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Abstract. Computational topology is a young, emerging field of mathe-
matics that seeks out practical algorithmic methods for solving complex and
fundamental problems in geometry and topology. It draws on a wide variety
of techniques from across pure mathematics (including topology, differential
geometry, combinatorics, algebra, and discrete geometry), as well as applied
mathematics and theoretical computer science. In turn, solutions to these
problems have a wide-ranging impact: already they have enabled significant
progress in the core area of geometric topology, introduced new methods in
applied mathematics, and yielded new insights into the role that topology
has to play in fundamental problems surrounding computational complexity.

At least three significant branches have emerged in computational topol-
ogy: algorithmic 3-manifold and knot theory, persistent homology and sur-
faces and graph embeddings. These branches have emerged largely indepen-
dently. However, it is clear that they have much to offer each other. The goal
of this workshop was to be the first significant step to bring these three areas
together, to share ideas in depth, and to pool our expertise in approaching
some of the major open problems in the field.
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Introduction by the Organisers

The workshop Computational Geometric and Algebraic Topology, organised by
Benjamin Burton, Herbert Edelsbrunner, Jeff Erickson and Stephan Tillmann
was held 11–17 October 2015. The meeting was well attended with 53 partici-
pants from 13 different countries. Besides the 25 lectures, many given by young
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and emerging researchers, the program included two evening sessions on mathe-
matical software and an evening session on open problems.

The aim of the workshop was to bring together the following three branches of
computational topology:

• algorithmic 3–manifold and knot theory, which seeks practical solutions to
the core algorithmic problems that have driven low-dimensional topology,
such as testing whether two 3–manifolds are homeomorphic, or whether
two knots in R3 are isotopic;

• persistent homology, which developed into a key theory, extending tradi-
tional homology to facilitate effective topological data analysis to extract
structure from noisy, incomplete, or sampled data;

• surfaces and graph embeddings, which have been a fertile breeding ground
both for powerful algorithmic tools to attack natural topological problems
in several different areas of computing, and for deep structural theorems
about minor-closed families of graphs.

These branches have developed relatively independently. In recent years, however,
they have intersected more frequently in both mathematics and computer science
settings and their scope extends even further. For instance, persistent homology
cannot be clearly classified as pure or applied mathematics, but nevertheless it
clearly owes its existence to motivations from applications. It gives evidence to
the broader claim that all of mathematics finds its justifications in a network of
connections and applications, only that some paths are longer than others.

Bringing together key people from all three branches, in a setting that allows for
expository talks, detailed research talks, a flexible programme and significant time
for informal discussions resulted in a stimulating workshop, where much informal
interaction, and many fruitful discussions developed between mathematicians who
had just met for the first time. Throughout the programme, we included talks
giving a high-level overview from experts in each of the three main branches of
computational topology, so that participants from other branches become familiar
with the central ideas (see the talks by Schleimer, Wang, Colin de Verdière and
Bubenik). In the more specialised talks, common themes resonated throughout
the week, as witnessed by the follwing examples:

• The study of surfaces is a classical, but extremely active field due to the
ubiquity of Riemann surfaces. Algorithms for surfaces or discretisations of
geometric properties of surfaces featured in talks by Chambers, Thurston,
Sidiropoulos, Krane and Bell.

• Triangulation provide frameworks to do computational geometry and topol-
ogy on spaces. We saw different approaches to estimate minimal number of
simplices, or to build natural triangulations, in talks by Eckmann, Joswig,
Spreer and Sharygin.
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• The problem of embedding complexes in manifolds is also a classical topic,
and new approaches and results were discussed by de Mesmay and U. Wag-
ner.

• With computational advances, questions about statistical patterns in the
study of invariants of objects taken from a suitable sample space become
amenable to systematic study. This was addressed for knots by Dunfield
and Hass and for configuration spaces by Kahle.

• The talks by Hiraoka, Knudson, Robins, Scolamiero, Pokorny, Carstens
and H. Wagner on topics in persistent homology highlighted the breadth
of mathematical areas with which computational topology interacts.

Computational topology is rooted in mathematics—its algorithms build upon
deep and sophisticated mathematical theories, and its software tools now play
an important role in modern mathematical research. For example, the software
package SnapPea, introduced over 20 years ago, has had an enormous impact on
3–manifold theory through allowing researchers to explore and study in depth
concrete examples of hyperbolic 3–manifolds. More recently, the software package
Regina has been used to resolve Thurston’s 30-year-old conjecture on the Weber-
Seifert space through a combination of new topological theory and computer-
assisted proof. Software tools are now beginning to penetrate 4–manifold topology,
where they are already proving useful despite the abundance of theoretically unde-
cidable problems in this area. See computop.org for a rich variety of additional
examples.

The workshop had a computational focus, and the invitees included lead de-
velopers of several important topological software packages, which were presented
in the software presentations. This gave developers the opportunity to shared
experiences, difficulties and technical constraints that they have encountered and
overcome through the development of their software. Short descriptions of the
software presented in these sessions are included in this report.

Computational topology proved to be an appealing new topic for an Oberwol-
fach workshop. It forges links between mathematics and computer science, and
between different branches of pure and applied mathematics. It also relates di-
rectly to two of the seven Clay Millennium problems (the Poincaré conjecture,
and P-vs-NP). It is clear that the major open problems in each of the three fields
require input from a broad base of mathematical expertise, and workshops such
as this generate an excellent creative environment for generating progress on these
problems.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Erin Wolf Chambers and Jonathan Spreer in the “Si-
mons Visiting Professors” program at the MFO.
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Abstracts

Recognising three-manifolds

Saul Schleimer

We give an overview of some of the foundational computational problems in three-
manifold topology.

1.1. The homeomophism problem. We begin with a decision problem that
lies at the heart of classical topology. Given a pair of (PL) compact connected
n–manifolds M and N , the problem homeomorphism asks if M is (PL) homeo-
morphic to N . In dimension one, counting boundary points suffices. In dimension
two, checking orientability, Euler characteristic, and number of boundary compo-
nents suffices; this follows from the classification theorem for surfaces.

In dimensions four and higher, the problem is undecidable. This is because it
can be reduced to the isomorphism for finitely presented groups [8]. Thus we are
left with the case of dimension three. Kuperberg, in a lovely paper [7], proves the
following “folklore” theorem.

Theorem 1. If Thurston’s geometrisation conjecture holds, then the three-mani-
fold homeomorphism problem is decidable.

The geometrisation conjecture is now known to hold, due to Perelman’s brilliant
fulfilment of Hamilton’s programme of Ricci flow [9]. Naturally, we still want to
know how difficult the homeomorphism problem really is. In the same paper
Kuperberg [7] shows that the tools of normal surface give an elementary recursive
algorithm: the time required is bounded by a tower of exponentials.

1.2. Recognition. The homeomorphism problem can be simplified by fixing one
of the manifolds, say M . Then, given a (PL) compact connected manifold N ,
the problem M recognition asks if M ∼= N . Now we are allowed to use any
knowledge we have about M to design our algorithms.

The first case of interest is recognising spheres; as usual, this is straight-forward
in dimensions one and two. Work of Novikov [17] proves that recognising the five-
sphere is impossible. The status of S4 recognition is unknown [18, page 76]. In
dimension three, the upper bound has steadily improved; the problem is now
known to lie in NP [11, 16, 2, 12, 6]. All of this work again relies on normal
surface theory.

Recently, Hass and Kuperberg [4] announced that three-sphere recognition lies
in coNP, if the generalised Riemann hypothesis (GRH) holds. By the Poincaré
conjecture, and since M (assumed closed) is not the three-sphere, the fundamental
group π1(M) is non-trivial. The GRH then provides us with enough primes to
ensure that π1(M) surjects a sufficiently small non-trivial finite group.
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1.3. Seeing three-manifolds. There are a few universal methods to describe
three-manifolds: triangulations and other polytopal schemes, special spines, and
link surgery diagrams. These see the three-manifold “from below”: they are de-
scriptions which do not give us any a priori knowledge about the manifold spec-
ified. Given a manifold in this way, one often resorts to normal surface theory to
figure out the basic properties of the manifold, such as its connect sum decompo-
sition, JSJ decomposition or Hakenness.

Figure 1. An ideal triangulation.

In Figure 1 we have an example
of an ideal triangulation: after glu-
ing faces as indicated by the edge
pattern, and after removing the ver-
tex, we obtain a non-compact three-
manifold M3 whose end is homeo-
morphic to a torus crossed with an
open interval.

It is also possible to see three-
manifolds “from the side”: if the

manifold is given via a Heegaard or knot diagram, or as surface bundle over the
circle, then we know that the manifold has special properties: for example a bound
on the rank of the first Betti number or knowing that the manifold is irreducible.
In Figure 2 we have drawn a diagram of the figure-eight knot F . One step up
the ladder of the homeomorphism problem is to see why S3 − F , the three-sphere
minus the figure-eight knot, is homeomorphic to the manifold M3 given in Figure
1.

Figure 2. Diagram of the figure-eight
knot.

At the top of the ladder we will
see manifolds “from above”: that is,
we hope to realise them as finite vol-
ume quotients of one of the eight
Thurston geometries [15]. To give
an example, we take H3 to be hyper-
bolic three-space and we recall that
Isom+(H3) ∼= PSL(2,C). Taking ω
to be a third root of unity, form
Γ = PSL(2,Z[ω]). As first proved
by Riley [10], we have the remarkable
homeomorphism H3/Γ ∼= S3 − F .

This generalises: in an act of
amazing insight, Thurston found that
sometimes we can jump from the very bottom of the ladder to the very top. The
programme SnapPea [3], written by Jeff Weeks, uses Newton’s method to find
hyperbolic shapes for the tetrahedra of an ideal triangulation. This can be used
to prove that certain manifolds are indeed hyperbolic. For example, if we give
all edges, of both tetrahedra in Figure 1, dihedral angle 60◦ then we recover the
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above hyperbolic structure on S3 − F . To explain the remarkable effectiveness of
SnapPea is one of the great open problems in the theory of three-manifolds.

1.4. Ever upwards. What SnapPea can guess, we should be able to prove. Here
is a theorem of Ben Burton and myself [14]:

Theorem 2. For F the figure-eight knot: the problem of recognising S3−F among
ideal triangulations lies in NP.

More generally, we can recognise when a three-manifold is a knot complement
in the three-sphere. The problem of recognising the unknot among knot diagrams
was already known to be in NP [5]. Following ideas of Agol, Lackenby has recently
announced that unknot recognition also lies in coNP.

One problem that calls out to be resolved is how to certify (in NP) that a three-
manifold has a particular Thurston geometry. For the geometries S3, S2 ×R, E3,
Nil, and Sol this is known [14]. The remaining cases H2 × R, PSL(2,R), and H3

are much more difficult. It is also very tempting to speculate which of the above
problems are polynomial time. For a further survey of the computational aspects
of three-manifold topology, including hardness results, see [1], [14], and [13].
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Comparing Graphs via Persistence Distortion

Yusu Wang

(joint work with Tamal Dey, Dayu Shi)

Metric graphs are ubiquitous in science and engineering. For example, many data
are drawn from hidden spaces that are graph-like, such as the cosmic web. A
metric graph offers one of the simplest yet still meaningful ways to represent the
non-linear structure hidden behind the data. In this talk, we consider the problem
of developing a notion of distance for comparing metric graphs.

Related work. To date, graph matching algorithms fall into two broad categories:
exact graph matching methods and inexact graph matching (distances between
graphs) methods. The exact graph matching, also called the graph isomorphism
problem, checks whether there is a bijection between the node sets of two input
graphs that also induces a bijection in their edge sets. While polynomial time
algorithms exist for many special cases, e.g., [6, 10], for general graphs, it is not
known whether the graph isomorphism problem is NP complete or not [3].

In real world applications, input graphs often suffer from noise and deformation,
and it is highly desirable to obtain a distance between two input graphs beyond the
binary decision of whether they are the same (isomorphic) or not. One line of work
is based on graph edit distance which is NP-hard to compute [15]. Many heuristic
methods, using for example A∗ algorithms, have been proposed to address the
issue of high computational complexity, see the survey [2] and references within.
One of the main challenges in comparing two graphs is to determine how ”good” a
given alignment of graph nodes is in terms of the quality of the pairwise relations
between those nodes. Hence matching two graphs naturally leads to an integer
quadratic programming problem (IQP), which is a NP-hard problem. Several
heuristic methods have been proposed to approach this optimization problem;
e.g. [4, 9, 13, 14]. Finally, there have been several methods that formulate the
optimization problem based on spectral properties of graphs; see e.g, [12, 1, 8, 7].

Proposed distance measure. Different from previous approaches, we view input
graphs as continuous metric spaces. Intuitively, we assume that our input is a
finite graph G = (V,E) where each edge is assigned a positive length value. We
now consider G as a metric space (|G|, dG) on the underlying space |G| of G, with
metric dG being the shortest path metric in |G|. Given two metric graphs G1
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and G2, a natural way to measure their distance is to use the so-called Gromov-
Hausdorff distance [5, 11] to measure the metric distortion between these two
metric spaces. Unfortunately, it is NP-hard to even approximate the Gromov-
Hausdorff distance for graphs within a constant factor. Instead, we propose a
new metric, called the persistence-distortion distance dPD(G1, G2), which draws
upon a topological idea and is computable in polynomial time with techniques
from computational geometry. This provides a new angle to the graph comparison
problem, and our distance has several nice properties:

(1) The persistence-distortion distance takes all points in the input graphs into
account, while all previous graph matching algorithms align only graph nodes.
Hence our persistence-distortion distance is insensitive to different discretization
of the same graph.

(2) We show that our persistence-distortion distance dPD(G1, G2) is stable w.r.t.
changes to input metric graphs as measured by the Gromov-Hausdorff distance.
In particular, let δGH(G,G′) denote the Gromov-Hausdorff distance between two
metric graphs (G, dG) and (G′, dG′). We have that

dPD(G1, G2) ≤ 6δGH(G1, G2).

(3) Despite that our persistence-distortion distance is a continuous measure
which considers all points in the input graphs, we show that it can be computed in
polynomial time (O(m12 logm) where m is the total complexity of input graphs).
We note that the discrete version of our persistence-distortion distance, where only
graph nodes are considered (much like in previous graph matching algorithms),
can be computed much more efficiently in O(n2m1.5 logm) time, where n is the
number of graph nodes in input graphs.
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Some topological algorithms for graphs on surfaces

Éric Colin de Verdière

Introduction. Computational topology is a field at the interface between com-
puter science and mathematics that looks at the interplay between algorithms
and topology. In the last 15 years, there has been a lot of interest in revisiting
problems for graphs on topological surfaces from an algorithmic viewpoint. Basic
questions are decision problems (are these two curves homotopic?) and optimiza-
tion problems (compute a shortest non-contractible closed curve, where the metric
is specified in a discrete sense)—here we mostly focus on the latter. Not only does
this give a new, fresh viewpoint to classical two-dimensional topology, but this
also has an impact to several domains of computer science:

• in computer graphics, geometry processing, and computer-aided geometric
design, because these areas use meshes to represent surfaces, which in
general are topologically non-trivial. Examples include texture mapping,
morphing, parameterization, remeshing, and compression;

• in graph algorithms, because a standard way to bypass the inherent com-
plexity of problems in general graphs is to give more efficient algorithms
for some classes of graphs. One such class is formed by the family of pla-
nar graphs; however this class is somewhat restricted, and many authors
have developped algorithms for embedded graphs, which are efficient if the
surface is fixed (and has small genus).

Algorithms manipulate combinatorial data: Specifying the embedding of a
graph G on a surface S is (essentially) done by giving, for each vertex v, the
cyclic ordering of the edges incident to v (“rotation system” [15]); implicitly it is
assumed that all faces of G are topological disks, so this also defines the topology
of S. In general we look for curves that are drawn on G (“walks”). Most often
we use a discrete metric on S as follows: Every edge of G has a positive weight ;
the length of a curve c is the sum of the weights of the edges traversed by c, with
multiplicity; this is called the combinatorial surface model.

Below we briefly survey some results in the area given by the author and/or
other researchers.

Shortest non-contractible or non-separating closed curves. This is the
most basic problem in this area: Cutting along a non-contractible or non-separating
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closed curve simplifies the topology of the surface. Erickson and Har-Peled [11]
provide an algorithm with running time O(n2 logn) (here and in the sequel, n is
the total number of vertices, edges, and faces of the embedded graph G that is
the input of the algorithm). A different, conceptually simpler algorithm with the
same running time uses the cut locus and the key property that a shortest non-
contractible loop through a fixed baspoint b crosses the cut locus exactly once, and
is thus essentially the concatenation of two shortest paths [4, 1]. Many refinements
and extensions of this problem have been studied.

Shortest cut graph. A cut graph of a surface S is a graph embedded on S
whose complement is an open disk. A well-studied problem is the computation
of a short cut graph on a surface. Here, it is convenient to use a model dual to
the combinatorial surface model, called cross-metric surface model : One is given
as input an edge-weighted graph G embedded on a surface S, and looks for a
graph H in general position with respect to G; the length of H is now defined as
the sum of the weights of the edges of G crossed by H . Erickson and Har-Peled [11]

prove that computing a shortest cut graph is NP-hard, and provide an O(log2 g)-
approximation algorithm in small polynomial time, where g is the genus of S.
Erickson and Whittlesey [12], however, give an O(n log n+ gn)-time algorithm to
compute a shortest cut graph with a single, fixed vertex. More generally, Colin de
Verdière [5] gives a similarly efficient algorithm to compute a shortest cut graph
with prescribed vertex set.

Shortest homotopic curves. Another natural problem is the following: Given
a weighted embedded graph G and a path (or walk) p on G, compute (in the
combinatorial surface model) a shortest walk with the same endpoints as p that
is homotopic to p. Colin de Verdière and Lazarus [8, 9] provide efficient iterative
algorithms for this purpose assuming p is simple and the weights of G satisfy a mild
condition. Colin de Verdière and Erickson [7] give an efficient general algorithm
using cross-metric surfaces. To compute shortest homotopic paths, it suffices to
compute shortest paths in the universal cover; by decomposing the surface S along
an arrangement of suitable closed curves, meeting four at a vertex and cutting S
along octagons, it actually suffices to compute shortest paths in a small (and in
particular finite) region of the universal cover.

Multicut in bounded-genus graphs. Finally, as an application of the above
techniques, we study a problem from combinatorial optimization. The multicut
problem is defined as follows: Given an edge-weighted graph G, and specified pairs
of vertices of G, called terminals, (t1, t

′
1), . . . , (tk, t

′
k), compute a minimum-weight

set E of edges such that, in G − E, no terminal pair has its two terminals in
the same connected component. This is a standard extension of the multiway cut
problem, where there is a set T of vertices, and the terminal pairs are all the pairs
of distinct vertices in T .

Both problems are hard in general. For example, the multiway cut problem
is NP-hard, even in planar graphs [10]; the multicut problem is APX-hard, even
in unweighted stars [2]. However, if the graph is planar and the number t of
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vertices that are terminals is bounded, then there are polynomial-time algorithms
for multiway cut: The first published algorithm runs in nO(t) time [10], and a

recent one by Klein and Marx [13] solves it in 2O(t) · nO(
√
t); Marx [14] actually

proves that the nΩ(
√
t) dependence is unavoidable assuming the Exponential Time

Hypothesis.
Using topological techniques, one can actually give [6] an algorithm for the more

general multicut problem, also working for graphs embedded on surfaces, which
has almost the same running time as the best algorithm for multiway cut in the

planar case. Specifically, the algorithm runs in (g + t)O(g+t) · nO(
√

g2+gt) time.
Working in the cross-metric surface defined by G, one computes a shortest cut
graph K with vertex set the set of terminals. A minimum multicut corresponds to
a shortest graph separating the specified pairs of terminals; one proves that this
unknown graph H crosses K few times, enumerates all the combinatorial patterns
for the overlay of H and K, and, for each such pattern, computes the shortest H
with that pattern using shortest homotopic curves. This general strategy has been
used earlier for other problems [3].
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[3] Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus, and Kim Whit-
tlesey. Splitting (complicated) surfaces is hard. Computational Geometry: Theory and Ap-
plications, 41(1–2):94–110, 2008.
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Random knots: their properties and algorithmic challenges

Nathan Dunfield

(joint work with Malik Obeidin)

Malik Obeiden and I are studying random prime knots with 100 to 1,000 crossings,
both to probe algorithmic complexity in practice and to better understand the
properties of random knots in the spirt of [DT2, DT1]. Our model of random knot
mimics the idea of “picking from the table of n-crossing prime knots” rather than a
model where the bridge index is fixed, and is similar in spirit to [DEZ, DEHZ]. We
started with a sample of 998 knot diagrams, one for each possible crossing number
between 3 and 1,000. (These aren’t all minimal-crossing projections, but they
are close to being so.) It is surprisingly practical to compute certain invariants of
these knots, even the one with 1,000 crossings. Our initial findings give compelling
evidence of linear growth (with little spread) with respect to crossing number of
the following invariants: hyperbolic volume (slope ≈ 2), knot genus (slope ≈ 0.25),
and bridge number (slope ≈ 0.15). One pattern that demands explanation: these
knots have triangulations where most of the tetrahedra are “fat” in the hyperbolic
structure, that is, have volumes near that of the regular ideal one. So far, we
can usually only approximate g(K), but we have a new fast heuristic for finding
candidate Seifert surfaces, motivated by [DH], which is quite promising. For this
grant, we will first expand our sample and the invariants considered and then try
to prove that these patterns really exist.
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Configuration spaces of disks

Matthew Kahle

(joint work with Baryshnikov, Bubenik, Carlsson, Gorham, Mason, MacPherson)

Let Config(n, r) denote the configuration space of n nonoverlapping disks in a
region R. This is the phase space for a hard spheres gas, s it is of intrinsic
interest in physics. It is also interesting mathematically, as the generalization of
the configuration space of points. We are particularly interested in the topology
of Config(n, r), for example Betti numbers. We discuss three papers investigating
this setting - Morse theory is a comon theme throughout.

1. Min-type Morse theory

(joint w/ Baryshnikov and Bubenik). Let Config(n) denote the configuration
space of n points in R. We assume that R is convex in R2, so it is homeompor-
phic to R2 and we understand the topology of Config(n) very well. Now define
F : Config(n) → R>0, the “tautological Morse function” to be the largest radius r
such that the disks of radius r centered at the given n points are non-overlapping
and completely contained in R. Then Config(n, r) = F−1(r,∞). We show that the
mechanically ballanced configurations play the role of critical points an smooth
Morse theory: if F−1(r, r′) contains no critical points, then Config(n, r) is homo-
topy equivalent to Config(n, r′).

2. Computational topology approach

(joint w/ Carlsson, Gorham, Mason) We study Config(n, r) for n ≤ 5 and all values
of r when the ambient regionR is a square. We use a variety of techniques including
computational Morse theory (nudgd elastic band) to find all the mechanically
balanced configurations in the sense above. We find dozens of these configurations
when n = 5, suggesting that the topology changes many times. It seems that
homology can be surprisingly large - we think, for example, that for 0.1686 < r <
0.1692, β1 = 2761.

3. Disks in a strip

(joint w/ MacPherson) We study Config(n,w), the configuration space of n disks
of unit diameter in a strip of width w. We are able to understand the asymptotics
of βj[Config(n,w)] for j, w fixed and n → ∞. We find a stable regime where βj
grows polynomially fast, and an unstable regime where βj grows exponentially
fast. Again a Morse-theory view is useful: we get an upper bound on βj in the
unstable regime by a complicated discrete Morese theory argument. We discuss
the boundary between the stable and unstable regimes as analogs to a gas-liquid
phase transition.
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Topological data analysis on materials science: statistics and
continuation

Yasuaki Hiraoka

In this talk, I surveyed topological data analysis on materials science in WPI-
AIMR, Tohoku university, and gave some mathematical new results in statistics
and inverse problems. In TDA on materials science, structural analysis on amor-
phous solids was explained in detail, following the results in [1, 2]. The contents
included the classification of liquid, glass, and crystals states, the detection of the
real space origins of the first sharp diffraction peak (FSDP), and mechanical re-
sponses of glass structures, all of which are analyzed by using persistence diagrams
(PD). Then, we proposed the persistence weighted Gaussian kernel (PWGK) and
showed a stability result with respect to the distance defined by PWGK [3]. As
an example, we statistically detected a glass transition temperature by using our
kernel method. We also briefly explained a continuation method in [4] as a tool of
inverse problems of persistence diagrams.
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Topological analysis of democracy data

Kevin Knudson

(joint work with Laura Sjoberg)

In this talk we discussed the topological structure of a data set built from empirical
measures of democracy. The data combined two sets: the Polity IV data set
[PIV] and the Boix–Miller–Rosato Dichotomous Coding of Democracy [BMR].
We studied the concatenation of these two sets for the year 2007, which yields a
point cloud in R14.

The Polity IV set consists of 9 measurements related to the recruitment and
selection of chief executives, freedom of participation in the electoral process, etc.
These numbers are nonnegative integers with upper bounds ranging from 3 to 10,
depending on the particular concept being measured. Political scientists involved
with the Polity Project then use a step function on these data to associate to each
country in the world its Polity score, an integer between −10 and +10. Stable
functioning democracies such as the U.S. or most of Western Europe score a +10,
while autocratic countries such as North Korea score a −10.
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Figure 1. Some 2-cycles in the 14-dimensional data. Note that
these are representations of the figures in 3-dimensional space; the
actual cycles are embedded in R14.

The Boix–Miller–Rosato set consists of 5 measures of democracy, 4 of which are
completely dichotomous (1 = democracy, 0 = non-democracy) along with a count
of the number of previous democratic breakdowns (e.g., the U.S. counts as 0 in
this category–the Civil War was not technically a democratic breakdown).

For the year 2007, even though there are more than 160 distinct countries listed,
only 88 of them yield unique data points. For example, the United States, United
Kingdom, most of Western Europe and Scandinavia, Japan, Australia, and a few
others have the exact same Polity and dichotomous measures. We built the Čech
complex on these 88 points using the Euclidean metric on R14 and computed its
persistent homology. The set has 10 components, 8 of which are acyclic. The other
two components contained nontrivial 2-cycles, six in one component represented
by the Dominican Republic and one in the component represented by Swaziland.
We show three of these in Figure 1.

Future work will add a temporal component to the study–the sets include data
back to 1800 and so it would be interesting to see how the topology changes over
time. Some audience members during the MFO talk suggested that the Euclidean
metric may not be the best choice; we plan to investigate this as well. Another
potential avenue of study would be to place discrete Morse functions on these sets
to investigate how democracy “flows” or to track gradients over time by examining
the Morse functions on a family of years.
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Persistent homology analysis of porous and granular materials

Vanessa Robins

(joint work with Olaf Delgado-Friedrichs, Mohammad Saadatfar, Adrian
Sheppard, Katharine Turner)

Topology plays a fundamental role in many aspects of materials science from quan-
tifying the geometric and topological structure of porous rocks, to describing con-
figuration spaces of granular matter, identifying possible topological phases of
matter and underpinning recent advances in mathematical crystallography. My
past research in applied topology has contributed to the mathematical foundations
of persistent homology [1], algorithms for building combinatorial complexes from
digital images [2] and their application to image analysis [3], the enumeration of
crystallographic graphs (periodic nets) via periodic surface tilings [4], and the geo-
metric entanglement (knotting) of graphs [5, 6]. The talk focussed on our recent
work using persistent homology to analyse the geometric structure of porous and
granular materials.

Figure 1. Single slice image of a sandstone. A histogram of
birth and death values of the persistence diagram for dimension 1
(PD1). A scatter plot of PD1 distances between locations of the
paired birth and death critical points versus their birth critical
values. The pale grey vertical and horizontal lines mark percola-
tion thresholds in the pore and grain phase respectively.

Porous materials are a wide class with geological, organic and engineering ori-
gins, e.g. sandstone, wood, synthetic foam. The common structure of these dis-
parate materials is that they consist of two phases : a solid matrix and a gas or
liquid-filled porespace. The phases are spatially intermixed with some amount of
disorder in their distribution and are typically bicontinuous, i.e. both phases span
the sample in some or all directions. We include granular materials as they are
often the precursor to a porous material: sand grains are subjected to chemical

https://sites.google.com/site/mkmtwo/data
http://www.systemicpeace.org


2656 Oberwolfach Report 45/2015

deposition and pressure to form sandstone, metal beads are sintered to form a
porous solid, bubbles (gaseous grains) are introduced to a liquid polymer to create
a foam. My colleagues in Applied Mathematics at ANU operate a state-of-the-
art x-ray tomography facility for imaging porous materials at micrometer length
scales [7]. They use these images to conduct virtual experiments on the samples
via computational simulations of physical process and compare these results with
laboratory measurements.

It has been long understood that the connectivity of different phases in a porous
material (rock and water in an aquifer, for example) strongly influences physical
properties of the system, particularly those related to transport (fluid flow or
diffusion of contaminants in the aquifer). This relationship between topology and
transport has been studied primarily through network models of the porespace,
and percolation theory, i.e., the study of cluster formation and growth under the
addition of randomly added components.

A simple percolation model relevant to porous materials is to grow balls of
radius r about a random point pattern X (a Poisson-Boolean model). Percolation
occurs at a radius rc so that for r > rc, the union of balls centred on X has a
connected component that spans the domain: fluid can flow from one side to the
other, and for r < rc fluid flow is not possible. Computational and probabilistic
analyses have shown that percolation is a critical phenomenon. There is a well-
defined value of r called the percolation threshold, r∗, so that in the limit of large
domains and many repeated realisations of a random point pattern, the spanning
cluster exists with probability 1 for r > r∗, and the largest cluster does not span
with probability 1 for r < r∗. One indication of the physical significance of the
percolation threshold is its correlation with the permeability of fluid flow through
porous materials [8, 9].

The above simple geometric percolation process is translated to two-phase
porous materials using the signed distance function f(x) that measures the dis-
tance from x to the closest point on the interface between the two phases, with
positive values in one phase and negative values in the other. The lower level sets
of f now form the space of interest and we define the percolation threshold as the
lowest value rc, for which the lower level set f(x) ≤ rc spans the domain. For
subsets of R3 there is a complementary threshold, r′c, the largest value for which
the upper level sets span: f(x) ≥ r′c.

Persistent homology quantifies the topology of lower (or upper) level sets of
a function as the threshold parameter increases. Percolation and persistent ho-
mology are therefore seen to be two different topological measurements on the
same underlying geometric filtration. This connection is elaborated on in our
preprint [10]. The key observation is that persistence pairs are able to become
spatially separated around the percolating threshold. This behaviour is seen in
both the model system of random points with balls of radius r attached, and in
real sandstones.

Our initial work has focussed on single data sets, but a full statistical analysis
of many samples over large domains will be necessary to establish possible critical
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behaviour and sharp transitions in persistence data. This statistical analysis is
facilitated by work with Katharine Turner [11] where we have demonstrated that
standard statistical methods can be applied to functional summaries of persistent
homology such as the rank function. It is also worth mentioning that the Betti
numbers by themselves are not sensitive to the percolation transition [12].
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Triangulating 3-dimensional balls

Jean-Pierre Eckmann

(joint work with Pierre Collet and Maker Younan)

I reported on the work with Pierre Collet and Maker Younan on reducing the
question of the number of triangulations of the 3-ball with t tetrahedra. We
construct triangulations from elementary pieces, called “atoms” and show that
if the number of atoms with t tetrahedra is bounded by Ct then the number of
triangulations of the 3-ball is bounnded by Ct

∗. An atom here is a triangulation
with only external nodes, internal faces hace at least 2 internal edges and for every
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external edge there is a node n so that the triangle spanned by the 3 nodes is not
a face.

Combinatorial topology with applications to neuroscience

Martina Scolamiero

(joint work with P. D lotko, K. Hess, R. Levi, H. Markram, E. Muller, M. Nolte,
S. Raynor, M. Reimann and K. F. Turner.)

Directed graphs offer a simple but efficient formalism to model relational informa-
tion between agents, in particular causal relationships. In neuroscience directed
graphs are widely used to study brain morphological and functional connectiv-
ity. In this talk I introduced some new methods to identify patterns and densely
connected regions in directed graphs. By defining the oriented clique complex
construction I associated Betti numbers and the Euler characteristic to a directed
graph. Classical invariants in network theory, as for example the clustering co-
efficient, can be generalised to identify higher order connectivity. By detecting
the number of directed k-simplices in the neighbourhood of each vertex we have
a more accurate description of the local cohesiveness of the directed graph and a
generalised measure of segregation.

Applications of our directed graph metrics to study the Blue Brain model were
then presented. The Blue Brain Project built a biologically based digital recon-
struction of the microcircuitry of the hind-limb somatosensory cortex of a two-
week-old rat [1, 2]. I reported on an on-going project aimed at investigating
topological properties of this model and emergent behaviour of the microcircuits
through simulated neural activity. A column is a unit in a microcircuit consisting
of ∼ 31, 000 neurons and ∼ 8.2 × 106 connections between them and represents a
cortex region of 0.5 mm in diameter and 2 mm in hight. As an example of con-
struction we use to study the spiking dynamics within a column I presented the
so called successful transmission graphs {Gt}t∈N. Having fixed the size of a time
bin, the vertices in graph Gt represent neurons in the column region and there is
an edge i→ j in Gt if and only if :

(1) i and j are structurally connected and
(2) neuron i fires in time bin t and neuron j in time bin t or t+ 1.

Finally I showed how the dynamics generated by different types of stimuli is re-
flected by the time series representing Betti numbers and Euler characteristic of
the successful transmission graphs.
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Topological Motion Planning and Classification for Robotics

Florian T. Pokorny

(joint work with Ken Goldberg, Majd Hawasly, Lydia E. Kavraki, Danica Kragic,
Subramanian Ramamoorthy)

In the past three decades tremendous progress has been made in the development of
robot motion planning algorithms. While methods closely related to Morse theory
and cell-decompositions from algebraic topology have lead to breakthroughs in the
understanding of theoretical properties of the motion planning problem in the 80s
and 90s [1, 2], a large number of current approaches to motion planning are based
on sampling based approaches and construct randomized graph representations of
the free configuration space of a robot [3, 4].

However, these graph-based methods only approximate the path-connectivity
of the free configuration space Cf and are not able to capture information about
the fundamental group of Cf . Information about the fundamental group can how-
ever be beneficial to enable a robotic system to reason about homotopy classes of
trajectories – both to plan motion alternatives and to classify observed motions.
While classical approaches such as analytical cell-decompositions could be used
in theory to compute information about homotopy classes, these approaches are
currently difficult to scale to robotic systems with many degrees of freedom. Addi-
tionally, real robotic systems suffer from noisy perception and control. As a result,
a noise-free and complete description of Cf , for example in terms of semi-algebraic
functions, is typically not available.

I will present our recent work on algorithms that capture information about ho-
motopy classes in Cf using persistent homology. Our approach is based on building
multi-scale sampling-based representations of Cf . I will present experimental re-
sults [5, 6] utilizing collision free samples X = {x1, . . . , xn} ⊂ Cf ⊂ Rd from the
collision-free part of a robot’s configuration space to study filtrations of topological
spaces Xr1 ⊆ Xr2 ⊆ . . . ⊆ Xrk , where Xri =

⋃n
i=1{x ∈ Rd : |x− xi| ≤ ri} denotes

the union of ri balls around each sample and r1 ≤ r2 ≤ . . . ≤ rk. We use the fact
that Xri is homotopy equivalent to the Delaunay-Čech complex DCri(X) [7], to
compute information about the first persistent homology groups of the filtration.
I will discuss how persistent homology can be used to cluster motion trajectories
into homology classes [5] and how persistent cohomology can be combined with a
Dijkstra-based graph-search algorithm to determine homotopy inequivalent trajec-
tories for robotic systems [6]. Our work provides a fully sampling-based approach
to motion planning closely related to the recent work of [8] where differential one-
forms are used for motion planning.

Finally, I will present recent work on scaling homotopy-aware motion planning
algorithms to configuration spaces of dimension up to 10 [9]. Our approach here is
based on 2D topological task projections (TTPs): mappings from the configuration
space to R2, where simplicial complex filtrations and persistent homology can be
efficiently computed. I will discuss how such projections can be used to determine
homotopy inequivalent trajectories in the high-dimensional configuration space
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Cf . We in particular propose the Winding Augmented RRT and RRT* (WA-
RRT/RRT*) algorithms using which homotopy inequivalent trajectories can be
computed. I will present recent experimental results using this idea that enabled
us to determine complex homotopy inequivalent 10 degree of freedom planar robot
arm trajectories.
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Webs of stars or how to triangulate free sums of point configurations

Michael Joswig

(joint work with Benjamin Assarf, Julian Pfeifle)

A triangulation of a finite configuration of points S ⊂ Rd is a triangulation of the
convex hull conv(S) which uses (some of) the points in S as its vertices. A special
case occurs when that triangulation is induced by a height function; then it is called
regular. Given S it is of major interest to be able to list all (regular) triangulations
of S, possibly up to symmetry. This algorithmic problem is motivated, e.g., by
applications in optimization, statistics or algebraic geometry; see [4, Chapter 1]
for a general overview or [3, §14.4] for the special case of toric geometry. The
standard software for enumerating triangulations is TOPCOM[8], whose algorithm
is described in [7] and [4, §8.3].

Conceptually, enumerating all (regular) triangulations is fairly easy, but it is
very hard in practice. To some extent this is due to the fact that the sheer numbers
grow out of any reasonable bounds very quickly. Therefore, it is important to be
able derive general information about the triangulations of point sets, even special
ones. The paper [6] describes families of point sets for which it is easy to describe
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all triangulations. In this talk we look into a specific construction which somehow
marks the next step.

Let S ⊂ Rd and T ⊂ Re be finite point configurations. Let us assume that the
affine spans of S and T are full-dimensional. Further, assume that the origin of
Rd is a point of S and that additionally, it is an interior point of conv(S); and
we also assume the same properties for T . Then we can form the free sum S ⊕ T
which is the union in Rd+e of the two point sets viewed as embedded into an
orthogonal pair of linear subspaces. That union is disjoint up to the origins in Rd

and Re, which get identified in Rd+e. For example, when S is the set {−1, 0, 1}
in the real line, then conv(S ⊕ T ) is a bipyramid over conv(T ). The free sum is
the coproduct in the category of finite points sets with zero and linear maps as
morphisms. Our main result describes the triangulations of S ⊕ T in terms of
the triangulations of the two summands. In general, one triangulation ∆S of S
and one triangulation ∆T of T give rise to more than one triangulation of S ⊕ T .
The choices are controlled by partially ordered sets which can be associated with
∆S and ∆T . These posets encode something like relative visibility information in
those triangulations. A web of stars, which was mentioned in the title, (in the
direction from S to T ) is a poset homomorphism from the stabbing order on ∆P

to the star-shaped balls of ∆Q. Now ∆S and ∆T yield one triangulation of S ⊕ T
for each compatible pair of webs of stars, one from S to T and one in the opposite
direction.

Theorem. For each triangulation ∆S of S, each triangulation ∆T of T and each
compatible pair of webs of stars there is a triangulation of the free sum S ⊕ T .
Conversely, each triangulation of S ⊕ T arises in this way.

We have a conjecture to characterize the regular triangulations of free sums.
In addition to their categorical relevance studying free sums of point configura-

tions is motivated by recent results on the classification of smooth Fano polytopes;
see [1] and [2]. Fano polytopes occur naturally in toric geometry [3, §8.3]. Our
method is implemented in polymake [5]; this feature will become available with
the next release 3.0 (scheduled for January 2016).
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Collapsibility and 3-sphere recognition

Jonathan Spreer

(joint work with João Paixão)

A 3-manifold triangulation M is homeomorphic to the 3-sphere if there exists a sequence

of elementary collapses from M with one tetrahedron removed onto a single vertex.

Unfortunately, there exist many triangulations of the 3-sphere where such a collapsing

sequence is difficult to find or even does not exist. We show that out of all 39 8-vertex

triangulations of the 3-sphere, 22 admit non-collapsing sequences onto contractible non-

collapsible 2-complexes. As a side product we classify all such 2-complexes with at most

18 triangles. In addition, we propose an easy-to-check heuristic characterisation for 3-

sphere triangulations to admit very few collapsing sequences.

1. Introduction

Triangulations of manifolds come with two layers of complexity. One from the
topology of the underlying manifold, one from combinatorial properties of the
triangulation itself. While, typically, we cannot eliminate the former, there is
hope that the latter can sometimes be avoided. Here we restrict ourselves to
simplicial triangulations of the 3-sphere, i.e., simplicial complexes whose vertex
links are triangulated 2-spheres and whose underlying space is homeomorphic to
the 3-sphere. We thus focus on difficult combinatorial properties of triangulations.

One measure of difficulty of a triangulation is given by the framework of col-
lapsibility [7]. Suppose a simplicial complex C contains an i-dimensional face δ ∈ C
which is only contained in a single (i+1)-dimensional face ∆ ∈ C. We can then re-
move the pair of faces from C obtaining a homotopy equivalent complex C\{δ,∆}.
This is called an elementary collapse of C, and C is said to be collapsible if there
exist a sequence of elementary collapses from C down to a single vertex. If no such
sequence exist it is called non-collapsible.

If C is a triangulation of a closed 3-manifold we can form its dual graph Γ(C),
whose vertices correspond to tetrahedra and whose edges correspond to pairs of
tetrahedra sharing a triangle. Given a spanning tree T ⊂ Γ(C), we can collapse all
tetrahedra of C with one tetrahedron removed along T , yielding a 2-dim. complex
CT . If there exist a T ⊂ Γ(C) such that CT is collapsible, C must be homeo-
morphic to the 3-sphere. However, the converse is not true [2]. Thus, 3-sphere
triangulations without such spanning trees are “more difficult than necessary”.

We want to quantify the complicatedness of a 3-sphere triangulation by studying
how many spanning trees T ⊂ Γ(C) lead to collapsible complexes CT . Closely
related questions about complicated triangulations of manifolds and in particular

http://www.rambau.wm.uni-bayreuth.de/TOPCOM/
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Figure 1. Minimal contractible non-collapsible 2-complexes.

spheres in arbitrary dimensions have recently been studied by Benedetti and Lutz
[2], and Joswig, Lutz and Tsuruga [5].

2. Contractible non-collapsible 2-complexes in small 3-spheres

There are no non-collapsible 3-sphere triangulations in the classification of 3-
spheres up to 11 vertices. To nevertheless be able to quantify complicatedness
of 3-sphere triangulations S in a systematic way, we focus on single choices of
T ⊂ Γ(S) such that ST is (contractible but) non-collapsible. In this case we have:

Lemma 1 (Lemma 4.2 in [6]). Let C be a contractible non-collapsible simplicial
2-complex. Then C must have at least 8 vertices and 17 triangles.

A minimal contractible non-collapsible 2-complex can be represented by a tri-
angulated disk whose nine boundary edges are identified in triples. Such com-
plexes can be classified with the help of the software plantri by Brinkmann and
McKay [3]: There are seven combinatorially distinct 17-triangle triangulations
of the dunce hat, and 80 contractible non-collapsible 18-triangle 2-complexes of
four distinct topological types. See Figure 1 for a collection of different types of
complexes, see [6] for a list of all complexes.

It follows that, for a given 3-sphere triangulation S to contain a contractible
non-collapsible 2-complex, S must have at least 8 vertices and 16 tetrahedra.
Otherwise, ST would have < 17 triangles, a contradiction to Lemma 1.

From [1] we know that such minimal triangulations of dunce hats actually al-
ready exist in 8-vertex 3-spheres. But how common are these pathological combi-
natorial structures in small 3-sphere triangulations? To give a precise answer to
this question we conduct a number of large scale experiments on small triangula-
tions of the 3-sphere using the software package simpcomp [4] which can be found
in detail in [6]. In the 8-vertex case we are able to give a complete answer, using
the above classification of contractible non-collapsible 2-complexes.

Theorem 1. There are 17 triangulations of the 3-sphere with eight vertices such
that all spanning trees lead to a collapsible 2-complex. The remaining 22 8-vertex
triangulations of the 3-sphere triangulations admit a collapsing sequence onto a
contractible non-collapsible 2-complex.
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3. Predicting the complicatedness of 3-sphere triangulations

In this section we propose a heuristic to pre-evaluate whether or not a given 3-
sphere triangulation S has complicated combinatorial properties (such as very few
or no collapsing sequences). The prediction is based on the edge degrees degS(e),
e ∈ S, of S, i.e., the number of tetrahedra of S containing e.

Definition 2. Let S be an n-tetrahedron, v-vertex triangulation of the 3-sphere.
In average the edges of S are contained in degS = 6n

n+v
tetrahedra. We say that S

has edge variance

var(S) =
1

n+ v

n+v
∑

i=1

(degS − degS(ei))
2.

Given a 3-sphere triangulation S, computing var(S) is a simple procedure, but
might nonetheless approximate quite accurately how complicated S is. This follows
from the following two observations.

(i) Given a spanning tree T ⊂ Γ(S), the number of free edges in ST correlates with
whether or not ST is collapsible: triangles of ST can be removed as long as there
are free edges left, and the more free edges there are to begin with, the higher are
the chances that in this process all triangles can be removed.
(ii) Given an edge e ∈ S, the minimum probability of e being free in ST can be
shown to decay exponentially with the degree degS(e) of e in S [6, Theorem 5.1].

Combining these two observations we expect S to be very difficult to collapse
whenever S has very few degree three and four edges, that is, whenever var(S)
is very small. Thus, decreasing the edge variance of a given initial 3-sphere tri-
angulation using, for instance, bistellar moves, may produce difficult-to-collapse
3-sphere triangulations.

Indeed, following this idea, we are able to produce a 15-vertex 3-sphere trian-
gulation S15 with far less collapsing sequences than known pathological input of
similar size (eg. from [2], see [6] for details).

Moreover, this technique might translate to a useful tool in higher dimensions.
Using a more general version of the edge variance for co-dimension two faces we
can aim at increasing this quantity step by step to obtain easier-to-handle trian-
gulations. This strategy of “intermediate objectives” for simplification heuristics
might succeed where current simplification heuristics fail.
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Topological Measures of Similarity for Curves on Surfaces (mostly)

Erin Wolf Chambers

The question of how to measure similarity between curves in various settings has
received much attention recently, motivated by applications in GIS data analysis,
medical imaging, and computer graphics. While geometric measures such as the
Hausdorff and Fréchet distance [1] have efficient algorithms, measures that take
the underlying topology of the space are relatively new. Several candidates have
been proposed in recent years, but many of these are only tractable in restricted
settings, and surprisingly little is known about their practicality.

In this talk, we survey several variants which have algorithms for common ap-
plications settings. The two main settings considered will be curves in the plane
minus point or polygonal obstacles, and the combinatorial surface model, where
curves lie on some orientable 2-manifold which has a piecewise flat triangulation or
graph embedding imposed on it. We will also briefly discuss further possible gener-
alizations, including finding how similar two surfaces are when they are embedded
either in a 3-manifold or in 3-dimensional Euclidean space.

For homotopy-based similarity measures, one can consider the width, height, or
area of the homotopy swept by two input curves. In the case of homotopy width,
often called homotopic Fréchet distance, a polynomial time algorithm is known
for the plane minus polygonal obstacles [2]. However, for the case of curves on
surfaces, it is not even known that the problem is in NP. If one then considers
homotopy height [3], even less is known. Even for the case of two curves which
bound an unweighted triangulated planar graph, it is unknown if the optimal
homotopy will be monotonic, so we again do not know if the problem is in NP.
The only algorithmic result known here is an O(log n)-approximation algorithm
for both problems [6]. Homotopy area is surprisingly more tractable than either
height or width, and polynomial time algorithms are known for either the planar
or surface-embedded setting [4].

A newer similarity measure is based on homology rather than homotopy. With
homology area, one considers all 2-chains with boundary equal to the two input
curves, and optimizes to find the one with the minimum area. In this case, there
is an algorithm based on the fact that homology computation reduces to well
known and highly optimized linear programming and optimization problems [5].
Unlike previous metrics, this method generalizes smoothly to arbitrary dimensional
submanifolds of arbitrary dimensional cell decompositions.

Any of these measures could be considered in more general settings, as ho-
motopy and homology are well defined on (for example) 3-manifolds. However,
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homotopy in general is less tractable in these settings, although it is known that
homology area and homotopy area are equal for dimension ≥ 3 [7]. How to apply
these similarity measures and compute and use them efficiently in these higher
dimensional settings remains a very interesting open question.
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Embeddability of 2-complexes

Arnaud de Mesmay

(joint work with Benjamin A. Burton, Uli Wagner)

In this talk, we investigate the complexity of various problems related to embed-
dings of 2-dimensional complexes, and in particular non-orientable surfaces, into
3-manifolds. Our motivation is two-fold:

• On the one hand, embeddings of graphs in the plane or on surfaces are
a staple topic in graph theory, and 2-complexes are the direct general-
ization of graphs one dimension higher. While testing graph planarity or
embeddability on a surface of given genus are well studied questions, the
corresponding problems for 2-complexes are still very poorly understood.
Matoušek, Sedgwick, Tancer and Wagner [5] showed recently that testing
whether a 2-complex embeds in R3 is decidable, and the next natural steps
are to improve on the complexity of their algorithm and to investigate what
can still be carried out in other 3-manifolds.

• On the other hand, finding an interesting surface in a 3-manifold is pretty
much the basic challenge underlying most of the decision problems in low-
dimensional topology. This includes for instance unknot recognition, knot
genus, 3-sphere recognition, Hakenness testing, or prime and JSJ decom-
positions (see for example the book of Matveev [4]). This motivates the
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study of the embeddability of surfaces (which are the simplest examples
of 2-complexes) in 3-manifolds, and since every 3-manifold contains all
the orientable surfaces, the first example of a non-trivial surface for this
problem is a non-orientable one.

We first show that deciding whether a non-orientable surface of odd Euler genus
g embeds into a 3-manifold M is NP-hard. This implies that testing whether a
2-complex embeds in a 3-manifold is NP-hard as well – note that this problem is
not known to be decidable1. The reduction is inspired by the one of Agol, Hass
and Thurston [1] for Knot Genus, but the proof is significantly more involved in
our case.

Our second result shows that the same problem is in NP, and is therefore NP-
complete. However, our algorithm, based on normal surface theory, relies crucially
on the hypothesis that the Euler genus g is odd. Even with no complexity require-
ment, we are not aware of any algorithm in the case of even Euler genus.

Lastly, we discuss the problem of thickenability, i.e., the problem of deciding
whether there exists a 3-manifold M in which a given 2-complex C embeds. While
the lower dimensional problem is trivial (every graph embeds on some surface!),
there are examples of 2-complexes which do not embed in any 3-manifold, as is the
case with the cone on the complete graph K5 for example. In addition to being
a natural problem to investigate, thickenability is also the first complexity hurdle
to overcome in the aforementioned quest to improve the algorithm of Matoušek,
Sedgwick, Tancer and Wagner. Following works of Neuwirth [7] and Skopenkov [8],
we show that testing thickenability boils down to a combinatorial problem that is
very similar to Simultaneous Embeddings with Fixed Edges, a cornerstone problem
in the field of Graph Drawing (see Blasius, Kobourov and Rutter [2] for a survey
on simultaneous embedding questions). This problem lies exactly at the edge of
the current knowledge: it is not known to be NP-hard, and for some specific cases,
polynomial-time algorithms are known. Leveraging on recent tools [3] on SPQR
and PQ trees, we provide an algorithm to test thickenability in polynomial time
if the link of every vertex of the input complex C is 2-connected.
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Discrete Measured Foliations

Dylan P. Thurston

(joint work with Steven Gortler, David Palmer)

We introduce a notion of discrete measured foliations on a filling, elastic graph
on a surface. This gives a discrete analogue of harmonic measured foliations and
holomorphic quadratic differentials, and in particular a system of coordinates on
measured foliations. This gives a single uniform system of coordinates for all
measured foliations on a closed surface. It is also useful for computationally ap-
proximating actual harmonic measured foliations.

This work was partially supported by NSF grant DMS-1507244.

Definition 1. A filling elastic graph (Γ, k) in a surface Σ is a graph Γ (a 1-
dimensional CW complex) embedded in Σ that is filling, in the sense that the
complementary regions are all disks, and elastic, in the sense that each edge e has
an associated number k(e) ∈ R≥0, the elastic spring constant. An elastic graph
has a natural dual elastic graph (Γ∗, k∗), where k∗(e∗) = 1/k(e) if e∗ is the edge
dual to e.

Definition 2. A corner structure on a filling graph Γ is an assignment of a
marking m(c) ∈ {×, ◦} for each corner c of a face of Σ \ Γ. We require that each
face have at least two × markings and each vertex have at least two ◦ markings.
A length structure (ℓ,m) on Γ is a corner structure m and a length ℓ(e) ∈ R≥0

for each edge e of Γ.

To construct a length structure from a measured
foliation F , overlay Γ on F so that the edges don’t
backtrack as on the right. Mark a corner with ◦ if
there is a leaf running in to that corner, and × oth-
erwise. The length ℓ(e) is the total measure of e with
respect to the measured foliation.

Definition 3. A sequence of non-negative real numbers (x1, . . . , xk) is said to
satisfy the triangle inequality if no xi is greater than the sum of the others. This
implies that k ≥ 2, and if k = 2 then x1 = x2.

Definition 4. A length structure (ℓ,m) on a graph Γ is closed if, around each
face f , the lengths grouped between successive ×’s satisfy the triangle inequality.
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More precisely, suppose the edges around f are e1, . . . , en, with k × corners between
(ei1 , ei1+1) through (eik , eik+1) (interpreted cyclically). Then we must have the
triangle inequality for the sums

xj =

ij
∑

t=ij−1+1

ℓ(et).

Definition 5. A length structure (ℓ,m) on an elastic graph (Γ, k) induces a dual
length structure (ℓ∗,m∗) on the dual graph by

ℓ∗(e∗) = k(e)ℓ(e)

m∗(c∗) =

{

× m(c) = ◦
◦ m(c) = ×.

Definition 6. A length structure is co-closed if its dual is closed; that is, ℓ satisfies
weighted triangle inequalities at each vertex.

Definition 7. A harmonic length structure or discrete quadratic differential on
a filling elastic graph is a closed and co-closed length structure.

One intuition is that a discrete quadratic differential (non-zero on each edge)
gives a rectangle-tiled surface: each edge e gives a rectangle of aspect ratio k(e),
with length ℓ(e) and width ℓ∗(e∗) = k(e)ℓ(e). The triangle inequalities guarantee
that there is at least one way to sew the rectangles together around the vertices
and around the faces.

There is a discrete version of the Poincaré-Hopf index theorem.

Definition 8. Given a corner structure m, let n× and n◦ be the number of ×’s
or ◦’s in m around a face or vertex. For a face f and vertex v, define the index
by

ind(f) := n×(f) − 2

ind(v) := n◦(v) − 2.

We say that a vertex or face is non-singular if its index is 0.

Proposition 9. For any length structure on a graph Γ in a surface Σ,
∑

f a face

ind(f) +
∑

v a vertex

ind(v) = −2χ(Σ).

Definition 10. A discrete measured foliation on a filling graph Γ ⊂ Σ is a closed
length structure on Γ, together with, for each face f of Γ, a choice of metric tree
Tf and an onto map φf : ∂f → Tf so that between adjacent ×’s on ∂f , the map
φf is an isometry. If f is non-singular, then Tf is necessarily an interval. If f
has index 1, then Tf is a tripod, with uniquely determined lengths. In general,
the triangle inequalities guarantee there is at least one valid tree Tf . A discrete
measured foliation canonically determines a partial measured foliation on Σ.
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Figure 1. A harmonic measured foliations computed by this
method, starting from a partial measured foliation supported in
a neighborhood of a curve on the left of the surface.

Definition 11. The energy of a length structure (ℓ,m) on (Γ, k) is

E(ℓ) :=
∑

e

k(e)ℓ(e)2.

Proposition 12. If Γ ⊂ Σ is a filling elastic graph, then every Whitehead class
of measured foliations on Σ is represented by an essentially unique harmonic mea-
sured foliation (ℓ,m) on Γ. Furthermore, (ℓ,m) is a global minimum for E within
the Whitehead class.

Here essentially unique means that the lengths are the same, and that the
markings differ by only changing the markings in inessential ways without changing
the lengths at all. Furthermore, there is a local update algorithm for finding the
harmonic representative Proposition 12.

There are two potential types of applications for this model:

• Γ could be as coarse as possible, with very few edges, to give (e.g.) an
efficient coding for the space of measured foliations.

• Γ could be fine, with the goal of approximating well the actual harmonic
measured foliations on an underlying conformal surface.

For the second type of application, there is a long history of discrete approxima-
tions to harmonic functions or 1-forms on planar domains or Riemann surface Σ.
In particular, if Σ is approximated by a triangulation T into Euclidean triangles
with acute angles, an arbitrary function on Σ can be approximated by a simplex-
wise linear function g. After a short calculation [1, 2], one finds that

(1) ∇2(g) =
∑

e edge of T

cot(α) + cot(β)

2

(

g(v) − g(w)
)

,

where v and w are the two endpoints of e and α and β are the two angles opposite
from e in the adjacent triangles. The same weights may be used to approximate
harmonic measured foliations.

David Palmer, in a forthcoming thesis supervised by Steven Gortler, refined
and implemented the above algorithm for triangulations with cotangent weights.
Figure 1 shows an example of the output from his program.



Computational Geometric and Algebraic Topology 2671

References

[1] Richard H. MacNeal, The solution of partial differential equations by means of electrical
networks, Ph.D. thesis, California Institute of Technology, 1949.

[2] Ulrich Pinkall and Konrad Pothier, Computing discrete minimal surfaces and their conju-
gates, Experiment. Math. 2 (1993), no. 1, 15–36.

Combinatorial formulas for the characteristic classes of triangulated
S

1-fibre bundles

Georgy Sharygin

As one knows, characteristic classes of a smooth vector bundles over manifolds
can be determined either with the help of connections on these manifolds or as the
pullbacks of cohomology classes of universal classifying spaces; the latter method
is more functorial, but difficult from the point of view of computations. Given a
smooth oriented manifold M , it has a natural vector bundle associated with it,
i.e. its tangent bundle. Then one defines Pontryagin classes of M as characteristic
classes of this vector bundle. These classes pk(M) lie in the integer cohomology
H4k(M,Z).

Defined in this way, these classes ostensibly depend on the smooth structure,
which is necessary to determine the tangent bundle. However, in 1958 R.Thom
showed (see [1]) that rational Pontrjagin classes (i.e. images of pk(M) under the
natural change of coefficients map H∗(M,Z) → H∗(M,Q)) of a triangulated mani-
fold can be determined only from combinatoric data, encoded by the triangulation.
Later, in a paper published in 1978 (see [2]) N.Levitt and C.P. Rourke showed,
that there exist local formulas, that represent simplicial cocycles, corresponding to
the rartional classes, in terms of the links of simplices in this triangulation. That
is a class pk(M) can be represented by a simplicial cocycle

Pk(M) =
∑

σ4k∈M

fk(lkMσ
4k)δσ4k ,

where σ4k is a 4k-dimensional simplex in the triangulation of M , lkMσ
4k is its

link in the triangulation, and δσ4k is the corresponding dual δ-cochain. Functions
fk are maps from the set of all triangulations of spheres of suitable dimensions
into rational numbers (in the cited paper the authors deal with the Poincaré duals
of Pontryagin classes in homology). However, these results are pure existence
theorems, and the problem to find explicit expressions for such classes is still open
(one should mention papers by Gelfand, Gabrielov, Losik, [3, 4], Gelfand and
MacPherson, [5], and Gaifullin, [6], dealing with this question, in which various
approach to it are used).

In my talk I am going to describe a solution of a similar, but simpler problem:
suppose we have a triangulated principal S1-bundle E → B, i.e. a pair of triangu-
lations: one of the base B and another of the total space E, and a simplicial map
between them, such that geometric realization of this triad is homeomorphic to
the bundle. I shall give explicit local formulas to express powers of its Chern class
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in terms of this triangulation; similar formulas in the context of singularity theory
were given by Kazarian, [7]. One can use this result to evaluate the number of
simplices, necessary to triangulate a base of an S1-bundle so that there will exist
a triangulation of the total space, that agrees with it. The talk is based on a joint
work with Nikolai Mnëv (POMI).

References
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Line Bundles in Geometry Processing

Keenan Crane

(joint work with Felix Knöppel, Ulrich Pinkall, and Peter Schröder)

Geometry processing is the natural extension of digital signal processing to geo-
metric data, such as simplicial surfaces in R3. However, it lacks many of the basic
tools used in traditional signal processing (e.g., the fast Fourier transform) due to
the fact that (i) geometric data is often irregularly sampled, and (ii) the metric is
no longer homogeneous. We therefore seek to replace traditional signal process-
ing tools with more flexible counterparts adapted from differential geometry; here
we examine several problems which can be formulated in terms of discrete line
bundles. In particular, the solution to each computational problem is obtained by
computing the ground state of the associated Schrödinger operator.

Consider a triangulated manifold of any dimension with vertices V , edges E
and triangles F (for our discussion, we will not need to refer to higher-dimensional
simplices). A discrete line bundle consists of a one-dimensional complex vector
space at each vertex, together with the following data:

(1) unit complex numbers rij for each oriented edge (i, j) that are antisym-

metric in the sense that rji = r−1
ij , and

(2) real values Ωijk for each triangle such that rkirjkrij = eıΩijk .
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The values rij correspond to the connection 1-form; the values Ωijk correspond
to the curvature 2-form. Unlike a smooth vector bundle, both pieces of data
are needed in order to resolve the curvature ambiguity inherent in the complex
representation of parallel transport.

This data can be used to measure the variation of a given section ψ : V → C

along any edge (i, j). In particular, the section is parallel if rijψi = ψj . Therefore,
the overall regularity of the section can be measured via a Dirichlet energy

ED(ψ) :=
∑

ij∈E

wij |rijψi − ψj |2

where wij ∈ R are edge weights (on surfaces one might use the usual cotangent

weights). This energy can be encoded via a matrix A ∈ C|V |×|V | which can be
viewed as a discrete magnetic Schrödinger operator. We can likewise define a norm
on sections given by

||ψ||2 :=
∑

i∈V

mi|ψ|2i ,

where the values mi ∈ R are positive weights, often corresponding to the volume
of a cell associated with vertex i (e.g., one third the area of incident triangles).
If we encode this norm by a matrix M ∈ C|V |×|V |, then the ground state can be
obtained by solving the sparse eigenvalue problem

Aψ = λMψ

for the section ψ associated with the smallest eigenvalue λ; in practice, this prob-
lem can be solved efficiently, making it attractive for geometry processing tasks
involving large datasets. Notably, this machinery can easily be adapted to irregular
meshes with variable curvature.

In this framework, different choices of line bundle naturally arise from the data
available in different geometry processing tasks. For instance, when seeking the
smoothest vector field—or more generally, n-direction field—on a surface, one sim-
ply uses the Levi-Civita connection [1]; when seeking a global continuous surface
parameterization aligned with a given direction field X , one uses the correspond-
ing 1-form 〈X, ·〉 [3]; when seeking a decomposition of fluid motion into vortex
rings, the connection is induced by the fluid vorticity [2]. One can also use this
machinery to compute constrained volume deformations in R3 that are close to
conformal [4]. Further details can be found in [5].
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Trans. Graph. 32(4) (2013).
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Graph. 32(4) (2015).



2674 Oberwolfach Report 45/2015
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Invariants of Random Knots and Links

Joel Hass

(joint work with Chaim Even-Zohar, Joel Hass, Nati Linial, Tahl Nowik)

A petal diagram is a planar curve, comprised of 2n+ 1 straight segments crossing
at a single point, and arcs connecting consecutive pairs of segment tips. This
representation is universal, so that all knots are realized by some petal diagram [1,
Theorem 1]. A similar statement applies for links. Figure 1 shows petal diagrams
for two knots and for a 2-component link.

Figure 1. Petal diagrams of knots with 5 and 9 petals and a 2-
component link with 12 petals. In the 9 petal diagram, the heights
of the arcs are marked. The heights correspond to a permutation
in S9.

We introduce a new model for random knots and links in R3, called the Petaluma
model. In this model a permutation determines a knot or a link, and every knot
and link arises from some permutation. Our main results give formulas for the
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distribution of the linking number of a random two-component link and for the
moments of the Casson invariant and the order-3 knot invariant v3.

Along with its projection, a petal diagram comes with information on how to
construct a knot in R3 that projects to the diagram. The additional information
specifies the height of the arcs passing above the single crossing. The ordering of
these heights is specified by a permutation π ∈ S2n+1, with π(i) giving the knot’s
height as it passes over the center for the ith time. Each permutation determines
a knot, and in the Petaluma model we define a random knot K2n+1(π) to be a
knot with a 2n + 1 petal diagram and permutation π ∈ S2n+1, drawn uniformly
at random.

This construction extends to links. A two-component link petal diagram consists
of two planar curves, each of which transversely passes 2n times through a single
point, as shown in Figure 1 for n = 3. A two-component link is uniquely deter-
mined by a permutation π ∈ S4n. The strands of the first component pass above
the crossing at heights π(1), . . . , π(2n) and the strands of the second at heights
π(2n + 1), . . . , π(4n). This gives a universal model for two-component links [1,
Theorem 2], and the Petaluma model for a random two-component link L4n(π), is
obtained by drawing π uniformly at random from S4n. This model can be adjusted
to allow for unequal numbers of petals in the two components, or a higher number
of components.

We study the behavior of finite type invariants of knots and links in the Petaluma
model. A knot invariant is viewed as a random variable on the set of all diagrams
with 2n+ 1 petals, and we ask for its distribution and for its asymptotic growth
as n→ ∞.

The kth moment of a random variable X is the expected value E[Xk]. The
moments of an invariant indicate its value on a randomly sampled knot or link.
To understand the distribution of an invariant as n→ ∞ we must determine how
to normalize it as n grows. The following theorems give the order of growth of the
finite type invariants lk, c2, and v3, corresponding to the linking number, Casson
invariant (second coefficient of the Conway polynomial) and the third coefficient
of the modified Jones polynomial (J(et)).

Theorem 1. E[(lk(L4n))k] is a polynomial in n of degree ≤ k.

Theorem 2. E[(c2(K2n+1))k] is a polynomial in n of degree 2k.

Theorem 3. E[(v3(K2n+1))k] is a polynomial in n of degree ≤ 3k.

Remark. In Theorems 1 and 3 there is equality for k even, while the odd
moments are 0.

We also determine the leading term of the E[ck2 ] polynomial. This yields the
limits of the moments of the normalized invariant c2/n

2. For k = 1, 2, 3 we find
limn→∞ E[ck2/n

2k] = 1/24, 7/960, and 5119/2419200 respectively. Similarly we
obtain the limiting variance limn→∞E[v23/n

6] = 4649/2721600.
In the case of the linking number of two-component links, we can exactly de-

scribe the limiting distribution of the normalized first order invariant lk(L4n)/n
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as n → ∞. Theorem 4 gives the first explicit description of the asymptotic prob-
ability distribution for any knot or link invariant.

Theorem 4. The limiting probability distribution of lk(L4n)/4n as n → ∞ is
given by

P

[

α <
lk(L4n)

4n
< β

]

→
∫ β

α

π

cosh2(2πx)
dx =

tanh(2πβ) − tanh(2πα)

2
.

The expression for the linking number turns out to be the same as an expression
found in a problem studied by physicists, the flux through a random curve in the
plane. Our proof of Theorems 1 and 4 is an adaptation and simplification of Mingo
and Nica’s derivation of this flux [2].

Theorem 2 shows that c2(K2n+1) typically grows as n2, while Theorem 3 show
that v3(K2n+1) grows as n3. In combination with Theorem 4, these results suggest
the following conjecture:

Conjecture 5. Let vm be a knot invariant of order m > 0. Then vm(K2n+1)/nm

weakly converges to a limit distribution as n→ ∞.

The analysis of knot invariants in this paper is part of a project to apply the
probabilistic method in topology. This methodology begins by defining a probabil-
ity distribution on the objects of study. Parameters and invariants of interest then
become random variables on this probability space. Tools of probability theory
are then applied to investigate the distribution of these random variables. This
general approach has yielded many unexpected results, often providing existence
proofs of objects with unexpected properties. In many cases existence of such
objects can be established using probabilistic methods, yet finding an explicit con-
struction remains open. Our focus here is to bring this approach to random knots
and links, and to associated knot and link invariants.

It is important to consider to what extent our results are model dependent,
and to investigate what might happen if we switch to a different model. To test
the extent of model dependency of our statistics, we ran numerical studies on the
distribution of the c2 and v3 invariants in a other random models. Our numerical
experiments yield distributions for c2 that share many features with the distri-
bution obtained for the Petaluma model. It remains unclear how the choice of a
random model determines the statistics of a knot and link invariant, and which
universality principles apply across a wide range of models.
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Approximation algorithms for topological graph properties

Anastasios Sidiropoulos

Topological graph theory has given rise to fundamental algorithms for computing
several graph invariants. Some of the central problems in this area concern the
computation of crossing number, graph genus, vertex/edge deletion number, and
various other minor-closed properties. Many of these algorithms build upon and
expand the seminal work of Robertson and Seymour on graph minors. Conse-
quently many of these algorithms are applicable only on the exact setting. Since
computing most topological graph invariants of interest is in general NP-hard,
the running time of these exact algorithms has exponential dependence on the
topological parameter in question.

This talk will present some recent efforts to extend the above results to the
setting of approximation algorithms, thus removing the exponential dependence
of the running time on the topological parameter. More precisely, we obtain
algorithms for approximating the orientable and non-orientable genus and the
crossing number of bounded degree graphs. We also extend our approximation
algorithm for non-orientable genus to the case of general graphs. Finally, we obtain
a poly-logarithmic approximation for minimum vertex deletion. This is the first
approximation algorithm with a poly-logarithmic guarantee for any topological
property of this kind.

Persistent homology and Hilbert spaces

Peter Bubenik

Persistent homology is the central technique for an approach to using algebraic
topology to analyze data. To start, I will give an high-level overview of this
method. Next I will discuss a number of ways in which this may be generalized.
For the main part of the talk, I will discuss the fusion of topological data analysis
with statistics and machine learning, and how moving to a Hilbert spaces can help
one to combine these approaches. To end, I will give some biological applications.

1. Persistent homology

The standard pipeline in topological data analysis may be represented by the
following steps.

(1) Raw data is obtained as the output of some experiment or observation.
(2) This is preprocessed and converted to a form amenable to mathematical

analysis. For example, points in Euclidean space.
(3) From this nice data, a geometric construction is applied to obtain a filtered

complex.
(4) Then one applies homology with coefficients in a field to obtain a persis-

tence module.
(5) From this one extracts a topological summary.
(6) Finally, we analyze our summary to learn something from our data.



2678 Oberwolfach Report 45/2015

For now, we will consider steps 3, 4 and 5. We will consider 6 in Section 3. The
filtered complex, K, has the form

K1 ⊆ K2 ⊆ K3 ⊆ · · · ⊆ Kn,

where each Kj is a (simplicial) complex and each map is an inclusion. To this we
apply the functor Hi(−,k), to obtain the persistence module, V , which has the
form

V1 ⊆ V2 ⊆ V3 ⊆ · · · ⊆ Vn,

where each Vi is a vector space over k and each map is linear.
Each of the following points of view of V is fruitful.

• V is a graded k[x]-module.

• V is a representation of the quiver (i.e. directed graph), ~An, given by
1 → 2 → 3 → · · · → n.

• V is a functor from ~An to vect, the category of finite dimensional vector
spaces.

• V is a module over k ~An the algebra of paths in ~An.

The following theorem from the representation theory of quivers is fundamental.

Theorem 1 (Gabriel, 1972). V is isomorphic to a direct sum of interval modules,
I[b,d), given by 0 → 0 → · · · 0 → k → k · · · → k → 0 → · · · → 0, where the first k
is in position b, the last k is in position d− 1, and each of the maps k → k is the
identity map.

As a result, V may be completely described by the multiset of intervals {[bi, di)},
called a barcode, or the corresponding multiset of ordered points, {(bi, di)}, called
a persistence diagram.

2. Generalizations

There are a number of directions in which we may generalize the setup in the
previous section.

• Replace ~An with other quivers. For example, ~Am × ~An.

• Replace ~An with another poset, preordered set, or small category. For
example, (R,≤), or (R2,≤).

• Replace Hi(−,k) with other functors. For example, cohomology, some
other generalized homology theory, or rational homotopy groups.

• Replace vect with some other abelian category. For example, R−mod,
or Shv(X).

However, there are difficulties not apparent in ordinary persistence; in almost no
other cases is there a persistence diagram that we can fully understand.

3. Hilbert space

To combine topological data analysis with statistics and machine learning we would
like to test hypotheses, average topological summaries, understand their variance,
calculate correlations, perform exploratory data analysis, cluster, and classify our
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data. Some of these are quite hard to do directly with persistence diagrams.
One solution is to map persistence diagrams to a Hilbert space. Such a map is
called a feature map. Examples include the rank function, the stable multi-scale
kernel [3], and the persistence-weighted Gaussian kernel. Another feature map is
the persistence landscape, λ : D → L2(N×R), [1]. It has the following advantages:

• it is stable;
• it is a piecewise-linear function;
• if P is the number of critical points of this PL function, then it can be

calculated in O(P );
• one can recover the persistence diagram from the persistence landscape;

and
• it is easy to average: λ̄(k, t) = 1

n

∑n
i=1 λ

(i)(k, t).

4. Applications

In this talk we show an application to protein data. We have the three dimensional
structure of the maltose binding protein in various shapes/conformations. These
were obtained by x-ray crystallography and are publicly available in the protein
data bank. Using persistence landscapes, we are able to distinguish between the
‘open’ and ‘closed’ conformations of the maltose binding protein. Applying support
vector machines, we find a separating hyperplane for homology in degrees 0, 1 and
2. For more details see [2].
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Classifying the phase behaviour of lipid formulations using persistent
homology

Corrie Jacobien Carstens

(joint work with Dallas Warren, Craig Westerland)

There is a growing number of drugs that are poorly soluble in water. Such drugs
are typically inefficiently absorbed by the human body. However, by dissolving
these drugs in inactive substances (known as excipients) their bioavailability can be
improved. Lipid formulations generally consist of a drug dissolved in two or more
excipients [4]. It is the structure formed by these excipients that ensures the drug
is in a dissolved state. The effectiveness of a lipid formulation for drug-delivery
purposes depends on its behaviour when mixing with the aqueous environment in
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the gut. This behaviour can be predicted using molecular dynamics simulations
with increasing amounts of water.

Figure 1. Four distinct types of phase behaviour that emerge
when simulating the movement of excipients in water (not shown).

The behaviour of a lipid formulation can be classified into different phases
(see Figure 1). This is done by examining the geometrical structure formed by
excipients. Currently, the results of molecular dynamics simulations are inspected
by eye and classified into different phases manually. This process is labour intensive
and would benefit from more quantitative methods. We have been working on a
method that uses persistent homology for the classification of the phase behaviour
of lipid formulations.

Persistent homology [3] is a mathematical framework that can be used to quan-
tify the shape of point clouds [2]. We initially use persistent homology as an
exploratory data analysis tool. In order to do this we wrote a graphical user inter-
face for JavaPlex. This software allows us to visualize 3-dimensional point-clouds
and their associated Vietoris-Rips complex as well as the corresponding persistence
barcode or diagram. We also use it to highlight the generators of 1-dimensional
homology classes. We decided to use persistent homology to compare the geo-
metrical and topological structure of a collection of lipid formulations. We did
not attempt to describe each lipid formulation separately. Instead we cluster the
lipid formulations using the landscape distances [1] between a collection of persis-
tence barcodes that can be associated to them. Our initial results indicate that
persistent homology can distinguish fairly well between different phase behaviours.

Ultimately our goal is to automatically label lipid formulations. This will assist
practitioners in assigning the correct phase to each system. Understanding the
phase behaviour in turn helps recognize under which conditions the drugs are
likely to be absorbed best.
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Topological Data Analysis with Bregman Divergences

Hubert Wagner

(joint work with Herbert Edelsbrunner)

1. Introduction

Topological Data Analysis (TDA) brings the methods of computational geome-
try and topology into the practice of data analysis. In particular, these methods
are used to gain insight into high-dimensional point-cloud data. We extend the
theoretical and algorithmic framework of TDA to the setting of point-cloud data
measured with Bregman divergences, which are commonly used in practical appli-
cations.

In TDA, the first step is to build combinatorial representation of data, using a
Čech, Vietoris-Rips, or Delaunay (alpha) simplicial complex. These constructions
capture the homotopy type of the union of balls centered around the input points.
With persistence one studies the changes of homology groups as the radius of balls
grows from zero to infinity. This gives a rich geometric-topological summary of
the data, called the persistence diagram or barcode [3].

These constructions are typically used with the Euclidean distance. We demon-
strate that TDA can be applied to data measured with arbitrary Bregman diver-
gences, which are generally not metrics. They are commonly used in information
retrieval, speech recognition, statistics, and other disciplines.

2. Bregman divergences

In applications, point-cloud data are often studied with dissimilarity measures that
are not metrics. Bregman divergences form a family of such measures with some
members commonly used in practice [4]. Each Bregman divergence is parametrized
by a function F . Let Ω ⊆ Rn be convex and F : Ω → R differentiable and strictly
convex. For two points x, y ∈ Ω, the Bregman divergence from x to y associated
with F is the difference between the value of F at x and the first-order Taylor
expansion of F around y evaluated at x [2]:

DF (x‖y) = F (x) − [F (y) + 〈∇F (y), x − y〉] ;

Since DF (x‖y) is not necessarily symmetric in its two arguments, we define two
types of Bregman balls, primal and dual :

BF (c; r) = {x ∈ Ω | DF (c‖x) ≤ r},
B

′

F (c; r) = {x ∈ Ω | DF (x‖c) ≤ r}.
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The Bregman-Voronoi domains, VF (x) and V
′

F (x), have analogous definitions.

(a) Primal ball, BF (c; r) = [p0, p1], is de-
termined by the subset of F (Ω) illumi-

nated by light shining from point cr; Dual

ball, B
′

F (c; r) = [d0, d1], is cut away by
plane tr parallel to tangent plane t. Note
r = DF (c‖p0) = DF (c‖p1) = DF (d0‖c) =
DF (d1‖c).

(b) Two primal Bregman balls, BF (x; r),
BF (y; r), of equal radius intersect if their
centers are contained in a dual Bregman

ball of the same radius, B
′

F (c; r). We use
the Itakura-Saito divergence; note the non-
convexity of primal balls.

Figure 1. Properties of Bregman balls.

F (x) DF (x‖y) applicable
Kullback-Leibler

∑

i xi log(xi)
∑

i xi log(xi/yi) texts, images
Itakura-Saito −∑

i log(xi)
∑

i(xi/yi − log(xi/yi) − 1) speech
Sq. Mahalanobis 1

2x
TQx 1

2 (x− y)TQ(x− y) statistics
Sq. Euclidean ‖x‖2 ‖x− y‖2 real world

Table 1. Commonly used Bregman divergences.

See Figure 1a for geometric intuition and Table 1 for typical examples. Note that
Bregman balls live in the input space, Ω. We stress that dual balls are convex by
construction. Primal balls need not be convex.

3. Proximity complexes

Given a finite point-cloud, X ⊂ Ω, we define three constructions in the Bregman
setting, namely Čech, Delaunay, and Vietoris-Rips simplicial complexes:

ČechF (X ; r) = {S ⊆ X |
⋂

x∈S

BF (x; r) 6= ∅},

DelF (X ; r) = {S ⊆ X |
⋂

x∈S

[BF (x; r) ∩ VF (x)] 6= ∅}.
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A Vietoris-Rips complex approximates a Čech complex. RipsF (X ; r) is the flag
complex whose 1-skeleton coincides with the 1-skeleton of ČechF (X ; r). In other
words, we put a (k + 1)-simplex for each k-tuple of Bregman balls with pairwise
nonempty intersection.

To see that the Bregman-Čech and Deluanay complexes have the homotopy
type of the union of primal Bregman balls, we apply the Nerve Theorem [1] to
the cover of the union formed by the balls. We can do this because the common
intersection of any collection of primal balls is either empty of contractible. This
property lies at the heart of our approach and can be proved using the conjugate
function obtained from F with the Legendre transform. The same idea works if
we clip the primal Bregman balls with the corresponding Voronoi domains.

4. Algorithms

We show a simple algorithm transforming a (Bregman) Vietoris-Rips complex into
a (Bregman) Čech complex:

def cech_complex(points, divergence, max_r, max_d):

complx = rips_complex(points, divergence, max_r, max_d)

for s in complx.simplices():

r = min_enclosing_dual_ball_radius(s.points, divergenc e)

if r > max_r:

complx.remove_simplex(s)

else:

s.filtration_value = r

return complx

It exploits the following duality: A tuple of primal Bregman balls of radius r have
nonempty intersection iff their centers are contained in a dual Bregman ball of the
same radius. See Figure 1b for an illustration. Algorithms for smallest enclosing
Bregman balls have been studied [5], giving hope for efficient implementations.

5. Discussion

In the full version of the paper, the theory sketched here is developed in details.
TDA for data measured with Bregman divergences opens many interesting appli-
cations, but there remain open questions in this setting:

• Stability of persistent homology.
• Computing sparsified complexes.
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Encoding Surface Maps

Mark C. Bell

Let S be a closed, orientable surface of genus g > 0 with n > 0 marked points. We
will look at an efficient technique for combinatorially representing mapping classes
h ∈ Mod(S).

This representation is based off of the various ways of triangulating S using ζ =
6g+3n−6 arcs and the marked points as vertices. We arrange these triangulations
into the flip graph G(S) based on their similarity. That is, G(S) has a vertex for
each triangulation of S and two triangulations are adjacent, written T – T ′, if and
only if they share ζ − 1 arcs.

Theorem 1 ([4, Page 190], [5, Page 36]). The flip graph G(S) is connected.

Now the mapping class group Mod(S) acts geometrically on G(S). Thus the flip
graph gives a combinatorial model for Mod(S) where we represent the mapping
class h by a path from T to h(T ) [2, Section 2.2]. This can always be done by
Theorem 1. This representation allows us to efficiently determine the images of
simple closed curves under mapping classes and has been implemented as part of
flipper [1].

Of particular interest is the diameter of the finite quotient

M(S) = G(S)/Mod(S)

[6] [3]. For certain surfaces we can use flipper to explicitly compute M(S),
for example see Figure 1. For these surfaces we can then compute diam(M(S))
exactly. See Table 2.

Figure 1. The graph M(S) when g = 2 and n = 1.



Computational Geometric and Algebraic Topology 2685

vertices
1 2 3 4 5 6

1 10 54 409 45014 637019 10449824
genus 2 84 23213 727119 22405524

3 92712 9522121
4 67644520

Table 2. |M(S)|diam(M(S)) for various surfaces.

As these graphs become extremely large as g and n grow, it quickly becomes
impractical to construct them. The second half of this talk will be devoted to an
entirely local technique for producing these paths for a Dehn twist Dγ where γ is
a simple closed curve.

The idea of this technique is based off of the fact that if γ meets T in only two
places then T – Dγ(T ) and it is straightforward to find a path between them. We
will discuss the following pair of lemmas that allow us to reduce a general curve
back to this specific case.

Lemma 1. Suppose that T is a triangulation and γ is a curve. If ι(γ, α) > 2 for
some arc α ∈ T then we have that T – T ′ where ι(γ, T ′) < ι(γ, T ).

Lemma 2. Suppose that T is a triangulation and γ is a non-separating curve. If
ι(γ, T ) > 2 then we have that T – T ′ – T ′′ where ι(γ, T ′′) < ι(γ, T ).

These lemmas, and so the ability to perform Dehn twists along arbitrary curves,
have also been implemented as part of flipper .
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Eliminating Multiple Intersections of Maps: Codimension 2

Uli Wagner

(joint work with Sergey Avvakumov, Isaac Mabillard, Arkadiy Skopenkov)

Motivated by Tverberg-type problems in topological combinatorics and generalizing
classical results about embeddings (maps without double points), we study condi-
tions under which a finite simplicial complex K can be mapped to d-dimensional
Euclidean space Rd without higher-multiplicity intersections.
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LetK be a finite simplicial complex, and let r ≥ 2 and d ≥ 1. A map f : K → Rd

is an almost r-embedding if f(σ1)∩· · ·∩f(σr) = ∅ whenever σ1, . . . , σr are pairwise
disjoint simplices of K.1,2

The long-standing topological Tverberg conjecture, raised by Bajmoczy and
Bárány [BB] and Tverberg [GS, Problem 84] asserts that for N = (d+ 1)(r − 1),
the N -dimensional simplex σN does not admit an almost r-embedding in Rd. This
was proved in the case that r is a prime [BB, BShSz] or a prime power [Öz] in the
1980’s, but the case of arbitrary r remained open and was considered a central
problem in topological combinatorics.

Recently, we developed an approach to constructing counterexamples to the
conjecture whenever r is not a prime power [MW14, MW]. Building on this ap-
proach, the first counterexamples were constructed by Frick [Fr] for d ≥ 3r + 1; a
different construction for d ≥ 3r was given in [MW].

Here, we improve this as follows:

Theorem 1. If r is not a prime power and d ≥ 2r, then there is a PL almost
r-embedding of the (d+ 1)(r − 1)-simplex in Rd.

The smallest counterexample to the topological Tverberg conjecture obtained
in this way is an almost 6-embedding of the 65-dimensional simplex in R12.

There is a well-known necessary condition for the existence of an almost r-
embedding: Let (K)r∆ denote the deleted product of K, i.e., the subcomplex of the
Cartesian product Kr whose cells are the products of r pairwise disjoint simplices
of K.

Lemma 1. If there exists an almost r-embedding f : K → Rd then there exists an
equivariant map3 F : (K)r∆ →Sr

Sd(r−1)−1.

In the case that r is a prime or a prime power, the topological Tverberg conjec-
ture was proved by showing that there is no equivariant map (σN )r∆ →Sr

Sd(r−1)−1

[BB, BShSz, Öz]. However, in the case that r is not a prime power, Özaydin

[Öz] showed that there exists an equivariant map (K) →Sr
Sd(r−1)−1 whenever

dim(K)r∆ ≤ d(r − 1), in particular for K = σN .

Motivated by Özaydin’s result, we proved in [MW14, MW] that the necessary
condition in Lemma 1 is also sufficient for the existence of an almost r-embedding,
provided dimK = (r − 1)k and d = rk for some k ≥ 3 and r ≥ 2 (we call k the
codimension). Our proof of Theorem 1 is based on the following extension (for
r ≥ 3) of this criterion to codimension 2:

Theorem 2. Let r ≥ 3, and let K be a finite 2(r − 1)-dimensional simplicial
complex. Then the following are equivalent:

1We stress that this definition depends on the simplicial complex, i.e., a specified triangulation
of the underlying polyhedron.

2Any sufficiently small perturbation of an almost r-embedding is again an almost r-
embedding; thus, without loss of generality, it suffices to consider maps that are piecewise-linear
(PL) and in general position.

3Here, Sd(r−1)−1 =
{

(y1, . . . , yr) ∈ (Rd)r |
∑

r

i=1 yi = 0,
∑

r

i=1 ‖yi‖
2
2 = 1

}

, and the symmet-

ric group Sr acts on both spaces by permuting components.



Computational Geometric and Algebraic Topology 2687

(i) There exists a PL almost r-embedding f : K → R2r.
(ii) There exists a PL map g : K → R2r in general position such that the

algebraic intersection number of the g-images of any r pairwise disjoint
simplices of K is zero.

(iii) There exists an equivariant map (K)r∆ →Sr
S2r(r−1)−1.

Remark 1. It follows from work of Freedman, Krushkal, and Teichner [FKT, KT]
that the analogous criterion for r = 2 is false (more precisely, the implication (ii)
⇒ (i) fails).
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Software Sessions

Marc Culler – SnapPy. SnapPy is a software suite designed for studying hy-
perbolic 3-manifolds. The computational core of SnapPy is a C library originally
written by Jeff Weeks for use in his Macintosh application named SnapPea, which
ran on OS 8 and 9. Weeks’ original design separated the graphical user inter-
face (written in ThinkC) from the computational kernel (written in ANSI C).
This design choice made it possible for Nathan Dunfield, while he was a graduate
student at the University of Chicago, to use SWIG to wrap the SnapPea kernel
as a python module. Having access to the SnapPea kernel from python enabled
automated experimentation over large families of manifolds. In its current form
SnapPy provides access to the kernel (subsequently extended by Marc Culler and
Nathan Dunfield with important contributions from Mark Bell, Mathias Goerner
and Saul Schleimer) from python, or from Sage, with enhanced interaction with
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Sage’s data types, or as a standalone graphical application which runs on OS X,
Windows and linux systems. The Cython language is used to construct python
extension modules. Several other components have been written in python to
support more flexible interaction with the SnapPea kernel. These include PLink,
an interactive editor for link diagrams which can export the complement of the
link as a SnapPea manifold; Spherogram, which provides algorithms for generating
tangles and link diagrams formally and computing knot or link invariants; CyPari,
which is a standalone version of Sage’s Pari module, usable from standard python;
and Twister which provides tools for constructing and studying surface bundles
over the circle and surface mapping classes. Computational capabilities of the ker-
nel have been significantly expanded by providing an option to extend the floating
point arithmetic to quad-double precision. SnapPy can be used in rigorous math-
ematics, thanks to work of Goerner’s. While these capabilities will be expanded in
the future, SnapPy is now able to provide a mathematically rigorous proof that the
topological manifold given by an ideal trianglulation admits a hyperbolic struc-
ture. For experimentation, SnapPy contains huge databases of 3-manifolds. These
include all 61911 manifolds constructible from up to 9 ideal tetrahedra; Rolfsen’s
table of 1215 links with up to 10 crossings; the Hoste-Thistlethwaite tables of the
491,326 alternating knots with up to 16 crossings, the 1.210,608 non-alternating
knots with up to 16 crossings, and the 180509 links with up to 14 crossings. For
more information or downloads, please visit http://snappy.computop.org .

Mark C. Bell – Flipper. flipper is a program for computing properties of
mapping classes and their actions on laminations. To do this it uses ideal trian-
gulation coordinates on the space of measured laminations.

Among other things, flipper can effectively determine the Nielsen–Thurston
type of a mapping class and decide whether two mapping classes are conjugate –
whenever at least one of them is pseudo-Anosov. The algorithms that flipper
uses are exact and in NP. Hence these can also be used to produce quickly verifi-
able certificates of these properties.

flipper can be run as a Python 2, Python 3 or Sage Python module and is
available through the Python Package Index.

Monique Teillaud – CGAL. CGAL, the Computational Geometry Algorithms
Library (www.cgal.org) provides industrial and academic users with useful and
reliable geometric algorithms. CGAL is an open source project, through which
contributors gain impact and visibility. CGAL is distributed under a double license
scheme: GPL and commercial. The talk presents an overview of the contents of
CGAL and of its characteristics: robustness, genericity, flexibility, and efficiency.
Then it focuses on triangulation and meshes packages and finally shows some work
in progress.

Dimitriy Morozov – Dionysus. Morozov presented Dionysus, a C++ library
with Python bindings for computation of persistent homology. Besides persis-
tent homology, the library supports computation of vineyards, image persistence,
persistent cohomology, circular coordinates, and zigzag persistence. It provides
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Figure 1. The stable lamination of a pseudo-Anosov, as found
by flipper .

functionality to construct filtrations from data, including Vietoris-Rips filtrations,
alpha complexes, and Cech complexes. Examples included with the library illus-
trate how to construct lower-star and extended filtrations. The library is open-
source and is available from Morozov’s website.

Ulrich Bauer – Phat and DIPHA. Phat is a C++ library for the computa-
tion of persistent homology by matrix reduction, targeted towards developers of
software for topological data analysis. It aims for a simple generic design that
decouples algorithms from data structures without sacrificing efficiency or user-
friendliness. The library provide numerous different reduction strategies as well
as data types to store and manipulate the boundary matrix. It is available at
¡https://bitbucket.org/phat-code/¿.

DIPHA is a C++ library for the distributed computation of persistent ho-
mology, implemented using OpenMPI. It supports input in the form of distance
matrices for Vietoris–Rips filtrations, d-dimensional gray-scale image data for cu-
bical lower star (sublevel set) filtrations, and general filtrations in the form of a
boundary matrix. It is available at ¡https://bitbucket.org/dipha¿.

Michael Kerber – Distance between Persistence Diagrams. Our software
considers the problem of computing distances between persistence diagrams, a
problem that comes up frequently in topological data analysis. While exploiting
geometric structure to improve the asymptotic complexity of the problem is a well-
studied subject, the practical advantages of using geometry have not been explored.
We implement geometric variants of the Hopcroft–Karp algorithm for bottleneck
matching (based on previous work by Efrat el al.), and of the auction algorithm
by Bertsekas for Wasserstein distance computation. Both implementations use
k-d trees to replace a linear scan with a geometric proximity query. We show
that our geometric matching algorithms lead to a substantial performance gain,
both in running time and in memory consumption, over their purely combinatorial
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counterparts and over other implementations available for comparing persistence
diagrams.

Vitaliy Kurlin – HoPeS: 2D cloud segmentation and persistent skele-
tons. The input is a 2D cloud of any points with real coordinates. The first output
is a hierarchical segmentation of the cloud based on 1D persistent homology. The
second output is a homologically persistent skeleton (HoPeS), which optimally
represents all persistent 1D structures in the cloud. The running time is O(n log
n) for any n points in the plane. The slides are at [1]. The C++ code is at [2].
For any support, please e-mail vitaliy.kurlin@gmail.com.
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Jacobien Carstens – HomViz and Persistence Landscape Wrapper.
HomViz [1] is a graphical user interface for persistent homology and powered by
JavaPlex. It provides an interactive visualization of the Vietoris-Rips complex of a
point cloud and its corresponding persistent diagram at different filtration values.
Furthermore it has the capacity to highlight generators of homology classes. Per-
sistence landscapes offer a convenient topological summary of persistent homology.
The Persistence Landscape Wrapper [2] provides a Matlab interface for the C++
library ’persistent landscape toolkit’ that was developed by Pawel Dlotko .
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Michael Joswig – Polymake. polymake started out as tool to study the ge-
ometry and the combinatorics of convex polytopes and polyhedra. By now it
also deals with combinatorial manifolds, matroids, toric and tropical varieties and
other objects. In this presentation the versatility of the software was highlighted
by referring to several previous talks at this workshop. This included the following.

• The construction of an 8-dimensional polytope from political science data
discussed by Kevin Knudson.

• The visualization of a deltahedron as in Vanessa Robins’ presentation.
• Statistics for random discrete Morse functions as studied by Jonathan

Spreer.

polymake is an open source software tool which can be downloaded from
www.polymake.org .

Jonathan Spreer – the GAP pacakge simpcomp. The combinatorial topol-
ogy software simpcomp [1, 2, 3] is an extension – a so called package – to the
open source computer algebra system GAP [4]. Its primary purpose is to provide
functionality to deal with simplicial complexes within the GAP framework. The
package enables the user to compute numerous properties of (abstract) simplicial

www.polymake.org
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complexes, such as homology or automorphism groups. In addition it provides
functions to compute discrete Morse functions, slicings, a combinatorial version of
an algebraic blowup, vertex transitive triangulations, and many more. It can gen-
erate simplicial complexes from facet lists, orbit representatives, difference cycles,
or isomorphism signatures. Moreover a comprehensive collection of sporadic ex-
amples and infinite series of triangulations of manifolds are included in the built-in
library of the package.

A major focus of simpcomp is extendability. Most of its code is written in
the easy-to-learn GAP scripting language. That is, functionality can be added
or changed without re-compiling the source code. The software comes with a
thoroughly developed 200+ page manual.

The software is jointly developed and maintained with Felix Effenberger.
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Benjamin A. Burton – Regina. Regina is a suite of mathematical software
for 3-manifold topologists. It focuses on the study of 3-manifold triangulations,
normal surfaces, and angle structures.

Regina can perform high-level tasks such as 3-sphere recognition, connected
sum decomposition, census enumeration, combinatorial recognition of manifolds,
and testing for properties such as Hakenness and hyperbolicity. Under the hood
it uses exact computations, with algorithms that draw on polytope theory, integer
programming, and tree decompositions.

Regina comes with a full graphical user interface for desktops and mobile de-
vices, and also offers Python bindings and a low-level C++ programming interface.
The software is freely available at regina.sourceforge.net .

Open Problem Session

Problem ONE. Matthew Kahle: Is there a constant C > 0 such that every

2-dimensional complex ∆ with n vertices and Cn
5

2 faces contains an embedded
torus?

Comments:

• Part of more general question.
• True for the sphere.
• This bound would be best possible.

regina.sourceforge.net
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• Known bound: Cn
8

3 due to simple double counting argument in the link.
• You can find surfaces of arbitrary genus embedded in random complexes

on n vertices with n
5

2 faces almost surely as n→ ∞ (result due to Gundert
Wagner).

Problem TWO. Ulrich Bauer: Poisson point process in Rd, T its Delaunay
triangulation. Consider the 1-skeleton of T , take its flag complex. How many of
the d-simplices are Delaunay? More generally, how many of the k-simplices, k ≤ d,
are Delaunay?

Comments:

• More likely or less likely in higher dimensions?
• Motivation: ∃ new code in CGAL where only the 1-skeleton is stored.
• Note: there are some related results in stochastic geometry about the

probability of Delaunay simplices of a certain shape.

Problem THREE. Jeff Erickson: Given a generic immersion of the circle in the
plane γ : S1 → R2 with n double points. Is there an upper bound as a function of
n in terms of Reidemeister type moves that are necessary to resolve double points
of the immersion.

Comments:

• Trivial lower bound Ω(n)
• Classical upper bound O(n2) [Steinitz, 1912]

• New bound Ω(n
3

2 ) [Chang, E. 2015]
• This is proven by using an Arnold type curve invariant called defect which

for certain curves is Ω(n
3

2 ). On the other hand, every generic immersion

with n vertices has defect O(n
3

2 ).
• New result O(n2/ log(n)) [Chang, ∞]
• Are the bounds related to separator size? Related yes, but not used in the

upper bound proof.
• Almost all moves are type three Reidemeister type moves
• ∃ preprint: http://arxiv.org/abs/1510.00571 .

Problem FOUR. Joel Hass: Let γ1, γ2, γ3, . . . be generic immersions of the circle
in the plane. We say they universally carry knots if eventually every knot will
appear in some curve in the sequence after resolving double points.

What characterises a universal sequence of plane curves?

Comments:

• General position is assumed.
• Example: Every knot has the same projection as the standard (n, n+ 1)

torus knot projection after some resolution.
• Pot holder diagrams might be a good starting example.
• Should the sequence be minimal? Extra question: It should be efficient.
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• Are there necessary conditions known? There is a necessary condition that
the width cannot be bounded.

• Treewidth might be a good place to start.

Problem FIVE. Keenan Crane: The 2-sphere can be turned inside out. What
about discrete spheres? Given a simplicial immersion, that is, a locally injective
simplicial map. Can we answer one of the following questions:

(1) Smallest sphere everted? Some triangulated 2-spheres cannot be turned
inside out. Consider, for instance, the boundary of the tetrahedron.

(2) On a smooth surface there are 22g homotopy classes. What is the smallest
genus g simplicial sphere such that you have 22g discrete regular homotopy
classes?

Comments:

• Do you have an upper bound? The actual proof for the smooth sphere
contains a polyhedral sphere, so there is an upper bound.

• Is there anything smaller than this?
• Jeff Erickson: Algorithmic formulation of this question. Given an embed-

ded simplicial 2-sphere in R3, can it be everted?

Problem SIX. Kevin Knudson: f, g : M → R Morse functions which are “close”
(for your favourite notion of close). Is there a discrete Morse theory version of this?
Can we perturb a discrete Morse function a little bit (possibly without changing
the triangulation)?

Comments:

• What if you want to sample (discretise) a smooth family?
• If you have a smooth Morse function then there exists a discrete version

of this function with the same properties [Benedetti].
• Cerf’s theorem: For two Morse functions f, g : M → R, there exists a

family of smooth functions F : M × I → R such that f(·, 0) = f and
f(·, 1) = g, and all but finitely many functions in between are Morse.

• Ulrich Bauer: For discrete Morse functions we can compare their discrete
gradients.

Problem SEVEN. Frank Lutz: Question: What is χ3(S3) = ?

The question goes back to Jesper M. Møller. We are considering vertex-colourings
of triangulations of the 3-sphere S3 such that monochromatic triangles are allowed,
but monochromatic tetrahedra are not.

In general, this gives a hierarchy of colouring numbers, where χi means that
monochromatic (i− 1)-faces are allowed, but monochromatic i-faces are not.

It is known that

• χ1(S2) = 4 (4-colour theorem)
• χ1(M2) = finite (map colour theorem [Ringel, Youngs, 1978])
• χ1(M3) = ∞ (by existence of neighbourly triangulations [Walkup, 1970])
• χ2(M3) = ∞ (L., Møller [2015])
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Comments:

• We know that χ3(S3) ≥ 2.
• Is there an upper bound? No, might even be infinite.
• Question could be asked for any other 3-manifold as well as in higher

dimensions.

Problem EIGHT. Benjamin A. Burton

Greater picture: can we solve unknot recognition in polynomial time?

More precisely, given a knot K whose minimal treewidth is bounded below
by some constant. Does there exist a function f : N → N such that the mini-
mal triangulation of S3 \ K has a dual graph with treewidth ≥ f(k) such that
limk→∞ f(k) = ∞?

Background: One possible way to find a polynomial time algorithm for unknot
recognition is to first prove that unknot recognition is in FPT and then find a way
to retriangulate knot diagrams in order to decrease their treewidth. The converse
of this question is a necessary condition for this plan to be feasible.

Comments:

• Saul Schleimer: The (k, k + 1)-candidate might have no diagram with
low treewidth, but their knot complements admit triangulations with very
small treewidth.

Reporter: Katharine Turner
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École Normale Supérieure
45, rue d’Ulm
75230 Paris Cedex 05
FRANCE

Keenan Crane

Department of Computer Science
Columbia University
Seeley W. Mudd Building
New York, NY 10027
UNITED STATES

Prof. Dr. Marc Culler

Department of Mathematics, Statistics
and Computer Science, M/C 249
University of Illinois at Chicago
851 S. Morgan Street
Chicago, IL 60607-7045
UNITED STATES

Dr. Arnaud de Mesmay

Gipsa-Lab
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