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Abstract. Frieze patterns were introduced in the early 1970s by Coxeter.
They are infinite arrays of numbers in which every four neighbouring en-
tries always satisfy the same arithmetic relation. Amazingly, friezes appear
in many situations from various areas of mathematics: projective geometry,
number theory, algebraic combinatorics, difference equations, integrable sys-
tems, representation theory, cluster algebras...

The mini-workshop aimed to gather researchers with diverse fields of ex-
pertise to present recent developments and to discuss new directions of inves-
tigation and open problems around friezes.
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Introduction by the Organisers

The mini-workshop Friezes, organised by Thorsten Holm, Peter Jørgensen and
Sophie Morier-Genoud was attended by 17 participants coming from Canada (2),
US (3), UK (1), Germany (2), Austria (3) and France (6). The programme of the
workshop consisted in three mini-courses (by S. Tabachnikov, P.-G. Plamondon,
M. Cuntz), 11 talks and a problem session. A large place was left to discussions
and collaborations.

The three mini-courses given during the workshop offered different approaches
to friezes. Serge Tabachnikov exposed friezes from geometric viewpoints. Pierre-
Guy Plamondon lectured on friezes in the context of the representation theory of
quivers. Michael Cuntz’s courses connected friezes with discrete geometry coming
from Nichols algebras and Weyl groupoids.
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The participants presented in their talks recent results on friezes using new
and inventive methods. Various combinatorial models and techniques have been
brought out.

The last day of the workshop a session of open problems was organized. Par-
ticipants were happy to share ideas and questions on friezes and related topics.
Let us mention different problems that were suggested and discussed during this
session.

• Does the continous analogue of 2-friezes correspond to the moduli space
of periodic curves in the projective plane?

• Find the discrete version in terms of 2-friezes or SL3-friezes of Richard
Schwartz’s inequality for the periodicity condition of projective curves sat-
isfying a third order ODE.

• Do hyperplane arrangements in dimension greater than 2 give rise to
friezes?

• Find direct links between Nichols algebras/Weyl groupoids and cluster
algebras.

• Find combinatorial interpretations of the entries in a SLk-friezes with
positive integers.

• Do SLk-friezes with positive integers correspond to integer points in the
corresponding cluster varieties?

• How to interpret friezes with positive integers that do not come from
cluster characters?

• The moduli space of hyperbolic structures on the disc with one marked
point and two orbifold points has a generalised cluster structure: can the
situation be extended by making sense of a “complex order” of an orbifold
point?

The problems illustrate that friezes are an important nexus linking a number of
major and otherwise disjoint areas of contemporary mathematics: moduli spaces
of polygons and curves, Teichmüller theory, cluster algebras, quantum groups,
combinatorics, representation theory, integrable systems...

Friezes and their generalisations have attracted much interest over the past five
years. They are currently an active topic of fundamental research. The subject
has roots in classical areas of mathematics, such as projective geometry, number
theory, and grows in many directions connecting different domains. There are
promising results and perspective for this topic.

Based on their own experience and the positive feedback received from the
participants, the organisers are pleased to say that the mini-workshop was a great
success. The meeting was extremely stimulating and enriching and everyody spent
a very enjoyable week.

We are deeply grateful to MFO for providing us with all we needed and for
offering outstanding conditions of work.
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Abstracts

Three lectures on frieze patterns

Serge Tabachnikov

This mini-series of talks covers the following topics on and around frieze patterns:

• Definition and examples of Coxeter’s frieze patterns;
• Relations with discrete Hill’s equation with monodromy −Id and with
polygons in the projective line ([8]);

• Periodic rational maps from closed frieze patterns ([9]);
• Cluster coordinates, Laurent phenomenon, and arithmetic friezes;
• Conway-Coxeter theorem on arithmetic frieze patterns (after [3]);
• Continuous limits of frieze patterns as a PDE; parameterization of its
solutions ([10]);

• Frieze patterns as discretizations of a coadjoint orbit of the Virasoro alge-
bra ([10]);

• The “trinity”: super-periodic linear difference equations of order k + 1,
the moduli space of projective polygons in RPk, and closed SLk+1-friezes.
Interaction with projective duality ([9]);

• Classical and combinatorial Gale transform ([9]);
• Gale transform and Krichever’s theorem on commuting difference opera-
tors ([7]);

• Pentagram map, its complete integrability ([11, 12]);
• New configuration theorems of projective geometry ([13]);
• Continuous limit of the pentagram map as the Boussinesq equation ([11]);
• Cluster dynamics of the pentagram map, higher pentagram maps, their
complete integrability (see [1, 2]);

• 1-dimensional pentagram map (leapfrog map) and circle patterns ([1]);
• Higher-dimensional pentagrammaps, their integrability and non-integrabil-
ity (see [4, 5, 6]).
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Friezes and representations of quivers

Pierre-Guy Plamondon

The aim of these lectures is to give an introduction to the links between the repre-
sentation theory of quivers and friezes. The last decade or so has seen these links
discovered and developed in a more general setting often referred to as “additive
categorification of cluster algebras”. As references for this short report, we will
limit ourselves to the list of survey articles given at the end.

In the first lecture, we introduced the notion of quiver representation. After
reviewing the basic definitions, we stated Gabriel’s theorem, which asserts that a
connected quiver admits only finitely many indecomposable representations (up
to isomorphism) if and only if it is an orientation of a Dynkin diagram. We
then focused on the example of a quiver of type A3, where all indecomposable
representations can be written down.

In the second lecture, we saw how “counting subrepresentations” gives rise to
friezes. For a fixed dimension vector, we defined the quiver Grassmannian, which
is a variety whose points parametrize subrepresentations of a given representation.
We then stated a theorem linking quiver representations to friezes: the sum (over
all dimension vectors) of the Euler characteristics of the quiver Grassmannians
of a given indecomposable representation of a Dynkin quiver Q is an entry in a
frieze of type Q. Moreover, all entries in the frieze are obtained in this way, except
entries of value 1. It was hinted that Auslander–Reiten theory, and more precisely
almost-split sequences, allow us to recover the equations defining friezes.

Finally, in the third lecture, a definition of the cluster category was given. The
notion of derived category of an abelian category was recalled, and we stated
Happel’s theorem on the structure of the derived category of the category of rep-
resentations of Dynkin quivers. The cluster category was then defined as an orbit
category of the derived category under the action of a certain automorphism. We
then saw how a special class of objects, called cluster-tilting objects, allow us to re-
cover complete friezes. We ended the lectures with comments on the generalization
of these results to friezes of any quiver type.
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Nichols algebras, Weyl groupoids, and friezes

Michael Cuntz

This abstract is for a short lecture consisting of two separate talks.
Summary. Weyl groups are important invariants attached for example to Lie
algebras. The more general Weyl groupoids play a similar role in the theory of
Nichols algebras. Although these Weyl groupoids historically were found in the
context of Nichols algebras, their geometry and combinatorics also appear in other
areas: they may for example be viewed as toric varieties and in the special case of
rank two they correspond to (finite and infinite) frieze patterns.

Nichols algebras and Heckenberger’s Cartan graph. In the first talk, I give
a very short introduction to Nichols algebras and construct their Weyl groupoids
in the case of diagonal type.

Let V be a vector space, c : V ⊗ V → V ⊗ V a linear isomorphism with
(c⊗ id)(id⊗ c)(c⊗ id) = (id⊗ c)(c⊗ id)(id⊗ c). Then c is a braiding, and (V, c) is a
braided vector space. Any braiding defines a map ρ : Sn → End(V ⊗n) in a natural
way. Let Sn :=

∑
ω∈Sn

ρ(ω). The Algebra B(V ) :=
⊕

n≥0 T
n(V )/ ker(Sn) is

called the Nichols algebra of (V, c).
Now let {x1, . . . , xr} be a basis of V a := V , and assume that c(xi ⊗ xj) =

qijxj⊗xi, qij ∈ C. Then c andB(V a) are called of diagonal type. The numbers qij ,
i, j = 1, . . . , r define a bicharacter χa : Zr × Zr → C, ((a1, . . . , ar), (b1, . . . , br)) 7→∏r

i,j=1 q
aibj
ij . Call (V a, c) locally finite if there is a well defined matrix (caij)1≤i,j≤n ∈

Zn×n such that

caij = −min{m ∈ N0 | 1 + qii + q2ii + . . .+ qmii = 0 or qmii qijqji = 1}

if i 6= j and caii = 2. We call such a matrix (caij) a Cartan matrix. We denote

α1, . . . , αn the standard basis of Zn. Let σa
i ∈ End(Zn) be defined by σa

i (αj) =
αj − caijαi for j = 1, . . . , n. Then define a new bicharacter χb = (σa

i )
∗χa by

χb(α, β) = χa((σa
i )

−1(α), (σa
i )

−1(β)). Repeating this procedure, we obtain a so-
called Cartan graph with vertices labeled by Cartan matrices of bicharacters and
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edges labeled by the reflections σi (see [7] for details). The Cartan graph defines
a category called its Weyl groupoid.

Weyl groupoids and friezes. In the second talk, we investigate the Weyl grou-
poid independently from the Nichols algebra and explain the connection to frieze
patterns.

A finite set A := {H1, . . . , Hn} of linear hyperplanes in V = Rr is called
an arrangement of hyperplanes. Let K(A) be the set of connected components
(chambers) of V \

⋃
H∈A H . If every chamberK is an open simplicial cone, i.e. there

exist β1, . . . , βr ∈ V such that K = {
∑r

i=1 aiβi | ai > 0 for all i = 1, . . . , r},
then A is called a simplicial arrangement.

Let A be simplicial. For each Hi, i = 1, . . . , n we choose an element xi ∈ V ∗

such that Hi = x⊥
i and let R := {±x1, . . . ,±xn} ⊆ V ∗. For each chamber

K ∈ K(A) let BK be the set of normal vectors in R of the walls of K pointing
to the inside. We call (A, R) a crystallographic arrangement if for all K ∈ K(A):
R ⊆

∑
α∈BK Zα. Crystallographic arrangements are in one-to-one correspondence

with Weyl groupoids (see [1]).
A good motivation to consider these special arrangements is the following fact:

If B is a finite dimensional Nichols algebra of diagonal type, and R+ is the set of
degrees (in Zr ⊆ Rr) of the PBW generators of B, then {α⊥ ⊆ Rr | α ∈ R+} is a
crystallographic arrangement.

Theorem 1 ([4], [3], [5], [6]). There are exactly three families of crystallographic
arrangements:

(1) The family of rank two parametrized by triangulations of a convex n-gon
by non-intersecting diagonals.

(2) For each rank r > 2, arrangements of type Ar, Br, Cr and Dr, and a
further series of r − 1 arrangements.

(3) Further 74 “sporadic” arrangements of rank r, 3 ≤ r ≤ 8.

In particular, finite Weyl groupoids of rank two correspond to Conway-Coxeter
frieze patterns. Under this correspondence, the quiddity row of the frieze consists
of the Cartan entries of the Weyl groupoid and the other entries of the frieze are
the coordinates of the roots of the root systems of the Weyl groupoid (see [2] for
details). Arbitrary (not necessarily finite) Weyl groupoids of rank two correspond
to infinite friezes.
It turns out that the theory of Weyl groupoids has many similarities to the theory
of cluster algebras. Thus it is natural to ask:

Open question. Is there a deeper connection between Weyl groupoids (or perhaps
Nichols algebras) and cluster algebras?
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Rationality of friezes and string modules

David Smith

(joint work with I. Assem, C. Reutenauer and I. Assem, G. Dupont, R. Schiffler)

The goal of the talk was to report on some aspects of two papers written with I.
Assem and C. Reutenauer [2] and I. Assem, G. Dupont and R. Schiffler [1]. Here,
we restrict ourselves to the setting that was presented in the talk; see [1, 2] for
more details and more general statements.

1. Rationality of friezes of quivers

Let Q = (Q0, Q1) be a finite acyclic quiver, where Q0 is the set of vertices and Q1

is the set of arrows. Define, for each vertex v in Q0, a sequence v(n) by the initial
condition v(0) = 1 and the recursion

v(n+ 1) =
1

v(n)


1 +

∏

v→w in Q1

w(n)
∏

w→v in Q1

w(n+ 1)


 .

Observe that it follows from the Laurent phenomenon, established by S. Fomin
and A. Zelevinsky [5] (in the context of cluster algebras) that the sequence (v(n))
are sequences of positive integers.

As an example, for the quiver v1
//// v2 , one gets the sequences (v1(n)) =

1, 2, 13, 89, 610, . . . and (v2(n)) = 1, 5, 34, 233, 1597, . . . . One easily observes that
these sequences satisfy the linear recurrence relations vi(n) = 7vi(n−1)−vi(n−2)
for all n ≥ 2 and i = 1, 2. Moreover, these sequences are N-rational, in the sense
that there exist an integer d ≥ 1, vectors λ ∈ N1×d, γ ∈ Nd×1 and a matrix
M ∈ Nd×d such that vi(n) = λMnγ for all n ∈ N. Indeed, for all n ∈ N,

v1(n) =
[
1 1

] [ 5 3
3 2

]n [
1
1

]
and v2(n) =

[
1 1

] [ 5 3
3 2

]n [
0
1

]
.

It is a classical result that everyN-rational sequence (an)n∈N satisfies some linear
recurrence, in the sense that there exist an integer k ≥ 1 and α1, α2, . . . , αk ∈ Q

such that an+k = α1an+k−1 + α2an+k−2 + · · ·+ αkan, for all n ∈ N.
S. Fomin and A. Zelevinsky proved in [6] that all the sequences (v(n)) are

periodic if and only if the quiver Q is of Dynkin type. In particular, the sequences
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are N-rational. Based on this observation and the previous example, the following
question was raised: is it possible to characterize the acyclic quivers giving rise to
sequences satisfying linear recurrence relations?

Theorem 1. [2] Let Q = (Q0, Q1) be a finite acyclic quiver. If the sequence
(v(n))n∈N is N-rational for all v ∈ Q0, then Q is of Dynkin or Euclidean type.

Theorem 2. [2] Let Q = (Q0, Q1) be a finite acyclic quiver. If Q is of Euclidean

type Ã or D̃, then the sequence (v(n))n∈N is N-rational for all v ∈ Q0.

Observe that it was further demonstrated by B. Keller and S. Scherotzke [7]
that if Q = (Q0, Q1) is a finite acyclic quiver of any Euclidean type, then all
sequences (v(n))n∈N, with v ∈ Q0, satisfy some linear recurrence relations.

2. SL2-tilings of the discrete plane

The general idea for the proof of Theorem 2 in the case Ã consists in considering
the universal covering of the quiver of type Ã and embed this covering in the
discrete plane Z×Z in order to extend this to an SL2-tiling of the discrete plane.
We will refrain from giving more details and refer to [2] for more precision.

Nevertheless, as a byproduct of this construction, we obtain a way to compute
some entries in an SL2-tiling in term of other entries on a so-called frontier.

Definition 1. Let R be a commutative ring containing Q.

(a) An SL2-tiling of the discrete plane is a function t : Z× Z → R such that
∣∣∣∣

t(i, j) t(i+ 1, j)
t(i, j − 1) t(i+ 1, j − 1)

∣∣∣∣ = 1

for all i, j ∈ Z. In other words, an SL2-tiling of the plane is a filling of
the discrete plane by elements in R such that the determinant of every
adjacent 2× 2-matrix is one.

(b) Given an SL2-tiling t, a frontier is a path (ak)k∈Z = (t(ik, jk)) such that
(1) For all k ∈ Z,

(i) ak+1 = t(ik + 1, jk), or
(ii) ak+1 = t(ik, jk + 1),

(2) As k → ±∞, there are infinitely many shifts between 1(i) and 1(ii).

To every entry t(u, v) below a frontier (ak), we associate a word given by its
projection on the frontier. For instance, if

a4 a5 a6
a2a3

...

a1· · ·· · ·t(u, v)

then the associated word would be w(u, v) = a1ya2xa3ya4xa5xa6, where the x and
y are used to keep track of the horizontal or vertical displacements.
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Theorem 3. [2] Let t be an SL2-tiling. of the discrete plane. Suppose that t(u, v)
is an entry below a frontier (ak) with associated word w(u, v) = amxmam+1xm+1 . . .
an, where xi ∈ {x, y} for all i. Then

t(u, v) =

[
1 am

]∏n−2
i=m+1 M(ai, xi, ai+1)

[
1
an

]

amam+1 · · · an
,

where M(ai, xi, ai+1) =





[
ai 1
0 ai+1

]
if xi = x,

[
ai+1 0
1 ai

]
if xi = y.

3. String modules and cluster variables

For an acyclic quiver Q of type Ã, Theorem 3 can be exploited to provide a
combinatorial formula for expressing some cluster variables in the (coefficient-free)
cluster algebra associated with Q, but not all. In [1], Theorem 3 was adapted to

compute more cluster variables (all in the case of a quiver of type Ã), and in a
more general context. We present below a brief overview of this adaptation but
refer to [1] for the complete details and the most general context.

In [3], Caldero and Chapoton noticed that cluster variables in simply-laced
coefficient-free cluster algebras of finite type can be expressed as generating series
of Euler-Poincaré characteristics of Grassmannians of submodules. Generalising
this work, Caldero-Keller [4] and Palu [8] introduced the notion of a cluster charac-
ter associating to each module M over a 2-Calabi-Yau tilted algebra BT a certain
Laurent polynomial XT

M allowing one to compute a corresponding cluster vari-
able. In general, cluster characters are hard to compute because one first needs to
find the Euler characteristics of Grassmannians of submodules and dimensions of
certain Hom-spaces in the corresponding 2-Calabi-Yau category.

The main result of [1] gives an explicit formula for the cluster character associ-
ated with a string module over a 2-Calabi-Yau tilted algebra. This can be stated
as follows. Let T be a tilting object in a Hom-finite triangulated 2-Calabi-Yau
category C and BT = EndC(T ) be the corresponding 2-Calabi-Yau tilted algebra
whose ordinary quiver is denoted by Q. To any string BT -module M , we associate
a tuple of integers nM = (ni)i∈Q0

, called the normalisation of M , and a Laurent
polynomial LM in the ring of Laurent polynomials in the indeterminates xi in-
dexed by the set Q0 of points of Q, which can be expressed as a product of 2× 2
matrices, inspired by the one given in Theorem 3, see [1, Section 1.3]. Using the
notation xnM =

∏
i∈Q0

xni

i , our main result [1, Theorem 5.11] can be stated as :

XT
M =

1

xnM
LM .
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All SL2-tilings come from infinite triangulations

Peter Jørgensen

(joint work with Christine Bessenrodt and Thorsten Holm)

1. SL2-tilings. An SL2-tiling is a pattern assigning a positive integer to each
integral point in the plane such that every adjacent 2×2-matrix has determinant 1.
SL2-tilings were introduced by Assem, Reutenauer and Smith [1] and shown to be

useful for providing closed formulae for cluster variables (in types A and Ã). Note
that SL2-tilings can be seen as a natural extension of the classic Conway–Coxeter
friezes of [3] to the entire plane. We give two examples of SL2-tilings.

...

10 23 13 3 5 2 3 7 11 4 1

23 53 30 7 12 5 8 19 30 11 3

13 30 17 4 7 3 5 12 19 7 2

16 37 21 5 9 4 7 17 27 10 3

3 7 4 1 2 1 2 5 8 3 1

· · · 5 12 7 2 5 3 7 18 29 11 4 · · ·

2 5 3 1 3 2 5 13 21 8 3

5 13 8 3 10 7 18 47 76 29 11

3 8 5 2 7 5 13 34 55 21 8

4 11 7 3 11 8 21 55 89 34 13

1 3 2 1 4 3 8 21 34 13 5
...
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Note the staircase-like appearance of 1’s in this pattern. But an SL2-tiling need
not have any 1, as the following second example shows.

...

265 218 171 124 77 107 137 167 197

203 167 131 95 59 82 105 128 151

141 116 91 66 41 57 73 89 105

79 65 51 37 23 32 41 50 59

· · · 17 14 11 8 5 7 9 11 13 · · ·

57 47 37 27 17 24 31 38 45

154 127 100 73 46 65 84 103 122

405 334 263 192 121 171 221 271 321
...

Assem, Reutenauer and Smith [1] have shown that certain infinite patterns of 1’s
(complete staircases) can always be completed to an SL2-tiling. But their results
would not cover any of the above two examples.

Our main result is that every SL2-tiling can be obtained from a triangulation
of certain combinatorial objects by a counting procedure.

2. Triangulations of the circle with accumulation points. We now describe
the combinatorial objects whose triangulations will give SL2-tilings. These ‘circles
with accumulation points’ appeared first in work of Igusa and Todorov on certain
new cluster categories [5]. For constructing SL2-tilings it turns out that we only
have to consider a special case, namely a circle with four accumulation points.
Between any of the accumulation points we have a discrete set of vertices, indexed
by the integers, see the left of Figure 1. We consider triangulations of these circles
with four accumulation points, like in the example on the right of Figure 1. On
such a triangulation we perform the following counting procedure: Pick a vertex i
of the polygon, and assign 0 to it. Next, assign a 1 to each vertex sharing a triangle
with i. Then, inductively, whenever two vertices of a triangle have already been
assigned numbers, then the third vertex gets assigned their sum. It mainly follows
from classic Conway-Coxeter theory that starting from the vertices at the top,
the numbers you get at the bottom give the rows of an SL2-tiling. In the above
example, compare the red numbers at the bottom with the red row of the second
example of an SL2-tiling above. The following converse is our main result.

Theorem [2]. For every SL2-tiling there exists a triangulation of the circle with
four accumulation points which produces the given SL2-tiling by the counting pro-
cedure described above.
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Figure 1. A circle with four accumulation points and BCI-
counting on a triangulation

The proof of the theorem is constructive, i.e. the diagonals of the triangulation
to be found can be read off from the entries of the given SL2-tiling (but the way
to do so is not obvious). The methods in the proof are completely different in the
cases where the SL2-tiling contains 1’s and the much harder case where it does not.
For the latter case a crucial observation for getting started is that any SL2-tiling
without 1’s has a unique minimal entry.

Of course, one could also consider triangulations of circles with more accumu-
lation points. Somewhat surprisingly, it turns out that four accumulation points
are sufficient to produce all SL2-tilings.

There are classes of SL2-tilings where fewer than four accumulation points are
sufficient. For instance, if there are infinitely many 1’s in the given SL2-tiling to
both the south-west and north-east direction then two accumulation points suffice.
This leads to the triangulations of the strip considered in [4]. If there are infinitely
many 1’s but only to one direction then circles with three accumulation points
suffice.
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Snake graphs and generalised cluster algebras

Anne-Sophie Gleitz

(joint work with Gregg Musiker)

In 2008, Gregg Musiker and Ralph Schiffler [6] showed that in a cluster algebra
from a surface, the monomials in the cluster expansion formulas for cluster vari-
ables (from the Laurent phenomenon) can be realised as perfect matchings of some
special graphs called ”snake graphs”. Generalised cluster algebras have been intro-
duced by Chekhov and Shapiro [1] in 2011; it is natural to wonder if snake graphs
can also be used to visualise cluster expansion formulas. Early results (joint with
G. Musiker) let us hope for a positive answer in general.

1. Cluster algebras and snake graphs

1.1. Cluster algebras. Cluster algebras were introduced by Fomin and Zelevin-
sky [3] in 2000, and have appeared in a growing number of mathematical research
areas ever since. A cluster algebra is a commutative ring (domain) with a special
set of generators, called cluster variables, grouped into overlapping subsets of the
same finite cardinality (the rank of the algebra), called clusters.

Cluster variables are built inductively using an algorithm calledmutation. More
precisely, one starts with an initial cluster x = (x1, . . . , xn); then mutation in
direction k ∈ J1, nK leaves the variables xi, i 6= k unchanged, and maps xk to a
new cluster variable x′

k, using an exchange relation of the form

xkx
′
k = p+k m

(k)
+ + p−k m

(k)
− ,

where m
(k)
± are monomials in the xi, i 6= k, that depend on the k-th column of the

skew-symmetrisable exchange matrix B ∈ Mn(Z). This matrix, along with the
coefficients p±i , is also subject to mutation, as described in [3, 4].

The cluster algebra of initial seed (x, B) is the subring of Q(x, (p±i )i∈J1,nK), gen-
erated by all the (possibly infinitely many) cluster variables obtained by performing
every possible sequence of mutations. If the cluster algebra contains finitely many
cluster variables, then it is of finite type.

Theorem 1 ([4, Theorems 1.4,1.9]). 1. Laurent phenomenon: Every cluster vari-
able is a Laurent polynomial in the initial cluster variables, with integer coeffi-
cients.
2. Finite type classification: Cluster algebras of finite type are parametrised by the
Cartan matrices of types An to G2.
3. In finite type, there is a bijection from almost positive roots to cluster variables,
which maps negative simple roots to the initial cluster variables.

The last property was extended by Keller [5, Theorem 3.1, §3.3] to seeds whose
exchange matrices correspond to Coxeter elements in the appropriate Coxeter
group. In particular, the result is true for (twisted) affine types.
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1.2. Cluster algebras from a surface and perfect matchings. Recall that
for any graph G = (G0, G1), a perfect matching of G is a subgraph Γ = (G0,Γ1)
such that each vertex of Γ is the endpoint of exactly one edge.

Example 1. A square graph has 2 perfect matchings: both pairs of opposite sides.

Cluster algebras may arise from certain triangulated surfaces [2]; we briefly
recall how to attach a snake graph to each cluster variable, as described in [6].

Let (S,M) be a surface S with a boundary and a set M of marked points on the
boundary. Choose a triangulation T = {τ1, . . . , τn+m} of S. Each internal arc τi,
i ∈ J1, nK, corresponds to an initial cluster variable xi; frozen variables are attached
to boundary arcs. To each oriented arc γ in S, a cluster variable xγ is attached,
depending on the triangulation arcs τi1 , . . . , τid crossed by γ. The expression of
xγ as a Laurent polynomial in x1, . . . , xr is given by the snake graph of γ. Each
arc τik lies in two triangles, thus in the tile Sik , which is the graph obtained
by glueing these two triangles along τik , weighted by the appropriate cluster (or
frozen) variables. These tiles are then glued together following the orientation of
γ, by their north or east side (this can be determined by (T, γ)-paths, see [6]).
Removing the squares’ diagonals yields the snake graph of γ.

Theorem 2 ([6, Theorem 3.1]). Suppose that the arc γ crosses ai times each
internal arc τi, and yields the snake graph G. The cluster variable xγ can then be
written:

xγ =
1

xa1

1 . . . xan
n

∑

Γ perf.mat. of G

(
∏

w∈Γ1

label(w)

)
.

For cluster algebras of finite type, all the non-initial cluster variables correspond
to connected subgraphs of the snake graph attached to the cluster variable in
bijection with the highest root. For a complete example, see [6, Section 7].

2. Generalising cluster algebras

In 2011, Chekhov and Shapiro [1] have introduced the notion of generalised clus-
ter algebra, in a geometrical context. The notion of cluster variables, exchange
matrix and seeds remain unaltered. The difference lies in the exchange relations:
if the GCD of the entries in the k-th column of the exchange matrix, written dk,
is at least 2 (this is mutation-invariant), then the right-hand side of the k-th ex-

change relation becomes a homogeneous polynomial θk(m
(k)
+ ,m

(k)
− ) of degree dk,

that contains more than 2 monomials.

Theorem 3 ([1, Theorems 2.5,2.7]). The Laurent phenomenon and the finite type
classification theorem remain true for generalised cluster algebras.

The combinatorial structure of the generalised cluster algebra is the same as
its standard counterpart; only the Laurent polynomial expressions change, as they
gain extra monomials. In fact, nullifying the extra coefficients yields the standard
formulas. The bijection from Theorem 1(3.) also holds in the generalised case.

Note that cluster algebras of simply-laced type cannot be generalised, since
di = 1 for all i. In finite type, only the Cn and G2 cases can be generalised.
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3. Generalised cluster algebras and perfect matchings

The combinatorial structure is kept intact when a cluster algebra is generalised.
New monomials may appear within the cluster expansion formulas. The idea is
thus to keep the same tiles as for a standard cluster algebra, enlarge the ones that
correspond to generalised exchange relations, and add edges to yield the extra
perfect matchings corresponding to the extra monomials.

Conjecture 1. Let An be the generalised cluster algebra of type Cn, with initial
cluster (x1, . . . , xn), initial exchange matrix B = (bij) such that bii = 0 (i ∈ J1, nK),
bi+1,i = −1 (i ∈ J1, n− 1K), bi,i+1 = 1 (i ∈ J1, n− 2K), and bn−1,n = 2, and initial
exchange polynomials

θ0i (u, v) = pi,0u+ pi,1v (i ∈ J1, n− 1K) and θ0n(u, v) = au2 + λuv + cv2,

then every cluster variable corresponds to a connected subgraph of

. .
.

•
p1,1x2

1 (1)

•
p1,0

•
pn−1,0xn−2

pn−1,1xn (n−1)

•

1

•
1

•

•
pn−1,0xn−2

pn−1,1xn

(n−1)

•
a

1 (n)

•
1

λ

•
xn−1

. .
.

•
1

•
xn−1

•
c

•

•
1

(1)p1,1x2

•

1

•
p1,0

•

We have similar conjectures for (twisted) affine types C
(1)
n , A

(2)
2 , B̃C, andA

(2)
2k−1.

In each of these cases, the infinitely many non-initial cluster variables are conjec-
tured to be attached to connected subgraphs of infinite periodic snake graphs.
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Counting Dn Friezes

Bruce Fontaine

(joint work with Pierre-Guy Plamondon)

An observation credited to Caldero in [1] is that Fomin and Zelevinsky’s cluster
algebras [4] allow for a huge generalization of Coxeter and Conway’s definition
of frieze. In particular one way to define friezes is to say that they are ring
homomorphisms from a cluster algebra to the ring of integers such that all cluster
variables are sent to positive integers. In cluster algebras of Dynkin type, a cluster-
free definition may be given as follows [1, Section 3]. Let C = (Ci,j)n×n be a Cartan
matrix of Dynkin type ∆, and assume that we have an acyclic orientation of the
associated Dynkin diagram. Then a frieze of type ∆ is a collection of positive
integers a(j,m), with j ∈ {1, . . . , n} and m ∈ Z, such that

a(j,m)a(j,m+ 1) = 1 +
(∏

j→i

a(i,m)|Ci,j |
)(∏

i→j

a(i,m+ 1)|Ci,j|
)
.
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Figure 1. A frieze in type D5.

For friezes of type Dn, there is a model developed by Schiffler [6] (see also [2]
and [3]) involving tagged arcs in a punctured polygon, which is the main tool used
in proof of the following theorem.

Theorem 1. The number of Dn friezes is
∑n

m=1 d(m)

(
2n−m− 1

n−m

)
, where

d(m) is the number of divisors of m.

In the case n = 4, the result is 51, agreeing with [5]. Using this result and
others, we can count friezes in types Bn, Cn and G2 by folding Dynkin diagrams:

Corollary 1.
∑

m≤
√
n+1

(
2n−m2 + 1

n

)
,

(
2n
n

)
and 9, are the number of

friezes in types Bn, Cn and G2 is respectively.

The theory of cluster algebras provides a way to construct friezes, namely by
specializing variables of a given cluster to 1. The D5 frieze above does not arise
in this fashion. Thus it is worth noting that in types Bn, Dn and G2, the number
of friezes is strictly greater than the number of clusters.

For the other Dynkin types, we propose the following
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Conjecture 1. The number of friezes of type E6, E7, E8 and F4 is 868, 4400,
26952 and 112, respectively.

In the case of E6, evidence for this number was obtained in [5] and for E7

and E8, these numbers also agree with some preliminary computer calculations by
Michael Cuntz for SL3 friezes.
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Multitriangulations, pseudotriangulations and friezes

Vincent Pilaud

(joint work with Michel Pocchiola)

Conway-Coxeter friezes are in bijection with triangulations of convex polygons
[CC73]. Namely, a frieze (ai,j) of width n− 3 corresponds to a triangulation T of
a convex n-gon as follows: the entry ai,j is the number of perfect matchings of the
vertex-triangle graph of T (with nodes for triangles and vertices of T and edges
connecting triangles to their vertices), where the nodes corresponding to vertices i
and j are deleted. In particular, the 1’s in the frieze correspond to the diagonals
of T and the values ai,i+1 in the first row of the frieze are given by the number of
triangles incident to vertex i in T . See Figure 1.

1 4313312 2

3 3124131 1

0 0000000 0

5 5135513 3

0 0000000 0

2 3228217 7

1 1111111 1

2 8173222 2

1 1111111 1
...

...

...

...

...

...

...

...

...
...

...

...

...

...

...

...

...

...

Figure 1. A triangulation of the octagon (left) and its corre-
sponding Conway-Coxeter frieze of width 5 (right).
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The talk presents a similar duality between certain generalizations of the trian-
gulations of a convex n-gon and certain pseudoline arrangements with a specific
support. A pseudotriangulation of a point set P (in general position in the plane)
is a maximal set of pointed and pairwise non-crossing edges between points of P .
A k-triangulation of a convex n-gon is a maximal set of diagonals so that no k+1
of them mutually cross. Examples are given in Figure 2 and references can be
found in [RSS08] and [PS09]. Note that both families contain the triangulations
of a convex n-gon (when P is convex for pseudotriangulations, and when k = 1
for k-triangulations).

Figure 2. A triangulation of the octagon (left), a pseudotrian-
gulation of an 8-point set (middle), and a 2-triangulation of the
octagon (right).

These graphs have relevant combinatorial properties generalizing that of classi-
cal triangulations:

• As triangles for triangulations, these graphs can be seen as complexes
of cells: pseudotriangles (i.e. simple closed polygons with three convex
corners connected by three concave chains) for pseudotriangulations and
k-stars (i.e. 2k+1 vertices in convex position related by their k-edges) for
k-triangulations. See Figure 3.

Figure 3. A triangle (left), a pseudotriangle (middle), and a 2-
star (right).
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• Any triangulation (resp. pseudotriangulation, resp. k-triangulations) of n
points contains n − 2 triangles (resp. n − 2 pseudotriangles, resp. n − 2k
k-stars) and 2n − 3 diagonals (resp. 2n − 3 edges, resp. k(2n − 2k − 1)
diagonals. See Figure 2.

• Any sufficiently internal edge can be flipped to a unique other edge. See
Figure 4. The flip graph is regular and it is the graph of a simplicial sphere.
It is even known that this sphere is polytopal for pseudotriangulations, but
this question remains open for multitriangulations.

Figure 4. Flipping a diagonal in a triangulation (left), a pseu-
dotriangulation (middle), and a 2-triangulation (right).

The talk presents a unified explanation for these properties using a duality
introduced in [PP12]. For a point set P , let P ∗ denote its dual pseudoline ar-
rangement in the Möbius strip (line space of the plane). Then the triangulations
of a convex polygon C (resp. the pseudotriangulations of a point set P , resp. the
k-triangulations of a convex polygon C) are in bijections with the pseudoline ar-
rangements supported by C∗ minus its first level (resp. P ∗ minus its first level,
resp. C∗ minus its first k levels). This correspondence is illustrated in Figure 5.

The talk presents this duality [PP12], the connection to subword complexes in
finite Coxeter groups [KM04], and some related questions related to friezes.
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Figure 5. Duality between triangulations (resp. pseudotriangu-
lations, resp. multitriangulations) and pseudoline arrangements
with a given support.
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Higher-dimensional tropical friezes

Hugh Thomas

Frieze patterns being two-dimensional arrays of numbers, it seems natural to ask
about a higher-dimensional generalization. I do not propose an answer to this
problem. However, based on the approach taken in a paper with Steffen Opper-
mann [3], it is possible to define a higher-dimensional analogue of tropical friezes.

The tropical version of the frieze relation EW = NS +1 is E +W = max(N +
S, 0). This can be obtained by replacing multiplication by addition and addition
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by max; there is also a standard way in which the tropical relation arises as a limit
of the classical relation. See [2] for more details on tropical frieze relations.

From that perspective, though, it is not clear how to generalize to higher di-
mensions. To see how one might do so, we turn to the approach to tropical cluster
algebras described in [1]. Staying in the type A case, we have a surface with
marked points on the boundary numbered 1, . . . , n. A lamination L is a collection
of non-crossing curves, with positive rational weights, beginning and ending on the
boundary of the disk, avoiding the marked points. Let γ be a diagonal of the disk.
Define cγ to be the sum of the weights of the curves of L intersecting γ. Then, we
observe that if 1 ≤ i < j < k < ℓ ≤ n, we have

(1) cik + cjℓ = max (cij + ckℓ, cjk + ciℓ) .

If we assume that ci,i+1 = 0 for all i and set j = i+1, ℓ = k+1, the above equation
is exactly the tropical frieze relation we would like.

However, ci,i+1 = 0 for all i actually forces the lamination to be empty. The
solution to this problem is to use A-laminations, as explained in [1]. We say that
a curve is “short” if cuts off just a single marked point. We note that (1) still
holds for a lamination L even if we allow short curves of L to carry a negative
weight. We therefore define a A-lamination to be one in which short curves may
carry a negative weight, and where we insist that the total weight of all curves
intersecting any boundary component is zero. The resulting collection cij form a
tropical frieze pattern (in Q), and [1] shows that any tropical frieze pattern can
be realized in this way.

We now turn a higher-dimensional analogue of the surface picture, replacing the
disk by a 2d-dimensional cyclic polytope with n vertices, as described in [3]. The
frieze entries are indexed by the set I of increasing d+1-tuples from {1, . . . , n} such
that each successive pair of entries differs by at least 2 (including cyclically: i.e., a
d+1-tuple in I may not contain both 1 and n). The d+1-tuples of I correspond
to d-dimensional simplices not lying fully on the boundary of the cyclic polytope.

For A a subset of {1, . . . , d + 1}, write eA for the 0/1-vector with 1’s in the
positions specified by A. Write 1 for the all-ones vector. Let I ∈ I. The higher
tropical cluster exchange relation is:

(2) cI+1 = max


 ∑

A({1,...,d+1}
(−1)d−|A|cI+eA , (−1)dcI


 .

We interpret cI+eA as zero if I+eA 6∈ I. Addition of d+1-tuples is done component-
wise and modulo n.

We refer to a collection of integers cI satisfying (2) as a higher tropical frieze
pattern. A notion of higher-dimensional laminations is defined in [3], and it can be
extended to a notion ofA-laminations by analogy with the classical case. Weighted
intersections with A-laminations satisfy (2).

Questions. Can all higher tropical frieze patterns be realized by some A-lamina-
tion?
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Is there a nice description of the collection of all A-laminations?
Is there a more explict description of the collection of higher tropical frieze

patterns?
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Polynomially weighted walks around dissected polygons

Christine Bessenrodt

In 1973, Conway and Coxeter introduced arithmetical frieze patterns and classified
the friezes via triangulated polygons. Broline, Crowe and Isaacs in 1974 explained
the frieze matrix associated to the fundamental region of the frieze pattern as
enumerating special arcs of the triangulated polygon. They also showed that the
determinant of such a frieze matrix associated to a triangulation of an n-gon is
just −(−2)n−1; this formula was generalized 2012 in a cluster algebra setting by
Baur and Marsh [1].

In joint work with Holm and Jørgensen, the classical situation was already
generalized to d-angulations [2], and the determinantal result refined to a determi-
nation of the Smith normal form. In the talk we discussed a further generalization
and refinement to polynomially weighted walks around polygons with arbitrary dis-
sections (see [3]). Here, variable weights are put on the pieces; the weights of the
walks capture the dissection in detail, by collecting the weights of the pieces chosen
along the walk. Introducing also variable edge weights allows for crucial reduction
arguments. The weight matrix associated to the walks between the vertices of
the polygon then satisfies a complementary symmetry condition. Furthermore, its
determinant is a multisymmetric multivariate polynomial given explicitly. Indeed,
using elementary row and column operations over a ring of Laurent polynomials
and reduction arguments, this matrix can be transformed into a diagonal form,
with a contribution from each piece of the dissection, and trailing 1’s. Going into
the opposite direction and considering the generalized polynomial frieze associated
to the weight matrix of a dissected polygon, the non-zero local determinants are
explicitly given monomials; the non-vanishing condition is intricately related to
the geometry of the dissection. In the case of a triangulation with an even number
of triangles, it is easy to see that specializing the weights of all the pieces to −1
produces a Conway-Coxeter frieze without zeros but where also negative numbers
occur; indeed, it may be obtained from a positive frieze by multiplying every sec-
ond row by −1. This is also related to recent work by Bruce Fontaine who showed
that there are no further non-zero integral friezes [4].
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Growth behaviour of infinite frieze patterns

Manuela Tschabold

(joint work with Karin Baur, Klemens Fellner, Mark Parsons)

In the first part of this talk, we present the notion of infinite frieze patterns of
positive integers in the plane and provide a characterisation of periodic infinite
friezes via triangulations of once-punctured discs and annuli. Part of this is joint
work with Karin Baur and Mark Parsons [2].

An infinite frieze pattern of positive integers is an array (mij)i,j∈Z,j≥i−2 of
infinitely many shifted bi-infinite rows such that mi,i−2 = 0, mi,i−1 = 1 for all i
and mij ∈ Z>0 for all i ≤ j,

0 0 0 0 0

· · · 1 1 1 1 1 · · ·

m−1,−1 m00 m11 m22 m33

· · · m−1,0 m01 m12 m23 m34 · · ·

m−1,1 m02 m13 m24 m35

...
...

satisfying the unimodular rule everywhere: mijmi+1,j+1 − mi+1,jmi,j+1 = 1 for
all i ≤ j. Such a frieze is called n-periodic if the first non-trivial row is periodic
with period n.

The following is one of our main results.

Theorem 1 ([3],[2]). Triangulations of once-punctured discs and annuli give rise
to periodic infinite friezes, and all such friezes arise in this way. Every entry in a
periodic infinite frieze is given as a matching number for any associated triangu-
lation.

Furthermore, each diagonal in a frieze arising from a triangulation of a once-
punctured disc is made up of a collection of arithmetic sequences, the number of
which depends on the period of the frieze ([3, Proposition 3.11]). Therefore such
friezes can be considered to have linear growth.

In the second part, we then introduce the notion of growth coefficients for
periodic infinite friezes and end by giving some recent results on this new subject,
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especially on the growth behaviour of periodic infinite friezes. This is work in
progress with Karin Baur, Klemens Fellner and Mark Parsons [1].

For every n-periodic infinite frieze, the difference between the nth and the
(n− 2)th non-trivial rows is constant. More precisely, we have

Theorem 2 ([1]). Given an n-periodic infinite frieze (mij)i,j, let s = m1,n −
m2,n−1. Then s = mk+1,k+n −mk+2,k+n−1, for all k ∈ Z.

There is a linear recursion formula for the entries in a diagonal of a periodic
infinite frieze that depends on this value.

Theorem 3 ([1]). Let (mij)i,j be an n-periodic infinite frieze and let s = m1,n −
m2,n−1. Then we have mi,j+2n = smi,j+n −mij , and mi−2n,j = smi−n,j −mij .

In the special case where n is the minimal period of the infinite frieze, we define
the kth growth coefficient (k ≥ 0) by s0 := 2, and sk := m1,kn−m2,kn−1, otherwise.

For the growth coefficients of a periodic infinite frieze, we have sk ≥ 2 and
sk ≤ sk+1 for all k ≥ 0. Besides, they are recursively related to each other as
follows sk+2 = s1sk+1 − sk, for all k ≥ 0. Moreover, we can give a closed formula
for every growth coefficient in terms of s1. For all k ≥ 1, we have

(1) sk = sk1 + k

⌊ k
2
⌋∑

l=1

(−1)l
1

k − l

(
k − l

l

)
sk−2l
1 .

These properties are used in establishing the following proposition.

Proposition 1 ([1]). Given a periodic infinite frieze, the following are equivalent:

(1) There exists k > 0 such that sk = 2.
(2) sk = 2 for all k ≥ 0.
(3) The frieze arises from a triangulation of a once-punctured disc.

Thus we can conclude, using (1), that triangulations of once-punctured discs
provide the only friezes of linear growth, while friezes arising from triangulations
of annuli have exponential growth.
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Categorification of quantum cluster algebras and quantum groups

Dylan Rupel

Quantum cluster algebras [3] are non-commutative deformations of classical cluster
algebras [4] and share much of their combinatorial structure. The main philosophy
leading to this quantization can be given as follows:

• Each cluster should be replaced by a collection of quasi-commuting ele-
ments X = {X1, . . . , Xm} where XiXj = v2Λ(εi,εj)XjXi for some skew-
symmetric bilinear form Λ : Zm × Zm → Z. Since this must be true of
every cluster obtained by mutations from an initial cluster we are forced
to impose the condition Λ(bk, εℓ) = 0 for k 6= ℓ where bk denotes the kth

column of the initial exchange matrix B. Miraculously this compatibility
is mantained under arbitrary sequences of mutations.

• The quantum torus algebra T = Z[v±1][X±1
1 , . . . , X±1

m ] generated by X

admits an anti-involution which fixes eachXi and interchanges v with v−1.
Since each initial cluster variable is fixed by this bar-involution we ask the
same to be true of every non-initial cluster variable as well, this forces a
unique choice of scaling for each monomial in the exchange relations.

Much of the well-known theory from classical cluster algebras carries over to this
setting, in particular the following analogue of the Laurent phenomenon.

Theorem 1. [3] Let Σ = (X, B) denote an initial quantum seed. Then each
quantum cluster variable obtained from Σ by a sequence of mutations is contained
in T .

Thus we obtain the following natural question: what are the initial cluster
Laurent expansions of the non-initial quantum cluster variables?

To answer this we view the prinicipal block of B as the adjacency matrix for a
(valued) quiver Q, which we assume to contain no oriented cycles. The category
of representations of Q forms a hereditary abelian category.

Theorem 2. [15, 11, 16] For each indecomposable representation V of Q satisfying
Ext(V, V ) = 0, the quantum Laurent polynomial

XV =
∑

e∈Zn
≥0

v−〈e,dimV−e〉∣∣Gre(V )
∣∣X−e

∗−∗(dimV−e)

is a (non-initial) quantum cluster variable and each one arises in this way.

At the heart of the definition of a quantum cluster algebra is a deep conjecture
that certain quantum groups admit quantum cluster algebra structures and that
the recursively, combinatorially defined quantum cluster monomials are elements
of the (dual) canonical basis. This has been proven in the acyclic, skew-symmetric
case [9] using the theory of perverse sheaves on quiver varieties. We offer an
alternative proof based on relating the categorification of Theorem 2 with the
categorification of quantum groups [7, 8, 14] using irreducible characters of quiver
Hecke algebra representations.
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This is accomplished using several well-known algebra homomorphisms out of
the quantum group Av. The first is an embedding [12] into the (dual) Hall algebra
H∗(Q) with basis {[V ]∗} indexed by the isomorphism classes of representations
of Q whose structure constants count extensions between representations. Tak-
ing a geometric interpretation for this map leads [10] to the construction of the
(dual) canonical basis in terms of perverse sheaves. The second is a map Ψ to the
quantum torus T (this is a special case of a more general setup used to establish
the Gelfand-Kirillov conjectures for Av [5, 6, 1]). Finally an embedding [13] into
a quantum shuffle algebra g∗, this is the natural home for the characters of the
quiver Hecke algebra. These can be completed to a commuting tetrahedron of
algebra homomorphisms:

(1)

H∗(Q)

Av T

g∗

Ω

Ψ

Ψ̃

Ψ̄

The next result combined with Theorem 2 shows how this relates to the quantum
cluster algebra associated to Q.

Theorem 3. [2] For any representation V of Q we have Ψ̃([V ]∗) = XV .

The dual canonical basis conjecture states that (a localization of) Ψ(Av) carries
a quantum cluster algebra structure and that the quantum cluster monomials are
contained in the image of the dual canonical basis. The following result establishes
this conjecture in the case of acyclic, skew-symmetric quantum cluster algebras.

Theorem 4. [17] Let Q be an acyclic quiver. For each indecomposable represen-
tation V of Q satisfying Ext(V, V ) = 0, Ω([V ]∗) is contained in the image of Av

and coincides with an element of the dual canonical basis.
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Asymptotic triangulations and Coxeter transformations of the annulus

Hannah Vogel

Asymptotic triangulations can be viewed as limits of triangulations under the
action of the mapping class group. Asymptotic triangulations were introduced by
Baur and Dupont with respect to unpunctured mark surfaces. These asymptotic
triangulations can be mutated as usual triangulations, and they provide a natural
way to compactify the usual exchange graph of the triangulations of an annulus.

An asymptotic triangulation is defined by the presence of strictly asymptotic
arcs. Strictly asymptotic arcs are isotopy classes of arcs starting at a marked
point on the boundary of a surface and spiraling either positively or negatively
around a non-contractible closed curve in the surface. These strictly asmptotic
arcs have infinite length. An asymptotic triangulation contains at least two strictly
asymptotic arcs, and possibly non-asymptotic arcs as well.

To any asymptotic triangulation we can associate a quiver. Such a quiver may
have loops and 2-cycles, and hence classical quiver mutation cannot be applied.
We introduce a modified version of quivers of asymptotic triangulations in order
to use the classical quiver mutation. We also introduce quivers with potentials
associated to asymptotic triangulations, and can then work with quiver mutation
on an algebraic level.

The process of going from a finite triangulation to an asymptotic triangulation
constitutes applying the Dehn twist infinitely many times to a triangulation. Ap-
plying the Dehn twist infinitely many times causes some arcs of the triangulation
to become identified, while breaking other arcs into two parts so that we are left
with two triangulations – one based at each boundary component of our annu-
lus. The Dehn twist provides us with a topological way of obtaining asymptotic
triangulations.
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A combinatorial method of obtaining asymptotic triangulation is by using a
Coxeter transformation. A Coxeter transformation is done by applying a sequence
of flips to the arcs of the triangulation. This sequence is determined by the asso-
ciated quiver. We can obtain an admissible sequence of vertices of the associated
quiver (going from sources to sinks), and then perform the sequence of correspond-
ing flips in the triangulation. It turns out that the Coxeter transformation and
Dehn twist behave the same in the limit. This allows us to use whichever process of
obtaining an asymptotic triangulation that is the most useful for that setting. The
benefit of having a combinatorial method to describe this process is that we can
now study other variables and systems associated to the surface. Cluster variables
associated to asymptotic triangulations were studied by Felikson and Tumarkin.
Felikson and Tumarkin consider the induced triangulation of the double cover of
the annulus, and then use the signed adjacency quiver, which is free of loops and
2-cycles, and can thus be mutated using classical quiver mutation. This procedure
described for an annulus can be done for any triangulated hyperbolic surface.
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Superfriezes and superclusters

Valentin Ovsienko

A supersymmetric analog of Coxeter’s frieze patterns was introduced in a joint
work with S. Morier-Genoud and S. Tabachnikov [1]. A superfrieze is the following
array

. . . 0 0 0

. . . 0 0 0 0 0 . . .

1 1 1 . . .

ϕ0,0 ϕ 1

2
, 1
2

ϕ1,1 ϕ 3

2
, 3
2

ϕ2,2 . . .

f0,0 f1,1 f2,2

ϕ− 1

2
, 1
2

ϕ0,1 ϕ 1

2
, 3
2

ϕ1,2 ϕ 3

2
, 5
2

. . .

f−1,0 f0,1 f1,2

. .
.

. .
. . . .

. . .
. . .

. . .
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where fi,j are even and ϕi,j are odd elements of a Z2-graded ring, and where every
elementary diamond:

B

Ξ Ψ

A D

Φ Σ

C

satisfies the following conditions:

AD −BC = 1 + ΣΞ, AΣ− CΞ = Φ, BΣ−DΞ = Ψ,

called the frieze rule.
A superfrieze is closed if it is also bounded below by a row of 1’s and two rows

of 0’s. The number of even rows between the rows of 1’s is called the width of the
superfrieze. The main properties of superfriezes are similar to those of classical
friezes.
Theorem 1. [1] A generic superfrieze of width m satisfies the following glide
symmetry

(1)

fi,j = fj−m−1,i−2,

ϕi,j = ϕj−m− 3

2
,i− 3

2

,

ϕi+ 1

2
,j+ 1

2

= −ϕj−m−1,i−1,

for all i, j ∈ Z.

In particular, the rows of a superfrieze of width m satisfy the following period-
icity property:

ϕi+n,j+n = −ϕi,j , fi+n,j+n = fi,j ,

where n = m+ 3.
The Laurent phenomenon is one of the main properties of the Coxeter friezes.

Similar phenomenon occurs in the superfriezes.
Theorem 2. [1] Entries of a superfrieze are Laurent polynomials in the entries
of any diagonal.

Similarly to the classical case, see [2], superfriezes are related with linear differ-
ence operators generalizing classical Hill’s operators.

Using superfriezes as a starting example, I present an attempt [3] to develop
the notion of cluster superalgebra. The main ingredients are modified exchange
relations and quiver mutations. The vertices of the quiver are labeled by the even
and odd coordinates. Essentially, the mutations of such a quiver (observe that the
two upper vertices are colored while the three lower ones are black) are defined by
the following modified rule:

•

��❄
❄❄

❄❄
❄❄

•??
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An open question. Use superfriezes to define a structure of cluster supermanifold
on the moduli spaces M0.n of n-gons in the contact projective line P1|1.
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