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Introduction by the Organisers

The workshop “Mathematical Aspects of Hydrodynamics” was held at MFO from
August 9-15, 2015. The scientific program consisted of 26 main talks of 45 minutes
with 15 minutes for discussions. There were 4 poster presentations on Tuesday
evening preceded by 5 minute “advertisements”. There was ample time at the
workshop for general discussions and work in smaller groups.

The emphasis of the meeting was various aspects of incompressible fluid dy-
namics. This included topics in both inviscid and viscous fluids in two and three
dimensions. A number of the talks were connected with issues of turbulence. Some
talks addressed aspects of fluid dynamics such as magnetohydrodynamics, quan-
tum and high energy physics , liquid crystals and the particle limit governed by
the Boltzmann equations.

There were 40 participants from 16 different countries. There were 6 women
participants, including one woman organizer. There were 10 young researchers.
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Abstracts

Contrast between Lagrangian and Eulerian regularity properties of
Euler equations

Vlad Vicol

(joint work with Peter Constantin, Igor Kukavica)

The Euler equations for ideal incompressible fluids have two formulations, the
Eulerian and the Lagrangian one (apparently both due to Euler in 1757. In the
Eulerian formulation the unknown functions are velocity and pressure, recorded at
fixed locations in space. Their time evolution is determined by equating the rates
of change of momenta to the forces applied, which in this case are just internal
isotropic forces maintaining the incompressible character of the fluid. In the La-
grangian formulation the main unknowns are the particle paths, the trajectories
followed by ideal particles labeled by their initial positions. The Eulerian and La-
grangian formulations are equivalent in a smooth regime in which the velocity is
in the Hölder class Cs, where s > 1. The particle paths are just the characteristics
associated to the Eulerian velocity fields.

In recent years it was proved [1, 5, 8, 9, 10, 7, 4, 3] that the Lagrangian paths
are time-analytic, even in the case in which the Eulerian velocities are only Cs,
with s > 1. In contrast, if we view the Eulerian solution as a function of time
with values in Cs, then this function is everywhere discontinuous for generic initial
data [2, 6]. This points to a remarkable difference between the Lagrangian and
Eulerian behaviors, in the not-too-smooth regime.

In this paper we describe a simple but astonishing difference of behaviors in
the analytic regime. First, the radius of analyticity is locally in time conserved
in the Lagrangian formulation, i.e., the equations are locally well-posed in spaces
with fixed real-analyticity radius (more generally, a fixed Gevrey-class radius). In
contrast, the analyticity radius may deteriorate instantaneously in the Eulerian
formulation, as may be seen by considering a special shear-flow solution. Sec-
ond, the Lagrangian formulation allows solvability in highly anisotropic spaces,
e.g. functions which have analyticity (more generally, Gevrey-class regularity) in
one variable, but are not analytic in the others. In contrast, the Eulerian formu-
lation is ill-posed in such functions spaces.
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Small scale creation and finite time blow up in fluids

Alexander Kiselev

(joint work with Kyudong Choi, Tom Hou, Guo Luo, Vladimir Sverak, Yao Yao)

The two dimensional Euler equation for the motion of an inviscid, incompressible
fluid is given in vorticity form by

(1) ∂tω + (u · ∇)ω = 0, ω(x, 0) = ω0(x).

Here ω is the vorticity of the flow, and the fluid velocity u is determined from
ω by the appropriate Biot-Savart law. If we consider fluid in a smooth bounded
domain D, we impose a no flow condition at the boundary: u(x, t) · n(x) = 0 for
x ∈ ∂D. This implies that u(x, t) = ∇⊥ ∫

D
GD(x, y)ω(y, t) dy, where GD is the

Green’s function for the Dirichlet problem in D and ∇⊥ = (∂x2 ,−∂x1).
The global regularity of solutions to two-dimensional Euler equation is known

since the work of Wolibner [14] and Hölder [6], see also for example [10] for more
modern and accessible proofs. The two-dimensional Euler equation is critical in
the sense that the estimates needed to obtain global regularity barely close. The
best known upper bound on the growth of the gradient of vorticity and higher
order Sobolev norms is double exponential in time.

The question of whether such upper bounds are sharp has been open for a
long time. Yudovich [15] provided an example showing infinite growth of the
vorticity gradient at the boundary of the domain, by constructing an appropriate
Lyapunov functional. These results were further improved and generalized in [11],
with interesting connection to classical stability questions. Nadirashvili [12] proved
a more quantitative linear in time lower bound for a “winding” flow in an annulus.
Bahouri and Chemin [1] provided an example of singular stationary solution of the
2D Euler equation which produces a flow map whose Hölder regularity decreases
in time. This example also has a fluid velocity which is just log-Lipschitz in the
spatial variables, the lack of Lipschitz regularity that is exactly related to the
possibility of double exponential growth.

In recent years, there has been a series of works by Denisov on this problem. In
[4], he constructed an example with superlinear growth in its vorticity gradient in
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the periodic case. In [5], he showed that the growth can be double exponential for
any given (but finite) period of time. We also refer to a discussion at Terry Tao’s
blog [13] for more information on the problem and related questions.

The first result I would like to describe in this talk is a joint work with Vladimir
Sverak [8]. We were able to construct an example of initial data in the disk
such that the corresponding solution for the 2D Euler equation exhibits double
exponential growth in the gradient of vorticity. We do not require any force or
controlled stirring in the equation. Namely, we will prove

Theorem. [Kiselev-Sverak] Consider two-dimensional Euler equation on a unit
disk D. There exists a smooth initial data ω0 with ‖∇ω0‖L∞/‖ω0‖L∞ > 1 such
that the corresponding solution ω(x, t) satisfies

(2)
‖∇ω(x, t)‖L∞

‖ω0‖L∞

≥
(‖∇ω0‖L∞

‖ω0‖L∞

)c exp(c‖ω0‖L∞t)

for some c > 0 and for all t ≥ 0.

The theorem shows that the double exponential upper bound is in general opti-
mal for the growth of vorticity gradient of solutions to the two-dimensional Euler
equation. The growth in our example happens at the boundary. We do not know
if such growth is possible in the bulk of the fluid.

The motivation for our work came from numerical simulations of Luo and Hou
[7], which suggest a new scenario for singularity formation in solutions of the 3D
Euler equation. The question whether solutions to 3D Euler, or 3D Navier-Stokes
equations are globally regular or can form singularities in finite time is one of
the major open questions of modern applied analysis. The Hou-Luo scenario is
axi-symmetric, and the fast vorticity growth occurs near a hyperbolic point of the
flow at boundary of the domain. The scenario is effectively two-dimensional, and
is well modelled by 2D inviscid Boussinesq equation (see [9] for s description of
the link between axi-symmetric 3D Euler and 2D Boussinesq):

∂tω + (u · ∇)ω = ∂x1ρ(3)

∂tρ+ (u · ∇)ρ = 0,

along with the usual 2D Bio-Savart law u = ∇⊥(−∆D)−1ω, where ∇⊥ = (∂2,−∂1)
and −∆D is the Dirichlet Laplacian. In the second part of my talk, I would like to
describe the attempt to use insight gained in [8] to better understand (3). Handling
2D geometry in the presence of nonlinear coupling as in (3) is challenging, so two
1D models have been developed to help better understand the Hou-Luo scenario.
They are both given by

∂tω + u∂xω = ∂xρ(4)

∂tρ+ u∂xρ = 0.

But for one model, studied by Choi, Yao and myself, the Biot-Savart law is given

by u(x) = −x
∫ 1

x
ω(y)
y dy, while for another, proposed by Hou and Luo, ux = Hω

where H denotes the Hilbert transform, Hf(x) = 1
πP.V.

∫
R

f(y)
x−y dy. The Hou-Luo
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(HL) model is derived from (3) under assumption that the vorticity is concentrated
in a boundary layer near the x2 = 0 axis, and is independent of x2. The natural
setting for it is periodic. The CKY model is simpler, as its Biot-Svart law is in
some sense ”less nonlocal” than for the HL Model. The form of its Biot-Savart law
is motivated by the estimates in [8]. It is set on a finite interval (say [0, 1]) with
compactly supported initial data. Recently, we were able to prove the following
results.

Theorem. [Choi-Kiselev-Yao]The CKY model is locally well-posed in sufficiently
high order Sobolev spaces, that is for (ω0, ρ0) ∈ (Hm

0 , H
m+1
0 ) with m sufficiently

large.
There exist smooth initial data for which the solution develops a finite time

singularity. In particular,
∫ T

0 ‖ω(·, t)‖L∞ → ∞ as t→ T for some T <∞.

Theorem. [Choi-Hou-Kiselev-Luo-Sverak-Yao] The HL model is locally well-
posed in sufficiently high order Sobolev spaces, that is for (ω0, ρ0) ∈ (Hm, Hm+1)
with m sufficiently large.

There exist smooth initial data for which the solution develops a finite time

singularity. In particular,
∫ T

0
‖ux(·, t)‖L∞ → ∞ as t→ T for some T <∞.

The proof of the first theorem is based on a fairly hands-on argument tracing the
characteristics of fluid particles and reducing effectively to a differential inequality
of the type F ′′ ≥ eF [2]. The proof of the second theorem is more subtle and is
based on estimating appropriate Lyapunov-type functional [3]. In all three results,
a key role is played by certain hidden monotone and/or sign-definite quantities and
expressions, which allow to maintain control and stability of the growth or blow
up constructions.
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Weak notions of solution for inviscid fluids

Emil Wiedemann

The use of weak concepts of solution for partial differential equations of fluid
mechanics appears necessary for a variety of reasons: First, certain particular
types of flows, like shear flows or, in the compressible case, flows forming shock
waves, are inherently discontinuous; second, expected effects of turbulent flows,
like anomalous dissipation, necessarily require a certain degree of irregularity; and
third, from a mathematical perspective no satisfactory well-posedness theory is
available for the compressible or incompressible Euler equations or related models.
Therefore several different concepts of weak solution have been proposed in order
to overcome various difficulties in the analysis of inviscid fluids.

In the sequel I give a very brief description of these notions and sketch the
considerable recent progress in understanding the relations between them. Never-
theless the picture is far from complete, especially in the compressible case.

Incompressible Euler equations. Consider the incompressible Euler equations,

(1) ∂tv + (v · ∇)v +∇p = 0, div v = 0.

The most standard way to define a weak solution is in the sense of distributions,
so that for the velocity field only v ∈ L2

loc is required (a more natural choice is the
energy space L∞

t L
2
x).

Since not even the existence of distributional solutions from arbitrary data with
finite energy was known until very recently [12], one had to weaken the notion of
solution (although the existence issue was not the only reason for this). Indeed, the
most straightforward attempt to construct solutions is to consider a sequence of ap-
proximate solutions, like Leray-Hopf solutions to the Navier-Stokes equations with
vanishing viscosity, and pass to the weak limit. Of course, due to the nonlinear-
ity of the equations and the possibility of oscillation and concentration formation
in the approximate sequence, it is not obvious (and in fact an outstanding open
question) whether the weak limit solves Euler in the sense of distributions.
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DiPerna and Majda [6] used and generalised the notion of Young measures to
overcome this difficulty. Such a (generalised) Young measure can be thought of as
giving, at each point in time and space, a probability distribution for the velocity,
rather than a deterministic velocity. The loss of information that comes with this
relaxation leads in particular to a high degree of non-uniqueness, as the Euler
equations restrict only the first two moments of the measure.

P.-L. Lions [9] therefore introduced his dissipative solutions. He suggested that
any reasonable concept of solution should meet the requirements of global existence
and weak-strong uniqueness : If there exists a smooth solution, then every weak
solution with the same initial data has to coincide with it. The definition of
dissipative solutions immediately ensures existence and weak-strong uniqueness.
Moreover, dissipative solutions have an energy that never exceeds the initial energy,

(2)

∫

Ω

|v(x, t)|2dx ≤
∫

Ω

|v0(x)|2dx for all t > 0.

The latter observation turned out to be crucial for weak-strong uniqueness in
other contexts. Following [5], we call a vector field admissible if it satisfies (2).
The following theorem is a compilation of various results from the previously cited
works and [5, 2, 1, 11].

Theorem 1. (1) Global existence for arbitrary initial data with finite energy
on, say, T

d (d ≥ 2) holds for distributional, admissible measure-valued,
and dissipative solutions, but is unknown for admissible distributional so-
lutions.

(2) Weak-strong uniqueness holds for admissible weak, dissipative, and ad-
missible measure-valued solutions on Rd or Td, but not on domains with
boundaries.

(3) Uniqueness (in absence of a smooth solution) holds for neither of these
concepts.

(4) Every (admissible) measure-valued solution can be approximated in a suit-
able sense by a sequence of (admissible) distributional solutions.

Compressible Euler equations. Consider now the isentropic Euler equations,

(3) ∂t(ρv) + div(ρv ⊗ v) +∇p(ρ) = 0, ∂tρ+ div(ρv) = 0.

The concepts of weak solution discussed above can be adjusted to the isentropic
Euler system as well (although I am not aware of a definition of dissipative solu-
tions for compressible models in the literature). The analogue of the admissibility
criterion (2) is a global energy inequality as opposed to a local energy condition.
The latter is an instance of an entropy inequality commonly used for conservation
laws. It can also be formulated for the incompressible case [5].

One of the main differences between (1) and (3) is that the former system
features the pressure merely as a Lagrange multiplier, whereas in the latter system
it is constitutively given as a function of the density. This more “rigid” role of
the pressure in compressible theories makes it much harder to construct solutions
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via the convex integration method of De Lellis–Székelyhidi, as for instance in [4,
5, 12, 11]. Nevertheless, we have [10, 3, 8]

Theorem 2. (1) There exist admissible measure-valued solutions for (3) for
any initial data with finite energy.

(2) Even under the local entropy condition, distributional solutions of (3) can
be non-unique.

(3) Weak-strong uniqueness holds in the class of measure-valued solutions that
satisfy the global energy inequality.

Finally, let us remark that similar statements are true for the Savage-Hutter
system of granular flow, which describes the motion of avalanches:

(4) ∂t(ρv) + div(ρv ⊗ v) +∇(ρ2) = −ρB(v), ∂tρ+ div(ρv) = 0,

where B(v) is a maximal monotone set-valued map. As shown in [8], the friction
term −ρB(v) is strong enough to guarantee complete dissipation of momentum in
finite time for admissible measure-valued solutions. Yet, remarkably, it is possible
to construct by convex integration non-admissible distributional solutions which
do not dissipate momentum [7].
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[11] L. Székelyhidi, Jr. and E. Wiedemann, Young measures generated by ideal incompressible
fluid flows, Arch. Ration. Mech. Anal. 206 (2012), 333–366.

[12] E. Wiedemann, Existence of weak solutions for the incompressible Euler equations, Ann.
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The equations of MHD with zero magnetic resistivity

James C. Robinson

(joint work with Jean-Yves Chemin, Charles L. Fefferman, David S. McCormick,
Jose L. Rodrigo)

In 1985 Moffatt proposed a scheme to generate stationary solutions of the Euler
equations with non-trivial topology, by means of ‘magnetic relaxation’. This uses
the equations of magnetodhydrodynamics (MHD)

∂tu−∆u+ (u · ∇)u+∇p = (B · ∇)B ∇ · u = 0

∂tB − ε∆B + (u · ∇)B = (B · ∇)u ∇ · B = 0

with ε = 0, i.e. with zero magnetic resistivity.
In this case the energy equation (obtained by taking the inner product of the

first equation with u, the second with B, and adding) yields

1

2

d

dt

(
‖u‖2 + ‖B‖2

)
+ ‖∇u‖2 = 0.

In particular, ‖u‖2 + ‖B‖2 decreases while ∇u 6= 0. Given a domain in which a
Poincaré inequality holds for u, the heuristic argument is that this must imply
that u tends to zero as t→ ∞. If a Poincaré inequality also holds for B then one
can use the fact that the ‘magnetic helicity’, defined as

∫
A ·B, where B = ∇×A,

is conserved to show that ‖B‖ is bounded below. Assuming, therefore, that B(t)
converges to a non-zero limit, one should be able to set u = 0 in the u equation
to deduce that (B · ∇)B = ∇p: up to a change of sign for p, B is a stationary
solution of the Euler equations.

There is much to do to place this argument on a rigorous footing. Núñez (2007)
assumed the global uniqueness of smooth solutions with ‖B‖∞ globally bounded;
in this case (by taking the inner product of the u equation with ertu for some
suitably chosen r) he was able to show that u(t) → 0 as t→ ∞; but the existence
of a unique limit for B(t) as t→ ∞ requires further conditions not known to hold
(e.g. u ∈ L1(0,∞;L1)). [His argument requires boundary conditions to be chosen
‘appropriately’; periodic with zero average for u and B is sufficient, for example.]

Motivated by this theory, this talk discussed local existence and uniqueness for
this canonical model. First, in the scale of Sobolev spaces, it is possible to obtain
local existence for u0, B0 ∈ Hs(R3) when s > 3/2 (Fefferman et al., 2014). Using
the fact that Hs is an algebra when s > 3/2, energy estimates on the u and B
equations yield

1

2

d

dt
‖u‖2Hs + ‖u‖2Hs+1 ≤ c‖u‖2Hs‖∇u‖Hs + ‖B‖2Hs‖∇u‖Hs

1

2

d

dt
‖B‖2Hs ≤ 〈(u · ∇)B,B〉Hs + c‖∇u‖Hs‖B‖2Hs .

In order to deal with the first term on the right-hand side of the B equation we
proved a variant of the classical Kato–Ponce commutator estimates:

‖Λs[(u · ∇)B]− (u · ∇)(ΛsB)‖L2 ≤ c‖∇u‖Hs‖B‖Hs , s > 3/2,
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where (Λsf )̂(ξ) = |ξ|sf̂(ξ). Given this estimate the required a priori estimates fol-
low easily; a rigorous local existence result requires some standard approximation
argument (e.g. Fourier truncation).

To deal with the case s = 3/2 we switched from Sobolev to Besov spaces,

obtaining local existence for u0 ∈ B
1/2
2,1 and B0 ∈ B

3/2
2,1 . To define these spaces,

we denote by ∆ku the localisation of u in Fourier space in an annulus around
wavenumbers 2k, and let Bs

2,1 be the collection of all u ∈ S ′ such that

‖u‖Bs
2,1

:=
∑

k

2ks‖∆ku‖L2 is finite.

The advantage here is the extra regularity gained in terms of time integrability
of ‘two more derivatives’. Even if one considers only the heat equation ut−∆u = 0,
if u0 ∈ Hs then u /∈ L1(0, T ;Hs+2) in general; but if u0 ∈ Bs

2,1 then we gain some

temporal integrability and can show that u ∈ L1(0, T ;Bs+2
2,1 ). To see this, apply

the Littlewood–Paley operator ∆k to the equation and take the inner product with
2k/2∆kv to obtain

d

dt
2k/2‖∆kv‖+ c25k/2‖∆kv‖ ≤ 0.

Integrating from 0 to t it follows that

2k/2‖∆kv(t)‖ + c

∫ T

0

25k/2‖∆kv(τ)‖ dτ ≤ 2k/2‖∆kv(0)‖.

We can now sum in k to deduce that

‖v(t)‖
B

1/2
2,1

+ c

∫ T

0

‖v(τ)‖
B

5/2
2,1

dτ ≤ ‖v0‖B1/2
2,1
.

Using this observation it is possible to combine Littlewood–Paley type estimates
for the equations with conventional Navier–Stokes estimates for the solutions of
the u equation with the term (B · ∇)B considered as a forcing to prove a priori
estimates on the solutions. Turning this into a rigorous proof of local existence
requires some care given the coupled nature of the equations; the details are given
in Chemin et al. (2015).

Given that even such limited local existence results are delicate, using the ‘true’
equations of MHD to construct stationary Euler solutions may not be the right
way to proceed. Recent work of Brenier (2014) replaces the u equation with
u = P[(B · ∇)B], where P is the Leray projector onto divergence-free fields; other
more ad hoc choices may prove more tractable and provide an alternative to the
recent more geometric methods of Enciso & Peralta-Salas (2012).
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Dynamics near the subcritical transition of the 3D Couette flow

Jacob Bedrossian

(joint work with Pierre Germain, Nader Masmoudi)

We study the 3D Navier-Stokes equations near the Couette flow in the domain
(x, z) ∈ T2 and y ∈ R where ν = Re−1 denotes the inverse Reynolds number.

Understanding the stability of laminar flows and the transition to turbulence is
one of the main objectives of hydrodynamic stability theory (see e.g. the texts [1,
2, 3] and the references therein). One of the first and most influential experiments
in the field were those of Reynolds in 1883 [9], which demonstrated the instability
and spontaneous transition to turbulence of laminar flow in a pipe for sufficiently
high Reynolds number (in fact, this work is the origin of the name Reynolds
number). Since the work of Reynolds, many other influential experiments and
computer simulations have shown that essentially all laminar 3D flows are unstable
at sufficiently high Reynolds number; see [4] and the above texts for an extensive
list of references. However, such instabilities appear inconsistent with theoretical
studies, as many of these flows are spectrally stable at all Reynolds number and
this spectral stability can indeed translate to nonlinear asymptotic stability, as
has been shown in some cases (see [4] for references). Even for those flows which
do have spectral instabilities at high Reynolds number, the instabilities observed
appear at much lower Reynolds number and are different than what linear theory
predicts. This behavior is ubiquitous in 3D hydrodynamics and is often referred
to as subcritical transition or by-pass transition in the fluid mechanics literature.

It is natural to suggest that while the flow is technically stable for all finite
Reynolds number, the set of stable perturbations shrinks as the Reynolds number
increases, leading to transition in any real system at some finite Reynolds number
(this suggestion goes back to Lord Kelvin [8], or arguably Reynolds [9]). A rea-
sonable goal could be, given a norm N , find a γ = γ(N) such that (of course we
do not know a priori that the threshold needs to be a power law):

ǫ := ‖uin‖N ≤ cνγ ⇒ no transition

ǫ := ‖uin‖N ≥ Cνγ ⇒ possible transition.

The power γ is called the transition threshold. It is also of practical interest to
determine what kinds of instabilities are possible. For contrast, we emphasize that
for sufficiently regular perturbations, the 2D Couette flow does not undergo sub-
critical transition, and instead is nonlinearly, asymptotically stable (in a suitable
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sense) uniformly at high Reynolds number [7] and also infinite Reynolds number
[6].

A great deal of effort has been spent on trying to determine the transition
threshold and the nature of the instabilities for simple laminar flows (see e.g.
the texts [2, 3] and the references therein). The work of Trefethen et. al. [10]
forwarded the idea that the nonlinearity could interact poorly with the non-normal
behavior; the authors discussed a low-dimensional toy model meant to capture
certain aspects of this idea and used it to conjecture γ > 1. A number of works used
variations of this idea to understand the threshold via combinations of simplified
ODE models, asymptotic analysis, and computation (see [4, 2] for references).
Various predictions have been made, ranging generally from 1 ≤ γ ≤ 7/4; for
the infinite channel, the mathematically rigorous bound γ ≤ 4 is known [11]. We
also would like to emphasize that not all of these works consider exactly the same
problem. For example, some consider boundaries in y, others do not, and some
consider a domain which is unbounded in x and others take periodic conditions in
x. Both could potentially alter the answers.

In [4], we prove that there exists a universal constant c0 > 0 such that if the
initial data is of size ǫ < c0ν (in a sufficiently regular sense), then the solution
is global in time and converges back to the Couette flow as t → ∞. Further, we
demonstrate that perturbations which are O(ǫ) initially can grow to be as large
as O(c0) before eventually decaying due to the lift-up effect (a 3D non-normal
effect [12]). Note that the supremum in time of these solutions remains O(c0)
uniformly as ν → 0. Hence, for sufficiently regular pertubations, we are essentially
proving that γ = 1. That we can still obtain global solutions despite of this
large growth depends crucially on the stabilizing effects of the mixing combined
with a detailed weakly nonlinear study. Due to this mixing, the x-dependence
of the solution is damped for t ≫ ν−1/3 and all solutions converge to the set of
x-independent solutions, referred to as “streaks”. Furthermore, due to the mixing
and vortex stretching, the solutions can also exhibit a direct cascade of energy.
To our knowledge, this kind of behavior in the 3D Navier-Stokes equations has
not previously been confirmed in a mathematically rigorous setting. The class of
initial data we consider is the sum of a sufficiently smooth function (Gevrey- 1s for

s > 1/2) and a much smaller (relative to ν) H3 function.
In [5], our goal was to characterize possible instabilities. We prove that there is a

universal constant c0 with 0 < c0 ≪ 1 such that for sufficiently regular initial data
(in the same sense as [4]) of size ǫ, if ǫ ≤ ν2/3+δ for δ > 0, then the solution exists
until at least time t = c0ǫ

−1 and is rapidly attracted to the class of x-independent
solutions known as streaks for times t ≫ ν−1/3. Due to the lift-up effect, the
streaks (and hence all solutions) will in general grow linearly as O(ǫt) and by the
final time can be O(c0) (which is independent of ν). While our previous analysis
in [4] did include solutions which get O(c0) from the Couette flow, all solutions
never deviate farther from the Couette flow and are demonstrably not involved in
any transition processes. To contrast, the streaks in [5] are expected to trigger
a secondary instability known as streak breakdown, which is well-documented as
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one of the primary routes towards turbulent transition observed experimentally
(see [5] for references). While we cannot take our solutions through the secondary
instability, we prove that solutions above the threshold (but not too far above) can
in general converge to unstable streaks and that this is the only instability possible,
which is suggestive of the genericity (for sufficiently smooth perturbations) of the
multi-step “lift-up effect ⇒ streak growth ⇒ streak breakdown ⇒ transition”
process forwarded in the applied mathematics and physics literature.

In [4, 5], the stability mechanisms which make our results possible by suppress-
ing the plethora of fully 3D nonlinear effects are the mixing-enhanced dissipation
and inviscid damping. Both effects arise from the mixing effect of the background
Couette flow. The primary stability mechanism is enhanced dissipation; it was
first derived in the context of Couette flow by Lord Kelvin [8] (at least in 2D)
and has been subsequently observed or studied by numerous authors in fluid me-
chanics in various settings – see [4, 7] for references. The general intuition is
that as information is mixed to smaller scales, the effectiveness of the viscosity is
greatly enhanced in streamwise dependent modes. Here it will imply that the x
dependence of the perturbation is damped out for t ≫ ν−1/3, Inviscid damping
was first derived on the linear level by Orr [13] in 1907 and was later noticed to
be the hydrodynamic analogue of Landau damping in plasma physics (see [6] for
references and more information on the connection). In 2D, the effect leads to the
asymptotic stability (in the correct sense) of the 2D Couette flow even with no
viscosity at all [6]. However in 3D, due to the vortex stretching, it only results
in the decay of u2, the second component of the velocity. Instead of providing
the main stability mechanism, due to the special structure of the nonlinearity in
the Navier-Stokes equations, it is key for suppressing some leading order nonlinear
effects that would otherwise destroy any hope of estimates.
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On axisymmetric vortex rings

Thierry Gallay

(joint work with Vladimı́r Šverák)

A vortex ring is a flow in which the vorticity is essentially concentrated in a solid
torus, so that the fluid particles spin around an imaginary line that forms a closed
loop. Such flows are ubiquitous in nature, and appear to be very stable. For the
incompressible Euler equations with rotational symmetry, uniformly translating
vortex rings can be constructed by variational techniques, see e.g. [1]. Using the
conserved quantities of the system, it is also possible to show that, for general
initial data with sufficiently concentrated vorticity, the vortex ring structure is
preserved over a finite time interval, see [2]. In viscous fluids, uniformly translating
vortex rings do not exist, since all vortical structures are eventually destroyed
by diffusion. In that case it is natural to consider the Cauchy problem for the
axisymmetric Navier-Stokes equations and to assume that the initial vorticity is
a vortex filament, namely a divergence-free vector measure supported by a closed
circle. General well-posedness results for the Navier-Stokes equations in critical
function spaces guarantee that such a solution exists and is unique if the circulation
Reynolds number (namely, the ratio of the filament’s circulation to the kinematic
viscosity) is sufficiently small, see e.g. [5]. Using more specific techniques, existence
of vortex rings with arbitrary large circulation has been established recently [3],
and uniqueness is the subject of the present talk.

We consider the three-dimensional incompressible Navier-Stokes equations, and
we restrict our attention to axisymmetric solutions without swirl. In cylindrical
coordinates (r, θ, z), the velocity field takes the form

u(x, t) = ur(r, z, t)er + uz(r, z, t)ez ,

where er, eθ, ez denote the unit vectors in the radial, toroidal, and vertical direc-
tions, respectively. For such flows, the vorticity ω = curlu has only one nonzero
component:

ω(x, t) = ωθ(r, z, t)eθ .

The evolution equation for ωθ reads

(1)

{
∂tωθ + u · ∇ωθ −

ur
r
ωθ = ν

(
∆ωθ −

ωθ

r2

)
,

div u = 0 , curlu = ωθ ,

where u · ∇ = ur∂r + uz∂z, ∆ = ∂2r + 1
r∂r + ∂2z , div u = ∂rur +

1
rur + ∂zuz, and

curlu = ∂zur − ∂ruz. In (1), the parameter ν > 0 denotes the kinematic viscosity
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of the fluid. Equation (1) is posed in the half-plane Ω = {(r, z) | r > 0, z ∈ R},
with homogeneous Dirichlet condition at the boundary r = 0.

We consider solutions of (1) with vortex filaments as initial data. More precisely,
we assume that

(2) ωθ

∣∣
t=0

≡ ω0
θ = Γ δ(R,0) ,

where Γ > 0 is a parameter (the circulation of the filament) and δ(R,0) denotes
the Dirac mass located at the point (R, 0) ∈ Ω. In more geometric terms, the
initial vorticity ω0 = ω0

θeθ is a 1-current of intensity Γ supported by the circle
C = {(R cos θ,R sin θ, 0) | 0 ≤ θ ≤ 2π}. This means that, if φ : R3 → R3 is any
continuous (vector-valued) function, we have the formula

〈ω0, φ〉 = Γ

∫

C
φ(x) · dx .

Let u0 be the velocity field associated with ω0 via the Biot-Savart formula in
R3. It is easily verified that u0(x) diverges like dist(x, C)−1 as dist(x, C) → 0,
hence u0 /∈ L2(R3). One can also check that u0 does not belong to the critical

Besov space Ḃ
−1+3/p
p,q (R3) unless p = q = ∞. However u0 does belong to the space

BMO−1(R3) defined in [6], as well as to the critical Morrey spaces used in [4, 7].
Thus, applying the results established in [4, 6, 7], one concludes that equation
(1) with initial data (2) has a unique global solution (in some appropriate class)
provided the circulation satisfies the following smallness condition

(3) Γ ≤ Cν ,

where C > 0 is a universal constant. Unfortunately, condition (3) is quite restric-
tive: it means that the vortex ring will be destroyed by diffusion before having
time to travel a distance comparable to its radius R.

Existence of vortex rings of arbitrarily large circulation was recently established
by H. Feng and V. Šverák:

Theorem 1 [3]. Fix Γ > 0, R > 0, and ν > 0. Then the axisymmetric vorticity
equation (1) has a nonnegative global solution such that ωθ(t) ⇀ ω0

θ as t → 0.
Moreover, this solution satisfies, for all t > 0,

∫ ∞

0

∫

R

ωθ(r, z, t) dz dr ≤ Γ ,

∫ ∞

0

∫

R

r2ωθ(r, z, t) dz dr ≤ ΓR2 .

Theorem 1 is proved by an approximation procedure. Instead of a vortex fila-
ment, the authors consider smooth initial data for which the vorticity ωθ ≥ 0 is
concentrated in a disk of radius ǫ > 0 centered at (R, 0) and has circulation equal
to Γ. By classical results [8], these data give rise to a global smooth solution of
(1), which satisfies nice a priori estimates that are independent of the regulariza-
tion parameter ǫ > 0. A solution of the original problem can then be obtained by
taking the limit ǫ→ 0.

Albeit nice, Theorem 1 is still unsatisfactory, because there is no evidence that
the solution constructed by the approximation procedure is unique. A fortiori,



Mathematical Aspects of Hydrodynamics 2143

this result gives very little information on the qualitative behavior of the solution,
especially for small times. Addressing some of these issues is the purpose of our
main result:

Theorem 2. Fix Γ > 0, R > 0, and ν > 0. Then the axisymmetric vorticity
equation (1) has a unique global solution ωθ such that

i) sup
t>0

(
‖ωθ(t)‖L1(Ω) + ‖r2ωθ(t)‖L1(Ω) + t‖ωθ(t)/r‖L∞(Ω)

)
<∞;

ii) ωθ(t)⇀ ω0
θ as t→ 0+, where ω0

θ is given by (2).

Moreover we have the estimate

(4)

∫

Ω

∣∣∣ωθ(r, z, t)−
Γ

4πνt
e−

(r−R)2+z2

4νt

∣∣∣dr dz ≤ C Γ

√
νt

R
log

R√
νt

,

as long as
√
νt≪ R.

In this statement, it is understood that the half-plane Ω is equipped with the
2D measure dr dz. The existence part in Theorem 2 is not new, because it can be
checked that the solutions constructed in Theorem 1 satisfy the bounds i). The
novelty is therefore the uniqueness claim, which requires a completely different
approach. In this respect, we believe that Theorem 2 is not optimal, and that
the assumption on the norm ‖ωθ(t)/r‖L∞(Ω) could be dropped in condition i), but
that question remains to be clarified.

Estimate (4) gives precise information on the vortex ring as t → 0, for a fixed
viscosity ν > 0: it shows that ωθ(t) behaves to leading order like the solution of the
two-dimensional heat equation in Ω with the same initial data (2). Unfortunately,
Theorem 2 cannot be used to control the solution at fixed time in the vanishing
viscosity limit, because the constant C in (4) depends on the ratio Γ/ν. We expect
that an estimate like (4) should remain true in the vanishing viscosity limit if the
Gaussian function is centered at the moving point (R,Z(t)), where

Z(t) =
Γt

4πR

(
log

R√
νt

+O(1)
)
,

but proving that is yet another story.
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Critical regularity for energy conservation in solutions of 2D Euler

Helena J. Nussenzveig Lopes

(joint work with A. Cheskidov, M.C. Lopes Filho, R. Shvydkoy)

The incompressible Euler equations are given by:

(1)

{
∂tu+ u · ∇u = −∇p,
div u = 0.

This system is a model for hydrodynamic fluid flow. For simplicity we assume
here that the fluid domain is a box and u satisfies periodic boundary conditions.

For smooth solutions we find, multiplying by u and integrating over T2:

d

dt

∫

T2

|u|2
2

dx = −
∫

T2

u · [(u · ∇)u] dx−
∫

T2

u · ∇p dx = 0,

so that the kinetic energy ‖u(t)‖2L2 is a conserved quantity. The question we are
concerned with is how regular does the solution u need to be for this calculation
to hold true.

This is the subject of the Onsager conjecture, formulated by Onsager in 1949,
see [7]. Loosely stated, u must be “more than 1

3 differentiable” in order for en-
ergy to be conserved. In addition, Onsager conjectured that, if u was “less than
or exactly 1

3 differentiable” then there should exist “solutions” (in a weak sense)
of the Euler equations which do not conserve energy. This conjecture has at-
tracted much attention recently, with considerable progress in the field. Follow-
ing the landmark results [5], and [2], the current state-of-the-art, with respect
to conservation of energy, was obtained by Cheskidov, Constantin, Friedlander
and Shvydkoy in [1], where it was shown that a weak solution u belonging to

C0
w([0, T ];L

2) ∩ L3((0, T );B
1/3
3,c0

) conserves energy. The space B
1/3
3,c0

is a Besov
space; it is defined using the Littlewood-Paley components of u, whose definition
we briefly recall.

Choose a nonnegative, radial function χ ∈ C∞
c (B(0; 1)), such that χ(ξ) ≡ 1 if

|ξ| ≤ 1/2. Set ϕ(ξ) = χ(ξ/2) − χ(ξ). If û(ξ) represents the Fourier transform of
u, while (u)∨ is the inverse Fourier transform of u, then the q-th Littlewood-Paley

component uq is given by uq = (ϕ(2−q·)û)∨. The Besov space B
1/3
3,c0

is defined as

those distributions for which lim supq→∞ 2q‖uq‖3L3 = 0.
The main regularity restriction towards energy conservation seems to be the

vanishing of the energy flux, namely that
∫
u · (u · ∇u) = 0. For this to hold one

needs to have, in particular, that u · [(u · ∇)u] ∈ L1. In two space dimensions
this condition is guaranteed by ω ≡ curlu ∈ L3/2, as this in turn implies u ∈
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W 1,3/2 ⊂ L6, and the product of two functions in L6 with a function in L3/2 is

integrable. We note that W 1,3/2 ⊂ W 1/3,3 ⊂ B
1/3
3,c0

so that, in view of the result

in [1], weak solutions u of the 2D incompressible Euler equations which belong
to C0

w([0, T ];L
2) ∩ L3((0, T );W 1,3/2) conserve energy. A weaker result, of similar

nature, can be found in [4].

The spacesW 1,3/2 and B
1/3
3,c0

are, in a certain sense, in the same scale of function

spaces, the so-called critical spaces as introduced in [8]. If we fix dimensional units
for velocity [u] = U , length [x] = L and time [t] = T , then a (space-time) function
spaceX is said to be critical if the unit for its norm is given by [‖·‖X]3 = TU3LN−1,
where N is the dimension of physical space (N = 2, 3). The motivation for this
notion of criticality is to provide a condition for an estimate of the sort∣∣∣∣∣

∫ T

0

∫

TN

u · [(u · ∇)u] dxdt

∣∣∣∣∣ ≤ C‖u‖3X

to hold true with a nondimensional constant C > 0.
The discussion above is strongly suggestive that one should not seek conserva-

tion of energy in supercritical spaces. We drive this point deeper by exhibiting
a kinematic example in a supercritical space for which a version of the energy
flux does not vanish. To do so, we first introduce the upper energy flux, as fol-
lows. If uq represents the Littlewood-Paley component of a distribution u, then

(u)<q :=
∑q−1

r=−1 ur. Now, the energy flux, if it is defined, is given by

Π = Π[u] =

∫
u · [(u · ∇)u].

The upper energy flux is defined as lim supq→∞ Πq, where

Πq = Πq[u] =

∫
(u)<q · [(u · ∇)u]<q.

Whenever Π is defined we have Π = lim supq→∞ Πq.

Theorem 1. There exists a divergence-free vector field u ∈ L2(T2) such that its
vorticity curlu ∈ Lp(T2) for every 1 ≤ p < 3/2, but curlu /∈ L3/2(T2), and such
that

lim sup
q→∞

Πq 6= 0.

This discussion is at odds with a consequence of the work done by R. DiPerna
and A. Majda in the late ’1980s, see for example [3], on the evolution of vortex
sheets. Among their results DiPerna and Majda established the existence of weak
solutions of the two-dimensional Euler equations with initial vorticity in Lp, p >
1, by proving that sequences of approximations un were compact in the strong
topology of C0([0, T ];L2). A corollary of this result is that, if un is an exact
solution of the Euler equations with smooth initial data which approximates, in
L2, an initial velocity u0 satsifying ω0 = curlu0 ∈ Lp(T2), then any weak limit
will conserve energy. Indeed, if un is a smooth solution then:

‖un(t)‖2L2 = ‖un0‖2L2.
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Now, ‖un0‖2L2 → ‖u0‖2L2 and, since un is compact in C0([0, T ];L2), it follows that
‖unk(t)‖2L2 → ‖u(t)‖2L2, for some subsequence nk. Thus,

‖u(t)‖2L2 = ‖u0‖2L2 .

The role of the hypothesis ω0 ∈ Lp, p > 1, is to guarantee that W 1,p be compactly
imbedded in L2. However, if 1 < p < 3/2 then W 1,p is a supercritical space. A
summary of additional examples in supercritical spaces can be found in [6].

Existence of weak solutions to the incompressible 2D Euler equations has been
established assuming vorticity belongs to Lp, for any p ≥ 1, and also for bounded
Radon measures of distinguished sign. Uniqueness, however, has only been estab-
lished if the vorticity belongs to L∞ or nearly so (see [10] and [9] for up-to-date
uniqueness results). It is, hence, reasonable to investigate conservation of energy
among weak solutions as obtained in the existence theorems. We have observed
that weak solutions obtained as a limit of smooth, conservative, approximations
conserve energy if the vorticity ω0 ∈ Lp, even in the supercritical case 1 < p < 3/2.
We now discuss conservation of energy for physically realizable weak solutions.

Definition 2. Let u ∈ C(0, T ;L2(T2)) be a weak solution of the incompressible
2D Euler equations. We say that u is a physically realizable weak solution with
initial velocity u0 ∈ L2(T2) if:

there exists a family of solutions of the incompressible 2D Navier-Stokes equa-
tions with viscosity ν > 0, {uν}, such that

(1) uν ⇀ u w − ∗L∞(0, T ;L2(T2));
(2) uν(0, ·) ≡ uν0 → u0 sL

2(T2).

With this definition we can show the following supercritical result.

Theorem 3. Let u ∈ C(0, T ;L2(T2)) be a physically realizable weak solution of
the incompressible 2D Euler equations. Suppose that u0 ∈ L2 is such that curlu0 ≡
ω0 ∈ Lp(T2), for some p > 1. Then u conserves energy.
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Applications of optimization and optimal control analysis to some
fundamental problems in mathematical hydrodynamics

Charles R. Doering

Modern methods of optimization and dynamical control are used to investigate the
accuracy of analytical estimates for solutions of basic equations of mathematical
hydrodynamics. Even though individual estimates used in a sequence may each be
demonstrably sharp, this does not mean that the result of a sequence of applica-
tions is sharp. We examine the classical analysis bounding enstrophy (Ḣ1 norm)

and palinstrophy (Ḣ2 norm) amplification in Burgers’ and the Navier-Stokes equa-
tions and discover that the best known instantaneous growth rates estimates are
sharp. But the time-integrated estimates producing time-uniform bounds are not
always sharp. When they are not, optimal control techniques must be brought to
bear to determine the actual behavior. The question of 3D Navier-Stokes regu-
latiry remains unanswered although work is in progress to apply these new tools
to this challenge.

Asymptotic Coupling and Applications for Nonlinear Stochastic
Partial Differential Equations

Nathan Glatt-Holtz

(joint work with Peter Constantin, Juraj Foldes, Jonathan Mattingly, Geordie
Richards, Vlad Vicol)

We introduce the notion of asymptotic coupling and explain how this formalism
provides a simple means proving unique ergodicity in certain stochastic systems
whose deterministic counterpart possesses a finite dimensional attractor.
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Solution of Leray’s problem for stationary Navier-Stokes equations in
plane and axially symmetric spatial domains

Konstantin Pileckas

(joint work with Mikhail Korobkov, Remigio Russo)

Let Ω be a bounded domain in Rn, n = 2, 3, with C2-smooth boundary ∂Ω =
∪N
j=0Γj consisting of N + 1 disjoint components Γj , j = 0, . . . , N . Consider the

stationary Navier–Stokes system the with nonhomogeneous boundary conditions

(1)





−ν∆u+
(
u · ∇

)
u+∇p = f in Ω,

divu = 0 in Ω,

u = a on ∂Ω.

The continuity equation (12) implies the compatibility condition

(2)

∫

∂Ω

a · n ds =
N∑

j=0

∫

Γj

a · n ds =
N∑

j=0

Fj = 0,

which is necessary for the solvability of problem (1). Here n is a unit outward
(with respect to Ω) normal vector to ∂Ω and Fj =

∫
Γj

a · n dS. Condition (2)

means that the total flux of the fluid through ∂Ω is zero.
In his famous paper of 1933 [2] Jean Leray proved that problem (1) has a

solution provided1

(3) Fj =

∫

Γj

a · n dS = 0, j = 0, 1, . . . , N.

The case when the boundary value a satisfies only the necessary condition (2) was
left open by Leray and the problem whether (1), (2) admit (or do not admit) a
solution is know in the scientific community as Leray’s problem.

Leray’s problem has been studied in many papers. However, in spite of all
efforts, the existence of a weak solution u ∈W 1,2(Ω) to problem (1) was established
only under assumption (3), or for sufficiently small fluxes Fj

2, or under certain
symmetry conditions on the domain Ω, the boundary value a and the external
force f .

In this talk we present the solution of Leray’s problem for the plane domains
with multi connected boundaries and for the axially symmetric domains in R3.
(For axially symmetric spatial domains the boundary value a and the external
force f are assumed to be axially symmetric as well.) The main result in the plane
case is as follows.

Theorem. Assume that Ω ⊂ R2 is a bounded domain with C2-smooth boundary

∂Ω. If f ∈ W 1,2(Ω) and a ∈ W 3/2,2(∂Ω) satisfies condition (2), then problem (1)
admits at least one weak solution u.

1Condition (3) does not allow the presence of sinks and sources.
2This condition does not assumes the norm of the boundary value a to be small.
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The proof of the existence theorem is based on an a priori estimate which we
derive using a reductio ad absurdum argument of Leray [2]. The essentially new
part in this argument is the use of Bernoulli’s law obtained in [3] for Sobolev
solutions to the Euler equations (the detailed proofs are presented in [4]). The
results concerning Bernoulli’s law are based on the recent version of the Morse-Sard
theorem proved by J. Bourgain, M. Korobkov and J. Kristensen [5]. This theorem
implies, in particular, that almost all level sets of a function ψ ∈W 2,1(Ω) are finite
unions of C1-curves. This allows to construct suitable subdomains (bounded by
smooth stream lines) and to estimate the L2-norm of the gradient of the total head
pressure. We use here some ideas which are close (on a heuristic level) to the Hopf
maximum principle for the solutions of elliptic PDEs. Finally, a contradiction is
obtained using the Coarea formula.
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Towards Non-uniqueness for Vortex Sheets

Tarek M. Elgindi

(joint work with Nader Masmoudi)

We study the uniqueness of solutions to the 2d incompressible Euler equations
with vorticity given by a positive measure–that is solutions in the so-called Delort
class. We identify a novel mechanism for non-uniqueness: non-uniqueness via mass
separation. We prove mass separation for the linearized Euler equations around
a particular vortex sheet steady state. We then move on to prove non-uniqueness
for a class of (non-linear) active scalar equations which are regularized versions of
the Euler equations. This seems to give the first example of non-uniqueness for
an active scalar equation with odd kernel.

1. Background and Delort’s Theorem

The study of weak solutions for the Euler equations is, by now, a classical and
indispensible part of mathematical fluid dynamics. Among the reasons for this
is that weak solutions give us insight into questions of turbulence and the long-
time behavior of smooth solutions. Weak solutions of the Euler equations also
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arise naturally in certain idealized situations. One such example is a classical
vortex sheet where the velocity of the fluid is discontinuous across a curve in two
dimensions. A very simple example of a stationary vortex sheet weak solution of
the Euler equations is given by u = (sgn(y), 0) (see Figure 1).

Figure 1. Simple example of a vortex sheet.

While weak solutions for the Euler equations have been studied for over a hun-
dred years, many questions remain open with regards to the analysis of these so-
lutions. In fact, it was only in the early 1990’s when global existence of solutions
of vortex sheet type was established by Delort under a sign condition. Specifically,
Delort proved:

Theorem 1. Let u0 ∈ L2
loc be such that ω0 := curl(u0) ∈ BM+. Then, there

exists a global weak solution of the 2D Euler equations belonging to the class
L∞([0,∞);BM+).

Here, ω ∈ BM+ means that the vorticity is a positive bounded measure. For
the purposes of the abstract, it isn’t too important to go into the details of what
sense the weak solution solves the 2D Euler equations; howevever, we would refer
the reader to the paper of Schochet where a simpler proof of Delort’s theorem is
given. However, we should note that one of the main features of the existence
proof is that, if ω is a positive measure belonging to H−1, then ω cannot have a
Dirac part and this can even be made quantitative in the following way:

Lemma 2. Let u ∈ L2
loc and ω := curl(u) ∈ BM+. Then,∫

Br

ω .
1√

Log(1r )
, as r → 0.

2. A Mechanism for Non-uniqueness

While existence theorems for weak solutions of the Euler equations are plentiful,
the question of uniqueness of those weak solutions is open to a large extent with the
notable exception of the results on the Onsager conjecture obtained by Scheffer,
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Shnirelman, De Lellis, Szekelyhidi, Isett, Buckmaster, and Daneri. Unfortunately,
all of the solutions constructed (via the method of convex integration, for example)
have such irregular vorticity that they do not even belong to the Delort class.
Hence, it seems a new mechanism for non-uniqueness needs to be thought of before
approaching the non-uniqueness question.

The basis of our discussion is the following theorem of Delort:

Theorem 3. (Weak Stability)
Let ωǫ

0 be a sequence of smooth initial vorticities belonging to BM+ and converg-
ing weakly (in the sense of measures) to ω0 ∈ BM+ with velocity field u0 ∈ L2

loc.
Then, if we solve the 2D Euler equations with initial data ωǫ

0, the solutions ωǫ(t)
must converge weakly to a weak solution ω(t) with initial data ω0.

Our strategy is thus to take a stationary solution of the 2D Euler equations
ω0 and then solve the Euler equations with initial data ωǫ

0 = ω0 + ωǫ
pert with

ωǫ
pert ⇀ 0. If ωǫ

pert is chosen properly, perhaps we can cause ωǫ(t) to be very far
from ω0 by time 1. This will ensure the non-uniqueness.

2.1. Mass separation. The main idea that we will use is that weak convergence
to 0 in the sense of measures can be achieved simply by the ”crashing” of a
positive and negative dirac mass and if it were possible to show that the nonlinear
evolution forces the separation of two arbitrarily close dirac masses, then we will
be able to invoke the weak stability theorem to prove non-uniqueness. For the
Euler equations, we see that mass separation may be possible if the velocity field
is discontinuous Indeed, the Euler equations (in vorticity form) are just given by:

∂tω + u · ∇ω = 0.

Hence, if u has a jump such as in the case u(x, y) = (sgn(y), 0), then (at least
in a certain linearized sense) it is possible to separate arbitrarily close masses in
finite time. Of course, the difficulty in the full non-linear (or even the full linear)
problem is that there is a feedback mechanism which might completely destroy the
structures we are tryng to keep. Luckily, this is not the case for the full linearized
problem or a certain modified active scalar equation.

Savage-Hutter model of the motion of a gravity driven avalanche flow

Eduard Feireisl

(joint work with Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda)

This is a report on an ongoing research programme concerning solvability of certain
hyperbolic conservation laws appearing in continuum fluid dynamics. An example
of such a problem is a gravity driven avalanche flow that is qualitatively similar
to the model of a compressible fluid. We consider a simple situation describing
the time evolution of the flow height h = h(t, x) and depth-averaged velocity
u = u(t, x) through a system of balance laws - the Savage-Hutter system, see [4]:

(1) ∂th+ divx(hu) = 0,
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(2) ∂t(hu) + divx(hu⊗ u) +∇x(ah
2) = h

(
−γ u

|u| + f

)
,

where |·| is an Euclidean metric, a ≥ 0, γ ≥ 0, and f are given (smooth) functions of
the spatial coordinate x ∈ Ω ⊂ R2. We restrict ourselves to the periodic boundary
conditions supposing that Ω is the flat torus

(3) Ω =
(
[0, 1]|{0,1}

)2
.

The resulting problem is completed by prescribing the initial conditions

(4) h(0, ·) = h0, u(0, ·) = u0.

We report the following result, see [3, Theorem 2.1]:

Theorem 1. Let T > 0 and the initial data h0, u0 satisfying

h0 ∈ C2(Ω), u0 ∈ C2(Ω;R2), h0 > 0 in Ω

be given. Suppose that a, γ ∈ C2(Ω), a, γ ≥ 0, f ∈ C1([0, T ]× Ω;R2).
Then the problem (1–4) admits infinitely many weak solutions in (0, T ) × Ω.

The weak solutions belong to the class

h, ∂th,∇xh ∈ C1([0, T ]× Ω),

u ∈ Cweak([0, T ];L
2(Ω;R2)) ∩ L∞((0, T )× Ω;R2), divxu ∈ C([0, T ]× Ω).

The result is a consequence of the abstract theory developed in [2] on the basis
of the convex integration method by DeLellis and Székelyhidi [1]. Using a similar
method, we also get, see [3, Theorem 4.1]:

Theorem 2. Under the hypotheses of Theorem 1, let T > 0 and

h0 ∈ C2(Ω), h0 > 0 in Ω

be given.
Then there exists

u0 ∈ L∞(Ω;R2)

such that the problem (1–4) admits infinitely many dissipative weak solutions in
(0, T )×Ω, meaning weak solutions satisfying, in addition, the (integrated) energy
inequality.
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Exponential tails for the homogeneous Boltzmann equation

Nataša Pavlović

(joint work with Ricardo J. Alonso, Irene M. Gamba and Maja Tasković)

1. Introduction

In this note we summarize our results [2] on exponential-type moments for solutions
of the spatially homogeneous Boltzmann equation without the Grad’s cutoff.

1.1. The Boltzmann Equation. We consider the Cauchy problem for the spa-
tially homogeneous Boltzmann equation

{

∂tf(t, v) = Q(f, f)(t, v), t ∈ R
+, v ∈ R

d, d ≥ 2

f(0, v) = f0(v).
(1)

for the time t ∈ R+ and velocity v ∈ Rd, which describes the evolution of the den-
sity f(t, v) of gas particles. Q(f, f) is a quadratic integral operator that expresses
the change of f due to instantaneous binary collisions of particles:

Q(f, f)(x, t, v) =

∫

Rd

∫

Sd−1

(

f
′
f
′
∗ − ff∗

)

B(|u|, û · σ) dσ dv∗,(2)

where f ′ = f(x, t, v′), f ′
∗ = f(x, t, v′∗), f∗ = f(x, t, v∗) and v′, v′∗ denote pre-

collisional velocities, v, v∗ denote post-collisional velocities, and are connected via:

v
′ =

v + v∗

2
+

|v − v∗|

2
σ, v

′
∗ =

v + v∗

2
−

|v − v∗|

2
σ, σ ∈ S

d−1
,

with σ the unit vector in the direction of the pre-collisional relative velocity. The
relative post-collisional velocity is denoted by u = v − v∗, and û := u/|u|.

The collisional kernel B(|u|, û · σ) is assumed to take the form

B(|u|, û · σ) = |u|γ b(cos θ),(3)

where θ ∈ [0, π] is the angle between the pre and post collisional relative velocities.
We consider the variable hard potentials case 0 < γ ≤ 1. The angular kernel is
given by a positive measure b(û · σ) over the sphere Sd−1. In many models, this
function is non-integrable over the sphere, while its weighted integral is finite. We
assume that for some r ∈ (0, 2] the following weighted integral is finite1

∫

Sd−1

b(û · σ) sinr
θ dσ = Vd−2

∫ π

0

b(cos θ) sinr
θ sind−2

θ dθ < ∞.(4)

(1) When r = 0, this condition is known as Grad’s cutoff assumption, under
which the collisional operator can be split into the gain and loss terms,

Q(f, f) = Q
+(f, f) −Q

−(f, f),(5)

Q
+(f, f)(t, v) =

∫

Rd

∫

Sd−1

f
′
f
′
∗ B(|u|, û · σ) dσ dv∗,

Q
−(f, f)(t, v) = f(v)

∫

Rd

∫

Sd−1

f∗ B(|u|, û · σ) dσ dv∗.

1Here Vd−2 = π(d−2)/2

Γ((d−1)/2)
is the volume of the d− 2 dimensional unit sphere.



2154 Oberwolfach Report 37/2015

In [14] Grad proposed considering a bounded b(cos θ), and noted that different
cutoff conditions could be implemented. Since then the cutoff theory developed ex-
tensively, with the belief that removing the singularity of the angular kernel should
not affect properties of the equation. Recently, however, it has been observed (e.g.
[15], [7], [8], [9]) that the singularity of b(cos θ) carries a regularization. This, and
the analytical challenge, motivated further study of the non-cutoff regime.

(2) The typical non-cutoff assumption in the literature is (4) with r = 2.
(3) We work in the non-cutoff regime and allow parameter r ∈ (0, 2] to vary in

order to see how the strength of the singularity of b influences our result.

1.2. Motivation. Since the equilibrium state for the Boltzmann equation is a
Gaussian distribution, one expects that the solution would be controlled by bounds
of exponential decay. Thus bounds for exponential moments (expressing summa-
bility of polynomial moments, see the definition below) are of interest.

Definition 1 (Polynomial and exponential moments). Polynomial moment of
order q and exponential moment of order s and rate α are respectively defined by:

mq(t) :=

∫

Rd

f(t, v) 〈v〉q d(v),(6)

Mα,s(t) :=

∫

Rd

f(t, v) eα 〈v〉s dv.(7)

Remark 2. Using the Taylor series expansion, one observes:

Mα,s(t) =

∞∑

q=0

mqs(t) α
q

q!
.(8)

In an extensive work [10, 6, 19, 17] generation (moments are instantaneously
created and stay finite for all times) and propagation (moments are finite for all
times if they are initially finite) of polynomial moments was shown. The study
of exponential moments in the Grad cutoff case was initiated by Bobylev [3, 4],
and further developed in [5, 12, 18]. All these papers used a technique based on
establishing a term-wise geometric decay for terms in (8). Recently a new type of
proof was developed in [1], where estimates on the partial sums corresponding to
(8) were obtained. The only result on exponential moments in the non-cutoff case
was [16], where the generation of exponential moments up to the order s ∈ (0, γ]
was obtained, via implementing the term-by-term method. No results were known
beyond the rate of the potentials, which is what motivates our work.

2. Statements of the results

2.1. Our Set-up. Inspired by [1] we implement the partial sum approach in the
non-cutoff case to obtain generation and propagation of exponential-like moments.
Due to the non-cutoff setting we need to overcome the singularity of the collision
kernel which we achieve by using a cancellation property that can be identified via
using a weak formulation of the collision operator, similar to [16]. To exploit decay
of certain sums of Beta functions, our calculations lead to expressions related to
(8), which in place of q! have Γ(aq + 1), with non-integer a > 1. The question
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whether such sums still describe an exponential tail behavior motivated us to use
Mittag-Leffler functions, which are a generalization of the Taylor expansion of the
exponential function and are defined for some parameter a > 0

Ea(x) :=

∞
∑

q=0

xq

Γ(aq + 1)
.(9)

It is also well known (see e.g. [11]) that the Mittag-Leffler function Ea asymptoti-
cally behaves like an exponential function of order 1/a, and consequently

E2/s(α2/s x2) ∼ eαxs

, for x→ ∞.(10)

This motivates our definition of Mittag-Leffler moments:

Definition 3 (Mittag-Leffler moment). Mittag-Leffler moment of order s and rate
α > 0 of a function f is introduced via

∫

Rd

f(t, v) E2/s(α
2/s 〈v〉2) dv.(11)

2.2. The main result. Now we are ready to state the main result of [2]:

Theorem 4. Suppose f is a solution to (1) with initial data2 f0 ∈ L1
2+.

(a) If the angular kernel satisfies the non-cutoff condition (4) with r = 2, then
the exponential moment of order γ is generated. More precisely, there are
some positive constants C,α, depending only on b, γ and initial mass and
energy, so that

∫

Rd

f(t, v) eα min{t,1} |v|γ
dv ≤ C, for t ≥ 0.(12)

(b) Let s ∈ (γ, 2) and suppose
∫

Rd

f0(v) E2/s(α
2/s
0 〈v〉2) dv < C0.(13)

For s ∈ (γ, 1] assume the non-cutoff condition (4) with r = 2. For s ∈
(1, 2) assume that the angular kernel b(cos θ) satisfies (4) with r = 4

s − 2.
Then there are some positive constants C,α, depending only on C0, α0, b,
γ and initial mass and energy such that:

∫

Rd

f(t, v) E2/s(α
2/s 〈v〉2) dv < C, for t ≥ 0.(14)

Recently Gamba-Pavlović-Tasković [13] employed the above result to prove
propagation in time of exponentially decaying point-wise bounds for the solution,
therefore generalizing the work of Gamba-Panferov-Villani [12] to the non-cutoff
setting.

2Here we use the notation: L1
k = {f ∈ L1(Rd) :

∫
Rd f |v|kdv < ∞}.
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Mixing and loss of regularity for transport equations

Anna L Mazzucato

We discuss the problem of optimal mixing of a passive scalar by an incompressible
flow. The scalar θ satisfies the following transport equation:

(1) ∂tθ + u · ∇θ = 0, θ(0) = θ0,
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where θ0 is assumed to be a bounded function, and u is a prescribed, divergence-
free vector field. For simplicity, we impose periodic boundary conditions in two
space dimensions, even though higher dimensions and other compatible boundary
conditions on θ and u are allowed.

The degree of “mixedness” will be quantified in terms of the decay of certain
negative Sobolev norms of θ following [9] and [7]. Specifically, we will employ the
homogeneous Sobolev norm

‖θ‖Ḣ−1 := ‖(−∆)−1/2θ‖L2,

henceforth called the“”mix-norm” of θ. A main question is to derive lower bounds
for the decay in time of the mix-norm under physically motivated constraints
on u, and prove their optimality by constructing examples of flows and initial
tracer configurations that realize the lower bound. In the literature, three types
of constraints have been considered:

(1) Energy budget: the L2 norm of u is uniformly bounded in time;
(2) Enstrophy or power budget: the Sobolev H1 norm of u is uniformly

bounded in time;
(3) Palinstrophy budget: the Sobolev H2 norm of u is uniformly bounded in

time.

It is clear that it is more difficult to mix efficiently the higher the constraint on the
norm of u, as in absence of diffusion, the main mechanism for mixing is stirring
and filamentation of the tracer configuration by the flow, that is, the creation of
small scales and possibly large gradients.

Self-similar mixing, based on a rescaling strategy, gives the following bounds:
finite-time perfect mixing under an energy budget, exponential decay under an
enstrophy budget, and polynomial decay under a palinstrophy budget [2]. It can
be shown that the first two bounds are sharp. What is the optimal bound for
palinstrophy-constrained flows, whether polynomial or exponential in time, is still
an open question.

For energy-constrained flow, the “slice and dice” strategy, using two orthogonal
shear flows, of [8] (following arguments in [3] and [5]), gives finite-time perfect
mixing. This example is optimal also with respect to the regularity of the flow,
in the sense that finite-time perfect mixing is not possible if solutions to (1) are
unique, due to the time-reversibility of the transport equation. By the results of
[1], uniqueness holds for velocity fields that are integrable in time with values in
the space BV of functions of bounded variation. The example in [8] has a velocity
field that barely misses this threshold, being weak L1 in time with values in BV.

For enstrophy-constrained flows, an exponential lower bound for the mix-norm
can be rigorously established using estimates [4] on the cost of rearranging a set
[6] or optimal transportation arguments [10]. Two examples of flows achieving
the exponential decay are available in the literature. The first [2] is geometric in
nature and assumes a specific initial configuration of the tracer, but is optimal for
velocities in W 1,p for all 1 ≤ p ≤ ∞. The second [11] is analytic in nature, based
on a certain combination of cellular flows, and works for all bounded θ0, but only
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with a restricted range of p for the W 1,p bound on the velocity, namely 1 ≤ p ≤ p̄,
for some p̄ > 2.

Finally the example in [2] can be modified to show instantaneous, complete
loss of regularity for solutions to the initial-value problem (1). More precisely,
the following holds: there exists a velocity field u ∈ L∞([0, T ],W 1,p), T > 0,
1 ≤ p <∞, and a smooth θ0 such that the solution θ(t) of (1) does not belong to
any Sobolev space Hs, s > 0, for t > 0.
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Inhomogeneous NSEs, critical regularity, Lagrangian coordinates,
connection to compressible model

Piotr B. Mucha

(joint work with Raphaël Danchin)

The subject of our study are equations of inhomogeneous Navier-Stokes system
(INS)

(1)
ρt + v · ∇v = 0, ∇ · v = 0,
ρvt + ρv · ∇v − µ∆v +∇p = 0.

We aim at answering to the following question: what is the largest regularity
class of initial velocity and density admitting the well posedness of the system
(existence and uniqueness of solutions). The most interesting results are done in

the critical function framework described by the Besov space of type Ḃs
p,1. The
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most efficient approach allows to consider rough initial densities, even allowed to
be discontinuous.

Our toolbox is the following:

The Lagrangian coordinates system. The basic difference between the INS and
classical homogeneous Navier-Stokes system is clearly the continuity equation. It
is just a pure transport equation giving for free the point-wise bounds for the
density. It causes problems with control of regularity of solutions to INS and
makes complex time asymptotics. A natural solution here is to change the system
of coordinates related to motion of particles

(2)
dx(t, y)

dt
= v(x(t, y), t), x|t=0 = y.

The system above defines us the well know Lagrangian coordinates system. The
advantages are: we remove the presence of the transport term v ·∇v, but first of all
the density becomes the know function ρ(x(t, y), t) = ρ0(y). The Besov spaces. In
order to control the well posedness of the solution in the largest possible function
space we are trying to work in the Besov space framework. The most optimal
choice is the space

(3) Ḃ0
d,1(Ω),

since it is the limit case for the Sobolev imbedding Ḃd
d,1(R

d) ⊂ L∞(Rd). The
second important property is the following. The solution to the heat equation

(4) ut −∆u = 0 in R
d × (0, T ), u|t=0 = u0 in R

d

are in the class prescribed by the following estimate in the maximal regularity
regime

(5) sup
t∈(0,T )

‖u(t)‖Ḃ0
d,1(R

d) + ‖ut,∇2u‖L1(0,T ;Ḃ0
p,1(R

d)) ≤ C‖u0‖Ḃ0
d,1(R

d).

The most particular point here is the time regularity in the L1-space.

The results. The basic goal of our programme is to analyze the systems with
rough initial densities. The methods develop in [1, 2], allows to obtain solvability
in the such class that initial density has the following form ρ = 1 + σχA, for
sufficiently regular set A. However more challenging problems are related to the
domains, the first result has been done in [3]. Its generalization on the exterior
problems is much more complex [4].

Slightly compressible flows. Currently we are working on the issue concerning
the limit analysis between (1) and the compressible Navier-Stokes equation

(6) ρt +∇ · (vρ) = 0, ρvt + ρv · ∇v −∆v − ν∇∇ · v +∇p(ρ) = 0.

We want to understand the connection of the above system with (1) as ν → ∞.
It appears the problems here are interesting and mostly are related to nontrivial
structure of linearized equations.
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Micropolar electrorheological fluid flows

Michael Růžička

(joint work with F. Ettwein, B. Weber)

The steady motion of micropolar electrorheological fluids is described by the sys-
tem

divE = 0 in Ω ,

curlE = 0 in Ω ,
(1)

− divS+ div(v ⊗ v) +∇π = f in Ω ,

div v = 0 in Ω ,

− divN+ div(ω ⊗ v) = ℓ− ε : S in Ω ,

(2)

which is completed by the following boundary conditions

E · n = E0 · n , v = 0 , ω = 0 on ∂Ω .(3)

Here Ω ⊂ Rd, d ≥ 2, is a bounded domain, n the outer normal vector of the
boundary ∂Ω, ε the isotropic third order tensor and ε : S the vector having the
components εijkSjk, i = 1, . . . , d, where the summation convention over repeated
indices is used. In these equations v denotes the velocity, ω the micro-rotation,
π the pressure, S the mechanical extra stress tensor, N the couple stress tensor,
ℓ the electromagnetic couple force, f = f̃ + χE div(E⊗E) the body force, where

f̃ is the mechanical body force, χE the dielectric susceptibility and E the electric
field. A representative example for a constitutive relation for the stress tensors in
(2) reads (cf. [2])

S = (α31 + α33|E|2)(1 + |D|)p−2D+ α51(1 + |D|)p−2
(
DE⊗E+E⊗DE

)

+ α71|E|2(1 + |R|)p−2R+ α91(1 + |R|)p−2
(
RE⊗E+E⊗RE

)
,

N = (β31 + β33|E|2)(1 + |∇ω|)p−2∇ω
+ β51(1 + |∇ω|)p−2

(
(∇ω)E⊗E+E⊗ (∇ω)E

)
,

(4)

with constants α31, α33, α71, β33 > 0 and β31 ≥ 0. The constants α51, α91, β51 have
to satisfy certain restrictions (cf. [2]), which ensure the validity of the second law of
thermodynamics. In (4) we used the notation D = (∇v)sym, R = W(v) + ε : ω,
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with W(v) = (∇v)skew and ǫ : v denoting the tensor with components εijkvk,
i, j = 1, . . . , d.

From (1), (3) follows that E ∈ L2(Ω) is real analytic and that |E|2 belongs to

the Muckenhoupt class A∞. Moreover, the set |E|−1
(0) is a finite union of C1-

manifolds Mi with dimMi ≤ d− 1. One can impose conditions on E0 that ensure
E ∈ L∞(Ω). Motivated by this we assume in the following that the electric field
E belongs to C∞(Ω)∩L2(Ω) satisfies |E| > 0 a.e. in Ω. Moreover, we assume that
either |E|2 ∈ Ap or |E|2 ∈ L∞(Ω). From these assumptions, various embedding
theorems, Korn’s inequality, the definition of R and Young’s inequality we easily
derive the a priori estimate

‖v‖p1,p,|E|2 + ‖v‖p1,p + ‖ω‖p1,p,|E|2 + β31‖ω‖p1,p
≤ c

(
1 + β31 + ‖E‖22 + ‖f‖p

′

(−1,p′)+(−1,p′,|E|
−2
p−1 )

+ ‖ℓ‖p
′

−1,p′,|E|
−2
p−1

)

=: K(β31,E, f , ℓ) .

(5)

In the following we only discus the degenerate case β31 = 0. Using the theory
of pseudo-monotone operators one can prove for all p ∈ (1,∞) and all n ∈ N the

existence of approximate solutions (vn,ωn) ∈ (Vp(Ω) ∩ Lq(Ω) ∩ H1,p
0 (Ω; |E|2)) ×

(H1,p
0 (Ω)∩Lq(Ω)∩H1,p

0 (Ω; |E|2)) satisfying for allϕ ∈ Vp(Ω)∩Lq(Ω)∩H1,p
0 (Ω; |E|2),

ψ ∈ H1,p
0 (Ω) ∩ Lq(Ω) ∩H1,p

0 (Ω; |E|2)
〈
S
(
Dvn,R(vn,ωn),E

)
,Dϕ

〉
+

1

n
〈|vn|q−2vn,φ〉 −

〈
vn ⊗ vn,∇ϕ

〉
(6)

+
〈
N(∇ωn,E),∇ψ

〉
+

1

n

〈
(1 + |∇ωn|)p−2∇ωn,∇ψ

〉
+

1

n
〈|ωn|q−2ωn,ψ〉

−
〈
ωn ⊗ vn,∇ψ

〉
+
〈
S
(
Dvn,R(vn,ωn),E

)
,R(φ,ψ)

〉
=

〈
f ,ϕ

〉
+
〈
ℓ,ψ

〉
,

where q > 2p′. These solutions satisfy the uniform with respect to n ∈ N a priori
estimate

‖vn‖p1,p,|E|2+ ‖vn‖p1,p+
1

n
‖vn‖qq + ‖ωn‖p1,p,|E|2+

1

n
‖ωn‖p1,p +

1

n
‖ωn‖qq

≤ K(0,E, f , ℓ) .(7)

To identify the limits of the nonlinear terms in (6) we use compact embedding the-
orems and either the Lipschitz truncation method or the L∞-truncation method.

Let us start with the Lipschitz truncation method in the case that |E|2 ∈ Ap.

This method is well-established in Sobolev spaces H1,p
0 (Ω) (cf. [1]) and can be

generalized to weighted Sobolev spaces H1,p
0 (Ω; |E|2) (cf. [3]) if |E|2 ∈ Ap. Using

the Lipschitz truncation method both in H1,p
0 (Ω) and in H1,p

0 (Ω; |E|2) together
with the local sequential weak stability of the stress tensors S and N one can show
that there exist subsequences of vn and ωn, resp., which converge a.e. in Ω to
the weak limits v and ω of the corresponding sequences respectively. This and
the classical result that weak and a.e. limits coincide enables us to deduce that
the weak limits of S

(
Dvn,R(vn,ωn),E

)
and N(∇ωn,E), resp., coincide with

S
(
Dv,R(v,ω),E

)
and N(∇ω,E), respectively. The identification of the limit
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in the convective term div(vn ⊗ vn) follows with standard arguments using the

compact embedding H1,p
0 (Ω) →֒ Lr(Ω), q < p∗. The identification of the limit of

the other convective term div(ωn⊗vn) is more subtle since we only know that ωn

is bounded in H1,p
0 (Ω; |E|2). Due to the open end property of the Muckenhoupt

classes we know that

p0 := p0(|E|2) = inf
{
q > 1

∣∣ |E|2 ∈ Aq

}
< p .

Thus one can show (cf. [4]) that the embedding H1,p
0 (Ω; |E|2) →֒ Lr(Ω) is compact

for r ∈ [1, ( p
p0
)∗
)
, which enables the identification of the limit of div(ωn ⊗ vn) as

div(ω ⊗ v). All these arguments result in

Theorem 1. Let E ∈ Ap. Then for p > d(p0+1)
d+2 there exists a weak solution

(v,ω) ∈ (Vp(Ω) ∩H1,p
0 (Ω; |E|2))×H1,p

0 (Ω; |E|2) of problem (2), (3) satisfying for
all ϕ,ψ ∈ C1

0 (Ω) with divφ = 0
〈
S
(
Dv,R(v,ω),E

)
,Dϕ

〉
−
〈
v ⊗ v,∇ϕ

〉
+
〈
S
(
Dv,R(v,ω),E

)
,R(φ,ψ)

〉

+
〈
N(∇ω,E),∇ψ

〉
−
〈
ω ⊗ v,∇ψ

〉
=

〈
f ,ϕ

〉
+
〈
ℓ,ψ

〉
,(8)

and the apriori estimate

(9) ‖v‖p1,p,|E|2+ ‖v‖p1,p+ ‖ω‖p1,p,|E|2 ≤ K(0,E, f , ℓ) .

The lower bound for p in the previous theorem can be improved if we weaken
the notion of solution. Using the compact embeddingH1,p

0 (Ω; |E|2) →֒ Lq(Ω; |E|2),
q ∈ [1, p#(|E|2)

)
where 1

p#(|E|2 = 1
p − 1

dp0
(cf. [4]) one can show that

lim
n→∞

〈ωn ⊗ vn,∇ψ〉 = 〈ω ⊗ v,∇ψ〉(10)

if ψ ∈ |E|2 × C1
0 (Ω). This implies

Theorem 2. Let E ∈ Ap. Then for p > 2dp0

dp0+2 there exists a very weak solution

(v,ω) ∈ (Vp(Ω)∩H1,p
0 (Ω; |E|2))×H1,p

0 (Ω; |E|2) of problem (2), (3), i.e. v,ω satisfy
the apriori estimate (9) and the identity (8) is satisfied for all ϕ ∈ C1

0 (Ω) with

divφ = 0 and all ψ ∈ |E|2 × C1
0 (Ω).

If we assume that E ∈ L∞(Ω) the Lipschitz truncation in weighted Sobolev
space does not work any more. However, we can adapt the L∞-truncation method
developed in [5] to the present situation. This method also delivers that there exist
subsequences of vn and ωn, resp., which converge a.e. in Ω to the weak limits v
and ω, respectively. Thus we can proceed similarly to the above procedure and
we can identify all limits of the nonlinear terms in (6). For the convective terms
we use that 〈vn ⊗ vn,∇ϕ〉 = −〈[∇vn]v,ϕ〉 and 〈ωn ⊗ vn,∇ψ〉 = −〈[∇ωn]v,ψ〉.
Using E ∈ L∞(Ω), the compact embedding H1,p

0 (Ω) →֒ Lr(Ω), q < p∗ and p′ < p∗,

valid for p > 2d
d+1 , we obtain that vnψ̃|E|2 → vψ̃|E|2 strongly in (Lp(Ω; |E|2))∗ .

This and ωn ⇀ ω in H1,p
0 (Ω; |E|2) gives for ψ ∈ |E|2 × C1

0 (Ω)

lim
n→∞

〈
[∇ωn]vn,ψ

〉
=

〈
[∇̂ω]v,ψ

〉
.
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Thus, we proved

Theorem 3. Let E ∈ L∞(Ω). Then for p > 2d
d+1 there exists a very weak solution

(v,ω) ∈ Vp(Ω) × H1,p
0 (Ω; |E|2) of problem (2), (3), i.e. v,ω satisfy the apriori

estimate (9) and for all ϕ ∈ C1
0 (Ω) with divφ = 0 and all ψ ∈ |E|2 × C1

0 (Ω)〈
S
(
Dv,R(v,ω),E

)
,Dϕ

〉
+
〈
[∇v]v,∇ϕ

〉
+
〈
S
(
Dv,R(v,ω),E

)
,R(φ,ψ)

〉

+
〈
N(∇̂ω,E),∇ψ

〉
+
〈
[∇̂ω]v,ψ

〉
=

〈
f ,ϕ

〉
+
〈
ℓ,ψ

〉
.(11)

Missing details of all above results and additional results can be found in [3].
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Forward Self-Similar and Discretely Self-Similar Solutions of the 3D
incompressible Navier-Stokes Equations

Tai-Peng Tsai

Denote R4
+ = R3×(0,∞). Consider the 3D incompressible Navier-Stokes equations

for velocity u : R4
+ → R3 and pressure p : R4

+ → R,

(1) ∂tu−∆u+ (u · ∇)u +∇p = 0, div u = 0,

in R4
+, coupled with the initial condition u|t=0 = u0 with div u0 = 0. The system

(1) enjoys a scaling property: If u(x, t) is a solution, then so is

(2) u(λ)(x, t) := λu(λx, λ2t)

for any λ > 0. We say u(x, t) is self-similar (SS) if u = u(λ) for every λ > 0. In
that case, the value of u(x, t) is decided by its value at t = 1. On the other hand,
if u = u(λ) only for one particular λ > 1, we say u is discretely self-similar (DSS)
with factor λ. Its value in R

4
+ is decided by its value in the strip x ∈ R

3 and
1 ≤ t < λ2. They are called forward because 0 < t <∞. We can also consider (1)
for −∞ < t < 0 or for time independent u. For both cases the scaling law (2) still
holds, and we define backward and stationary SS and DSS solutions in the same
manner. If we introduce the self-similar transform (for 0 < t <∞)

(3) u(x, t) =
1√
2t
U(y, s), y =

x√
2t
, s = log

√
2t,
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we get the Leray system

(4) ∂sU −∆U − U − y · ∇U + (U · ∇)U +∇P = 0, divU = 0.

A self-similar solution of (1) corresponds to a stationary solution of (4), while a
DSS solution of (1) with factor λ corresponds to a time-periodic solution of (4)
with period logλ.

When u(x, t) is either SS or DSS, then so is u0(x). Thus it is natural to assume
|u0(x)| ≤ C∗

|x| for some constant C∗ > 0 and look for solutions satisfying

(5) |u(x, t)| ≤ C(C∗)

|x| , or ‖u(·, t)‖L3,∞ ≤ C(C∗).

Here by Lq,r, 1 ≤ q, r ≤ ∞, we denote the Lorentz spaces. In such classes, with
sufficiently small C∗, the unique existence of mild solutions (solutions obtained
by treating the nonlinearity as a source term for Stokes system) was obtained by
Giga-Miyakawa, Cannone-Meyer-Planchon and Koch-Tataru. As a consequence of
the uniqueness, if u0(x) is SS or DSS with small C∗, the corresponding small mild
solution is also SS or DSS.

For large C∗, the existence theory for mild solutions is not available, and one
may extend the concept of weak solutions and consider local Leray solutions con-
structed by Lemarié-Rieusset. However, there is no uniqueness theorem for them
to guarantee self-similarity.

Recently, Jia and Šverák [1] constructed SS solutions for every SS u0 which
is locally Hölder continuous. Their main tool is a local Hölder estimate of any
local Leray solution near t = 0, assuming minimal control of u0 in the large. This
estimate enables them to prove a priori estimates of SS solutions, and then get the
existence by applying the Leray-Schauder theorem. Note that it does not assert
uniqueness.

Similar results were later proven in Tsai [2] for λ-DSS solutions with factor λ
close to one where closeness is determined by the local Hölder norm of u0 away
from the origin. It is also shown in [2] that the closeness condition on λ can be
eliminated if the initial data is axisymmetric with no swirl. These two results show
existence of DSS solutions when strong solutions can be expected.

In this talk I will present two new results. The first is a joint work with Mikhail
Korobkov [3]. The second is a joint work with Zachary Bradshaw [4].

In [3], the existence of self-similar solutions in the half space is established for
C1

loc initial data. The approach of [3] differs from [1] and [2] in that the existence
of a solution to the stationary Leray equations is established directly. A new
approach is needed in [3] due to lack of spatial decay estimates, which gives global
compactness needed by the Leray-Schauder theorem in [1] and [2]. The spatial
decay estimates in [1, 2] is provided by the local in time Hölder estimate of local
Leray solutions, whose theory is not available in the half space. The paper [3]
uses the method of invading domains. The key to this method is to prove a priori
estimates of the solutions in bounded domains and in the whole space by the
method of contradiction, which leads to a study of the limiting Euler equations,
with different proofs for domains and the whole space. It is similar to the recent
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progress of Korobkov-Pileckas-Russo on the boundary value problem of stationary
Navier-Stokes, but it is much simpler because of the simplicity of the domains.

The paper [4] constructs weak DSS solutions for general DSS initial data, and
is a companion to [2] where strong DSS solutions are constructed for special initial
data. As in [3], it constructs solutions of the Leray equations directly. Unlike [3],
the method of contradiction does not give a limit solution because of lack of time
compactness. The paper [4] is based on a new observation that, unlike the Navier-
Stokes system, the a priori bound of the Leray system contains the L2-norm in the
left side, and that the usual trouble term,

∫∫
U · ∇W · U , can be absorbed when

W is suitably “cut off.” This observation provides a new a priori estimate that we
can use to construct periodic solutions of the Leray system directly.

The same approach of [3] gives a second construction of large self-similar solu-
tions in the whole space (the first is in [1]). The approach of [4] gives a third, and
probably the easiest, construction.
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On the local existence for the 3D Euler equation with a free interface

Igor Kukavica

(joint work with A. Tuffaha and V. Vicol)

We address the local existence of solutions in low regularity Sobolev spaces for the
rotational free-surface Euler equations

ut + u · ∇u+∇p = 0 in Ω(t)× (0, T )

∇ · u = 0 in Ω(t)× (0, T )

in a time-dependent domain Ω(t). The boundary of the domain consists of two
parts: the moving part Γ1(t) and the stationary part Γ0. On the free boundary
Γ1(t) we require the vanishing of the pressure, while on Γ0 we impose the no-flow
boundary condition v ·N = 0.

The earliest work to treat the local existence problem is a paper by Nalimov
[N], where existence was proven in two space dimensions for small initial data.
Other early works [Y, Sh] also considered the problem of local existence under
a smallness assumption of the data or under the irrotationality assumption, i.e.,
when the initial vorticity vanishes. For the existence of solutions when the data is
rotational, the Taylor stability sign condition ∂p/∂N < 0 must be imposed, as was
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shown by Ebin [E]. Beale, Hou, and Lowengrub then proved in [BHL] the local
existence of solutions to the linearized system under the Taylor sign condition.
In [W1, W2], Wu established local existence of the solution without a smallness
assumption on the initial data and under the general Taylor sign condition, in
two and three space dimensions. In [AM1, AM2], Ambrose and Masmoudi treated
the problem in the presence of surface tension. Many other important works
treating the problem of local existence and regularity using different methods
include [ABZ1, ABZ2, CL, EL, KT1, KT2, L, Li1, Li2, ZZ]. Notably, Coutand
and Shkoller provided in [CS1, CS2] existence and uniqueness of solutions for H3

initial velocity with the vorticity in H2.5. A similar result but with completely
different methods were at the same time obtained by Shatah and Zeng [SZ] and
Zhang and Zhang [ZZ].

Consider the Euler equation on the domain Ω = R2 × (0, 1) ⊆ R3 with periodic
boundary conditions in x1 and x2 with period 1. The top Γ1 = R × {x3 = 1}
represents the free boundary, while the rigid bottom is represented by Γ0 = R ×
{x3 = 0}. We denote by v(x, t) = (v1, v(2), v3) the Lagrangian velocity, while
q(x, t) represents the Lagrangian pressure. The Euler equation in Lagrangian
coordinates may be written as

vit + aki ∂kq = 0 in Ω× (0, T ), i = 1, 2, 3

aki ∂kv
i = 0 in Ω× (0, T )

with the initial condition v(0) = v0, where a = (∇η)−1 with ηt(x, t) = v(x, t) and
η(x, 0) = x. On the top, which represents the free boundary, we impose q = 0,
while on the bottom boundary we assume viN i = 0 where N = (N1, N2, N3)
stands for the outward unit normal. The following is our main result.

Theorem 1. Let δ > 0. Assume that v(·, 0) = v0 ∈ H2.5+δ(Ω) is divergence-free
with v ·N = 0 on Γ0 and curl v0 ∈ H2+δ(Ω). Assume that the initial pressure q(·, 0)
satisfies the Rayleigh-Taylor condition (∂q/∂N)(x, 0) ≤ −1/C0 < 0 for x ∈ Γ1,
where C0 > 0 is a constant. Then there exists a unique solution (v, q, a, η) to the
free boundary Euler system with the initial condition v(0) = v0 such that

v ∈ L∞([0, T ];H2.5+δ(Ω)) ∩C([0, T ];H2+δ(Ω))

vt ∈ L∞([0, T ];H2+δ(Ω))

η ∈ L∞([0, T ];H3+δ(Ω)) ∩ C([0, T ];H2.5+δ(Ω))

a ∈ L∞([0, T ];H2+δ(Ω)) ∩C([0, T ];H1.5+δ(Ω))

q ∈ L∞([0, T ];H3+δ(Ω))

qt ∈ L∞([0, T ];H2.5+δ(Ω))

for T > 0 which depends on the initial data.

For irrotational flows, i.e., those with vanishing vorticity, the local existence with
optimal regularity assumptions on the initial datum has already been established
by Alazard, Burq, and Zuily in [ABZ2] in two and three space dimensions, and by



Mathematical Aspects of Hydrodynamics 2167

Hunter, Ifrim, and Tataru in two dimensions [HIT]. In a recent work [KT2], two of
the authors provided an alternative proof of the optimal regularity for irrotational
flow in three dimensions, where the initial data is assumed to be irrotational with
H2.5+δ Sobolev regularity.
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Determining modes for the 3D Navier-Stokes equations

Alexey Cheskidov

(joint work with Mimi Dai, Landon Kavlie)

The Navier-Stokes equations (NSE) on a torus, are given by

(1)

{
ut + (u · ∇)u − ν∆u+∇p = f
∇ · u = 0,

where u is the velocity, p is the pressure, and f is the external force. We assume
that f has zero mean, and consider zero mean solutions.

The dissipative nature of these equations is reflected in the existence of an ab-
sorbing ball in L2. Moreover, in the two-dimensional case, there exists a compact
global attractor which uniformly attracts all bounded subsets of L2. This attract-
ing set is, in fact, finite dimensional. The first result for the finite dimensionality of
a two-dimensional fluid appeared in the work of Foias and Prodi when they showed
that high modes of a solution are controlled by low modes asymptotically as time
goes to infinity. The number of these low modes, called determining modes, was
estimated by Foias, Manley, Temam and Treve and later improved by Jones and
Titi.

In three dimensions the situation is drastically different as the equations have
thus far eluded a proof for the existence of classical solutions. Even so, the ex-
istence of a global attractor for weak solutions is known in a weak sense. This
weak global attractor consists of points on complete bounded trajectories and at-
tracts all bounded subsets of L2 in the weak topology. However, it is not known
whether the solutions on the attractor are regular, unless the attractor consists of
a single fixed point. Neither is it known whether the attractor is compact or finite-
dimensional. Similarly, the existence of a finite number of determining modes is
not known in the three-dimensional case. Nevertheless, Constantin, Foias, Man-
ley, and Temam showed the existence of determining modes assuming that the H1

norm of solutions is uniformly bounded. The question whether the global attractor
of the 3D NSE is bounded in H1 is open and may very well require a resolution of
the regularity problem. However, even assuming regularity, this would not imme-
diately guarantee that the H1 bound would depend only on the size of the force
(a Grashof constant), and not on the shape of the force.

With no hope of getting a finite number of determining modes for the 3D NSE,
one might ask whether this can be done in some average sense. Indeed, the Kol-
mogorov 41 phenomenological theory of turbulence predicts that the number of
degrees of freedom should be of order κ3d, where κd is Kolmogorov’s dissipation
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wavenumber. This number is often used as the resolution needed for direct numer-
ical simulations, so one might ask an alternative question: What is the number
of determining modes for a time discretization of the 3D NSE and how does it
depend on the force and time step?

Without making any assumptions regarding regularity properties of solutions or
bounds on the global attractor, we prove the existence of a time-dependent deter-
mining wavenumber Λu(t) defined for each individual solution u. We show that any
weak solutions on the global attractor u and v that coincide below max{Λu,Λv}
have to be identical. The wavenumber Λu(t) blows up if and only if the solution
u(t) blows up. Nevertheless, the time average of this wavenumber is uniformly
bounded on the global attractor, which we estimate in terms of the Kolmogorov
dissipation number and Grashof constant.

To begin, let u be a weak solution of the 3D Navier-Stokes equations. For
r ∈ (2, 3) we define a local determining wavenumber

Λu,r(t) := min{λq : λ
−1+ 3

r
p ‖up‖Lr < crν, ∀p > q and λ−1

q ‖u≤q‖L∞ < crν, q ∈ N},

where cr is an adimensional constant that depends only on r. Here λq = 2q

L with
L being the size of the torus, and uq = ∆qu is the Littlewood-Paley projection of
u. Thanks to Bernstein’s inequality, we have

Λu,r ≥ Λdis
u := min{λq : λ−1

p ‖up‖L∞ < c0ν, ∀p > q, q ∈ N},

which is a local dissipation wavenumber introduced by Cheskidov and Shvydkoy.
It defines a dissipation range where a local Reynolds number corresponding to
high frequencies is small, i.e.,

Rh
q :=

lq‖uq‖L∞

ν
< c0, ∀λq > Λdis

u ,

where lq = λ−1
q . The dominance of the dissipation term above Λdis

u is reflected
in improved Beale-Kato-Majda and Prodi-Serrin criteria where u is replaced with
its projection on modes below Λdis

u . The determining wavenumber Λu,r imposes
tougher condition on high modes, as well as requires a control on low modes via
the low frequency Reynolds number

Rl
q :=

lq‖u≤q‖L∞

ν
< cr, λq = Λu,r.

It is also worth mentioning that a similar determining wavenumber is used to
prove the existence of a finite number of determining modes for the surface quasi-
geostrophic equation equation in critical and subcritical cases. Even though the
determining wavenumber enjoys uniform bounds in those cases, it still proved
useful to start with a time dependent wavenumber defined based on the structure
of the equation only, and then study its dependence on the force using available
bounds for the global attractor.
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We prove the following.

Theorem 1. Let u(t) and v(t) be weak solutions of the 3D Navier-Stokes equa-
tions. Let Λ(t) := max{Λu,r(t),Λv,r(t)} for some r ∈ (2, 3). Let Q(t) be such that
Λ(t) = λQ(t). If

(2) u(t)≤Q(t) = v(t)≤Q(t), ∀t > 0,

then

lim
t→∞

‖u(t)− v(t)‖L2 = 0.

We also have the following version of this result for solutions on the global
attractor.

Theorem 2. If u(t) and v(t) are two Leray-Hopf solutions on the weak global
attractor A such that

(3) u(t)≤Q(t) = v(t)≤Q(t), ∀t < 0,

where Q is given in Theorem 1, then

u(t) = v(t), ∀t ≤ 0.

It is worthwhile to note that the determining wavenumber Λu,r depends on
time and may not be bounded. Actually, it is bounded if and only if u is regular.

However, the average determining wavenumber 〈Λ〉 = 1
T

∫ t+T

t
Λu,r(τ) dτ always

enjoys a uniform bound. Indeed, we establish the following pointwise bound:

(4) Λu,r(t) .r
‖∇u(t)‖2L2

ν2
.

Note that this automatically provides a finite number of determining modes and
recovers the results by Constantin, Foias, Manley, and Temam in the case where
‖∇u(t)‖2L2 is bounded on the global attractor, which is known for small forces
(laminar regimes). On the other hand, (4) holds in general for arbitrary forces
and implies that 〈Λ〉 is uniformly bounded for all Leray-Hopf solutions on the
global attractor, i.e., complete bounded trajectories. However, the bound (4) is
sharp only in the case of extreme intermittency, where on average there is only one
eddy at each dyadic scale. To make a connection with Kolmogorov’s turbulence
theory, we have to define an intermittency dimension and analyze 〈Λ〉 in various
intermittency regimes.

We further examine 〈Λ〉, comparing it to Kolmogorov’s dissipation wavenumber
as well as the Grashof constant, defined as

κd :=
( ε

ν3

) 1
d+1

, G :=
‖f‖H−1

ν2λ
1/2
0

, ε := λd0ν〈‖∇u‖2L2〉,

where d ∈ [0, 3] is the intermittency dimension.This parameter is defined in terms
of the level of saturation of Bernstein’s inequality. The case d = 3, where there is
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no intermittency and eddies occupy the whole region, corresponds to Kolmogorov’s
regime. In this case the bounds read

〈Λ〉 .δ κ
2+δ
d λ−1−δ

0 , 〈Λ〉 .δ λ0

(
G2

Tν2λ20
+G2

) 1
2+δ

, d = 3,

where δ can be arbitrary small when r is chosen close to 3. On the other hand, in
the case of extreme intermittency, the bounds become

〈Λ〉 . κd, 〈Λ〉 . G2

Tν2λ0
+ λ0G

2, d = 0.

We conjecture that

〈Λ〉 . κd

for values of d near 3 as well, as Kolmogorov’s turbulence theory predicts. However,
this is still an open problem.

Anomalous diffusion in the transport of passive scalars by a fast
cellular flow.

Gautam Iyer

(joint work with Alexei Novikov)

Consider the advection diffusion equation

(1) ∂sϕ+ u · ∇ϕ− ν∆ϕ = 0, for x ∈ R
2, s > 0.

We assume throughout that u is cellular; namely,

u = ∇⊥h

for a smooth periodic stream function h whose critical points are non-degenerate.
Further we assume that u only has bounded trajectories (i.e. all orbits of the

dynamical system Ẋ = u(X) are bounded). A prototypical example of such a
vector field is given by the stream function h(x, y) = sin(x) sin(y), and models a
field of opposing vortices.

Our eventual aim is to study a scaling limit of this system in an intermediate
time regime. We begin, however, by describing a few well known regimes where
the limiting behaviour of (1) is well known.

The fixed time, zero-viscosity limit. Without a change of coordinates, as
ν → 0 it is easy to see that ϕ→ ϕ0, where

∂sϕ
0 + u · ϕ0 = 0.

This is neither surprising, nor particularly interesting.
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The fixed viscosity, long time limit. When viscosity is held fixed, the long
time behaviour of (1) is diffusive with an enhanced diffusion coefficient. This
originated with [1] and is by now a classical result. To state it precisely let ǫ > 0
and consider the change of coordinates

x =
y

ǫ
, s =

t

ǫ2
.

Equation (1) now reduces to

∂tϕ+
1

ǫ
u
(y
ǫ

)
· ∇ϕ− ν∆ϕ = 0.

In the (y, t)-coordinates, ϕ → ϕeff as ǫ → 0, where ϕeff satisfies the effective
(homogeneous) equation

∂tϕeff − νeff∆ϕeff = 0,

where νeff is the effective diffusivity which asymptotically behaves like νeff ≈ O(
√
ν)

as ν → 0.

The zero-viscosity long time regime. In ’53 GI Taylor [5] studied the effective
dispersion of a solute in laminar flow. In this context, he showed that the variance
of ϕ grows linearly after time of order 1/ν, and obtained an explicit formula for
the rate of growth on this time scale.

In the context of cellular flows, we first consider (1) with periodic boundary
conditions. Making the coordinate change

(2) x = y, s =
t

ν
,

equation (1) reduces to

∂tϕ+
1

ν
u · ∇ϕ−∆ϕ = 0.

Freidlin (see for instance [2]) studied the limiting behaviour of the associated SDE
as ν → 0 and obtained an effective process. At the PDE level, his result guarantees
ϕ → ϕ̄ where ϕ̄ is constant on connected components of level sets of the stream
function h. Further, in coordinates given by h, ϕ satisfies

T (h)∂tϕ̄− ∂h(P (h)∂hϕ̄) = 0,

with certain gluing conditions on cell boundaries. Here T and P are defined in a
cell Q by

T (h0) =

∫

Q∩h−1(h0)

1

|∇h| dl, and P (h0) =

∫

Q∩h−1(h0)

|∇h| dl.

Returning to (1) on the whole space, however, the PDE approach begins to
crumble. Various heuristic arguments can be made to estimate the variance of ϕ
grows like

√
νt in the coordinates given by (2). This suggests the scaling

x = ν1/4y, s =
t

ν
,
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should yield an effective equation. Indeed, a recent result of Hairer, Koralov and
Pajor-Gyulai [3] settles this for the associated SDE. Namely, let

dXt = −u(Xt) dt+
√
2ν dWt,

where W is a standard 2D Brownian motion. Then [3] shows

(3) ν1/4Xt/ν
ν→0−−−→ W̄L−1

t
,

where W̄ is an effective Brownian motion and L is an independent local time
process. Since the effective process is not Markov, there is no simple PDE analogue
of this result.

The zero-viscosity intermediate time regime. In ’88 [6] suggested that at
time scales between 1 and 1/ν a stable, robust anomalous diffusive behaviour is
observed for particles that start on cell boundaries. The heuristic explanation
given was that a large fraction of tracer particles will be trapped in cell interiors
and contribute negligibly to the average travel distance, and a small fraction of
“active” particles will travel ballistically along cell boundaries.

A recent result [4] proves a super-linear bound on the variance for times between
1 and 1/ν. In the original (x, s) coordinates the result is as follows:

Theorem 1 (Iyer, Novikov [4]). Suppose ϕ0 = δ(x0) for some x0 on a cell bound-
ary. Then, there exists constants c1 and c2 independent of ν so that

c1
√
s

|ln ν| ≤
∫

R2

|x− x0|2ϕ(x, s) dx ≤ c2
√
s

This result does not provide an effective behaviour on the time scale 1 ≪
s ≪ 1/ν, however, it shows that the effective behaviour (if it exists) is not not
diffusive. We believe that an effective behaviour of the form (3) can be obtained
in this regime, though the process L will have qualitatively different properties.
The authors of [3] and [4] are collaborating and have a preliminary result to this
effect.
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Blowup criteria for 3D Navier-Stokes equations: Can the vector
potential serve as a blowup criterion?

Koji Ohkitani

1. Introduction

We consider the incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p+ ν△u, ∇ · u = 0

with smooth initial data with finite energy in [4] R3 or R2.
Our motivations are as follows. In 3D, a critical norm ‖u‖L3 is known to

be a blowup criterion [2]. Its proof is based an a highly sophisticated use of a
contradiction argument. In 2D, global regularity of the Navier-Stokes equations is
well-known.

We seek alternative proofs for these facts using the vector potentialA in 3D and
the stream function ψ in 2D. Some preliminary results are given in this direction.
In view of embedding

‖A‖BMO ≤ C‖u‖L3 in 3D,

and
‖ψ‖BMO ≤ C‖u‖L2 in 2D,

we ask whether ‖A‖BMO serves as a blowup criterion in 3D and ‖ψ‖BMO in 2D.
In other words, we conjecture that

blowup at t = t∗ in 3D =⇒ ‖A‖BMO → ∞ as t→ t∗

and
blowup at t = t∗ in 2D =⇒ ‖ψ‖BMO → ∞ as t→ t∗.

2. 2D Navier-Stokes equations

Using ψ, the Navier-Stokes equation reads [6]

∂ψ

∂t
− ν△ψ =

1

π
P.V.

∫

R2

[(x− x′)×∇ψ(x′)] (x− x′) · ∇ψ(x′)

|x− x′|4 dx′,

or
∂ψ

∂t
− ν△ψ = ǫjkRiRj∂kψ∂iψ.

By −△ψ = ω and [1, 3] the viscous term becomes singular in the sense that
∫ t∗

0

‖△ψ‖BMOdt =

∫ t∗

0

‖ω‖BMOdt = ∞.

There is an inversion formula

∂iψ∂kψ − 1

2
|∇ψ|2δik = −ǫklRiRl(ψt − ν△ψ) + 1

2
(ψt − ν△ψ)ǫik,

from which it follows that

c‖u‖2BMO ≤
∥∥∥∥−
∫

(∇ψ)2
∥∥∥∥
L∞

.
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By
∫ t∗
0 ‖u‖2BMOdt = ∞ [7, 3], the nonlinear term also becomes singular

∫ t∗

0

∥∥∥∥−
∫

(∇ψ)2
∥∥∥∥
L∞

dt = ∞

for a blowup.

3. 3D Navier-Stokes equations

With vector potentials A (u = ∇ ×A,∇ ·A = 0), the Navier-Stokes equations
read [5]

∂A

∂t
− ν△A =

3

4π
P.V.

∫

R3

r × (∇×A(x′)) r · (∇×A(x′))

|r|5 dx′,

where r = x− x′. Or, in components we have

∂Ai

∂t
− ν△Ai = ǫkpqRjRk∂pAq(∂jAi − ∂iAj).

By −△A = ω and [1, 3], the viscous term becomes singular in the sense that
∫ t∗

0

‖△A‖BMOdt =

∫ t∗

0

‖ω‖BMOdt = ∞.

A similar inversion formula is available and if blowup, the nonlinear term becomes
unbounded as

c

∫ t∗

0

‖u‖2BMOdt ≤
∫ t∗

0

∥∥∥∥−
∫

(∇A)2
∥∥∥∥
L∞

dt = ∞.

4. Duhamel principle and heuristics

(
∂

∂t
− ν△

)
A = −

∫
(∇A)2, ≡ f

can be recast as

eνt△
∂

∂t
e−νt△A = f ,

or

A(t) = eνt△A(0) +

∫ t

0

eν(t−s)△f(s)ds.

More explicitly, we have

A =

∫ t

0

ds

∫

R3

1

(4πν(t− s))3/2
exp

(
− |x− y|2
4ν(t− s)

)
f(y, s)dy.

For an isotropic singularity f(y, s) > 1
|y|2+ν(t−s) , the above spatial integral is

I ≡ 4π

(4πντ)3/2

∫ ∞

0

exp

(
− r2

4ντ

)
r2dr

r2 + ντ
=

√
2

ντ

(
1− e1/4

√
π

2
Erfc

(
1

2

))
≃ 0.64

ντ
,

where τ = t − s and Erfc(z) = 2√
π

∫∞
z
e−u2

du. For this example, ‖A‖L∞ →
∞ as t → t∗.
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For an isotropic singularity in 2D f(y, s) > 1
|y|2+ν(t−s) ,

I ≡ 1

2ντ

∫ ∞

0

exp

(
− r2

4ντ

)
rdr

r2 + ντ
=

1

4ντ
e1/4E1

(
1

4

)
≃ 0.34

ντ
,

where E1(x) ≡
∫∞
x

e−u

u du, (x > 0). For this example, ‖ψ‖L∞ → ∞ as t→ t∗.
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The Liouville and the unique continuation type results for the
self-similar Euler system

Dongho Chae

The question of spontaneous apparition of singularity(blow-up)/global regularity
in the 3D incompressible Euler equations is among the most outstanding open
problems in the partial differential equations. There are many numerical/physical
evidences that if the finite time blow-up happens it is highly probable that it
is of the self-similar type(see e.g. [14]). In the case of the 3D Navier-Stokes
equations, the question of self-similar blow-up is proposed by J. Leray in 1930[12],
and answered negatively by Nečas-Ružička-Šverák[13] and Tsai[15]. The crucial
tool of their proof is the maximum principle, which is originated from the ellipticity
nature of the corresponding self-similar equations. In the case of Euler equations,
mainly due to the lack of the elliptic structure in the self-similar equations we
need to develop new methods. in this talk we review the result on this problem by
myself in [2], and a series of further developments on the subject later by myself
[3, 4, 5, 6, 9, 10]and my collaborators until the very recent Liouville type/the
unique continuation type results on the time periodic solutions of the self-similar
Euler equations[7, 8].
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Hydrodynamics in quantum and high-energy Physics

Yann Brenier

I. Madelung’s transform of the Schrödinger equation. Madelung observed
in 1926 that the (possibly nonlinear) Schrödinger equation (from 1925) i∂tψ +
△ψ = α|ψ|2ψ admits a hydrodynamic version:

(1) ∂tρ+∇ · q = 0, ∂tq +∇ · (q ⊗ q + β ∇ρ⊗∇ρ
ρ

) = ∇(β △ ρ− γρ2)

through the polar representation of the wave function ψ =
√
ρ exp(iφ2 ) ∈ C, with

ρ ≥ 0, q = ρ∇φ, and a suitable relation between constants α, β and γ.

II: From quantum particles to Burgers’ equation. The Wigner transform of
the free Schrödinger equation is just the free transport equation ∂tf + ξ · ∇xf = 0
with typical initial conditions such as “wave packets” f0(x, ξ) = exp(−π(α|x|2 +
β|ξ|2)) where αβ is limited by the Heisenberg principle. For a given family of
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N points (Ak ∈ R
d)Nk=1, we consider the free transport equation in R

2Nd with
symmetric initial condition

f(0, X,Ξ) =
∑

σ∈SN

ΠN
k=1 exp(−π(α|xk −Aσk

|2 + β|ξk|2)), (X,Ξ) = (xk, ξk)
N
k=1,

with respect to the group SN of all permutations of {1, · · ·, N}. Inspired by de
Broglie’s concept of “onde pilote”, we introduce the dynamical system

dX

dt
=

∫
RNd Ξf(t,X,Ξ)dΞ∫
RNd f(t,X,Ξ)dΞ

, X ∈ R
Nd.

This (first order) dynamical system is very similar to the model of Kaehlerian
geometry recently addressed by Berman and Onnheim in arXiv:1501.07820v2 and
enjoys remarkable properties. In particular, we deduce from it, as d = 1 and the
Planck constant is neglected, the very simple and highly dissipative mechanical
model of N particles moving at constant speed with sticky collisions. Letting
further N go to infinity, we may recover all “entropy solutions” of the “invisi-
cid Burgers” equation, one of the simplest model known in Hydrodynamics. In
addition, in any dimension, we may derive from the second order version of this
dynamical system the so-called Monge-Ampère gravitational model discussed in
Y.B. Confluentes Math. 2010 and, recently, Y.B. arXiv:1504.07583 (through a
large deviation approach).

III: Born-Infeld, MHD and magnetic relaxation. The Born-Infeld model,
quite popular in high energy Physics and String Theory, involves a d + 1 di-
mensional Lorentzian space-time manifold of metric gijdx

idxj and vector po-
tentials A = Aidx

i that are critical points of the (fully covariant) ”action”∫ √
−det(g + dA) . Here, we only consider the 3+1 Minkowski space (as Born

and Infeld did in 1934), for which the BI model admits a paradoxical Galilean
hydrodynamic formulation (Y.B. Arma 2004):

∂tB +∇× (B × v + ρ−1D) = 0, ∂tD +∇× (D × v − ρ−1B) = 0,

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v − B ⊗B −D ⊗D

ρ
) = ∇(ρ−1).

We observe an interesting structure after a quadratic rescaling of time:

t→ θ = t2/2, (ρ,B)(t, x) → (ρ,B)(θ, x), (v,D)(t, x) → (v,D)(θ, x)
dθ

dt

∂θρ+∇ · (ρv) = 0, ∂θB +∇× (B × v + ρ−1D) = 0,

D −∇× (ρ−1B) = −2θ[∂θD +∇× (D × v)],

ρv −∇ · (B ⊗B

ρ
)−∇(ρ−1) = −2θ[∂θ(ρv) +∇ · (ρv ⊗ v − D ⊗D

ρ
)].

This reveals two remarkable asymptotic systems as θ >> 1 or θ << 1. One

∂θρ+∇ · (ρv) = 0, ∂θD+∇× (D× v) = 0, ∂θ(ρv) +∇ · (ρv⊗ v− D ⊗D

ρ
) = 0
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(as θ >> 1) just describes the motion of a well-ordered (i.e. crossing-free) contin-
uum of free strings (i.e. extremal surfaces in the Minkowski space). The second
one (obtained as θ << 1) is a sort of Darcy model of MHD, including a dissipative
induction equation with magnetic resistivity

∂θB +∇× (B × v + ρ−1∇× (ρ−1B)) = 0.

Its incompressible version, without magnetic resistivity, is nothing but one of Mof-
fatt’s magnetic relaxation models of topological Hydrodynamics, say

∂θB +∇× (B × v) = 0, v = ∇ · (B ⊗B) +∇p, ∇.v = 0,

for which the global existence of “dissipative” solutions “à la P.-L. Lions” (which
are unique when smooth) has been recently proven for d = 2 (see Y.B. CMP 2014,
as well as Y.B. arXiv:1410.0333 for a closely related problem).

A Tropical Model: Global Well-posedness and Relaxation Limit

Jinkai Li

(joint work with Edriss S. Titi)

In the context of the large-scale atmospheric and oceanic dynamics, the aspect
ratio of the vertical scale to the horizontal scale is very small. Taking this ad-
vantage and adopting the Boussinesq approximation, one can derive the primitive
equations (PEs), for the large-scale atmosphere and ocean, from the Navier-Stokes
equations by taking the small aspect ratio limit. Such small aspect ratio limit is
strongly, uniformly and globally in time, see Li–Titi [1].

It is observed in physics that the wind in the lower troposphere is of equal mag-
nitude but with opposite sign to that in the upper troposphere, in other words,
the primary effect is captured in the first baroclinic mode. However, for the
tropical-extratropical interaction, where the transport of momentum between the
barotropic and baroclinic modes plays an important role, it is necessary to re-
tain both the barotropic and baroclinic modes of the velocity. Thanks to these
facts, by taking the Galerkin projection to the primitive equations in the vertical
variable up to the first baroclinic mode, Frierson–Majda–Pauluis derived in [2] a
nonlinear interaction system between the barotropic mode and the first baroclinic
mode of the tropical atmosphere with moisture. In the system, there is convec-
tive adjustment relaxation time parameter ε, which in physics is positive but very
small.

We establish the global existence and uniqueness of strong solutions to this
system, with any initial data inH1, for each fixed convective adjustment relaxation
time parameter ε > 0. Moreover, if the initial data enjoy slightly more regularity
than H1, then the unique strong solution depends continuously on the initial
data. Furthermore, by establishing several appropriate ε-independent estimates,
we prove that the system converges to a limiting system, as the relaxation time
parameter ε tends to zero, with convergence rate of the order O(

√
ε). Moreover,

the limiting system has a unique global strong solution, for any initial data in H1,
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and such unique strong solution depends continuously on the initial data if the
the initial data posses slightly more regularity than H1. Notably, this solves the
viscous version of an open problem proposed in the above mentioned paper of
Frierson, Majda and Pauluis.
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Thermodynamics and statistical constraints in Q-tensor models of
nematic liquid crystals

Arghir Dani Zarnescu

(joint work with E. Feireisl, E. Rocca, G. Schimperna)

In [2] and [3] we proposed thermodynamically consistent models of nematics within
the framework proposed by M. Fremond in [4] and proved the existence of weak
solutions.

The main difference between the two models consists in the way the temperature
couples with the potential proposed in [1] to enforce the statistical constraints
relevant to the Q-tensor description of nematics. If the temperature couples with
the regular part of the potential, as in [2] then one can obtain stronger estimates
then in the case when it couples with the singular part of the potential (as in
[3]). In the latter case a certain specific type of convexity of the singular part is
necessary in order to be able to close the estimates and obtain weak solutions.
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Turbulence in zero viscosity limit with Boundary effects

Claude Bardos

1. Introduction

This is an abstract of a talk where I reported on progresses recently made in
collaboration with several colleagues: F. Golse and L. Paillard, T. Nguyen, L.
Szekelyhidi, E. Titi and E. Wiedemann, mainly contained in the following papers:
[1] , [2], [3] and [4].

2. Abstract

There is a strong analogy between the notion of statistical turbulence and the
notion of weak convergence for deterministic regimes. Both are based on some
kind of average. In particular the appearance of turbulence is related to anomalous
energy dissipation while weak convergence also differs from strong convergence by
energy dissipation, i.e; the lower semi continuity of the L2 norm. Notably it turns
out that this effect is the most explicit in the presence of physical boundary. This
is in full agreement with the following fact: In most of the physical experiments
the turbulence is generated by some boundary effect.

Therefore in the present talk I do not touch the “Clay problem” and I assume the
existence of a smooth solution u(x, t) , x ∈ Ω , t ∈ [0, T ] , of the Euler equations
subject to no-normal flow at the boundary and of smooth solutions of the Navier-
Stokes equations with the same initial data. I will consider both systex with the
same initial data and on a finite fixed time interval [0, T ]

Since the energy is the only uniform estimate available, I use it to revisit the
basic criteria of Kato. To the best of my knowledge this is the only deterministic
scenario where one can relate anomalous dissipation of energy with appearance of
turbulence. The solenoidal (incompressible) Navier-Stokes and Euler equations in
Ω ⊂ Rd, d = 2, d = 3 , are written below.

(1)

uν(x, 0) = u(x, 0) , Re =
UL

νfluide
, ν = Re−1 ,

∂tuν + (uν · ∇)uν − ν∆uν +∇pν = 0 ,

in Ω× [0, T ] ∇ · uν = 0 , on ∂Ω× (0, T ) uν · ~n = 0 , and (uν)τ = 0 ,

∂tu+ (u · ∇)u+∇p = 0 .

in Ω× [0, T ] ∇ · u = 0 , on ∂Ω× (0, T ) uν · ~n = 0 , uν(x, 0) = u(x, 0) .

The obvious difficulty comes from the fact that only the impermeability condition
remains at the limit as ν → 0 . The relation (uν)τ = 0 needs not persist. Therefore,
the solution of the Navier-Stokes equation equations may become singular near the
boundary. Moreover, due to the nonlinearity of the advection term u · ∇u and to
the effect of the pressure, such singularities may propagate inside the domain. This
turn out to be the most natural effect to generate turbulence, even for homogenous
turbulence observed far from the boundary.
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In presence of a smooth solution u of the Euler equations a simple manipulation
leads to a stability estimate:

(2)

d

dt
(
1

2
|uν − u|2L2(Ω)) + ν

∫

Ω

|∇uν |2dx ≤ |(uν − u,
∇u +∇tu

2
(uν − u))|

+ ν

∫

Ω

(∇uν · ∇u)dx− ν

∫

∂Ω

∂~nuνudσ .

which indicates that the contributions this balance l is the behavior of the term

ν

∫

∂Ω

(∂~nuν)τudσ .

This is because u is tangent to the boundary, but also in most of the configuration
not equal to zero on this boundary. This leads to the following remarks

• In the absence of a physical boundary and in the presence of a smooth
solution u of the Euler equations with the same initial data the convergence
of uν to u holds in L∞(0, T ;L2(Ω)) .

• In the presence of a physical boundary, even in the presence of a smooth
solution of the Euler equations, the only uniform estimate is the energy
estimate

(3)

∫

Ω

|uν(x, t)|2
2

dx+ ν

∫ t

0

∫

Ω

|∇uν(x, s)|2dxds =
∫

Ω

|u(x, 0)|2
2

dx .

Hence the only available result is an updated version of a theorem of T.
Kato [6]:

Theorem 1. The following facts are equivalent:

uν(t) → u(t) in L2(Ω) uniformly in t ∈ [0, T ] ,(4)

uν(t) → u(t) weakly in L2(Ω) for t = T ,(5)

lim
ν→0

ν

∫ T

0

∫

Ω

|∇uν(x, t)|2dxdt = 0 ,(6)

lim
ν→0

ν

∫ T

0

∫

Ω∩{d(x,∂Ω)<ν}
|∇uν(x, t)|2dxdt = 0 ,(7)

∀w ∈ C1([0, T ]; ∂Ω) lim
ν→0

ν

∫ T

0

∫

∂Ω

(
∂uν
∂~n

(σ, t))τw(σ, t))dσdt = 0 .(8)

The fact that (4) ⇒ (5) ⇒ (6) was already observed by Kato as a trivial conse-
quence of (3). In particular with (2) one observes that (8) ⇒ (4) . Eventually, one
adapts the method of Kato [6] to extend the vector field w(σ, t) defined on the
boundary by a convenient divergence free vector field wν(x, t) with support in a
layer of size ν near the boundary. Then one multiplies the Navier Stokes equation
by this vector field, uses integration by part and Poincaré inequality to deduce (8)
from (7).

Remark 2. The criteria (8) was introduced in [1] and systematized in [3]. It turns
out to be very robust with respect to different applications. It produces a direct



Mathematical Aspects of Hydrodynamics 2183

proof of the result given in [5]. In [1] it was used to study the limit of the solution
of the Boltzmann equation in an “ incompressible scaling” (cf. [7]) . In [4] it is
used to study the convergence of solutions of the “compressible Navier-Stokes”
equations and this indicates that in the presence on the time interval (0;T ) of a
smooth solution of the Euler equations, there no much difference in the behavior
for ν → 0 between the incompressible and the compressible point of view.

Remark 3. In the engineering literature for description boundary effects one intro-
duces (cf. [8]) based on scaling argument and explicit computations at least three
subdomains corresponding to the Prandlt-laminar regime, the laminar regime with
recirculation and the turbulent boundary layer. In most cases these regimes are in-
troduced without any mathematical justification ,however it is important to notice
that they imply behaviors which are in full agreement with the Kato criteria.
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