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Introduction by the Organisers

The mini-workshop successfully brought together researchers with different ex-
pertise (experimentalists, engineers, theoretical mechanicians, applied mathemati-
cians) working on plasticity. The main focus was on bridging the gap between
the mesoscopic theory of what we would like to call the dislocation configuration
and the macroscopic, mainly rate independent theory of plastic deformations. At
the mesoscopic level, dislocations are viewed atomistically while the surrounding
material is treated macroscopically as a purely elastic medium.

The range of topics that were discussed was extremely broad. In particular, the
following topics were discussed:

• experimental results with accompanying detailed phenomenological laws;
• upscaling of dislocation walls;
• line tension models and iterated Gamma-convergence;
• differential geometric aspects of dislocations and disclinations;
• rate dependent dynamics of dislocations;
• gradient plasticity models and generalizations;
• dimensional reduction in small strain elasto-plasticity;
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• plates with incompatible strains;
• structured deformations, among other themes.

Further, two discussion sessions were organized to confront viewpoints.
The input by the experimentalists in the group was extremely important. One

of the outcomes of the discussion sessions was that there is still a large gap in our
understanding of the “free energy” of neutral dislocation configurations, i.e., those
with net Burgers vector zero. Another problem that emerged is the relationship
between macroscopic hardening laws and the mesoscopic interaction of dislocations
moving on a glide plane with the farthest dislocations transversal to the plane.
In a different direction, the presentations in the workshop showed the variety
of expertise in the application of energetic methods (Γ-convergence and energy
descent flows) in the context of linear elasticity with defects, as well as in that of
nonlinear elasticity with defects.

In the nonlinear elastic context, the workshop brought forth the need to de-
velop the connection between the PDE approach to nonlinear elasticity and the
differential geometric description of the elastic strain field à la Kondo and Kröner.

The topic of large scale dislocation dynamics simulation was unfortunately not
represented at this workshop. This should be another topic for a future workshop
or mini-workshop on plasticity.

Generally speaking, the participants felt that the mini-workshop format with
less than twenty researchers was particularly successful in promoting discussions
and new interactions. The week was pleasantly enhanced by the magnificent
weather that was kind enough to stay with us even during the traditional walk to
Saint Roman.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Structured deformations, elasticity with disarrangements, and

plasticity

David R. Owen

In this two-part talk, I summarize the background on the multiscale geometry of
structured deformation that is needed in order to broaden sufficiently the field
theory of finite elasticity so as to incorporate the effects both of non-smooth,
submacroscopic geometrical changes (disarrangements ) and of smooth submacro-
scopic geometrical changes. One of the key features of a structured deformation
(g,G) is the ability to approximate the smooth, injective macroscopic deformation
g and the continuous tensor field G (with 0 < detG ≤ det∇g) by a sequence of
piecewise-smooth, injective deformations fn that converge to g and whose classi-
cal gradients ∇fn converge to G. A corollary to this Approximation Theorem
shows that the difference M = ∇g−G = ∇ limn→∞ fn− limn→∞ ∇fn is a volume
density of jumps in the approximating deformations fn, and this yields an addi-
tive decomposition ∇g = G +M in which both terms have definite geometrical
meanings and definite transformation properties under changes in observer and
changes in reference configuration. We are then justified in calling M the (volu-
metric) disarrangement density and G the deformation without disarrangements.
Since G is invertible, this yields immediately two multiplicative representations
∇g = GMr = MlG in which each factor along with its transformation proper-
ties is precisely identified . The additive and multiplicative decompositions are
purely geometrical and all are valid for finite deformations, and the latter provide
a connection with the geometrical starting point of theories of plasticity. Further
connections with the geometry of plastic deformation are noted through the iden-
tification of analogues in structured deformations of the Burgers vector and of the
dislocation density common to theories of bodies with continuous distributions of
dislocations.

The geometrical refinements associated with structured deformations in turn
provide refinements for the stress field in any body, independent of its consti-
tutive properties. In particular, the stress S in the reference configuration is
shown to decompose additively and multiplicatively. The additive decomposition
(detK)S = S\ + Sd (with K = (∇g−1)G) provides both a stress field S\ away
from disarrangement sites and a stress field Sd at disarrangement sites while, at
the same time, the field S\ has the dual role of the stress in a “virgin configu-

ration” of the body. The multiplicative decomposition (detK)S = S\K
T and

the additive decomposition yield the consistency relation S\M
T + Sd(∇g)T = 0

that, for a given structured deformation, connects the two stress fields S\ and
Sd. This consistency relation is universal (it applies to any material) and has a
certain uniqueness property. Moreover, the additive decompositions of ∇g and
of (detK)S together yield a four-term additive decomposition of the stress-power

(detK)S · (∇g )· in which the sum of the two “mixed terms” S\ · Ṁ + Sd · Ġ
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is identified as a source of internal dissipation that emerges from the multiscale
geometry.

This background is then used to provide the constitutive assumptions that pre-
scribe an elastic body capable of undergoing disarrangements and then to record
the complete field relations that govern the isothermal, dynamical evolution of
such a body under prescribed boundary tractions and placements. The require-
ments that both the free energy response function (G,M) 7−→ Ψedis(G,M) and the
internal dissipation be frame-indifferent imply that the Cauchy stress is symmet-
ric, and these field relations reduce to those of classical, finite elasticity when the
deformations of the body are restricted to be classical deformations (g,∇g), i.e.,
when G = ∇g so that no disarrangements occur. A broadened version of elasticity
with disarrangements is presented that allows for the presence of strain-gradients
through the enriched geometry of “second-order structured deformations”, and
this is shown to lead to the assumption that the free-energy response is of the
form (G,M,∇G) 7−→ Ψ(G,M,∇G). In this version, the field ∇G is shown to be
a disarrangement density that accounts for jumps in the gradients ∇fn of approx-
imating deformations. A restricted version of elasticity with disarrangements is
considered in which the disarrangements are purely dissipative, in the sense that
Ψedis no longer depends upon M .

Elasticity with purely dissipative disarrangements is then used to define the
notion of “disarrangement phase” and to provide a basis for modelling granular
bodies, i.e., bodies composed of much smaller elastic bodies for which mutual short-
range forces across common boundaries are weak (cohesionless granular media).
Examples of disarrangement phases include both compact phases (no disarrange-
ments) and loose phases (stress-free, minimum energy phases). The former are
available for every macroscopic deformation g, while the latter are available only
when the macroscopic volume change det∇g is sufficiently large. The availability
of both loose and compact phases in a granular body leads to the study of moving
interfaces that separate these two phases, a phenomenon readily visible when one
shovels a thin layer of powdered snow or bends a paper-back book.
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Energy Scaling of Prestrained Thin Plates and Monge-Ampère

Anomalies

Mohammad Reza Pakzad

(joint work with Marta Lewicka)

Consider the thin plate

Ωh := Ω× (−h/2× h/2), Ω ⊂ R
2,

where Ω is simply-connected. We assume the existence of a smooth enough pre-
strain tensor field Ah : Ωh → R3×3, detAh > 0, with the perturbation scaling
Ah − Id ∼ hγ for the range 0 < γ < 2 on Ωh. In this framework, we consider a
fully nonlinear elastic variational model for the deformations

u ∈W 1,2(Ωh,R3),

with the elastic energy:

Eh(u) :=
1

h

∫

Ωh

W ((∇u)(Ah)−1),

where the elastic energy density W satisfies standard properties of normalization,
frame invariance and non-degeneracy [1]. This model could be justified through the
standard multiplicative decomposition ansatz ∇u = FeA

h, where Ah represents
growth, plasticity or any other similar phenomenon; or derived through the obser-
vation that the prestrain Ah induces a natural Riemannian metric Gh := (Ah)TAh

on Ωh. From this latter perspective, by minimizing the energy Eh, we seek orien-
tation preserving deformations u closest possible to the ideal isometric immersions
of the Riemannian manifold (Ωh, Gh) into R3. We do not consider any boundary
conditions or body forces.

The main question is: “How does the infimum of the energy Eh scale in the
thickness variable h?” In a first step, it can be shown that

inf Eh > 0

iff the Riemann curvature tensor of Gh does not identically vanish [4]. It is further
proven that

inf Eh ∼ hγ+2

iff there exists v ∈W 2,2(Ω) solving the Monge-Ampère equation

(1) det∇2v = f,

where f : Ω → R is calculated through the first moment of the prestrain pertur-
bation by

f := lim
h→0

1

hγ+1

∫ h/2

−h/2

curl curl(Ah − Id)dx3 6≡ 0.
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In this regime, the Γ-limit of 1
hγ+2E

h is given by the small slope biharmonic model

I(v) :=
∫
Ω
Q2(∇2v − B), subject to the Monge-Ampère constraint det∇2v = f ,

where the positive quadratic form Q2 and B are respectively dependent onW and
the asymptotic behavior of the first moments of Ah [3].

Focusing on the question of the existence of weak and very weak solutions for the
Monge-Ampère equation, we reformulate (1) as

(2) Det∇2v := −1

2
curl curl(∇v ⊗∇v) = f.

We show that for all 0 < α < 1/7, f ∈ L2(Ω) and v0 ∈ C0(Ω̄), there exists a
sequence vn ∈ C1,α(Ω̄), uniformly converging to v0, and solving Det∇2v = f [5].
This result has been obtained through convex integration methods à la Nash and
Kuiper and shows the total degeneracy of the very weak Monge-Ampère operator
Det∇2 in this regime. A direct consequence is that under minimal regularity
assumptions on Ah:

inf Eh ≪ h1/2.

Moreover, it implies that the Γ-limit of 1
hβE

h for 0 ≤ β < 1/2 is a degenerate
model and points to the appearance of wrinkling patterns in these energy regimes.

It is established that a very weak solution v : Ω → R of (2) displays rigidity
features, if v ∈ C1,α, α > 2/3 [5], or if v ∈ W 2,2 [6, 2]. Therefore, in these better
regularity regimes the equation displays a structure which is absent in the flexible
one discussed above. Not much is known for solutions v ∈ W 2,p if 1 ≤ p < 2.
The best one can hope from the Nash-Kuiper iteration method is to obtain C1,α

solutions in the regime α < 1/3, which would lead to the estimate

inf Eh ≪ h.

A major open problem is to understand the qualitative behavior of the solutions
to (2) in the regime 1/3 < α < 2/3. In the same vein, the asymptotic behavior of
the minimizers or approximate minimizers of prestrained variational energy Eh is
not yet well understood in the energy regimes:

hγ+2 ≪ inf Eh ≪ h.
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Engineering Approach to Plasticity: Work Hardening

Günter Gottstein

Crystalline Solids, in particular metallic materials, deform by crystallographic
glide, i.e. by simple shear on discrete slip planes and in discrete slip directions.
The mechanical properties of such materials are technically defined in a tension
test, where a cylindrical sample is extended at constant rate while concurrently
the force is measured that is necessary to maintain the rate of deformation. If
the force is divided by the initial cross section of the sample, we obtain the en-
gineering stress σ. The engineering strain ǫ is defined by the elongation divided
by the initial length of the specimen. If the engineering stress is plotted versus
the engineering strain, we obtain the so-called flow curve or hardening curve of a
material. While the flow curves of different materials are different in detail, they
all show an increase of the stress with strain. This phenomenon is referred to as
strain hardening. The underlying physical mechanisms can be best investigated
on single crystals, where the crystallography of deformation is defined and where
the stress strain curve can be converted to a shear stress τ -shear strain γ curve
in the activated glide system. A typical shear stress-shear strain curve can be
subdivided in 4 regimes, the elastic regime, stage I (easy glide), stage II (linear
athermal hardening), and stage II (dynamic recovery). Of importance for strain
hardening are stages II and III (stage I does not occur in single crystals oriented
for multiple slip or in polycrystals and is an idiosyncrasy of single slip). A simple
introduction can be found in [1].

Most commercial alloys, except ferritic steels, have a face centered cubic crystal
structure, where the slip planes are {111} planes and the slip directions are parallel
to 〈110〉. Hence, there are 12 different slip systems in fcc crystals. The mechanism
of crystallographic slip is the motion of dislocations in the crystal. Their Burgers
vector (glide vector) b is parallel to the glide direction. The flow stress of a material
is equivalent to the glide resistance that a dislocation experiences during its motion
on the glide plane. Typically a dislocation moves a distance L of about 100 times
the average spacing of the dislocations in the crystal before it is arrested. Even
a well annealed metal crystal has a dislocation density of typically ρ ≈ 1010m−2,

i.e. a dislocation spacing of ρ−
1
2 ≈ 10−5m or 10µm. A strongly deformed crystal

can obtain a maximum dislocation density of the order of 1016m−2. The glide
resistance of a dislocation is the sum of two contributions, the long range stress
field τp of parallel dislocations (i.e. of the same slip system but at other locations)
and the short range stress field τs of dislocations intersecting the glide plane, which
have to be cut for a continuous motion of the dislocation, i.e. τ = τp + τs. The
passing stress τp is an athermal stress (depends on temperature like the shear
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modulus µ) and cannot be thermally activated. The cutting stress τs is a short
range stress and can be overcome by thermal activation. Both stress components
scale with µb and the spacing of the respective dislocations, i.e. τp ∼ µb

√
ρp

and τs ∼ µb
√
ρs, where ρp and ρs are the parallel and intersecting dislocation

densities. The experimentally confirmed principle of similitude states that all
dislocation densities develop proportional to the total dislocation density ρ, which
yields according to Taylor [2]

(1) τ = αµb
√
ρ

with α ≈ 0.5. Kocks and Mecking [3] consider the total dislocation density ρ
as only state parameter of plastic deformation, which is a reasonable assump-
tion for stages II and III. To predict the flow curve, it is necessary to know
the evolution of the dislocation density with strain. In a strain increment dǫ
the total dislocation density changes by storage of moving dislocations dρ+ =
(bL)−1dγ ∼ √

ρ (L− slip length of dislocation) and annihilation of stored disloca-
tions dρ− = −LRρdγ, where LR is the annihilated dislocation density per strain
increment with

(2) dρ = dρ+ + dρ−,

(3)
dρ

dǫ
= A1

√
ρ−B1ρ = A2τ −B2τ

2.

For LR = 0, dτ
dγ = const. (stage II, linear and athermal hardening). For LR > 0, the

hardening rate dτ
dγ decreases with increasing strain (stage III, dynamic recovery).

With constants A1,2 and B1,2, equation 3 integrates to

(4) τ = τs − (τs − τ0) exp

(
− γ

γc

)
,

where τs is the steady state flow stress, τ0 is the yield stress (critical resolved shear
stress for plastic deformation) and γc a characteristic shear strain. Equation 4 is
also known as Voce-equation. It follows that the strain hardening rate decreases
linearly with stress

(5)
dτ

dγ
= A3 −B3γ,

dτ/dγ vs. τ is also referred to as Kocks-Mecking plot. For polycrystals one uses
the relations

(6) Mτ = σ and dǫ =
dγ

M

to obtain a prediction of the flow curve σ(ǫ) (M is the so-called Taylor factor).
For tensile deformation of a polycrystal with random crystallographic textureM =
3.06. The Voce equation is usually a good fit to the measured stress-strain curves.
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Rate-independent versus viscous evolution of dislocation

microstructures in finite crystal plasticity

Klaus Hackl

(joint work with Christina Günther, Philipp Junker, Dennis Kochmann)

1. Introduction

For nonconvex energy densities, no homogeneous deformation can be found as
a minimizer. The former homogeneous material forms patterns which reduce the
energy of the crystal instead. We outline numerical schemes for a viscous evolution
and a rate-independent evolution of laminates as the minimizing microstructures.

2. Variational framework

This material model is derived in a variational setting. Thus, a Lagrangian is
introduced which consists of the time derivative of the specific Helmholtz free
energy density Ψ (∇u, z) and the dissipation potential ∆ (z, ż) [2],

(1) L (∇u, z, ż) =
d

dt
Ψ(∇u, z) + ∆ (z, ż) .

The actual displacement field u is obtained from the principle of minimum po-
tential energy, while the evolution of the internal variables z is governed by the
minimum of the dissipation potential [3],

(2) ż = argmin {L (∇u, z, ż) | ż} .

3. Material Model

Here we consider incompressible neo Hookean material for which the derivation of
the partially relaxed energy for a first order laminate can be found for example
in [1]. The internal variables describing the laminate are the volume fraction λ,
the plastic slips γi, the orientation angle of the laminate φ, and the hardening pa-
rameters pi. The dissipation potential consists of a rate independent contribution,
and for the viscous evolution a quadratic term in the rate of plastic slip is added.
The complete dissipation potential takes the form

(3) ∆ (γ̇) = r |γ̇|+ s

2
γ̇2,
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with s being a viscous material parameter. Based on Eq. (3), the relaxed dissi-
pation potential for a first order laminate with two domains can be determined.
In the case, that the viscous parameter s equals zero, the stationarity conditions
take the form

∂Ψrel

∂λ
∋ r |γ1 − γ2| signλ̇(4)

∂Ψrel

∂γ1
+
∂Ψrel

∂p1
signγ̇1 ∋ r(1 − λ) |γ̇1| signγ̇1(5)

∂Ψrel

∂γ2
+
∂Ψrel

∂p2
signγ̇2 ∋ rλ |γ̇2| signγ̇2.(6)

From these, the evolution equations are obtained and a numerical scheme can be
outlined [1]. Taking the viscous contribution into account, one has to introduce a
smooth transition zone with the width of δ (volume ratio) between the domains.
The derivation and the result are presented in [4]. The application of the principle
of the minimum of the dissipation potential leads to explicit evolution equations,

(7) λ̇ = − 2δ

s (γ1 − γ2)
2

(∣∣∣∣
∂Ψrel

∂λ

∣∣∣∣− r |γ1 − γ2|
)

+

sign
∂Ψrel

∂λ

for the volume fraction of the second domain (the volume fraction of the first
domain is 1− λ), and

(8) γ̇i = − 1

sλi

(∣∣∣∣
∂Ψrel

∂γi

∣∣∣∣− rλi

)

+

sign
∂Ψrel

∂γi

for the plastic slip in both domains. The update of the angle is found by a local
minimization, thus

(9) φ̇ = − δ

2sλ (1− λ) (γ1 − γ2)
2

(∣∣∣∣
∂Ψrel

∂φ

∣∣∣∣− 4rλ (1− λ) |γ1 − γ2|
)

+

sign
∂Ψrel

∂φ
.

The updating of the hardening parameters follows the procedure presented in [1].

4. Numerical example

As a numerical example, a shear test is presented with the deformation gradient
described by

(10) F =



1 + w 0 0
0 1

1+w 0

0 0 1


 .

and a slip system characterized by a slip angle of ϕ = 70◦. For the viscous
evolution, the resulting evolution of the microstructure is time dependent. In
order to reach a viscosity limit, the material gets relaxation time after every load
update. This loading velocity can be controlled by an integer ϑ so that the loading
velocity reads ∆w

ϑ∆t and in this example ϑ = 10 is chosen. The evolution of the
volume fraction have similar behaviors, the volume of one laminate region increases
from zero to one, then the crystal only consists of this region. Also the evolution
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Figure 1. History variables, a. rate-independent, b. modified approach

of the plastic slip show a good agreement, Fig. 1. In contrast to these similarities,
the stress of both approaches drastically deviate from each other, Fig. 2.

Figure 2. Stresses and energy, a. rate-independent, b. modified approach
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Why gradient flows of some energies good for defect equilibria are not

good for dynamics, and an improvement

Amit Acharya

(joint work with Chiqun Zhang, Xiaohan Zhang, Dmitry Golovaty, Noel
Walkington)

Screw dislocations appear in the microscopic structure of crystalline materials
(e.g. metals) and wedge disclinations occur in nematic liquid crystals, the latter
an intermediate phase of matter between liquids and solids. Mathematically, their
study is challenging since they correspond to topological singularities that result
in blow-up of total energies of finite bodies when utilizing most commonly used
classical models of energy density; as a consequence, formulating nonlinear dynam-
ical models (especially pde) for the representation and motion of such defects is a
challenge as well. Summarizing and adapting the ideas in [1], I will discuss the de-
velopment and implications of a single pde model intended to describe equilibrium
states and dynamics of these defects. The model alleviates the nasty singularities
mentioned above and it will also be shown that incorporating a conservation law
for the topological charge of line defects allows for the correct prediction of some
important features of defect dynamics that would not be possible just with the
knowledge of an energy function. These include an ‘intrinsic pinning’ effect, i.e.
a Peierls stress effect, of realistic magnitude in translationally invariant media
as well as defect annihilation, repulsion, and dissociation. The L2 gradient flow
dynamics of the energy function involved is shown to be incapable of displaying
these effects and the reason behind this deficiency is explained.
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A generalization of Korn’s first inequality to incompatible tensor fields

with applications in gradient plasticity

Patrizio Neff

In infinitesimal gradient plasticity with plastic spin, one seeks to determine the
displacement u : Ω ⊂ R3 → R3 and the non-symmetric plastic distortion p : Ω ⊂
R3 → R3×3. A simple isotropic model connecting these two fields can be obtained
by choosing an energy function

(1)

∫

Ω

µ ‖ sym(∇u − p)‖2︸ ︷︷ ︸
elastic energy

+ µ ‖ sym p‖2︸ ︷︷ ︸
lin. kinematic
hardening

+ µLc ‖Curl p‖2︸ ︷︷ ︸
dislocation energy

dx ,

where ‖ . ‖ is the Frobenius matrix norm, symX = 1
2 (X +XT ) is the symmetric

part of X ∈ R
3×3 and Curl p denotes the curl applied row-wise. Here, sym(∇u−p)

represents the symmetric elastic strain and Curl p is the dislocation density tensor.
The balance of linear momentum is obtained from (1) by taking free variations
with respect to u and suitably integrating by parts, which leads to

(2) Div 2µ(sym(∇u − p)) = 0 , u
∣∣
∂Ω

= u0(t) .

The usual evolution equation for p, satisfying the second law of thermodynamics,
can be obtained as

(3) ṗ ∈ ∂χ (2µ sym(∇u−p)+ 2µ sym p−Curl Curl p) , p×n
∣∣
∂Ω

= 0 , p(0) = p0 ,

where ∂χ is the subdifferential of an elastic domain in generalized stress space.
Both equations (2) and (3) can be reformulated, using convex analysis, as a vari-
ational inequality of second type. The existence and uniqueness of a solution to
such a formulation hinges on the coercivity of (1) in suitable Sobolev spaces, giv-
ing a precise sense to the tangential traces for p. We use the Sobolev space H1

0 (Ω)
for the displacement u and the space H(Curl; Rn×n) for the plastic distortion.

Regarding the coercivity of the energy, the following is established in [1, 2, 3]:

∃C+ > 0 ∀ p ∈ H(Curl; Rn×n) , p× n
∣∣
∂Ω

= 0 :
∫

Ω

‖ symp‖2︸ ︷︷ ︸
plastic strain

+ ‖Curl p‖2 dx ≥ C+

∫

Ω

‖p‖2︸︷︷︸
plastic

distortion

+ ‖Curl p‖2 dx .(4)

For p = ∇ϑ, ϑ ∈ H1
0 (Ω) we recover a version of Korn’s inequality and for a

skew-symmetric tensor field p = A we obtain Poincaré’s inequality, since

CurlA(x) ∼= ∇A

for all fields of skew-symmetric matrices A. From (4), it follows that the system
(2), (3) has a unique, global-in-time solution.
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Engineering Approach to Plasticity: Work Softening

Günter Gottstein

Dislocations are crystal defects which do not occur in thermodynamic equilib-
rium. The dislocations stored in a deformed metal are therefore in mechanical
equilibrium but thermodynamically unstable. If the temperature increases, new
deformation mechanisms become available (for instance climb of dislocations owing
to self-diffusion) which renders the dislocation structure unstable and therefore,
reduces the dislocation density. There are two kinds of processes that reduce the
dislocation density, recovery and recrystallization. Recovery encompasses all pro-
cesses that lead to annihilation of dislocations or to their rearrangement in lower
energy dislocation structures, e. g. low angle grain boundaries. Recrystallization
occurs by the nucleation of strain free (virtually dislocation free) grains and their
growth with concurrent destruction of the stored dislocation structure. If these
processes occur subsequent to deformation during annealing they are referred to as
static recovery and static recrystallization, in case they proceed concurrently with
deformation, notably during elevated temperature deformation, they are called
dynamic recovery and dynamic recrystallization. Dynamic recovery leads to the
attainment of a steady state flow stress, dynamic recrystallization makes itself felt
by one or more maxima of the flow curve and also the attainment of a steady state
flow stress at a stress level below the maximum stress. During elevated tempera-
ture deformation stage III hardening is succeeded by two more stages, stage IV and
stage V. During stage IV the hardening rate remains low but constant, whereas in
stage V the hardening rate goes to zero and correspondingly, steady state flow is
attained when strain hardening and dynamic recovery balance each other. Owing
to these additional stages, the simple hardening model of Kocks and Mecking [1],
which predicts only stages II and III of the hardening curve, cannot predict the
observed hardening behavior at large strains. In order to account for stages IV
and V and the observation of dynamic recovery in terms of dislocation patterning
by the formation of subgrain structures (essentially low angle grain boundaries),
we proposed a work hardening model, which is based on three different disloca-
tion densities as microstructural state variables, namely mobile dislocations ρm,
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dislocations in cell walls ρw, and dislocations in cell interiors ρi [2].

τ = f(ρm, ρw, ρi, ǫ̇, T )

In stage IV the voluminous cell walls condense to subgrain boundaries which be-
come mobile in stage V. This structural conversion will locally lead to the nu-
cleation of dynamic recrystallization which will then spread out over the entire
deformed volume. The initiation of dynamic recrystallization is associated with
the transition from stage IV to stage V, which corresponds to a point of inflection
on the dτ/dγ vs. τ curve [2]. This point of inflection was also predicted by Poliak
and Jonas [3] as point of instability from thermodynamic reasons.
The hardening model is formulated as follows [4].





ρ̇m = f (ρm, ρw, ρi, ǫ̇, T ) ,

ρ̇w = f (ρm, ρw, ǫ̇, T ) ,

ρ̇i = f (ρm, ρi, ǫ̇, T ) ,

ρ̇ = ρ̇+ + ρ̇−.

The dislocation density per increment of strain increases due to the production
of mobile dislocations, it decreases by various interactions among the dislocations
[4]. The kinetic equation of state is given by the Orowan equation, which relates
the strain rate to the dislocation velocity v [5, 6]
{
ǫ̇ = ρmbv,

v = v0λi,w exp
(
− Q

kT

)
sinh

(
τeff,i,wVi,w

kT

)
, Vi,w = bhλi,w, λ−1

i,w =
√
ρi,w.

The respective resolved shear stresses read

τi,w = τeff,i,w + αµb
√
ρi,w,

from which the external stress (flow stress) can be calculated as

σext =M (fiτi + fwτw) .

Here fi and fw are the volume fractions of cell interior and cell wall, respectively, Q
(the activation energy for the obstacle) dislocation interaction, V (the activation
volume), λ (the obstacle spacing), µ (the shear modulus), and α ≈ 0.5. Stage
IV can be obtained in the model by making fw dependent on the hardening rate
θ = dτ

dγ

σext =M (fiτi + fw(θ)τw) .

Stage V takes also the dislocation annihilation due to subboundary motion into
account

ρ̇ =
vsρ

V
,

where vs is the subboundary velocity and V the swept volume. With this infor-
mation the flow curve and in particular the point of inflection on the θ(σ) curve
can be calculated [2, 7].
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Homogenization of dislocation dynamics

Lucia Scardia

(joint work with Maria Giovanna Mora and Mark Peletier)

It is well known that plastic, or permanent, deformation in metals is caused by
the concerted movement of many curve-like defects in the crystal lattice, called
dislocations. What is not yet known is how to use this insight to create theoretical
predictions at continuum scales. It would be natural to take a sequence of systems
with increasing numbers of dislocations, and derive an effective description in
terms of dislocation densities. A mathematical procedure that proved to be very
successful for the micro-to-macro upscaling is based on Γ-convergence, a variational
convergence that is well known in the mathematical community and has been
already applied to a variety of problems in materials science.
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In [4] and [9] we used Gamma-convergence to derive a continuum description of
the behaviour of walls of dislocations close to an obstacle, starting from a discrete
model of the dislocation interactions. Our rigorous approach led to a family of
upscaled models that we compared with other theories proposed in the literature,
offering a selection criterion to identify the hidden assumptions in some of the
previous derivations.

In [6] we extended these results to more general distributions of positive dis-
locations in the plane, still in the single-slip case with Burgers vector b = e1,
but removing the constraint for the dislocations to arrange into vertically periodic
structures.

More precisely, for a density of dislocations given by µ = 1
n

∑n
i=1 δzi , with

zi ∈ Ω ⊂ R2 for every i, we considered a semi-discrete dislocation energy of the
form

(1) Fn(µ) = inf
β∈An(µ)

{
1

2

∫

Ωn(µ)

Cβ : β dx

}
,

where Ωn(µ) = Ω \ ∪iBεn(zi), with εn ≪ 1/n, and the admissible class An(µ) is
defined as

An(µ) :=
{
β ∈ L2(Ω;R2×2) :

∫

∂Bεn (zi)

β τ dH1 =
e1
n

for every i = 1, . . . , n
}
.

It was shown in [3] that the energy contribution in a small neighbourhood of
every dislocation is of order | log εn|/n2 (hence the total self energy is of order
| log εn|/n), while every pair of dislocations contributes an interaction energy of
order n−2 (hence the total interaction energy is of order 1). Therefore, depending
on how εn scales with respect to n, one of the two energy contributions will be
dominant. On the other hand, the self energy is a (possibly very large) constant
and plays no role in the dislocations interactions, which is our main interest.

For this reason, instead of studying the asymptotic behaviour as n → ∞ of
the energy Fn in (1), we first subtracted the self energy contribution from Fn,
obtaining an interaction energy Fn. In [6] we proved that the Γ-limit of Fn with
respect to narrow convergence is the functional F given by

(2) F(ρ) =

∫∫

Ω×Ω

V (x, y)dρ(x)dρ(y) + min Iρ(v),

where ρ is the limit of discrete measures µn. In (2) the interaction potential V is
defined as

V (x, y) :=

∫

Ω

CKx(z) : Ky(z) dz,

where Kx is the canonical strain field generated by a single dislocation at x in R2,
namely it solves

(3)

{
div CK(·;x) = 0 in R2,

CurlK(·;x) = e1δx in R2.
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The second term in (2) is a boundary term due to the boundedness of the domain
Ω, and represents their interactions with ∂Ω.

The continuum limit energy (2) has an expression that is common to many
(also unrelated) systems of interacting particles. In particular, from (3) follows
that |V (x, y)| ∼ − log |x − y| for x close to y, and potentials with a logarithmic
singularity have been studied extensively in the literature (see e.g. [1], [8]-[7]).
Our work is an important first step towards the analysis of equilibrium dislocation
configurations and patterning.

However, macroscopic plasticity is heavily dependent on dynamic properties of
the dislocation curves. This motivated us to go further and try to extend our
results to the dynamical case. In [6] we added to the interaction energy Fn a
time-dependent forcing term

∫

Ω

f(x, t) dµ(x)

and coupled the total microscopic energy F̃n(µ) := Fn(µ) −
∫
Ω
fdµ with a dissi-

pation distance of the following form:

(4) d(µ, ν) :=

{
infγ∈Γ(µ,ν)

∫∫
Ω×Ω |x− y| dγ(x, y) if (π2)#µ = (π2)#ν,

+∞ otherwise,

where Γ(µ, ν) is a restricted set of couplings of µ and ν,

(5) Γ(µ, ν) :=
{
γ ∈ P(Ω× Ω) : γ(A× Ω) = µ(A), γ(Ω×A) = ν(A)

for all Borel sets A ⊂ Ω, and π2(x) = π2(y) for γ-a.e. (x, y) ∈ Ω× Ω
}
.

This is the usual 1-Wasserstein or Monge-Kantorovich transport distance on P(Ω)
(see [10]), except for the additional restriction that π2(x) = π2(y) for γ-a.e. (x, y);
this restriction forces the transport to move parallel to b = e1.

We then proved the existence of a rate-independent evolution driven by the

microscopic total energy F̃n and by the dissipation d, and used the static Γ-
convergence result illustrated above to obtain a rate-independent limit evolution,
using the method in [5]. In strong form, the limit continuum dislocation density
ρ satisfies the transport equation

∂tρ+ div(ρv) = 0,

where velocity v satisfies v · e2 = 0 and

−(v(t, x) · e1) ∂x1

δF̃
δρ

(ρ(t), t),= |v(t, x)|,

where ∂x1

δF̃
δρ (ρ(t), t) is the horizontal component of the total mesoscopic force

acting on a dislocation at x. Hence either v(x, t) = 0 or the force equals ±1. This
means that the force has to reach a threshold for dislocations to move.
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There are several steps we are going to take in the near future towards more
realistic and complex systems, including the analysis of dislocation dipoles, and
the multiple slip case.
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Evolutionary relaxation of a two-phase model

Alexander Mielke

Here we report on joint work with Sebastian Heinz, which is published in [10] and
which was partially supported by DFG through the Research Unit 797 MicroPlast
and by ERC through AdG AnaMultiScale.

Microstructures in macroscopic and mesoscopic material models are often de-
scribed on the basis of the strain tensor and some internal variables such as phase
indicators, magnetization, plastic tensor, or hardening variables. In most cases,
the stored-energy density depends only on the point values of these variables and
thus defines a material model without any length scale. Thus, even steady states,
which occur as minimizers of the energy, may develop microstructures on arbitrary
fine scales if the energy density lacks quasi- or polyconvexity. For static problems
a far-reaching theory for the description of microstructures was initiated by the
seminal work [1] on the basis of gradient Young measures.

The modeling of the temporal behavior of such microstructures under changing
mechanical or thermal loading is significantly more difficult. For rate-independent
systems, which do not have an intrinsic time scale and hence are sufficiently close
to static problems, a major step forward was done using incremental minimization
problems, namely for finite-strain elastoplasticity in [15, 3] and for shape-memory
materials in [12, 14, 9].
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These approaches are based on incremental minimization problems, and lead
to the theory of energetic solutions for rate-independent systems (Q, E ,D), see
[11], where Q is the state space, E : [0, T ]×Q → R is the energy potential, and
D : Q×Q → [0,∞] is the dissipation distance. For initial states q0 ∈ Q, the
approximate incremental minimization problem reads

(AIMP)
for j = 1, ..., J find qj ∈ Q with

E(jτ, qj) +D(qj−1, qj) ≤ ετ + E(jτ, q̂) +D(qj−1, q̂) for all q ∈ Q,
where τ = T/J > 0 is the time step. Here the error level ε = 0 is allowed,
if there exist minimizers of E(t, ·) + D(qj−1, ·); but we are interested in cases
were minimizers do not exists, whereas approximate minimizers for ε > 0 always
exist. In such cases, the solutions qεj develop microstructure for ε → 0. Defining
the piecewise constant interpolants qτ,ε : [0, T ] → Q via qτ,ε(t) = qεj−1 for t ∈
[(j−1)τ, jτ [ the major mathematical task in evolutionary relaxation is

(1) to establish convergence of a suitable subsequence for τn, εn → 0,
(2) to identify a limit q : [0, T ] → Q, and
(3) to determine an evolution equation for all such limits q.

For nonlinear material models without internal length scale this program is
largely open. There are particular results for brittle fracture, see e.g. [6, 5], in
damage [7], and for a very particular plasticity model [4].

The work in [10] is a continuation of the two-phase model introduced in [12,
14] with the following new results: (i) the existence result for the separately
relaxed problem is generalized, (ii) a numerical convergence result for space-
time discretizations is provided, and (iii) the evolutionary relaxation of the rate-
independent “pure-state model” is shown to lead exactly to the “separately relaxed
model” postulated in [12, 14].

The latter model can described as follows. Consider an elastic material that
can be in one of the two phases z = 0 or z = 1 at each microscopic point x ∈ Ω,
i.e. z : Ω → {0, 1} denotes a “pure-phase indicator”. The mesoscopic, separately
relaxed model can be described by the “averaged phase portion” θ : Ω → [0, 1],
where θ(x) denotes the mesoscopic volume fraction of phase z = 1 in a small
representative volume element around x. Additionally we consider displacements
ũ = gDir+u : Ω → Rd such that the states for the separately relaxed model are
given by q = (u, θ) ∈ Q = U×Z with

U :=
{
u ∈ H1(Ω;Rd)

∣∣ u|ΓDir
= 0

}
and Z =

{
θ ∈ L2(Ω)

∣∣ θ(x) ∈ [0, 1] a.e.
}
,

while the states for the the pure-state model are given by q = (u, z) with

z ∈ Zpure :=
{
z ∈ L2(Ω)

∣∣ z(x) ∈ {0, 1} a.e.
}
.

The particular structure of the model in [12, 14] is that the energy functional E(t, ·)
is quadratic, namely

E(t, u, θ) =
∫

Ω

1

2

〈
A

(
e(u)

θ

)
,

(
e(u)

θ

)〉
dx−

〈
l(t),

(
u

θ

)〉
,
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where e(u) = 1
2 (∇u +∇u⊤) is the linearized strain tensor, and A is a symmetric

positive semidefinite matrix. The dissipation distance has the form

D(θ, θ̃) =

∫

Ω

max
{
κ0→1(θ̃−θ) , κ1→0(θ−θ̃)

}
dx,

where κ0→1 and κ1→0 are positive material constants.
Indeed, the pure-phase model (U×Zpure, E ,D) is given exactly with the same

functionals E and D as above, where θ is replaced by z taking only the values 0 and
1. Then, separate relaxation gives theq quadratic and “linear” form of E and D,
respectively. Here separate relaxation simple means that we calculate the weakly
lower semicontinuous hulls of E(t, ·) : U×Zpure → R and D : Zpure×Zpure →
[0,∞[, where Z is simply the weak closure of Zpure.

The new observation in [10] is that the method of mutual recovery sequences

of [13], see also [11], can be exploited together with the tools from H-measures,
see [17, 8, 16]. Indeed, for each sequence zk ∈ Zpure with zk ⇀ θ in Z and each

θ̂ ∈ Z, it is possible to construct a sequence ẑk such that

D(θ, θ̂) = lim
k→∞

D(zk, ẑk), sign
(
ẑk(x)−zk(x)

)
= sign

(
θ̂(x)−θ(x)

)
, and

E(t, U(t, θ̂), θ̂)− E(t, U(t, θ), θ) ≥ lim sup
k→∞

(
E(t, U(t, ẑk), ẑk)− E(t, U(t, zk), zk)

)
.

Using these mutual recovery sequences, it is possible to show the full evolu-
tionary relaxation result: for any approximate solutions qτ,ε for (U×Zpure, E ,D)
obtained via (AIMP) there exists a subsequence qτk,εk that converges to a limit
q = (u, z) : [0, T ] → U×Z which is an energetic solution of the separately relaxed
rate-independent system (U×Z, E ,D).

Further results include a simplified and generalized existence theory as well as
a convergence analysis for the numerical approximations considered in [2].
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A new quasistatic evolution model for perfectly plastic plates

Maria Giovanna Mora

(joint work with Elisa Davoli)

In this talk we discussed the rigorous derivation of a quasistatic evolution model for
perfectly plastic plates, starting from three-dimensional Prandtl-Reuss plasticity
and using Γ-convergence techniques. The limit model can be described as follows.

Let ω be a bounded domain in R2 with a C2 boundary. The set Ω := ω×(− 1
2 ,

1
2 )

represents the reference configuration of a three-dimensional plate. The current
configuration of the plate at time t is described by a triplet (u(t), e(t), p(t)), where
u(t) is the displacement, e(t) is the elastic strain tensor, and p(t) is the plastic
strain tensor, satisfying the following conditions:

(sf1) kinematic admissibility: Eu(t) = e(t) + p(t) in Ω, u(t) = w(t) on Γd, and
ei3(t) = pi3(t) = 0 in Ω for i = 1, 2, 3.

Here Eu(t) denotes the symmetric part of Du(t), while w(t) is a prescribed bound-
ary condition on Γd := γd×(− 1

2 ,
1
2 ), where γd ⊂ ∂ω. Condition (sf1) implies that

u(t) is a Kirchhoff-Love displacement, that is, the vertical displacement u3(t) is
independent of the out-of-plane variable x3 and the horizontal displacement takes
the form

(1) uα(t, x) = ūα(t, x
′)− x3∂αu3(t, x

′) for x = (x′, x3) ∈ Ω, α = 1, 2.

In particular,

(Eu)αβ(t, x) = (Eū)αβ(t, x
′)− x3∂

2
αβu3(t, x

′) for x = (x′, x3) ∈ Ω, α, β = 1, 2.
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From a mechanical point of view this structure guarantees that straight fibers
that are normal to the mid-surface of the plate in the reference configuration, stay
straight and normal after the deformation, within the first order.

Condition (sf1) does not imply, in general, that e(t) and p(t) are affine with
respect to x3. However, one can show that e(t) and p(t) admit the following
decomposition:

e(t, x) = ē(t, x′) + x3ê(t, x
′) + e⊥(t, x), p(t, x) = p̄(t, x′) + x3p̂(t, x

′)− e⊥(t, x),

where the zero-th order moments ē(t) and p̄(t) satisfy

Eū(t) = ē(t) + p̄(t) in ω

while the first order moments ê(t) and p̂(t) are such that

−D2u3(t) = ê(t) + p̂(t) in ω.

In the above identities and in the following we identify e(t), p(t), and their moments
with functions taking values in M

2×2
sym, since their third row and column are zero

by condition (sf1).
The strong formulation of the quasistatic evolution problem on a time interval

[0, T ] consists in finding u(t), e(t), and p(t) such that for every t ∈ [0, T ] equation
(sf1) is satisfied, together with the following conditions:

(sf2) constitutive equation: σ(t) = Cre(t) in Ω, where Cr is the elasticity tensor;

(sf3) equilibrium: −divx′ σ̄(t) = f(t) and −divx′divx′ σ̂(t) = g(t) in ω, together
with suitable Neumann boundary conditions on ∂ω \ γd;

(sf4) stress constraint: σ(t) ∈ Kr, where Kr is a given convex and compact set,
representing the set of admissible stresses;

(sf5) flow rule: ṗ(t) = 0 if σ(t) ∈ intKr, while ṗ(t) belongs to the normal cone
to Kr at σ(t) if σ(t) ∈ ∂Kr.

Here f(t) : ω → R
2 and g(t) : ω → R are the applied body forces at time t, while

σ̄(t) := Cr ē(t) and σ̂(t) := Cr ê(t) are the stretching and bending components of
the stress, respectively. Condition (sf5) can also be written in the equivalent form:

(sf5′) maximum dissipation principle: Hr(ṗ(t)) = σ(t) : ṗ(t), where Hr is the
support function of Kr, i.e., Hr(p) := sup{σ : p : σ ∈ Kr}.

In [1] it has been proved that system (sf1)–(sf5) describes (up to a suitable
scaling) the asymptotic behaviour of the Prandtl-Reuss quasistatic evolutions in
a three-dimensional plate, when the plate thickness approaches zero.

We note that the equilibrium condition is purely two-dimensional, while the
stress constraint and the flow rule involve the whole stress σ(t), whose dependence
on the thickness variable x3 may be not trivial (because of the component σ⊥(t) :=
Cre⊥(t)). Thus, the problem has in general a genuinely three-dimensional nature
and differs from the classical two-dimensional plastic plate model of the mechanical
literature. This can be also seen by considering the following example.

Let

Crξ = 2µ ξ +
2λµ

λ+ 2µ
(tr ξ)I2×2
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for every ξ ∈ M
2×2
sym, where λ, µ are the Lamé parameters, and let

Kr =
{
ξ ∈ M

2×2
sym : |ξ|2 − 1

3
(tr ξ)2 ≤ σ2

c

}

where σc > 0 is given. These are the elastic tensor and the set of admissible
stresses of the reduced problem describing the asymptotic behaviour of an isotropic
three-dimensional plate with von Mises yield criterion. We consider the boundary
condition

wα(t, x) = −tx3xα, w3(t, x) =
t

2
(x21 + x22)

for α = 1, 2 and t ∈ [0, T ], prescribed on the whole lateral boundary ∂ω×(− 1
2 ,

1
2 ).

We assume the body forces to be zero, that is, f(t) = 0 and g(t) = 0.
One can show (see [2]) that, if t 7→ (u(t), e(t), p(t)) satisfies (sf1)–(sf5), then the

stress σ(t, x) = Cre(t, x) is given by

σ(t, x) = −
((
tx3 ∨

t0
2

)
∧
(
− t0

2

))2µ(3λ+ 2µ)

λ+ 2µ
I2×2,

where t0 :=
√

3
2

λ+2µ
µ(3λ+2µ)σc. Note that σ̄(t) = 0 for every t ∈ [0, T ]. For t ≤ t0 we

have σ(t) = x3σ̂(t), while for t > t0 we have σ(t) = x3σ̂(t)+σ⊥(t) with σ⊥(t) 6= 0.
Since the location of the plastic zone (that is, the region where the stress is on
the yield surface) depends on the thickness variable x3, reducing the problem to
a two-dimensional setting is not possible in this case. In particular, applying the
classical plastic plate model to this set of data would mean to look for a solution
that is linear with respect to x3, and thus would lead to a wrong description of
the plastic response.

From a mathematical point of view existence of solutions to (sf1)–(sf5) can be
proved by setting the problem in the space BD(Ω) of functions with bounded
deformation in Ω for the displacement u(t), in L2(Ω;M2×2

sym) for the elastic strain

e(t) and in the space Mb(Ω∪ Γd;M
2×2
sym) of bounded Borel measures on Ω∪ Γd for

the plastic strain p(t). In this framework the boundary condition u(t) = w(t) on
Γd is relaxed by requiring that

(2) p(t) = (w(t) − u(t))⊙ ν∂ΩH2 on Γd,

where ⊙ denotes the symmetrized tensor product and H2 is the two-dimensional
Hausdorff measure. The mechanical interpretation of (2) is that u(t) may not
attain the boundary condition: in this case a plastic slip is developed along Γd,
whose amount is proportional to the difference between the prescribed boundary
value and the actual value.

Combining these remarks with the kinematic admissibility condition (sf1), we
see that u(t) is a Kirchhoff-Love displacement in BD(Ω), that is, u3(t) belongs to
the space BH(ω) of functions with bounded Hessian in ω and the averaged tangen-
tial displacement ū(t) in (1) belongs to BD(ω). Therefore, ū(t) may exhibit jump
discontinuities, while, because of the embedding of BH(ω) into C(ω), the normal
displacement u3(t) is continuous, but its gradient may have jump discontinuities.
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Since the dependence of u(t) on x3 is affine, we can conclude that slip surfaces are
vertical surfaces whose projection on ω is the union of the jump set of ū(t) and
the jump set of ∇u3(t).

Moreover, writing condition (2) in terms of moments yields

p̄(t) = (w̄(t)− ū(t))⊙ ν∂ωH1 on γd,

u3(t) = w3(t), p̂(t) = (∇u3(t)−∇w3(t)) ⊙ ν∂ωH1 on γd.

In this setting the flow rule is proved to hold in the form

Hr(ṗ(t)) = 〈σ(t), ṗ(t)〉.
This can be seen as an integral version of (sf5′), where the left-hand side is inter-
preted according to the theory of convex functions of measure, while the right-hand
side is meant in the sense of the stress-strain duality introduced in [1].
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Polygonization in Crystal Plasticity

Thomas Blesgen

The heart of the Cosserat model, [5], is the multiplicative decomposition

F = Dφ = FeFp

= ReUeFp.(1)

Therein, the diffeomorphism φ(·, t) : Ω → Ωt controls the deformation of the
material at a given reference configuration Ω ⊂ R3 and the deformed material Ωt

at time t ≥ 0; Ue is the stretching component and Re ∈ SO(3) a micro-rotation.
It is noteworthy that Eqn. (1) is not the polar decomposition of Fe.

A further important parameter is the third-order (right) curvature tensor

Ke = Rt
e∇Re = (Rt

e∂xRe, R
t
e∂yRe, R

t
e∂zRe).

A key assumption of the model is that the time evolution of the material is
determined by minimizing the total mechanical energy which consists of a stretch-
ing energy Wst(Ue), a rotational energy Wc(Ke), a dislocation energy V (κ), here
modeled by a simple quadratic ansatz, and the plastic dissipation. In the rate-
independent case, the plastic dissipation can be computed analytically with the
help of the Legendre-Fenchel dual Q∗(Ḟp, κ̇) analogous to the methods in [4], where
Q is the plastic potential, for instance given by the Tresca condition.

In addition, the plastic slip is restricted to I ≥ 1 a-priori given plastic slip
systems, i.e.

Fp = Fp(γ) := Id +

I∑

a=1

γama⊗na,
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with the parametrisation γ = (γa)1≤a≤I ∈ R
I and given slip normals na and slip

vectors ma, satisfying |ma| = |na| = 1, ma ·na = 0 for every 1 ≤ a ≤ I.
It is convenient to parameterize the rotation group SO(3) by Euler angles,

setting α = (α1, α2, α3) ∈ R3 and

Re(α) := Q3(α3)Q2(α2)Q1(α1)

:=



1 0 0
0 cosα3 sinα3

0 − sinα3 cosα3





cosα2 0 − sinα2

0 1 0
sinα2 0 cosα2






cosα1 sinα1 0
− sinα1 cosα1 0

0 0 1


.

After introducing a discrete time step h > 0 and a regularization rε of |·| depending
on a small ε > 0, in the traction-free case, the time-evolution of the material is
governed by the sequence of minimization problems

Eε(φ, α, γ)=
∫

Ω

[
Wst(R

t
e(α)DφFp(γ)

−1)+2µ2|∇α|22−fext ·φ−Mext :Re(α)

+ρ
( I∑

a=1

rε(γa−γ0a)
)2
+

I∑

a=1

rε(γa−γ0a)
(
σY − 2ρ

I∑

a=1

κ0a

)]
dx → min

subject to φ|∂Ω = gd, Re|∂Ω = RD, where gd and RD are given.
As a mayor difficulty in this minimization problem, due to the presence of the

rotation group SO(3), compactness is not achieved, causing difficulties in the nu-
merical treatment. A numerical algorithm may get stuck in an unwanted local
minimum. In order to test the convergence and correctness of a numerical algo-
rithm, in the case of simple plastic shear analytic solutions can be computed, both
in 2D [3], and in 3D, [2]. The convergence to these analytic solutions is studied in
[1].

A currently open problem is the simulation of polygonization in bent single-
crystal beams, [6], where dislocations align to form polygonization patterns. The
numerical methods at present seem unable to compute the physically correct so-
lution. In order to overcome these difficulties, the next step is a deeper analysis
to find an effective preconditioning for the micro-rotations.
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Energetics of dislocation networks in the plane via a Peierls-Nabarro

model

Sergio Conti

We study a vector-valued phase-field model proposed by Michael Ortiz and cowork-
ers [15, 11, 12] which generalizes the classical Peierls-Nabarro model for disloca-
tions. It incorporates both a local Peierls interplanar nonconvex potential, which
characterizes the discrete nature of slip, and long-range elastic energy. Precisely,
for L > 0 we consider dislocations contained in the two-dimensional set T = (0, L)2

with periodic boundary conditions. The elastic deformation U : T × R → R3 is
equally assumed to be periodic in the horizontal variables, and may jump across
the {x3 = 0} plane. The energy contains linear elasticity and an additional term
representing the short-range interatomic interactions across the slip plane,

(1) Fε[U ] =
1

ε

∫

T

dist2(γ,B)dx+
∫

T×R

1

2
Ce(U) · e(U) dx .

Here e(U) = (∇U + ∇UT )/2 is the elastic strain, B ⊂ R
2 × {0} is the two-

dimensional lattice of possible slip vectors, U : T×R → R3 is the (0, L)2-periodic
displacement field, and γ = [U ] is its jump across the {x3 = 0} plane, i.e., the
plastic slip. Further, C : R3×3 → R3×3 is the (symmetric) tensor of linear elastic
coefficients.

We parametrize γ by its components u along the slip directions si, i = 1, . . . , N ,
according to

(2) γ(x) = [U ](x) =

N∑

i=1

ui(x)si .

The slip vectors si form a basis for the lattice B. Minimizing out the displacement
field U for fixed u and dropping boundary terms leads to

Eε[u] =
1

ε

∫

T

dist2(u,ZN )dx

+
N∑

i,j=1

∫

T×T

Kij(z)(uj(x)− uj(x+ z))(ui(x) − ui(x+ z)) dx dz .(3)

The mathematical analysis of this phase-field model highlights the occurrence
of microstructures over many different length scales. The asymptotic behavior of
Eε as ε → 0 has been extensively studied in the regime where the leading-order
contribution to the total energy is given by the dislocation line tension. Precisely,
the scalar case N = 1 was treated in [9, 10], the vectorial one in [1, 3], and the
situation of two parallel planes in [2, 7]. These results have the general form

(4)
1

ln(1/ε)
Eε

Γ→ E∗
0
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with respect to strong L1 convergence of the slips u, where

(5) E∗
0 [u] =

∫

Ju

ψrel([u], n)dH1 for u ∈ BV (T;ZN ) .

The relaxed line-tension energy ψrel is the H1-elliptic envelope [4] of the energy per
unit length of a straight dislocation ψ0 (see [6] for a variational characterization).
Precisely,

(6) ψrel(b, n) = inf
{1
2

∫

Ju

ψ0([u], ν)dH1 : u ∈ BV (B1,Z
N ), u = ub,n on ∂B1

}

where ub,n(x) = 0 if x · n < 0, and b if x · n > 0, and B1 the ball of unit radius
centered in the origin.

We study here a situation in which Eε[uε] is of order (ln
1
ε )

2, and uε is itself of

order ln 1
ε , so that a continuous distribution of dislocations arises. Specifically, we

are interested in the limit ε→ 0, assuming that

(7)
uε

ln 1
ε

→ u0

and computing the asymptotic energy (in the sense of Γ-convergence)

(8)
Eε[uε]

(ln 1
ε )

2
→ E0[u0] .

This is the same scaling regime discussed in the talk by Lucia Scardia [16], and
first considered by Garroni, Leoni and Ponsiglione [8] in a geometrically linear
setting with a core regularization approach, and by Müller, Scardia and Zeppieri
with a geometrically nonlinear formulation [13, 14]. The kinematics is, however,
different, as our dislocations are contained in the plane, whereas all those papers
consider an antiplane shear situation where dislocations are lines orthogonal to
the considered plane.

The limiting energy E0 turns out to contain both a long-range elastic energy
term and a short-range self-energy term, which characterizes the planar distribu-
tion of dislocations. The energy per unit area of an affine slip field u(x) = Ax
is defined as the optimal energy of dislocation networks which realize it asymp-
totically. We start from the rescaled energy density defined in (10). We define
g : RM×2 → [0,∞) by the cell problem

g(A) = inf
{
lim inf
j→∞

1

π

∫

Juj
∩B1

ψ∞([uj ], n) dH1 : uj piecewise constant,(9)

uj(x) → Ax in L1(B1)
}

where

(10) ψ∞(b, t) = lim inf
s→∞

1

s
ψrel(sb, t) .



Mini-Workshop: Scales in Plasticity 3037

This leads (see [5]) to the limiting functional

(11) E0[u] = Eself [u] +

∫

T×T

K(z)(u(x)− u(x+ z)) · (u(x)− u(x+ z)) dx dz ,

where the self-energy of the dislocation network is given for u ∈ BV (T;RN ) by

(12) Eself [u] =

∫

T

g(∇u)dx+

∫

T

g(
dDsu

d|Dsu| )d|D
su| .
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The Geometry of Discombinations in Nonlinear Elastic Solids

Arash Yavari

(joint work with Alain Goriely)

The geometric formulation of continuum mechanics provides a powerful approach
to understand and solve problems in anelasticity where an elastic deformation
is combined with a non-elastic component arising from defects, thermal stresses,
growth effects, or other effects leading to residual stresses. The main idea is to
assume that the material manifold, describing the reference configuration for a
body, has an intrinsic, non-Euclidean geometry. Residual stresses then naturally
arise when this configuration is mapped into Euclidean space. Here, we consider
the problem of discombinations (a new term that we have introduceed [1]), that is
a combined distribution of fields of dislocations, disclinations, and point defects.
Given a discombination, we compute the geometric characteristics of the mate-
rial manifold (curvature, torsion, non-metricity), its Cartan’s moving frames and
structural equations. This identification provides a powerful algorithm to solve
semi-inverse problems with non-elastic components. As an example, we calculate
the residual stress field of a cylindrically-symmetric distribution of discombina-
tions in an infinite circular cylindrical bar made of an incompressible hyperelastic
isotropic elastic solid.
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Energy Minimizing Maps and Dislocation Theory

Gianluca Lauteri

(joint work with Stephan Luckhaus)

We study a semi-discrete model for small angle grain boundaries, namely the
functional

Fǫ(A) :=

∫

[−L,L]2\Bλǫ(supp(CurlA))

dist2(A, SO(2))dx+ |Bλǫ (supp (CurlA))| ,

where the square [−L,L]2 represents a two-dimensional section of a crystal, ǫ > 0
is the lattice spacing, λ > 0 is a parameter giving the core radius and the matrix
fields A belong to a class of admissible strain fields, which in particular satisfy a
boundary condition (i.e. A ≡ R±α near x = ±L) and the first quantization of the

Burgers vector, that is
(∫

γ

A · tdH1 6= 0 ⇒
∣∣∣∣
∫

γ

A · tdH1

∣∣∣∣ ≥ τ0ǫ

)
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for each simple, Lipschitz closed curve γ ⊂ [−L,L]2 \ Bλǫ (supp (CurlA)). Con-
structing a column of dislocations, we show the existence of a matrix field Agb(ǫ)
in such class whose energy satisfies

Fǫ(Agb(ǫ)) ≤ C0ǫαL (|log(α)|+ 1) ,

which can be interpreted as the Read-Shockley formula in this context. We claim
that this is the best possible energy under such constraints.
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Questions on coarse-graining dislocation dynamics

Amit Acharya

(joint work with Xiaohan Zhang, Anish Roy, Noel Walkington, Jacobo Bielak)

The structure of a pde model of small and finite deformation dislocation dynam-
ics is discussed. The averaging questions that arise in upscaling the model are
explained. As illustrations of the microscopic theory involved, results pertaining
to supersonic dislocation motion as well as Peierls stress effects under quasi-static
loadings of small magnitude in a translationally-invariant pde model are shown.
The model implies an additive decomposition of the velocity gradient into elastic
and plastic parts at finite deformation as a consequence of the conservation law for
Burgers vector content, without invoking any notion of a reference configuration.
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Semicontinuous energies defined in the space of multiple valued maps

Emanuele Spadaro

(joint work with Matteo Focardi and Paolo Maria Mariano)

In this talk we presented some recent results [3] on the lower semicontinuity of
integral functionals defined in the space of multiple valued points. Although the
original appearance of such energies occurred in geometric analysis in the study
of minimal surfaces (cp. Almgren’s big regularity paper [1]), this formalism can
be further developed in a more general context, also in relation with some model
in material science. Indeed, in order to account for the influence of microscopic
events on the mechanical behavior of deformable bodies, it is sometimes useful to
introduce variables, say ν, describing material features which, depending on the
spatial scales involved, can refer to a single microstructure or be a sort of average
over a family of microstructures. In our work [3] we consider the case of a detailed
description of local families of microstructures made of a given number Q ∈ N

of indistinguishable elements, and study lower semicontinuous energies for such
systems.

The following is a streamlined account of the main results in [3].

1. Function spaces

In the general framework in which we describe material microstructures, we need to
define spaces of maps taking values on a complete Riemannian manifold (Mn, g).
We denote by dM its geodesic distance.

1.1. Space of Q-points. We denote by (AQ(M),GM) the metric space of un-
ordered Q-tuples of points in M given by

AQ(M) :=

{
Q∑

i=1

JPiK : Pi ∈ M for every i = 1, . . . , Q

}
,

where JPiK denotes the Dirac mass in Pi ∈ M and

GM(T1, T2) := min
π∈PQ

√∑

i

d2M(Pi, Sπ(i)),

with T1 =
∑

i JPiK and T2 =
∑

i JSiK ∈ AQ(M), and PQ denotes the group of
permutations of {1, . . . , Q}. Note that AQ(M) is isomorphic to the singular space
(M)Q/PQ.
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1.2. Q-valued Sobolev maps. Let B be a bounded, regularly open subset of
the Euclidean space Rm. For p ∈ [1,+∞], we say that a map ν belongs to
W 1,p(B,AQ(M)) if there exists h ∈ Lp(B) such that, for every T0 ∈ AQ(M),

(i) the real valued function x 7→ GM(ν(x), T0) is W
1,p(B);

(ii) and the distributional gradient satisfies |D
(
GM(ν(·), T0)

)
| ≤ h(·) Lm-

a.e. in B.
Moreover, we need to introduce the notion of weak convergence: for p ∈ [1,∞]

and ν ∈ W 1,p(B,AQ(M)), a sequence {νk}k∈N
∈ W 1,p(B,AQ(M)) converges

weakly to ν for k → ∞ in W 1,p(B,AQ(M)) – and we write νk ⇀ ν in this case –
if

(i) ‖d(νk, ν)‖Lp(B) → 0 as k → ∞;
(ii) supk ‖|Dνk|‖Lp(B) <∞;
(iii) in case p = 1, (|Dνk|)k∈N is equi-integrable.

1.3. First order calculus: differentiability. Let ν ∈W 1,p(B,AQ(M)), x0 ∈ B
be a Lebesgue point for ν and ν(x0) =

∑Q
i=1 Jνi(x0)K. We say that ν is ap-

proximately differentiable at x0 if there exist linear maps Li : R
m → Tνi(x0)M,

i = 1, . . . ,m, such that Li = Lj if νi(x0) = νj(x0), and, for all ε > 0, it holds

lim
r→0+

r−mLm ({x ∈ Cr(x0) : GM (ν(x), Tx0
ν(x)) ≥ ε|x− x0|}) = 0,

with

Tx0
ν(x) :=

Q∑

i=1

r
expνi(x0)(Li(x − x0))

z
.

When defined, the linear maps Li are uniquely determined; in such a case we
shall denote them respectively by (dνi)x0

. This way the first-order approximation
Tx0

ν is then unambiguously determined.
The main proposition about the differentiability of Sobolev Q-valued maps is

the following Rademacher-type result.

Proposition 1.4. Every map ν ∈ W 1,p(B,AQ(M)) is approximately differen-

tiable Lm-a.e. on B.

2. Quasiconvexity and lower semicontinuity

A measurable map eM : B × (Hom(Rm, TM))Q → [0,+∞) is a Q-integrand if for
every permutation π ∈ PQ we get

eM
(
x, ν1, . . . , νQ, N1, . . . , NQ

)
= eM

(
x, νπ(1), . . . , νπ(Q), Nπ(1), . . . , Nπ(Q)

)
,

where (νi, Ni) ∈ Hom(Rm, TM) for each i.
Given any Sobolev Q-valued function ν, the expression

eM (x, ν(x), dνx) = eM (x, ν1(x), . . . , νQ(x), (dν1)x, . . . , (dνQ)x)

is well-defined almost everywhere in B. We choose eM as the integrand of micro-
scopic energy of a rigid body with microstructure that we call active imagining
that it may have changes in the energy landscape, induced by external agencies,
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such as electric fields. We write E(ν) for such a microscopic energy which is then
defined by

E(ν) =
∫

B

eM
(
x, ν(x), (dν)x

)
dx.

An extension of the notion of quasi-convexity to the case of multiple valued
functions with values on a manifold can be proposed.

Definition 2.1 (Quasi-convexity). Let eM : (Hom(Rm, TM))Q → R be a locally
bounded Q-integrand. We say that eM is quasi-convex if for every

(i) affine Q-valued function ν : Rm → AQ(M) given by

ν(x) =

J∑

j=1

qj

r
expν̄j (Ljx)

z
,

with ν̄i 6= ν̄j ∈ M for i 6= j,
(ii) and maps wj ∈W 1,∞(C1,Aqj (Tν̄jM)) with wj |∂C1

= qj JLj |∂C1
K,

the inequality

eM
(
ν(0), (dν)0

)
≤
∫

C1

eM
(
ν̄1, . . . , ν̄1︸ ︷︷ ︸

q1

, . . . , ν̄J , . . . , ν̄J︸ ︷︷ ︸
qJ

, dw1
x, . . . , dw

J
x

)
dx

holds, where we identify the tangent space Twj
i (x)

(Tν̄jM) with Tν̄jM itself.

This definition generalizes the notion of quasi-convexity introduced by Morrey
[5], which characterizes sequentially lower semicontinuous functionals in Sobolev
spaces. The main result we have discussed is the following.

Theorem 2.2. Let p ∈ [1,∞[ and eM : B × (Hom(Rm, TM))Q → R be a contin-

uous Q-integrand. If eM (x, ·, ·) is quasiconvex for every x ∈ B and

0 ≤ eM (x, ν,N) ≤ C

(
1 + Gq

M(ν, ν0) +

Q∑

i=1

|Ni|pg(νi)

)
for some constant C > 0,

where q = 0 if p > m, q = p∗ if p < m and q ≥ 1 is any exponent if p = m,

then the functional E in (2) is weakly lower semicontinuous in W 1,p(B,AQ(M)).
Conversely, if E is weakly−∗ lower semicontinuous in W 1,∞(B,AQ(M)), then

eM (x, ·, ·) is quasiconvex for every x ∈ B.

3. Final comments

In the seminar we have also discussed a sufficient conditions for the lower semi-
continuity of integral functionals E as above, namely the analogous of the notion
of polyconvexity (see [2] for details). In this regard, one of the main problem in
this context (originally posed by P. Mattila [4] for quadratic integrands) is the
following one:
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Open question 1. Let f : B × Hom(Rm, TM) → [0,+∞) be a quasiconvex
function. Is it then true that eM : B × (Hom(Rm, TM))Q → [0,+∞) given by

eM
(
x, ν1, . . . , νQ, N1, . . . , NQ

)
=

Q∑

i=1

f
(
x, νi, Ni

)
,

is quasiconvex in the space of multiple valued functions?

The answer to this question is positive in the case of polyconvex functions f
and hence for quadratic quasiconvex integrands in small dimensions (see [2] for
the proof).

Similarly, a class of open questions concerns the regularity of the minimizers of
quasiconvex energy.

Open question 2. Is there any partial regularity for minimizers of quasiconvex
functionals in the space of Q-valued functions? Is there any subclass of functionals
for which regularity results hold? (cp. the case of the Dirichlet energy in [1] or of
two dimensional quadratic energies in [4]).

Finally we have also mentioned the problem of finding non-trivial branching
effects for minimizers: assuming that the boundary value is a multiple of a single
valued function, are the minimizers also multiple of a single valued functions?

Open question 3. Let u be a minimizer of a quasiconvex functional: does the
following implication hold?

u|∂B = Q JφK =⇒ u = Q JΦK .
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Boundary-layer behaviour of a pile-up of dislocations

Lucia Scardia

(joint work with Adriana Garroni, Patrick van Meurs, Mark Peletier)

Dislocations are defects in the arrangement of the atoms in a metal lattice, and
their distribution and motion greatly affect the macroscopic behaviour of the ma-
terial. Dislocations do not only interact with other dislocations, but also with
impurities, other defects, and interfaces. Understanding the behaviour of disloca-
tions at grain boundaries and phase boundaries, in particular, has been the object
of intensive research in academia and industry, but is still far from being achieved.

The analysis of idealised pile-ups in two dimensions is a first attempt to shed
light on this complex subject. The simplest case concerns a one-dimensional array
of points, corresponding to dislocations in a single glide plane, forced against an
obstacle by an external load (see [1]). We consider a model that lies half-way
between one and two dimensions. At the microscopic level, the system contains a
large number of periodic walls of edge dislocations with the same Burgers vector
(see Figure 1(a) and [5, 3, 6, 4]). The coordinate system is chosen so that the
walls are vertical, and represented by their horizontal positions x̃n = (x̃ni )

n
i=0 ∈

[0,∞)n+1, with x̃n0 = 0, n ∈ N. The energy of this system is given by

(1) Ẽn(x̃
n) := Kn

n∑

k=1

n−k∑

j=0

V

(
x̃nj+k − x̃nj

hn

)
+ σn

n∑

i=1

x̃ni ,

whereKn measures the elastic properties of the medium, hn is the distance between
consecutive dislocations within a wall, σn is an imposed shear stress, and the
interaction energy potential V (see Figure 1(b)) is

(2) V (s) := s coth s− log(2 sinh s) =
2|s|

(e2|s| − 1)
− log(1 − e−2|s|).

x̃0 x̃1 x̃2 x̃

(a) The walls

V (s)

s

∼ − log |s|

∼ 2|s|e−2|s|

(b) The interaction energy V

Figure 1. The dislocation configuration considered in this study.

As shown in [3], the problem can be rescaled to depend only on the single

dimensionless parameter γn =
√

nKn

σnhn
.
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Roughly speaking, γn is a measure of the total length of the pile-up, relative to
hn. We will restrict our attention to the case when 1 ≪ γn ≪ n, which corresponds
to arrangements where dislocations are closer horizontally than vertically, while
the length of the pile-up region is larger than the in-wall spacing hn. In term of
the rescaled positions xi =

x̃i

γnhn
the (suitably rescaled) energy (1) becomes

(3) En(x
n) :=

γn
n2

n∑

k=1

n−k∑

j=0

V
(
γn
(
xnj+k − xnj

))
+

1

n

n∑

i=1

xni .

In [3] it was shown that the Γ-limit of En, for the scaling regime 1 ≪ γn ≪ n,
and in the “many-walls” limit n→ ∞, is the continuum energy E given by

(4) E(µ) =
1

2

(∫

R

V
) ∫ ∞

0

ρ(x)2 dx+

∫ ∞

0

xρ(x) dx, if µ(dx) = ρ(x) dx,

where µn := 1
n

∑
i δxn

i
⇀ µ as n→ ∞. The minimiser ρ∗ of the limit energyE is an

affine function with slope −(
∫
R
V )−1, and it fits very well the discrete dislocation

density profile ρ∗n in the bulk of the pile-up domain. (Note that ρ∗n(x
∗
i ) =

2/n
x∗

i+1
−x∗

i−1

,

where x∗i are the components of the minimiser of En.) The continuum model,
however, fails to capture the distribution of dislocations at the two ends of the
domain, where boundary layers appear (see Figure 2).

Dislocation-wall position

ρ
∗

ρn

Figure 2. Minimisers of En and E, for n = 27 and γn =
√
n.

Inspired by this observation, we analysed the boundary layer at the lock at
x = 0, in the scaling regime 1 ≪ γn ≪ n. We did this by studying a Γ-expansion
of the energy En in terms of the small parameter 1/γn. The zero-order term of the
expansion is the Γ-limit of the energy (namely E in (4)), which describes correctly
the bulk behaviour of the minimiser; the term of order 1/γn in the expansion,
instead, is a first-order correction that captures boundary layer effects.

In [2] we studied the limit of the closely related functional γ (Eγ(µ)− Eγ(ρ
∗))

as γ → ∞, where

(5) Eγ(µ) :=
1

2
γ

∫ ∞

0

∫ ∞

0

V (γ(x− y))µ(dx)µ(dy) +

∫ ∞

0

xµ(dx)
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is the continuous version of the discrete functional En. The limit, boundary-layer
energy is

F (ν) =
1

2

∫

R

(V ∗ ν)dν − ρ∗(0)

∫ 0

−∞

(V ∗ ν)dx

where ν is the limit (with respect to vague convergence) of the blown-up densities
νγ(y) := µ(y/γ) − ρ∗(y/γ), which capture the (blown-up) difference between the
profiles in Figure 2 close to the lock. The minimiser ν∗ of F is therefore the sought
(blown-up) boundary-layer profile. This can be seen by matching the continuum
bulk profile ρ∗ with ν∗ (namely by defining ργn(x) := ρ∗(x) + ν∗(γnx)) with the
optimal discrete profile, which we show in Figure

Figure 3. Plot of ρ∗n against ργn (solid lines), for different values
of n. The bulk profile is the line at the bottom.
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