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Abstract. The aim of this workshop was fostering the growth of new math-
ematical ideas arising from mixed-integer nonlinear optimization. In this
regard, the workshop has been a resounding success. It has covered a very di-
verse scientific landscape, including automated proof in computational geom-
etry, the analysis of computational complexity of MINO in fixed and variable
dimension, the solution of infinite MINO such as those appearing in mixed-
integer optimal control, the theoretical and computational deployment of tra-
ditional integer and continuous approaches to achieve new solution algorithms
for large-scale MINO, a classification of the most interesting engineering and
technology applications of MINO, and more. It has synthesized twenty open
questions and challenges which will serve as a roadmap for the years to come.

Mathematics Subject Classification (2010): 9006, 90C11, 90C22, 90C26, 90C30.

Introduction by the Organisers

Mixed-Integer Nonlinear Optimization (MINO) is a subfield of Mathematical Opti-
mization (MO) which studies formulations involving both integer and continuous
variables, as well as linear and nonlinear functions on these variables, and the
methods used to find their solutions.

Definition. MINO can be seen as a formal language used to describe a very
large class of optimization problems. Each valid sentence of this language is called
a formulation. Formulations consist of decision variables, parameters, objectives
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and constraints, and are written as follows:

(1)
min f(x, p)
∀i ∈ I gi(x, p) ≤ 0
∀j ∈ Z xj ∈ Z,







where I, Z are index sets. The parameter vector p lists elements from a number
field (e.g. Q), and encodes the input of the problem (also called instance. The
decision variable vector x is a list of variable symbols; it encodes the output of the
problem (also called the solution). The function symbols f, gi (for each i ∈ I) are
valid sentences of another formal language having x1, x2, . . . and elements of Q as
atoms, which can be recursively combined using arithmetic operators (including
powers) and a few transcendental functions such as log, exp and so on. The last
constraint in Eq. (1) expresses an integrality requirement on the variables indexed
in Z (the other variables are assumed to be continuous).

Motivation. The interest of expressing optimization problems formally by means
of MO formulations such as Eq. (1) is that there are solution methods which ad-
dress all instances in a certain class. Specifically, one can solve Eq. (1), at least
in practice, using a range of rather powerful solver algorithms, such as spatial
Branch-and-Bound. This shifts the focus from designing and implementing al-
gorithms for solving problems (which is hard) to modelling an application using
the formal language (which is easier). All sorts of problems arising in industry,
science, technology can be modelled as MINO, but there are many possible MINO
representations of a given optimization problem, and not all of them yield the
same solver performance. A crucial problem is then that of reformulation, which
aims at finding MINO representations which are good from the point of view of the
solver (see e.g. J.P. Vielma’s talk). In particular, humans model using quantifiers
over index sets in order to express properties of indexed variables and indexed
parameters, whereas solvers require unquantified input. Quantified formulations
are also called structured, whereas the solver input format is known as flat.

Organization. The workshop consisted of five tutorial-type talks (45’ followed by
15’ discussion), twenty invited talks (30’ followed by 15’ discussion), and eighteen
short research announcements (10’ followed by 5’ discussion). We also organized
two optional sessions: one on open problems and challenges, and a second one
about the mathematically-oriented computer language Julia, with its mathemat-
ical programming extension JuMP. Among the most interesting open problems,
we emphasize a stress on extended formulation size and complexity, verification
of copositivity and complete positivity, the solution of a variety of small, but very
hard, mostly geometrical MINO problems, automatically recognizing some struc-
tural features of a given formulation, finding tight convex relaxations of nonconvex
functions that are hard to optimize, dealing with black-box nondifferentiable func-
tions.

Each day started with one of the tutorial talks, then continued with a variety
of invited talks focusing mainly on the pillars of our hatchery for modern math-
ematics: hierarchies of approximations, mixed-integer nonlinear optimal control,
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the power of lifting, big data. On tuesday we scheduled an afternoon session with
six research announcements, and on thursday we had nine. Wednesday afternoon
saw the traditional hike, and friday was a full working day.

Topics of the tutorial talks. Mixed-integer control problems, such as those
arising in the control of chemical plants or automatic vehicles, are among the
most difficult in the MINO arena, due to their potentially large size, the range
of nonlinearities which appear in the problem function forms, and the fact that
the constraints are often differential equations and/or nondifferentiable “black-
box” functions (see e.g. Armin Fügenschuh’s and the Simons fellow Sven Leyffer’s
talks).

Currently, one of the topics which draws the most attention is solving polyno-
mial MINO problems, ranging from quadratic (see e.g. A. Del Pia’s talk) to general
polynomial. In the latter case, Semidefinite Programming (SDP) formulations are
often employed — these are MO formulations involving positive semidefiniteness
of a certain matrix involving some decision variable symbols (see A.A. Ahmadi’s
talk). More precisely, the most promising approach to provide valid bounds are
relaxation hierarchies, such as Lasserre’s (who was part of the audience at the
workshop — also see E. De Klerk’s talk).

Interestingly for mathematics, MINO type problems can also be used to derive
proofs. Specifically, many geometrical problems can be cast as MINO; there exist
various techniques for turning such solutions into proofs, as shown by some of the
speakers at this workshop (e.g. F. Vallentin’s talk).

Finally, the current trend emphasizing the availability of increasingly large
amounts of data from security, retail, social networking and other sources suggests
the possibility of finding relationships between many data sources, and exploit
them in a concerted or integrated way. This presents the enormous difficulty of
having to not only solve enormous optimization problems, but also that of lever-
aging the data to actually yield, or at least validate, the formulation (see A. Lodi’s
talk).

The short research announcements. We cover SRAs here since they are not
included in the abstracts below.

J. Linderoth presented GüBoLi, a new solver for nonconvex box-constrained
quadratic programs using Integer Programming (IP) software technology. L. Hupp
discussed IP appraoches for structured binary quadratic optimization problems,
with special attention to quadratic matching. S. Sorgatz presented results on
improving the flow of vehicular traffic at traffic light intersections. R. Misener
presented a technique for automatically recognizing pooling problem structure in
arbitrary flat MINO problems. S. Onn talked about lexicographics combinatorial
optimization. M. Firsching, who was not part of our workshop but was work-
ing on the editorial board of MFO’s snapshot program, presented a technique
for turning floating point solutions of MINO problems into minimal polynomials
of the correct algebraic number. F. Liers provided a structural investigation of
piecewise linearized network flow problems. K. Anstreicher proved that the SDP
relaxation of quadratic optimization with ellipsoidal hollows is exact if the SDP
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relaxation of the same problem without hollows is exact. S. Wiese studied indica-
tor constraints in the linear job-shop scheduling problem. L. Mencarelli presented
a multiplicative weights update algorithm for MINO problems. Ky Vu introduced
a new randomized algorithm for restricted linear membership problems based on
random projections. A. Gupte discussed explicit disjunctive inequalities for some
structured nonconvex sets. S. Dey presented new formulations and valid inequal-
ities for the AC optimal power flow problem. S. Weltge discussed the size of SDP
extensions. A. Martin’s talk was about an ongoing effort within a large grant for
network problems including physical transport. P. Belotti discussed the impact of
the presolver in solution algorithms for MINO problems. Finally, P. Bonami gave
a talk about solving empty mixed integer second-order conic programs (MISOCP)
using the CPLEX solver.

A need. One of the most senior members of the MINO community, I. Grossmann,
expressed a need for developing a conceptual roadmap showing the interconnec-
tions of all the theoretical subproblems that are being addressed by the various
MINO researchers. This should ultimately lead to better solutions of general
MINO and mixed-integer nonlinear control problems. This accomplishment would
provide the MINO field with a stronger theoretical foundation.

The future. In view of the very stimulating interaction between the researchers
during the workshop and of the presumably ongoing strong interest in symmetries
in optimization problems (as demonstrated by the many open directions of future
research), the workshop participants strongly agreed that a similar meeting in two
years would be most desirable. We are exploring various possibilities with other
mathematical centers such as CIRM in Marseille, Cargèse in Corsica, Bertinoro in
Italy, and so on. The idea of submitting another application to the MFO in three
or four years was received enthusiastically, and encouraged by the Director of the
MFO.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Jon Lee and Sven Leyffer in the “Simons Visiting Pro-
fessors” program at the MFO.
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Abstracts

Open problems

Sven Leyffer (chair)

The presentation of the open problems follows the same order of presentation as
at the workshop.

(1) [Linderoth] Why is Semidefinite Programming (SDP) so slow?
(2) [Linderoth] Let X(α, β, γ) = {(x1, x2, t1, t2, z1, z2) ∈ R4 × {0, 1}2 | t1 ≥

x21 ∧ t2 ≥ x22 ∧ 0 ≤ αx1 + βx2 ≤ z1 ∧ 0 ≤ γx2 ≤ z2}, with α, γ. What
is a compact description of conv(X(α, β, γ)) which can be scaled up to
arbitrary sizes?

(3) [Vielma] Mathematical programming feasible sets having non-semialgebraic
(non-representable as a finite number of polynomial inequalities) convex
hull: what is the minimum number of additional variables required for
representing the convex hull as semialgebraic sets?

(4) [Liberti] Randomized algorithms for determining copositivity (∀x ≥ 0
x⊤Ax ≥ 0) and complete positivity (A = BB⊤ for some nonnegative
n× k matrix B) of a matrix.

(5) [Liberti] Recognizing named structures in a given (flat) Mathematical Pro-
gram (MP). Here I am seeing MP as a formal language for expressing
mathematical optimization problems; its expressions and constraints can
be either structured (if they involve sum/product or universal quantifiers
∑

,
∏

, ∀) or flat (otherwise). Humans write MPs in structured form, but
solvers need flat MPs as input. The translation is usually carried out by
a modelling environment. A “named structure” is simply a label, such
as Assignment, Flow, Pooling (etc.) which describes a well-known
MP. Named structures will be typically parametrized, e.g. a Flow will be
described by a possibly weighted digraph G, perhaps a set of source (S)
and target (T ) vertices, as well as the decision variables used (x), so as to
appear as Flow(G,S, T, x). A formalization of this problem can probably
be attained by specifying a finite list of named structures to be recognized,
together with a grammar for their recognition within the MP language.

(6) [Anstreicher] “Most outstanding open problem in global optimization”:
example in dimension n = 3. Take the dodecahedron circumscribing the
sphere of radius 1, and let R be the radius of the sphere circumscribing
the dodecahedron. Sample m ≥ 12 points in the spherical shell [1, R] that
are all at least distance one from one another. Claim:

∑

i≤m ‖xi‖2 ≥
12 + (m− 12)R. Thomas Hales claims to have proved it in his book, but
the proof is unwieldy. There are “good” proofs for m ≤ 16. Find “good”
proofs for m > 16. (See Anstreicher’s paper.)

(7) [Dey] Same as Anstreicher’s but with ‖ · ‖1 norm. (Named the “Leon”
problem)
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(8) [Ahmadi] Find a convex nonnegative polynomial which is not Sum Of
Squares (SOS). Motivation: if you want to minimize a polynomial function
p(x), unconstrained, you can reformulate this as γ = max γ s.t. p(x)−γ is
SOS. In general, we have γ ≤ γ∗ = min p(x). There are p’s yielding < but
not convex. Any good polynomial must be convex but not SOS-convex
(i.e. the Hessian must not factor) — this is a necessary but not sufficient
condition. A good candidate is like Motzkin’s polynomial, but convex.
Techniques based on optimizing directions in polynomial coefficient space.

(9) [Ahmadi] Let Pn,d = {p(x) ∈ Rd[x] | ∀x ∈ Rnp(x) ≥ 0}, which is a
convex set. Let Σn,d = {p(x) | p =

∑

i q
2
i (x)}, which is convex. Are the

intermediate sets Σk
n,d = {p(x) | ∃q ∈ Rk[x] (qSOS∧pqSOS)} also convex?

(10) [Onn] Given finite sets S0, . . . , Sd ⊂ Rd such that 0 is contained in the
convex hull of each Si, there is a theorem which states that there is an
si ∈ Si such that 0 ∈ conv{s0, . . . , sd}. What is the complexity of finding
such si’s? (The version where Si = Sj is Carathéodory’s theorem. See
Barany and Onn, MOR 1997. Also see Antoine Deza’s “Colorful Linear
Programming” web page.)

(11) [Dey] Take an ILP feasible set F = {x ∈ Zn | Ax ≤ b} and a fractional
point x∗ in the relaxation F̄ of F . Determine α ∈ Zn and β ∈ R such that
αx ≤ ⌊β⌋ is valid for F but violated by x∗. What is the complexity of this
problem? Note it is unknown also if Ax ≤ b consists of one row only.

(12) [Dey] min x⊤Ax+b⊤x s.t. x ∈ P ∩Zn where P is a rational polytope. This
problem is polytime when n = 2. What’s the complexity when n = 3?

(13) [Misener] Practical rules for knowing when to apply SDP and RLT cuts
together.

(14) [Leyffer] Given min f(x) s.t. x ∈ X ⊂ Zp × Rq. Given f as an evaluation
oracle on integer points only. What’s a practical algorithm for solving this
problem?

(15) [Dey-Averkov] Is the convex hull of a (polyhedron set difference a finite
number of other polyhedra) polyhedral?

(16) [Grossmann] Convexification of several major classes of convex mixed-
integer programming problems in the spirit of convexification of 0-1 MILP
problems (eg Lovasz & Schrijver (1989), Sherali & Adams (1990), Balas,
Ceria, Cornuejols (1993)) that yield the true convex hull with which the
mixed-integer program can theoretically be replaced by a continuous op-
timization problem that yields the same solution as the original MILP
model. The transformation will of course be exponential but might lead
to a basis for deriving cutting planes as was done in MILP (e.g. lift and
project). The classes of of convex mixed-integer programming problems
could comprise from general convex to specialized like convex MIQP. Fur-
thermore, the above should include the case of bounded integers as opposed
to only 0-1s.

(17) [Grossmann] Establishing theoretical sufficient conditions under which a
0-1 optimal control problem leads to a convex relaxation. Furthermore,
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determine whether it is possible to convexify such a problem so that it will
yield the true convex hull as in the above.

(18) [Grossmann] Determine whether the nonconvex binary quadratic program
can be replaced by an equivalent convex continuous program even if it
requires an exponential transformation.

(19) [Grossmann] Determine whether for a nonconvex MINLP (including spe-
cial cases like MIQP) one can determine what is the ”optimal” lower bound
that can be predicted for the convex relaxation irrespective of what specific
method one uses.

(20) [Grossmann] What is the most general modeling formulation that one can
use for discrete/continuous optimization models (e.g. algebraic MINLP,
GDP or another for both 0-1 and general integer)?

LP and SOCP-based algebraic techniques for nonlinear and integer
optimization

Amir Ali Ahmadi

(joint work with Anirudha Majumdar)

In recent years, algebraic techniques in optimization such as sum of squares (SOS)
programming have led to powerful semidefinite programming relaxations for a
wide range of NP-hard problems in computational mathematics. While the con-
tinuous optimization community has championed these tools in various application
domains (e.g., polynomial optimization, dynamics and control, robotics), the re-
ception from the integer programming (IP) community has not been as strong.
The primary reason for this, we suspect, is scalability: while SOS techniques are
known to produce strong semidefinite relaxations, the IP community tends to pre-
fer weaker but cheaper relaxations based on linear programming that can be made
stronger for example through iterative application in a branch-and-bound scheme.

In this work, we introduce new algebraic relaxation schemes that are very sim-
ilar to SOS relaxations in nature but instead of semidefinite programs result in
linear or second order cone programs. These are what we call “DSOS and SDSOS
programs.” We show that these relaxations are orders of magnitude more scal-
able than SOS relaxations while enjoying many of the same asymptotic theoretical
guarantees. The new tools have the potential for providing fast and competitive
lower bounds on mixed-integer (nonlinear) programs, especially if implemented in
branch and bound schemes.

At a high level, our idea is to replace the positive semidefiniteness constraint
on the Gram matrices that appear in SOS programs with the more restrictive
constraints that they be diagonally dominant or scaled diagonally dominant. These
new conditions can respectively be imposed with linear programming and second
order cone programming.

We use this simple idea as the basis of several hierarchies that inner approximate
the cone of positive semidefinite matrices with increasing accuracy. It is shown that
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the new hierarchies (which consist of solving linear or second order cone programs
only) can solve arbitrary polynomial optimization problems to arbitrary accuracy.

References
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Constructive Approaches to Positivstellensätze

Gennadiy Averkov

Positivstellensätze are results characterizing a polynomial f , strictly positive on a
semialgebraic set S, in terms of a representation for f that provides the ‘algebraic
evidence’ of the positivity of f on S. One can distinguish two types of positivstel-
lensätze: those in which the representation for f involves fractions of polynomials
(positivstellensätze with denominators) and those with the representation for f
involving multiplication and addition of polynomials only (denominator-free posi-
tivstellensätze). Denominator-free positivstellensätze are of particular interest in
polynomial optimization since they can be used to develop (approximate) methods
of solving polynomial optimization problems. The best-known denominator-free
positivstellensätze are due to Schmüdgen [1] and Putinar [2]; they deal with an
arbitrary nonempty and bounded subset S of Rd defined by a system of non-
strict polynomial inequalities. Furthermore, the positivstellensätze of Handelman
[3] and Jacobi & Prestel [4] deal with the interesting special case of S being a
polytope. We abbreviate the mentioned results of Jacobi & Prestel, Handelman,
Putinar and Schmüdgen by (JP), (H), (P) and (S), respectively. The highly non-
constructive original proofs of (JP), (H), (P) and (S) employ nontrivial algebraic
and/or functional analytic arguments. In the last decades, several authors sug-
gested alternative proofs of (JP), (H), (P) and (S). A short algebraic proof of (S),
which uses the representation theorem for real commutative rings1 and the Posi-
tivstellensatz of Krivine [9] and Stengle [11], was given by Berr & Wörmann [12].
Later, Schweighofer [13] modified the argument of Berr & Wörmann to give a more
elementary proof of (S), which does not employ the above mentioned representa-
tion theorem. In the same publication Schweighofer also gave a short constructive
proof of (H), based on Pólya’s theorem [14] and Hilbert’s Basis Theorem (see also
Powers & Reznick [15]). Furthermore, Schweighofer [16] gave a constructive proof
of (JP) and a special case of (P).

We show that the approach developed by Berr & Wörmann and Schweighofer
can be used to give a unified and short proofs of (JP), (H), (P) and (S). One of
the aims of the manuscript is to present these denominator-free positivstellensätze

1This representation theorem is usually attributed to Kadison [5] and Dubois [6], though as
pointed out by Marshall [7] and Prestel [8] it was proved before Dubois by Krivine [9, 10].



Mixed-integer Nonlinear Optimization 2711

altogether in a self-contained form accessible to non-experts. The presented proofs
of (JP) and (H) are constructive and elementary. In contrast to the proof of
Schweighofer, our proof of (H) does not employ Hilbert’s Basis Theorem. All
currently known proofs of (P) and (S), including the proofs presented here, use
the positivstellensatz of Krivine and Stengle and thus depend on non-elementary
tools from real algebraic geometry, such as Tarski’s Transfer Principle.
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C. R. Acad. Sci. Paris 258 (1964), 3417–3418.

[11] Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry, Math.
Ann. 207 (1974), 87–97.
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The theta number of abstract simplicial complexes

Christine Bachoc

(joint work with Anna Gundert, Alberto Passuello and Alain Thiery)

Many classical problems in mathematics can be restated as the determination of
the independence number of a graph or of a hypergraph. In most cases, this is
a difficult task, and therefore convex approximations in the form of semidefinite
programs are often used instead of an exact value.
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For a graph G = (V,E), its theta number ϑ(G), introduced by Lovász in [7],
gives an upper bound of its independence number α(G). Starting from ϑ(G),
better and better approximations can be obtained through one of many avail-
able semidefinite programming hierarchies. The most commonly used arises from
Lasserre hierarchy for polynomial optimization problems [4], [5]; moreover Lasserre
formulation also applies to upper approximate the independence number of a hy-
pergraph.

These approaches have lead to remarkable numerical results see e.g. [8]; how-
ever, when the issue is to provide upper bounds in closed form for parametrized
families of graphs, or to obtain information on the asymptotic behavior of the
independence number when some parameters go to infinity like in [6] or [2], the
featured method is much more crude and mainly relies on earlier inequalities due
to Hoffman and Delsarte. Hoffman bound applies to a d-regular graph with adja-
cency matrix AG:

(1) α(G) ≤ −nλmin(AG)

d− λmin(AG)

where λmin(AG) stands for the smallest eigenvalue of AG. Delsarte bound [1] is
a generalization of Hoffman bound. A matrix A is said to be a pseudo-adjacency
matrix of a graph G if Aij = 0 when {i, j} is not an edge of G and if the all-one
vector is an eigenvector of A with associated eigenvalue λ1 > 0. Then

(2) α(G) ≤ −nλmin(A)

λ1 − λmin(A)
.

It can be easily seen that these two bounds are immediate consequences of the
inequality α(G) ≤ ϑ(G).

In this talk, we consider the case of a uniform hypergraph H on the vertex
set V , with set of hyperedges E , each hyperedge being an element of

(

V
k+1

)

. Its
independence number is by definition the maximal cardinal of a subset of vertices
that does not contain any hyperedge. We identify H with the abstract simplicial
complex X of dimension k with complete (k − 1)-skeleton and with set of k-
dimensional faces Xk = E (we recall that an abstract simplicial complex on V is
simply a collection of subsets of V called faces, such that the subsets of a face are
also faces, and that the dimension of a face is one less than its cardinal). In this
framework, we define a natural analog of the theta number, denoted ϑk(X), which
is an upper bound for the independence number of X . We derive an analog of
Hoffman inequality for regular simplicial complexes, that involves the adjacency
matrix of the simplicial complex (see [3]), and an analog of Delsarte inequality for
a suitable notion of pseudo-adjacency matrices of a simplicial complex.

Moreover, we build in a similar way a complete hierarchy, i.e. a sequence

ϑ̂ℓ(X), k ≤ ℓ ≤ α(X), of decreasing values, starting with ϑk(X), and ending at

ϑ̂α(X)(X) = α(X), each of them thus providing a semidefinite programming upper
bound for α(X).

Finally, we analyze ϑk(X) when X = Xk(n, p) is the random k-complex in the
model of Linial and Meshulam. In the range c0 log(n)/n ≤ p ≤ 1− c0 log(n)/n, we
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show that ϑk(X
k(n, p)) = Θ(

√

(n− k)q/p), where q = 1 − p, therefore extending
to simplicial complexes a well-known result for random graphs.
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Combinatorial Optimal Control of Semilinear Elliptic PDEs

Christoph Buchheim

(joint work with Christian Meyer and Renke Schäfer)

Mixed-integer optimal control problems (MIOCP) are often addressed by first dis-
cretizing the differential equations and then applying standard software for solving
the resulting mixed-integer nonlinear programs (MINLP). Usually, due to their
size, the discretized problems can be solved to proven optimality only in small
dimension, in particular in the non-convex case. For this reason, most literature
about mixed-integer optimization under partial differential equation (PDE) con-
straints only deals with linear PDEs.

We consider nonlinear elliptic PDEs with a convex nonlinear part instead, con-
centrating on combinatorial optimal control problems of the form

(COCP)

min c⊤u

s.t. y(x) ≥ ymin(x) a.e. in Ω

Ay + g(y) =
∑ℓ

i=1 ui ψi in Ω

∂y
∂nA

+ b(y) =
∑n

j=ℓ+1 uj φj on ΓN

y = 0 on ΓD

and u ∈ U .
Here we assume that U ⊆ Zn is a set of discrete controls given by an integer linear
description. In particular, we can model general combinatorial constraints on the
control vector u. The domain Ω ⊂ Rd, d ∈ N, is bounded with ∂Ω = ΓD ∪ ΓN .
The form functions ψi and φj are given. Moreover, A is a coercive linear elliptic
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operator of second order and ∂/∂nA denotes the co-normal derivative associated
with A. Our main assumption is that g(x, y) and b(x, y) are non-decreasing convex
functions in y for almost all x.

Generally speaking, Problem (COCP) can model applications in areas where
the optimization of a static diffusion process is desired, subject to a given minimum
state. For instance, we can model the static heating of a metallic workpiece by n
heat sources; in this case, the set U ⊆ {0, 1}n models the switching of these
sources, ci is the cost of using source i, A is the Laplace operator, g = 0, and b is
of the form σ(|y|yd − yd+1

0 ) with a constant y0. The function ymin is a point-wise
minimal temperature that has to be reached in the metal piece.

By standard results, it follows that for each control vector u ∈ Rn there exists
a unique weak solution S(u) of the PDE in Problem (COCP). Our main result is
the point-wise concavity of S under the given assumptions.

Theorem 1. Under our assumptions, the mappings

conv(U) ∋ u 7→ S(u)(x) ∈ R and conv(U) ∋ u 7→
(

τS(u)
)

(x) ∈ R

are concave for almost every x ∈ Ω and almost every x ∈ ΓN , respectively.

Here, τ denotes the trace operator. The proof is similar to the proof of the weak
maximum principle and uses deep results by Stampacchia; see, e.g., [2].

Based on Theorem 1, we can develop an outer approximation algorithm [1] for
solving Problem (COCP). Linear cutting planes are produced using point-wise
tangents of S(u):

Theorem 2. The operator S is Fréchet-differentiable. For all u∗ ∈ conv(U) and
almost all x ∈ Ω, the inequality

S(u∗)(x) + S′(u∗)(u− u∗)(x) ≥ ymin(x)

is valid for all feasible solutions of (COCP).

The resulting outer approximation algorithm is given as follows:

(1) Set U0 := U .
(2) Minimize c⊤u over u ∈ U0, let u∗ be the resulting optimizer.

(3) Compute y∗ solving

Ay + g(y) =
∑ℓ

i=1 u
∗
i ψi in Ω

∂y
∂nA

+ b(y) =
∑n

j=ℓ+1 u
∗
j φj on ΓN

y = 0 on ΓD .

(4) If y∗ ≥ ymin a.e., return u∗ as optimal solution.

(5) Choose some x∗ ∈ Ω with y∗(x∗) < ymin(x
∗) at random, add

y∗(x∗) + S′(u∗)(u− u∗)(x∗) ≥ ymin(x
∗)

as linear inequality in u to U0, and go to Step 2.
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It is now easy to show

Theorem 3. If U is bounded, the above algorithm terminates in finite time. With
probability one, it returns a globally optimal solution to Problem (COCP).

The main computational effort of the algorithm consists in solving an integer
linear program (ILP) in Step (2), a nonlinear PDE in Step (3), and n linear
PDEs in Step (3) in order to compute S′(u). The solution of the nonlinear PDE
can be improved by reoptimization techniques, taking into account the knowledge
about S(u) acquired in earlier iterations.

We point out that a straightforward discretization of Problem (COCP) would
result in a non-convex problem, by the presence of nonlinear equations. This means
that the convexity of g and b would not be exploited at all, whereas our approach is
based on this convexity. Experimental results show that our algorithm is capable
of solving the combinatorial OCP of a semilinear Poisson equation with up to
200 binary controls to global optimality within a 5h time limit. Applied to the
screened Poisson equation, problems with even 1800 binary controls are globally
solvable. For a larger number of controls n, the running time is dominated by the
time needed for solving the ILPs in Step (2) of the algorithm.
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Strong Convex Nonlinear Relaxations of the Pooling Problem

Claudia D’Ambrosio

(joint work with J. Linderoth, J. Luedtke, J. Schweiger)

In this talk we focus on the standard pooling problem, i.e., a continuous, non-
convex optimization problem arising in the petroleum industry and introduced by
Haverly in 1978, see [1]. The problem consists of finding the optimal composition of
final products obtained by blending in pools different percentages of raw materials.
Formally, we are given a directed graph G = (V,A) where V is the set of vertices
that is partitioned in three sets, i.e., the set of inputs or raw materials I, the set of
pools or intermediate products L, and the set of outputs or final products J . Arcs
(i, j) ∈ A link inputs to pools or outputs and pools to outputs. Each node and arc
is subject to capacity constraints but the “complicating constraints” concern the
requirements on the quality of certain attributes of the final products. The quality
is a linear combination of the attributes of the raw materials and intermediate
products that compose the final product. As the quality of the attributes of
the intermediate products is not known in advance, the constraint shows bilinear
terms.
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Even if the problem is known since decades, only recently Alfaki and Haugland
[2] proved that it is strongly NP-hard. The aim of this work is to strengthen the
strongest known formulation, i.e., the so-called pq-formulation proposed by Tawar-
malani and Sahinidis [3]. In particular, we studied a structured non-convex subset
that is a relaxation of the original problem. We characterized its extreme points
and derive the complete description of its convex hull under some assumptions.
We prove that, for this case, the convex hull is characterized by nonlinear convex
inequalities, i.e., it is non polyhedral. For the other cases we conjecture the full
description of the convex hull. From the analysis of the structured non-convex
subset we derive strong valid nonlinear convex inequalities for the standard pool-
ing problem. Preliminary computational results on instances from the literature
are reported and demonstrate the utility of the inequalities.

Future work and directions consist in (i) testing the inequalities on larger in-
stances to confirm their effectiveness, (ii) proving the convex hull conjecture in the
remaining considered cases, (iii) trying to identify a subset that better cast some
of the characteristics of the pooling problem that where not considered.
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Convex programming approaches for polynomial MINLP

Etienne de Klerk

In this review talk, we consider the polynomial optimization problem:

(1) fmin := min
x∈Rn

{f(x) | gj(x) ≥ 0 (j ∈ J ), hi(x) = 0 (i ∈ I)} ,

where, I and J are index sets, and f , gj (j ∈ J ), and hi (i ∈ I) are all n-variate
polynomials. We assume that the feasible set is compact, and use the notation
[n] = {1, . . . , n} with power set 2[n] := {I | I ⊂ [n]}.

As a first step, we consider only binary variables, i.e. we set hi(x) = x2i − xi
(i ∈ I = [n]) in this case. Thus we consider the problem:

(2) min
x∈Rn

{f(x) | gj(x) ≥ 0 (j ∈ J ), x ∈ {0, 1}n} .

Our goal is to reformulate this problem as an exponentially-sized semidefinite
program, using the theory of combinatorial moment matrices.

We write an n-variate polynomial f of degree d as

f(x) =
∑

α∈Nn
d

fαx
α,
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where xα := xα1
1 · · ·xαn

n , and Nn
d = {α ∈ Zn | α ≥ 0,

∑n
i=1 αi ≤ d}. Since we deal

only with binary variables for now, we may assume that α ∈ {0, 1}n.
We define the RLT linear (‘linearization’) operator from the n-variate polyno-

mials of degree d to linear functionals on R(
n+d−1

d ):
∑

α∈Nn
d

fαx
α 7→

∑

α∈Nn
d

fαyα,

i.e. we replace each monomial xα by new variable yα. Thus we may write yI in
stead of yα if I = support(α) ⊂ [n].

Note that under linearization:
(
∏

i∈I xi
)

7→ yI .

Definition 1. Given a variable y ∈ R2[n]

, define the combinatorial moment matrix

M(y) = (yI∪J)I,J∈2[n] .

Note that, under linearization,
(
∏

i∈I xi
)

(

∏

j∈J xj

)

7→ yI∪J .

Moreover, for any x ∈ Rn, the matrix
(
∏

i∈I xi
)

(

∏

j∈J xj

)

I,J∈2[n]
is positive

semidefinite. It turns out that the condition M(y) � 0 (positive semidefinite)
completely characterizes the convex hull of the vectors

(
∏

i∈I xi
)

I∈2[n] with x ∈
{0, 1}n, as the following theorem shows.

Theorem 1 (Sherali-Adams [5], Lovász-Schrijver [4]).

conv







(

∏

i∈I

xi

)

I∈2[n]

∣

∣

∣

∣

∣

∣

x ∈ {0, 1}n






=
{

y ∈ R2[n]

: y∅ = 1, M(y) � 0
}

.

In order to deal with the nonnegativity constraints, we also need the related
concept of a localizing matrix.

Define, for j ∈ J , the linear functional gj ∗ y via gj(x)
(
∏

i∈I xi
)

7→ (gj ∗ y)I ,
where the mapping is again the linearization operator.

Definition 2. Given a variable y ∈ R2[n]

, define the localizing matrix of gj (j ∈
J ) by

M(gj ∗ y) = ((gj ∗ y)I∪J)I,J∈2[n] .

Note that the localization matrix is the linearization of

gj(x)





(

∏

i∈I

xi

)





∏

j∈J

xj









I,J∈2[n]

,

and that the latter matrix is positive semidefinite for any feasible point of problem
(2). Similarly to before, the conditions M(gj ∗ y) � 0 (j ∈ J ) yield the required
convex hull, in the sense of the next theorem.

Theorem 2 (Laurent [3]). The following two sets are the same:

(i) conv
{

(
∏

i∈I xi
)

I∈2[n]

∣

∣

∣ x ∈ {0, 1}n, gj(x) ≥ 0 (j ∈ J )
}
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(ii) {y ∈ R2[n]

: y∅ = 1, M(y) � 0, M(gj ∗ y) � 0 (j ∈ J )}.
Based on this convex reformulation, one may define a hierarchy of convex ap-

proximations. The idea is to consider only principle submatrices of M(y) and
M(gj ∗ y) indexed by subsets of cardinality at most t, where t is fixed. To this

end, we define the truncated moment matrix by Mt(y)I,J = yI∪J for I, J ∈ 2[n],
|I|, |J | ≤ t.
Definition 3 (Lasserre hierarchy of order t for 2t ≥ deg(f)).

ℓ(t) := min
y







∑

|I|≤2t

fIyI | y∅ = 1, Mt(y) � 0, Mtj(gj ∗ y) � 0 (j ∈ J )







,

where tj = t− ⌈deg(gj)/2⌉.
It follows from Theorem 2 that ℓ(t) equals the optimal value of problem (2) for

t ≥ n. This was first shown in Lasserre [2].
We now return to the general polynomial optimization problem (1), and describe

how the Lasserre hierarchy extends to the general problem. Since the exponents
α now no longer are 0-1 vectors in general, we have to define the moment and
localizing matrices in a different way as follows.

• The moment matrixM(y) is defined via the linearization: xαxβ 7→ yα+β =:
M(y)α,β;
• The localizing matrix M(gj ∗ y) is defined via: gj(x)x

αxβ 7→M(gj ∗ y)α,β .
If we only index by α with |α| := ∑n

i=1 αi ≤ t, then we write Mt(y), etc. This
brings us to the general Lasserre hierarchy of approximations.

Definition 4 (General Lasserre hierarchy of order t for 2t ≥ deg(f)).

ℓ(t) := min
y

∑

|α|≤2t

fαyα

subject to

y0 = 1, Mt(y) � 0, Mtj (gj ∗ y) � 0 (j ∈ J ), Msi(hi ∗ y) = 0 (i ∈ I),
where tj = t− ⌈deg(gj)/2⌉, si = t− ⌈deg(hi)/2⌉.

Lasserre [1] showed that the values ℓ(t) are well-defined and converge to the
optimal value of problem (1), under an assumption that is a bit stronger than
compactness of the feasible set.

Theorem 3 (Lasserre [1]). If we know a value R > 0 such that a Euclidean ball
of radius R contains the feasible set of problem (1), then limt→∞ ℓ(t) = fmin.

In the talk we survey some known bounds on the convergence rate of fmin− ℓ(t)
(seen as a sequence indexed by t):

• For the combinatorial problem (2): the knapsack, maximum cut, minimum
bisection, and maximum stable set problems;
• For the general problem (1): the special case where the feasible set is a
simplex, the convex optimization case, as well as the general case.
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An FPTAS for Concave Integer Quadratic Programming

Alberto Del Pia

Mixed-Integer Quadratic Programming (MIQP) problems are optimization prob-
lems in which the objective function is quadratic, the constraints are linear in-
equalities, and some of the variables are required to be integers:

minimize x⊤Hx+ h⊤x

subject to Wx ≤ w
x ∈ Zp × Rn−p.

(1)

In this formulation, x is the n-vector of unknowns, while the remaining H , h, W ,
w stand for the data in the problem instance: H is an n × n symmetric matrix,
h is an n-vector, W is an m × n matrix, and w is an m-vector. MIQP problems
arise in many areas, including economics, planning, and many kind of engineering
design.

Concave MIQP is the special case of MIQP when the objective function is
concave, which happens for example when the matrix H is negative semidefinite.
Concave MIQP, like several other special cases of MIQP, is still an NP-complete
problem. This is even true in very restricted settings such as the problem to
minimize

∑n

i=1(w
⊤
i x)

2 over x ∈ {0, 1}n [13], or when the concave quadratic ob-
jective has only one concave direction (one negative eigenvalue) [14]. Concave
quadratic cost functions are often encountered in real-world integer programming
models involving economies of scale (see [10], [15]), which corresponds to the eco-
nomic phenomenon of “decreasing marginal cost”. Concave QP is the continuous
version of concave MIQP, and is also NP-complete [16], even when the concave
quadratic objective has only one concave direction (one negative eigenvalue) [14].
Concave QP has been extensively studied. There are, however, few methods in
the literature for concave MIQP. Branch-and-bound methods based on continuous
relaxation and convex underestimating were proposed in [2], [3], [4], [5], [6].

If we assume that the number of integer and continuous variables n is fixed, then
concave MIQP is polynomially solvable. Given a polyhedron P , Cook, Hartmann,
Kannan, and McDiarmid [7] showed that in fixed dimension we can enumerate the
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vertices of the integer hull conv{x ∈ Zn : x ∈ P} of P in polynomial time, and this
result can be extended to the mixed-integer hull PI = conv{x ∈ Zp×Rn−p : x ∈ P}
by discretization [8, 11]. Since there is always an optimal point of concave MIQP
that is a vertex of PI , concave MIQP can now be solved in fixed dimension by
evaluating all the vertices of PI and by picking one with lowest objective value.

Since concave MIQP is NP-hard, our focus is on approximation algorithms,
which has been a very successful way to address NP-hard optimization prob-
lems. In order to state our result, first it is necessary to give a definition of ǫ-
approximation: Consider an instance of MIQP, and let f(x) denote the objective
function. We say that x⋄ is an ǫ-approximate solution if

|f(x⋄)− fmin| ≤ ǫ|fmax − fmin|,
where fmin and fmax denote respectively the minimal and maximal value of the
function on the feasible region. The concept of ǫ-approximation that we adopt
here has been used in earlier works, such as Nemirovsky and Yudin [12], Vavasis
[18, 17], Belldare and Rogaway [1], de Klerk, Laurent, and Parrilo [9].

Our result, which is an extension to the mixed integer case of the celebrated
result for concave QP by Vavasis [18], can then be stated as follows:

Let k be the number of negative eigenvalues of H. There is an algorithm to find
an ǫ-approximate solution to concave MIQP. For fixed k and p, the running time
of the proposed algorithm is polynomial in the size of the problem, and in 1/ǫ.

Interestingly, the dependence on ǫ, k and p that we obtain might be expected. In
fact, if we had a polynomial dependence on | log ǫ| for fixed k, p, then we could solve
Concave QP with k = 1 in polynomial time [14], implying P = NP . Thus, as-
suming P 6= NP , polynomial dependence on 1/ǫ seems the best possible. Suppose
now there exists an approximation algorithm whose running time is polynomial in
1/ǫ and in either k or p. Then we could solve 3SAT in polynomial time, implying
once again P = NP .

The core structure of the algorithm combines and extends procedures used in
MILP and in QP which have never been combined before. The key idea of the
algorithm consists in iteratively subdividing the feasible region into two parts:
one inner region where the mixed-integer points are “dense”, and an outer region
where the mixed-integer points are “sparse”. The geometry of the mixed-integer
points then allows us to employ tools used in the continuous QP setting in the
inner region in order to obtain a good approximate solution. In the outer region,
we use lattice algorithms from the MILP literature to subdivide the problem into
a fixed number of lower-dimensional MIQPs.
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A factorization heuristic for completely positive matrices

Mirjam Dür

(joint work with Patrick Groetzner)

The set CPn := conv {xxT | x ∈ Rn
+} = {BBT | B ∈ Rn×k

+ } is called the cone of
completely positive matrices. Clearly, CPn is a subset of the positive semidefinite
cone, and it is easy to see that it is indeed a proper subset. It is also not difficult
to see that CPn is a closed, convex, pointed, and full dimensional cone, see also [2]

Completely positive matrices play an important role in quadratic and combi-
natorial optimization. De Klerk and Pasechnik [7] showed (cf. also [5]) that the
stability number α of a graph on n nodes with adjacency matrix A is given by

(1) α = max{〈E,X〉 | 〈A+ I, X〉 = 1, X ∈ CPn},
where I denotes the identity matrix and E the all-ones matrix. This is remarkable,
since it provides a formulation of the NP-hard stability number problem as a linear
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optimization problem over a closed convex cone. Therefore, it is unsurprising that
the membership problem of CPn is NP-hard, as shown in [9]. Interestingly, it is
an open question whether checking A ∈ CPn is in the compelxity class NP.

Later, Burer [6] showed that under mild conditions, the following two problems
are equivalent:

min xTQx+ 2cTx
s. t. aTi x = bi (i = 1, . . . ,m)

x ≥ 0
xj ∈ {0, 1} (j ∈ B)

and

min 〈Q,X〉+ 2cTx
s. t. aTi x = bi (i = 1, . . . ,m)

aTi Xai = b2i (i = 1, . . . ,m)
xj = Xjj (j ∈ B)
(

1 xT

x X

)

∈ CP1+n.

This shows that any optimization problem with quadratic objective, linear con-
straints and (possibly) binary variables can be equivalently formulated as a linear
problem over the cone of completely positive matrices.

Given a matrix A ∈ CPn, it is highly nontrivial to actually find a factorization
A = BBT with B ∈ Rn×k

+ . Being able to compute a factorization would provide
a certificate for A ∈ CPn and would hence be of interest for complexity reasons.
Moreover, a factorization would help recover the solution of the underlying qua-
dratic or combinatorial problem. As an example, consider the stability number
problem (1). If an optimal solution X∗ fulfills X∗ = x∗(x∗)T , then the support
of x∗ corresponds to a maximum stable set. On the other hand, if rank(X∗) > 1,
then a factorization will yield more than one maximum stable set.

Approaches to develop factorization algorithms are [1, 3, 10, 11, 12]. However,
these methods are either very difficult to implement, require a high computational
effort, or work only for some matrices. In our talk, we propose a factorization
heuristic which seems to work very quickly in many cases. However, for certain
matrices (especially matrices of full rank on the boundary of CPn) our heuristic
fails.

Observe that for A ∈ CPn, the decomposition A = BBT with B ∈ Rn×k
+ is not

unique. An example was given by Dickinson [8]:




18 9 9
9 18 9
9 9 18



 =





4 1 1
1 4 1
1 1 4









4 1 1
1 4 1
1 1 4





T

=





3 3 0 0
3 0 3 0
3 0 0 3









3 3 0 0
3 0 3 0
3 0 0 3





T

.

Also note that the number of columns in B can vary. The minimal possible number
of columns is called the cp-rank of A:

cp(A) = inf{k ∈ N | ∃B ∈ Rn×k, B ≥ 0, A = BBT }.
Determining the cp-rank of an arbitrary given matrix is also an open problem.
However, upper bounds on cp(A) are given in [4]. Two factorizations A = BBT =
CCT of the same size are related through the following well known result:

Lemma 1. Let B,C ∈ Rn×k. Then BBT = CCT if and only if there exists an
orthogonal matrix Q ∈ Rk×k with BQ = C.
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Our factorization heuristic is based on this lemma. Given an arbitrary factor-
ization A = BBT , the heuristic attempts to find an orthogonal matrix Q such that
C := BQ ≥ 0. This matrix C then provides the desired factorization A = CCT of
the completely positive matrix A.

Acknowledgement: This work was supported by the German-Israeli Foundation
for Scientific Research and Development (GIF) through grant no. G-18-304.2/2011.
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Copositive programming and copositivity tests

Gabriele Eichfelder

(joint work with Carmo Brás, Joaquim Júdice)

A symmetric matrix A ∈ Sn is called copositive if it generates a quadratic form
which takes no negative values on the nonnegative orthant, i.e. in case it holds

x⊤Ax ≥ 0 for all x ∈ Rn
+.

The problem of minimizing a linear form over the cone of copositive matrices COP
is called a copositive optimization problem. This type of optimization problem,
and thus the task to evaluate whether a matrix is copositive, is of interest due to
its relation to mixed-integer nonlinear optimization.
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In a general setting this relation was given by Burer in [3]. He showed that
a quadratic optimization problem with linear constraints has — under weak as-
sumptions — a reformulation as (the dual of) a copositive optimization problem,
also if some of the variables are binary. The considered quadratic optimization
problems were of the form

(QP)

min x⊤Qx+ 2c⊤x
s.t. Ax = b

xj ∈ {0, 1} for all j ∈ B
x ∈ Rn

+

with Q ∈ Sn, A ∈ Rm×n, c ∈ Rn, b ∈ Rm, and B ⊆ {1, . . . , n}. The mentioned
reformulation was originally given as a linear optimization problem over the cone
of completely positive matrices CP defined by

CP := conv{xx⊤ | x ∈ Rn
+}.

The new problem is then

(CP)

min 〈Q,X〉+ 2c⊤x
s.t. Ax = b

Diag(AXA⊤) = b ◦ b
xj = Xjj for all j ∈ B
(

1 x⊤

x X

)

∈ CP
x ∈ Rn, X ∈ Sn.

Here, b ◦ b := (b21, . . . , b
2
m)⊤ and the inner product in Sn is defined by 〈A,B〉 :=

trace(AB) for A,B ∈ Sn, as usual.
Under the assumption that the equality constraints Ax = b imply for any

x ∈ Rn
+ that xj ∈ [0, 1] for all j ∈ B, the problem (QP) is equivalent to the

problem (CP). Moreover, it holds that

CP = COP∗ and CP∗ = COP .
Thus, the dual problem of (CP) is a copositive optimization problem.

The difficulty of a copositive optimization problem lies in the difficulty of check-
ing whether it holds A ∈ COP for a given matrix A ∈ Sn. Checking this mem-
bership to the copositive cone is an co-NP-complete problem, cf. [5, 6]. Various
authors have proposed copositivity tests in the literature, but there are only a few
implemented numerical algorithms which apply to general symmetric matrices
without any structural assumptions or dimensional restrictions and which are not
just recursive, i.e., do not rely on information taken from all principal submatrices.

In this talk, next to presenting the above relations to MINLPs, I shortly recall
two copositivity tests of the last years (originally given by Bundfuss and Dür in [4]
and by Bomze and Eichfelder in [1]). Both algorithms make use of the fact that

A ∈ COP ⇔ min{x⊤Ax | e⊤x = 1, x ∈ Rn
+} ≥ 0

(with e ∈ Rn the all-one vector) and are based on a branch and bound algorithm.
However, they use different branching and bounding criteria.
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In the remaining of the talk I present some more recent copositivity tests as
given in [2]. These new tests make use of necessary and sufficient conditions which
require the solution of linear complementarity problems (LCPs). Methodologies
involving Lemke’s method, an enumerative algorithm and a linear mixed-integer
programming formulation are proposed to solve the required LCPs. Numerical
results which compare the new tests with the copositivity tests from [1, 4, 7] are
presented.
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Aspects of Time in Mixed-Integer (Non-) Linear Optimization

Armin Fügenschuh

George Dantzig [6] reported that his linear programming algorithm was criticized
right after his inaugural presentation in 1948 [4] for not being able to deal with non-
linear problems that are ubiquitous in real-world applications. However, by using
linear inequalities and piecewise linear approximations, most nonlinear functions
that are encountered in such applications can be sufficiently approximated. Over
the past six decades, several researchers published model formulations to model
a piecewise linear function (that approximates a given nonlinear function) in one
or several dimensions, for example [22, 5, 2, 1, 28, 24, 21, 23, 29, 30]. These for-
mulations differ in the way they use binary variables and the number of binary
variables. All these approaches have in common that the piecewise-linear function
has to be defined before the model is formulated, and does not change during the
MILP solution process. A more modern approach that avoids this disadvantage
was described by Smith and Pantelides [25] and Tawarmalani and Sahinides [27].
Here the approximation of the nonlinear function is created during the branch-
and-cut solution process by adding further cutting planes and carrying out spatial
branching. A direct comparison on a nonlinear network flow model indicates that
this method is actually much faster [13]. For certain types of nonlinear functions,

such as second order cone constraints of the form
√

x21 + . . .+ x2n ≤ t, there exist
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very accurate linear approximations that embed this cone in a higher dimensional
space by introducing auxiliary variables [3, 19]. These reformulations can be used
to solve practical nonlinear mixed-integer problems with MILP solvers, such as
soft rectangle packing problems [17], or car routing problems in railway freight
transportation [16].

Despite the initial critics about the “limited scope” of linear programming (LP),
it turned out to become a huge success, and is considered as one of the most impor-
tant mathematical discoveries (or inventions) of the 20th century. LP is the work-
ing horse for solving (mixed-) integer and thus many combinatorial optimization
problems, starting from the traveling salesman problem by Dantzig, Fulkerson,
and Johnson in 1954 [7]. Soon after, more complex logistic and transportation
problems were addressed, such as the truck-use problem by Dantzig and Ramser
in 1959 [8]. The transport of goods often requires time synchronization of different
work steps. Shipments can be picked up or delivered only in certain time windows,
a handover of goods between two players can only take place when both are at the
same time in the same place. A useful optimization model for such applications
must consider this aspect. While this is evident from a practical side, the integra-
tion of the time aspect in MILP models leads to algorithmically difficult problems.
Most frequently encountered in the literature is one of the following two ways to
include the time aspect in an optimization model.

In the continuous time modeling, time is described by real-valued variables,
indicating the time relative to a specified start time in a defined unit (e.g., seconds).
For each incident i (for example, an object being at a certain location, or a machine
working on a certain job), a continuous time variable ti describes when this incident
is going to happen. For example, in bus or train scheduling application [11, 15], a
tour of length di is started at time ti. If tours i and j are connected (i.e., served
by the same bus or train directly after another), then tj − (ti + di) ≥ 0. The
connection is modeled by the binary variable xi,j . Hence the precedence relation
is formulated by the nonlinear constraint (tj − (ti+ di))xi,j ≥ 0. In order to apply
mixed-integer linear solvers, one has to linearize this constraint. To this end, in
the (in-) famous “big-M -method”, a parameter M is introduced, which allows to
linearize the constraint to tj − (ti + di) ≥ M(xi,j − 1). Although one achieves a
mixed-integer linear formulation, it usually has a weak LP-relaxation, which leads
to less pruned nodes, thus large branch-and-bound trees, and thus large solution
times.

An alternative to the big-M continuous time formulation is provided by a dis-
crete modeling of time. The available finite time horizon is sliced into intervals of
fixed unit length (e.g., 5 minutes). Then for each incident i and each time step t
a binary variable xi,t is introduced, which indicates, if incident i happens in time
step t. In this purely discrete setting, often better LP relaxations are achieved.
However, there is a trade-off between accuracy and solution time: If the time is
sliced into too many pieces, then the resulting models are of enormous size, which
are impractical for a numerical solution process. When carefully used, small to
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medium size real-world optimization problems can be solved in reasonably short
time [26].

A new way of dealing with time called “time-free relaxation” was introduced in
[18]. Here the time index of all variables xi,t is projected away, so that variables
xi remain. Then all constraints have to be adapted accordingly. This results
in very small, but still mixed-integer models, that usually can be solved very
easily. In general, they do not yield feasible solutions to the original problem
“with time”, and it is in fact a difficult problem to decide if a projected solution
has a feasible counterpart with proper times attached to it. When embedded in a
branch-and-bound search, where a time-free master problem interacts with time-
indexed subproblems to solve this inverse problem, the overall solution process can
be faster, compared to a solution over the full time-indexed problem. A refinement
of this method is a promising direction of further research.

The individual challenges imposed by mixed-integer optimization over time and
mixed-integer optimization with nonlinear constraints are coupled when they are
blended with differential equation constraints (ODEs or PDEs). These constraints
usually arise in the description of technical systems to model physical properties.
Even a simple PDE, such as the transport equation, leads to numerically difficult
optimization problems when handed over to a standard MILP solver [20, 12]. One
way to include PDEs into a MIP is by a finite difference discretization in time and
space of the PDE. Even moderate discretization step sizes lead to instances with a
huge number of variables and constraints. Although one can obtain a linear model
(for the transport PDE, for instance), the solver tend to have numerical problems
on these instances, so certain steps of the classical MILP solution process have
to be revisited, for example, the bounds strengthening routines in the presolve
phase [9]. Amazingly, putting one of the most simple problems from the area of
combinatorial optimization, namely the shortest path problem, together with one
of the most simple PDE, namely the heat equation, leads due to their combination
to a new and challenging problem, which we call the coolest path problem [10].

ODEs and PDEs describe the physics to a very high degree of accuracy. How-
ever, in order to obtain the “right” combinatorial decisions, it can be beneficial not
to work with the full complexity of the DE, but with some simpler approximation.
To start with, a hierarchy of models must be derived, from fine to coarse, and af-
terwards the right level to formulate the mixed-integer optimization problem can
be chosen among that hierarchy. In [14] this approach was demonstrated using
traffic flows in networks.

Clearly, mixed-integer nonlinear dynamic optimization with differential equa-
tion constraints is full of challenging problems and has many practical applications,
so that it is worth to devote more research on this emerging problem class.
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Unifying randomization techniques and semidefinite and set-copositive
relaxations of binary problems

Florian Jarre

(joint work with Felix Lieder, Fatemeh Bani Asadi Rad)

One of the most successful techniques for approximating a local solution of an
NLP is the SQP-approach solving a linearly constrained quadratic program at
each iteration. The crucial point of the SQP approach is defining the objective
function of the SQP subproblem by the Hessian of the Lagrangian (rather than
by the Hessian of the objective function). A suggestion is discussed as how to
maintain this crucial point for MINLP, i.e. in the presence of binary and integer
constraints. The resulting subproblems take a form closely related to the one
considered in Burer [6]. Burer proposed an exact relaxation of a QP with mixed
binary constraints as a program over the completely positive cone. This relaxation
is computationally not tractable, and several authors have considered weaker re-
laxations replacing the completely positive cone with the doubly nonnegative cone
or with the semidefinite cone.

Several aspects of such reformulations are discussed, aspects that may be crucial
for an iterative approach such as SQP, in particular, results relating to

(1) the tightness and the key condition,
(2) the computational cost,
(3) and the generation of feasible solutions from the relaxation.

The heuristics of Goemans and Williamson [7] has proved to be a valuable
practical and theoretical tool for approximating the solution of max-cut problems.
The key of its numerical success is a combination of the availability of efficient
algorithms exploiting the particular structure of the semidefinite relaxation, see
e.g. [9], and a provable bound for the average behavior of the heuristics as well
as the availability of local refinement strategies. The result [7] was soon set into
perspective [10] but it remains an important practical tool that has been imple-
mented with a branch and cut algorithm [12] in a slightly extended framework
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of binary quadratic programs for which the assumptions of [7] do not necessarily
hold, and for which the theoretical bound is thus no longer available, but which
nevertheless yields excellent numerical approximations of the optimal solution.

The result by Goemans and Williamson refers to a {−1, 1}-formulation while
the completely positive reformulation is based on a {0, 1}-formulation making the
combination of both results a bit technical. It is clear that, in principle, both for-
mulations must be equivalent. Following the presentation in [8, 11], it is shown that
the Goemans-Williamson randomization technique can be generalized for quadrat-
ically constrained binary programs in either formulation and that these binary
programs – under some additional assumption – can also be rewritten as duals
of set-copositive linear optimization problems. The set-copositive cone in this re-
formulation only depends on the dimension and is independent of the problem
data.

Earlier works combining instances of both formulations are, for example, the
work by Bertsimas and Ye [3] and Benson and Ye [2] who modified the approach
by Goemans and Williamson to the max-clique problem. Here, the approach of
[3, 2] is adapted in a way so that the simple structure of the semidefinite max-cut
relaxation is fully maintained except from one additional linear equality constraint
that can be handled by means of rank-one-updates. The resulting relaxation is
somewhat weaker than the Lovasz number in [3, 2] but much faster computable,
in particular for larger graphs with moderate edge density. In addition, it turns
out that also for the relaxation by Burer, all the linear constraints can be accu-
mulated into two linear constraints without changing the optimal solution of the
relaxation. This transformation is applicable to semidefinite, doubly nonnegative,
and completely positive programs.

Finally, a set-completely-positive reformulation, see [1], is presented that does
not require a key condition. The set-completely-positive cone is independent of the
problem data and some of the heuristics for optimizing over the completely pos-
itive cone can be transferred in a straightforward fashion to such set-completely-
positive cones. A possible generalization to the format of SQP subproblems and
an implementation for MINLP are the subject of future research.
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Optimal Control Problems with Discrete Variables: Applications,
Methods, and Constraints

Matthias Gerdts

The talk provides an overview on theoretical properties of and numerical ap-
proaches for optimal control problems with ordinary differential equations and
differential-algebraic equations (DAEs) with discrete-valued controls. Such prob-
lems appear in various applications in engineering and economics, where discrete
controls are used to model decisions, switches, or hybrid systems. A typical ex-
ample is the optimization of gear shifts in a car or a truck, compare [2].

We investigate DAE optimal control problems of the following type:
Minimize ϕ(x(0), x(1)) w.r.t. x ∈ W 1,∞([0, 1],Rnx), y ∈ L∞([0, 1],Rny), u ∈

L∞([0, 1],Rnu) subject to the constraints

x′(t) = f(x(t), y(t), u(t)),

0 = g(x(t)),

u(t) ∈ U ,
0 = ψ(x(0), x(1)).

Herein, (x, y) denotes the differential state, u the control, U ⊂ Rnu the control
set (can be a discrete set), and ϕ, f , g, ψ are sufficiently smooth functions. Ex-
ploitation of a proof technique in [1], which uses a variable time transformation to
transform the discrete optimal control problem into an equivalent optimal control
problem without discrete-valued controls but with mixed control-state constraints,
allows to proof necessary conditions in terms of a global minimum principle. Under
appropriate assumptions on the index of the DAE there exist nontrivial multipliers
ℓ0 ≥ 0, (ℓ0, ζ, σ, λf , λg) 6= 0 such that the following conditions hold at a strong
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local minimum (x∗, y∗, u∗) of the DAE optimal control problem:

λ′f = −∇xH(x∗(t), y∗(t), u∗(t), λf (t), λg(t)),

0 = ∇yH(x∗(t), y∗(t), u∗(t), λf (t), λg(t)),

λf (0)
⊤ = −

(

ℓ0ϕ
′
x0
(x∗(0), x∗(1)) + σ⊤ψ′

x0
(x∗(0), x∗(1)) + ζ⊤g′x(x∗(0))

)

,

λf (1)
⊤ =

(

ℓ0ϕ
′
xf
(x∗(0), x∗(1)) + σ⊤ψ′

xf
(x∗(0), x∗(1))

)

,

(u∗(t), y∗(t)) ∈ argmin(u,y)∈M(x∗(t))H(x∗(t), y, u, λf (t), λg(t))

where

H(x, y, u, λf , λg) = λ⊤f f(x, y, u) + λ⊤g g
′
x(x)f(x, y, u)

denotes the Hamilton function and M(x) := {(u, y) | g′x(x)f(x, y, u) = 0}. More-
over, the Hamilton function is constant at the optimal solution. Details of the
proof can be found in [4, Chapter 7] for index-2 DAEs and in [5] for index-1
DAEs.

The proof technique gives also rise to a numerical method, which exploits the
variable time transformation, compare [11, 3]. The numerical performance is
demonstrated for an example from virtual testdrives. An alternative approach
uses a relaxation of the discrete optimal control problem in combination with an
a posteriori rounding strategy, compare [10, 9]. Extensions of the latter sum-up-
rounding strategy towards model-predictive control can be found in [6].

Particular difficulties arise, if switching costs or constraints depending on the
discrete-valued control have to be considered. The latter can be reformulated
using so-called vanishing constraints and tailored optimization methods have to
be derived, compare [7]. An example from aircraft trajectory optimization with
control dependent velocity constraints, see [8], concludes the talk.
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Relaxations for Convex Nonlinear Generalized Disjunctive Programs,
their Application to Nonconvex Problems and to Logic-based Outer

Approximation Algorithm

Ignacio E. Grossmann

This talk deals with the theory of reformulations and numerical solution of gen-
eralized disjunctive programming (GDP) problems, which are expressed in terms
of Boolean and continuous variables, and involve algebraic constraints, disjunc-
tions and propositional logic statements. We propose a framework to generate
alternative MINLP formulations for convex nonlinear GDPs that lead to stronger
relaxations by generalizing the seminal work by Egon Balas [1] for linear disjunc-
tive programs. We define for the case of convex nonlinear GDPs an operation
equivalent to a basic step for linear disjunctive programs that takes a disjunctive
set to another one with fewer conjuncts. We show that the strength of relax-
ations increases as the number of conjuncts decreases, leading to a hierarchy of
relaxations. We prove that the tightest of these relaxations allows in theory the
solution of the convex GDP problem as an NLP problem. We present a guide
for the generation of strong relaxations without incurring in an exponential in-
crease of the size of the reformulated MINLP. We apply the proposed theory for
generating strong relaxations to a dozen convex GDPs which are solved with an
NLP-based branch and bound method. Compared to the reformulation based on
the hull relaxation, the computational results show that with the proposed refor-
mulations significant improvements can be obtained in the predicted lower bounds,
which in turn translates into a smaller number of nodes for the branch and bound
enumeration. We then briefly describe an algorithmic implementation to auto-
matically convert a convex GDP into an MILP or MINLP using the concept of
basic steps, and applying both big-M and hull relaxation formulations to the set
of disjunctions.

We address the extension of the above ideas to the solution of nonconvex GDPs
that involve bilinear, concave and linear fractional terms. In order to solve these
nonconvex problems with a spatial branch and bound method, a convex GDP
relaxation is obtained by using suitable under- and over-estimating functions of
the nonconvex constraints. In order to predict tighter lower bounds to the global
optimum we exploit the hierarchy of relaxations for convex GDP problems. We
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illustrate the application of these ideas in the optimization of several process sys-
tems to demonstrate the computational savings that can be achieved with the
tighter lower bounds. We also discuss recent work aimed at automating convex
GDP reformulations into MILP/MINLP models in which basic steps are applied
selectively and a hybrid of big-M and hull reformulation constraints is used. In
order to decrease the size of these reformulations, an algorithm is presented for
the derivation of cutting planes derived from basic steps and that are used to
strengthen big-M models. Computational experience is reported on a set over 30
instances of varying sizes and complexity.

We also present an alternative logic-based outer-approximation algorithm to
find the global solution of non-convex GDPs. The general idea of the algorithm
is to have a master MILP that overestimates the feasible region of the GDP.
This master problem provides a valid lower bound (in a minimization problem),
and the selection of only one disjunctive term in each of the disjunctions. With
this alternative provided by the master problem, an NLP subproblem is solved to
global optimality. This NLP subproblem is smaller and simpler than the contin-
uous relaxation of the MINLP reformulation of the original GDP. After solving
this subproblem, infeasibility or optimality integer cuts can be added to the mas-
ter problem. This basic algorithm has the advantage of solving only small NLP
problems to global optimality, instead of solving a larger MINLP to global opti-
mality from the beginning. Furthermore, by using GDP as framework the NLP
subproblem is smaller and simpler than an equivalent method directly applied to
the MINLP reformulation. Even with these advantages, the convergence of the
algorithm is slow and it may have difficulties finding good or optimal solutions.
In order to improve the performance of this logic-based outer approximation, we
implement three main features: derivation of additional cuts, partition of the al-
gorithm in two stages, and parallelization of the algorithm.

In the first improvement we develop a novel method to derive a cutting plane
in each of the disjunctive terms selected by the master problem. We obtain this
cut by solving to global optimality one NLP for each of the selected disjunctive
terms. This NLP minimizes the distance between the solution found by the master
problem, and a point that lies in the tightest possible convex region that contains
the nonconvex region described by the disjunctive term. The idea of solving this
NLP to obtain a cut is similar to the well-known concept of the separation prob-
lem in MILP and convex MINLP. A second improvement in the algorithm is its
partition into two phases. The first phase seeks to find a good feasible solution,
while the second phase provides a rigorous lower bound. The first phase tests
many alternatives and evaluates the NLP subproblems only for a few seconds. If
an NLP subproblem provides a feasible solution, it is a valid upper bound. If the
NLP is proven infeasible within that time period, then a feasibility cut is derived,
and it is valid for the original MINLP. If the NLP does not find a feasible solution
within the given time, an infeasibility cut is derived and used for the first phase.
However, this cut is not valid for the original MINLP, so it is discarded in the
second phase. Note that the first phase provides valid upper bounds when found,
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but it does not provide a valid lower bound in general. For the second phase, the
invalid cuts found in phase 1 are removed. After this, the rigorous algorithm pre-
viously described is solved (without stopping the NLP subproblems until they are
solved to global optimality or proven infeasible). In this second phase a stronger
MILP relaxation is used to provide good lower bounds. The third improvement
in the algorithm is to parallelize the derivation of cutting planes and solution of
subproblems. This parallelization is performed by obtaining a pool of solutions
from the master problem. The cut derivation and subproblem solution is then
performed in parallel for each of the solutions in the pool.

We illustrate the application of this algorithm with several GDP process net-
works examples. In some cases, process networks are difficult to solve as MINLPs,
but easy NLPs to solve for a given fixed structure. This characteristic makes the
logic based outer-approximation an attractive method for solving these type of
problems. We compare the solution of these problems using the described algo-
rithm against global optimization solvers. The results show that the algorithm
generally finds better solutions faster, and with a smaller optimality gap.
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Approximation properties of complementarity problems from
mixed-integer optimal control

Christian Kirches

(joint work with Michael N. Jung, Felix Lenders, Sebastian Sager)

We extend recent work [5, 6, 8] on the numerical solution of mixed-integer nonlin-
ear optimal control problems (MIOCPs) to the case of discrete control functions
subject to combinatorial constraints. In more detail, we are interested in comput-
ing optimal state and control trajectories (x∗, u∗, v∗) that solve the problem

(MIOCP)
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x,u,v

T
∫

0

L(x(t), u(t), v(t)) dt+ E(x(T ))

s.t. ẋ(t) = f(x(t), u(t), v(t)) a.e. t ∈ [0, T ]
0 ≤ c(x(t), u(t), v(t)) a.e. t ∈ [0, T ]
0 ≤ d(x(t), u(t)) a.e. t ∈ [0, T ]

0

{

≤
=

}

r({x(ti)}) {ti} ⊂ [0, T ]

v(t) ∈ Ω := {v1, . . . , vnΩ} ⊂ Rnv a.e. t ∈ [0, T ].

Prominent examples of such systems include problems with restrictions on the
number of switches permitted, or problems that minimize switch cost. We present
a computational approach to MIOC that is based on partial outer convexification
of (MIOCP) with respect to the discrete control v(t), cf. [5], and on a vanishing
constraint formulation for the combinatorial constraint 0 ≤ c(x(t), u(t), v(t)) on
the integer control, cf. [1, 2]. This setting has been shown to be a powerful ap-
proach for solving practically relevant problems, e.g. [4]. We extend a theorem due
to [6] to this setting and prove that, after relaxation, the integrality gap is zero
in appropriately chosen function spaces. After discretization of (MIOCP) in time,
the integrality gap can be made arbitrarily small by selecting a sufficiently fine
grid. In order to construct an integer feasible solution from the relaxed optimal
one, a MILP can be solved [7] or a rounding scheme can be applied. We extend a
sum-up rounding (SUR) scheme due to [8] to the case of combinatorial constraints.
Our scheme permits to constructively obtain an ε-feasible and ε-optimal discrete
control. We derive two tighter upper bounds on the integer control approximation
error made by SUR. For unconstrained discrete controls, we reduce the approx-
imation error bound from O(nΩ) to O(log nΩ) asymptotically. We further show
that this new bound is tight. For constrained discrete controls, we prove that an
approximation error bound of O(nΩ) holds and is tight. The presented results
can be found in [3], and applications to MIOCPs from practical and real-world
applications can be found in, e.g., [2, 4, 5].
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Comparing polyhedral relaxations via volume

Jon Lee

With W. Morris in 1992, I introduced the idea of comparing polytopes relevant
to combinatorial optimization via calculation of n-dimensional volumes. That
work involved deriving exact formulae for volumes in well-structured situations,
followed by relevant asymptotic analysis. The motivation was MINLP. I will review
some of that work related to fixed-charge problems, to give a flavor of the type of
results. Some years later, in 2007, I made some computations on separable convex-
quadratic objectives which correlated with our theoretical results. The message
is that there are clear situations where a simpler relaxation may be only slightly
weaker, and so it may be preferred in the context of global optimization.

In 2015, I obtained results with E. Speakman, relevant to the spatial branch-
and-bound approach to global optimization. In this new work, we calculate exact
expressions for 4-dimensional volumes of natural parametric families of polytopes
relevant to different convex relaxations of trilinear monomials. As a consequence,
we have practical guidance: (i) for tuning an aspect of spatial branch-and-bound
implementations [1], (ii) at the modeling level. This work is clearly just a sample
of what can be done to more deeply analyze the low-dimensional functions that
are in modeling trickery and spatial branch-and-bound libraries.

Other related work is [5] and [6]. A nice open problem is:

For n ≥ 2, the Boolean Quadric Polytope Pn is the convex hull in
dimension d = n(n + 1)/2 of the 0/1 solutions to xixj = yij for
all i < j in N := {1, 2, . . . , n}. Give a formula or good bounds for
the d-dimensional volume of Pn.

Comments: The polytope Pn is contained in Qn, the solution set of the linear
inequalities: yij ≤ xi, yij ≤ xj , xi + xj ≤ 1 + yij , for all i < j in N . In [5], we
demonstrated that the d-dimensional volume of Qn is 22n−dn!/(2n)!. So this is an
upper bound on the d-dimensional volume of Pn. We would like to see a significant
improvement in this upper bound and/or a non-trivial lower bound. There is quite
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a lot known about further linear inequalities satisfied by Pn, so there are avenues
to explore for trying to get a significant improvement in the upper bound.
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Mixed-Integer PDE-Constrained Optimization

Sven Leyffer

(joint work with Pelin Cay, Drew Kouri, and Bart van Bloemen Waanders)

Many complex scientific and engineering applications can be formulated as opti-
mization problems constrained by partial differential equations (PDEs) with both
continuous and integer decision variables. This new class of mathematical prob-
lems, called mixed-integer PDE-constrained optimization (MIPDECO) [4], must
overcome the combinatorial challenge of integer decision variables combined with
the numerical and computational complexity of PDE-constrained optimization.

Examples of MIPDECO include the remediation of contaminated sites and the
maximization of oil recovery, which involve flow through porous media and the op-
timization of wellbore locations and optimal flow rates [2], and operational sched-
ules [1]. Related applications also arise in the optimal scheduling of shale-gas
recovery [6]. Next-generation solar cells face complicated geometric and discrete
design decisions to achieve perfect electromagnetic performance [5]. In disaster-
recovery scenarios, such as oil spills [7], and hurricanes [3], resources must be
scheduled to mitigate the disaster while adjusting to the underlying dynamics for
accurate forecasts. Other science and engineering examples include the design,
control, and operation of wind farms and gas networks.

Each of these applications combine discrete decision variables with complex
multiphysics simulation. Until recently, these grand challenge problems have been
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regarded as computationally intractable. Formally, we state a mixed-integer PDE-
constrained optimization problem as

(1)

minimize
u,w

F(u,w)
subject to C(u,w) = 0,

G(u,w) ≤ 0,
u ∈ D, and w ∈ Zp (integers),

which is defined over a domain Ω. We use x, y, z to indicate spatial coordinates of
the domain Ω and t to denote time. The objective function of (1) is F , C are the
equality constraints, and G are inequality constraints. The equality constraints in-
clude the PDEs as well as boundary and initial conditions. We denote the continu-
ous decision variables of the problem by u(t, x, y, z), which includes the PDE states,
controls, or design parameters. We denote the integer variables by w(t, x, y, z),
which may include design parameters that are independent of (t, x, y, z). Thus, in
general, problem (1) is an infinite-dimensional optimization problem, because the
unknowns, (u,w), are functions defined over the domain Ω, although we avoid a
formal discussion of function spaces in this paper.

We review existing approaches for solving these problems, and we highlight
their computational and mathematical challenges. We introduce a benchmark set
for this class of problems and present some early numerical experience using both
mixed-integer nonlinear solvers and nonlinear rounding heuristics.

minimize
u,w

1

2

∫

Ω

(u− ū)2dΩ Least-squares fit

subject to −∆u =
∑

k,l

wklfkl in Ω Poisson eqn.

∑

k,l

wkl ≤ S , wkl ∈ {0, 1} source budget

Figure 1. Formulation and solution of a simple source inversion model.

One example of our benchmark problems is a simple source inversion problem
based on Laplace’s equation with Dirichlet boundary conditions, which is moti-
vated by groundwater flow applications. The goal is to match observations, ū ∈ Ω
by selecting possible sources from a set of possible sources using binary variables.
We prefer the use of binary variables, because an alternative formulation, which
models the source location as continuous variables, results nonlinear (i.e. noncon-
vex) constraints. We discretize the PDE with a five-point finite difference stencil
using an equidistant meshsize of h = 1/32, and we limit the number of sources to
S = 3. The resulting discretized problem is a convex mixed-integer quadratic pro-
gram. We solve the discretized problem using MINOTAUR’s branch-and-bound
solver, which searches 759 nodes in 69s of CPU time on an Intel i7 core. Figure 1
shows the optimal selection of sources as red dots and the deviation from ū, as
well as the problem formulation.
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Big Data & Mixed-Integer Non Linear Programming

Andrea Lodi

(joint work with Marie-Claude Côté)

In this talk we discuss some personal viewpoints in the domain of so-called Big
Data that open interesting lines of research for Mathematical Optimization [4]
and, more specifically, Mixed-Integer Non Linear Programming [1] (MINLP). We
do that by using two simple and informative examples of non-necessarily-big data.

(1) The first example concerns a face recognition system put in place in a mall
somewhere in the US. Main purpose of the system was security. After col-
lecting data for some time, it has been observed that the large majority
of the clients entering in the mall around lunch time (11AM - 3PM) was
composed by Asian-American people. The company owning the mall im-
plemented two simple actions: (i) revised the shifts of the employees so as
that (most of) the Asian-American ones were on duty in that time window
and (ii) hired new Asian-American employees. The overall effect has been
a huge increase in sales.

(2) The second example is in the retail industry and concerns a promotion
execution in an integrated real-time decision support system. Based on
the forecast, 300 blouses are sent for the promotion that starts at 5PM
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on Friday. By 10PM 180 blouses have sold and an intra-day pace-based
forecasting engine detects a potential stock out situation and generates an
alert: at this pace blouses will be sold out by 2PM on Saturday. Retailer
has a relatively nimble supply chain. The system generates an order at
the DC to be put on the regular 9AM shipment. Shelves are full and
customers are happy. Revenues are robust and promotional efficiency is
high. But the weather forecast for Saturday is terrible, and the likely surge
in sales on Friday is a reflection of that. In addition, shoppers have been
“tweeting” about this deal and that has generated a buzz and anticipated
traffic and sales. Real-time demand-sensing allows retailers to improve the
execution of their promotions and to optimize future promotional plans.

Example (1) shows that automatic collection of data can lead to the definition
of new (optimization) problems. Disseminating sensors (including mobile devices)
everywhere has become cheap (and cool!) but the real challenge is taking deci-
sions over the collected (complex) data. It is not completely clear if the (applied)
optimization problems we were used to solve in contexts as diverse as routing,
supply chain and logistics, telecommunication, etc. are still there or, instead, have
radically changed.

The spirit of such a change is shown by example (2): the end-users “behavior”
is putting more and more pressure on the decision makers and, by transitivity, on
the optimizers. This is not true only in the retail industry but virtually in any
other in which a service is delivered:

• routing, I can check with my mobile device where cabs/buses are located;
• traffic management, I am aware of congestions, accidents, etc. in the city;
• cache allocation for video streaming, complaints escalate in real time.

The most significant effect of considering the end-users behavior is that complex
systems that have been traditionally split into (smaller) parts, which were then
optimized sequentially, now need to be tackled in an integrated fashion. Mobile
technology has urged the request of integrated approaches for decision making
because of the perception of missing opportunities.

From an optimization perspective, formulating and solving those integrated
models is, of course, hard. This is because of (a) volume, (b) velocity, and (c)
variety of the data, and also because optimizers are not – in general – trained for
that. One answer to this is introducing into the picture some learning mechanisms
that allow to treat data, often reducing their volume and variety, and to take into
account the end-user perspective/behavior.

In the retail context, one needs to predict the sales of a certain product, on a
certain shop location, in a certain season, to a certain segment of shoppers, at a
certain price. Learning from historical data allows to compute a score associated
with these choices and the optimization problem associated with the assortment
can be solved only after these scores are computed.
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We believe big data applications call for the integration between Machine Learn-
ing (ML) [5] and Mathematical Optimization. But, how such an integration should
go? And, what about MINLP specifically?

Of course, the easiest integration is already shown in the examples above, where
raw data are “crunched” and “prepared” by ML to construct the decision model
on which Mathematical Optimization is applied. However, the integration is not
restricted to let Machine Learning and Mathematical Optimization work in cas-
cade. Modern ML paradigms like Deep Learning [3] are facing more and more
complicated structures in which the features (raw data observations) are not kept
fixed but are “transformed” within the learning process. Those transformations
involve highly nonconvex functions and discrete decisions.

The role of discrete decisions. Discrete decisions have been disregarded so far
in ML. This is certainly due to the (negative) perception that were not affordable
in practical computation (ML has always been concerned with large volumes of
data) but it was also related to the fact that the parameters to be learnt were
inherently continuous. This is not true anymore in modern paradigms, those that
led ML to contribute to the advances in computer vision, signal processing and
speech recognition. Moreover, there seems to be large room for using discrete
variables to formulate nonconvexities that appear more and more to be crucial in
ML (see, e.g., [2]).

More sophisticated nonlinear models/algorithms. It is likely there is room
for more sophisticated ingredients in Machine Learning both on the function side
(predicting functions, generally called “activation” functions) and on the algorith-
mic side. In addition, the combination of nonlinear functions and discrete decisions
could make the learning mechanisms more ambitious. This is true in our running
example in retail, where currently the substitution effect of several products in
the potential assortment is not directly taken into account by ML in computing
the scores. In other words, computing scores for pairs of (substitute) products or
for entire assortments (discrete sets) could lead to more sophisticated MINLPs to
work with.

We have discussed a few important issues arising in big data optimization,
namely

• the change of perspective associated with dealing with the end-users be-
havior,
• the need of formulating and solving integrated models, and
• the role of (machine) learning.

Optimistically speaking, we see huge opportunities through the interaction be-
tween Machine Learning andMathematical Optimization, especially on the MINLP
side.
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On generalized Benders decomposition and outer approximation for
convex chance-constrained problems

Giacomo Nannicini

(joint work with Andrea Lodi, Enrico Malaguti, Dimitri Thomopulos)

We study mathematical programs with probabilistic constraints, called chance-
constrained mathematical programming problems in the literature [2, 8]. Without
loss of generality, a chance-constrained mathematical program can be expressed
as

(CCP) max{cx : Pr(x ∈ Cx(w)) ≥ 1− α, x ∈ X},
where w is a random variable, Cx(w) is a set that depends on the realization
of w (the set of probabilistic constraints), and X is a set that is described by
deterministic constraints [8]. The formulation (CCP) allows for two-stage problems
with recourse actions, because the sets Cx(w) can be the projection of higher-
dimensional sets. This work discusses the case where recourse actions are allowed
and we are interested in the joint probability of x ∈ Cx(w).

We consider the case in which uncertainty can affect all parts of the system of
inequalities describing Cx(w). We assume that the sample space Ω is discrete and
finite, i.e. Ω = {wi : i = 1, . . . , k}, and all the Cx(w

i)’s are polyhedra sharing the
same recession cone. Under these assumptions, (CCP) can be reformulated as a
deterministic mathematical programwith integer variables, following a result in [6].
This is accomplished by defining a problem with all the constraints of each of the
Cx(w

i), and introducing an indicator variable zi for each w
i to activate/deactivate

the corresponding constraints.
Unsurprisingly, the size of the problems obtained with the indicator-variable

reformulation is unmanageable in most practically relevant situations. However,
under relatively mild assumptions it is possible to perform implicit solution of the
reformulated problem [7]. The idea is to keep the indicator variables, but avoid the
classical on/off reformulation of the constraints that involves them. Then, if cut
separation routines for the set Cx(w) are available, a Branch-and-Cut algorithm
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can be applied to the problem maxx∈X cx, augmented with the indicator variables
for the sets Cx(w) and a constraint to ensure that the scenarios for which the
indicator variables are on occur with probability at least 1 − α. This problem is
called a master problem. Whenever the solution of the master problem x̂ does not
satisfy the chance constraint Pr(x̂ ∈ Cx(w)) ≥ 1 − α, cuts are generated for the
sets Cx(w

i) for which the corresponding indicator variable zi takes the value 1, but
x̂ 6∈ Cx(w

i). The cuts are then added to the master problem. This basic idea yields
an exact algorithm for the original chance-constrained mathematical program.
However, the literature mainly focuses on the case where all of the constraints are
linear and all the original variables are continuous. The classical decomposition
approach for two-stage nonlinear problems is generalized Benders decomposition
[5], but it has the drawback of requiring separability and/or knowledge of the
problem structure to be practically viable.

In this paper we consider the case where each set Cx(w
i) is a general closed con-

vex set, and propose a finitely convergent Branch-and-Cut algorithm. The cutting
planes that we generate are based on the Projection Theorem and can be obtained
as outer approximation cuts [3, 4]. They are linear, as opposed to the possibly
nonlinear generalized Benders cuts of [5]. We show that our cuts are a linearization
of generalized Benders cuts from a particular choice of dual variables, but our cut
generation algorithm is much simpler than the generalized Benders procedure: it
can be automated and it has fewer assumptions, more precisely it does not require
separability and constraint qualification. While our main focus and computational
testing is for the continuous convex case, our algorithm is finitely convergent also
in the case where each Cx(w

i) is a mixed-integer set with a convex continuous
relaxation. Generalized Benders decomposition can be seen as a dual approach,
while the methodology that we propose is purely primal and automatically gen-
erates supporting hyperplanes with little computational overhead, although the
inequalities may not be extreme, i.e. they may be obtained as a combination of
other valid inequalities.

The main application studied in this work is the scheduling of a hydro valley
in a mid-term horizon [1]. We propose a chance-constrained quantile optimization
model for this problem that is equivalent to the minimization of the Value-at-Risk.
Computational experiments show that our approach is able to solve large instances
obtained from data of [1] very effectively, and scales well with |Ω|.
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Multiple linear regression: a mixed integer nonlinear programming
approach

Justo Puerto

(joint work with Vı́ctor Blanco, Román Salmerón)

The statistical technique that analyzes the functional relationship between a set of
variables X1, . . . , Xd is usually called regression analysis. It is common to consider
that such a dependence is expressed with an equation of the form f(X1, . . . , Xd) =
0. The estimation of the function f that expresses the relationship between the
variables is done based on a sample of data. Once the function f is estimated, such
a relationship is used to explain or predict the behavior of one of the variables in
terms of the others.

In the linear case, to perform such an estimation of the parameters for a given

set of data {x1, . . . , xn} ⊂ Rd, one tries to find the values β̂ = (β̂0, β̂1, . . . , β̂d)
that minimize some measure of the deviation of the data with respect to the

fitting body H(β̂) = {z ∈ Rd : β̂0 +
∑d

k=1 β̂kzk = 0}, i.e. the residual. In a

general framework, for a given point x ∈ Rd, we define the residual of a model
as a mapping εx : Rd+1 → R+, that maps any β = (β0, . . . , βd) ∈ Rd+1, into a
measure εx(β) that represents how much deviates the fitting of the model, with
those parameters, from the observation x. The larger this measure, the worse the
fitting for such a point x. The final goal of a regression model for a given set
of points {x1, . . . , xn} ⊆ Rd is to find the fitting body minimizing a globalizing
function, Φ : Rn → R, of the residuals of all the points.

In this talk we present a new framework for multiple linear regression that
allows the decision maker/statistician to decide within a wide family of residu-
als and criteria [8] which is the “best” for a given sample of data. One of the
main highlights of our proposal is the use of modern mathematical programming
tools to solve the MINLP problems which are involved in the computation of the
estimated parameters of the fitting models. The optimization models for those
problems range from continuous convex programming to mixed integer nonlinear
programming through linear programming. Many of the formulations described
in this paper have been implemented in R in order to be available for statisticians
and practitioners.
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The new framework for multiple regression proposed in this paper can be eas-
ily combined with the mathematical programming techniques for feature selec-
tion, to “choose” a fixed number of variables to explain the dependence between
a set of variables [3], with classification schemes [2], or with linear constrained
regression models, where the coefficients are required to fulfill a set of linear equa-
tions/inequalities.

The description of such a family of combinations residuals-criteria needs to
define a generalized measure of the goodness of the fitting for the different models.
Thus, a new measure is provided in order to make the comparison meaningful.

One of the important novelties of the approach is that errors are measured as
shortest distances, based on a norm, between the given data and the fitting surface.
This makes the fitting geometrically invariant. We remark that this framework also
subsumes as a particular case the standard linear regression methods that consider
residuals based on vertical distances; as well as most of the particular cases of linear
regression for vertical distances but different aggregation criteria described in the
literature, as ℓp regression (ℓp-norm criterion), least quantile of squares [10, 3],
least trimmed sum of squares [9, 1], etc. The use of nonstandard residuals is not
usual in the literature although orthogonal (ℓ2) residuals have been already used,
see e.g. Euclidean Regression [4] or Total Least Squares Regression [7], mainly
applied to bidimensional data. Quoting the reasons for that fact given by Giloni
and Padberg in [6]: “we have left out a summary of linear regression models
using the more general ℓτ ,-norms with τ 6∈ {1, 2,∞} for which the computational
requirements are considerably more burdensome than in the linear programming
case (as they generally require methods from convex programming where machine
computations are far more limited today).”

Summarizing we introduce a new framework for multivariate linear regression
together with an alternative generalized coefficient of determination. We analyze
the classical multivariate linear regression methods under the new framework: new
mathematical programming models for adequate aggregation criteria and residuals
are provided for: 1) least sum of squares; 2) least absolute deviation; 3) least
quantile of squares and 4) least trimmed of squares regression. Next, we present
new methods for the multivariate linear regression problem assuming that the
residuals are measured as the smallest norm-based distance between the sample
data and the linear fitting body for polyhedral and ℓp norms. Finally, we report
computational experiments for synthetic data and for the classical data set given
in [5].

References

[1] Atkinson, A. C. and Cheng, T. C. (1999). Computing least trimmed squares regression with
the forward search. Stat. Comp. 9, 251-263.

[2] Bertsimas, D. & Shioda, R. (2007). Classification and Regression via Integer Optimization.
Oper. Res. 55(2): 252–271.

[3] Bertsimas, D. & Mazumder, R. (2014) Least Quantile regression via modern optimization.
Ann. Stat. 42 (6), 2494–2525.



Mixed-integer Nonlinear Optimization 2747

[4] Cavalier, T., Melloy, B. (1991). An Iterative Linear Programming Solution to the Eudidean
Regression Model, Comput. Oper. Res. 18 (8), 655–661.

[5] Durbin, J. and Watson, G.S. (1951). Testing for serial correlation in least squares regression
II. Biometrika, 38, 159–178.

[6] Giloni, A. and Padberg, M. (2002). Alternative methods of linear regression, Math. Comput.
Model., 35 (3–4), 361–374.

[7] Van Huffel, S. and Vanderwalle, J. (1991). The Total Least Squares Problem: Computational
Aspects and Analysis, SIAM Frontiers in Applied Mathematics.

[8] Nickel, S. and Puerto, J. (2005). Facility Location - A Unified Approach. Springer Verlag.
[9] Rousseeuw, P. J. (1983). Multivariate Estimation With High Breakdown Point. Math. Stat.

App. B, (Ed. W. Grossmann, G. Pflug, I. Vincze, and W. Wertz), 283–297.
[10] Rousseeuw, P. (1984), Least median of squares regression. J. Am. Stat. Assoc., 79, 871-880

Active set methods for convex quadratic problems with simple bound
constraints

Franz Rendl

(joint work with P. Hungerländer)

We consider the following simple optimization problem:

min
1

2
xTQx+ qTx such that x ≤ b.

The symmetric n×n matrix Q is assumed to be positive definite. This problem is
well known to be tractable. The objective function is denoted by J(x). A vector x
together with multipliers α is optimal if and only if the following conditions hold:

Qx+ q + α = 0; α ◦ (b − x) = 0, α ≥ 0, b − x ≥ 0.

We use a ◦ b to denote the elementwise product of vectors a and b. Suppose that
A ⊆ N := {1, . . . , n} is selected to contain the active variables, meaning that
xA = bA. The complement of A is denoted by I := N \A. Setting αI = 0 insures
that the complementarity condition α ◦ (b − x) = 0 is satified. We call the pair
(x, α) the subspace solution to A if

Qx+ q + α = 0, xA = bA, αI = 0

and write [x, α] = KKT (A) for short. It solves the original problem if xI ≤ bI and
αA ≥ 0. Bergounioux et al [1] introduced the following simple active set iterations.

Start with A ⊆ N , compute [x, α] = KKT (A). If the solution is optimal
(x ≤ b, α ≥ 0) then stop, otherwise continue with new set

(1) B ← {i : xi > bi} ∪ {i : αi > 0}.
Hintermüller et al [2] have shown that this iterative scheme can be interpreted
as a semismooth Newton method, applied to an appropriately chosen system of
equations. They also show global convergence if Q is anM -matrix, but it is known
that this iterative scheme may cycle in general.

In this talk we present two variants of the method, that insure global conver-
gence for any Q ≻ 0.



2748 Oberwolfach Report 46/2015

Primal feasible iterates: In the first variant, we maintain primal feasible
active sets A, i.e. x = KKT (A) will satisfy x ≤ b. This is achieved as follows.
While KKT (A) has components xi > bi we keep adding these indices to A and
iterate this process. Clearly this will terminate with a final active set A having
KKT (A) ≤ b.

Let us consider two consecutive primal feasible sets A and B obtained this way
with x = KKT (A), y = KKT (B).

If J(y) < J(x) we continue with B. Otherwise, if |A| = 1, i.e. A contains only
one active index, say j, we see that having xj = bj is not optimal, hence j will
be inactive, and we have reduced the dimension of the problem by one, which we
now solve by induction.

The final case J(y) ≥ J(x), |A| > 1 is also handled by recursion. Here we select
a nonempty set A0 ⊂ A such that KKT (A) is feasible but not optimal on A0.
This is always possible. We solve the problem with xA0 = bA0 , x ≤ b (with less
constraints) by recursion, and get the optimal active set B0. We continue the
algorithm with the new active set B ← A0 ∪ B0. This ensures strict decrease
of objective function values, and hence finite termination of the algorithm. For
details we refer to [3].

Red-green Iterates: In the second variant we allow infeasible iterates and
maintain the following property during each iteration: We have the configuration
(A, [x, α], u) with

Qx+ q + α = 0, xA = bA, u = min{x, b}.

Moreover if x ≤ b then [x, α] = KKT (A).
A configuration is called green if [x, α] = KKT (A) and red otherwise. Therefore

primal feasible iterates are always green. We do not require primal feasibility but
insure consecutive iterates to have projections u and v with J(v) < J(u).

We first consider the update (1) with subspace solution [y, β] = KKT (B) and
v = min{y, b}. We declare this update successful if J(v) < J(u). In this case the
new configuration is (B, [y, β], v) green.

Otherwise we need to modify the update (1) to insure global convergence. We
distinguish two cases:
• x is strictly feasible: ∀i /∈ A : xi < bi. We set A+ ← A\ j with j ∈ A, αj < 0
• x not strictly feasible: ∃i /∈ A : xi ≥ bi. Here we set A+ ← A ∪ {i /∈ A, xi ≥

bi}.
In the first case, we start with a green configuration and we can show that the

new configuration yields a strict decrease of objective values. In [4] it is shown that
the number of consecutive red configurations is bounded by n with nonincreasing
objective values. Finally, between two green configurations there is strict decrease
of the objective values, leading to finite termination.
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Exploiting Linear Symmetry in Integer Convex Optimization using
Core Points?

Achill Schürmann

(joint work with Katrin Herr and Thomas Rehn)

For many years it has been known that symmetry in integer linear and convex
optimization leads often to difficult problem instances. Standard approaches like
branching usually work particularly poorly when large symmetries are present.
Nevertheless, in the past decade several authors have suggested methods to use
symmetry for certain special classes of problems (see for instance [5, 6, 7, 8]). The
two commercial solvers Gurobi and CPLEX by now can successfully exploit special
symmetries (generated by transpositions of variables).

Linear symmetries. In an ongoing project (supported currently by DFG Grant
SCHU 1503/6-1) we have been working on exploiting symmetry in polyhedral
computations (see [10] for an overview). In contrast to previous approaches, we
are following in particular the idea to make use of the rich geometry coming with
a linear (respectively affine) symmetry group. Here, considering linear symmetries
is no restriction in practice, since these are the only symmetries we can compute
practically anyway for a given problem (see [2]). Among other things, our software
SymPol [11] can automatically compute the linear symmetry group of a polyhedron
given by vertices or linear inequalities only.

Integer Convex Optimization Problems. We consider the class of problems

(1) min
x∈Zn

ctx such that x ∈ F ⊆ Rn,

where F denotes some kind of convex “feasible set”. The integral linear sym-
metry group of problem (1) is defined as the (finite) group Γ ≤ GLn(Z) =
{g ∈ Zn×n : | det g| = 1} preserving the problem when acting on the x variables,
that is, if gF = F and ct(gx) = ctx for all g ∈ Γ and for all x ∈ F .
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Linear vs. Permutation Symmetries. Usually, in integer optimization prob-
lems, researchers have restricted their attention to permutation symmetries on the
variables so far. These are easier to compute or often known apriori from the
problem or model used. In his thesis [9] Thomas Rehn reports on a study of per-
mutation symmetries of problem instances from MIPLIB 2010. It turns out that
209 of the 357 instances have non-trivial symmetry, many of them on all or almost
all of the variables and sometimes of surprising large order. Among the 50 smallest
instances (with less than 1500 variables) Rehn also computed the linear symmetry
groups. It turned out that six of the instances have linear symmetries, which do
not come from (signed) permutation matrices. So far it is unclear where these
symmetries come from! Further studies of these unexpected GLn(Z) symmetries
are needed.

Fixed Spaces and Core Points. In a Γ-symmetric convex optimization problem
without integrality constraints it is possible to reduce the dimension of the problem
by intersecting with the fixed space {x ∈ Rn : Γx = x} of the linear group Γ.
Convexity guarantees that the optimization problem has a solution in the fixed
space if it has a solution at all.

To make use of integral linear symmetries we define and study a discrete ana-
logue of the fixed space. We say z ∈ Zn is a core point of Γ ≤ GLn(Z) if the convex
hull conv(Γz) of its orbit Γz contains no integral points other than those from the
orbit, that is, if

conv(Γz) ∩ Zn = Γz.

The value of this concept lies in the fact that any Γ-invariant convex integer
optimization problem (of the form (1)) which has a solution, attains its optimal
value at one of the core points. Thus when solving a Γ-invariant integer convex
optimization problem, one can restrict the problem to the core points of Γ. Note
that core points do not rely on a specific problem instance. Given a linear group
Γ one can therefore try to classify or approximate core points and then use this
geometric information for solving any problem instance having Γ-symmetries.

First computational experiments. As a first class of examples, we consid-
ered direct products of symmetric groups in [1]. We showed that the core points
are 0/1-vectors, up to integrality preserving translations of the fixed space. We
have used this information in conjunction with a naive enumeration algorithm to
beat the two state-of-the-art professional solvers Gurobi and CPLEX on a series
of “cooked up” small dimensional problems with such symmetry groups. With a
reformulation idea we also were able to solve a MIPLIB 2010 problem that was
previously unsolved (instance toll-like).

Developing a theory. In [3] we took a first step in direction of a systematic
classification of core points. For that we restricted ourselves to the study of tran-
sitive permutation groups. This is a first necessary building block for future work,
since more general permutation groups are contained in a direct product of tran-
sitive groups. A quite useful theorem we discovered shows that core points are
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always near invariant subspaces of a given linear group Γ. From basic represen-
tation theory it is known that Rn decomposes into a direct sum of Γ-invariant
irreducible subspaces. For transitive groups one of them is the one dimensional
space spanned by the all-ones-vector 1. In case its orthogonal complement can
not be decomposed into more than one invariant subspace (that is, if the comple-
ment is R-irreducible), our theorem implies that there exist only finitely many core
points up to integral translations of the fixed space (translations by multiples of 1).
By a result of Cameron (dating back to 1972) these groups are precisely the 2-
homogeneous groups. For such groups, using a database of transitive permutation
groups in GAP, we classified all core points up to n = 12.

We conjecture that for all other transitive permutation groups, there exist
infinitely many core points, up to integral translations of the fixed space. So far
we have proved the conjecture for groups Γ with irrational invariant subspaces.
For groups having rational invariant subspaces we were able to give a prove only
in case when the groups are imprimitive. The conjecture therefore remains open
for primitive permutation groups with rational invariant subspaces only. Using a
computer in conjunction with some developed criteria we checked the conjecture
for this remaining class of groups up to n = 127. It turns out that latter groups
are well suited to create difficult low dimensional instances for commercial solvers
like Gurobi and CPLEX. In his thesis, Rehn reports on a series of feasibility tests
for symmetric simplices. Whereas commercial solvers appear to be unable to
solve such problems, knowing their symmetry group and the invariant subspace
structure, allows one to solve these problems for instance with a suitable branching
strategy (see [9] for details).

Conclusion. Subsuming we can say that the core point concept has quite some
potential. It has been shown that it can be used successfully on specific problems.
Even the geometry of core points of linear groups with infinite core sets (up to
fixed space translations) can be exploited. However, at this point, not only more
advanced algorithms are missing, but also many fundamental theoretical questions
are still open. General GLn(Z) symmetries and their core points are not well
understood at this point. There is still a lot to be done and to be discovered!
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The vertex separator problem

Renata Sotirov

(joint work with Franz Rendl)

The vertex separator problem (VSP) for a graph is to find the subset of vertices of
small cardinality, that is called vertex separator, whose removal breaks the graph
into two disconnected subsets.

Some families of graphs are known to have small vertex separators. Lipton
and Tarjan [2] provide a polynomial time algorithm which determines a vertex
separator in n-vertex planar graph of size O(

√
n). Their result was extended to

some other families of graphs such as graphs of fixed genus [3]. It is also known
that trees, 3D-grids and meshes have small separators. However, there are existing
graphs that do not have small separators such as hypercubes and expander graphs.

The VSP problem arises in many different fields such as VLSI design, cluster-
ing, machine learning, bioinformatics, etc. Finding vertex separators of small size
is an important problem in communications network and finite element methods.
The VSP also plays a role in divide-and-conquer algorithms for minimizing the
work involved in solving system of equations, see e.g., [3, 4].

The vertex separator problem is related to the following graph partition prob-
lem. Let G = (V,E) be an undirected graph with vertex set V , where |V | = n
and edge set E. We denote by A be the adjacency matrix of G. For given
m = (m1,m2,m3)

T ,
∑3

i=1mi = n, we consider the following minimum cut (MC)
problem:

OPTMC := min{
∑

i∈S1,j∈S2

aij : (S1, S2, S3) partitions V and |Si| = mi, ∀i}.

This problem asks to find a vertex partition (S1, S2, S3) with specified cardinalities,
such that the number of edges joining vertices in S1 and S2 is minimized. It is
clear that if OPTMC = 0 for some m = (m1,m2,m3) then S3 separates S1 and S2.
On the other hand, OPTMC > 0 shows that no separator S3 for the cardinalities
specified inm exists. Our approach is to compute lower bounds of the MC problem
by solving semidefinite programming (SDP) problems of increasing complexity,
which leads us to lower bounds on the size of the separator.
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We consider here several semidefinite programming relaxations for the mini-
mum cut problem. The following simple semidefinite program is our starting SDP
relaxation:

(SDP1) min tr(AY12)

s.t. tr(Yi) = mi, tr(JYi) = m2
i , i = 1, 2

diag(Y12) = 0, tr(J(Y12 + Y T
12)) = 2m1m2

Y =

(

Y1 Y12
Y T
12 Y2

)

, y = diag(Y ),

(

Y y
yT 1

)

� 0,

where J and e denote all-ones matrix and all-ones vector respectively, and the
‘diag’ operator maps an n× n matrix to the n-vector given by its diagonal. The
SDP relaxation (SDP1) has 3n + 6 linear equality constraints. We prove that
the resulted SDP bound is stronger than the known eigenvalue bound for the
MC by Helmberg et al., [1] that can be expressed as the optimal solution of the
semidefinite program with matrices of order 3n.

To tighten (SDP1) we first add elementwise nonnegativity constraints on sup-
port, and then the following set of inequalities

1− (yi + yj + yn+i + yn+j) + Yi,j + Yi,n+j + Yj,n+i + Yn+i,n+j ≥ 0, ∀i < j

yj − Yi,j − Yn+i,j ≥ 0, yn+j − Yi,n+j − Yn+i,n+j ≥ 0 ∀, i 6= j

1− yi − yn+i − yj + Yi,j + Yn+i,j ≥ 0

1− yi − yn+i − yn+j + Yi,n+j + Yn+i,n+j ≥ 0 i 6= j, ∀i, j ∈ V.
In order to further strengthen resulted SDP relaxation, we add the following facet
defining inequalities of the boolean quadric polytope (BQP), see e.g., [5],

0 ≤ Yi,j ≤ Yi,i
Yi,i + Yj,j ≤ 1 + Yi,j

Yi,k + Yj,k ≤ Yk,k + Yi,j

Yi,i + Yj,j + Yk,k ≤ Yi,j + Yi,k + Yj,k + 1.

Our preliminary numerical results show that our strongest SDP relaxation pro-
vides tight bounds of the MC problem for graphs with less than 200 vertices. For
those graphs we find vertex separators of small size. For larger graphs with less
than 500 vertices, we obtain good bounds for the minimum cut problem which
lead to good bounds on the size of the separator. To compute feasible solutions
we apply a variant of Kerningham-Lin heuristics.
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MINLP from a discrete geometry point of view

Frank Vallentin

A large class of optimization problems in discrete geometry is concerned with
the optimal distribution of a finite number of points X = {x1, . . . , xN} on a
compact manifold M . There are many possibilities to optimize the quality of such
a geometric configurationX : One can maximize the packing density — which is by
far the best-studied example. Other important geometric optimization problems in
discrete geometry are minimizing potential energy or minimizing covering density.

All these optimization problems have the flavor of a binary optimization prob-
lem (with a nonlinear objective function): For every point x ∈ M one has to
make the binary decision whether x belongs to the finite set X or not. Here, in
the geometric setting, one has infinitely many binary decisions to make, whereas
in standard MINLP, optimization problems only involve finitely many binary de-
cision variables. One approach to solve such standard MINLPs is by employing
Lasserre’s hierarchy from polynomial optimization.

An example, which can be used to model packing problems in discrete geometry,
is finding the independence number α(G) of a finite graph G = (V,E). One can
equivalently reformulate the problem of finding α(G) as a polynomial optimiza-
tion problem. Then Lasserre’s hierarchy gives an equivalent convex optimization
problem. Following Laurent [6], the t-th step of Lasserre’s hierarchy is:

last(G) = max
{

∑

x∈V

y{x} : y ∈ R
I2t
≥0, y∅ = 1, Mt(y) is positive semidefinite

}

,

where It is the set of all independent sets with at most t elements and where
Mt(y) ∈ RIt×It is the moment matrix defined by the vector y: Its (J, J ′)-entry
equals

(Mt(y))J,J′ =

{

yJ∪J′ if J ∪ J ′ ∈ I2t,
0 otherwise.

The first step in Lasserre’s hierarchy coincides with the ϑ′-number, the strength-
ened version of Lovász ϑ-number which is due to Schrijver. Furthermore the
hierarchy converges to α(G) after at most α(G) steps:

ϑ′(G) = las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = α(G).

Lasserre [5] showed this convergence in the general setting of hierarchies for
0/1 polynomial optimization problems by using Putinar’s Positivstellensatz and
the flat extension theorem of Curto and Fialkow. Laurent [6] gave an elementary
proof using combinatorial moment matrices.
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In the talk I proposed the following three-step strategy to solve or to give
rigorous approximations of optimization problems in discrete geometry:

Step 1: Convexify the problem by setting up an infinite-dimensional version of
Lasserre’s hierarchy.

Again as a principal example we consider the problem of finding the indepen-
dence number of a graph but now with potentially infinitely many vertices. We
consider topological packing graphs where vertices which are close are adjacent,
and where vertices which are adjacent will stay adjacent after small enough per-
turbations. A concrete example are distance graphs G = (V,E) where (V, d) is a
metric space, and where there exists D ⊆ (0,∞) such that x and y are adjacent
precisely when d(x, y) ∈ D. Formally, a graph whose vertex set is a Hausdorff
topological space is called a topological packing graph if each finite clique is con-
tained in an open clique. An open clique is an open subset of the vertex set where
every two vertices are adjacent.

The t-th step of the generalized hierarchy of a topological packing graph is

last(G) = sup
{

λ(I=1) : λ ∈ M(I2t)≥0, λ({∅}) = 1, A∗
tλ ∈M(It × It)�0

}

,

where M(I2t)≥0 denotes the cone of positive Radon measures on I2t, and where
condition A∗

tλ ∈ M(It × It)�0 says that measure λ satisfies a moment condition,
see [4] for the technical details.

We have a nonincreasing chain

las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)−1(G) ≥ lasα(G)(G) = lasα(G)+1(G) = . . . ,

which stabilizes after α(G) steps, and specializes to the original hierarchy if G
is a finite graph. Each step gives an upper bound for α(G) because for every
independent set S the measure

λ =
∑

Q∈I2t:Q⊆S

δQ, where δQ is the delta measure at Q,

is a feasible solution for last(G) with objective value |S|. In [4] it is shown that
we have also have finite convergence after at most α(G) steps, α(G) = lasα(G). So
the generalized hierarchy provides a convex reformulation for packing problems on
compact manifolds.

Computing higher steps in this hierarchy is computationally intractable. So
we aim to compute the first steps. These are infinite-dimensional semidefinite
programs.

Step 2: Simplify the infinite-dimensional semidefinite programs using the symme-
try of the manifold.

This gives a simpler semidefinite program in the Fourier space determined by the
manifold. Simpler means that the semidefinite program has some block-diagonal
form (although it stays being infinite-dimensional). The basic theory underlying
this symmetrization process is explained in [1].
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Step 3: Solve the simplified infinite-dimensional semidefinite program on a com-
puter by discretizing the function space.

Here discretizing by using polynomials in some given finite-dimensional vector
space has been a successful choice. In view of getting reliable numerical solutions,
one has to use well-conditioned polynomial basis functions in this step.

Results. This three-step strategy has been worked out successfully for several geo-
metric packing problems. We frequently could improve the known upper bounds.
In the talk I reported on improved bounds for unary and binary sphere packings
[3], regular pentagon packings in the plane [7], and translative packings of regular
tetrahedra in three-dimensional space [2].
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Extended and Embedding Formulations for MINLP

Juan Pablo Vielma

1. Introduction

We consider strong Mixed Integer Programming (MIP) formulations for a disjunc-
tive constraint of the form

(1) x ∈
⋃n

i=1
Ci

where {Ci}ni=1 ⊆ Rd is a finite family of compact convex sets. MIP formulations
for (1) can can be divided into two classes depending on their strength and types
of auxiliary variables. The first class corresponds to extended formulations that
use both 0-1 and continuous auxiliary variables. Standard versions of such ex-
tended formulations have sizes that are linear on appropriate size descriptions of
the convex sets (e.g. number of linear, quadratic or conic constraints) and have
continuous relaxations with extreme points that naturally satisfy the integrality
constraints on the 0-1 variables (such formulations are usually denoted ideal and
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are as strong as possible). Extended formulations for polyhedral sets have been
introduced by Balas, Jeroslow and Lowe (e.g. see [15, Section 5]), for conic repre-
sentable sets by Ben-Tal, Helton, Nemirovski and Nie [1, 7] and for sets described
through non-linear inequalities by Ceria, Merhotra, Soares and Stubs [3, 10]. The
second class corresponds to non-extended formulations that only use the 0-1 vari-
ables that are strictly necessary for a valid formulation. Standard versions of such
non-extended formulations are also linear sized, but are often significantly weaker
than their extended counterparts. Non-extended formulations include big-M type
constraints and ad-hoc formulations for specially structured polyhedral sets (e.g.
see [15, Section 6] for the polyhedral case and [2, 4, 5, 12] for sets described by
non-linear inequalities). In this talk we consider aspects of both extended and
non-extended formulations of unions of convex sets as described in the sequel.

2. Extended Formulations

While extended formulations for unions of convex sets are usually to expensive
to be used directly in practice a different kind of extended formulation can sig-
nificantly improve the performance of LP-based algorithms for (convex) Mixed
Integer Nonlinear Programming (MINLP). Such algorithms work by approximat-
ing (convex) nonlinear constraints with polyhedral relaxations. These algorithms
are extremely effective when few linear inequalities are enough to get good approx-
imations of the nonlinear constraints. However, when a large number of linear in-
equalities are needed they can lag behind NLP-based algorithms. A recent trend to
resolve this issue is to use lifted approximations of the nonlinear constraints, that
is, to approximate these constraints as the projection of a polyhedron. Such lifted
approximations are often constructed through regular polyhedral approximations
of extended formulations of the nonlinear constraints. Examples of such extended
formulations are those proposed by [6, 11] for separable nonlinear constraints and
by [14] for conic quadratic constraints. Using such extended formulations or lifted
approximations has been shown to provide a significant computational advantage,
but so far their applicability is restricted to specially structured nonlinear con-
straints. In this talk we show how the conic extended formulations for unions of
convex sets from [1, 7] can be used to expand the applicability of lifted approxi-
mations in LP-based algorithms for MINLP.

3. Non-Extended Embedding Formulations

A common feature of MIP formulations for unions of convex sets is the use of n
0-1 variables that are constrained to add up to one. However, in the polyhedral
setting different uses of 0-1 variables can lead to non-extended formulations that
are ideal, smaller than the smallest extended counterpart and provide a significant
computational advantage [13]. In [16] we introduce a systematic procedure to
construct non-extended formulations for unions of polyhedra, which have a flexible
use of 0-1 variables. The following definition is a straightforward extension of such
procedure to unions of compact convex sets.
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Definition 1 (Embedding Formulations). Let C := {Ci}ni=1 be a family of compact

convex sets in Rd, H :=
{

hi
}n

i=1
⊆ {0, 1}k be such that hi 6= hj and Q ⊆ Rd+k be

a closed convex set. We say (Q,H) is a formulation for
⋃n

i=1 Ci if and only if

(x, h) ∈ Q ∩
(

Rd × Zk
)

⇔ ∃i ∈ {1, . . . , n} s.t. h = hi ∧ x ∈ Ci.

An ideal formulation can be obtained by taking Q equal to

Q (C, H) := conv
(

⋃n

i=1
Ci ×

{

hi
}

)

.

If k = n and hi = ei, the i-th unit vector, we obtain a formulation with the
traditional use of integer variables and if n = 2k and H = {0, 1}k we obtain a
so-called logarithmic formulation (e.g. [15]). Following [17], we refer to these two
choices of H as unary and binary encodings respectively as they can be interpreted
as the corresponding encoding of the choice among the Ci. Furthermore, because
for polyhedral Ci and the unary encoding, Q (C, H) (and sometimes

⋃n

i=1 Ci ×
{

hi
}

) is usually denoted the Cayley Embedding of {Ci}ni=1 (e.g. [8, 9]), we refer
to (Q (C, H) , H) as an embedding formulation of (1).

If Ci are rational polyhedra we can obtain a non-extended ideal formulation
by simply constructing Q (C, H). However, the number of inequalities of Q (C, H)
can easily be exponential on the number of inequalities of the Ci. In fact, it is
well known that for the unary encoding Q (C, H) contains the Minkowski sum
of {Ci}ni=1 through an appropriate affine section (e.g. [8, 9]). This can make
the unary encoded Q (C, H) large even if conv (

⋃n

i=1 Ci) is small. In this talk we
review some results from [16] that show that in such cases the size of Q (C, H) can
be significantly reduces by using specially selected binary encodings.

While the containment of the Minkowski sum can be a burden in the polyhedral
setting, it can also be used to give precise descriptions the unary encoded Q (C, H)
for some non-polyhedral sets Ci. We illustrate such approach through several
examples that generalize results from [2, 4, 5]. We also use this approach to show
that even if sets Ci are described by linear and convex quadratic inequalities it
may happen that Q (C, H) cannot be described by a finite number of polynomial
inequalities.
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An FPTAS for Minimizing Indefinite Quadratic Forms over Integers
in Polyhedra

Robert Weismantel

(joint work with R. Hildebrand, K. Zemmer)

Consider the problem

(1) min{f(x) : x ∈ P ∩ Zn}
for f : Rn → R, P = {x ∈ Rn : Ax ≤ b}, A ∈ Zm×n, and b ∈ Zm. We use the
words size and binary encoding length synonymously. The size of P is the sum
of the sizes of A and b. We assume throughout this talk that P is bounded. We
say that Problem (1) can be solved in polynomial time if in time bounded by a
polynomial in the size of its input, we can either determine that the problem is
infeasible, or we can find a feasible minimizer.

The main focus of this talk is Problem (1) with f(x) = xTQx, where Q ∈ Zn×n

is a symmetric matrix. Note that if Q is not symmetric, then we can replace it by
Q′ = 1

2Q+ 1
2Q

T , which is symmetric and satisfies xTQx = xTQ′x. The input size

of Problem (1) with f(x) = xTQx is the sum of the sizes of P and Q. For n ≤ 2,
the problem is polynomial time solvable [5]. When Q is positive semi-definite, f(x)
is convex, whereas it is concave when Q is negative semi-definite. In the former
case, Problem (1) with fixed n and bounded P can be solved in polynomial time
by [4], whereas in the latter case by [3].
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The computational complexity of integer polynomial optimization in fixed di-
mension was surveyed in [2], and they develop an FPTAS for maximizing non-
negative polynomials over integer points in a polytope, respectively.

We use a notion of approximation that is common in combinatorial optimization
and is akin to the maximization version used in [2] for maximizing non-negative
polynomials over polyhedra, except here, we extend the notion to allow for the
objective to take negative values.

Definition. Let xopt be an optimal solution to Problem (1) and let ǫ > 0. We
say that xǫ is an ǫ-approximate solution to Problem (1) if xǫ is feasible and one of
the following hold:

(1) f(xopt) > 0 and f(xǫ) ≤ (1 + ǫ)f(xopt),
(2) f(xopt) < 0 and f(xǫ) ≤ 1

1+ǫ
f(xopt),

(3) f(xopt) = 0 and f(xǫ) = f(xopt).

We say an algorithm for Problem (1) is a fully polynomial-time approximation
scheme if for any ǫ > 0, in polynomial time in 1

ǫ
and the size of the input, the

algorithm correctly determines whether the problem is feasible, and if it is, outputs
an ǫ-approximate solution xǫ.

In order to develop an FPTAS for classes of nonlinear functions to be mini-
mized over integer points in polyhedra, we propose a framework that combines
the techniques of Papadimitriou and Yannakakis [1] with ideas similar to those
commonly used to derive certificates of positivity for polynomials over semialge-
braic sets. Generally speaking, in the latter context one is given a finite number
of “basic polynomials” f1, . . . , fm which are known to be positive over the integers
in a polyhedron P . A sufficient condition to prove that another polynomial f is
positive over P ∩Zn is to find a decomposition of f as a sum of products of a sum
of squares (SOS) polynomial and a basic function fi. A polynomial p(x) is SOS if
there exist polynomials q1(x), . . . , qm(x) such that p(x) =

∑m
i=1 q

2
i (x).

We would like to use a similar approach to arrive at an FPTAS. Again we
work with classes of “basic functions”. Then, for a given f , we try to detect a
decomposition of f as a finite sum of products of a so-called “sliceable function”
and a basic function fi. Roughly speaking, sliceable functions — thanks to the
result of [1] — can be approximated by subdividing the given polyhedron.

For instance, the set of all convex functions presented by a first order oracle
that are nonnegative over P ∩Zn could serve as a class of basic functions, because
we can solve Problem (1) for any member in the class in polynomial time when
n is fixed. The nonnegativity assumption implies sign-compatibility, which is a
necessary property of the set of basic functions that will be discussed in this talk.
Another example is the set of all concave functions presented by an evaluation
oracle that are nonnegative over P ∩Zn. The same property holds true in this case.
These two examples demonstrate that we consider not only polynomials fi, but also
more general classes of basic functions. In fact, this is key to tackle the quadratic
optimization problem. For example, we can decompose the polynomial x2+y2−z2
as the product of two non-polynomial functions: a basic function

√

x2 + y2 − |z|
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and a sliceable function
√

x2 + y2 + |z|. Our technique also applies, for instance,
to the Motzkin polynomial, but to functions f that are not polynomials as well.

We explain axiomatically what we mean by basic and sliceable functions. As
a consequence of our technique we easily derive the following result that in the
optimization community was an open question for several years.

Theorem. Let Q ∈ Zn×n be a symmetric matrix and let n be fixed. Then there
is an FPTAS for Problem (1) with f(x) = xTQx in the following cases:

(1) Q has at most one negative eigenvalue;
(2) Q has at most one positive eigenvalue.

We also sketch a proof for this theorem in this talk.

References

[1] C.H. Papadimitriou, M. Yannakakis, On the Approximability of Trade-offs and Optimal
Access of Web Sources, Proceedings of the 41st Annual Symposium on Foundations of
Computer Science (2000), 86–92.
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