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Introduction by the Organisers

The workshop Reduction of Shimura varieties was attended by 50 participants
with broad geographic representation, including a number of young participants.
We had 19 talks of 60 minutes each.

Arithmetic properties of Shimura varieties which are encoded in their reduction
to positive characteristic are an exciting topic which has roots in classical topics
of number theory such as modular forms and modular curves and of algebraic
geometry. On the other hand it is a currently very active research field that has
contributed to some of the most spectacular developments in number theory and
arithmetic geometry in the last twenty years. Shimura varieties are closely related
to the Langlands program (classical as well as p-adic). A particular case is given by
moduli spaces of abelian varieties, a classical object of study in algebraic geometry.

The topics of the talks covered the whole subject of reductions of Shimura
varieties, and range from the development of new methods to study them, and
results on their geometric and cohomological properties to applications both to the
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Langlands program and to other parts of number theory and arithmetic geometry.
Some talks reported on relations to group theoretic objects and constructions such
as affine root systems and affine Grassmannians, or to analogous constructions in
equal characteristic such as moduli spaces of shtuka.

Applications to number theoretic questions
Particular highlights were the talks on applications of the theory.

Wei Zhang explained joint work with Zhiwei Yun which gives expressions for
special values of arbitrary derivatives of certain automorphic representations over
global fields of positive characteristic in terms of intersection multiplicities on
moduli spaces of shtukas. This is a completely new approach: Previously, usually
only the leading term coefficient was considered.

Yifeng Liu’s talk titled Bad reduction of Shimura varieties, level raising and
Selmer groups provided an application of the theory of reductions of Shimura
varieties to questions with a number-theoretic flavor, more precisely about the
vanishing of certain Selmer groups, a geometric level raising theorem, and a reci-
procity law for Gross-Schoen cycles.

Fabrizio Andreatta explained, in his talk “Heights of CM points on orthogonal
Shimura varieties”, his joint work with Eyal Goren, Benjamin Howard and Keerthi
Madapusi Pera on the averaged Colmez conjecture about the heights of certain
abelian varieties with complex multiplication. This is quite a powerful result:
Tsimerman has shown that it gives rise to an unconditional proof of the André-
Oort conjecture.

Shimura varieties and the Langlands program
Several talks explained aspects of the general paradigm that the cohomology of
reductions of Shimura varieties should realize local Langlands correspondences —
classical and p-adic. Related aspects such as p-adic Hodge theory and deformations
of Galois representations were also considered.

Imai’s and Ivanov’s talk concerned the classical local Langlands correspondence:
In his talk “Affinoids in the Lubin-Tate perfectoid space and simple epipelagic rep-
resentations”, Naoki Imai discussed joint work with Takahiro Tsushima on explicit
constructions of part of the local Langlands and Jacquet-Langlands correspon-
dences in the cohomology of the Lubin-Tate perfectoid space. In a similar vein,
Alexander Ivanov proposed a construction of the local Langlands correspondence
using covers of affine Deligne-Lusztig varieties, much in analogy with classical
Deligne-Lusztig theory. The construction works in general; so far it is known that
for GL2 it does realize the local Langlands correspondence.

On the other hand, in his talk Analytic functions on étale coverings of Drin-
feld’s upper half-plane, Gabriel Dospinescu talked about his joint work with Arthur
Cesar Le Bras about the geometric realization of Colmez’ p-adic local Langlands
correspondence. This proves a conjecture of Breuil showing that Colmez p-adic
local Langlands correspondence for GL2(Qp) can be realized using the de Rham
complex of higher coverings of Drinfeld upper half plane. They prove that the
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”classical” smooth part of the local Langlands is realized in the de Rham co-
homology and the p-adic one is obtained by pulling back a filtration from the
cohomology to the de Rham complex.

Xinwen Zhu explained joint work with Ruochuan Liu which shows that all the
fibers of a Qp local system over a smooth connected variety over a p-adic field are
de Rham (as a representation of the absolute Galois group of the residue class
field) as soon as this is true over a single point. This is an analogue in p-adic
Hodge theory of Deligne’s principle B (which refers to classical Hodge theory). It
can be applied to many Shimura varieties since the de Rham property is easy to
obtain at special points.

Brandon Levin talked on Iwahori local models and deformation rings and dis-
cussed interesting applications of the theory of local models of Shimura varieties
to the study of deformation rings of Galois representations, in particular to prov-
ing instances of the Breuil-Mézard conjecture (specifically, in the case of GL3 and
Hodge-Tate weights (2, 1, 0)).

Geometry of the reduction of Shimura varieties
Several talks concerned the geometric structure of the reductions of Shimura va-
rieties, in particular the natural stratifications on them.

The topic of Yichao Tian’s talk on joint work with David Helm and Liang Xiao
was the proof of the Tate conjecture for the special fibers of some unitary Shimura
varieties. The cycles one has to construct to this end are found in the supersingular
locus; the supersingular locus is a union of Deligne-Lusztig varieties, similarly as
in the case studied by Vollaard and Wedhorn and other cases. This is also closely
related to the stratifications discussed in Chen’s talk; see below. To show that
this produces enough cycles, one then has to study their geometry inside the full
special fiber (in particular, their intersection matrix).

In her talk about joint work with Eva Viehmann, Miaofen Chen described a
new stratification of affine Deligne-Lusztig varieties which generalizes many of the
stratifications which were previously studied.

The question of the non-emptiness of Newton strata, was addressed by Chia-
Fu Yu in his talk Non-emptiness of the basic locus of Shimura varieties ; it also
made an appearance in Mark Kisin’s talk, who talked on joint work with Keerthi
Madapusi Pera and Sug-Woo Shin about Honda-Tate theory for Shimura varieties,
proving that in a Shimura variety ShK(G,X) with GQp

quasi-split, every isogeny
class inside the special fiber of a suitable model contains a point which is the
reduction of a CM point.

The theme of Benôıt Stroh’s talk Bad reduction and boundary terms on joint
work with Kai-Wen Lan was that the phenomena of bad reduction and of singu-
larities in the boundary (of a toroidal or the minimal compactification) should not
interact with each other. This was illustrated by several results, and also played
a role in other talks.

Gerd Faltings presented a case of a Shimura variety with bad, but semi-stable
reduction — a rare, but very useful situation; his proof relies on an extension of
the theory of “filtered modules” that allows to cover the semi-stable case.
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Both George Boxer and Jean-Stefan Koskivirta talked on Generalized Hasse
invariants. Boxer focused on the construction of generalized Hasse invariants
in the Siegel case — while the classical Hasse invariant lives on the full moduli
space and vanishes precisely on the non-ordinary locus, the generalized Hasse
invariants live on the closure of some Ekedahl-Oort stratum and vanish exactly
on its boundary. Boxer’s results has applications to the construction of Galois
representations attached to automorphic representations. Koskivirta reported on
joint work with Goldring. The main focus of his talk was how to deal with Shimura
varieties of Hodge type; a key tool is the framework of G-zips.

Michael Rapoport introduced an axiomatic framework for the reduction of gen-
eral Shimura varieties concerning the existence and the interplay of several strati-
fications (Newton, Ekedahl-Oort, Kottwitz-Rapoport) which are well-known from
the PEL case. In all cases where the axioms are satisfied, several nice consequences
follow, such as the non-emptiness of “all” Newton strata that was also adressed
above.

Xu Shen presented a generalization of results of Scholze, now allowing to view
arbitrary Shimura varieties of abelian type “at infinite level” as perfectoid spaces
and to equip them with a Hodge-Tate period map.

Finally, Eike Lau talked on The image of the crystalline Dieudonné functor,
a very classical and central method, but whose image was up to now still not
completely understood.

The unique environment provided by the Mathematisches Forschungsinstitut
Oberwolfach stimulated intense discussions and initiated several new cooperations
among the participants. All participants immensely enjoyed the workshop and are
very grateful for the institute’s hospitality.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Boundary terms and the reduction of Shimura varieties

Benoit Stroh

(joint work with Kai-Wen Lan)

The subject of this talk is the interplay between the reduction and the boundary
of Shimura varieties. The philosophy is that there is basically no interplay: the
two phenomena are as much unrelated as they could be.

Denote by XH,E → Spec(E) a Shimura variety defined over its reflex field E as-
sociated to a reductive groupG overQ, with level structureH ⊂ G(A∞) where A∞

denotes the finite adeles of Q. Let v be a place of E with completion Ev and ring
of integers OEv

. Denote by p the prime number divided by v. We consider an
integral model XH → Spec(OEv

) of XH,E which is flat, normal and is of one of
the following types

(Sm) : the smooth integral model considered by Kottwitz [2] in the PEL
case, when H is hyperspecial at p so that XH,E has good reduction at v.

(Nm) : normalization of a PEL Shimura variety in an auxiliary PEL Shi-
mura variety associated to a different group with an hyperspecial level
at p.

(Spl) : normalization of a PEL Shimura variety in a splitting model of
Pappas-Rapoport [9] when the level is deeper than a parahoric.

(Hdg) : normalization of an Hodge type Shimura variety in an auxiliary
Siegel variety as in [1] and [6].

Of course the case (Hdg) includes the cases (Sm) and (Nm). The case (Hdg)
does not include the case (Spl). Let’s mention that the parahoric level structures
fall in the realm of case (Nm) when they are known to be flat and normal, which
is the case if G splits over a tamely ramified extension of Qp and p does not divide
the order of π1(G

der
Qp

) by [10]. Similarly, the splitting models of Pappas-Rapoport

fall in case (Spl) when they are flat and normal.
The common interest of all cases in the previous list is that one can construct

a family of toroidal compactifications Xtor
H of XH over Spec(OEv

) and a minimal
compactification Xmin

H still over Spec(OEv
) by [3], [4], [5] and [6]. The typical

strata of Xmin
H is still an integral model of a Shimura variety associated to a group

with a lower rank, and this integral model still belongs to the previous list.
Our first theorem deals with the interaction of the bad reduction and the

boundary. This lack of interaction will be expressed in a cohomological way.
Choose ℓ any prime number different from p. Consider the complex of nearby
cycles RΨXH

(Z/ℓs) with s ≥ 0. Denote by jtor : XH →֒ Xtor
H the open immersion

inside a toroidal compactification.

Theorem 1. We have a canonical isomorphism

Rjtor∗ ◦ RΨXH
(Z/ℓs) = RΨXtor

H
◦ Rjtor∗ (Z/ℓs) .
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This theorem is proved by a local study, using the explicit description of the
toroidal compactification. We recall the reader that a commutation Rj∗ ◦RΨX =
RΨX̄ ◦ Rj∗ is easily seen to be false for a general open immersion j : X →֒ X̄ of
finite type schemes over Spec(Zp). On the contrary we see such a commutation for
the constant sheaf as a cohomological precise meaning of the absence of interaction
between the bad reduction of X , coded in RΨX , and the boundary, coded in Rj∗.

From this theorem, it is very easy to deduce that the cohomology of the geo-
metric special fiber of XH with value in RΨXH

(Z/ℓs) computes the cohomology
of XH,Ē with coefficient Z/ℓs, where Ē is an algebraic closure of E. This computa-
tion is moreover equivariant under all natural structures like the Hecke operators
away from v.

We deduce many applications from that fact like for instance a Mantovan for-
mula [7] expressing the étale cohomology of the generic fiber in terms of the co-
homology of Igusa varieties and group theory in the unramified PEL case, or a
Kottwitz-Scholze [12] counting point formula in the general ramified PEL case.

We then introduce the notion of well-positioned complex in Xtor
H . We will not

give the precise definition here, but let’s just mention that the constant sheaf
supported on a stratum of any usual stratification, like the p-rank, the Newton,
the Ekedhal-Oort or the Kottwitz-Rapoport one, is a well-positioned complex.
The same is true for the intersection complex of the Zariski closure of a stratum.
Moreover well-positioned complexes are preserved under basic sheaf theoretic op-
erations.

Let jmin : XH →֒ Xmin
H the open immersion inside the minimal compactification

and let i : Z →֒ Xmin
H be a locally closed boundary strata, so that Z is itself an

integral model of a Shimura variety. For any well-positioned complex F , we give a
Pink formula for i∗◦Rjmin

∗ (F) which generalizes [11] when F is the constant sheaf.
If moreover F is pure and perverse, we provide a Morel formula for i∗ ◦ jmin

!∗ (F)
which generalizes [8] when F is the constant sheaf. We see both formulas as a
cohomological precise explanation for the absence of interaction of the reduction,
coded by the choice of the well-positioned complex F , and the boundary, coded
by i∗ ◦ Rjmin

∗ or i∗ ◦ jmin
!∗ . Indeed in our Pink and Morel formulas, the answer is

the product of a complex G on Z coming purely from the reduction of Z and the
complex i∗ ◦ Rjmin

∗ (Z/ℓs) or i∗ ◦ jmin
!∗ (Qℓ) coming purely from the boundary.
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Stratifications in the reduction of Shimura varieties: an axiomatic
approach

Michael Rapoport

(joint work with Xuhua He)

The talk was about joint work with X. He [6], and concerned the definition and
study of characteristic subsets in the reduction modulo p of a general Shimura
variety with parahoric level structure, more precisely the Newton stratification,
the Ekedahl-Oort stratification and the Kottwitz-Rapoport stratification. I also
discussed the Ekedahl-Kottwitz-Oort-Rapoport stratification which interpolates be-
tween the Kottwitz-Rapoport stratification in the case of an Iwahori level structure
and the Ekedahl-Oort stratification of Viehmann in the hyperspecial case. The
novelty of our approach comes from the proof of He [5] of the Kottwitz-Rapoport
conjecture from [12]. In particular, our methods are purely group-theoretical and
combinatorial, and do not use algebraic geometry.

1. Axioms on integral models

1.1. The set-up. Let (G, {h}) be a Shimura datum and let K = KpK be an
open compact subgroup of G(Af ), where K

p ⊂ G(Ap
f ) and where K = Kp is a

parahoric subgroup of G(Qp). Let G = G ⊗Q Qp and let {µ} be the conjugacy
class of cocharacters of G corresponding to {h}.

Let ShK = Sh(G, {h})K be the corresponding Shimura variety. It is a quasi-
projective variety defined over the Shimura field E. We will postulate the existence
of an integral model SK over the ring of integers OE of the completion E of E at
a place p above the fixed prime number p, with certain properties, which we list
below. Our aim is to study the special fiber ShK = SK ×SpecOE

SpecκE , resp. its
set of geometric points, and some stratifications on it.
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1.2. Basic axioms on integral models. We now list our first set of axioms.

(i) Our first axiom concerns the change in the parahoric subgroup. All parahoric
subgroups are supposed to contain a fixed Iwahori subgroup I.

Axiom 1.1 (Compatibility with changes in the parahoric). For any inclusion of
parahoric subgroups K ⊂ K ′, and setting K = KpK and K′ = KpK ′, there is a
natural morphism

(1.1) πK,K′ : SK → SK′ ,

which is proper and surjective, and is finite in the generic fibers.

(ii) We postulate the existence of a local model Mloc
K attached to the triple

(G, {µ},K). Let G = GK be the group scheme over Zp corresponding to K. Then
Mloc

K is a scheme which is projective and flat over SpecOE , equipped with an action
of G ⊗Zp

OE , and with generic fiber equal to the partial flag variety associated to
(G, {µ}). Its formation should be functorial in the parahoric subgroup K, i.e., for
K ⊂ K ′, there should be a proper and surjective morphism,

(1.2) pK,K′ : Mloc
K →Mloc

K′ .

Let M loc
K be its special fiber. Then M loc

K is a projective variety over κE , with

an action of GK ⊗Zp
κE . We denote by W̃ the Iwahori-Weyl group of G and by

WK the finite subgroup of W̃ corresponding to K, cf. [4].

Axiom 1.2 (Existence of local models). There is a smooth morphism of algebraic
stacks [12, (7.1)]

λK : SK → [Mloc
K /GOE

],

compatible with changes in the parahoric subgroup K. The action of GK ⊗Zp
κE

on M loc
K has finitely many orbits Ow which are indexed by w ∈ Adm({µ})K.

Furthermore,

Ow ⊂ Ow′ if and only if w ≤ w′

in the partially ordered set WK\W̃/WK .
Here G = GK , and GOE

denotes its base change to SpecOE . Furthermore,

Adm({µ})K denotes the admissible subset of WK\W̃/WK , cf. [12].

Remark 1.3. Pappas and Zhu [11] have constructed such local models under
a tameness assumption on G. However, in their set-up, the orbits in Mloc

K are
implicitly enumerated by a subset of the Iwahori Weyl group of a loop group
version of G. Axiom 1.2 implicitly refers to Scholze’s idea [1] that would construct
local models of Shimura varieties whose special fibers are embedded as closed
subschemes of a Witt vector affine flag variety.

We denote by λK : ShK → [M loc
K /GκE

] the induced morphism of stacks on the

special fiber. For any w ∈WK\W̃/WK , set

(1.3) KRK,w = λ−1
K (Ow) ⊂ ShK ,
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and call it the Kottwitz-Rapoport stratum (KR-stratum) of ShK attached to w, cf.
[3, §8]. It is a locally closed subvariety of ShK . Note that, by definition, KRK,w

is non-empty only if w ∈ Adm({µ})K .

(iii) Recall B(G) = G(Q̆p)/G(Q̆p)σ, the set of σ-conjugacy classes of G(Q̆p), cf.

[8]. Here Q̆p denotes the completion of the maximal unramified extension of Qp.

Axiom 1.4 (Existence of a Newton stratification). There is a map

δK : ShK → B(G),

compatible with changing the parahoric subgroup K (i.e., with πK,K′), and such
that for each [b] ∈ B(G), the fiber of δK over [b] is the set of κ̄E-rational points of
a locally closed subvariety SK,[b] of ShK. Furthermore, if

SK,[b] ∩ SK,[b′] 6= ∅,

then [b] ≤ [b′] in the sense of the partial order on B(G).

The subvariety SK,[b] of ShK is called the Newton stratum of ShK attached to
[b].

1.3. Joint stratification and basic non-emptyness. Let K be a parahoric
subgroup, with corresponding subgroup K̆ of G(Q̆p). Let K̆σ ⊂ K̆ × K̆ be the

graph of the Frobenius map σ and G(Q̆p)/K̆σ be the set of K̆-σ-conjugacy classes

on G(Q̆p). The embedding K̆σ ⊂ G(Q̆p)σ induces a projection map

(1.4) dK : G(Q̆p)/K̆σ → B(G).

On the other hand, the embedding K̆σ ⊂ K̆ × K̆ induces a map

(1.5) ℓK : G(Q̆p)/K̆σ → K̆\G(Q̆p)/K̆.

We now add the following axioms to our list.

(i) The first axiom relates the two maps λ and δ introduced in Axioms 1.2 and

1.4. Note that in its formulation, we identify K̆\G(Q̆p)/K̆ with WK\W̃/WK , cf.
[4, Prop. 8].

Axiom 1.5 (Joint stratification). a) There exists a natural map

ΥK : ShK → G(Q̆p)/K̆σ,

compatible with changes in the parahoric subgroup K, such that the following dia-
gram commutes

K̆\G(Q̆p)/K̆

ShK
ΥK //

λK
11

δK //

G(Q̆p)/K̆σ

ℓK

77♣♣♣♣♣♣♣♣♣♣♣

dK

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

B(G)

.
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Here the map λK is induced by the map (1.3).

b) Furthermore,

ℑΥK = ℓ−1
K (ℑλK).

c) For K ′ ⊂ K, and any element y′ ∈ G(Q̆p)/K̆
′
σ with image y ∈ G(Q̆p)/K̆σ, the

natural map

πK′,K |Υ−1

K′ (y
′) : Υ

−1
K′ (y

′)→ Υ−1
K (y)

is surjective with finite fibers.

It should be pointed out that parts b) and c) of this axiom are principally used
in connection with the study of EKOR-strata.

(ii) The second axiom is a weak non-emptiness statement. Let τ = τ{µ} be the

element of length zero in W̃ corresponding to {µ}, cf. [4, Lemma 14].

Axiom 1.6 (Basic non-emptiness). The map

KRI,τ → π0(ShI)

is surjective.

Here π0(ShK) denotes the set of geometric connected components of ShK . In
other words, this axiom postulates that every geometric connected component of
ShI intersects the KR-stratum KRI,τ .

2. Non-emptiness of KR- and Newton strata

From the axioms we deduce the following three statements.

Theorem 2.1. Let K be a parahoric subgroup and let XK be a geometric connected
component of ShK . Then

λK(XK) = Adm({µ})K .

In other words, any geometric connected component of ShK intersects any KR-
stratum (as their indices run over their natural range, i.e., Adm({µ})K).

Let B(G, {µ}) denote the finite subset of B(G) of [9, §6] which describes the
Mazur inequality in group theoretic terms.

Theorem 2.2. Let K be a parahoric subgroup and let XK be a geometric connected
component of ShK . Then

δK(XK) = B(G, {µ}).

In other words, any geometric connected component of ShK intersects any Newton
stratum (as their indices run over their natural range, i.e., B(G, {µ})).

The following closure relation between Newton strata is sometimes referred to
as Grothendieck’s conjecture.

Theorem 2.3. Let K be a parahoric subgroup. Let [b], [b′] ∈ B(G, {µ}). Then
SK,[b′] ∩ SK,[b] 6= ∅ if and only if [b] ≤ [b′].
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3. EKOR-strata

3.1. Definition of υK . Let K be a parahoric subgroup, with corresponding sub-

group K̆ of G(Q̆p), and let K̆1 be the pro-unipotent radical of K̆. Then

K̆σ ⊂ K̆σ(K̆1 × K̆1) ⊂ K̆ × K̆.

Thus we have a factorization of λK ,

ShK → G(Q̆p)/K̆σ → G(Q̆p)/K̆σ(K̆1 × K̆1),

where the first map is ΥK and the second map is the natural projection map. We
denote the composition map by

(3.1) υK : ShK → G(Q̆p)/K̆σ(K̆1 × K̆1).

We therefore obtain a commutative diagram

ShK

υK

��

λK

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

K̆\G(Q̆p)/K̆.

G(Q̆p)/K̆σ(K̆1 × K̆1)

natK

66♠♠♠♠♠♠♠♠♠♠♠♠

We identify in the sequel the coset space G(Q̆p)/K̆σ(K̆1 × K̆1) with
KW̃ , com-

patibly with the identification of K̆\G(Q̆p)/K̆ withWK\W̃/WK , cf. [6]. Here KW̃

denotes the set of elements of W̃ of minimal length in their left cosets moduloWK .

Definition 3.1. The Ekedahl-Kottwitz-Oort-Rapoport stratum (EKOR-stratum)

of ShK attached to x ∈ KW̃ is the subset

EKORK,x = υ−1
K (x) ⊂ ShK .

Let Adm({µ})K be the inverse image of Adm({µ})K in W̃ . Then EKORK,x

is non-empty only if x ∈ Adm({µ})K .

Remarks 3.2. (1) For a general parahoric subgroup, the EKOR-stratification is
finer than the KR-stratification (the map λK factors through υK).

(2) If G is unramified and K is hyperspecial, the definition of the EKOR-
stratification coincides with the Ekedahl-Oort stratification in the sense of Vieh-
mann [13]. If K = I is the Iwahori subgroup then the EKOR-strata coincide
with the KR-strata. Therefore the EKOR-stratification for a general parahoric
subgroup interpolates between the EO-stratification for the hyperspecial case and
the KR-stratification for the Iwahori case.

Theorem 3.3. Let K be a parahoric subgroup and x ∈ Adm({µ})K ∩KW̃ . Then
EKORK,x is locally closed and the closure of EKORK,x is

EKORK,x = ⊔x′∈KW̃ ,x′�K,σx
EKORK,x′ .
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Here x′ �K,σ x denotes a certain partial order on KW̃ , cf. [6].

The following theorem gives a relation between EKOR-strata and Newton stra-
ta.

Theorem 3.4. For any parahoric K and any [b] ∈ B(G, {µ}), there exists x ∈
Adm({µ})K ∩ KW̃ such that

EKORK,x ⊂ SK,[b].

Remarks 3.5. 1) For a general parahoric K, there is no KR-stratum of level K
that is entirely contained in a given Newton stratum.

2) For Shimura varieties of PEL type with hyperspecial level structure, the
existence of an Ekedahl-Oort stratum in a given Newton stratum is proved by
Viehmann/Wedhorn [14, Theorem 1.5(1)] and Nie [10, Corollary 1.6].

If K ′ ⊂ K, then the index set Adm({µ})K ∩ KW̃ for the EKOR-strata with

level K is contained in the index set Adm({µ})K
′

∩ K′

W̃ for the EKOR-strata
with level K ′ (the smaller the parahoric, the bigger the index set). In the sequel,
we identify the index set for K with a subset of the index set for K ′.

Proposition 3.6. Let K ′ ⊂ K be standard parahoric subgroups. Then for any
w ∈ Adm({µ})K

′

∩ K′

W̃ , there exists a finite subset ΣK(w) of WKwWK ∩ KW̃
such that

πK′,K(EKORK′,w) = ⊔x∈ΣK(w)EKORK,x.

Furthermore, if w ∈ Adm({µ})K ∩ KW̃ , then ΣK(w) = {w} and

πK′,K(EKORK′,w) = EKORK,w.

This proposition is then used to prove the following non-emptiness statement.

Theorem 3.7. Let XK be a geometric connected component of ShK. For any
parahoric K,

υK(XK) = Adm({µ})K ∩ KW̃ .

In other words, any geometric connected component of ShK intersects any EKOR-
stratum (as their indices run through their natural range, i.e., Adm({µ})K∩KW̃ .)

Finally, there is the following relation between EKOR-strata of level K and
KR-strata of Iwahori level I.

Theorem 3.8. Let K be a parahoric subgroup and x ∈ Adm({µ})K ∩KW̃ . Then

πI,K |KRI,x
: KRI,x → EKORK,x

is a finite morphism. In particular, dimEKORK,x = dimKRI,x.

Remark 3.9. It may be conjectured that the morphism in Theorem 3.8 is fi-
nite étale. This would imply that all EKOR-strata are smooth, which we also
conjecture. This is proved by Görtz/Hoeve [2] in the Siegel case.
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Potentially crystalline deformation rings and Iwahori local models

Brandon Levin

(joint work with Daniel Le, Bao V. Le Hung and Stefano Morra)

In joint work with Daniel Le, Bao V. Le Hung and Stefano Morra, we compute
potentially crystalline deformation rings for three dimensional representations of
Gal(Qp/Qp). As an application, we deduce the weight part of Serre’s conjecture
for forms of U(3) which are compact at infinity and split at places dividing p as
conjectured by [14] for residual representations which are semisimple and generic
at all primes above p. We also exhibit the geometric Breuil-Mézard conjecture.
The method involves a detailed study of the moduli space of Kisin modules with
descent datum. This builds on work of Breuil [2], Breuil-Mézard [4], Caruso-David-
Mézard [7], Caraiani-Emerton-Gee-Savitt [5]. I also discussed joint work with Ana
Caraiani which relates moduli of Kisin modules with descent data to Iwahori local
models.
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1. Potentially crystalline deformation rings

Fix a residual representation ρ : Gal(Qp/Qp) → GL3

(
Fp

)
. Let τ = ωa ⊕ ωb ⊕ ωc

where ω is the mod p cyclotomic character of Gal(Qp/Qp). We assume τ is generic,
i.e., p − 4 ≥ |a − b|, |b − c|, |a − c| ≥ 3. We want to describe the framed poten-

tially crystalline deformation ring R
(2,1,0),τ,�
ρ with Hodge-Tate weights (2, 1, 0) and

Galois type τ .
We consider the moduli space X(2,1,0),τ of Kisin modules with p-adic Hodge

type (2, 1, 0) and descent data of type τ constructed in [6] building on work of [5]
in the Barsotti-Tate case for GL2. There is local model diagram relating X(2,1,0),τ

to the local modelM loc for (GL3, µ = (2, 1, 0), Iwahori level). This induces a strat-

ification of X(2,1,0),τ =
⋃

w∈Adm(2,1,0)X
(2,1,0),τ
w indexed by the (2, 1, 0)-admissible

set. A mod p Kisin module in X
(2,1,0),τ
w (Fp) is said to have shape (or genre) w.

This generalizes the notion of genre for rank 2 Breuil/Kisin modules which was
crucial in [2, 7].

We can now outline our strategy for computing the deformation ring.

(1) Classify all Kisin modules of shape w ∈ Adm(2, 1, 0) over Fp.

(2) For M ∈ X
(2,1,0),τ
w (Fp), construct the universal deformation space with

height conditions. This amounts to constructing local coordinates for the
local model.

(3) Impose monodromy condition on the universal family.

Previously, the finer properties of local Galois deformation rings were known
for the most part only for Fontaine-Laffaille and potentially Barsotti-Tate defor-
mation rings. Steps (1) and (2) generalize techniques of [2, 7, 10] used to compute
potentially Barsotti-Tate deformation rings for GL2. To extend these techniques
to three dimensions, a key point was the correct notion of shape as discussed above.
In addition, a more systematic approach to the p-adic convergence algorithm em-
ployed by [2, 7] was necessary for Step (2).

Step (3) requires a genuinely new method not present in the potentially Barsotti-
Tate case where the link between moduli of finite flat groups schemes and Galois
representations is stronger than in our situation (and hence, there is no monodromy
condition). Let us briefly comment on the details of Step (3). Kisin [16] gave a
characterization of when a torsion-free M comes from a crystalline representation
in terms poles of a monodromy operator NM. While one cannot compute NM

completely, one can approximate it using the genericity condition on τ . Vanishing
of the poles corresponds to the vanishing of the sum of an explicit polynomial
equation and an error term which is divisible by p3. This suffices for determining
the deformation ring and its special fiber.

As an illustration, we have the following theorem relating components of the
deformation ring and predicted local weights. Here JH(σ(τ)) denotes the Jordan-
Hölder factors mod p of the principal series representation corresponding to τ
under inertial local Langlands and W ?(ρ) denotes the conjectural set of local
weights predicted by [14].



Reductions of Shimura Varieties 2281

Theorem 1 (LLLM). Let ρ be a semisimple representation of Gal(Qp/Qp) and let

τ be a generic tame inertial type. If |W ?(ρ) ∩ JH(σ(τ))| < 6, then the irreducible

components of SpecR
(2,1,0),τ,�
ρ mod p are in bijection with W ?(ρ) ∩ JH(σ(τ)).

We expect the same result in the case of six common weights which is the
maximal number possible, but there is one case remaining. Theorem 1 should
be thought of as an instance of the geometric Breuil-Mézard conjecture of [8]
(the intrinsic multiplicity of each local weight turns out to be one in this case).
The bijection matches components labelled by Fontaine-Laffaille weights with the
special fibers of Fontaine-Laffaille deformation rings.

2. Application: Weight part of Serre’s conjecture

Serre’s original modularity conjecture asserted that every odd irreducible contin-
uous representation r : GQ → GL2(Fp) arises from a modular form. Serre [18]
gave a precise recipe for the minimal possible prime to p level and weight of such
a modular form. The recipe for the minimal weight is given in terms of the re-
striction of r to Gal(Qp/Qp) (or even the inertia subgroup). The weight recipe
and subsequent generalizations are often referred to as the weight part of Serre’s
conjecture (or even just Serre weight conjectures). There has much progress in
recent years in formulating generalizations the weight part of Serre’s conjecture
(see [14, 12]) and in proving generalizations of the conjecture for 2-dimensional
Galois representations over totally real fields. However, thus far, there are only a
few theoretical results in the case of semisimple rank > 1: [11, 1] study modular-
ity of ‘obvious’ weights and [9] proves Herzig’s conjecture in our setting under the
hypothesis that r is irreducible at all places above p. We reprove the results of [9]
and extend them to the case where r is semisimple at all places above p.

Recall the setup for algebraic modular forms. Let F be an imaginary CM field
with totally real subfield F+ such that all primes of F+ above p split in F . Let
G is unitary group over F+ which is isomorphic to U(3) at each infinite place
and split at each place above p. Let G be a reductive model over OF+ [1/N ] with
(N, p) = 1.

Definition 1. A (global) Serre weight is an irreducible Fp-representation Fλ of
G(OF+,p).

For each place w | p, let kw denote the residue field. A (global) Serre weight
is equivalent to a collection (Fλw

)w|p of irreducible representation of GL3(kw)
which is conjugate self-dual, i.e., (F ∗

λw
)c ∼= Fλwc . For any Serre weight Fλ and

any compact open U ⊂ G(Af,p
F+), there is an associated space of mod p algebraic

modular forms S(U, Fλ). Let r : GF → GL3(Fp) be a continuous irreducible
representation.

Definition 2. We say r is modular of weight Fλ if there exists some (nice) open
compact U unramified above p such that

S(U, Fλ)m 6= 0
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where m is the maximal ideal of Hecke algebra associated to r.
We say r is modular if r is modular of some Serre weight (Fλw

)w|p. Let W (r)
denote the set of modular Serre weights.

The weight part of Serre’s conjectures predicts, in particular, that the set of
modular Serre weights should be determined by the restrictions r|GFw

for all primes
w | p. For r|GFw

semisimple and Fw = Qp, [14] gives a recipe for a collection

W ?(r|GFw
) of irreducible Fp-representation of GL3(kw).

Theorem 3 (LLLM). Let r : GF → GL3(Fp) be an irreducible modular repre-
sentation. Suppose p splits completely in F and for all places w | p of F suppose
r|GFw

is semisimple and generic. Suppose further that r satisfies the Taylor-Wiles
conditions. Then

W (r) = (W ?(r|GFw
))w|p.

The weight elimination direction W (r) ⊂ (W ?(r|GFw
))w|p was already com-

pleted (or forthcoming) in [9, 15, 17]. The other inclusion (weight existence) is
an application of our results on deformation rings following roughly the strategy
outlined in [12, §3-4].

Briefly, the patching techniques of Gee-Kisin [13], Emerton-Gee [8] allow one to
construct a patched module M∞(σ(τ)) over the product of the local deformation
rings (adjoin some patching variables). Furthermore, for each σ ∈ JH(σ(τ)), there
is a subquotient M∞(σ) of M∞(σ(τ)) mod p. We show that the generic fiber
of the local deformation ring is connected and so M∞(σ(τ)) has full support.
Knowing this and the number of components in the special fiber, we deduce that
M∞(σ) 6= 0 for σ ∈ W ?(r|GFw

) by an inductive procedure involving a careful
choice of tame types.

We expect our methods to carry over also to the case where p is unramified
(but not necessarily split in F+). We also aim to address the question of cyclicity
of patched modules and the analogue of Breuil’s lattice conjecture in future work.
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Analytic functions on some étale coverings of the p-adic upper
half-plane

Gabriel Dospinescu

(joint work with Arthur-César Le Bras)

Let p be a prime number. If l 6= p is another prime, the l-adic cohomology of
the étale coverings of the p-adic upper half-plane realizes both the ”classical”
local Langlands correspondence for G = GL2(Qp) and the Jacquet-Langlands
correspondence for discrete series representations. This result (known as Carayol’s
conjecture) has already been vastly generalized to GLn(F ) (where F is a finite
extension of Qp) thanks to work of Boyer, Carayol, Dat, Faltings, Fargues, Harris,
Mieda, Taylor and others, see for instance [5, 9, 12, 13, 14]. The purpose of our
work is to confirm a (version of a) conjecture of Breuil and Strauch, which shows
that the coherent cohomology (more precisely the de Rham complex) of these étale
coverings realizes the p-adic local Langlands correspondence for G (due to Berger,
Breuil, Colmez, Emerton, Kisin, Paskunas [3, 6, 8, 11, 16, 18]) and the classical
Jacquet-Langlands correspondence for de Rham non trianguline representations of
Gal(Qp/Qp) (we will limit ourselves to representations with Hodge-Tate weights
0, 1 in the sequel).

Let us start by fixing some notation. Let D be the quaternion division algebra
overQp, OD its unique maximal order and letX be a special formalOD-module (in

the sense of Drinfeld [10]) overFp. DeformingX byOD-equivariant quasi-isogenies
(of arbitrary height) yields a tower of Rapoport-Zink spaces (Mn)n≥0. More
preciselyMn is the rigid analytic generic fiber of the corresponding p-adic formal
scheme constructed by Rapoport and Zink [19], with level structure 1 + pnOD.

For instance, M0 ≃ Ω̆ × Z by a fundamental theorem of Drinfeld [10], where
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Ω̆ = Ω⊗̂Q̂p
nr and Ω is the rigid analytic space overQp such that Ω(Cp) = P1(Cp)\

P1(Qp). Moreover, Mn is endowed with commuting actions of G and D∗, the
action of D∗ being smooth (1 + pnOD acts trivially). Moreover, the quotient of
Mn by the action of pZ (seen as a subgroup of the center of G) descends (together
with the actions of G and D∗) to a rigid analytic space Σn over Qp. We will
describe the de Rham complex of Σn.

Let us fix an irreducible smooth representation ρ of D∗, trivial on 1 + pnOD,
with trivial central character. We assume that ρ is nontrivial (the case ρ = 1 was
dealt with by Breuil [4] and we warn the reader that it is fairly different from the
case ρ 6= 1, in particular all results to follow are wrong when ρ = 1) and we let
π(ρ) be the (isomorphism class of) supercuspidal representation of G associated
to ρ by the local Jacquet-Langlands correspondence. Let L be a finite extension
of Qp such that all these representations are defined over L. We consider L as
field of coefficients from now on, in particular for a rigid space Z over Qp we write
F(Z) = H0(Z,F)⊗Qp

L for a sheaf F on Z. One can attach (via a standard recipe

of Fontaine) to1 π(ρ) a (ϕ,Gal(Qp/Qp))-moduleM(ρ), of rank 2 over L⊗Qp
Qp

nr.

Let MdR(ρ) = (M(ρ)⊗Qp
nr Qp)

Gal(Qp/Qp), a two-dimensional L-vector space.
Let B(ρ) be the set of (isomorphism classes of) absolutely irreducible admissible

unitary completions of π on L-Banach spaces with action of G. The p-adic local
Langlands correspondence for G establishes a canonical bijection

B(ρ) ≃ P(MdR(ρ)), Π 7→ L(Π).

More precisely, each Π ∈ B(ρ) gives rise to a Galois representation V (Π) via
Colmez’s Montreal functor [6]. By the compatibility of classical and p-adic Lang-
lands correspondences for G (due to Colmez and Emerton [6, 11]) we know that

Dpst(V (Π)) ≃M(ρ)

canonically up to scalar (as (ϕ,Gal(Qp/Qp))-modules, without the Hodge filtra-
tion) and then

L(Π) = Fil0(DdR(V (Π)))

is the Hodge filtration on DdR(V (Π)) ≃MdR(ρ).
If Π ∈ B(ρ), let Πan (respectively Πsm) be the subspace of Π consisting of

vectors v for which the orbit map g 7→ g.v is locally analytic (respectively locally
constant). Then Πsm ≃ π(ρ) and Πsm is closed in Πan (and dense in Π). Our first
main result is then:

Theorem 1. For each Π ∈ B(ρ) there is a unique (up to scalar) isomorphism of
topological G-modules

HomD∗(ρ,O(Σn)) ≃ (Πan/Πsm)
∗
.

In other words, there is a canonical (up to scalar) exact sequence

0→ HomD∗(ρ,O(Σn))→ (Πan)∗ → π(ρ)∗ → 0.

1More precisely, to the Weil representation attached to π(ρ) by the classical local Langlands
correspondence for G
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If σ is a representation of G×D∗, we write

σρ = HomD∗(ρ, σ).

The proof of the previous theorem is a mixture of local and global arguments. The
global argument is used to produce a nonzero G-equivariant map

O(Σn)
ρ → (Πan/Πsm)

∗
,

while the local argument (which is the most technical part of the proof) shows that
any such map is an isomorphism. The key global ingredients are the Cerednik-
Drinfeld uniformization theorem and a version of Emerton’s local-global compat-
ibility theorem for definite quaternion algebras split at p. Putting this together
gives (after some work) a nonzero map O(Σn)

ρ → (Πan/Πsm)∗ for some Π ∈ B(ρ).
A deep theorem of Colmez ensures that the representation Πan/Πsm is indepen-
dent of the choice of Π ∈ B(ρ) (as it is also clear from the previous theorem!)
thus we have such a map for any such Π. The local part of the argument is fairly
technical, but the key idea is to use the theory of (φ,Γ)-modules and its link with
p-adic Hodge theory (more precisely Berger’s results [1, 2] on the p-adic differential
equation attached to a de Rham representation) to promote (Πan/Πsm)

∗
to a G-

equivariantO(Ω)-module (it will turn out to be a G-equivariant vector bundle over
Ω, but this only at the very end of the argument!). The previous map becomes a
map of G-equivariant sheaves on Ω and one can show its surjectivity using results
of Kohlhaase [17] (concerning the transfer of some G-equivariant vector bundles
on Ω to D∗-equivariant vector bundles on P1) and some functional analytic tricks.
This was strongly influenced by very recent work of Colmez [7]. To show injectivity
one can use a result of Colmez [7], stating that Πan/Πsm is irreducible (we actually
give a different argument, which we need to prove the theorems to follow).

The next theorem deals with the Hodge filtration and the de Rham complex of
Σn. Note that since Σn is Stein and ρ is nontrivial, taking ρ-isotypic components
in the de Rham complex of Σn yields an exact sequence of topological G-modules

0→ O(Σn)
ρ → Ω1(Σn)

ρ → H1
dR(Σn)

ρ → 0.

Theorem 2. There is a canonical (up to scalar) isomorphism

H1
dR(Σn)

ρ ≃MdR(ρ)
∗ ⊗ π(ρ)∗

such that for any Π ∈ B(ρ) the inverse image of L(Π)⊥ ⊗ π(ρ)∗ ⊂ H1
dR(Σn)

ρ in
Ω1(Σn)

ρ is (Πan)∗ and the corresponding exact sequence

0→ O(Σn)
ρ → (Πan)∗ → L(Π)⊥ ⊗ π(ρ)∗ ≃ π(ρ)∗ → 0

is the exact sequence given by the previous theorem.
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p. 13-38.



2286 Oberwolfach Report 39/2015

[3] L. Berger, C. Breuil-Sur quelques représentations potentiellement cristallines de GQp ,
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Perfectoid Shimura varieties of abelian type

Xu Shen

Let p be a fixed prime. For a Shimura datum (G,X), we have the associated
tower of Shimura varieties (ShK(G,X))K⊂G(Af ) over Cp. Fix a sufficient small

prime to p level Kp ⊂ G(Ap
f ), and consider open compact subgroups K in the

form K = KpK
p with Kp ⊂ G(Qp). Let ShKpKp(G,X)ad be the associated adic

spaces over Cp. As usual, associated to the Shimura datum (G,X), we have the
flag variety FLG over Cp, which will be viewed as an adic space. In [4], we proved
the following theorem.

Theorem 1. Assume that the Shimura datum (G,X) is of abelian type.

(1) There exists a perfectoid space SKp over Cp such that

SKp ∼ lim
←−
Kp

ShKpKp(G,X)ad.
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For the meaning of ∼, see the Definition 2.4.1 of [8].
(2) There is a G(Qp)-equivariant map of adic spaces

πHT : SKp −→ FLG,

which is invariant for the prime to p Hecke action on SKp , when Kp

varies. Moreover, pullbacks of automorphic vector bundles over finite level
Shimura varieties to SKp can be understood by using the map πHT (for a
precise statement, see [4] subsection 3.4).

Recall that the basic theory of perfectoid spaces was developed in [5]. Recall also
that Shimura varieties of abelian type are exactly those studied by Deligne in [2],
where he proved that the canonical models of these Shimura varieties exist. When
the weight is rational, Shimura varieties of abelian type (over characteristic 0) are
known as moduli spaces of abelian motives. The class of abelian type Shimura
varieties is strictly larger than the class of Hodge type Shimura varieties. By
Deligne’s classification, the class of abelian type Shimura varieties is also the main
class of Shimura varieties. Natural examples of abelian type Shimura varieties
(which are usually not of Hodge type) include those associated to quaternion
algebras over a totally real field, and those associated to special orthogonal groups
over Q with signature (2, n) for some integer n ≥ 1.

Before stating the ideas in the proof of the theorem, let us first give some
remarks. If (G,X) is of Hodge type, then the theorem was proved by Scholze in [6]
(and the part (2) for Hodge-Tate period map was completed by Caraini-Scholze
in [1]). In fact, Scholze proved a stronger version for some compactification of
Shimura varieties, which is the key geometric ingredient for his construction of
automorphic Galois representations.

By definition, a Shimura datum (G,X) is called of abelian type if there exists a
Shimura datum of Hodge type (G1, X1), together with a central isogeny between
the derived subgroups Gder

1 → Gder, such that it induces an isomorphism of the
associated adjoint Shimura datum (Gad

1 , Xad
1 ) ≃ (Gad, Xad). Therefore, the ge-

ometry of Shimura varieties of abelian type and of Hodge type are closely related.
The ideas in the proof of the theorem are as follows.

Step 1. For any Shimura datum (G,X), fix a connected component X+ ⊂ X .
We show that the statement (1) in the theorem is equivalent to the statement that,
there exists a perfectoid space S0

Kp over Cp, such that

S0
Kp ∼ lim

←−
Kp

Sh0KpKp(G,X)ad,

where Sh0KpKp(G,X)ad are the connected (adic) Shimura varieties which over C
come from X+ × {e} (e is the identity element in G(Af ) ).

Step 2. Let (G,X) be of abelian type and (G1, X1) be of Hodge type as above.
Consider the scheme over Cp defined by

Sh0
Kp(G,X) = lim

←−
Kp

Sh0
KpKp(G,X).
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Then we can show that there exists some Kp
1 ⊂ G1(A

p
f ) such that

Sh0Kp(G,X) = Sh0Kp
1
(G1, X1)/∆,

where ∆ is some finite group, acting freely on the scheme

Sh0
Kp

1
(G1, X1) = lim

←−
K1p

Sh0K1pK
p
1
(G1, X1).

We would like a perfectoid version of this construction. By Step 1 and Scholze’s
result for (G1, X1), there is a perfectoid Shimura variety S0

Kp
1

(G1, X1), such that

S0
Kp

1

(G1, X1) ∼ lim
←−K1p

Sh0K1pK
p
1
(G1, X1)

ad. The key points are now

(1) ∆ acts freely on S0
Kp

1

(G1, X1), which implies that S0
Kp

1

(G1, X1)/∆ exists

as a diamond (cf. [7]).
(2) In fact, S0

Kp
1

(G1, X1)/∆ exists as an adic space. Moreover, there is a finite

étale Galois cover S0
Kp

1

(G1, X1) → S0
Kp := S0

Kp
1

(G1, X1)/∆ with Galois

group ∆.

Then by a theorem of Kedlaya-Liu (cf. [3] Proposition 3.6.22), S0
Kp is perfectoid.

By construction, we have S0
Kp ∼ lim

←−Kp
Sh0KpKp(G,X)ad. By Step 1 again, the

statement (1) of the theorem holds.
Step 3. Let (G,X) and (G1, X1) be as in Step 2. Then we have FLG = FLG1

.
By the results of Caraiani-Scholze, statement (2) of theorem holds for (G1, X1).
Let π′

HT : SKp
1
(G1, X1) −→ FLG be the Hodge-Tate period map for the Hodge type

perfectoid Shimura variety SKp
1
(G1, X1). The key point is then π′

HT|S0

K
p
1

(G1,X1) is

∆-invariant. So we get a map

πHT : S0
Kp → FLG.

Then applying the G(Qp)-action, and the theory of connected components of
Shimura varieties, we get that the statement (2) of the theorem holds.

Here we give briefly some applications of the theorem. First, if (G,X) is a
Shimura datum of abelian type such that the associated Shimura varieties are
compact, then we can use the theorem to deduce the vanishing of degree i-th com-
pleted cohomology of these varieties, where i > dimShK . Next, we can prove that
the moduli spaces of polarized K3 surfaces with infinity level at p are perfectoid,
by applying our theorem and the global Torelli theorem for K3 surfaces. We hope
that this result will lead more interesting applications to the arithmetic of K3
surfaces.
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Bad reduction of Shimura varieties, level raising, and Selmer groups

Yifeng Liu

Let F be a totally real number field of odd degree d. Consider an elliptic curve E
defined over F . From E, we may construct the following motive

ME :=
(
⊗-IndQ

F h1(E)
)
(
d+ 1

2
)

over Q, which has coefficient Q and rank 2d, where ⊗-IndQ
F denotes the tensor

induction of a motive over F to Q. Moreover,ME is canonically polarized, that is,
equipped with a canonical pairing ME ×ME → Q(1), of symplectic type induced
from the Weil pairing on E. By definition, for every prime p, we have the p-adic
realization (ME)p of Mp, which is a Galois representation of Q on a Qp-vector
space of dimension 2d.

We may associate to the motive ME two invariants. The first is the (complete)
L-function, denoted as L(s,ME), which is originally defined for s with sufficiently
large real part. The modularity conjecture asserts that L(s,ME) has a meromor-
phic continuation to the entire complex plane, and satisfies the following functional
equation

L(s,ME) = ǫ(ME)c(ME)
−sL(−s,ME),

where ǫ(ME) ∈ {±1} and c(ME) is a positive integer. The second is the (family
of Bloch–Kato) Selmer groups: it has for each prime p, a Qp-subvector space
H1

f (Q, (ME)p) of the Galois cohomology H1(Q, (ME)p).
For the above modularity conjecture, if we assume that E is modular, in other

words, E can be attached to a cuspidal automorphic representation ΠE of G(A)
where G = ResF/QGL2,F , then one can compute that

L(s,ME) = L(s+ 1/2,ΠE, rd)

where rd :
LG→ GL2d(C) is the tensor product representation. In particular, the

above modularity conjecture for ME is known when d = 1 and by [1], d = 3.
Our main theorem is the following; see [3] for details.

Theorem 1. Suppose that d = 3 and E is a modular elliptic curve over F satis-
fying some mild conditions. If L(0,ME) 6= 0, then H1

f (Q, (ME)p) = 0 for all but
finitely many p.
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According to the Bloch–Kato Conjecture, which generalizes the B-SD Conjec-
ture, we expect that the order of 0 of L(s,ME) at s = 0 (assuming the modularity
conjecture) is equal to the dimension of H1

f (Q, (ME)p) over Qp for all primes p.
Thus, the above theorem confirms the Bloch–Kato Conjecture for the motive ME

when d = 3 and the analytic order is 0.
The proof follows essentially from two results: level raising of automorphic

representation on certain Hilbert threefold, and an explicit reciprocity law for
diagonal cycles on the Hilbert threefold. Suppose that we are in the situation of
the previous theorem. The set of local epsilon factors of the motiveME determines
a definite quaternion algebraD over Q; put B = D⊗QF . Then ΠE has a Jacquet–
Langlands transfer Π to the group GB := ResF/QB

×, which is trivial at infinity.

Fix a (neat) open compact subgroup U of GB(Ẑ) induced by an Eichler order, such
that ΠU has nonzero triple product period integral (a finite sum, in fact) against
D×. This is possible as L(0,ME) 6= 0 by the result of [2].

Fix a sufficiently large prime p (controlled by E and U) and an integer ν ≥ 1.
For a prime ℓ inert in F at which U is hyperspecial maximal, we define a nearby
quaternion algebra D′ over Q: it is indefinite, ramified at ℓ, and isomorphic to
D away from {∞, ℓ}; put B′ = D′ ⊗Q F . The map D′× → ResF/QB

′× induces a
finite morphism of the corresponding Shimura varieties Y → X over Q, with level
structures determined by U and maximal at ℓ. Note that X is a (quaternionic)
Hilbert threefold and Y is a Shimura curve. Let T be the spherical Hecke algebra
for X . Then the Hecke eigenvalues of Π modulo pν give rise to an ideal m of T.

Now we can explain the meaning of level raising. For simplicity, assume that F
is normal. For the complete version, see [3].

Theorem 2. If ℓ satisfies the condition

aℓ(E) ≡ ℓ3 + 1 mod pν

and other mild congruence conditions, then the Galois representation on the Hecke
quotient of the étale cohomology H3(X

Q
,Zp(2))/m of Q is isomorphic to a direct

sum of copies of (⊗-IndQF E(F )[pν ])(−1). Moreover, the singular quotient of the
local Galois cohomology H1

sing(Qℓ,H
3(X

Q
,Zp(2))/m) at ℓ is canonically isomorphic

to the dual Z/pν-module of Map(GB\GB(Ẑ)/U,Z/pν)[m].

In particular, H3(XQ,Zp(2))/m is nontrivial as ΠU is. The reciprocity law

is then a formula for the image of Y in H1
sing(Qℓ,H

3(XQ,Zp(2))/m) under the
Abel–Jacobi map, which is given by the triple product integral of functions on

GB\GB(Ẑ)/U against D×, up to an elementary factor. Thus by our construction,
for large ν, we have obtained elements in H3(X

Q
,Zp(2))/m with nontrivial image

in the singular quotient at ℓ.
The proof of the level raising and reciprocity law uses the integral model of

X at ℓ studied by Zink [5], which has poly-nodal (but not semistable) reduction,
together with the computation of the vanishing cycle on such model. It also uses
the existence of Tate cycles (curves) on certain quaternionic Shimura surfaces,
recently proved in [4].
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Generalized Hasse invariants

George Boxer

Fix integers g ≥ 1, N ≥ 3, a prime p not dividing N , and let X = Xg,N/Fp be
the moduli space of principally polarized abelian varieties of dimension g with a
principal level N structure. We recall the Ekedahl-Oort stratification of X [4].

If k is an algebraically closed field of characteristic p, and (A, λ) ∈ X(k) is a
geometric point, then there are only finitely many possibilities for the p-torsion
A[p] of A as a finite group scheme over k up to isomorphism. This leads to a
stratification

X =
∐

w∈W I

Xw

of X into reduced locally closed subschemes Xw, which is characterized by the
property that two geometric points x, y ∈ X(k) lie in the same stratum Xw if and
only if Ax[p] ≃ Ay[p] as finite group schemes. The indexing set W I is a certain set
of Weyl group cosets whose precise definition will not play a role in this summary.

Let A/X be the universal abelian scheme, and let ω = det e∗Ω1
A/X be the

determinant of the Hodge bundle. For each stratumXw, Ekedahl and Oort [4] have
constructed a canonical non-vanishing section Aw ∈ H0(Xw, ω

Nw) for a suitable
positive integer Nw. We recall their construction.

For each stratum Xw they introduce the canonical filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gc ⊂ · · · ⊂ G2c = A[p]|Xw
.

Here A[p]|Xw
is the p-torsion of the universal abelian scheme over Xw, and the

Gi/Xw are finite flat subgroup schemes of A[p]|Xw
. Let F : A[p] → A[p](p) and

V : A[p](p) → A[p] denote the relative Frobenius and Verschiebung. Then for

each term Gi in the canonical filtration, F−1(G
(p)
i ) and V (G

(p)
i ) exist as finite flat

group schemes over Xw, and are again terms in the canonical filtration. In fact,
the canonical filtration may be characterized as the coarsest filtration with this
property.

Ekedahl and Oort show that there is a permutation σ ∈ S2c with the property
that

V : (Gσ(i)/Gσ(i)−1)
(p) ≃ Gi/Gi−1 for i = 1, . . . , c, and

F : Gi/Gi−1 ≃ (Gσ(i)/Gσ(i)−1)
(p) for i = c+ 1, . . . , 2c.
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In particular for any 1 ≤ i ≤ 2c there is an isomorphism

Gi/Gi−1 ≃ (Gσ(i)/Gσ(i)−1)
(p),

either given by Frobenius or the inverse of Verschiebung. Let N denote the order
of the permutation σ. Then we obtain isomorphism

Gi/Gi−1 ≃ (Gσ(i)/Gσ(i)−1)
(p) ≃ (Gσ2(i)/Gσ2(i)−1)

(p2) ≃ · · · ≃ (Gi/Gi−1)
(pN )

by “going around the cycles of σ.”
Now for a group scheme G/S we have the co-lie algebra ωG/S = e∗ω1

G/S, where

e : S → G is the identity section. We always have that Gc, the middle term in
the canonical filtration, is the kernel of Frobenius A[F ]. Hence we have ω|Xw

≃
detωGc

. From this and the filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gc

we obtain

ω|Xw
≃

c⊗

i=1

ωGi/Gi−1

Differentiating the isomorphisms Gi/Gi−1 ≃ (Gi/Gi−1)
(pN ) from above we ob-

tain isomorphisms of sheaves

ωGi/Gi−1
≃ ω

(pN )
Gi/Gi−1

.

Finally taking determinants and multiplying them together for i = 1, . . . c we
obtain an isomorphism

ω|Xw
≃ ω|p

N

Xw

or in other words a non vanishing section

Aw ∈ H
0(Xw, ω

pN−1).

I call the sections Aw generalized Hasse invariants because in the case that Xw is
the ordinary locus, Aw is precisely the classical Hasse invariant.

The starting point of the present work is the question: does Aw extend to the
Zariski closure Xw of Xw? Unfortunately at the present time I am unable to prove
this, and it may not even be true. However I can prove [1] the following slightly
weaker result, which is nonetheless sufficient for many applications.

Theorem 1. For all sufficiently large integers M , AM
w extends to a section of

ωM(pN−1) on Xw whose non vanishing locus is precisely Xw.

There has been quite a bit of of work on generalized Hasse invariants on Shimura
varieties, including work of Goren, Ito, Goldring, Nicole, Geraghty, Wedhorn, and
Koskivirta. However before this theorem was proved, all known results were either
for geometrically simpler Shimura varieties (like the work of Goren on Hilbert
modular varieties, or the work of Ito on split U(n, 1) Shimura varieties) or for
special strata (like the work of Goldring-Nicole and Koskivirta-Wedhorn on µ-
ordinary Hasse invariants and an unpublished construction of Geraghty-Goldring
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for certain strata in the Siegel case.) Recently a similar theorem has been proved
for all Hodge type Shimura varieties by Goldring-Koskivirta [2].

I will now briefly describe the proof of Theorem 1. The main difficulty in
proving the theorem is that while the open strata Xw are smooth, their closures
Xw can have rather nasty singularities. In particular they are often not normal.
Moreover the canonical filtration, which is used to define the sections Aw on the
open strata, need not extend on the closure (even in codimension one.)

Both of these difficulties can be dealt with at once in the following way. We
may view the canonical filtration on an open stratum Xw as defining a parahoric
level structure on the universal abelian scheme over Xw. In particular it defines a
“canonical section”

s : Xw → XP

to the projection π : XP → X . Here XP denotes a suitable moduli space of
principally polarized abelian varieties with parahoric level structure at p.

It is known by a result of Görtz and Hoeve [3] that the image of the section s is

a so called Kottwitz-Rapoport stratum of XP . Denote its Zariski closure by X̃w,
so that the projection π restricts to a proper morphism

π : X̃w → Xw

which restricts to an isomorphism on the dense open Xw.
Our strategy for proving the theorem is to first extend Aw to X̃w, and then

“descend” to Xw. For the first step, we are now in considerably better shape
because the canonical filtration extends to all of X̃w and moreover it follows from
the theory of local models that X̃w is smooth locally a schubert variety (so in

particular normal.) Thus extending Aw to X̃w reduces to a problem of computing
the order of vanishing of a section of a line bundle on a Schubert variety. The
second step is an elementary trick of commutative algebra: once we know that Aw

extends to X̃w and vanishes on the complement of Xw, it follows that a sufficiently
large power of Aw extends to Xw.
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Generalized Hasse invariants

Jean-Stefan Koskivirta

(joint work with Wushi Goldring)

Let S0,K = ShK(G0, X0) be a Shimura variety of Hodge-type attached to a
Shimura datum (G0, X0) and to an open compact subgroup K ⊂ G0(Af ), and
denote by E0 its reflex field. Fix a prime number p and a place ν|p in E0 where
SK has good reduction. Denote by Oν the ring of integers of the completion E0,ν

of E0 at ν, and let κ be its residue field. Assume that the subgroup K decomposes
as K = KpK

p with Kp ⊂ G0(A
p
F ) open compact and Kp ⊂ G0(Qp) hyperspe-

cial. Kisin and Vasiu proved the existence of a smooth canonical Ov-model SK

in [6] and [10] respectively. The special fiber SK := SK ⊗ κ admits numerous
stratifications (Newton, Ekedahl-Oort, p-rank,...). In this report we only consider
the Ekedahl-Oort stratification. Let A be the abelian scheme over SK given by
pull-back from the Siegel Shimura variety, and let ω be the Hodge bundle on SK .
The main result of [3] is the following:

Theorem 1. Assume either that (G0, X0) is of PEL-type, or that the character of
ω is p-small. Let C ⊂ SK be an Ekedahl-Oort stratum and let C denote its Zariski
closure, endowed with the reduced scheme structure. There exists an integer N ≥ 1
and a section H ∈ H0(C, ωN) such that C coincides with the non-vanishing locus
of H.

We will explain below the condition ”p-small” of Theorem 1. It is always satis-
fied in the PEL case. For Hodge-type Shimura varieties, it seems that the character
attached to ω is always a multiple of a minuscule character, so that even the case
p = 2 is conjecturally covered by our result.

We now explain our approach to Theorem 1, which is entirely group-theoretical.
Let G be a reductive model of G0 over Zp such that G(Zp) = Kp, and define
G := GFp

. We may find a cocharacter µ : Gm,Oν
→ GOν

such that µ ⊗ E0,ν lies
in X0. Denote again by µ : Gm,κ → Gκ its base change to κ. It defines a pair of
opposite parabolic subgroups P± in G and a Levi L = P+ ∩ P−. We may assume
that there exists a Borel subgroup of G contained in P+ and defined over Fp. Let
W be the Weyl group of G and let I be the type P+. Let Ψ denote the set of roots
ofG and write ∆ for the B-simple roots. Building on the work of Moonen-Wedhorn
in the case G = GLn, Pink-Wedhorn-Ziegler defined and studied the stack G-Zipµ

of G-zips of type µ in [9] and [8]. They proved that the underlying topological
space of G-Zipµ can be identified with IW (endowed with the topology induced
by a certain order, finer than the Bruhat order). By results of Zhang in [13], the
Hodge filtration and the conjugate filtration of H1

dR(A /SK) give rise naturally to
a G-zip over SK , and the induced morphism of stacks

ζ : SK −→ G-Zipµ

is smooth (in the PEL case, a similar result was proved by Viehmann-Wedhorn in
[11]). The Ekedahl-Oort strata are defined as the fibers of ζ. As a corollary, Zhang
shows that the induced decomposition of SK is a locally closed stratification and he
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determines the dimensions of strata (assuming they are nonempty). Furthermore
he proves the density of the µ-ordinary locus of SK .

Wedhorn-Yatsyshyn proved in [12] that the Ekedahl-Oort stratification is pure,
i.e the inclusion of a stratum C in SK is an affine morphism. Theorem 1 shows
in almost all (and conjecturally all) Hodge-type cases that that this stratification
is even principally pure, i.e C is the non-vanishing locus of a section of a line
bundle over its Zariski closure. For example, the classical ordinary locus is the
non-vanishing locus of a section in H0(SK , ω

p−1). For general unitary Shimura
varieties, Goldring-Nicole constructed a µ-ordinary Hasse invariant in [4], and this
was generalized by the author andWedhorn in [7] to arbitrary Hodge-type Shimura
varieties. For split unitary Shimura varieties of signature (n−1, 1), Ito constructed
such sections for all Ekedahl-Oort strata ([5]). Finally, Boxer constructed Hasse
invariants for all strata in PEL cases A and C in his thesis ([1]), simultaneously
to our work.

Before we can state the group-theoretical result that leads to Theorem 1, we
first need the following definition:

Definition 2. We say that the character λ ∈ X∗(L) is ample if 〈λ, α∨〉 < 0 for
all α ∈ ∆ \ I. We say that λ is p-small if 〈λ, α∨〉 < p for all α ∈ Ψ.

For a character λ ∈ X∗(L), we denote by L (λ) the corresponding line bundle
on G-Zipµ. One of the main results of [3] is the following theorem:

Theorem 3 (Group-theoretical Hasse invariants). Let C ⊂ G-Zipµ be a zip stra-

tum and let C denote its closure, with the reduced structure. Let χ ∈ X∗(L) be
an ample and p-small character of L. Then there exists an integer N ≥ 1 and
a section H ∈ H0(C ,L (χ)⊗N ) whose non-vanishing locus is exactly the substack
C .

Now Theorem 1 follows from Theorem 3 by pulling back along the map ζ,
because the character of ω is always ample. Our construction of Hasse invariants
uses a group-theoretical analogue G-ZipFlagµ of the flag space introduced in [2]
by Ekedahl and Van der Geer. It is a quotient stack that classifies G-zips endowed
with a complete flag refining the Hodge filtration. There is a natural morphism
π : G-ZipFlagµ → G-Zipµ given by forgetting the flag, whose fibers are flag
varieties. Furthermore, there exists a natural smooth morphism of stacks

ψ : G-ZipFlagµ −→ [B\G/B] .

We define the flag strata as the fibers of ψ. In general, the map π sends a flag
stratum to a union of zip strata. However, for particular flag strata called minimal
(resp. cominimal), the image consists of a single zip stratum. Moreover, the
restriction of π to these strata is finite. Our technique to construct Hasse invariants
is to pull back sections of line bundles on closures of Schubert strata via the map
ψ to cominimal flag strata, and then descend them to zip strata using a descent
lemma similar to Boxer’s.

We list some advantages of our approach. First, the cocharacter µ need not
be minuscule, and hence group-theoretical Hasse invariants exist even for groups
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that do not admit a Shimura variety. Second, we are able to construct sections of
other Hecke-equivariant line bundles than simply ω. Third, the sections produced
in this way are canonical, because the space of sections they belong to are all
one-dimensional. This result has the following corollary:

Corollary 4. Let (G1, µ1) → (G2, µ2) be a finite morphism of reductive groups
over a finite field, mapping the cocharacter µ1 to µ2. Assume that there exists an
ample and p-small character λ ∈ X∗(L2) whose restriction to L1 is again p-small.
Then the induced map G1-Zip

µ1 → G2-Zip
µ2 has topologically discrete fibers.

This corollary shows that if two Ekedahl-Oort strata map to the same stratum
by a finite morphism of Shimura varieties, there is no closure relation between
them. We also deduce the following:

Corollary 5. Assume SK is projective. Then all Ekedahl-Oort strata are affine.

In the Siegel case, we use results of Ekedahl-Van der Geer in [2] to show that
the Ekedahl-Oort stratification extends naturally to the minimal stratification,
and that all strata are affine. This result was generalized by Boxer in [1] for other
PEL Shimura varieties.
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A stratification of affine Deligne-Lusztig varieties

Miaofen Chen

(joint work with Eva Viehmann)

Let k be a finite field with q = pr elements and let k be an algebraic closure of k.
We consider both the arithmetic case where F =W (Fq)[1/p] and the function field
case where F = k((t)). In both cases let L denote the completion of the maximal
unramified extension of F and let OF and OL be the valuation rings. We denote
by ǫ the uniformizer t or p. We write σ : x 7→ xq for the Frobenius of k over k and
also for the induced Frobenius of L over F (mapping ǫ to ǫ).

Let G be a connected reductive group over OF and let K = G(OL). Since k is
finite G is automatically quasi-split. Let B ⊂ G be a Borel subgroup and T ⊂ B
a maximal torus in B, both defined over OF . We denote by X∗(T ) the set of
cocharacters of T, defined over OL.

We fix a minuscule dominant cocharacter µ ∈ X∗(T ) and an element b ∈ G(L).
The affine Deligne-Lusztig variety XG

µ (b) = Xµ(b) associated to the triple (G, b, µ)
is defined as follows:

Xµ(b)(k) = {g ∈ G(L)/K | g
−1bσ(g) ∈ KǫµK}.

Here we use ǫµ := µ(ǫ). In the function field case the affine Deligne-Lusztig variety
XG

µ (b) has a reduced scheme structure as it can be considered as reduced closed
subscheme of the affine Grassmannian of G. In the arithmetic case, in many cases
(i.e. when (G,µ) corresponds to a Shimura datum of Hodge type), Xµ(b)(k) is

the set of k-valued points of a Rapoport-Zink moduli space of p-divisible groups.
For general (G,µ), Zhu endows the mixed characteristic affine Grassmannian of G
with some reasonable algebro-geometric structure [11]. We have then the induced
structure on Xµ(b). Therefore, in all these cases, we can always consider the
geometric structure on the affine Deligne-Lusztig varieties.

Let

Jb(F ) = {g ∈ G(L) | g ◦ b = b ◦ σ(g)}.

This is the set of F -points of an algebraic group over F , an inner form of some
Levi subgroup of G (the centralizer of the Newton point νb of b, [6]). There is a
natural action of Jb(F ) on Xµ(b).

The geometry of affine Deligne-Lusztig varieties has been studied by many peo-
ple. For example we know about the sets of connected components ([1]), and for
minuscule µ and G = GLn or GSp2n also their sets of irreducible components
([7],[8]). In several particular cases we even have a complete description of their
geometry, for example Kaiser [5] for the moduli space of supersingular p-divisible
groups of dimension 2, Vollaard-Wedhorn [10] for certain unitary groups of sig-
nature (1, n− 1), further generalized by Görtz and He in [3]. All of these results
indicate a close relation between the geometry of the affine Deligne-Lusztig vari-
eties and (the Bruhat-Tits building of) Jb(F ). However, so far a conceptual way
to explain this is still lacking.
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In this talk, we propose a new invariant on affine Deligne-Lusztig varieties which
also induces a decomposition of the variety into locally closed subschemes. Our
invariant has the property that it not only depends on the element g−1bσ(g) ∈
KǫµK, i.e. on the p-divisible group or local G-shtuka at the point of the moduli
space we are interested in, but also on the quasi-isogeny, resp. on the element g
itself.

Based on the idea that the geometry of an affine Deligne-Lusztig variety should
be studied in relation with the action of Jb(F ), we assign to an element g ∈
G(L)/K the function

fg : Jb(F ) → X∗(T )dom

j 7→ inv(j, g).

Here inv denotes the relative position, i.e. the uniquely defined element of
X∗(T )dom with j−1g ∈ Kǫfg(j)K given by the Cartan decomposition

G(L) =
∐

ξ∈X∗(T )dom

Kξ(ǫ)K.

In general the closure of a stratum is not a union of strata.
It turns out that this stratification is the natural group-theoretic generalization

of a number of other stratifications that were studied intensively over the past
years, but only existed for special cases, and were up to now unrelated to each
other. We discuss three classes of such stratifications.

1. The Bruhat-Tits stratification. In [10] Vollaard and Wedhorn consider the su-
persingular locus of Shimura varieties for unitary groups of signature (1, n − 1)
at an inert prime. They show that a refinement of the Ekedahl-Oort stratifica-
tion yields a stratification of this locus, such that the individual strata have a
description in terms of fine Deligne-Lusztig varieties, and the closure relations are
given in terms of the Bruhat-Tits building of the associated goup Jb(F ). In [3],
Görtz and He generalize this result by computing a complete list of cases of affine
Deligne-Lusztig varieties for which the same generalization of the Ekedahl-Oort
invariant yields an analogous result. We can show that in the Vollaard-Wedhorn
case, our invariant coincides with theirs. We conjecture that the same holds in
all cases studied by Görtz and He and verify this conjecture in one additional case.

2. Semi-modules. The main tool for the study of affine Deligne-Lusztig varieties
in the superbasic case is the stratification by semi-modules. It was first consid-
ered by de Jong and Oort in [2] for certain moduli spaces of p-divisible groups
corresponding to the group GLn and later extended to the superbasic case for
unramified groups in [9] and [4]. We can show that it coincides with the special
case for superbasic b of our stratification.

3. The a-number. Finally, we discuss the relation to the a-number of p-divisible
groups. This invariant assigns with a p-divisible group X over k the natural num-
ber dimHomk(αp, X). It is a particularly useful tool to study moduli spaces of
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p-divisible groups with or without polarization, but so far does not have a good
generalization for p-divisible groups together with endomorphisms. In general our
invariant (for the groupGLn) seems to be not related to the a-number of p-divisible
groups. However, in the crucial case of the generic a-number 1 (and basic b), we
can show that this locus coincides with one Jb(F )-orbit of strata for our invariant.
We conjecture that this result still holds if one drops the assumption that b is
basic. In this way, our invariant defines also a group-theoretic generalization of
the open stratum defined by a = 1.

Altogether these examples show that the functions fg are an invariant that
seems to be central in the study of the geometry of affine Deligne-Lusztig varieties.
One might hope that it opens the way to a more systematic investigation of its
relation to the Bruhat-Tits building of Jb(F ).
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On non-emptiness of the basic loci of Shimura varieties

Chia-Fu Yu

We show that the basic locus of a reduction mod p of a Shimura variety of abelian
type is non-empty. Our motivation is to show non-emptiness of the minimal KR
stratum, and hence non-emptiness of KR strata for many cases where the KR
stratification has been established.

Description. Recall a Shimura datum is a pair (G,X) which consists of a
connected reductive algebraic Q-group G and a G(R)-conjugacy class X of R-
homomorphisms h : S = ResC/RGm → GR satisfying the usual axioms. For any
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open compact subgroup U ⊂ G(Af ), denote by

ShU (G,X)C := G(Q)\X ×G(Af )/U

the associated complex Shimura variety and ShU (G,X) its canonical model defined
over the reflex field E = E(G,X) ⊂ C. The canonical model exists due to works
of Shimura, Deligne, Milne and Borovoi.

Let p denote a prime number. We fix an algebraic closure Qp of Qp and an

embedding Q →֒ Qp. Let F be a field with E ⊂ F ⊂ Q, and v the corresponding
place of the ring of integers OF lying over p. Let O(v) denote the localization of
OF at v, which is assumed to be a DVR. We write ShU,F for ShU (G,X)⊗E F and

MU := MU ⊗ k(v) for the special fiber of an integral model MU of ShU,F over
O(v).

We make the following working definition, which allows us to discuss Newton
strata. Let B(G) denote the set of σ-conjugacy classes of G(L), where L is the
completion of the maximal unramified extension of Qp. Let Γ = Gal(Qp/Qp).

Definition 1. (1) An enhanced integral model of ShU,F is a pair (MU ,N), where

• MU is an integral model of ShU,F over O(v), and
• N :MU → B(G) is a map of sets with locally closed fibers.

(2) An enhanced integral model of a tower {ShU,F }U∈U of Shimura varieties is
a datum ({MU}U∈U ,N), where

• {MU}U∈U is an integral model of {ShU,F }U∈U over O(v) with continuous
right G(Ap

f )-action, and

• N :MU → B(G) is a map of sets with locally closed fibers, for any U ∈
U , which is invariant under the transition maps and prime-to-p Hecke
operators.

(3) Suppose f : (G1, X1)→ (G2, X2) is a morphism of Shimura data. Let U1 ⊂
G1(Af ) and U2 ⊂ G2(Af ) be open compact subgroups such that f(U1) ⊂ U2. We
denote again by f : ShU1,F → ShU2,F the induced morphism of Shimura varieties.
A morphism of enhanced integral models (MU1

,N1) and (MU2
,N2) of ShU1,F

and ShU2,F , respectively, is an O(v)-morphism f̃ : MU1
→ MU2

inducing f and
commuting with maps Ni.

We consider a class of integral models satisfying the functorial property for
maps of special pairs, which is similar to Deligne’s definition of canonical models.
This is different from (and is much easier than) the theory of integral canonical
models investigated by Milne, Vasiu, Moonen and Kisin.

Let (T, hT ) be a Shimura datum with T a torus over Q. For any open compact
subgroup V ⊂ T (Af ), the Shimura variety ShV (T, h) = Spec(EV ) is a finite etale
E-scheme, where EV is a finite etale E-algebra. We define the integral model SV

of ShV,F by

SV := Spec
(
OEV

⊗OE
O(v)

)nor
,
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where OEV
denotes the maximal order in EV and Rnor denotes the normalization

of a reduced Noetherian ring R. Let N : SV := SV ⊗ k(v) → B(T ) be the con-
stant map given by the class [µT ] ∈ X∗(TQp

)Γ through Kottwitz’s isomorphism
X∗(TQp

)Γ ≃ B(T ), where µT := hT,C(1, z) ∈ X∗(T ) = X∗(TQp
). It is easy to show

that ({Sv}V⊂T (Af ),N) is an enhanced integral model of {ShV,F}V⊂T (Af ).

Definition 2. Let (G,X) and ShU,F be as before. An enhanced integral model
(MU ,N) of ShU,F is called admissible if for any special pair f : (T, hT ) →֒ (G,X)
and any open compact subgroup V ⊂ T (Af) with f(V ) ⊂ U , the morphism
f : ShV,F → ShU,F extends to a morphism of enhanced integral models

f̃ : (SV , [µT ])→ (MU ,N).

For any h ∈ X , let µ := hC(1, z) : Gm → G, viewed as a cocharacter over Qp,
and {µ} the conjugacy class of µ. Let B(G, {µ}) be the Kottwitz set defined in
Kottwitz [8]. Theorem 3 (2) uses a result of Kisin called the Langlands-Rapoport
lemma.

Theorem 3. Let (MU ,N) be an admissible enhanced integral model of any Shi-
mura variety ShU (G,X)⊗E F .

(1) One has N(MU )∩B(G)b 6= ∅, where B(G)b is the set of basic σ-conjugacy
classes.

(2) Assume that GQp
is quasi-split. We have N(MU ) = B(G, {µ}).

Consider the case where (G,X) is of Hodge type and U = UpU
p, where

Up ⊂ G(Qp) is a maximal open compact subgroup and Up ⊂ G(Ap
f ) is sufficiently

small. We can construct an admissible integral model MU of ShU,F through the
normalization of the closure in the Siegel moduli scheme. This is the construction
first made by Vasiu, and then studied by Kisin and others in the good reduction
case. The same normalization construction also produces an admissible enhanced
integral model for a tower of Shimura varieties, even those of abelian type. How-
ever, the transition maps in integral models are finite (the Kummer theorem).
Therefore, this construction does not construct good integral models when the
level group Up is small.

Theorem 4. Let (G,X) be a Shimura datum of PEL-type and U = UpU
p ⊂ G(Af )

an open compact subgroup. Assume that p ∤ |π1(Gder)|, GQp
splits over a tamely

ramified extension of Qp, Up is a parahoric subgroup and Up is sufficiently small.
Let MU be the integral canonical model of ShU (G,X) constructed as in Pappas-Zhu
[11, Theorem 0.2]. Then every KR stratum ofMU is non-empty.

Proposition 5. Let (G,X) be a Shimura datum of Hodge type and U = UpU
p ⊂

G(Af ) an open compact subgroup. Assume that p 6= 2, GQp
is unramified, Up is

hyperspecial and Up is sufficiently small. Let MU be the integral canonical model of
ShU (G,X) constructed by Kisin [5]. Then every EO stratum ofMU is non-empty.

The EO strata ofMU are constructed in Wortmann [16] and C. Zhang [17] based
on works of Wedhorn and Kisin. Non-emptiness of Newton strata for Shimura



2302 Oberwolfach Report 39/2015

varieties as in Proposition 5 has been proved by Kisin [6] and D. U. Lee [10] using
reduction of CM points.
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Affinoids in the Lubin-Tate perfectoid space and simple epipelagic
representations

Naoki Imai

(joint work with Takahiro Tsushima)

Let K be a non-archimedean local field, and p be the maximal ideal of OK . Let n
be a positive integer.

For a non-negative interger i, let LTn(p
i) be the connected Lubin-Tate space

with level pi for the 1-dimensional formal OK-module of height n. The Lubin-Tate
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perfectoid spaceM is a projective limit of LTn(p
i) with respect to i in some sense,

which has a structure of a perfectoid space over K̂ab.
Let D be the central division algebra over K of invariant 1/n. We put

G = GLn(K)×D× ×WK .

Let Art : K× → W ab
K be the Artin reciprocity map normalized such that a uni-

formizer is sent to a lift of the geometric Frobenius element. We put C = K̂. The
base changeMC =M⊗K̂ab C has an action of

G1 = {(g, d, σ) ∈ G | det(g) = NrdD/K(d)Art−1
K (σ)}.

Boyarchenko-Weinstein constructed a family of affinoids inMC, and related them
with the local Langlands correspondence and the local Jacquet-Langlands corre-
spondence for representations of “unramified type” in [1].

We want to treat some special case for representations of “ramified type”. Sim-
ple epipelagic representations are the representations of “ramified type” with the
smallest conductor.

Let k be the residue field of K, and p be the characteristic of k. We put q = |k|
and f = logp q. We write n = pen′, where n′ is prime to p. We put m = gcd(e, f)
if e ≥ 1. Let ℓ be a prime number that is different from p.

Theorem. ([2], [3]) We have a family of affinoids {Xi}i∈I inMC and their formal
models {Xi}i∈I such that

• the special fiber Xi of Xi is isomorphic to the perfection of the smooth
Artin-Schreier variety defined by

zq − z =
∑

1≤i≤j≤n−1

yiyj in An
kac

if p ∤ n, and by

zp
m

− z = yp
e+1 −

1

n′

∑

1≤i≤j≤n−2

yiyj in An
kac

if p | n,
• the stabilizer Hi of Xi in G

1 naturally acts on Xi, and
• c-IndGHi

Hn−1
c (Xi,Qℓ) realizes the local Langlands correspondence and the

local Jacquet-Langlands correspondence for simple epipelagic representa-
tions.
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Principle B for de Rham Representations

Xinwen Zhu

(joint work with Ruochuan Liu)

Let k be a p-adic field and we fix an algebraic closure k̄ of k. Let ρ : Gal(k̄/k)→
GL(V ) be a p-adic representation. Recall that ρ is called de Rham if

dimk(V ⊗Qp
BdR)

Gal(k̄/k) = dimQp
V,

where BdR is Fontaine’s de Rham period ring. The importance of this notion lies
in the fact that the p-adic Galois representations arising from geometry (i.e. those
on the étale cohomology of smooth proper varieties over k) are always de Rham.

We are interested in a relative situation. More precisely, let X be a smooth
connected rigid analytic variety over k and let L be a Zp-local system on X . Such
a local system can be regarded as a geometric family of Galois representations
parameterised by X . Then in [4], we proved the following theorem

Theorem. Let k′ be a finite extension of k, and x ∈ X(k′). If Lx, the stalk of L
at x, regarded as a p-adic representation of Gal(k̄′/k′), is de Rham, then L is a
de Rham local system on X. In particular, Ly is de Rham at every classical point
y of X.

We first make two remarks.

Remark 1. There is the notion of arithmetic families of Galois representations.
It is known that in that case, the de Rham loci is closed. The theorem indicates
that the geometric family is very rigid. One probably can also compare it with
Deligne’s result [1] (called Principle B in loc. cit.): Let S be a smooth connected
complex variety and X → S be a smooth proper morphism. Let ts be a family of
a Hodge classes (i.e. a global section of ...) such that it is absolutely Hodge for
one point. Then ts is absolutely Hodge for all s ∈ S.

Remark 2. We do not known whether the same statement would hold if we
replace “de Rham” by “Hodge-Tate”, but it fails if we replace “de Rham” by
“crystalline”.

There are two key ingredients in the proof. The first is the proétale site Xproet

and period sheaves introduced in [5]. In particular, we have the period sheafOBdR.
Let ν : Xproet → Xet be the natural projection. Then we show that

Proposition 3. Ei := Riν∗(L⊗OBdR) is a vector bundle on X.

Proposition 4. For every x ∈ X(k′), there is a canonical isomorphism Ei ⊗OX

k′ ≃ Hi(Gal(k̄′/k′),Lx̄ ⊗BdR).

We outline the proof of Proposition 1. Using the fact that Ei is an OX -module
with an integrable connection, we reduce to prove that Ei is a coherent sheaf. The
second key ingredient appears in the proof of this claim. Namely, using Falting’s
p-adic Simpson correspondence (cf. [2], but in fact we need a stronger version as
in [3]), one can calculate Ei using some coherent object.
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Note that although to deduce our main theorem, it is enough to use the state-
ment of Proposition 2 for E0, the proof of Proposition 2 itself uses the local freeness
of Ei for all i as given by Proposition 1.

We have the following application of our main theorem (as discussed with K.-W.
Lan).

Let (G,X) be a Shimura datum. Let K ⊂ G(Af ) be a (neat) open compact
subgroup. Let

ShK(G,X) = G(Q)\X ×G(Af )/K

be the corresponding Shimura variety. For a rational representation V of G, let LV

be the corresponding Betti local system on ShK(G,X). The theory of canonical
model gives a model of ShK(G,X) (still denoted by the same notation) defined
over the reflex field E ⊂ C, and for a choice of a prime p, a p-adic étale local
system LV,p over ShK(G,X). Note that if G = T is a torus, ShK(T,X) is a finite
set equipped with an action of Gal(Ē/E) and one can show that in this case, LV,p

is de Rham at every point of ShK(T,X). Combining with our main theorem, we
arrive at

Corollary 5. Let F be a finite extension of E and x ∈ ShK(G,X)(F ). Then the
p-adic representation LV,p,x of Gal(F̄ /F ) is de Rham at p.

This theorem is not new if (G,X) is of abelian type, as in the case ShK(G,X)
parameterizes certain abelian motives, and LV,p is the local system of their p-adic
realizations. Deligne expected that a Shimura variety corresponding to a Shimura
datum with rational weight should always parameterize certain motives. This is
not known in general, but the above corollary gives an evidence.
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Affine Deligne-Lusztig varieties of higher level and Local Langlands
correspondence for GL2

Alexander Ivanov

Following a fundamental example of Drinfeld for SL2(Fq), Deligne and Lusztig
constructed in [6] certain varieties attached to a connected reductive group G
over a finite field Fq and showed that any irreducible representation of G(Fq)
occurs in the alternating sum of the ℓ-adic cohomology of these varieties. Those
representations arise in families attached to characters of various tori in G. Thus
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the Deligne-Lusztig construction provides one with a geometric realization of the
automorphic induction for G.

Since then one was trying to find similar constructions in the affine setting,
aiming for a geometric realization of the automorphic induction and the local
Langlands correspondence for connected reductive groups over local fields. How-
ever, usual geometric realizations of local Langlands make use of p-adic methods,
formal schemes and adic spaces, also using the global theory. In our approach we
consider a very natural generalization of the Deligne-Lusztig theory to the affine
setup aiming a purely local approach to the local Langlands correspondence. First
of all, the affine counterpart of Deligne-Lusztig varieties are the so called affine
Deligne-Lusztig varieties defined by Rapoport in [12]. As the Deligne-Lusztig va-
rieties are equipped with natural étale covers, it is also natural to expect such
covers in the affine setup. In contrast to the finite case, there are covers of arbi-
trary deep level and not only of level zero. In the present talk, based on [8], we
discuss a construction of such covers of arbitrary level attached to a connected
reductive group over a local field F of positive characteristic. This extends [7],
where the covers of level zero were constructed. Using these covers we realize the
unramified part of the local Langlands correspondence for GL2 over F using only
schemes over Fq and purely local methods. Moreover, we give a detailed compar-
ison of our construction with the theory of cuspidal types of Bushnell-Kutzko [3]
(we use the language of Bushnell-Henniart [2]). On the ’algebraic’ side we show
an improvement of the Intertwining theorem [2] 15.1.

There are several closely related approaches: In [9],[10] Lusztig suggested a
related construction generalizing the finite Deligne-Lusztig construction to affine
setup in a slightly different manner. (A minor variation of) this construction was
worked out for division algebras by Boyarchenko [1], Chan [5] and Boyarchenko-
Weinstein [4]. A further closely related approach, was given by Stasinski in [13],
who suggested a method to construct the so called extended Deligne-Lusztig va-
rieties attached to groups over Fq[t]/t

r. The advantages of our construction are
that it (i) has a quite simple definition in terms of the Bruhat-Tits building of G,
(ii) establishes a direct link with affine Deligne-Lusztig varieties, which are well-
studied in various contexts. In particular, this allows to use the whole combinatoric
machinery developed for their study.

To explain the results, we need some notation. Let k be a finite field with q
elements, k̄ its algebraic closure and let σ denote the Frobenius automorphism
x 7→ xq of k̄. Let F = k((t)) resp. L = k̄((t)) be the fields of Laurent series
over k resp. k̄ and OF = kJtK,OL = k̄JtK their rings of integers. Let pL ⊆ OL

denote the maximal ideal. We extend σ to an automorphism of L by setting
σ(
∑

n ant
n) =

∑
n σ(an)t

n.
Let G be a connected reductive group over F . Let us recall the definition of

affine Deligne-Lusztig varieties of Iwahori-level ([12] Definition 4.1). Let BL be
the Bruhat-Tits building of the adjoint group GL,ad. The Bruhat-Tits building
of Gad over F can be identified with the σ-invariant subset of BL. Let S be a
maximal L-split torus in G, which is defined over F . Let I ⊆ G(L) be the Iwahori
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subgroup attached to a σ-stable alcove in the apartment corresponding to S. Let
F be the affine flag manifold of G, seen as an ind-scheme over k. Its k̄-points can
be identified with G(L)/I. Let W̃ denote the extended affine Weyl group of G
attached to S. The Bruhat decomposition of G(L) induces the invariant position
map

inv : F (k̄)×F (k̄)→ W̃ .

For w ∈ W̃ and b ∈ G(L) the affine Deligne-Lusztig variety attached to w and b is
the locally closed subset

Xw(b) = {gI ∈ F : inv(gI, bσ(g)I) = w}

of F , which is given its reduced induced sub-Ind-scheme structure. Let Jb be the
σ-stabilizer of b, i.e., the algebraic group over F defined by

Jb(R) = {g ∈ G(R⊗F L) : g
−1bσ(g) = b}

for any F -algebra R. Then Jb(F ) acts on Xw(b).
We sketch now the construction of natural covers of these varieties, which still

admit an action by Jb(F ). Let Φ = Φ(G,S) be the relative root system. We see 0
as the ’root’ corresponding to the centralizer T of S in G (as G is quasi-split, this
is a maximal torus). After choosing a σ-stable base point x in BL, with a concave
function f on Φ ∪ {0} one can associate a subgroup G(L)f ⊆ G(L). In [14], Yu
defined a smooth model Gf of GL over OL, such that Gf (OL) = G(L)f . Assume
that G(L)f ⊆ I and that G(L)f is σ-stable. Then Gf descends to a smooth group

scheme over OF . Further, G(L)/G(L)f is the set of k̄-points of an Ind-scheme F f ,
which defines a natural cover of F , as follows from [11] Theorem 1.4. Moreover,
if G(L)f is normal in I, then F f → F is a (right) principal homogeneous space
under I/G(L)f . There is a map

invf : F
f (k̄)×F

f (k̄)→ DG,f ,

which covers the map inv. Here DG,f is a set of representatives of double cosets
of G(L)f in G(L). For wf ∈ DG,f , b ∈ G(L), we define the affine Deligne-Lusztig
variety of level f attached to wf and b as the locally closed subset

Xf
wf

(b) = {ḡ = gG(L)f ∈ F
f (k̄) : invf (ḡ, bσ(ḡ)) = wf},

endowed with its induced reduced sub-Ind-scheme structure (in fact, this is a
scheme locally of finite type over k). Assume G(L)f is normal in I. Then I acts
on DG,f by σ-conjugation wf 7→ i−1wfσ(i). Hence we can consider the stabilizer
If,wf

⊆ I of wf under this action. It acts on Xf
wf

(b) on the right and this action

commutes with the left action of Jb(F ). Moreover this If,wf
-action can be extended

to an action of Z(F )If,wf
, where Z is the center of G. Thus we obtain the desired

variety Xf
wf

(b) with an action of G(F )× Z(F )If,wf
.

Now we consider the case G = GL2. As the levels indexed by concave functions
are cofinal, we can restrict attention to certain special functions fm for integers
m ≥ 0 and write m instead of fm everywhere. We determine the varieties Xm

wm
(1)

and the attached representations of G(F ) and compare our results with the alge-
braic construction of the same representations in [2] using the theory of cuspidal
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types. Let E/F be the unramified extension degree 2. If the image of wm in the
finite Weyl group is non-trivial, then Z(F )Im,wm

has a natural quotient isomor-
phic to E∗, and the Z(F )Im,wm

-action in the ℓ-adic cohomology (ℓ 6= char(F )) of
Xm

wm
(1) factors through anE∗-action. In this way we obtain aG(F )-representation

in the spaces Hi
c(X

m
wm

(1),Qℓ)[χ], where χ goes through smooth Q
∗

ℓ -valued char-
acters of E∗. It turns out that if χ is minimal of level m (i.e., lies in sufficiently
general position) then there is an integer i0, such that Hi

c(X
m
wm

(1),Qℓ)[χ] = 0 for
all i 6= i0 and

Rχ = Hi0
c (Xm

wm
(1),Qℓ)[χ]

is an unramified irreducible cuspidal representation of G(F ), of level m (we also
define Rχ for χ non-minimal). Let Pnr

2 (F ) be the set of all isomorphism classes of
admissible pairs over F attached to E/F (cf. [2] 18.2). Let A nr

2 (F ) be the set of
all isomorphism classes of unramfied irreducible cuspidal representations of G(F ).
We defined a map

(1) R : Pnr
2 (F )→ A

nr
2 (F ), (E/F, χ) 7→ Rχ.

Computing traces of enough elements acting in (finite-dimensional subspaces of)
Rχ, one can show that this map is injective. Using the theory of cuspidal types and
strata, Bushnell-Henniart attached to an admissible pair (E/F, χ) an irreducible
cuspidal G(F )-representation πχ ([2] §19). The tame parametrization theorem ([2]
20.2 Theorem) then shows that the map

Pnr
2 (F )

∼
−→ A

nr
2 (F ), (E/F, χ) 7→ πχ

is a bijection (also for even q). Here is our main result (which also works for even
q).

Theorem 1. Let (E/F, χ) be an admissible pair. The representation Rχ is irre-
ducible cuspidal, unramified, has level ℓ(χ) and central character χ|F∗ . Moreover,
Rχ is isomorphic to πχ. In particular, the map (1) is a bijection.

The proof is purely local. Two ideas in the proof follow [1],[4]: it is Bo-
yarchenko’s trace formula and maximality of certain closed subvarieties of Xm

wm
(1)

(note that Xm
wm

(1) itself is not maximal due to the presence of a ’level 0 part’).
Finally, we remark that for G = GL2 and b superbasic, Jb(F ) = D∗ for D a

quaternion algebra over F and the varieties Xm
xm

(b) seem to be very close (but
unequal) to the varieties studied by Chan in [5].
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Semistable MF

Gerd Faltings

The categoryMF has been defined over base rings R which are smooth over an
unramified valuation ring V = V0 with perfect residue-field k. We assume given
a Frobenius-lift φ on R. They consist of filtered finitely generated R-modules
M (for technical reasons we usually assume that the Hodge numbers lie between
0 and p − 2) which are p-torsion, and φ-linear maps Φi on F i(M), such that
Φi|F i+1(M) = pΦi+1, and such that the Φi induce an isomorphism

Φ: M̃ ⊗R,φ R ∼=M.

Here M̃ denotes the universal object for which the Φi satisfying the condiition
above define such a map Φ. Then Frobenius invariance implies that locally in
Spec(R) M is isomorphic to grF (M) and is isomorphic to the pushout of a V0-
module, and that maps (obvious definition) are strict. For example for maps
one uses that ideals generated by minors of a given size contain their Frobenius
transforms, thus are generated by powers of p. Also we assume given an integrable
connection ∇ which satisfies Griffiths’ transversality and for which the Φi are
parallel. ∇ makes the theory independant of the choice of the Frobenius-lift φ.

Fontaine theory defines a fully faithful contravariant functor D from MF to
Galois-representations by

D(M) = Hom(M,Acrys(R)⊗Qp/Zp).

Here Acrys(R) is the ring defined by Fontaine starting with the maximal extension
R̄ of R which is unramified in characteristic zero. Fully faithfulness is shown over
discrete valuation rings by analysing simple objects which correspond to tame
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Galois-representations, and reducing the general case to this by defining an adjoint
to D.

If we assume that R has only semistable singularities one has to embed Spec(R)
into a smooth scheme and pass to the divided powerhull. This is because crystalline
cohomology naturally defines crystals over Spec(R) which are determined by their
evaluation on the divided powerhull. This is a module with integrable connection.
If we try to extend the previous theory we encounter two new difficulties:

Firstly the basering itself admits a Hodge filtrations, and secondly commutative
algebra over it is more involved since it is no more regular and noetherian. However
these difficulties can be overcome, firstly for objects annihilated by p, by lifting to
a smooth ring. After that the previous proofs can be modified to work.

As an application we construct semistable models for certain Shimura varieties
defined by spin-groups GSpin(2n). On the associated orthogonal groups the level
structure can be described as follows:

Without level structure smooth models have been constructed by A.Vasiu ([3],
[4]). On them we have orthogonal vectorbundles E of rank 2n, together with an
isotropic line F (E). For the level structure we assume given a maximal isotropic
subspace (of dimension n) of E/pE.
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Height of CM points on orthogonal Shimura varieties

Fabrizio Andreatta

(joint work with Eyal Goren, Ben Howard, Keerthi Madapusi Pera)

Let E be a CM field of degree 2d with totally real subfield F . Colmez [3] has proved
that the Faltings height of an abelian variety A over C of dimension d with complex
multiplication by the ring of integers of E and with CM type Φ ⊂ Hom(E,C)
depends only on (E,Φ) and not on A itself. We denote such quantity by hFalt(E,Φ).

Colmez has also provided a conjectural formula for the value of hFalt(E,Φ) in terms of

the logarithmic derivatives at s = 0 of certain Artin L-functions. The first main
application of our results is an averaged version of his formula, namely

1

2d

∑

Φ

hFalt(E,Φ) = −
1

2
·
L′(0, χ)

L(0, χ)
−

1

4
· log

∣∣∣∣
DE

DF

∣∣∣∣−
d

2
log(2π).
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Here χ is the quadratic Hecke character associated to the extension F ⊂ E, the
sum on the left is taken over all CM types Φ and DE and DF are the discriminants
of E and F respectively.

Remark 1. Shortly after our announcement X. Yuan and S.-W. Zhang announced
a proof of the same result, but using different methods.

In our first announcement a controlled, error term in log(2) of the formula above
appeared. The missing argument to get the precise formula is provided by work in
progress by W. Kim and K. Madapusi Pera concerning the properties of integral
models of Shimura varieties of orthogonal type for the prime 2.

Recently J. Tsimerman has proved that the averaged Colmez’s conjecture im-
plies the André-Oort conjecture for all Siegel modular varieties, without using
GRH.

The result is obtained studying the arithmetic intersection between big CM cy-
cles and certain arithmetic Heegner divisors on orthogonal type Shimura varieties,
following the strategy outlined by T. Yang [5] and Howard-Yang [4] in the case
d = 2.

1. GSpin Shimura varieties and Heegner divisors

Let (V,Q) be a quadratic space over Q of signature (n, 2) with n ≥ 1, and let
L ⊂ V be a maximal lattice. We set DL = [L∨ : L] for the discriminant of L
where L∨ is the dual of L with respect to the bilinear form defined by Q.

To this data one can associate a Shmura variety M defined over Q. Consider
the group G = GSpin(V ), a particular compact open subgroup K ⊂ G(Af ), and
the hermitian domain

D = {z ∈ VC : [z, z] = 0, [z, z] < 0}/C×.

The complex points of M coincide with the n-dimensional complex manifold

M(C) = G(Q)\D ×G(Af )/K.

Thanks to results of A. Vasiu, M. Kisin, K. Madapusi Pera and W. Kim and
K. Madapusi Pera it admits a flat and normal integral model M over Z, which
is smooth over Z[1/2DL] (there is a caveat for p = 2 that we ignore in this short
note). Furthermore it is endowed with an arithmetic line bundle ω̂ (called the
tautological bundle): over C the fiber over a point [z] ∈ D is the line Cz with
metric −[z, z].

Let SL = C[L∨/L]. For any half-integer k we define the space Sk(ωL) of cusp
forms, the space M !

k(ωL) of weakly holomorphic forms and the space Hk(ωL) of
harmonic weak Maass forms. These are vector valued modula forms transforming
via the Weil representation ωL. By a theorem of Bruinier-Funke [1] one has an
exact sequence

0→M !
1−n

2
(ωL)→ H1−n

2
(ωL)

ξ
→ S1+n

2
(ωL)→ 0,

where ξ is a suitable differential operator.
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Each form f ∈ H1−n
2
(ωL) has a holomorphic part, which is a formal q-expansion

f+ =
∑

m≫−∞
µ∈L∨/L

c+f (m,µ)ϕµ · q
m

valued in SL. Here ϕµ ∈ SL is the characteristic function of the coset µ ∈ L. If

c+f (m,µ) ∈ Z for all m ≤ 0 and µ ∈ L∨/L, then one can associate to f a metrized

line bundle Ẑ(f).

2. Big CM cycles and the Bruinier-Kudla-Yang theorem

Given an element λ ∈ F such that λ is negative for one real embedding ι0 of F and
positive for all the others, we can associate a quadratic space V (Q) of signature
(2d − 2, 2) as follows. We put V := E and Q(x) = TrE/Q(λxx̄). The torus
TE := ResE/Q(Gm) acts via isometries on V : given α ∈ E∗ we let it act on V = E

via multiplication by xx̄−1. One can lift such a map to a morphism of algebraic
groups TE → G. The image T ⊂ G is a torus, the choice of an embedding ι0 of
E over the given one of F and the choice of a suitable open compact subgroup of
T (Af) provides a 0-dimensional Shimura variety Y and a morphism of Shimura
varieties Y → M . The image consists of special points called big CM points in
[2]. Upon taking integral models we get an arithmetic curve Y and a morphism

Y →M. Given a metrized line bundle L̂ overM we define its arithmetic degree

[Y : L̂] along Y to be the arithmetic degree of its pull–back to Y.
Our main result, from which the application to Colmez’s conjecture follows, is

the following theorem conjectured in [2]:

Theorem 1. There exists an explicitly defined integer Dbad,L, depending the lattice
L, such that for any f ∈ H2−d(ωL) with integral principal part, we have the equality

[Ẑ(f) : Y]

degC(Y )
= −
L′(0, ξ(f))

Λ(0, χ)
+
a(0, 0) · c+f (0, 0)

Λ(0, χ)

up to a Q-linear combination of {log(p) : p | Dbad,L}.
Here degC(Y ) =

∑
y∈Y (C)

1
|Aut(y)| , the quantity a(0, 0) is defined in [2], using a

certain Hilbert modular Eisenstein series of parallel weight 1, and Λ(s, χ) is the
completed L-function of the quadratic character χ.

The archimedean contribution being computed already in [2], the key point

is the computation of the finite intersection multiplicities of [Ẑ(f) : Y] and the
comparison with the quantities appearing on the RHS.

3. Application to Colmez’s conjecture

Choose an harmonic weak Maass form f so that ξ(f) = 0 via the Bruinier-Funke
operator. Combining the Theorem with an explicit computation of a(0, 0) one gets

(1)
[Ẑ(f) : Y]

degC(Y )
≈L −cf(0, 0) ·

2Λ′(0, χ)

Λ(0, χ)
,
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where ≈L means equality up to a Q-linear combination of log(p) with p | Dbad,L.
After possibly replacing f by a positive integer multiple, the theory of Borcherds

products provides a rational section Ψ(f) of the line bundle ω⊗cf (0,0), satisfying

− log ||Ψ(f)||2 = Φ(f)− cf (0, 0) log(4πe
γ),

and div(Ψ(f)) = Z(f). Combining this with (1) and dividing by cf (0, 0) leaves

[ω̂ : Y]

degC(Y )
+ d · log(4πeγ) ≈L −

2Λ′(0, χ)

Λ(0, χ)
+

1

cf (0, 0)

[Ê2(f) : Y]

degC(Y )
.

One proves that the pullback to Y of the metrized line bundle ω̂ computes
Faltings heights of suitable CM abelian varieties, implying that

[ω̂ : Y]

degC(Y )
≈L

1

2d−2

∑

Φ

hFalt(E,Φ) + 2d · log(2π).

Putting it all together, we find that

1

2d

∑

Φ

hFalt(E,Φ) = −
1

2
·
L′(0, χ)

L(0, χ)
−

1

4
· log

∣∣∣∣
DE

DF

∣∣∣∣−
d

2
log(2π) +

∑

p

bE(p) log(p)

for some rational numbers bE(p), with bE(p) = 0 for all p not dividing Dbad,L.
The last step consists in proving that for every prime p there exists an L such

that p does not divide Dbad,L. This implies that bp(E) = 0 proving the averaged
version of Colmez’s conjecture.
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Generic Tate cycles on some Shimura varieties over finite fields

Yichao Tian

(joint work with David Helm and Liang Xiao)

The supersingular locus of the characteristic p of a Shimura variety has been
studied extensively. Most previous works such as [1, 2, 6, 8] mainly focus on the
geometric properties of the supersingular locus. In this talk, which is based on [3],
we will explain its relationship with Tate conjecture over finite fields. The general
principle behind this work is that, in an even dimensional Shimura variety, the
supersingular locus contributes to the generic Tate cycles of middle dimension.
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We illustrate this principle by examining an explicit example of unitary Shimura
variety.

Let F be a real quadratic field, and E be an imaginary quadratic extension of
F . We fix a prime p, which is inert in F and splits in E. Denote by v and v̄ the
two places of E above p. Let (D, ∗) be a E-central division algebra with positive
involution of dimension n2 such that the restriction of ∗ to E is the complex
conjugation c and that Dopp ∼= D ⊗E,c E. We assume that D splits at p, i.e.
D ⊗Q Qp

∼= Mn×n(Ev)×Mn×n(Ev̄).
Consider V = D as a left D-module, equipped with a skew-Hermitian pairing

ψ : V × V → Q

of the form ψ(x, y) = TrD/Q(xδy
∗), where δ is some element of D× with δ∗ = −δ

to be fixed later. We denote by G = GU(V, ψ) the unitary similitude group of
(V, ψ). We consider G as an algebraic group over Q, and we choose δ such that
GU(R) ∼= G(U(1, n− 1)× U(n− 1, 1)). Note that G(Qp) ∼= Q×

p ×GLn(Ev), since
D is split at p.

Fix an order OD of D maximal at p such that OD ⊗Z Zp is self-dual with
respect to ψ. Let Kp = Z×

p ×GLn(OEv
) ⊆ G(Qp), and K

p be a sufficiently small
open compact subgroup of G(A∞,p). We consider the Shimura variety Sh1,n−1

associated with G of levelK = KpKp. This is a Shimura variety of PEL-type which
parametrizes abelian varieties of dimension 2n2 equipped with an action by OD, a
prime-to-p OD-linear polarization and a Kp-level structure, and satisfying certain
Kottwitz’s determinant condition of signature (1, n − 1) × (n − 1, 1). Following
Kottwitz [4], it is well known that Sh1,n−1 admits a canonical integral model over
Zp2 . We denote by Sh1,n−1 its special fiber over Fp2 . This is a projective smooth
algebraic variety over Fp2 of dimension 2(n− 1).

We consider now the étale cohomology group H
2(n−1)
et (Sh1,n−1,Fp

,Qℓ(n − 1)),

which is equipped with natural actions by the Galois group Gal(Fp/Fp2) and the

Hecke algebra HK := Qℓ[K\G(A)/K]. Since Sh1,n−1 is projective and smooth,
there is no continuous Hecke spectrum involved, and we have a canonical decom-
position:

(1) H2(n−1)(Sh1,n−1,Fp
,Qℓ(n− 1)) =

⊕

πf∈Irr(G(A∞))

πK
f ⊗Rℓ(πf ),

where Irr(G(A∞)) denote the set of irreducible admissible representations of
G(A∞), πK

f denotes the K-invariant subspace for each πf ∈ Irr(G(A∞)), and

Rℓ(πf ) is a certain representation of Gal(Fp/Fp2) which are easy to describe in
some special cases.

From now on, we assume that πf =
⊗′

q<∞ πq ∈ Irr(G(A∞)) is an object
satisfying the following conditions:

(1) We have πK
f 6= 0. In particular, π is unramified at p.
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(2) There exists an irreducible admissible (Lie(GC),K∞)-module π∞ such that
πf ⊗ π∞ is a cuspidal automorphic representation of G, and π∞ is coho-
mological in degree 2(n− 1) for the constant coefficient, i.e. we have

H2(n−1)(Lie(GC),K∞;π∞) 6= 0.

Here, K∞ denotes a maximal compact subgroup of G(R).

We now describe the Galois representation Rℓ(πf ). Since G(Qp) ∼= Q×
p ×

GLn(Ev), the p-component πp of πf has a natural decomposition πp = πp,0 ⊗ πv,
where πp,0 and πv are respectively irreducible admissible representations of Q×

p

and GLn(Ev). By (unramified) local Langlands correspondence, one can associate
to πv a local Galois representation

ρπv
: Gal(Fp/Fp2)→ GLn(Qℓ)

normalized so that, if Frobp2 ∈ Gal(Fp/Fp2) denotes the geometric Frobenius,
ρπv

(Frobp2) is semi-simple with characteristic polynomial

(2) Xn +

n∑

i=1

(−1)ipi(i−1)a(i)v Xn−i,

where a
(i)
v is eigenvalue of the i-th minuscule Hecke operator

T (i)
v = GLn(OEv

)diag(p, · · · , p︸ ︷︷ ︸
i

, 1, · · · , 1︸ ︷︷ ︸
n−i

)GLn(OEv
)

on π
GLn(OEv )
v . Then a result of Kottwitz [5] shows that we have, in the Grothen-

dieck group of Gal(Fp/Fp2)-modules,

[Rℓ(πf )] = mG(πf ) · [ρπv
⊗ ∧n−1ρπv

⊗ χ−1
p,0 ⊗Qℓ(

(n− 1)(n− 2)

2
)],

where χp,0 : Gal(Fp/Fp2) → Qℓ
×

is the character sending Frobp2 to πp,0(p
2), and

mG(πf ) is the automorphic multiplicity of πf for the group G.
We put

H2(n−1)(Sh1,n−1,Fp
,Qℓ(n− 1))πf

: = πK
f ⊗Rℓ(πf ),

and

H2(n−1)(Sh1,n−1,Fp
,Qℓ(n− 1))

GF
p2

−fin

πf : =
⋃

Fq/Fp2

πK
f ⊗Rℓ(πf )

Gal(Fp/Fq),

where Fq runs through all finite extensions of Fp2 . By Tate conjecture, one expects

that the subspace H2(n−1)(Sh1,n−1,Fp
,Qℓ(n− 1))

GF
p2

−fin

πf is generated by the cycle

classes of algebraic cycles on Sh1,n−1,Fp
of codimension n− 1. The main result of

[3] shows this is indeed the case, and actually the desired algebraic cycles come
from the supersingular locus of Sh1,n−1.

To make the statement precise, we still need the following notation. Note that
there exists a unique unitary group G′ over Q (for the CM extension E/F ) such
that G′(R) ∼= G(U(0, n)×U(n, 0)) and G′(A∞) ∼= G(A∞). Viewing K as an open
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compact subgroup of G′(A∞), there is a zero-dimensional Shimura variety Sh0,n

defined over Fp2 of levelK attached to G′. It has a similar interpretation as moduli
of abelian schemes equipped with an OD-action.

Thus πf can be also viewed as an irreducible admissible representation of
G′(A∞). Denote by mG′(πf ) the corresponding automorphic multiplicity of πf
for G′. The main result of [3] is the following

Theorem 1. (i) The supersingular locus of Sh1,n−1 is the union of n closed sub-
varieties Yi for 1 ≤ i ≤ n, such that each Yi is a fibration pri : Yi → Sh0,n with
geometric fibers isomorphic to

Z<n>
k : = {(H1, H2) ∈ Gr(n, i)×Gr(n, i− 1)|H

(p)
1 ⊇ H2, H

(p)
2 ⊆ H1},

where Gr(n, i) (resp. Gr(n, i−1)) is the Grassmanian variety over Fp which clas-
sifies i-dimensional (resp. (i− 1)-dimensional) subspaces within an n-dimensional

space, and H
(p)
1 and H

(p)
2 denotes the Frobenius twist of H1 (resp. H2).

(ii) Let πf be an object of Irr(G(Af )) as above. Assume that the eigenvalues of
ρπv

(Frobp2) (i.e. the roots of (2)) are distinct. Then the map

JLπf
: H0(Sh0,n,Fp

,Qℓ)
pr∗i−−→

n⊕

i=1

H0(Yi,Fp
,Qℓ)πf

∑
i Gysi

−−−−−→ H2(n−1)(Sh1,n−1,Fp
,Qℓ(n− 1))πf

is injective, where Gysi is the Gysin map associated to the closed immersion Yi →֒
Sh1,n−1.

(iii) Suppose moreover that any two eigenvalues of ρπv
(Frobp2) do not differ by

a root of unity, and mG(πf ) = mG′(πf ). Then JLπf
induces an isomorphism

H0(Sh0,n,Fp
,Qℓ)πf

∼
−→ H2(n−1)(Sh1,n−1,Fp

,Qℓ(n− 1))
GF

p2
−fin

πf .

In particular, H2(n−1)(Sh1,n−1,Fp
,Qℓ(n− 1))

GF
p2

−fin

πf is generated by cycle classes

of the irreducible components of the super-singular locus of Sh1,n−1,Fp
.

Remark 2. (1) The assumption that mG(πf ) = mG′(πf ) is satisfied when πf is
the finite part of an automorphic representation of G(AQ) which admits a cuspidal
base change to Gm ×GLn,E . Indeed, in this case, we have mG(πf ) = mG′(πf ) by
[9, Theorem E].

(2) The assumption in (ii) on the distinctness of the Frobenius eigenvalues
is crucial for our method. If this assumption is not satisfied, it seems that the
supersingular locus is not sufficient to give rise to all Tate cycles, and we do not
know how to construct extra algebraic cycles to meet Tate conjecture.

(3) Similar results have been obtain in [7] for even dimensional Hilbert modular
varieties when the prime p is inert in the totally real field.

Let us say a few words on the proof of the main theorem. First, the cycles
Yi’s are explicitly constructed as the moduli spaces of isogenies between abelian
schemes parametrized by Sh1,n−1 and those by Sh0,n. To prove Theorem 1(ii),
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we compute the intersection matrix of these cycles Yi for 1 ≤ i ≤ n. The most
technical part is to compute the self-intersection of the each Yi. It turns out that
the image of this matrix in the πf isotypical component of the cohomology group
is non-degenerate if and only if the roots of (2) are distinct. Theorem 1(ii) then
follows immediately from this fact. Statement (iii) is a direct consequence of (ii)
together with some easy computation on the Galois representation Rℓ(πf ).
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[1] U. Görtz and X. He, Basic loci in Shimura varieties of Coxeter type, arXiv:1311.6263.
[2] B. Howard and G. Pappas, On the supersingular locus of the GU(2, 2) Shimura variety,

Algebra and Number Theory 8 (2014), 1659–1699.
[3] D. Helm, Y. Tian, and L. Xiao, On Tate conjecture for the special fibres of some unitary

Shimura varieties, Preprint in 2014, arXiv:1410.2343.

[4] R. Kottwitz, Points on some Shimura varieties over finite fields. J. Amer. Math. Soc. 5

(1992), no. 2, 373–444.
[5] R. Kottwitz, On the λ-adic representations associated to some simple Shimura varieties,

Inven. Math. 108 (1992), 653–665.
[6] M. Rapoport, U. Terstiege, and S. Wilson, The supersingular locus of the Shimura variety

for GU(1, n− 1) over a ramified prime, Math. Z. 276 (2014), no. 3-4, 1165–1188.
[7] Y. Tian and L. Xiao, Tate cycles on quaternionic Shimura varieties over finite fields,

arXiv:1410.2321

[8] I. Vollaard and T. Wedhorn, The supersingular locus of the Shimura variety of GU(1, n−1)
II, Inventiones Math. 184 (2011), 591–627.

[9] P. J. White, Tempered automorphic representation of the unitary group, preprint in 2012.

Shtukas and the Taylor expansion of L-functions over a function field

Wei Zhang

(joint work with Zhiwei Yun)

In this talk, we explained a joint work with Zhiwei Yun [3].
Let k = Fq be a finite field of characteristic p > 0. Let X be a geometrically

connected smooth proper curve over k. Let ν : X ′ → X is a finite étale cover
of degree 2 such that X ′ is also geometrically connected. Let F = k(X) and
F ′ = k(X ′) be their function fields.

Let G = PGL2 and T = (ResF ′/FGm)/Gm the non-split torus associated to
the double cover X ′ of X . Let Bun2 be the stack of rank two vector bundles
on X . The Picard stack PicX acts on Bun2 by tensoring a line bundle. Then
BunG = Bun2/PicX is the moduli stack of G-torsors over X .

1. The Heegner–Drinfeld cycle

Let r be an even integer. Let µ ∈ {±}r be an r-tuple of signs such that exactly
half of them are equal to +. The Hecke stack Hkµ2 is the stack whose S-points
is the groupoid of the data (E0, ..., Er, x1, ..., xr, f1, ..., fr) where Ei’s are vector
bundles of rank two over X × S, xi’s are S-points of X , and each fi is a minimal



2318 Oberwolfach Report 39/2015

upper (i.e., increasing) modification if µi = +, and minimal lower (i.e., decreasing)
modification if µi = −, and the modification takes place along the graph of xi

E0
f1

//❴❴❴ E1
f2

//❴❴❴ · · ·
fr

//❴❴❴ Er .

The Picard stack PicX acts on Hkµ2 by simultaneously tensoring a line bundle.
Define HkµG = Hkµ2/PicX . Assigning Ei to the data above descends to a morphism
pi : Hk

µ
G → BunG.

The moduli stack ShtµG of Drinfeld G-Shtukas with r-modifications of type µ
for the group G is defined by the following cartesian diagram

(1) ShtµG

��

// HkµG

(p0,pr)

��
BunG

(id,Fr)
// BunG × BunG

The stack ShtµG is a Deligne-Mumford stack over Xr and the natural morphism

πµ
G : ShtµG

// Xr

is smooth of relative dimension r, and locally of finite type. We remark that ShtµG
as a stack over Xr is canonically independent of the choice of µ. The stack ShtµT
of T -Shtukas is defined analogously, with the Ei replaced by line bundles on X ′,
and the points xi on X

′. Then we have a map

πµ
T : ShtµT

// X ′r

which is a torsor under the finite Picard stack PicX′(k)/PicX(k). In particular,
ShtµT is a proper smooth Deligne-Mumford stack over Speck.

There is a natural finite morphism of stacks over Xr

ShtµT
// ShtµG .

It induces a finite morphism

θµ : ShtµT
// Sht′µG := ShtµG ×Xr X ′r .

This defines a class in the Chow group of proper cycles of dimension r with Q-
coefficient

θµ∗ [Sht
µ
T ] ∈ Chc,r(Sht

′µ
G )Q.

In analogy to the classical Heegner cycles [1] in the number field case, we will call
θµ∗ [Sht

µ
T ] the Heegner–Drinfeld cycle in our setting.

2. The spectral decomposition of the cycle space

We denote the set of closed points (places) of X by |X |. For x ∈ |X |, let Ox be the
completed local ring of X at x and let Fx be its fraction field. Let A =

∏′
x∈|X| Fx

be the ring of adeles, and O =
∏

x∈|X|Ox the ring of integers inside A. Let

K =
∏

x∈|X|Kx where Kx = G(Ox). The (spherical) Hecke algebra H is the
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Q-algebra of bi-K-invaraint functions C∞
c (G(A)//K,Q) with the product given by

convolution.
Let A = C∞

c (G(F )\G(A)/K,Q) be the space of everywhere unramified Q-
valued automorphic functions for G. Then A is an H -module. By an every-
where unramified cuspidal automorphic representation π of G(A) we mean an
H -submodule Aπ ⊂ A that is irreducible over Q. For every such π, EndH (Aπ)
is a number field Eπ , which we call the coefficient field of π. Then by the commu-
tativity of H , Aπ is a one-dimensional Eπ-vector space.

The Hecke algebra H acts on the Chow group Chc,r(Sht
′µ
G )Q via Hecke cor-

respondences. Let W̃ ⊂ Chc,r(Sht
′µ
G )Q be the sub H -module generated by the

Heegner–Drinfeld cycle θµ∗ [Sht
µ
T ]. There is a bilinear and symmetric intersection

pairing

(1) 〈·, ·〉Sht′µ
G

: W̃ × W̃ // Q.

Let W̃0 be the kernel of the pairing. The quotient W := W̃/W̃0 is then equipped
with a non-degenerate pairing induced from 〈·, ·〉Sht′µG

(·, ·) :W ×W // Q .

The Hecke algebra H acts on W .
Let π be an everywhere unramified cuspidal automorphic representation of G

with coefficient field Eπ, and let λπ : H → Eπ be the associated character, whose
kernel mπ is a maximal ideal of H . Let

(2) Wπ = Ann(mπ) ⊂W

be the λπ-eigenspace of W . This is an Eπ-vector space. Let IEis ⊂ H be the
Eisenstein ideal (cf. [3]). Informally speaking, this is the annihilator of the Eisen-
stein spectrum in the space of automorphic functions A. Define

WEis = Ann(IEis).

Theorem 1. We have an orthogonal decomposition of H -modules

(3) W =WEis ⊕

(
⊕

π

Wπ

)
,

where π runs over the finite set of everywhere unramified cuspidal automorphic
representation of G, and Wπ is an Eπ-vector space of dimension at most one.

The Q-bilinear pairing (·, ·) on Wπ can be lifted to an Eπ-bilinear symmetric
pairing

(4) (·, ·)π :Wπ ×Wπ
// Eπ

where for w,w′ ∈ Wπ , (w,w
′)π is the unique element in Eπ such that TrEπ/Q(e ·

(w,w′)π) = (ew,w′) for all e ∈ Eπ.
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3. Taylor expansion of L-functions

Let π be an everywhere unramified cuspidal automorphic representation of G with
coefficient field Eπ . The standard L-function L(π, s) is a polynomial of degree
4(g − 1) in q−s−1/2 with coefficients in Eπ, where g is the genus of X . Let πF ′

be the base change to F ′, and let L(πF ′ , s) be its standard L-function. This
L-function is a product of two L-functions associated to cuspidal automorphic
representations of G over F :

L(πF ′ , s) = L(π, s)L(π ⊗ ηF ′/F , s),

where

ηF ′/F : F×\A×/O× // {±1}

is the character corresponding to the étale double cover X ′ via class field theory.
The function L(πF ′ , s) satisfies a functional equation

L(πF ′ , s) = ǫ(πF ′ , s)L(πF ′ , 1− s),

where ǫ(πF ′ , s) = q−8(g−1)(s−1/2). Let L(π,Ad, s) be the adjoint L-function of π.
Denote

(1) L (πF ′ , s) = ǫ(πF ′ , s)−1/2 L(πF ′ , s)

L(π,Ad, 1)
,

where the the square root is understood as ǫ(πF ′ , s)−1/2 := q4(g−1)(s−1/2). In
particular, we have a functional equation:

L (πF ′ , s) = L (πF ′ , 1− s).

Consider the Taylor expansion at the central point s = 1/2:

L (πF ′ , s) =
∑

r≥0

L
(r)(πF ′ , 1/2)

(s− 1/2)r

r!
,

i.e.,

L
(r)(πF ′ , 1/2) =

dr

dsr

∣∣∣
s=0

(
ǫ(πF ′ , s)−1/2 L(πF ′ , s)

L(π,Ad, 1)

)
.

If r is odd, by the functional equation we have

L
(r)(πF ′ , 1/2) = 0.

Since L (πF ′ , s) ∈ Eπ[q
−s−1/2, qs−1/2], we see that

(2) L
(r)(πF ′ , 1/2) ∈ Eπ · (log q)

r.

Then our main result in [3] relates the r-th Taylor coefficient to the self-intersection
number of the π-component of the Heegner–Drinfeld cycle θµ∗ [Sht

µ
T ] on the stack

Sht′µG .

Theorem 1. Let π be an everywhere unramified cuspidal automorphic represen-
tation of G with coefficient field Eπ. Let [ShtµT ]π ∈ Wπ be the projection of the
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image of θµ∗ [Sht
µ
T ] ∈ W̃ in W to the direct summand Wπ under the decomposition

(3). Then we have an equality in Eπ

1

2(log q)r
|ωX |L

(r) (πF ′ , 1/2) =
(
[ShtµT ]π, [ShtµT ]π

)
π
,

where ωX is the canonical divisor, and |ωX | = q−2g+2.

Remark 2. When r = 0, this formula is equivalent to the special case of Wald-
spurger formula [2] for unramified π, relating the automorphic period integral to
the central value of the L-function of πF ′

∣∣∣
∫

T (F )\T (A)

ϕ(t)dt
∣∣∣
2

=
1

2
|ωX |L (πF ′ , 1/2),

where ϕ ∈ πK is normalized such that the Petersson inner product (ϕ, ϕ) = 1, and
the measure on G(A) is such that vol(K) = 1, and the measure on T (A) is such
that the maximal compact open subgroup has volume one.

Remark 3. In [3] we only consider the everywhere unramified situation where
the L-function has nonzero Taylor coefficients in even degrees only. But the same
construction with slight modifications should work in the ramified case as well,
where the L-function may have nonzero Taylor coefficients in odd degrees. The
case r = 1 would then give an analog of the Gross–Zagier formula [1] in the function
field case.
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The image of the crystalline Dieudonné functor

Eike Lau

Let X be an Fp-scheme. We study the crystalline Dieudonné functor

DX : (p-div/X)→ (DC/X)

from the category of p-divisible groups over X to the category of (locally free)
Dieudonné crystals. It is known by [3, 4, 1] that

a) when X is regular and F -finite, then DX is an equivalence,
b) when X is an excellent l.c.i. scheme, then DX is fully faithful,
c) in general DX is not fully faithful. Example: X = Spec k[xy]/(x2, xy, y2).

In the l.c.i. case, in order to describe the essential image of DX we have to take
into account the Hodge filtration. We note that for a PD thickening of Fp-schemes
U → T , the Frobenius σT : T → T factors over a map σU/T : T → U . The following
definition essentially appears in [5, §V.3].
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Definition 1. Let (M, F, V ) be a Dieudonné crystal over X . A submodule
FilMX ⊆ MX is called admissible if it is a locally direct summand and if for
each open set U ⊆ X and each PD thickening U → T of Fp-schemes we have

σ∗
U/T FilMU = Ker(FT : σ∗

TMT →MT )

inside σ∗
U/TMU = σ∗

TMT .

Let (DCF/X) be the category of Dieudonné crystals equipped with an admis-
sible filtration. The Hodge filtration of a p-divisible group defines an extension of
DX to a functor

D̃X : (p-div/X)→ (DCF/X).

Theorem 2. If X is an l.c.i. scheme which can locally be embedded into a regular
and F -finite scheme, then D̃X is an equivalence.

This is compatible with the previous results because the forgetful functor
(DCF/X)→ (DC/X) is an equivalence when X is regular and F -finite, and it is
fully faithful when X is an l.c.i. scheme.

The proof of Theorem 2 uses the following construction. Let Z be an affine
regular locally closed subscheme of X , and let Y be an infinitesimal neighbourhood
of Z. We construct a category CY and a functor ΦY : (p-div/Y ) → CY with the
properties: (i) the functors ΦY for varying Y induce an equivalence of infinitesimal
deformations; (ii) if Y is an l.c.i. scheme, then CY is equivalent to (DCF/Y ) such

that ΦY corresponds to D̃Y . The category CY involves a generalisation of the
category of Dieudonné displays of [8] to a relative situation.

It is natural to ask for a modification of the category (DCF/X) for non-l.c.i.
schemes which is equivalent to p-divisible groups in general. For those schemes Y
that appear above, the category CY fulfils this requirement, but it is not clear how
to extend the definition to a wider class of schemes. In the case of semiperfect
schemes there is a more complete answer in a similar direction:

An Fp-algebra R is called semiperfect if the Frobenius map σ : R→ R is surjec-
tive. Then there is a universal p-adic PD thickening Acris(R)→ R, which carries
a structure of a frame in the sense of [6] by [7, Lemma 4.1.8].

Proposition 3. For each semiperfect ring R there is a functor

ΦR : (p-div/Y )→ (windows/Acris(R)).

An isogeny of semiperfect rings R → R′ is a surjective homomorphism whose
kernel is annihilated by a power of Frobenius. We call a semiperfect ring R bal-
anced if the ideal J = Ker(σ : R→ R) satisfies Jp = 0.

Proposition 4. For each semiperfect ring R which is isogeneous to a balanced
semiperfect ring the functor ΦR is an equivalence.

This result can be applied to Kisin modules for perfectoid rings as follows. Let B
be a perfectoid algebra of characterstic zero with ring of power-bounded elements
B0. Then R = B0/pB0 is a balanced semiperfect ring. Let R♭ = lim

←−
(R, σ) and
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Ainf =W (R♭). There is a natural surjective map θ : Ainf → B0. In this setting, a
Kisin module is a projective Ainf -module M of finite type equipped with a linear
map M (σ) →M whose cokernel is a projective B0-module via θ.

Corollary 5. If p ≥ 3, p-divisible groups over B0 are equivalent to Kisin modules.

Sketch of proof: Kisin modules are equivalent to windows for Acris → B0 by
[2, Proposition 2.3.1], and these are equivalent to p-divisible groups over B0 by
Proposition 4 together with the Grothendieck-Messing deformation theorem.
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