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Abstract. Recent progress in high-throughput genomic technologies has
revolutionized the field of human genetics and promises to lead to important
scientific advances. With new improvements in massively parallel biotech-
nologies, it is becoming increasingly more efficient to generate vast amounts
of information at the genomics, transcriptomics, proteomics, metabolomics
etc. levels, opening up as yet unexplored opportunities in the search for the
genetic causes of complex traits. Despite this tremendous progress in data
generation, it remains very challenging to analyze, integrate and interpret
these data. The resulting data are high-dimensional and very sparse, and ef-
ficient statistical methods are critical in order to extract the rich information
contained in these data. The major focus of the mini-workshop, entitled “Re-
cent Developments in Statistical Methods with Applications to Genetics and
Genomics”, has been on integrative methods. Relevant research questions

included the optimal study design for integrative genomic analyses; appro-
priate handling and pre-processing of different types of omics data; statistical
methods for integration of multiple types of omics data; adjustment for con-
founding due to latent factors such as cell or tissue heterogeneity; the opti-
mal use of omics data to enhance or make sense of results identified through
genetic studies; and statistical and computational strategies for analysis of
multiple types of high-dimensional data.
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Introduction by the Organisers

The mini-workshop “Recent Developments in Statistical Methods with Applications

to Genetics and Genomics”, organized by Iuliana Ionita-Laza (New York), Michael
Krawczak (Kiel), Xihong Lin (Harvard), Michael Nothnagel (Köln), was attended
by 16 participants with broad geographic representation from North America and
Europe. This workshop was interdisciplinary, and had a nice blend of junior and
senior researchers with diverse backgrounds in theoretical/applied statistics, and
genomics. The small scale and focused meeting has allowed for plenty of time for
discussions and brainstorming new ideas, and has started several new collabora-
tive projects. During the week, 15 lectures have been given by the participants.
The lectures were accompanied by lively and interesting discussions. This report
contains extended abstracts of all the talks.

The major focus of the mini-workshop has been on the efficient integration of
different sources of data to gain a better understanding of the genetic mecha-
nisms that lead to complex diseases. Multiple omics data (genome, epigenome,
transcriptome, proteome, metabolome, phenome) can now be easily collected si-
multaneously on a genome-wide scale, yet remarkably little is known about how to
integrate these different data types in a knowledge-based way. Integrative analysis
of multiple omics data types can help the search for the underlying biological mech-
anisms in disease by discovering genomic features that tend to be dysregulated by
multiple mechanisms. Because many of these technologies only recently became
feasible on a genomic scale, the data are only now becoming available on a large
scale, making the timing of this workshop ideal for sharing the emergent results,
and for beginning to address the many challenges associated with these complex
sources of data. New statistical methods have been discussed to make full use of
the multi-source data for clustering, classification and prediction. Most integrative
methods do not take into account known biological relations between different data
sources. For example, there are well known regulatory relations between genomic
data sets; e.g. gene expression levels can be regulated by both genetic aberrations
and epigenetic factors. Integrating multiple data sets without accounting for their
intrinsic relationships may unnecessarily increase the degrees of freedom in data
and fail to contribute new information to existing variables. Therefore, new meth-
ods are needed to address these issues and others. Additional relevant research
questions that have been addressed during the workshop include causal inference
methods to identify causal mechanisms in disease, adjustment for confounding due
to latent factors, the optimal use of omics data to enhance interpretation of re-
sults of genome-wide association studies (GWAS) and the integration of multiple
GWAS datasets on different, correlated phenotypes.

Overall, the topics of the workshop are very important, and the talks and
discussions have attempted to provide a survey of the current state of the field,
and to explore new ideas and directions for future data integration approaches.
The organizers would like to thank the Institute staff for providing such a great
environment for our meeting.
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Abstracts

The role of joint cumulants in genetic analysis

Stefan Böhringer

(joint work with Brunilda Balliu, Eleni Karasami)

1. Introduction

Linkage disequilibrium (LD) - the covariance between allele indicators at genetic
markers - plays an important role in genetics. Joint cumulants of the multivariate
Bernoulli distribution can be viewed as a natural generalization of LD to more
than two loci. In this paper, we characterize properties of such joint cumulants and
relate them to the genetic situation. Important findings include the relationship
with the corresponding multinomial distribution, bounds of joint cumulants, and
the partitioning of sets of Bernoulli variables. Some earlier work has considered
generalization of LD to few loci [2, 4]. A generalization to K markers was proposed
with different properties to the current paper [1].

2. Reparametrization

We assume all random variables (RVs) to be Bernoulli throughout. Let N =
{1, ..., N}. We then have:

Definition: X = XN = (X1, ..., XN) multivariate RV. The joint cumulant of
X , δX = δ{1,...,N} is defined as δN :=

∑
π(|π| − 1)!(−1)|π|−1

∏
B∈π E

(∏
i∈B Xi

)
,

where π iterates all partitions of N .

If we denote with ηS := E
(∏

i∈S Xi

)
, cumulants can be expressed as: δ1,...,N =∑

π(|π| − 1)!(−1)|π|−1
∏

B∈π ηB. Here, ηB can be seen as the marginal haplotype
frequency of the haplotype composed of alleles 1 at loci in B. If θi denotes
P ((X1, ..., Xn) = i2), where i2 is the binary representation of i, the following
lemma can be established.

Lemma: Reparametrization. Let θ = (θ0, ..., θ2N−1) ∈ H = {(0, 1)N |
∑

θi =
1} be such that P ((X1, ..., Xn) = i2) = θi, then the mapping φ : H → φ(H), θ →
δ = (δS1

, ..., δS
2N

) is bijective, δSi
is the cumulant of RVs ∅ 6= Si ⊂ N .

θ is interpreted as multinomial frequencies for the different outcomes of X . In
contrast to θ, δ contains a structure, namely the number of variables/loci involved
in the respective cumulant. This structure can be exploited by formulating null
hypotheses in the space of cumulants instead of haplotype frequencies. By limit-
ing the comparison of cumulants to those involving only few loci (say one or two),
degrees of freedom can be reduced and interpretability can be improved as com-
pared to the comparison of the full distributions. Yet the likelihood theory is easy
to establish using the reparametrization. We explore several testing strategies in
simulations and a data application that show that power is increased substantially
in certain situations.
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3. Standardization

In the pairwise case LD that is standardized to minimal and maximal bounds,
has a genetic interpretation, namely that a possible haplotype is missing from the
distribution if the bounds are hit. This in turn relates to the occurrence of genetic
recombinations. We can establish sharp bounds for multivariate cumulants.

Lemma: (Missing haplotypes vs cumulants) For S ⊂ N , let δS be cumulant of
XS = (Xi1 , ..., Xis) and δ′S be the corresponding standardized cumulant ∈ [0, 1].
We then have

∃S : δ′S ∈ {0, 1} ⇒ ∃t : θt ∈ {0, 1},

which generalizes the pair-wise result to general join cumulants. θt again de-
notes corresponding multinomial frequency of haplotype t. In the multivariate
setting much richer missingness patterns are possible as compared to the pairwise
situation. The above lemma guarantees at least one missing haplotype when the
joint cumulant hits the bounds, however there might be many missing haplotypes.

We investigate missingness patterns by enumerating sequences of genetic events
composed of mutation (flipping the state of a marginal variable) and recombination
(exchanging subsets of variables between pairs of joint Bernoullis). We compute
a corresponding haplotype distribution by iteratively starting with a single - an-
cestral - haplotype and applying all possible sequences. This produces existence
patterns of haplotypes for which a uniform distribution is assumed corresponding
to recombination equilibria. This distribution is expressed in terms of standardized
cumulants. After removing allele frequencies (cumulants of marginal variables) we
call this vector a cumulant signature and associate it with the possible histories
producing this signature. These signatures can be used to visualize closeness of
actual data to genetic histories. Potential applications lie in the analysis of pop-
ulation stratification and a descriptive analysis of the sampling process. Methods
are illustrated using HapMap data.

4. Genome Partitioning

Partitioning the genome into sets of independent markers plays an important role
in genetic applications. For example, makers used in linkage analysis, or popula-
tion stratification analysis based on principle component based or explicit models
assume sets of independent markers. Also multiple testing correction in the context
of genome wide association studies would be facilitated by such a partitioning.

It is well known that XS1
⊥ XS2

with S = S1∪̇S2 implies δS = 0 [3]. The
converse, however, is untrue in general and it is straightforward to construct a
counterexample. A sufficient criterion for independence based on joint cumulants
is given by the following lemma.

Lemma: (Sufficient criterion for independence)
XN MV Bernoulli; S = N = S1∪̇S2;S1, S2 6= ∅.
XS1

⊥ XS2
⇐⇒ (∀T : T ∩ S1 6= ∅ 6= T ∩ S2 ⇒ δT = 0)

In words, whenever a subset of RVs is considered that contains at least one
variable from both sets S1 and S2, respectively, the joint cumulant has to be zero.



Statistical Methods with Applications to Genetics and Genomics 2977

This lemma suggests a family of test statistics that allow to test for indepenence
in the framework of equivalence testing.

T = min
S1∪̇S2=S

∑

S|S∩S1 6=∅6=S2∩S1

λSδ
2
S .

The hypotheses are given by

H0 : T ≤ ǫ vs. H1 : T < ǫ

Here, λS are arbitrary positive constants and S1, S2 iterate all possible 2-
partitions of S. At this moment, the asymptotic distribution of T is unclear
as well as the choice of optimal values for the λS . Both problems are subject
to future research. Finally, T is expensive to compute which poses algorithmic
challenges.
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Moving beyond genome-wide association studies through the

modelling of more complex mechanisms

Heather J. Cordell

Over the past 8 or 9 years, genome-wide association studies (GWAS) have been
exatrordinarily successful at identifying genetic variants associated with common,
complex disorders. However, a typical GWAS gives little insight into the un-
derlying biological mechanism through which the associated genetic variants are
implicated in disease. I outline two strategies that we have been exploring to help
elucidate the underlying causal mechanisms leading to an observed association.
I outline the methodological approaches we have been taking in relation to both
strategies and present the results of computer simulations and real data analyses
illustrating the utility of these approaches. One strategy has been through the de-
velopment of methods for detection of parent-of-origin effects [1]. Parent-of-origin
effects, particularly if mediated through mechanisms such as imprinting, repre-
sent a more complex, potentially functionally relevant finding than the genetic
effects that are typically identified through large-scale case/control GWAS. The
requirement for parental data necessarily limits the power of studies designed to
detect such effects, however suitable cohorts (particularly of mother/child duos)
are often collected, for example, when investigating traits related to pregnancy
complications. Genetic variants identified through such investigations still repre-
sent the first step along the causal pathway to disease development, and the second
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strategy we have been exploring attempts to clarify the underlying causal mech-
anisms through modelling relationships between genetic factors, factors that are
potential mediators (such as DNA methylation and gene expression), and disease
outcomes. We focus on methods that assume at least a proportion of subjects will
have measurements on all variables (genetic data, “omics” measures such as DNA
methylation and gene expression, and variables related to disease phenotype) of
interest. Previous studies using such data types [2, 3] have used a filtering strat-
egy to generate triplets of ‘interesting’ variables corresponding to a genetic variant
such as a single nucleotide polymorphism (S), a phenotype of interest (P ), and
an intermediate trait such as DNA methylation or gene expression (G), based on
their pairwise correlations. The resulting triplets are then subjected to a causal
inference test such as the ‘causal inference test’ (CIT) or else are interrogated
using techniques such as structural equation modelling or Mendelian randomiza-
tion to infer the underlying causal structure. We use computer simulations to
investigate the performance of such approaches (as well as alternative approaches
based on Bayesian Networks or a Bayesian Unified Framework) when the under-
lying causal structure is known. We find that all methods perform well in simple
models where their assumptions are not violated. However, the presence of an un-
known/unmeasured common environmental effect can lead to incorrect inference.
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Integration of biological knowledge, SNP and omics data for gene

discovery in multifactorial diseases.

Florence Demenais

Genome-wide association studies (GWASs) have been highly effective in identify-
ing thousands of genetic variants associated with many diseases or traits. How-
ever, these variants explain only a part of the genetic component of these diseases
(traits). Disease susceptibility is likely to result from the joint and potentially
interactive effects of many genetic factors, each making a small contribution to
overall disease risk, and the effect of such factors may be missed if they are exam-
ined individually as classically done by GWAS. The analysis of the joint effect of



Statistical Methods with Applications to Genetics and Genomics 2979

multiple SNPs and their interactions on disease risk together with the integration
of biological knowledge can facilitate the discovery of novel genetic factors. We
proposed different strategies of data integration that were illustrated in the field
of cancer and asthma.

A first strategy is to combine pathway analysis of GWAS outcomes and gene-
gene interaction analysis within disease-associated pathways. Pathway analysis
based on the Gene Set Enrichment Analysis (GSEA) [1] allows to identify path-
ways enriched in genes associated with disease. These pathways can be used as
statistical and biological filters to investigate cross-gene SNP-SNP interactions
within pathways. A major advantage of this approach is to reduce the multi-
ple testing burden as compared to genome-wide gene-gene interaction (GWIS)
studies. We proposed a hierarchical bottom-up procedure to correct for multiple
testing. We first corrected for multiple interaction tests for each gene pair, then
for multiple gene pairs within a pathway, and finally across all disease-associated
pathways. Specifically, for each gene pair, the effective number of independent
interaction tests was estimated from the eigenvalues of the correlation matrix
of pairwise products of SNPs allele dosages (imputed SNPs), by extending the
method proposed by Li and Ji [2] for correlated single SNPs to correlated SNP-
pairs interactions. The effective number of independent tests in a pathway was
estimated by the sum of the effective number of independent tests for a gene
pair over all gene pairs tested within that pathway; from this, we computed a
Bonferroni-corrected critical threshold for a pathway (Tpathway). To correct for
overall statistical significance across all disease-associated pathways, a Bonferroni-
correction was applied to the pathway-corrected threshold (Tpathway) to get the
overall critical threshold (Toverall). For example, for a set of about 1 million SNPs,
this procedure reduced the multiple testing corrected threshold from 5 × 1014 for
an agnostic GEWIS to between 3×10−7 and 7×10−9 depending on the size of the
pathway. The combined pathway and gene-gene interaction analysis strategy was
applied to GWAS outcomes for cutaneous melanoma obtained from two datasets:
the French MELARISK dataset (1179 cases, 2797 controls) that served as a discov-
ery set and the MD Anderson Cancer Center (MDACC) dataset (1801 cases, 1026
controls) that served as a replication set. Five pathways defined by gene ontology
(GO) categories were significantly enriched in genes associated with melanoma
(FDR< 5% in both studies): response to light stimulus, regulation of mitotic cell
cycle, induction of programmed cell death, cytokine activity and oxidative phos-
phorylation. Epistasis analysis, within each of the five significant GOs, showed
significant evidence for interaction for one SNP pair at TERF1 and AFAP1L2
loci (P = 2.0 × 10−7, in the meta-analysis of the two datasets, which met both
the pathway and overall multiple-testing corrected thresholds that were equal to
9.8× 10−7 and 2.0× 10−7, respectively) and suggestive evidence for another pair
involving correlated SNPs at the same loci (P = 3.6× 10−6). This interaction has
important biological relevance given the key role of TERF1 in telomere biology
and the reported physical interaction between TERF1 and AFAP1L2 proteins [3].
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This study clearly shows the advantage of using a statistical and biological filtering
to identify gene-gene interactions.

A second strategy is to conduct network-based analysis by integrating genome-
wide SNP data and protein-protein interaction networks (retrieved from the Hu-
man Protein Interaction Network (HPIN) database) to identify a gene sub-network
associated with disease. We proposed an algorithm that was applied to two
large asthma datasets from the GABRIEL Asthma Consortium that consisted
of the outcomes of two meta-analyses of 9 childhood asthma GWASs each (in-
cluding 3,031 cases/2,893 controls and 2,679 cases/3,364 controls, respectively)
[4]. GWAS signals were overlaid to HPIN by assigning SNPs to genes and us-
ing gene-wise P-values obtained through circular genomic permutations (CGP)
[5]. Modules enriched with childhood asthma-associated genes were generated by
a dense module search (DMS) strategy [6]. We selected the gene modules that
showed the highest pairwise similarity between the two datasets. These mod-
ules were further evaluated for their association with asthma using CGP and for
their biological relevance through pathway analysis using DAVID. We identified
10 gene-module pairs that had high similarity between the two datasets. By merg-
ing the selected modules within each dataset and intersecting the two gene lists,
we identified a sub-network consisting of 91 genes and 106 connections among
them. Among these genes, 14 were reported associated with asthma by previ-
ous GWASs and 22 with nominally significant gene-wise P-values were novel can-
didates. The identified sub-network was significantly associated with childhood
asthma (P < 10−4 using 10,000 CGPs). Moreover, the number of connections
among known and novel candidate genes was significantly higher than expected
by chance (P = 3 × 10−4). Three KEGG pathways were found significantly en-
riched in genes from the identified network: cytokine-cytokine receptor interaction
(Bonferroni-corrected P = 3 × 10−8), chemokine signaling pathway (Bonferroni-
corrected P = 5 × 10−8), natural killer cell mediated cytotoxicity (Bonferroni-
corrected P = 3 × 10−6). This study shows the benefit of integrating GWAS
data and HPIN to identify novel functionally related genes underlying childhood
asthma [7].

A third strategy is to integrate SNP data and epigenomic data (DNA methyla-
tion levels) to uncover the causal mechanism underlying SNP-disease association.
This strategy was applied to family data of the co-morbidity of asthma plus allergic
rhinitis (AAR). Following a genome-wide linkage scan of AAR in 615 European
families that detected linkage to the 4q31 region in presence of parent-of-origin
effect (paternal linkage), association analysis with 1,233 single nucleotide poly-
morphisms (SNPs) covering the significant linkage region was conducted in 162
French families from the Epidemiological study on the Genetics and Environment
of Asthma (EGEA) with replication in 154 French-Canadian families from the
Saguenay-Lac-Saint-Jean asthma study (SLSJ). Association analysis in this re-
gion showed strong evidence for the effect of a paternally inherited allele of the
rs10009104 SNP on AAR (P = 1.1× 10−5, reaching the multiple-testing corrected
threshold). Further association analysis of disease and significant SNPs with DNA
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methylation levels (DNAm) at CpG sites was performed in 40 SLSJ families. The
paternally inherited allele of rs10009104 was significantly associated with DNAm
at cg02303933 site (P = 1.7 × 10−4). Causal Inference Test (CIT) showed that
differential DNA methylation at this site mediated the identified SNP-AAR asso-
ciation. The CpG site is located within Melatonin receptor 1A (MTNR1A) gene,
a receptor for melatonin which was suggested to have immunomodulatory effect
in allergic diseases [8] and is thus a relevant candidate for AAR.

In conclusion, joint analysis of sets of SNPs (genes) and integration of biologi-
cal knowledge and omics data can facilitate the identification of genes associated
with complex diseases and can shed light on the underlying molecular mecha-
nisms. However, pathway and network-based analyses only use information on
genetic variants that are mapped to genes. There is accumulating evidence that
many genetic variants associated with multifactorial diseases map to regulatory
elements that reside outside of genes. A major challenge is to define regions en-
riched in regulatory elements across the genome that could be further grouped
as tissue-specific regulatory pathways and potentially used as classical gene-based
pathways and networks to help identifying the genomic variation underlying com-
plex diseases. Further work should also aim at combining various types of omics
data and other sources of information (e.g. data from the literature through text
mining) as well as data on environmental factors to bring more insight into the
mechanisms causing multifactorial diseases.
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Assessing Cross-Phenotype Effects of Rare Variants

Michael Epstein

(joint work with K. Alaine Broadaway)

Increasing empirical evidence suggests that many genetic variants influence mul-
tiple distinct phenotypes. When cross-phenotype effects exist, multivariate as-
sociation methods that model pleiotropy are often more powerful than univariate
methods that model each phenotype separately. Cross-phenotype association tests
for common variants have demonstrated considerable success, with novel findings
in studies of Crohn’s disease and ulcerative colitis, different facial morphology
measures, and among bipolar disorder, autism spectrum disorder, major depres-
sive disorder, and schizophrenia. However, while several statistical approaches
exist for testing pleiotropy for common variants, there is a lack of cross-phenotype
tests for gene-based analysis of rare variants. In this talk, we created such a non-
parametric test of independence between a high-dimensional set of phenotypes and
a high-dimensional set of rare-variant genotypes in a candidate gene of interest.
Our independence test relies on kernel-distance covariance (KDC) techniques that
compare pairwise similarity in multivariate phenotypes to pairwise similarity in
multivariate genotypes. Our approach allows for both continuous and categorical
phenotypes and can further adjust for influential covariates, such as principal com-
ponents of ancestry to correct for confounding due to population stratification, by
residualizing variables prior to analysis.

We show that, under the null hypothesis of independence, our KDC-based test
follows a mixture of chi-square variables with the mixture weights a function of
the product of the eigenvalues of the phenotype and genotype similarity matrices.
We further show we can derive an analytic p-value for the cross-phenotype test
quickly using Davies’ exact method. This is important, as it enables rapid cross-
phenotype testing of rare variants across the genotype. By employing Davies’ exact
method and using computational shortcuts to calculate the non-zero eigenvalues
from phenotype and genotype similarity matrices in quick fashion, we find that
evaluation of our test for sample sizes of 5000, 10000, and 20000 require only
13.2 seconds/gene, 68.6 seconds/gene, and 580 seconds/gene, respectively. We
therefore can efficiently apply the approach to existing sequencing studies using a
small computer cluster.

Using simulated data based on underlying coalescent models based on popula-
tion-genetics theory, we show our approach for cross-phenotype testing of rare
variants has appropriate type-I error even in the extreme tails of the p-value dis-
tribution and can be much more powerful than standard univariate testing of
rare variants when phenotypes under consideration are correlated as expected.
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We further showed using simulated data that our approach was far more power-
ful for cross-phenotype testing of rare variants compared to an existing approach
based on multivariate functional linear models that employed B-spline modeling of
rare-variant sites across a gene of interest. We next applied our cross-phenotype
method to exome-chip data from 540 subjects collected as part of the Genetic
Epidemiology Network of Arteriopathy (GENOA). For phenotypes, we considered
body-mass index, high-density lipoprotein, systolic blood pressure, and diastolic
blood pressure. For genotypes, we identified and studied 3277 genes possessing
5 or more rare variants with sample frequency < 3% (excluding singleton sites
due to concerns about sequencing artifacts). We applied both our KDC-based
approach for cross-phenotype analysis to GENOA, as well as two competing ap-
proaches: univariate analysis of rare variants adjusting for multiple testing and
multivariate analysis using the multivariate B-spine approach. All analyses were
adjusted for gender, age, smoking status, lipid-lowering medication status, and
top 10 principal components of ancestry. Overall, no genes were associated with
the phenotypes at study-wise significance threshold using any of the methods.
However, our approach identified 8 genes with suggestive p-values less than 0.001.
Univariate analysis of phenotypes only identified 4 such genes with p-values less
than 0.001; all 4 of these genes were identified by our cross-phenotype method.
The multivariate B-spline method yielded inflated type-I error across the genotype
as noted from the method’s QQ plot.

While our cross-phenotype test based on the KDC framework is promising,
there are still many open problems related to the method that warrant further in-
vestigation. For example, if we identify a cross-phenotype association, a follow-up
analysis could be to assess whether the cross-phenotype effect is due to biologi-
cal pleiotropy (a causal locus directly affecting more than one trait) or mediation
pleiotropy (a causal locus affecting only one trait, which in turn affects another
trait). Existing mediation analyses are not intended to handle high-dimensional
traits; the creation of KDC procedures to identify whether an observed cross-
phenotype association is mediated by a different set of phenotypes would have
tremendous value. Related to this point, since our KDC approach is an omnibus
test, an association with just one of the tested phenotypes could result in a sig-
nificant finding. While the result is valid, researchers will often wish to identify
which underlying phenotypes are directly associated with the gene of interest. A
mediation analysis would allow investigators to tease apart these relationships.
Additionally, our approach assumes unrelated subjects. Extensions of the tech-
nique to handle subjects that are either closely or cryptically related are important
to ensure validity of subsequent test statistics. Finally, one might be interested
in combining cross-phenotype association results from multiple studies through a
meta analysis based on summary statistics.
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Integrative analysis of two omics datasets from several heterogeneous

studies using probabilistic O2-PLS

Jeanine J. Houwing-Duistermaat

(joint work with Said el Bouhaddani, Hae-Won Uh)

Nowadays many studies comprise several omics datasets (genomics, proteomics,
glycomics, metabolomics) aiming identification of potential biomarkers for patho-
genesis of several diseases, including cancers and metabolic diseases as well as
infectious diseases. These biomarkers would lead to improved understanding of
the underlying biological mechanism and might be clinically useful as the molec-
ular targets for better diagnosis, prognosis, and treatment. Since these datasets
represent the same underlying biological mechanism, integrated analysis of these
datasets should be performed to exploit all information.

To relate two datasets with each other, we consider latent variable regression.
Motivated by the fact that structural variation in a dataset diminishes the inter-
pretation of the score-loading correspondence when using PLS methods Trygg et
al. [1] proposed O2-PLS. The O2-PLS model decomposes two datasets X and Y
in three parts:

X = TWT + T⊥P
T
Y ⊥ + E

Y︸︷︷︸
Data

= UCT
︸ ︷︷ ︸
Joint

+ U⊥P
T
X⊥︸ ︷︷ ︸

Specific

+ F︸︷︷︸
Noise

The relation between the joint parts of Y and X is given by the following linear
model U = TB + H . Note that only X and Y are observed. T and T⊥ are
the lower dimensional subspaces of X and U and U⊥ are the lower dimensional
subspaces of Y . The dimensions of these subspaces need to be specified a priori.
The algorithm comprises two steps. The first step is application of PLS to identify
the latent space spanned by T and T⊥ for X and U and U⊥ for Y . Then the X
and Y specific parts, T⊥ and U⊥, are computed and subtracted from the original
X and Y , each followed by a new PLS step on these reduced X and Y datasets to
obtain estimates for T and U . For more details see [1].

We performed simulation studies, which showed that the algorithm was able
to identify the underlying components. We applied the method to metabolomics,
gene expression and exome sequencing data available in about 200 subjects. We
used one latent component for the joint spaces and for the metabolomic specific
space. For both genomic datasets we used 8 specific components. The number of
components were found by minimizing the cross-validatedmean squared error. The
explained variances of the latent components (R2) are given in Table 1. In addition
the relationship between the joint components of the deleterious variants and of
metabolomics datasets explained 98.3% of the variance of the joint metabolomics
component. For the gene expression dataset, this was 67.1%. With regard to the
gene expression data, there is overlap between the top 100 loadings of the joint
component and the genome wide expression analysis of 8 meta lipids [2].
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Table 1. Explained variances (R2 )of X and Y by the latent
components; j=joint, spec=specific.

SNP-j SNP-spec Metab-j Metab-spec
R2 0.561% 5.15% 56.3% 0.328%

Gene Expr-j Gene Expr-spec Metab-j Metab-spec
R2 1.29% 15.5% 52.2% 0.839%

Formula ||T ||
||X||

||T⊥||
||X||

||U||
||Y ||

||U⊥||
||Y ||

To conclude the O2-PLS method can be used to identify correlated subspaces in
high dimensional datasets. Future work will be the development of the probabilis-
tic counterpart of O2-PLS. The advantage of such an approach will be modelling
of heterogeneity, including prior information with regard to underlying biology in
the latent spaces and dealing with missing data.
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A Spectral Approach Integrating Functional Genomic Annotations for

Coding and Noncoding Variants

Iuliana Ionita-Laza

(joint work with Kenneth McCallum, Bin Xu, Joseph Buxbaum)

Over the past few years, substantial effort has been put into the functional anno-
tation of variation in human genome sequence. Indeed, for any genetic variant,
whether protein coding or noncoding, a diverse set of functional annotations is
available from projects such as Ensembl, ENCODE and Roadmap Epigenomics.
Such annotations can play a critical role in identifying putatively causal variants
among the abundant natural variation that occurs at a locus of interest. The
main challenges in using these various annotations include their large numbers,
and their diversity. In particular, it is not clear a priori which annotation is better
at predicting functionally relevant variants. It is therefore desirable to integrate
these different annotations into a single measure of functional importance for a
variant.

Recent efforts have been made to employ these diverse annotations in a more
principled way. In particular, several studies have focused on machine learning
tools for the integration of many different functional annotations into one single
score of functional importance. For example, Kircher et al. [1] proposed a super-
vised approach (support vector machine) to train a discriminative model using a
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labelled training set. Ideally, the training data would be obtained by sampling
variants at random and then applying a gold-standard method to determine dele-
teriousness (or functionality). Unfortunately, such a gold-standard approach is
currently not practical for a large number of variants, and so supervised methods
must resort to training data that may be inaccurate or biased. In essence, CADD
is based on assessing evolutionary conservation, and may be suboptimal for weakly
selected (or possibly not selected) disease mutations for complex traits.

In this talk, I discuss an unsupervised spectral approach (Eigen [2]) for scoring
variants which does not make use of labelled training data. As such, its perfor-
mance is not sensitive to a particular labeling of the training dataset. Instead, the
approach is based on training using a large set of variants with a diverse set of
annotations for each of these variants, but no label as to their functional status.
We assume that the variants can be partitioned into two distinct groups, func-
tional and non-functional (although the partition is unknown to us), and that for
each annotation the distribution is a two-component mixture, corresponding to
the two groups. The key assumption in the Eigen approach is that of block-wise
conditional independence between annotations given the true state of a variant
(either functional or non-functional). This last assumption implies that any cor-
relation between annotations in different blocks is due to differences in the anno-
tation means between functional and non-functional variants. Because of this, the
correlation structure among the different functional annotations can be used to
determine how well each annotation separates functional and non-functional vari-
ants (i.e. the predictive accuracy of each annotation). Specifically, we compute a
rank one matrix R approximation of the annotation variance-covariance matrix,
and show that the entries in the eigenvector for the rank one matrix are propor-
tional to the accuracies of the individual predictors. Subsequently we construct a
weighted linear combination of annotations, based on these estimated accuracies.

We illustrate the discriminatory ability of the proposed meta-score using numer-
ous examples of disease associated variants and putatively benign variants, both
coding and noncoding, from the literature. In addition we consider a related, but
conceptually simpler meta-score, Eigen-PC, which is based on the direct eigende-
composition of the annotation covariance matrix, and using the lead eigenvector
to weight the individual annotations. Across varied scenarios, the Eigen and
Eigen-PC scores perform generally better than CADD, and any single individual
annotation, representing powerful single functional scores that can be incorporated
in gene-mapping studies, e.g. in the framework of a hierarchical model. Further-
more, an important advantage of the Eigen and Eigen-PC scores is that, due
to their unsupervised nature, they can be easily adapted to a specific tissue or
cell type. Future work includes further methodological developments, such as em-
pirical Bayes nonparametric mixture models, and development of context-specific
(tissue/cell type) scores that could be used to infer the relevant tissue for a disease
of interest.
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Pitfalls of Rare Variant Data Association Analysis and Method

Development

Suzanne M. Leal

(joint work with Gao Wang, Di Zhang, Hang Dai, Zongxiao He, Biao Li )

With the advent of next generation sequencing exome and genome sequence data
can be cost-effectively generated. The vast majority of identified variants are rare
with minor allele frequency of less than 1%. Although these rare variants can be
analyzed using the same methods applied to the analysis of common variants, these
approaches are not powerful due to low allele frequencies and allelic heterogeneity.
Therefore rare variant association methods have been developed to increase the
power of analyzing rare variants. These methods test for an association by aggre-
gating variants across a region, which is usually a gene. To date over 90 rare variant
association tests have been developed to analyze rare variants for population-based
data and to a lesser degree family-based data. Although so many tests have been
developed only a handful of these methods e.g. Combined Multivariate Collapsed
(CMC) method [5], Burden of Rare Variants (BRV) [1], Sequence Kernel Asso-
ciation Test (SKAT) [7] and SKAT-O [4] have been used to analyze more than
one dataset. The methods that are used are either fixed effects tests (e.g. CMC,
BRV) using a variety of coding and weighting schemes, random effect tests (i.e.
SKAT) or omnibus tests (i.e. SKAT-O). Some caveats of using rare variant as-
sociation tests to analyze sequence data are that exclusion of causal variants and
inclusion of non-causal variants can greatly reduce power. Additionally currently
application of rare variant association methods are predominately limited to the
analysis of coding regions, i.e. genes, since it is unknown how to properly aggre-
gate regions outside of genes. Comparisons of rare variant association methods
often show that one test is more powerful than the others with different studies
having inconsistent findings. One problem is how variant data is generated. A
variety of methods can be used to simulate variant data including forward-time,
coalescent and allele frequency from data sets such at 1,000 Genomes. If allele
frequencies are used from real world data sets where sample sizes are small, e.g.
< 5, 000 individuals there will be an under representation of rare variants in the
generated sample, with the sample having a deficiency of singletons, doubletons,
etc. This is true even if the generated samples sizes as small as 500 individuals.
This problem can be overcome by using newer population demographic models
such as those developed by Gazave et al. [3]. We generated data using forward-
time simulation using the European population demographic model described by
[3] then compared the generated data to exome sequence data on Europeans from
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the NHLBI-Exome Sequencing Project [6, 2]. The two data sets showed excellent
concordance in the proportions of rare variants and singletons, doubletons etc. We
generated sequence variant data for all genes (N = 18, 397) across the exome and
generated data under the alternative using a variety of disease model. We then
compared the power of several rare variant association methods. For almost all
genes the random effect test had lower power than fixed effect tests. Although
the omnibus test did rank higher than the random effect test SKAT it usually did
not perform better than fixed effect tests due to a correction for multiple testing.
Although there was always at least one gene for which a particular test was most
powerful. This is how previous studies where rare variant association methods
were compared could always show that a particular method was more powerful
than the others by cherry-picking a simulation scenario. It could be seen that
even the genetic architecture of different genes can make one test appear more
powerful than another and it is always possible to generate data for a particular
gene to make the test of ones choice appear more powerful. Naturally this should
not be done and tests should be compared using all genes for a variety of disease
models.
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Simultaneous Sparse Signal Detection with Applications in Genomics

Hongzhe Li

(joint work with S. Dave Zhao, Tony Cai)

This paper presents a new statistical method for identifying important disease
genes. It functions by integrating eQTL study results with GWAS results from an
independent set of subjects. Motivated by Figure 1, the method tests each gene
for whether there are any SNPs which are associated both with the gene’s expres-
sion, using the genetical genomics data, and with disease, using the genome-wide
association data. Each significant SNP association, whether with expression or
with disease, is termed a “signal”, and the method detects simultaneous signals.
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The rationale behind this procedure is that SNPs can be viewed as perturba-
tions of the underlying biological systems, especially the gene regulatory networks
underlying various complex diseases. Therefore for a disease-causing gene, any ge-
netic variation that perturbs its expression is also likely to influence disease risk.
Furthermore, unlike differential expression, the proposed approach is able to differ-
entiate causal genes GR from reactive genes GC in Figure 1. This is because under
that causal model, GR and SNPC are independent conditional on disease, while a
simultaneous detection procedure will only identify genes that are associated with
at least one causal SNP. In other words, GR will not exhibit any simultaneous
signals.

GCSNPC Disease GR

Other SNPs, miRNA,
epigenetics, environment, etc.

cis

trans

Figure 1. A simple causal model illustating a problematic set-
ting for differential expression analysis. SNPC : causal SNP; GC :
causal gene; GR: reactive gene. SNPC can be either cis or trans
to GC . Only GC is of interest, but differential expression analysis
cannot distinguish between GC and GR.

Simultaneous signal detection is conducted one gene at a time. For a given
gene, define unobserved signal indicators Xi, Yi ∈ {0, 1} to indicate whether the
ith SNP, i = 1, . . . , n, is truly associated with the disease or the gene’s expression,
respectively. Significant GWAS and eQTL SNPs are usually rare, or sparse, so
very few of the Xi and Yi equal 1. The observed data consist of test statistics
Ui, for the SNP-disease association, and Vi, for the SNP-expression association.
These are assumed to follow

(1)
Ui | Xi = 0 ∼ FU

0 , Ui | Xi = 1 ∼ FU
i , FU

i ≤ FU
0

Vi | Yi = 0 ∼ FV
0 , Vi | Yi = 1 ∼ FV

i , FV
i ≤ FV

0 , Ui ⊥⊥ Vi,

where the FU
0 and FV

0 are null distributions, which may be known or unknown,
and the FU

i and FV
i are unknown alternative distributions. The test statistics are

assumed to be stochastically larger under the alternatives, which is reasonable for
two-sided tests. The Ui are usually obtained from a GWAS study using linear
or logistic regression for continuous or binary diseases and the Vi are usually be
obtained from an eQTL study using linear regression. Finally, the Ui and Vi are
independent for all i because the two studies are assumed to have been conducted
in two independent samples.
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Under Model 1, let ǫn = n−1
∑

i I(Xi = 1, Yi = 1) denote the fraction of
simultaneous signals. The simultaneous signal detection problem is thus to test

(2) H0 : ǫn = 0 vs. HA : ǫn > 0

using the observed (Ui, Vi), i = 1, . . . , n. RejectingH0 indicates that the expression
of the gene being tested is regulated by SNPs which are also associated with
disease, suggesting that the gene is likely to be functionally relevant.

To test whether Vi for a given gene and Ui share any simultaneous signals,
recall from model (1) that the Ui and Vi are assumed to be stochastically larger
when the signal indicators Xi and Yi equal 1, respectively. Thus if SNP i is truly
simultaneously associated with both the disease and the gene’s expression, then
both Ui and Vi should be large, so it is reasonable to define the statistic Ti = Ui∧Vi.
Intuitively, H0 of (2) should be rejected if at least one SNP has a observed large
value of Ti, so the proposed test statistic is

(3) Mn = max
i=1,...,n

Ti.

A large value of Mn would imply that the gene is functionally relevant for disease.
One caveat is that Ui and Vi should be on roughly the same scale, meaning that
the null variances of Ui and Vi should be comparable.

A permutation p-value for the proposed Mn statistic can be obtained by a
simple hypergeometric probability calculation. Asymptotic optimality in term of
detection boundary under the sparse model is derived and demonstrated using
both simulated and real data sets. The method was further demonstrated by an
application to a study that combined a genome-wide association study of human
heart failure and a eQTL study of human heart cardiomyocytes, where genotype
data was collected from 1,586 controls and 2,027 heart failure cases using the
Illumina OmniExpress Plus. In addition, Left ventricular free-wall tissue was col-
lected from hearts of 177 patients with advanced heart failure who were undergoing
transplantation and from 136 donor hearts without heart failure. Genotype data
were collected using using the Affymetrix Genome-Wide SNP Array 6.0 and only
markers in Hardy-Weinberg equilibrium with minor allele frequencies above 15%
were considered, leaving 347,019 SNPs. Our analysis identified nine interesting
genes that are potentially causal to heart failure. These genes involve heart mus-
cle contraction, inflammation and angiogenesis. In contrast, differential expression
analysis identified over 9,000 differentially expressed genes, which are impossible
for any laboratory validations.
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Multiple Phenotype Association Tests using GWAS Summary

Statistics

Xihong Lin

(joint work with Zhonghua Liu)

In this paper, we consider testing for association between a genetic variant and
multiple correlated phenotypes without access to the individual level genotype or
phenotype data. We first investigate the information contained in summary sta-
tistics from genome-wide association studies (GWASs), and show explicitly how
the means and correlation structure of the summary statistics are related to the
individual level data. Based on this connection, we can aggregate statistical ev-
idence across multiple phenotypes without using individual level data. Since a
genetic variant could affect multiple phenotypes in different directions with differ-
ent magnitudes, and the correlation structure among multiple phenotypes can also
be arbitrary, therefore we propose testing procedures that fall into two categories.

The first category contains a series of robust and powerful testing procedures
based on linear mixed models. The score testing statistic for the fixed effect aims
to detect homogeneous effects and the score testing statistic for the random effect
aims to detect heterogeneous effects. We further propose a number of ways to
combine these two independent score testing statistics and therefore the resulting
combined tests are more robust to effect heterogeneity.

The second category contains a series of tests based on principal components
(PCs) performed on the summary statistics. We introduced a novel geometric
concept called principal angle which can well explain the powers of single PC test
and PC combination based tests. We further used theoretical power analysis to
find the most favorable and least favorable alternatives for those PC based tests
and conclude that each test could be almost powerless under their least favorable
alternatives. To overcome this limitation, we propose two adaptive tests that take
the minimum p-value of PC combination based tests and the resulting adaptive
tests are more robust to various alternatives and are still powerful.

In addition, we have analytic formulas to compute the p-values for all of the
proposed tests. This computational advantage makes our methods practically ap-
pealing in large-scale genetic studies. The proposed tests all maintain correct type
I error rates and their powers are compared in various settings via simulation stud-
ies. We further apply these tests to a GWAS summary statistics data set from
the Global Lipids Genetics Consortium and identify hundreds of genetic variants
that were missed by the original single-trait analysis. The newly detected ge-
netic variants indicate potentially novel lipids biology by checking their functional
annotations. We also develop an R package MPAT freely available for public uses.

Key words: GWAS; Linear mixed models; Multiple phenotypes; Principal com-
ponents; Principal angles; Score tests; Summary statistics; Variance component
test
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Learning molecular networks: interventions, joint estimation and

causal interpretation

Sach Mukherjee

This talk focuses on the problem of estimating network structure from molecular
data. This problem is of current interest in computational and molecular biology
but also gives a concrete setting for the exploration of general ideas concerning
causal inference that has the virtue of allowing empirical verification by interven-
tional experiments.

The problem can be stated as follows. Given data on molecular variables
V = {1 . . . p} (e.g. transcripts or proteins), the goal is to estimate a graph G
with vertex set V that describes molecular influences between the variables. Here
we focus on directed graphs and causal influences and consider the “detection”
problem of estimating the presence or absence of edges in G (rather than estima-
tion of quantitative causal effects); we will use the shorthand (a, b) ∈ G to indicate
that the pair (a, b) belongs to the edge set of graph G. Furthermore, motivated
by problems that arise in modern “high-throughput” biology we focus especially
on approaches that could potentially scale to relatively large p, including variables
that can be measured but whose mutual interplay might currently be poorly un-
derstood. We focus on time course data in the molecular biological setting, but
note that the ideas (and concerns) are general.

Basic model. We first outline a basic model and then discuss in turn the mod-
elling of interventional data and joint estimation of multiple, non-identical net-
works. For time course data obtained at T discrete time points, the model we
employ is a directed graphical model, where each variable at each time point de-
pends on a subset of the variables at the previous time point. Letting X denote
the collection of data for all variables at all time points, the likelihood can be
written as

p(X | G, {θj}) =

p∏

j=1

T∏

t=2

p(Xt
j | X

t−1
πG(j), θj),(1)

where G is the (latent) graph of interest, Xt
j is the abundance of molecule

j at time t, Xt
A denotes abundances at time t for a subset A of the variables,

πG(j) ⊆ V is the set of parents of j in graph G and θj are parameters describing
the dependence of variable j on its parents in the graph. This type of model is
sometimes called a Dynamic Bayesian Network (DBN). The specific form (1) is a
very basic DBN, but more elaborate models (e.g. allowing G to change over time,
as in [2]), are possible. Here, we use standard linear models throughout, but note
that more complex models can be used (typically at added computational cost).

Inference is performed within a Bayesian framework that is closely related to
Bayesian variable selection. This allows us to perform inference with respect
to the latent graph G and report marginal posterior probabilities of the form
P ((i, j) ∈ G | X). As discussed in [3], models of the form (1) admit computation-
ally advantageous factorization, so that under some restrictions inference can be
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carried out exactly (by enumeration). For full details, including a biological case
study, see [3].

Modelling interventions. In many settings, data includes interventions. Such
data, when available, can be particularly informative with respect to causal re-
lationships, and should therefore be included in analysis. We do so by making
modifications to the likelihood for samples in which interventions were carried out
(this is an application of well known ideas from the causal directed acyclic graph
literature). An important point is that such modifications need to take account
of the nature of the intervention, in particular whether it is an intervention on a
node, edge or set of edges. For further details see [6].

Joint estimation over multiple, non-identical graphs. Increasingly, exper-
imental designs span multiple contexts - such as disease subtypes or cell types -
that may require context-specific models. However, it is not expected that context-
specific networks will be entirely different, but rather variations on a common
theme. This motivates joint estimation of the networks to share information be-
tween the problems, whilst allowing for differences. We have pursued this idea by
modifying the approach outlined above to allow simultaneous inferences concern-
ing K networks G1 . . . GK . This is done via a hierarchical Bayesian formulation,
using belief propagation for efficient inference. Full details are reported in [5].

Causal claims and their empirical assessment. The scientific goal of molec-
ular network estimation is usually to obtain causal insight into how molecules in-
fluence one another in specific biological or biomedical contexts. However, strong
assumptions are needed to guarantee that statistical models - including the graph-
ical models described above - will yield causal insights (even asymptotically), and
these assumptions may be difficult or impossible to check in practice. These issues
are rather general ones in causal modelling and appear in many places in the liter-
ature, see [1] for an enlightening discussion in the context of directed acyclic graph
models, and [6] for a brief discussion of causal issues in the specific context of the
models above. Furthermore, beyond general concerns about causal inference and
statistical models, there are specific issues that arise in biological settings and with
biological data that might make estimation of causal structure difficult in practice
(for a discussion of some of these points see [4]). The upshot of these concerns
is that one cannot be assured in advance that existing estimation methods can
truly deliver causal insights. Recently, we have therefore focused in parallel on
the question of empirical assessment of causal estimation: in other words, to ask
using real data whether proposed methods actually work in practice. We do not
discuss this line of work here, but mention these points to remind the reader of
these important caveats and limitations.

The methodologies described above are fully described in [3, 5, 6] and were joint
work with the co-authors of those papers, especially Steven Hill, Chris Oates
and Simon Spencer. The biological applications were performed in collaboration
with the Spellman and Gray laboratories at OHSU, Portland, USA and the Mills
laboratory at MD Anderson Cancer Center, Houston, USA.
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[2] Dondelinger, F., Lèbre, S. & Husmeier, D. (2013). Non-homogeneous dynamic Bayesian
networks with Bayesian regularization for inferring gene regulatory networks with gradually
time-varying structure. Machine Learning, 90(2), 191-230.

[3] Hill, S. M., Lu, Y., Molina, J., Heiser, L. M., Spellman, P. T., Speed, T. P., Gray, J. W.,

Mills, G. B. & Mukherjee, S. (2012). Bayesian inference of signaling network topology in a
cancer cell line. Bioinformatics, 28(21):2804–2810.

[4] Oates, C. J. & Mukherjee, S. (2012) Network inference and biological dynamics. The Annals
of Applied Statistics, 6(3):1209–1235.

[5] Oates, C. J., Korkola, J., Gray, J. W. & Mukherjee, S. (2014). Joint estimation of multiple
related biological networks. The Annals of Applied Statistics, 8(3):1892–1919.

[6] Spencer, S. E., Hill, S. M. & Mukherjee, S. (2015). Inferring network structure from inter-
ventional time-course experiments. The Annals of Applied Statistics, 9(1):507–524.

Evolving designs in disease genetics

Dan Nicolae

(joint work with Carole Ober, Oren Livne, Sahar Mozaffari and Matthew
Reimherr)

Understanding the role of genetic polymorphisms in human phenotypic variation
has been the main motivator for the development of new technologies and the dra-
matic increase in the variety and scale of data we have seen for the past decade.
Classical variant-phenotype association tests performed in genome-wide associa-
tion studies of thousands of subjects have led to a large number of discoveries,
but our understanding of the genetic architecture of human complex diseases is
still incomplete. In this talk I will argue that one solution for progress in the field
is the use of datasets that are deep in clinical data and/or genetic and genomics
measurements.

I will use studies in the South Dakota Hutterites to illustrate methods for inte-
grating whole genome sequencing, array SNP data, RNA-sequencing and pedigree
information in gene mapping studies. I will describe advantages of using founder
populations for such investigations, including cost-efficient study designs. The ef-
ficiency is achieved using a fast phasing and computationally efficient imputation
method that combines the advantages of pedigree-based and LD-based methods
and obtains accurate genotypes and high call rates in 1317 related Hutterites us-
ing whole genome sequencing data on only 98 related individuals. In addition,
the algorithm allows accurate parent-of-origin assignments for each allele as well
as imputed genotypes of recent ancestors (or other members of the pedigree) with
no DNA or available genotype information. The description of the algorithm has
been recently published in [1]. I will illustrate how this additional information
is used for discovery of parent-of-origin effects and imprinting in cardiovascular
traits.
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I will also present novel methodology for association testing with longitudinal
phenotypes [2]. The methods are based on ideas from functional data. In short, we
reconstruct trait trajectories (curves) via smoothing and interpolation, and apply
probabilistic tools for function spaces to curves. The inference is based on the
following model,

Yn(t) = α(t) +XT
1,nβ1(t) +XT

2,nβ2(t) + εn(t), t ∈ [0, ]1.

where Yn is the phenotype for the n-th subject, X1 are covariates, and X2 are the
genotypes for the K SNPs that are tested. We assume that {εn} are independent
and identically distributed in L2[0, 1], E[εn(t)] = 0, E‖εn‖

2 < ∞. The test statistic
for K predictors in X2 is given by,

Λ =

N∑

n=1

(‖Yn −XT
1,nβ̂1‖

2 − ‖Yn −Xnβ̂‖
2),

and it can be shown that if β2 = 0

Λ
D
→

∞∑

i=1

λiχ
2
i (K),

where the χ2 variables are iid and λi’s are eigenvalues from the spectral decompo-
sition of the covariance function. Applications to a genome-wide association study
of longitudinal lung function are shown.
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Confounding in omics data analysis: an example

Michael Nothnagel

(joint work with S. Siegert, A. Wolf, D.N. Cooper and M. Krawczak)

Confounding is a recurrent issue in statistical analyses, in particular of large and
retrospective datasets. Integrative approaches to omics data analysis, combining
two or more layers of genomic information, can be expected to be subject to mul-
tiple sources of confounding at the different layers. Here, I am going to present a
recent result for the most basal layer, namely genetic variation, demonstrating the
possibility of substantial confounding among causal mutations [1]. More specific,
a shared genealogy can induce a negative correlation between variants that act
as causal complements, i.e. causing the phenotype of interest independently from
each other; see Figure 1 for an illustration. A prerequisite for this phenomenon to
occur is some degree of tolerance of an organism to a limited number of deleterious
mutations before the trait manifests itself.



2996 Oberwolfach Report 52/2015

Figure 1. Illustration of confounding phenomenon. The
coalescent tree depicts the genealogy of a population of twelve
haploid individuals, with six being affected with some disease
(cases; lying symbol) and six healthy (controls; upright symbol),
as well as the carrier-ship of deleterious mutations of equal ef-
fect. Zero and one mutation are assumed to be fully tolerated
(0% affection probability), whereas two mutations are partially
tolerated (50%) and carrier-ship of three or more mutations in-
evitably leads to affection (100%). Occurrence of the red and
the yellow mutations is negatively correlated (Φcases = −0.63,
Φcontrols = −0.71). Following expectation, the yellow mutation is
enriched in cases (odds ratio of 2.00). However, the red mutation
is depleted in cases (odds ratio of 0.33) and would thereby, al-
though deleterious, appear protective in an epidemiological study.

A major consequence of this phenomenon is a possible depletion of a part
of causal variants in patients compared to unaffected individuals. Such disease-
causing mutations then appear ‘protective’ in genetic epidemiological studies. Pos-
sible consequences for such apparently protective mutations in omics analyses in-
clude a power loss due to the exclusion of causal variants from the integrative
model and in some burden association tests of rare genetic variation, but also
consideration of the wrong, not harmful allele in such models and in functional
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annotation. The described phenomenon adds to the list of ‘strange’ genetic epi-
demiological phenomena, such as ‘flip-flop associations’ [2], ‘synthetic association’
(see [3] and others) and ‘indirect associations’ [4], but is different from them.

We set out to evaluate the relevance of this confounding phenomenon through
coalescent simulations. To this end, we repeatedly simulated haploid populations
of 10,000 individuals under a Wright-Fisher model of a single non-recombining
locus without selection, randomly placing mutations on branches proportional to
branch length. Later, simulations were extended to up to ten loci in order to
approximate the effect of recombination between multiple causal loci. Disease
affection status was randomly assigned to each individual based on the number

of carried deleterious mutations at any of the loci, K =
∑L

l=1 kl where L denotes
the number of loci and kl the number of deleterious mutations at locus l. We
considered two affection probability functions, namely a multiplicative one,

P(K) = 1− (1 − γ)K ,

in order to model little-tolerance scenarios and a logistic one,

logit(P(K)) = α− β ·K ,

for describing scenarios of tolerance to a limited number of deleterious mutations
before trait manifestation. Two sets of scaling parameter values α, β and γ were
used in the simulations. For given number of loci, affection probability function
and parameter values, simulations were repeated until 1000 populations were avail-
able for each of three prevalence classes, namely rare (0.1-1%), common (1-5%)
and pandemic (10-20%). We found that oligo- and even multi-locus models for
common diseases can yield substantial proportions of disease-causing mutations
that appear ‘protective’ in genetic epidemiological studies by being depleted in
patients compared to unaffected individuals.

Our reported phenomenon implies a negative trend of the mutation effect sizes
with increasing disease prevalence. In order to evaluate this prediction, we anal-
ysed publicly available data from the GWAS catalogue [5]. More specific, we
considered only traits with at least ten SNP markers having been reported to be
associated with this trait at a significance level of 5 × 10−4. We indeed observed
the predicted negative trend for different sets of traits (34-51) and SNP mark-
ers (1495-2437), resulting from different filtering thresholds for disease prevalence
and significance level. The reported confounding phenomenon is, thus, consistent
with data on disease-associated variants from genome-wide association studies,
although the observed negative trend is also explicable by other causes.
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Disentangling transcriptional heterogeneity among single-cells: a

Bayesian approach

Catalina A. Vallejos

(joint work with John C. Marioni, Sylvia Richardson)

Multiple levels of biological heterogeneity define distinct populations — going from
different species (e.g. mouse, human) to organs within a subject (e.g. heart, brain)
and the individual cells that constitute an organ (e.g. neurons inside the brain).
Among other molecular phenotypes, such populations can be characterised by dif-
ferences in their gene expression profiles. Up until recently, transcriptomic studies
have focused on examining bulk expression, measured as an average across thou-
sands of cells. Some biological processes, however, require the study of variation
in gene expression at the single-cell level.

A few years ago, single-cell mRNA sequencing (scRNA-seq) emerged as a tool
for quantifying gene expression profiles of individuals cells. This novel technol-
ogy can uncover cell-to-cell heterogeneity in seemingly homogeneous populations
of cells. In addition to experimental challenges (such as the isolation of individ-
ual cells), statistical analysis of scRNA-seq data is itself a challenge. In partic-
ular, compared to bulk RNA-seq, scRNA-seq datasets lead to increased variance
estimates of gene expression. This is partially related to biological differences
(e.g. changes in mRNA content and the existence of cell sub-populations or tran-
sient states), which disappears when measuring bulk gene expression. Nonethe-
less, this variance inflation is also due to unexplained technical noise, which is
confounded with genuine cell-to-cell heterogeneity [1].

To deal with these issues, we developed BASiCS (Bayesian Analysis of Single-
Cell Sequencing data) [2], a hierarchical Bayesian model for the analysis of scRNA-
seq datasets. It borrows information between genes that are intrinsic to the popu-
lation of cells under study and technical spike-in genes which are artificially added
to each cell in known amounts. These known quantities provide a control or gold
standard to which empirical measurements of spike-in genes’ expression can be
compared, enabling a quantitative calibration of the technical noise. For each
gene i (i = 1, . . . , q) and cell j (j = 1, . . . , n), our model is defined as

(1) Xij |µi, φj , νj , ρij
ind
∼

{
Poisson(φjνjµiρij), if gene i is intrinsic;
Poisson(νjµi), if gene i is a spike-in, with

(2) νj |sj , θ
ind
∼ Gamma(1/θ, 1/(sjθ)) and ρij |δi

ind
∼ Gamma(1/δi, 1/δi),
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In this Poisson formulation, φj ’s and sj ’s act as cell-specific normalising con-
stants, bringing expression counts into a comparable scale. In addition, cell-
specific random effects νj capture unexplained technical noise, whose strength
is controlled by global noise parameter θ. Additional random effects ρij ac-
count for heterogeneous expression of a gene i across cells, whose strength is
quantified by gene-specific over-dispersion parameters δi. Finally, µi’s repre-
sent gene-specific expression rates, as an average across all cells. These pa-
rameters are known in case of spike-in genes, hence the identifiability restric-
tion n−1

∑n
j=1 φj = 1 ensures identifiability of all model parameters. Our soft-

ware is available at https://github.com/catavallejos/BASiCS. Importantly,
our method avoids stepwise approaches where datasets are firstly normalised and
secondly technical noise is removed prior to other downstream analyses, ignoring
the uncertainty related to the initial steps [1].

BASiCS can highlight genes showing particularly large or low heterogeneity
across the analysed cells. Highly variable genes (HVG) constitute key drivers of
cell-to-cell heterogeneity and are potential markers of novel cell sub-populations.
In contrast, lowly variable genes (LVG) related to core processes of the cell. To
detect HVG and LVG, we use a probabilistic approach based on tail posterior
probabilities associated to high and biological heterogeneity components. These
are calibrated by controlling a trade-off between false discovery and false negative
rates. We demonstrate our method using gene expression measurements from
mouse Embryonic Stem Cells. Cross-validation and meaningful enrichment of gene
ontology categories within genes classified as highly (or lowly) variable supports
the efficacy of our approach.

More recently, we extended BASiCS to include other downstream analyses that
help functional characterization of multiple pre-specified populations of cells (de-
fined by experimental conditions or cell-types) [3]. In particular, we focus on dif-

ferential expression analyses where the aim is to identify genes that exhibit changes
in expression between the analysed populations. Our method goes beyond tradi-
tional differential expression tools, where changes in expression are restricted to
differences in overall expression. Instead, we are also able to identify changes in
cellular heterogeneity. To validate our method, we compared expression between
mouse embryonic stem cells and pool-and-split samples consisting of pooled RNA
from thousands of cells split into single-cell equivalents. As expected, BASiCS
rules our a global shift in gene expression levels between cells and pool-and-split
samples. Additionally, we infer a substantial decrease of biological over-dispersion
on the pool-and-split samples, which is intuitive as they reflect pooled expression
levels across thousands of cells.
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Playing musical chairs in multi-phenotype studies improves power and

identifies novel associations

Noah Zaitlen

(joint work with Hugues Aschard, Peter Kraft)

Testing for associations in big data faces the problem of multiple comparisons,
with true signals buried inside the noise of all associations queried. This is par-
ticularly true in genetic association studies where a substantial proportion of the
variation of human phenotypes is driven by numerous genetic variants of small
effect. The current strategy to improve power to identify these weak associations
consists of applying standard marginal statistical approaches and increasing study
sample sizes. While successful, this approach does not leverage the environmental
and genetic factors shared between the multiple phenotypes collected in contem-
porary cohorts. Here we develop a method that improves the power of detecting
associations when a large number of correlated variables have been measured on
the same samples. Our analyses over real and simulated data provide direct sup-
port that large sets of correlated variables can be leveraged to achieve dramatic
increases in statistical power equivalent to a two or even three or four fold increase
in sample size.

The objective of this work is to develop a method that keeps the resolution
of univariate analysis when testing for association between an outcome Y and
candidate predictor X , but takes advantage of other available covariates C =
(C1, C2, . . . , Cm) to increase power. A first step toward that aim is to consider
the inclusion of covariates correlated with the outcome in a standard regression
framework. This may increase the signal-to-noise ratio between the outcome and
the candidate predictor when testing: Y = X + C. The selection of which co-
variates Ci are relevant to a specific association test is usually based on causal
assumptions. Putting aside the estimation of indirect and direct effect of X on
Y , epidemiologists and statisticians recommend the inclusion of two types of co-
variates: those that are potential causal factors of the outcome and independent
of X , and those that may confound the association signal between X and Y , i.e.
variables such as PC covariates that capture undesired structure in the data that
can lead to false association. All other variables that vary with the outcome be-
cause of shared risk factors are usually ignored. However, those variables carry
potential interesting information about the outcome, and more precisely about
the risk factors of the outcome. Because of their shared dependences they can be
used as proxies for risk factors of the outcome. As such they can be incorporated
in C to improve the detection of associations between X and Y . However, as
we discuss further, when these variables depend on the predictor X , using them
as covariates can lead to both false positive and false negative results depending
on their underlying causal structure. The presence of interdependent explanatory
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variables, also known as multicollinearity, can induce bias in the estimation of the
predictors effect on the outcome. We recently discussed this issue in the context of
genome-wide association studies that adjusted for heritable covariates. Take the
simple case of two independent covariates U1 and U2 that are true risk factors of
Y . When testing for association between X and Y , adjusting for U1 and U2 can
increase power, because the residual variance of Y after the adjustment is smaller
while the effect of X is unchanged. Consider the situation where U1 and U2 are
unknown but a covariate C that also depends on U1 and U2 has been measured. Y
and C display positive correlation, and when X is not associated with C, adjusting
Y for C increases power to detect (Y,X) association, although the gain in power
will be smaller than directly adjusting for U1 and U2. Problems arise when C is
associated with X . In this case adjusting Y for C biases the estimation of the
effect of X on Y , decreasing power when the effect X is concordant between C
and Y , and inducing false signal when the effect is discordant. The same princi-
ples apply for any number of variables correlated with the outcome provided the
sample size is large enough such that the effect of all covariates can be estimated
in a multiple regression. When none of the covariates depend on the predictor,
their inclusion in a regression can reduce the variance of the outcome without con-
founding, leading to increased statistical power while maintaining the correct null
distribution. This gain in power can be easily translated in terms of sample size in-
crease. The non-centrality parameter (ncp) of the standard univariate test equals
ncp = N × vX(σ2

Y ) where N , vX and σ2
Y are the sample size, the variance of the

outcome explained by the predictor, and the total variance of the outcome respec-
tively. When reducing σ2

Y by a factor τ , ncp = N×vX(σ2
Y /τ) = (N/τ)×(vX(σ2

Y )).
For example, when the covariates explain 30% of the variance of the outcome, the
power with the covariates is equivalent to analyzing a 1.4 fold larger sample size
without the covariates. When covariates explain 80% of the phenotypic variance
- a realistic proportion in some genetic datasets - the power gain is equivalent to
a 5 fold increases in sample size. The central problem that must be solved is how
to intelligently select a subset of the available covariates to optimize power while
preventing induction of false positive or false negative associations. To do this
all covariates associated with the outcome should be included except those also
associated with the predictor. A naive solution would consist in filtering based
on a p-value threshold from the association test between the predictor and each
covariate. However, unless the sample size is infinitely large, some associations
will be missed and unwanted covariates will be included. Furthermore, because a
number of the covariates will be associated with the predictor by chance, the over-
all distribution of p-values from the covariate-adjusted test can be inflated, again
potentially inducing false association signal. The underlying problem with p-value
based filtering is that p-values are used to reject the null hypothesis in favor of
the alternate. In this case the objective is to reject those covariates under the al-
ternative hypothesis. Therefore, instead of only using p-values to filter covariates,
we additionally develop a heuristic based on equivalence testing to improve the
filtering of covariates while controlling the type I and type II error rate. Consider
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β̂, the estimated marginal effect of the predictor X on the outcome Y . Using β̂
along with the estimated correlation between between C and Y , we can derive the

expected distribution of δ̂, the estimated regression coefficient between X and C
under a complete null model (β = 0 and δ = 0). When the observed regression
coefficient between X and C is far from expectation we filter out the covariate C.
Thus we have two types of filtering we use to select covariates, based filtering and
equivalence test based filtering. For each of these filters, rejection thresholds are
set according the variance explained by the potential covariates. We refer further
to our approach as the Musical Chair (MC) algorithm because the list of covariates
differs for each pair of outcome/predictors (Y,X) tested. More formally, for an
outcome Y , and a predictor Xs, s = 1 . . . n, the MC algorithm uses three features
to select covariates and perform statistical tests: i) p MUL, the p-value for the
overall association between all CI , and Xs; ii) r2C the amount of total outcome

variance explained by the potential covariates; and iii) β̂s, the estimated effect of
the predictor on Y . The first two features are used to define the stringency of the
filtering, being very high for low values of p MUL, which reflects the likelihood of
the presence of undesired covariates, and high values of r2C , because of potential

bias. The third feature, β̂s, is used to make inference on the expected null dis-

tribution of δ̂I , the regression coefficient between Xs and the Cl. It leverages the

correlation between β̂s and δ̂I under a complete null model (βs = 0 and δl = 0).

These features are combined to derive a confidence interval ∆l for each δ̂I , which
determines whether a covariate can be safely included in the model. We explored,
through extensive simulation studies, a set of parameters to weight each of these
components in order to optimize power and robustness.

An Orientational walk in the random forest: About first steps, solid

grounds and interactions in a random forest

Andreas Ziegler

(joint work with Marvin N. Wright, Inke R. König)

Untangling the genetic background of complex diseases requires the identification
of interaction effects and genetic variants involved in these interactions. Ran-
dom forests (RF) have repeatedly been heralded to be suitable for this endeavor.
Specifically, it is mostly argued that RF variable importance measures (VIM) take
interaction effects naturally into account. However, it has been shown that espe-
cially in the high-dimensional situation, standard VIM fail to detect interaction
effects if the interaction partners do not have strong marginal effects (e.g.,Winham
et al., 2012). Some authors have argued that VIM from non-totally randomized
trees suffer from combinations of defects, making them not useful at all (Louppe
et al. 2013). One approach is to use totally randomized trees or paired VIM. The
latter have not been investigated in simulation experiments regarding their ability
to detect interaction effects (Ishwaran, 2007). In addition, previous simulation
studies only investigated specific simple interaction settings. In contrast, many
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interaction scenarios are conceivable in reality including, for example, synergistic,
modifying, or redundant interaction effects (Lanktree & Hegele, 2009). In the first
part of this presentation, we provide a simple introduction to RF, starting with
the generation of single classification trees or probability estimation trees. A link
to nearest neighbor approaches is made. Next, different extensions are considered
which may be used with RF. This is followed by a detailed discussion of the tuning
parameters of RF, namely the number of trees in an RF, the terminal node size
of a tree and the number of independent variables made available at a split point.
VIM and variable selection procedures are introduced. In the second part of the
presentation, several statistical properties of RF are summarized. In the third
part, we report the results of a comprehensive simulation study for investigating
the ability of RF to detect interactions. We specifically simulated several realistic
interaction scenarios described before (Lanktree & Hegele, 2009; Musani et al.
2007). With these simulations we demonstrate that the VIM of RF are unable to
adequately capture interactions. In conclusion, RF are a simple-to-use machine
learning approach suitable for the analysis of genetic data. The statistical prop-
erties of this machine are convincing. However, with the standard RF procedure,
statistical interactions cannot be adequately detected.

Reporter: Iuliana Ionita-Laza
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