a function of time whereas the other one is a positive-valued function of an
exogenous random variable. How to test for the second multiplicative component
and how the specification strategy would work in this situation will be investigated
in the future.
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Testing for time-varying jump activity for pure jump semimartingales

Victor Todorov

In this paper we propose a test for deciding whether the jump activity index of
a discretely-observed Ito semimartingale of pure-jump type (i.e., one without a
diffusion) varies over a fixed interval of time. The asymptotic setting is based
on observations within a fixed time interval with mesh of the observation grid
shrinking to zero. The test is derived for semimartingales whose “spot” jump
compensator around zero is like that of a stable process, but importantly the
stability index can vary over the time interval. The test is based on forming a
sequence of local estimators of the jump activity over blocks of shrinking time
span and contrasting their variability around a global activity estimator based on
the whole data set. The local and global jump activity estimates are constructed
from the real part of the empirical characteristic function of the increments of the
process scaled by local power variations. We derive the asymptotic distribution
of the test statistic under the null hypothesis of constant jump activity and show
that the test has asymptotic power of one against fixed alternatives of processes
with time-varying jump activity.
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Parsimony inducing priors for large scale state-space models with

applications in modeling high-dimensional volatilities

Ruey Tsay

(joint work with Hedibert Lopes and Robert McCulloch)

State-space models are commonly used in the engineering, economic, and statis-
tical literatures. They are flexible and encompass many well-known statistical
models, including random coefficient autoregressive models and dynamic factor
models. Bayesian analysis of state-space models has attracted much interest in
recent years. However, for large scale models, prior specification becomes a chal-
lenging issue in Bayesian inference. In this paper, we propose a flexible prior for
state-space models. The proposed prior is a mixture of four commonly entertained
models, yet achieves parsimony in high-dimensional systems. Here “parsimony”
is represented by the idea that in a large system, some states may not be time-
varying. Simulation and simple examples are used throughout to demonstrate the
performance of the proposed prior. As an application, we consider the time-varying
conditional covariance matrices of daily log returns of 94 components of the S&P



The Mathematics and Statistics of Quantitative Risk Management 2523

100 index, leading to a state-space model with 94×95/2=4,465 time-varying states.
Our model for this large system enables us to use parallel computing.
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Aggregation of risk measures

Ruodu Wang

Modeling inter-dependence among multiple risks often faces statistical as well as
modeling challenges, with considerable uncertainty arising naturally. To deal with
the uncertainty in dependence of multivariate models, the field of risk aggregation
with dependence uncertainty has been greatly developed in the past few years.
The main object of interest is the set Dn of possible distributions of risk aggrega-
tion with given marginal information and arbitrary dependence structure. More
precisely, for given univariate distributions F1, . . . , Fn, define

Dn(F1, . . . , Fn) = {cdf of X1 + · · · +Xn : Xi ∈ L0, Xi ∼ Fi, i = 1, . . . , n}.

A direct characterization of Dn for general marginal distributions F1, . . . , Fn is
unavailable at the moment, and many open questions are found around it. We
discuss two representative concrete mathematical questions within this framework:
joint mixability and extreme values of risk measures.

A tuple of distribution functions (F1, . . . , Fn) is jointly mixable if Dn contains
a point mass. An analytical method to verify this property is in general an open
question. For some particular classes of distributions, joint mixability can be
analytically characterized; see [3] for details. Joint mixability is naturally linked
to many optimization problems in finance and operations research.

Extreme values of risk measures under uncertainty are of particular interest in
risk management practice, and there are a lot of research in this direction; see [1]
for the case of VaR. It is not clear how to calculate numerically or analytically
the extreme values of a risk measure all possible risks with distributions in Dn.
However, as n→ ∞, it is shown that for a distortion or convex risk measure ρ, its
worst-case value over is asymptotically equivalent to that of another risk measure
ρ∗, which is coherent and hence easy to calculate; see [4] for details. It is further
obtained in [2] that the dependence-uncertainty spread (the worst-case value minus
the best-case value over all possible models) of a Value-at-Risk is generally larger
than that of a corresponding Expected Shortfall, and this supports the use of an
Expected Shortfall in risk aggregation.
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Bounds on asymptotic Value-at-Risk for multivariate regularly varying

random vectors

Robert Alohimakalani Yuen

(joint work with Stilian Stoev and Dan Cooley)

The Value-at-Risk of a random variable X ∈ R at the level α ∈ (0, 1), denoted
VaRα(X) is defined as

VaRα(X) := inf{x ∈ R|P(X ≤ x) ≥ α}.
Now consider a portfolio {1, . . . , d} of dependent losses X = (X1, X2, . . . , Xd)⊤ ∈
R

d, and the Value-at-Risk for the sum of losses VaRα(S), where S := X1 +X2 +
· · · +Xd. Here it is essential to account for tail dependence in the components of
X because regulatory guidelines typically prescribe α ≥ .99. Hence, α close to the
value 1 is of primary interest. Multivariate regular variation is a natural framework
for characterizing VaRα(S) when α ≈ 1. A vector X ∈ R

d
+ is multivariate regularly

varying with index −1/ξ if there exists a function h(t) with limt→∞ h(t) = ∞ such
that limt→∞ tP(X1 > sh(t)) = s−1/ξ for all s > 0, a constant ρ > 0, and a measure

H on S
d−1
+ = {u ∈ R

d
+ : u1 + u2 + · · · + ud = 1} with finite mass H(Sd−1

+ ) = d,
called the spectral measure, such that for all s > 0

(1) lim
t→∞

tP

(
S > sh(t),

X

S
∈ A

)
= ρs−1/ξH(A)/d,

for A ⊂ S
d−1
+ , a continuity set of H . If the above holds then we say X ∈

MRVd
+(−1/ξ) and it readily follows that

lim
s→∞

P (S > s)

P (X1 > s)
= ρ.

Furthermore, if X ∈ MRVd
+(−1/ξ), then

lim
αր1

VaRα(S)

VaRα(X1)
= ρξ.

The value ρ determines the extreme Value-at-Risk (expressed as a limit) for the
sum of losses S = X1 + X2 + · · · + Xd, normalized by the common marginal. It
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was shown in [1] that X ∈ MRVd
+(−1/ξ) implies

(2) ρ ≡ ρ(H, ξ) :=

∫

S
d−1
+

(uξ1 + uξ2 + · · · + uξd)1/ξH(du)

where H is the spectral measure in (1) which, theoretically, could be any finite

measure on S
d−1
+ satisfying marginal equality constraints

(3) 1 =

∫

S
d−1
+

ujH(du), j = 1, . . . , d.

Well known universal bounds on the value of ρ are given by

d ≤ ρ(H, ξ) ≤ d1/ξ ξ ≤ 1(4)

d1/ξ ≤ ρ(H, ξ) ≤ d ξ ≥ 1,(5)

(see e.g. Corollary 4.2 of [3]). Observe that for ξ = 1 we have ρ = d, regardless of
the form of H . Otherwise, ρ = d corresponds to mutual independence and ρ = d1/ξ

corresponds to complete tail dependence of components of the vector X. The
fact that H is itself an infinite dimensional parameter makes fully characterizing
tail dependence a difficult problem [2]. In contrast, one can estimate various
finite dimensional functionals which summarize the dependence of X. One set of
functionals is the extremal coefficients (see e.g [4]). Let H be the spectral measure

of X ∈ MRVd
+(−1/ξ) and J a non-empty subset of {1, . . . , d}. The J th extremal

coefficient of with respect to H is

ϑH(J) :=

∫

S
d−1
+

max
j∈J

{uj}H(du).

Extremal coefficients alone do not fully characterize the spectral measure and the
extent to which additional information given by extremal coefficients constrain the
range of possible ρ was not previously known. Our objective is to determine sharp
bounds on the value of ρ when obtaining full or partial knowledge of the extremal
coefficients. That is, we want to determine exactly the interval

(P ∗)

(
inf
H
ρ(H, ξ), sup

H
ρ(H, ξ)

)
(6)

subject to:

∫

S
d−1
+

max
j∈J

{uj}H(du) = cJ , for all J ∈ J ,(7)

where the supremum and infimum are taken over all finite measures on S
d−1
+ , and

J is a given collection of subsets of {1, 2, . . . , d}.
In this talk, we characterize the solution to the problem (P ∗). We show that

the inf and sup in (6) are in fact attained by discrete measures that are supported
on a finite set of atoms. In each case, the number of atoms is not more than the
number of constraints in (7).
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[3] P. Embrechts, D.D. Lambrigger and M.V. Wüthrich (2009). Multivariate extremes and the
aggregation of dependent risks: examples and counter-examples. Extremes 12, 107–127.

[4] R. Smith (1990). Max-stable processes and spatial extremes. Unpublished Manuscript.

The best time to leave a casino

Xun Yu Zhou

(joint work with Xue Dong He, Sang Hu, Jan Ob lój)

We consider the dynamic casino gambling model initially proposed by [1] and
study the optimal stopping strategy of a pre-committing gambler with cumula-
tive prospect theory (CPT) preferences. We develop a systematic and analytical
approach to finding the gambler’s optimal strategy. We illustrate how the strate-
gies computed in [1] can be strictly improved by reviewing the betting history or
by tossing an independent coin, and we explain that the improvement generated
by using randomized strategies results from the lack of quasi-convexity of CPT
preferences. Finally, we show that any path-dependent strategy is equivalent to a
randomization of path-independent strategies.
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How is elicitability relevant for backtesting?

Johanna F. Ziegel

(joint work with Tobias Fissler and Tilmann Gneiting)

Independently, Weber [7] and Gneiting [6] have shown that Expected Shortfall
(ES) is not elicitable in contrast to Value at Risk (VaR). Roughly, elicitability of
a risk measure means that it can be obtained as the minimizer of an expected
loss function. This negative result continues to hold for all spectral risk measures
(except for the mean) and the only coherent risk measures that are elicitable are
certain expectiles. However, we were able to show recently that ES is jointly
elicitable with VaR, and, more generally, a large class of spectral risk measures is
elicitable of higher order [4].

There is little debate that elicitability is a useful property for model selection,
estimation, generalized regression, forecast comparison, and forecast ranking. But
the non-elicitability of ES has lead to a lively debate about the relevance of elic-
itability for backtesting [1, 2, 3]. Contributing to this discussion, we would like
to clarify that elicitability is not important for the traditional approach to back-
testing. However, we argue that elicitability is crucial to achieve the objectives of
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backtesting [5]. We illustrate the proposed approach for VaR and ES jointly and
for VaR alone.
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Université de Lausanne

Quartier UNIL-Dorigny

Batiment Extranef

1015 Lausanne

SWITZERLAND

Prof. Dr. Torben G. Andersen

J.L.Kellogg School of Management

Northwestern University

2001 Sheridan Road

Evanston IL 60208

UNITED STATES

Prof. Dr. Søren Asmussen

Department of Mathematical Sciences

University of Aarhus

Building 530

Ny Munkegade

8000 Aarhus C

DENMARK

Prof. Dr. Pauline Barrieu

Department of Statistics

London School of Economics

Houghton Street

London WC2A 2AE

UNITED KINGDOM

Prof. Dr. José Blanchet
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