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Introduction by the Organisers

The mathematical study of aperiodic tilings and aperiodic discrete sets in Rd be-
gan with the discovery in the 1960s by Wang and Berger, followed by Robinson
and Penrose in the 1970s, of a finite set of tiles which tile R2 aperiodically. These
studies later received physical motivation with the discovery in 1982 by Schecht-
man et al. of materials which do not have crystalline structures. These structures
were called quasicrystals by Levine and Steinhardt.

In recent years much intensive work has been devoted to investigating the large
scale geometry of discrete subsets of Rd. The sets which are studied are typi-
cally not periodic, but share some of the properties of periodic sets, corresponding
to various weakenings of the notion of periodicity. As a consequence they have
come to be studied under the loosely defined term quasicrystals. The study of
such sets has a long history in different mathematical disciplines, such as dy-
namics (in connection with cross-sections for continuous group actions, virtual
subgroups), mathematical physics (quasicrystals and almost periodic structures,
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questions of diffraction), operator algebras and K-theory (cohomology theories for
pattern spaces, solenoids and laminated spaces), geometric group theory (quasi-
isometries and coarse isometries, almost subgroups), and geometric combinatorics
(packing and covering questions). Although researchers from different disciplines
are interested in different questions, there are many connections between work
being done by different groups of people. The goal of this meeting is to provide an
introduction to some of the main examples and questions surrounding mathemat-
ical quasicrystals, making it possible to bridge the cultural gaps between people
studying the same objects from different points of view.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Examples of tilings and cut and project sets

Uwe Grimm

In my talk, which was mainly based on material from the first half of the mono-
graph [1], I introduced a number of notions and properties of point sets and tilings
in Euclidean space. In particular, local derivability (LD) of one such pattern from
another was introduced, and the equivalence relation mutual local derivability
(MLD) was explained. This equivalence allows us to switch between point set and
tiling descriptions (or more general descriptions) of the same underlying structure,
which is frequently used without explicit reference.

The notions for point sets introduced in my talk are largely based on those
used in an influential article by Lagarias [2]; see also references therein. Local
finiteness and finite local complexity (FLC) were introduced, and Delone sets
as well as Meyer sets were defined. The action of translations is exploited to
introduce the notion of a (continuous) hull for FLC tilings or point sets, defined
as the closure of the translation orbit in the local topology (where FLC tilings
or point sets are close if they agree on a large ball around the origin, up to a
small translation). Symmetries were defined using the equivalence relation of
local indistinguishability (LI). In particular, this concerns local inflation deflation
symmetry (LIDS), which was explained for the example of the silver mean point
set. This point set was then shown to lift naturally into a rectangular planar
lattice, using algebraic conjugation, which gives rise to a description of the silver
mean point set as a cut and project set (or model set) with a simple interval as the
window. The freedom of choosing a scale in internal space was briefly discussed,
linking this approach with the more commonly used projection from a square
lattice with a canonical choice of the window.

Finally, cut and project schemes for planar tilings with n-fold rotational sym-
metry were discussed. These cyclotomic model sets in the plane are considered as
subsets of the ring of integers in a cyclotomic field, which naturally lift via a diag-
onal (Minkowski) embedding to higher-dimensional lattices, using the non-trivial
automorphisms of the underlying cyclotomic field. The well-known Ammann-
Beenker and Penrose tilings are examples of cyclotomic model sets with eightfold
and tenfold rotational symmetry, respectively. The model set construction, which
originally goes back to Meyer’s work in harmonic analysis [3], generalises to arbi-
trary dimensions and more general choices of internal spaces; see Moody’s review
article [4] for details and further developments. An important property of regular
model sets (which are model sets with windows whose boundaries have zero Haar
measure) is the uniform distribution of projected lattice points into the window in
internal space. For example, the property makes it possible to express frequencies
of local patches and the diffraction intensities of the pure point diffraction measure
in terms of integrals over the window.
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Dynamics and ergodic theory, I

Michael Bjoerklund

This lecture will introduce (without proof) standard concepts from ergodic the-
ory and dynamics, including the following: Ergodicity and ergodic theorems for
actions of R and Rd. Possible choices and properties of averaging sets, Følner
sequences and van Hove sequences, with examples. Minimality and unique ergod-
icity. Existence of minimal sets in actions on compact spaces, and existence of
invariant measures for actions of amenable groups. For amenable groups acting
on compact spaces, unique ergodicity (with a measure of full support) implies
minimality. Syndetic sets, sets of visit times for minimal actions.

Dynamics and ergodic theory, II

Maria Rita Iacò

This talk is meant as a discussion on the conjugacy problem in ergodic theory, that
is to decide whether given two measure-preserving transformations are conjugate.
Measure-preserving transformations are morphisms between measure spaces and
conjugacy is an equivalence relation on the set of all measure-preserving trans-
formations. More precisely, two measure-preserving transformations T1 and T2,
defined on the probability spaces (X1,B1,m1) and (X2,B2,m2), respectively, are

said to be conjugate if there exists a measure-algebra isomorphism φ : (B̃2, m̃2)→

(B̃1, m̃1) such that φ◦T̃2
−1

= T̃1
−1
◦φ. The definitions of isomorphism and spectral

isomorphism for measure-preserving transformations have been given as well and
it has been shown that spectral isomorphism is weaker than conjugacy, which is
weaker than isomorphism. This was not done just to draw up a list of properties,
but to highlight the fact that one method for tackling the conjugacy problem is by
looking for isomorphism invariants. In particular, it turns out that the set of eigen-
values of a measure-preserving transformation is an example of set of invariants.
Therefore, we introduced the Koopman operator UT . It is a unitary operator on
L2(X,B,m), associated to an invertible measure-preserving transformation T on
X defined by (UT f)(x) = f(Tx) . The eigenvalues and the corresponding eigen-
functions of UT are called the eigenvalues and eigenfunctions of T . In this way,
we can define the discrete spectrum property of an ergodic measure-preserving T ,
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meaning that the eigenfunctions of UT induced by T span L2(X,B,m). Moreover,
the set of eigenvalues forms a subgroup of the unit circle K and it provides a com-
plete invariant set for ergodic measure-preserving transformations with discrete
spectrum. This simply means that two ergodic measure-preserving transforma-
tions having the same group of eigenvalues are isomorphic, and thus conjugate.
Finally, we discussed a canonical example of ergodic measure-preserving trans-
formations with discrete spectrum, namely ergodic rotations. Motivated by this
example, we stated the following Representation Theorem and Existence Theorem
for ergodic measure-preserving transformations with discrete spectrum.

Theorem 1 (Representation Theorem). An ergodic measure-preserving transfor-
mation T with discrete spectrum on a probability space (X,B,m) is conjugate to
an ergodic rotation on some compact abelian group.

Theorem 2 (Representation Theorem). Every subgroup Λ of the unit circle K is
the group of eigenvalues of an ergodic measure-preserving transformation T with
discrete spectrum.

Thus, we have a satisfactory solution to the conjugacy problem for this class
of transformations. In fact, each conjugacy class of ergodic measure-preserving
transformations with discrete spectrum is characterised by a subgroup of K, and
each subgroup of K corresponds to a conjugacy class. We refer to [2, 1] as general
references.
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Pattern spaces

Franz Gähler

This talk gives an overview on spaces of aperiodically ordered patterns and tilings,
as well as on their associated dynamical systems. Background material can be
found in the monographs [1, 2]. After defining what kind of patterns we want to
consider (mainly locally finite Delone sets and tilings), some important proper-
ties and equivalence concepts are introduced. A pattern has finite local complex-
ity (FLC), if up to translations it contains only finitely many different bounded
patches. A pattern is repetitive, if for any bounded patch in the pattern, the set
of its translates is relatively dense. Finally, two patterns are called locally indis-
tinguishable (LI), if any bounded patch from one occurs also in the other, and
vice versa. With this equivalence relation, patterns can be divided into LI classes,
consisting of patterns with exactly the same bounded configurations.
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It is then natural to turn LI classes and other sets of patterns into pattern spaces.
For a given pattern, we define its hull as the closure (in a suitable topology) of
the set of all its translates. In the local topology, two patterns are ε-close, if they
agree exactly in a ball of radius 1/ε, up to an ε-small rigid translation. For FLC
patterns, this is the most convenient topology. It makes the hull a compact space,
on which the translations act continuously. The hull, together with the translation
action, thus becomes a topological dynamical system. This dynamical system is
minimal if and only if the starting pattern (and thus any pattern in the hull) is
repetitive. In this case, the hull consists exactly of the LI class of any of its member
tilings. For non-FLC patterns, the hull is not compact in the local topology. In
that case, a different topology can be used, which allows locally varying ε-small
translations or motions in order make the two patterns match.

If a pattern P can be derived from another pattern P ′ by some local rule, this
derivation rule can be extended to a map between the two LI classes. As it inter-
twines the respective translation actions, we obtain in fact a factor map between
the two dynamical systems. If such local derivability (LD) holds in both direc-
tions, the two LI classes are called mutually locally derivable (MLD), and the two
dynamical systems are topologically conjugate (though not every topological con-
jugacy is of this type). Factor maps arising from LD give important information.
This is illustrated with a factor map from hull of the Tübingen Triangle Tiling
to that of the Penrose tiling, which is a 5–1 covering map, and by a factor map
from the hull of octagonal Ammann-Beenker tiling with matching rule decoration
to that of the undecorated Ammann-Beenker tiling, which 1–1 almost everywhere,
but not everywhere. The set where it fails to be 1–1 determines the difference in
topology between the two tiling spaces.
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Introduction to Čech cohomology

Antoine Julien

This talk is intended to provide a beginners introduction to simplicial and Čech
cohomology. First, we introduce the notions of simplicial complex, ∆-complex
and cellular complex. In all these cases, one wants to express a d-dimensional
topological space as a union of basic oriented cells (simplices or balls) of dimension
0, . . . , d such that eack k-dimensional cell has a boundary which consists in (k−1)-
dimensional cells. The difference between simplicial, ∆- and cellular complexes lies
in what is considered a basic cell, and how can k-cells be glued on lower-dimensional
cells, but the underlying ideas are similar. A 1-dimensional cellular complex, for
example, is an oriented graph.
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Once a space is given a structure of (say) simplicial complex, one can see it
as a combinatorial object. It is then possible to define the space k-cochains for
all k: a k-cochain is a function which attributes a value (in Z) to each k-cell.
There is a natural notion of coboundary of a cochain: if φ is a k-cochain, δφ is a
(k + 1)-cochain. It is dual to the notion of boundary of a cell. A straightforward
computation shows that δ ◦ δ = 0.

A basic question which motivates cohomology is “given a k-cochain φ, does the
equation

φ = δα

have a solution”? Since δ ◦ δ = 0, it is clear that if δφ 6= 0, the equation above
can’t have a solution (this is a local obstruction). However, the condition δφ = 0 is
not always sufficient: there could be a global obstructions. Cohomology measures
how many such global obstructions there can be:

Hk(X,Z) =
{
φ k-cochain : δφ = 0

}/{
δα : α a (k − 1)-cochain

}
.

In particular, if the cohomology groups are 0, the condition δφ = 0 is both
necessary and sufficient for the equation φ = δα to have a solution α.

It is a good exercise to compute the cohomology of some classical spaces: for
example the 2-sphere can be seen as a complex made of three vertices, three
edges (glued to form a triangle), and two 2-simplices glued on this triangle (each
forming one hemisphere). Each of the cochain groups is free Abelian, and the
coboundary maps can be expressed as matrices in a chosen basis. The computation
of cohomology becomes an exercise of linear algebra.

Cohomology satisfies several important properties. First, it only depends on
the space and not on the simplicial or cellular decomposition. Then, a continuous
map X → Y between topological spaces induces a map Hk(Y,Z) → Hk(X,Z)
between the cohomology groups. As a consequence, two homeomorphic spaces
have isomorphic cohomology groups: cohomology is an invariant.

To conclude, the use of Čech cohomology groups (noted Ȟk(X,Z)) can be
motivated by two of their properties. First, they are isomorphic to the simplicial
cohomology groups for “nice” spaces (in particular for finite simplicial or cellular
complexes). Then, the Čech cohomology groups of an inverse limit are the direct
limit of the Čech cohomology groups. This property is quite relevant to tilings,
since tiling spaces are inverse limits of finite cellular complexes.

As an illustration, we compute that if X is the dyadic solenoid (i.e. the sta-
tionary inverse limit of circles under the map z 7→ z2), its first Čech cohomology
group is Ȟ1(X,Z) = Z[1/2]. This is done by computing the simplicial cohomology
of a circle and the map induced in cohomology by z 7→ z2, and by using the two
properties of Čech cohomology above.

The general goal of this talk is to provide enough background to follow co-
homology computations, rather than give a full and formal presentation of the
topic. Recommended references for this material are [1, Chapters 2 and 3] and [2,
Chapter 3].
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Gähler and Anderson-Putnam Complexes

Scott Schmieding

Associated to the hull of a pattern are certain cohomology groups, which have
proven very effective as both topological invariants and as messengers of certain
information about the pattern. While many versions of these cohomology groups
exist, a fundamental one is the Cech cohomology of the topological hull of the
pattern. An effective method to approach Cech cohomology in general is through
inverse limits, and we first briefly review the concept of inverse limit spaces and
some basic properties. We describe the connection between inverse limit spaces
and Cech cohomology, with the standard dyadic solenoid serving as a guiding
example. In general, the method of writing a space as an inverse limit of CW
complexes is particularly effective for calculation the Cech cohomology, and with
this in mind we then give two presentations of the hull associated to a tiling
of Rd as an inverse limit of certain CW complexes built from the tiling. The
first, called the Gaehler complex, works for very general tilings, but is difficult
to compute with. The second, the Anderson-Putnam complex, works only for
tilings which arise from a substitution system, i.e. for tilings which come from
an inflation and subdivision rule. The Anderson-Putnam construction however
is much more amenable to calculation, and we give two examples, the period-
doubling substitution in dimension one, and the half-hex substitution in dimension
two, to indicate how the construction can be used to obtain important topological
information about the associated hulls.
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Pattern equivariant cohomology

James Walton

This talk served as an introduction to pattern equivariant cohomology, a tool
designed to provide intuitive, geometric descriptions of the Čech cohomology of a
tiling space. Let T be a tiling of Rd with finite local complexity. The tiling space
ΩT of T (defined in the talk Pattern spaces) is a naturally defined moduli space
of tilings which are locally indistinguishable from T . For T aperiodic this space
is not easily visualised, not easily described in any combinatorial fashion (such
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as how, say, a regular cell complex is) and many classical topological invariants,
such as the homotopy groups or singular (co)homology groups, fail to provide any
useful information about ΩT . However, topological invariants such as K-theory or
the Čech cohomology Ȟ•(ΩT ) do provide useful information about ΩT .

Although the above considerations naturally lead us to invariants such as
Ȟ•(ΩT ), it is not immediately clear how abstract topological invariants of an
abstract topological space relate back to our original tiling T ! It would be prefer-
able to define cohomology directly in terms of T , in a way which yields isomorphic
cohomology to Ȟ•(ΩT ) so as to retain the powerful abstract foundation of these
groups whilst simultaneously providing a more intuitive viewpoint on them. This
is precisely what pattern equivariant (PE) cohomology achieves.

The two main approaches to PE cohomology are through PE forms (see [2]) and
PE cellular cochains (see [5]); both were covered in the talk. For the former, one
begins with the de Rham cochain complex C•

dR(R
d) of cochain groups Ck

dR(R
d)

given by the vector spaces of smooth k-forms of Rd and coboundary given by the
exterior derivative. Loosely, a form is called pattern equivariant (with respect
to T ) if it is the same locally at any two points x, y ∈ Rd for which T − x and
T − y agree to a sufficiently large radius about the origin. Restricting to PE forms
provides a sub-cochain complex C•

dR(T ) of C•
dR(R

d) whose cohomology H•
dR(T )

we call the pattern equivariant cohomology of T . Kellendonk and Putnam [3, 2]
proved the following:

Theorem. Ȟ•(ΩT ;R) ∼= H•
dR(T ).

If T is a cellular tiling, then we may repeat the above construction using cellular
cochains instead of forms, defining the PE cohomology H•

cell(T ;G), where G may
be taken to be any discrete Abelian group. Sadun [5] proved the following:

Theorem. Ȟ•(ΩT ;G) ∼= H•
cell(T ;G).

The above theorems provide us with a powerful way of visualising elements
of the Čech cohomology of a tiling space. Moreover, PE cohomology is a vital
tool in describing further structures on the cohomology, notably trace maps, or-
der structure and Ruelle-Sullivan currents, as well as asymptotically negligible
cochains, tools with applications to gap-labelling (see talk Gap labelling theorem,
and references therein), shape deformations [1] and bounded discrepancy [4].

The proof of the above was discussed in the talk. It turns out to be remarkably
simple, hinging on the following two fundamental properties of Čech cohomology
(given in the talk Introduction to Čech cohomology), along with the description of
ΩT as a certain inverse limit of CW complexes (discussed in the talk Gähler and
Anderson–Putnam complexes):

(Č1) The Čech cohomology functor is naturally isomorphic to the singular coho-
mology functor on the category of topological spaces homotopy equivalent
to CW complexes, and thus to cellular cohomology on spaces endowed
with a CW decomposition.

(Č2) For an inverse system Γ0
f1
←− Γ1

f2
←− · · · of compact, Hausdorff spaces,

there exists an isomorphism Ȟ•(lim
←−

(Γi, fi)) ∼= lim
−→

(Ȟ•(Γi), f
∗
i ).
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(Gä) ΩT
∼= lim←−(Γi, fi), where the Γi are the Gähler complexes of T and the fi

are the corresponding forgetful maps.

Some examples were discussed, deriving the generators of C•
dR(T ) and C•

cell(T )
for some simple tilings T such as periodic tilings and the one dimensional (non-
repetitive) symbolic tiling · · · aaabaaa · · · . The generators of a more interesting
tiling, the Fibonacci tiling, were also given, which may be found from the stan-
dard Anderson–Putnam approach to calculation of the cohomology groups of a
substitution tiling.
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Cohomology for cut and project pattern spaces

Henna Koivusalo

This talk is devoted to establishing sufficient and necessary conditions under which
the cohomology of a pattern space associated to a cut and project Delone set is
finitely generated. The material will mainly come from [1] and [2, Sections 1-
4]. The case for codimension 1 cut and project sets will be worked out in detail.
Given a totally irrational d-subspace E of Rk, a complementary k−d-dimensional
subspace F and a window W ⊂ F , a cut and project set Y is a discrete subset
of E, obtained by projecting all the integer lattice points in the acceptance strip
E+W to E along F . The set Y is termed nonsingular when no lattice point lands
on the boundary of the acceptance strip. We will begin by taking a close look at
this definition and the tiling space corresponding to a nonsingular cut and project
set. Turns out that in the case where the codimension k − d = 1 and the window
is an interval, the tiling space can be analyzed as an inverse limit of ‘a k-torus
with rips’. There are either 1 or 2 rips in the torus, and the number only depends
on whether or not the endpoints of the window are on the same Γ-orbit, where Γ
is the integer lattice in Rk, acting on F after projection. Through this description
we will deduce that the cohomology of the tiling space of a cut and project set is
as for the once or twice punctured torus. At the end we will develop the geometric
ideas to higher codimensions, and state necessary and sufficient conditions for the
cohomology being finitely generated. This, again, has to do with the behaviour of
the boundary of the window under the Γ-action.
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Pattern complexity

Lorenzo Sadun

One measure of the complexity of a tiling is the number C(R) of patterns of a given
size R that appear somewhere in that tiling. There are a number of choices to be
made in defining the complexity function C(R), with slightly different definitions
for tilings with and without finite local complexity (FLC), but they all give the
same asymptotic growth rate. Antoine Julien proved that the growth rate is
a homeomorphism invariant. In this talk, I’ll go over the different constructions,
especially for cut-and-project tilings, discuss how this relates to the decomposition
of the “window” into acceptance domains, and connect this with Diophantine gap
problems.

Perfectly ordered quasicrystals, I

Sigrid Grepstad

In this talk we discuss the interplay between order and aperiodicity in Delone sets.
As quantitative measures of the complexity of a Delone set X we introduce the
repetitivity and patch counting functions, MX(T ) and NX(T ), associated to X .
This is followed by a discussion of the group of periods of X , together with the
Period Conjecture by Lagarias and Pleasants. It is shown that if MX(T ) < T/3
for any value of T , then X is a ideal crystal. Finally, we define what it means for
X to be linearly or densely repetitive, and explain Lenzs proof that any aperiodic
linearly repetitive Delone set is also densely repetitive.
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Perfectly ordered quasicrystals, II

David Damanik

This talk explains why uniform patch frequencies exist in linearly (and densely)
repetitive Delone sets. Following [1], the proof of this statement is obtained via
a uniform ergodic theorem for almost additive functions on box-shaped patches.
Applications to diffraction and the address map are discussed briefly.
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Quasicrystals and the Poisson summation formula

Jose Aliste-Prieto

Let S(Rn) denote the space of Schwartz functions, i.e., the space of rapidly decreas-
ing C∞-functions, equipped with the metric topology. Given a Schwartz function
ϕ, its Fourier transform is defined by

ϕ̂(t) =

∫

Rn

ϕ(x)e−2iπ〈t,x〉dx, t ∈ R
n.

Theorem 1 (Poisson’s summation formula for functions). For all φ in S(Rn) we
have ∑

m∈Zn

φ(m) =
∑

m∈Zn

φ̂(m)

We sketch of this theorem, following [1, Chapter 8]. Consider the Fourier series
g(x) =

∑
m∈Zn cme2iπ〈m,x〉 of the function g(x) :=

∑
ℓ∈Zn φ(x + ℓ). A simple

computation shows that cm = φ̂(m) for all m in Zn. We now have
∑

m∈Zm φ̂(m) =∑
m∈Zn cm = g(0) =

∑
m∈Zm φ(m), from which the conclusion follows. The same

ideas can be used to proved a more general Poisson’s summation formula for
lattices. Let L be a lattice. That is,

L = Zb1 ⊕ Zb2 ⊕ · · · ⊕ Zbn

, where B = (b1|b2| · · · |bn) is an invertible n×n matrix. Consider also L∗ the dual
lattice, which is defined by L∗ = {x ∈ Rn | 〈x, l〉 ∈ Z for all l ∈ L}.

Theorem 2. For every Schwartz function φ, we have
∑

m∈L

φ(m) =
1

det(B)

∑

m∈L∗

φ̂(m)

The Poisson’s summation formula has immediate consequences for computing
Fourier transforms of distributions supported on lattices. Recall that a tempered

distribution is a continuous linear functional α : S(Rn) → C, its value at ϕ is



Arbeitsgemeinschaft: Mathematical Quasicrystals 2619

denoted 〈α, ϕ〉. The Fourier Transform α̂ of a tempered distribution α is defined
by

〈α̂, ϕ〉 := 〈α, ϕ̂〉, for all ϕ.

The δx distribution is the distribution defined by 〈δx, ϕ〉 = ϕ(x) for all ϕ in §(Rn).

Theorem 3 (Poisson’s summation Formula for Dirac Combs).
∑̂

m∈Zn

δm =
∑

m∈Zn

δm

The a similar result also holds for lattices. The remainder of the talk consists
in explaining the proof of the following theorem.

Theorem 4 (Lev-Olevskii [3]). Let µ be a complex tempered measure on Rn

supported on u.d. Λ

µ =
∑

λ∈Λ

µ(λ)δλ, µ(λ) 6= 0, d(Λ) > 0

s.t. µ̂ is also a measure supported on a u.d. set S:

µ̂ =
∑

s∈S

µ̂(s)δs, µ̂(s) 6= 0, d(S) > 0

(n > 1 we need to assume µ is positive). Then Λ is contained in finite union of
translates of a lattice.

Remark 1. Cordoba [2] proved a similar result for n > 1 if µ is complex and µ(λ)
takes finitely many values and

∑
s∈Q |µ̂(s)| < C for any unit cube Q.

Much of the work in Lev-Olevskii paper consists in showing that µ is supported
on a Meyer set. The methods use depend on the dimension. In dimension 1,
one can use Fourier analysis to show that a gap in the spectrum gives certain
restrictions to the density of the support. In higher dimension, similar results
hold but depend on subtler interpolation and sampling theory. In the talk, we
suppose that Λ is Meyer set and sketch the proof of the following result.

Theorem 5. Let µ be a complex tempered measure on Rn supported on a Meyer
set Λ

µ =
∑

λ∈Λ

µ(λ)δλ, µ(λ) 6= 0, d(Λ) > 0

s.t. µ̂ is also a measure supported on a u.d. set S:

µ̂ =
∑

s∈S

µ̂(s)δs, µ̂(s) 6= 0, d(S) > 0

Then Λ is contained in finite union of translates of a lattice.

The proof of the last theorem uses the following characterization of Meyer sets.

Theorem 6 (Meyer). Let Λ be a point set. Then Λ is a Meyer set if and only if
there exists a model set M = M(Rn × Rm,Γ,Ω) and a finite set F such that

Λ ⊂M + F and π(Γ) ∩ Z[F ] = {0}.
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Diffraction, I

Felix Pogorzelski

In 1982, the Technion physicist Dan Shechtman verified the existence of physical
quasicrystals via diffraction experiments - an observation for which he was awarded
the Nobel prize for chemistry in 2011. In the past decades, mathematical diffrac-
tion theory evolved into a beautiful and rich research topic combining various
disciplines such as functional analysis, fourier analysis and ergodic theory. By in-
troducing autocorrelation measures for Dirac combs over general Delone sets, Hof
[H95] provided a major cornerstone for casting physical diffraction experiments
into rigorous mathematical models. This talk aimed at providing the notational
framework and basic results used in the talk Diffraction II. The specific goals were
two-fold.

• In a first part, the notion of autocorrelation for Delone sets was explained
in terms of dynamical systems.
• For abelian groups, the diffraction measure was defined via the Fourier
transform of the autocorrelation measure.

In the sequel, let G be a locally compact, second countable, abelian group along
with a Delone set Λ ⊂ G. Since a considerable part of the presented results does
not rely on the fact that G is abelian, the group multiplication is denoted by x · y
in this note.

Taking the closure set of translates gΛ in the Chabauty topology defined over all
closed subsets of G, one obtains a compact space XΛ. Assuming further that Λ is
of finite local complexity (FLC), one can verifty that the topology on XΛ coincides
with the so-called local mean topology. In the latter structure, two points in XΛ

are close if after a small translation, both sets coincide within a large compact set.
It is not hard to see that G acts bi-continuously on XΛ which yields a topological
dynamical system G y XΛ. In many situations, i.e. if G is amenable, one finds
G-invariant, ergodic measures on XΛ. For each such measure νΛ, one obtains a
measure dynamical system G y (XΛ, νΛ).

Definition 1 (Siegel transform). The Siegel transform for Λ is given by the map

S : Cc(G)→ C(XΛ) : Sf(P ) :=
∑

x∈P

f(x).
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This map is well-defined due to uniform continuity of compactly supported
functions on G.

The proof of the following proposition was presented in the talk.

Proposition 1. Let a measure dynamical system G y (XΛ, νΛ) as above be given.

• There is a unique Radon measure ηΛ = ηΛ(νΛ) on G such that

ηΛ(f
∗
1 ∗ f2) = 〈Sf1, Sf2〉L2(XΛ,νΛ)

for all f1, f2 ∈ Cc(G).
• There exists a unique constant hΛ,ν > 0 (called the Siegel constant) such
that for all f ∈ Cc(G), one obtains

∫

XΛ

Sf dν = hΛ,ν ·

∫

G

f dg.

The measure ηΛ obtained by the above proposition is called the autocorrelation
measure for Λ and ν. This approach is new: unlike to the classical situation, this
notion does not require an ergodic convergence theorem to hold true. Hence, it is
well-defined for general locally compact, second countable groups. This advantage
is heavily exploited in [BHP15], where a non-commutative spherical diffraction
theory is developed for cut-and-project-schemes over Gelfand pairs. The following
theorem shows that in the uniquely ergodic situation, the proposed notion for the
autocorrelation coincides with the classical definition and therefore is well justified.

Theorem 1.1 (cf. e.g. [BL04]). Let G y (XΛ, νΛ) be uniquely ergodic. Then for
all P ∈ XΛ, the weak-∗-convergence

ηΛ = lim
n→∞

|Fn|
−1

∑

x∈P∩Fn

∑

y∈P∩Fn

δx−1y

holds true for every van-Hove sequence (Fn) in G.

The talk was concluded with the definition of the diffraction measure for a
Delone set. Denote by the Ĝ the dual group of G. For f ∈ Cc(G), write f̂ for the

Fourier transform of f , defined on Ĝ.

Definition 2 (Diffraction measure). Let G y (XΛ, νΛ) be as above and denote
the autocorrelation for Λ and ν by ηΛ. Then, the diffraction measure of ηΛ is the

unique Radon measure η̂Λ on Ĝ such that

ηΛ(f
∗
1 ∗ f2) = 〈f̂1, f̂2〉L2(Ĝ,η̂Λ)

for all f1, f2 ∈ Cc(G).
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Diffraction, II

Tobias Hartnick

In this talk we illustrated the definition of diffraction as introduced in the previous
talks by computing the diffraction measure for regular model sets. The goal was
to provide a modern proof for a classical formula of Meyer [3].

We started out by recalling the construction of a regular model set P0 in a locally
compact abelian group G obtained from a regular window W0 in an internal group
H and a lattice Γ in G ×H . We then collected some basic topological properties
of the hull X = XP0

of P0. In particular we pointed out that the Chabauty-Fell
topology of the hull can be identified with the local topology, which allows for a
computationally convenient description of the topology. We used this identification
to construct a canonical transversal T ⊂ X . Namely,

T := {P ∈ X | P ⊂ πG(Γ)}.

The main part of the talk was then devoted to the outline of a new proof (taken
from [2]) of Schlottmann’s generalized torus parametrization [4] of a regular model
set. We constructed a continuous G-equivariant surjection

β : X → T := (G×H)/Γ

from X to the generalized torus T = (G×H)/Γ, which we then proved to be one-
to-one over a generic (in the sense of Haar measure) subset T ns ⊂ T of non-singular
parameters. Moreover, for non-singular elements P in the canonical transversal
we derived an explicit formula for P in terms of β(P ).

Using the generalized torus parametrization we immediately obtained minimal-
ity and unique ergodicity of the hull. This showed that regular model set are
repetitive and have uniform patch frequencies. Also, in view of the previous talk,
unique ergodicity allowed us to write the auto-correlation measure of a regular
model set in terms of the Siegel transform of the hull.

The aforementioned formula for non-singular elements in the canonical transver-
sal then allowed us to compute this Siegel transform explicitly in terms of the
parametrization map β, leading to the following formula for the auto-correlation
measure. Here we denote by PΓ : Cc(G × H) → C(T ) the operator given
by periodization over the lattice Γ and given a function f ∈ Cc(G) we denote

f∗(g) := f(g−1).
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Theorem ([2]). Let η be the auto-correlation measure of a regular model set P0 ⊂
G associated with a lattice Γ in G × H and a window W0 ⊂ H, and let T :=
(G×H)/Γ. Then for every f ∈ Cc(G),

η(f∗ ∗ f) = ‖PΓ(f ⊗ χW0
)‖2L2(T )

We then pointed out that this formula remains valid for suitably defined model
sets in non-abelian groups. This leads to the non-commutative quasi-crystals of
[2], but we did not pursue this direction any further. Instead we used the theorem
to provide an explicit formula for the diffraction measure of a regular model set in
a locally compact abelian group G, which in essence goes back all the way to the
pioneering work of Meyer (see [3] or [1]).

Theorem. Let P0 ⊂ G be a regular model set associated with a lattice Γ in G×H

and a window W0 ⊂ H. Let Ĝ, Ĥ be the character groups of G and H respectively
and let T := (G×H)/Γ. Then the diffraction measure η̂ of P0 is given by

∑

(ξ,η)∈T̂⊂Ĝ×Ĥ

|χ̂W0
(η)|2 · δξ.

In particular, P0 is pure-point diffractive.
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Bi-Lipschitz equivalence, I

Daniel Coronel

This talk is devoted to the question of the existence of Delone sets which are not
bi-Lipschitz equivalent to lattices. After explaining the problem and its history,
the solution will be sketched via the reduction of Burago-Kleiner [1] and McMullen
[2] to the prescribed Jacobian problem. Then the construction of a concrete Delone
set which is not bi-Lipschitz to a lattice will be given, following the treatment of
Cortez and Navas [3].
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Bi-Lipschitz equivalence, II

Andrés Navas

I will start by recalling the Hall’s marriage lemma to produce injections from one
set into another. Then, I will use this to show Mc Mullen’s argument: if all positive
functions bounded from above and away from zero were Jacobian of bi-Lipschitz
homeomorphisms, then all Delone sets would be rectifiable. After that, I will give
the Burago-Kleiner’s sufficient criterium for a Delone set to be rectifiable. The
proof presented will be that of Aliste-Coronel and Gambaudo, which holds in any
dimension larger than or equal to 2. Some examples of application (e.g. linearly
repetitive Delone sets) will be given. Finally, I will come back to the construction
of explicit non-rectifiable Delone sets by Cortez and Navas to explain how all these
issues are addressed along the construction. If time allows, I will compare all of this
to the case of non-amenable spaces, where Whyte’s theorem applies (all Delone
subsets are bi-Lipschitz equivalent), and I will provide examples of non-rectifiable
Delone sets in certain solvable groups.

Bounded displacement equivalence

Yaar Solomon

A discrete set X ⊆ Rd is called a separated net, or a Delone set, if it is both
uniformly separated and relatively dense in Rd. That is, there exists constants
R, r > 0 so that the distance between every two points in X is at least r, and
every ball of radius R intersects X . The question whether every Delone set is bi-
Lipschitz to a lattice or not goes back to Furstenberg, that posed it in the sixties,
and it was posed again by Gromov in his book in 93’. This question was settled
by McMullen, and independently by Burago-Kleiner in 98’, that showed that the
answer is negative using an analytic reformulation of the question.

In this talk we consider a finer equivalence relation on the collection of Delone
sets in a metric space, where our discussion will mostly focus on Rd. Discrete sets
X,Y ⊆ Rd are called bounded displacement equivalent (BD) if there are constants
b,M > 0 and a bijection between X and bY that moves each point in X at most
M . We will see why BD equivalence implies bi-Lipschitz equivalence for Delone
sets. Then we will talk about the main tools that we have to prove BD equivalence,
and we will see that any two lattices of the same co-volume are BD equivalent. In
particular we will discuss a theorem of Laczkovich, with a partial proof, that gives
a complete characterization of discrete sets which are BD to a lattice, in terms of
well enough estimates of the discrepancy of measurable sets. At the end we will
discuss applications of that theorem to discrete sets that arise from substitution
tilings and from cut-and-project constructions.
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Deviation of ergodic averages for self-similar tilings

Valérie Berthé

This talk is mainly based on the paper [4] which highlights the boundary effects
that occur in dimension d at least 2, when considering deviation of ergodic av-
erages for the Rd-actions associated with self-similar tilings that are assumed to
be primitive, aperiodic, and with finite local complexity (FLC). These boundary
effects are expressed in terms of the eigenvalues of the underlying substitution
matrix. More precisely, we consider a tile-substitution in Rd that acts on a set of
m tiles: every expanded prototile can be decomposed into a union of tiles (which
are all translates of the prototiles) with disjoint interiors. We associate with it a
square matrix, the substitution matrix, of size m: Sij counts the number of tiles
of type i in the image of a tile of type j. The paper [4] stresses the role played by
the eigenvalues of the substitution matrix S that satisfy

|θ| > θ
d−1

d

1 .

When d = 1, this condition yields |θ| > 1: if there are no such eigenvalues, we are
in the so-called Pisot case, where the deviation of ergodic averages is known to be
bounded for cylinders associated with letters (see e.g. [1]); if d = 1, there is no

difference between the case |θ| > θ
d−1

d

1 and the case |θ| > 1.
The theorem considered in this this lecture is the following [4, Corollary 4.5].

Let d ≥ 2. Let (Xω,R
d, µ) be a non-periodic self-similar tiling dynamical system

with FLC. Let θ1, · · · , θm be the (real and complex) eigenvalues of the substitution
matrix S, counted with multiplicities and ordered in such a way that θ1 > |θ2| ≥
· · · ≥ |θm|. Let s be the size of the largest Jordan block associated with the
eigenvalues of absolute value |θ2|. We consider ergodic averages with respect to
a bounded Lipschitz domain Ω. Let ΩR stand for RΩ. There exists a constant
C > 0 such that for any cylindrical function with ||f ||1 = 1, any tiling T ∈ Xω,
and R ≥ 2, then

∣∣∣∣
∫

ΩR

f(T − y)dy − Ld(ΩR)

∫

Xω

fdµ

∣∣∣∣ ≤





CRd−1 if |θ2| < |θ1|
d−1

d ,

CRd−1(logR)s if |θ2| = |θ1|
d−1

d ,

CRα(logR)s−1 if |θ2| > |θ1|
d−1

d ,
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with α = d log |θ2|/ log θ1. Note that α ∈ (d− 1, d).

Hence, if |θ2| < |θ1|
d−1

d the main contribution comes from the boundary of

the domain. If |θ2| > |θ1|
d−1

d , the main contribution comes from the interior
(α > d− 1).

A Lipschitz domain is an open bounded set that has a d−1-rectifiable boundary.
What is used here is the property that if A is d− 1-rectifiable, then for all b > 0,
there exists C such that

Ld(U(A, r)) ≤ Cr, for all r ∈ [0, b),

where

U(A, r) = {x ∈ R
d | dist(x,A) ≤ R}.

Cylindrical functions play the role here of characteristic functions for cylinder
sets of tiles: a function f on Xω is called cylindrical if it is integrable with respect
to the unique invariant measure µ and depends only on the tile containing the
origin.

The proof makes substantial use of linear algebra in the flavor of [1] which han-
dles the d = 1 case, together with the use of families of finitely-additive measures.
Similar results can be found in [5] with cohomological methods, and in [2, 3, 6, 7],
mainly motivated by questions on bi-Lipschitz equivalence and bounded displace-
ment of separated nets, arising from self-similar tilings, to the lattice.
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Gap labeling theorem

Michael Whittaker

1. Abstract

In this talk I examined the Gap Labelling Theorem, first formulated as the Gap
Labelling Conjecture by Bellissard in [3]. The Gap Labelling Conjecture was
proved independently by Bellissard-Benedetti-Gambaudo [4], Benameur-Oyono-
Oyono [7], and Kaminker-Putnam [10].

In 1981, Moser defined a Schrödinger operator with a Cantor set spectrum. His
discovery prompted a flurry of research into these operators, and it was realised
that the gaps in the spectrum could be labelled by integers in such a way that
the labelling is stable under perturbation of the Schrödinger operator. Bellissard
was at the forefront of this research [1], and connected the gap labelling with the
K-theory of an associated C∗-algebra in low dimensions [2]. The Gap Labelling
Conjecture was first formulated in [3] and the following purely mathematical for-
mulation, of what is now the Gap Labelling Theorem, appeared in [5, 10].

Theorem 1 ([4, 7, 10]). Let Σ be a Cantor set and let Σ × Zn → Σ be a free
and minimal action of Zn on Σ with invariant measure µ. Let µ : C(Σ)→ C and
τµ : C(Σ)⋊ Zn → C be the trace induced by µ. Then

µ∗(K0(C(Σ))) = τµ∗(K0(C(Σ)⋊ Z
n)),

as subsets of R.

In this talk, I considered the proof given by Kaminker and Putnam [10]. The
containment τµ∗(K0(C(Σ) ⋊ Zn)) ⊆ µ∗(K0(C(Σ))) is relatively straightforward.
The reverse containment occupies the bulk of Kaminker and Putnam’s paper.
The proof uses several deep results that are succinctly described by the diagram
appearing on [10, p.538]. The conclusion of the proof is that there exists an integer
N , that only depends on the dimension of Zn, such that

N
(
τµ∗

(
K0

(
C(Σ)⋊ Z

n
)))
⊆ µ∗

(
K0

(
C(Σ)

))
⊆ τµ∗

(
K0

(
C(Σ)⋊ Z

n
))
.

The talk concluded with the famous example of the Schrödinger operator Hθ ∈
B(ℓ2(Z)) given by

(Hθξ)(n) := ξ(n+ 1) + ξ(n− 1) + 2 cos(2πnθ)ξ(n).

For θ irrational, the spectrum of Hθ is the same as the spectrum of the operator
u+v+(u+v)∗ in the irrational rotation algebra Aθ. As the parameter θ varies over
the interval the spectrum of this operator gives rise to the magnificent Hofstadter
butterfly.
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The Fibonacci Hamiltonian

Xifeng Su

In this talk, I will introduce some models in the classical mechanics (especially solid
state physics) and quantummechanics associated with mathematical quasi-crystals
(especially the Fibonacci Hamiltonian operator). The models I will mention in
solid state physics are the generalized Frenkel-Kontorova models on the crystals
and quasi-crystals. The Frenkel-Kontorova models on the crystal are very well
developed. In the one dimension case, we have the celebrated Kolmogorov-Arnold-
Moser theory, converse KAM theory and Aubry-Mather theory for the existence
and non-existence of equilibrium solutions and ground states and their stability. In
higher dimension, one can introduce discrete weak KAM theory, which is similar
to the Frenkel-Kontorova theory developed by Aubry and Le Daeron or Chou and
Griffiths in dimension one. Moreover, the existence of the discrete weak KAM
solutions is related to the additive eigenvalue problem in ergodic optimization.
However, to the best to my knowledge, for the quasi-crystals models, there are
less known and I will introduce some models for the Fibonacci quasi-crystals and
quasi-periodic media.

For the quantum mechanics models, I will talk about the spectrum and spectral
characteristic of the Schrodinger operators given by the crystals and quasi-crystals.
In particular, I will concentrate on the Fibonacci Hamiltonian operator, which is
given by the Fibonacci quasi-crystals. In this case, the trace map plays an impor-
tant role and one can see the deep relations among the spectral characteristics, i.e.
the upper transport exponents, the dimension of the spectrum, the dimension of
the density of states measure and the optimal Holder exponent of the integrated
density of states.

I will survey on the recent results on all these types of models as possible. In
particular, there are some dynamics behind these models.
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Danzer problem

Andreas Thom

This talk is about the current status of the Danzer problem, a classical problem
in elementary geometry [1]. The problem will be stated, and a history of partial
results given: negative results of [2, 3] and positive results (also [2, 3]). The
dynamical approach ([3, Prop. 3.1]) will be explained and the relation to the
classification of minimal sets for the action of the affine group in the space of
closed subsets of Rd (see [3, §7.3]) will be explained. A sketch of proof of [3,
Thm. 1.2] will be given.

References

[1] Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved problems in geometry,
Problem Books in Mathematics, Springer-Verlag, New York, 1991, Unsolved Problems in
Intuitive Mathematics, II. MR 1107516 (92c:52001)

[2] R.P. Bambah and A.C. Woods, On a problem of Danzer, Pacific J. Math. 37 (1971), 295–
301. MR 0303419 (46 #2556)

[3] Y. Solomon and B. Weiss, Dense forests and Danzer sets, ArXiv e-prints (2014).

Dense forests

Michael Kelly

The notion of a Dense forest will be defined following [1]. The construction of a
Delone dense forest will be given, following [2, §4]. Questions of optimizing the
rate in the definition of dense forest will be stated, and results will be surveyed, for
both uniformly discrete dense forests, and dense forests whose asymptotic growth
is O(T d).
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Space of cut and project sets

Nicolas Bedaride

Consider a Delone set in Rd given by the vertices of a cut and project tiling.
Consider the balls of radius ρ centered at the points of the Delone set. Denote
their union by Kρ. Then for (q, v) ∈ Rd × Sd−1

1 we define the free path length as
τ1(q, v) = inf{t ∈ [0, 1], q + tv ∈ Kρ}. In a first paper the authors prove:

Theorem 1. Fix a lattice P and the initial position ρ. There exists a non in-
creasing continuous function FP such that for any Borel probability measure Λ on
T 1(Rd) , and for every ξ > 0 we have

lim
ρ→0

Λ({(q, v) ∈ Kρ, ρ
d−1τ1(q, v, ρ) ≥ ξ}) = FP (ξ)

The limit does not depend on Λ : any probability measure on Rd×Sd−1
1 which

is continuous with respect to Lebesgue measure.
The theorem presented is the following generalization:

Theorem 2. Fix a regular cut and project set P and the initial position ρ. There
exists a non increasing continuous function FP such that for any Borel probability
measure Λ on T 1(Rd) , and for every ξ > 0 we have

lim
ρ→0

Λ({(q, v) ∈ Kρ, ρ
d−1τ1(q, v, ρ) ≥ ξ}) = FP(ξ).

In order to prove this, the authors introduce the action of the affine group
ASLd(R) on the Delone set, and use Ratner’s theorem in order to compute the
limit. It allows them to obtain the expression of FP (ξ)

FP (ξ) = µg({R ∈ Qg | Z(ξ) ∩R = ∅})

where Qg is the space of quasi-crystals and µg is a measure on Qg.
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Siegel summation for cut and project sets

Daniel El-Baz

The Siegel integration formula is a technique introduced by Siegel [1] in connection
with problems in the geometry of numbers, developing ideas of Minkowski. It
relates integrals on Rd with integrals on the space of unimodular d-dimensional
lattices, with respect to the natural measure induced by Haar measure on SLd(R),
and can be used as part of a probabilistic method to prove the existence of lattices
with certain properties (notably, as in [1], lattices whose shortest nonzero vector
is long). This approach was axiomatized by Veech [2] to general spaces of point-
sets in Rd and recently extended to the space of cut and project sets by Marklof
and Strömbergsson [3]. In this talk the method will be introduced in the abstract
setting (following Veech) and the results of Marklof and Strömbergsson will be
presented.
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Université Paris Diderot, Paris VII
Case 7014
75205 Paris Cedex 13
FRANCE

Dr. Michael Björklund

Department of Mathematics
Chalmers University of Technology
412 96 Göteborg
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