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Introduction by the Organisers

The workshop on Non-Archimedean Analytic Geometry and Applications, or-
ganized by Vladimir Berkovich (Rehovot), Walter Gubler (Regensburg), Peter
Schneider (Münster) and Annette Werner (Frankfurt) had 53 participants. Non-
Archimedean analytic geometry is a central area of arithmetic geometry. The first
analytic spaces over fields with a non-Archimedean absolute value were introduced
by John Tate and explored by many other mathematicians. They have found nu-
merous applications to problems in number theory and algebraic geometry. In the
1990s, Vladimir Berkovich initiated a different approach to non-Archimedean an-
alytic geometry, providing spaces with good topological properties which behave
similarly as complex analytic spaces. Independently, Roland Huber developed a
similar theory of adic spaces. Recently, Peter Scholze has introduced perfectoid
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spaces as a ground breaking new tool to attack deep problems in p-adic Hodge
theory and representation theory.

Recent years have seen a growing interest in such spaces since they have been
used to solve several deep questions in arithmetic geometry. The goal of the
workshop was to bring together researchers from different areas for an exchange of
ideas which may facilitate future developments. Meanwhile, applications of non-
Archimedean spaces have become so diverse that the workshop filled a gap in the
recent list of conferences by providing a platform to exchange new results, ideas
and open problems between the different branches of the subject. In fact, during
the months before the workshop the organizers received numerous requests, also
from some internationally renowned mathematicians, to be included in the list of
participants.

We had 19 one hour talks in this workshop. A summary of the topics can be
found below. All talks were followed by lively discussions, in the form of plenary
questions and also in the form of blackboard discussions in smaller groups. Several
participants explained work in progress or new conjectures or promising techniques
to attack open conjectures. The workshop provided a lively platform to discuss
these new idea with other experts.

During the workshop, we saw new structure results for affinoid spaces over
the ring of integers (Poineau) and recent progress regarding skeleta of Berkovich
spaces (Ducros and Loeser). Skeleta are polyhedral substructures which are defor-
mation retracts, and which can be used to investigate the topology of Berkovich
spaces. Loeser reported on his model-theoretic approach to skeleta (jointly with
Hrushovsky) which leads to the proof of local contractibility of Berkovich spaces
associated to varieties over non-Archimedean fields.

A surprising application of the non-Archimedean theory of skeleta to an impor-
tant problem in diophantine geometry was presented in Rabinoff’s talk. In joint
work with Katz and Zureick-Brown, partial very explicit solutions of the uniform
Mordell conjecture and of the uniform Manin-Mumford conjecture were proved.
The power of non-Archimedean geometry to give classical problems a new point of
view was also seen in Chambert-Loir’s talk on a non-Archimedean Ax–Lindemann
theorem and in Zhang’s conjecture of a non-Archimedean Poisson formula.

Several talks dealt with progress in tropical geometry and tropical moduli spaces
(Payne, Nicaise, Tyomkin, Ulirsch). Moreover, applications to mirror symmetry
were presented, in particular regarding a new and very promising theory of in-
tersections to deal with Gromov-Witten invariants (Yu). Geometric applications
of non-Archimedean geometry for resolutions of singularities in positive charac-
teristics are given via some precise analysis of de Jong’s alterations (Temkin).
Applications in positive characteristic included new results on p-adic curvature
(Esnault).

A very influential recent development is Scholze’s theory of perfectoid spaces,
which is based on adic spaces and which has become a crucial tool in p-adic
Hodge theory. In this area we have seen spectacular recent progress in a possible
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reduction of the local Langlands program in number theory to a purely geomet-
ric analog of the geometric Langlands conjectures (Fargues). Related areas are
relative p-adic Hodge theory (Kedlaya), p-adic representations (Strauch), Fourier
transformations on Qp (Baldassari) and overconvergent modular forms (Hansen).
Nizio l presented interesting results with Colmez for p-adic nearby cycles using
syntomic cohomology.

Apart from the plenary talks, the participants had many discussions in small
groups. The organizers made a specific effort to invite Phd students and Postdocs.
Altogether we had 14 participants from this group. For most of them it was the first
Oberwolfach workshop they ever attended. The unique Oberwolfach atmosphere
provided a singular opportunity of meeting the international leaders of the subject
and of keeping track with current developments. During the breaks and in the
evenings many informal mathematical discussions took place, in which the young
participants played an active role.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Ehud de Shalit in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Affinoid spaces over Z

Jérôme Poineau

When developing analytic geometry over Qp, the first objects to consider are the
so-called Tate algebras QptT1, . . . , Tnu. They contain the power series with coeffi-
cients in Qp that converge on the closed unit disk of center 0 in Qn

p . Remark that
this last condition behaves well thanks to the non-archimedean triangle inequality.

In the archimedean setting, one needs to modifiy it and is led to consider in-
stead “overconvergent Tate algebras” made of power series that converge in some
arbitrary neighborhood of the closed unit disk. The same construction actually
works over the ring of integers Z. Generalizing slightly, for r1, . . . , rn ą 0, we de-
fine Ztr´1

1 T1, . . . , r
´1
n Tnu: to be the ring of power series with coefficients in Z that

converge in some neighborhood of the closed disk D̄ “ D̄p0, pr1, . . . , rnqq Ă Cn.
To develop p-adic analytic geometry, one starts by studying the algebraic prop-

erties of those Tate algebras and, in particular, showing that they are noetherian.
In order to do so, techniques that are quite specific to the non-archimedean set-
ting are used, most notably the reduction map that enables to pass from a ring
of power series over k to a ring of polynomials over the residue field k̃. Over Z
(and over C too), such methods do not exist and the noetherianity result appears
to be much more challenging. To the best of the knowledge of the author, until
very recently, the only available result in this direction was the following theorem
of D. Harbater, for n “ 1.

Theorem 1 ([Har84, theorem 1.8]). For every r ą 0, the ring Ztr´1T u: is noe-
therian.

The proof is quite technical and relies on explicit descriptions. It is very unlikely
that such a strategy can be made to work for a larger number of variables.

1. The complex setting

When replacing Z by C, the analogous result is known, as a consequence of the
following theorem of J. Frisch.

Theorem 2 ([Fri67, théorème I, 9]). Let X be a complex analytic space and K be
a compact subset of X that is semi-analytic and Stein. Then, the ring OpKq: of
analytic functions that converge in some neighborhood of K is noetherian.

Recall that a subset K of a complex analytic space X is said to be semi-analytic
if it is locally defined by a finite number of inequations involving analytic func-
tions and that it is said to be Stein if, for every coherent sheaf F defined in a
neighborhood of K, we have

‚ for every x P K, the stalk Fx is generated by the set of global sections
H0pK,F q: (Cartan’s theorem A);

‚ for every q ě 1, HqpK,F q “ 0 (Cartan’s theorem B).
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The proof is very geometric and makes a crucial use of the following properties:

(1) the local rings Ox are noetherian;
(2) the structure sheaf O is coherent;
(3) every compact semi-analytic space has finitely many connected compo-

nents.

When applied to the compact K “ D̄p0, pr1, . . . , rnqq Ă Cn, the theorem shows
that the ring Ctr´1

1 T1, . . . , r
´1
n Tnu: is noetherian.

2. Berkovich analytic spaces over Z

In order to use a strategy that is similar to the one used in the complex set-
ting, one needs to have analytic spaces with good properties on which the rings
Ztr´1

1 T1, . . . , r
´1
n Tnu: naturally appear as rings of functions on some compact sets.

Berkovich analytic spaces over Z meet all those requirements.
Those spaces have been defined by V. Berkovich at the end of the first chapter of

the monograph [Ber90]. Without going into the details, let us recall that the affine
analytic space An,an

Z of dimension n over Z is defined as the set of multiplicative
semi-norms on ZrT1, . . . , Tns, endowed with the topology of pointwise convergence.
An analytic function on this space is defined to be locally a uniform limit of rational
functions without poles.

Since the absolute values over Z can be archimedean or not, the spaces An,an
Z

contain fibers that are non-archimedean (and look like p-adic Berkovich ana-
lytic spaces) and others that are archimedean (and look like complex analytic
spaces, possibly modulo complex conjugation). Moreover, one may define a rela-
tive closed disk D̄ “ D̄p0, pr1, . . . , rnqq around the 0 section in An,an

Z and the ring
of functions that converge in some neighborhood of this disk is exactly the ring
Ztr´1

1 T1, . . . , r
´1
n Tnu: defined above. We refer to [Poi10b, annexe B] for a gentle

introduction and to [Poi10a] for more details, including a complete study of the
affine line.

3. Local properties

The article [Poi13] is devoted to the local study of analytic spaces over Z. The
main tool is a quite general local Weierstrass division theorem for the affine line
over a Banach ring pA , } ¨}q with mild conditions on A (that are automatically
met if A is Z endowed with the usual absolute value or the completion of the ring
of functions on a relative disk over Z for instance).

Theorem 3 ([Poi13, théorème 8.3]). Denote by π : X “ A1,an
A

Ñ B “ A0,an
A

the
projection morphism. Let b P B. Let P P H pbqrT s be an irreducible polynomial
and let x be the point of the fiber Xb “ π´1pbq such that P pxq “ 0. Let G be an
element of OX,x whose image in OXb,x is not zero.

Then, there exists a non-negative integer m such that every element F of OX,x

may be written uniquely in the form F “ QG ` R, with Q P OX,x and R P
OB,brT săm.
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With this result at hand, one may deduce many local properties of the space
An,an

Z by using a strategy that is close to the one used in the complex analytic
setting.

Corollary 4. ‚ For every point x P An,an
Z , the local ring Ox is henselian,

noetherian, regular and excellent.
‚ The structure sheaf O on An,an

Z is coherent.

Thanks to the Weierstrass division theorem, one may also prove a sort of noethe-
rianity result for coherent sheaves on An,an

Z .

Corollary 5. Let U be an open subset of An,an
Z . Let F be a coherent sheaf on U

and let pFmqmě0 be an increasing subsequence of subsheaves of F . Then, every
point x of U admits a neighborhood V in U such that the sequence pFm,|V qmě0 is
eventually constant.

4. Global properties

In order to adapt the strategy of Frisch’s proof, we also need to know that disk
are Stein spaces. This is indeed the case.

Theorem 6. Let r1, . . . , rn ą 0. Set D̄ “ D̄p0, pr1, . . . , rnqq Ă An,an
Z . Let F be a

coherent sheaf defined in a neighborhood of D̄. Then, we have

‚ for every x P D̄, the stalk Fx is generated by the set of global sections
H0pD̄,F q: (theorem A);

‚ for every q ě 1, HqpD̄,F q “ 0 (theorem B).

Let us explain some consequence of there results for affinoid spaces over Z. Let
us first give a definition in the spirit of the classical definition of affinoid spaces
in rigid geometry. Consider a disk D̄ “ D̄p0, pr1, . . . , rnqq Ă An,an

Z and a finite
number of functions f1, . . . , fm P OpD̄q:. Set

V “ V pf1, . . . , fmq “ tx P D̄ | @i P rr1,mss, fipxq “ 0u

and denote by jV the inclusion of V in D̄. Let I be the sheaf of ideals on D̄
generated by pf1, . . . , fmq. An overconvergent affinoid space over Z is defined to
be a space isomorphic to pV, j´1

V pOD̄{I qq. It is easy to deduce from theorem 6
that theorems A and B still hold for such spaces.

We would like to point out that those results are very similar to classical results
in rigid analytic geometry: theorem A is analogous to Kiehl’s theorem whereas
theorem B resembles Tate’s acyclicity theorem. For the former, this is clear.
For the later, let us remark that a short argument involving the exact sequence

Om pf1,...,fmq
ÝÝÝÝÝÝÑ O Ñ O{I Ñ 0 and theorem B ensures that the global sections

on V are exactly those one might expect:

OpV q » Ztr´1
1 T1, . . . , r

´1
n Tnu:{pf1, . . . , fmq.

This means that, if one would like to follow Tate’s original construction and define
a presheaf on an affinoid space by its global sections on its affinoid domains, then
one would recover the structure sheaf we started with. In particular, this presheaf
is a sheaf, which is one important part of Tate’s acyclicity theorem.



3280 Oberwolfach Report 57/2015

5. Noetherianity

Let us finally go back to the noetherianity question we started with. The classical
proof of Frisch’s theorem uses a topological argument: compact semi-analytic
subsets have only finitely many connected components. This is unknown in the
theory of Berkovich analytic spaces over Z, where the topological aspects are not
well developed. (Let us however mention that T. Lemanissier recently proved that
those spaces are locally arcwise connected in [Lem15]).

However, by using corollary 5 and the noetherianity of Ctr´1
1 T1, . . . , r

´1
n Tnu:,

one is able to prove the expected result. Let us mention that this strategy is close
to the one Langmann used in his proof of Frisch’s theorem (see [Lan77]).

Theorem 7. For every r1, . . . , rn P p0, 1q, the ring Ztr´1
1 T1, . . . , r

´1
n Tnu: is noe-

therian.
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étude locale de leur topologie. PhD thesis, Université Pierre et Marie Curie, 2015.
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Overconvergent modular forms: A perfectoid point of view

David Hansen

(joint work with Przemyslaw Chojecki, Christian Johansson)

Let N ě 5 be an integer, and let Y “ Y1pNq Ă X “ X1pNq be the usual modular
curves over Q. A holomorphic modular form weight k and level N admits two
rather distinct interpretations, which one might call the algebraic and analytic
points of view:

Algebraic: It’s a global section ωpfq of the line bundle ωbk on XC.

Analytic: It’s a holomorphic function f on the upper half-plane h of moderate
growth, satisfying the transformation rule fpaz`b

cz`d
q “ pcz ` dqkfpzq for all γ P

Γ1pNq.
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How do we pass between these points of view? The key is that:

i. Writing Ỹ for the universal cover of the complex analytic space Y an
C , there

is a canonical isomorphism Ỹ – h of complex analytic spaces, and
ii. The pullback of ω under the induced map π : h Ñ Y an

C is trivialized by a
canonical differential ηcan which satisfies ηcanpγzq “ pcz ` dq´1ηcanpzq.

The objects f and ωpfq are then related by the identity

π˚ωpfq “ fpzq ¨ ηbk
can.

Now fix a prime p ∤ N , and let Y “ Y ad
Qp

Ă X “ Xad
Qp

be the associated

analytic modular curves. For any open subgroup K Ă GL2pZpq we have associated
coverings YK Ă XK of Y Ă X .

Theorem (Katz, Coleman, Coleman-Mazur, Andreatta-Iovita-Stevens,
Pilloni, [1, 3]). For L{Qp finite and any continuous character κ : Zˆ

p Ñ Lˆ,

there is a natural space M :
κ “ M :

κpNq of “p-adic overconvergent modular forms
of weight κ and level N”. This is an (ind-)Banach space over L with a natural
action of the Hecke algebra, and the association κ ÞÑ M :

κ varies analytically as a
function of κ.

The definition of M :
κ mirrors the algebraic definition of classical modular forms.

More precisely, Andreatta-Iovita-Stevens and Pilloni define a line bundle ωκ on a
certain family of open subsets tX pvq Ă XK0ppqu0ăvăǫ, and then set

M :
κ “ lim

vÑ0`
H0pX pvq, ωκq.

When κpxq “ xk, k P Z, there is a natural isomorphism ωκ – ωbk|X pvq, and the
assignment κ ÞÑ ωκ is analytic as a function of κ; these two properties essentially
characterize ωκ uniquely.

In our work, we given an analytic definition of M :
κ. The replacement for the

upper half-plane h turns out to be given by (certain subspaces of) Scholze’s infinite
level modular curve:

Theorem (Scholze, [4]). There is a natural perfectoid space X8 such that

X8 – lim
Ðn

XKppnq

in the category of stably uniform adic spaces over Qp, equivariantly for natural
(right) actions of GL2pQpq on both sides, and there is a natural Hodge-Tate period
map

πHT : X8 Ñ P1.

Using this theorem, we were able to prove the following result.

Theorem (Chojecki-H.-Johansson, [2]). There is a natural family of K0ppq-
stable open affinoid perfectoid subsets X8,w Ă X8 indexed by w P Qą0, with
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X8,w1 Ď X8,w for w1 ě w, together with a natural global section z P OpX8,wq
compatible with changing w and such that

γ˚z “
az ` c

bz ` d

for all γ P K0ppq. For any κ as above and any w "κ 0, the space

Mκ,w “
 
f P OpX8,wq bQp

L | γ˚f “ κpbz ` dq´1f @γ P K0ppq
(

is well-defined, and M :
κ – limwÑ8 Mκ,w compatibly with all structures.

So Mκ,w “ “functions on X8,w satisfying a transformation law” gives a defi-
nition of M :

κ parallel to the analytic definition of classical modular forms. Aside
from its aesthetic pleasure, this interpretation of M :

κ also gives a new approach to
the construction of “overconvergent Eichler-Shimura maps.”

References

[1] F. Andreatta, A. Iovita, G. Stevens, Overconvergent modular sheaves and modular forms
for GL2{F , Israel J. Math., to appear.

[2] P. Chojecki, D. Hansen, C. Johansson, Overconvergent modular forms and perfectoid mod-
ular curves, preprint (2015).

[3] V. Pilloni, Formes modulaires surconvergents, Ann. Inst. Fourier (2013).
[4] P. Scholze, On torsion in the cohomology of locally symmetric varieties, Ann. Math. (2015).

Desingularization by charpXq-alterations

Michael Temkin

1. The main result

1.1. Desingularization. Let X be an integral algebraic variety. The famous
desingularization conjecture asserts that there exists a proper birational morphism
f : X 1 Ñ X such that the variety X 1 is regular. In addition, one conjectures
that given a closed subset Z Ĺ X one can arrange that Z 1 “ f´1pZq is an snc
divisor. Also, it was conjectured by Grothendieck and is widely believed that the
same desingularization result holds for any quasi-excellent integral scheme X . The
conjecture was proved in characteristic zero by Hironaka (schemes of finite type
over a local quasi-excellent ring), see [1], and was extended to all quasi-excellent
schemes over Q by Temkin, see [4]. Also, it was proved very recently for quasi-
excellent threefolds by Cossart and Piltant, see [6]. Already for varieties of positive
characteristic the conjecture is widely open and very difficult in dimensions starting
with 4.
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1.2. de Jong’s altered desingularization. de Jong found a very successful
weakening of the desingularization conjecture: its proof is relatively simple (e.g.
when comparing with [1] or [6]), and yet, it has numerous applications. Namely,
de Jong proved in [2, Theorem 4.1] that for any integral scheme X of finite type
over a quasi-excellent base of dimension 2 (using [6] this can be pushed to dimen-
sion 3) there exists an alteration f : X 1 Ñ X , i.e. a proper dominant generically
finite morphism between integral schemes, such that X 1 is regular. In addition, if
Z Ĺ X is closed then one can arrange that Z 1 “ f´1pZq is an snc divisor.

1.3. Gabber’s l1-altered desingularization. de Jong’s theorem covers various
cohomological applications with coefficients containing Q. In order to deal with
cohomology theories where a prime l is not inverted, e.g. Z{lZ or Zl-cohomology,
Gabber strengthened de Jong’s theorem as follows: keep the assumptions of the
de Jong’s theorem and assume that l is a prime number invertible on X , then the
desingularizing alteration f : X 1 Ñ X can be chosen so that l does not divide the
degree degpfq “ rkpX 1q : kpXqs, see [5, Theorems 2.1]. Such alterations are called
l1-alterations.

1.4. charpXq-altered desingularization. It is a natural question if Gabber’s
theorem can be strengthened so that degpfq is not divisible by two (or more)
fixed primes invertible on X . In my recent work [7] I answer this affirmatively,
in fact, I prove that one can avoid all invertible primes simultaneously. By a
charpXq-alteration we mean an alteration X 1 Ñ X whose degree is only divisible
by primes non-invertible on X . The main result of [7] is that if X is of finite type
over a quasi-excellent threefold and Z Ĺ X is closed then there exists a charpXq-
alteration f : X 1 Ñ X such that X 1 is regular and f´1pZq is an snc divisor. In
particular, if X is of characteristic zero then f is a desingularization, and if X is
of characteristic p then degpfq “ pn.

2. The method

2.1. l1-altered desingularization. de Jong refined his theorem in [3] as follows:
the altered desingularization f : X 1 Ñ X can be chosen so that the alteration
g : X 1{AutXpX 1q Ñ X is generically radicial (in particular, degpgq “ pn where
p is the exponential characteristic of kpXq). Gabber observed that the l-Sylow
subgroup Gl of G “ AutXpX 1q acts tamely on X 1 whenever l is invertible on X

and proved a general difficult theorem on tame actions implying that there exists
a Gl-equivariant modification X2 Ñ X 1 such that Y “ X2{Gl is regular. In
particular, Y Ñ X is an l1-altered desingularization of X .

2.2. Tame distillation. If there exists a subgroup H Ď G acting tamely on X 1

and |H{G| is only divisible by primes non-invertible on X then the same argument
as above works with Gl replaced by H . In general, such an H does not have to
exist and the main new tool of [7] is the following result that asserts that such an
H exists if one enlarges the alteration X 1 Ñ X . Tame distillation theorem, see
[7, Theorem 3.3.6]: for any alteration X 1 Ñ X of quasi-excellent schemes there



3284 Oberwolfach Report 57/2015

exists an alteration Y 1 Ñ Y such that the composition Y 1 Ñ X factors into a
composition of a tame Galois covering Y 1 Ñ Y and a charpXq-alteration Y Ñ X .

2.3. charpXq-altered desingularization. The tame distillation does not apply
directly to Gabber’s argument since in order to construct a large enough tamely
acting group H we have to replace the regular scheme X 1 with its alteration Y 1 and
one cannot ensure that Y 1 is also regular. However, Illusie and Temkin discovered
in [5, Section 3] a more flexible proof of Gabber’s theorem which is also based
on division by l-Sylow subgroups (the main motivation was to extend Gabber’s
theorem to morphisms of finite type, see [5, Theorem 3.5]). Once one replaces
l-Sylow subgroups by the subgroups provided by the tame distillation theorem,
the argument of Illusie-Temkin applies almost verbatim and yields a proof of the
charpXq-alteration theorem. We refer to [7, Theorem 4.3.1] and its proof for
details.
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Derived non-archimedean analytic spaces

Tony Yue Yu

(joint work with Mauro Porta)

Motivations. Derived algebraic geometry is a far-reaching enhancement of clas-
sical algebraic geometry. We refer to Toën-Vezzosi [20, 21] and Lurie [11, 13] for
foundational works. The prototypical idea of derived algebraic geometry orig-
inated from intersection theory: Let X be a smooth complex projective variety.
Let Y, Z be two smooth closed subvarieties of complementary dimension. We want
to compute their intersection number. When Y and Z intersect transversally, it
suffices to count the number of points in the set-theoretic intersection Y XZ. When
Y and Z intersect non-transversally, we have two solutions: the first solution is to
perturb Y and Z into transverse intersection; the second solution is to compute
the Euler characteristic of the derived tensor product OY bL

OX
OZ of the struc-

tural sheaves. The second solution can be seen as doing perturbation in a more
conceptual and algebraic way. It suggests us to consider spaces with a structure
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sheaf of derived rings instead of ordinary rings. This is one main idea of derived
algebraic geometry.

Besides intersection theory, motivations for derived algebraic geometry also
come from deformation theory, cotangent complexes, moduli problems, virtual
fundamental classes, homotopy theory, etc. (see Toën [19] for an excellent intro-
duction). All these motivations apply not only to algebraic geometry, but also to
analytic geometry. Therefore, a theory of derived analytic geometry is as desirable
as derived algebraic geometry.

We propose to define a notion of derived space in non-archimedean analytic
geometry and then study their basic properties. By non-archimedean analytic
geometry, we mean the theory of Berkovich spaces over a non-archimedean field k
with nontrivial valuation (cf. [1, 2]). Our approach is mainly based on the works of
Lurie [13, 14, 15, 12] on derived algebraic geometry and derived complex analytic
geometry.

A more direct motivation of our study on derived non-archimedean analytic
geometry comes from mirror symmetry. Mirror symmetry is a conjectural duality
between Calabi-Yau manifolds (cf. [23, 22, 4, 8]). More precisely, mirror symmetry
concerns degenerating families of Calabi-Yau manifolds instead of individual man-
ifolds. An algebraic family of Calabi-Yau manifolds over a punctured disc gives
rise naturally to a non-archimedean analytic space over the field Cpptqq of formal
Laurent series. In [9, §3.3], Kontsevich and Soibelman suggested that the theory of
Berkovich spaces may shed new light on the study of mirror symmetry. Progresses
along this direction are made by Kontsevich-Soibelman [10] and by Tony Yue Yu
[25, 24, 27, 26]. The works by Gross, Hacking, Keel, Siebert [7, 6, 5] are in the
same spirit.

In [26], a new geometric invariant is constructed for log Calabi-Yau surfaces, via
the enumeration of holomorphic cylinders in non-archimedean geometry. These in-
variants are essential to the reconstruction problem in mirror symmetry. In order
to go beyond the case of log Calabi-Yau surfaces, a general theory of virtual fun-
damental classes in non-archimedean geometry must be developed. The situation
here resembles very much the intersection theory discussed above, because moduli
spaces in enumerative geometry can often be represented locally as intersections
of smooth subvarieties in smooth ambient spaces. The virtual fundamental class is
then supposed to be the set-theoretic intersection after perturbation into transverse
situations. However, perturbations do not necessarily exist in analytic geometry.
Consequently, we need a more general and more robust way of constructing the
virtual fundamental class, whence the need for derived non-archimedean geometry.

Basic ideas and main results. Our previous discussion on intersection numbers
suggests the following definition of a derived scheme:

Definition 1 (cf. [19]). A derived scheme is a pair pX,OXq consisting of a topo-
logical space X and a sheaf OX of commutative simplicial rings on X , satisfying
the following conditions:

(i) The ringed space pX, π0pOXqq is a scheme.
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(ii) For each j ě 0, the sheaf πjpOXq is a quasi-coherent sheaf of π0pOXq-
modules.

In order to adapt Definition 1 to analytic geometry, we need to impose certain
analytic structures on the sheaf OX . For example, we would like to have a notion
of norm on the sections of OX ; moreover, we would like to be able to compose
the sections of OX with convergent power series. A practical way to organize
such analytic structures is to use the notions of pregeometry and structured topos
introduced by Lurie [13].

We define a pregeometry Tanpkq which will help us encode the theory of non-
archimedean geometry relevant to our purpose. After that, we are able to introduce
our main object of study: derived k-analytic spaces. It is a pair pX ,OX q consisting
of an 8-topos X and a Tanpkq-structure OX , satisfying analogs of Definition 1
Conditions (i)-(ii).

Our goal is to study the basic properties of derived k-analytic spaces and to
compare them with ordinary k-analytic spaces. Here are our main results:

Below all k-analytic spaces are assumed to be strict.

Theorem 2. The category of k-analytic spaces embeds fully faithfully into the
8-category of derived k-analytic spaces.

Theorem 3. The 8-category of derived k-analytic spaces admits fiber products.

Let pAnk, τqétq denote the category of k-analytic spaces endowed with the quasi-
tale topology (cf. [3, §3]) and let Pqét denote the class of quasi-tale morphisms.
The triple pAnk, τqét,Pqétq constitutes a geometric context in the sense of [18]. The
associated geometric stacks are called higher k-analytic Deligne-Mumford stacks.

Theorem 4. The 8-category of higher k-analytic Deligne-Mumford stacks embeds
fully faithfully into the 8-category of derived k-analytic spaces. The essential
image of this embedding is spanned by n-localic discrete derived k-analytic spaces.

Further developments. In order to apply derived non-archimedean geometry to
enumerative geometry, mirror symmetry as well as other domains of mathematics,
we must show that derived non-archimedean analytic spaces arise naturally in
these contexts. The key to the construction of derived structures is to prove a
representability theorem in derived non-archimedean geometry. This will be the
main goal of our subsequent works.

Important ingredients in the proof of the representability theorem will include
the theories of analytification and deformation. Their counterparts in derived
complex geometry are studied by Mauro Porta in [16, 17] and his upcoming works.
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[21] Bertrand Toën and Gabriele Vezzosi. Homotopical algebraic geometry. II. Geometric stacks

and applications. Mem. Amer. Math. Soc., 193(902):x+224, 2008.
[22] Claire Voisin. Symétrie miroir, volume 2 of Panoramas et Synthèses [Panoramas and Syn-
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A non-archimedean Ax-Lindemann theorem

Antoine Chambert-Loir

(joint work with François Loeser)

1. Introduction

The classical Lindemann-Weierstrass theorem states that if algebraic numbers
α1, . . . , αn are Q-linearly independent, then their exponentials exppα1q, . . . ,
exppαnq are algebraically independent over Q. More generally, if α1, . . . , αn are
complex numbers which are no longer assumed to be algebraic, Schanuel’s conjec-
ture predicts that the field Qpα1, . . . , αn, exppα1q, . . . , exppαnqq has transcendence
degree at least n over Q. In [1], Ax established power series and differential field
versions of Schanuel’s conjecture.

Theorem 1 (Exponential Ax-Lindemann). Let exp: Cn Ñ pCˆqn be the mor-
phism pz1, . . . , znq ÞÑ pexppz1q, . . . , exppznqq. Let V be an irreducible algebraic
subvariety of pCˆqn and let W be an irreducible component of a maximal alge-
braic subvariety of exp´1pV q. Then W is geodesic, that is, W is defined by a
finite family of equations of the form

řn
i“1 aizi “ b with ai P Q and b P C.

In the breakthrough paper [6], Pila succeeded in providing an unconditional
proof of the André-Oort conjecture for products of modular curves. One of his
main ingredients was to prove an hyperbolic version of the above Ax-Lindemann
theorem, which we now state in a simplified version.

Let H denote the complex upper half-plane and j : H Ñ C the elliptic modular
function. By an algebraic subvariety of Hn we shall mean the trace in Hn of an
algebraic subvariety of Cn. An algebraic subvariety of Hn if said to be geodesic
if it is defined by equations of the form zi “ ci and zk “ gkℓzℓ, with ci P C and
gkℓ P GL`

2 pQq.

Theorem 2 (Hyperbolic Ax-Lindemann). Let j : Hn Ñ Cn be the morphism
pz1, . . . , znq ÞÑ pjpz1q, . . . , jpznqq. Let V be an irreducible algebraic subvariety
of Cn and let W be an irreducible component of a maximal algebraic subvariety
of j´1pV q. Then W is geodesic.

Pila’s method to prove this Ax-Lindemann theorem is quite different from the
differential approach of Ax. It follows a strategy initiated by Pila and Zannier in
their new proof of the Manin-Mumford conjecture for abelian varieties [9]; that ap-
proach makes crucial use of the bound on the number of rational points of bounded
height in the transcendental part of sets definable in an o-minimal structure ob-
tained by Pila and Wilkie in [8]. Recently, still using the Pila and Zannier strategy,
Klingler, Ullmo and Yafaev have succeeded in proving a very general form of the
hyperbolic Ax-Lindemann theorem valid for any arithmetic variety ([5], see also
[10] for the compact case).

In this work, we establish a non-archimedean analogue of theorem 2.



Non-Archimedean Geometry and Applications 3289

2. Statement of the non-archimedean Ax-Lindemann theorem

Let p be a prime number and let F be a finite extension of Qp. In this work, we
make use of Berkovich’s notion of F -analytic spaces, see [2].

The group PGLp2, F q acts by homographies on the F -analytic projective line
pP1qan, and on its F -rational points P1pF q.

Recall (see [4]) that a Schottky subgroup of PGLp2, F q is a discrete subgroup
which is finitely generated and free. We say that such a subgroup Γ is arithmetic
if there exists a number field K Ă F such that Γ Ă PGLp2,Kq.

A Schottky subgroup Γ of PGLp2, F q has a limit set LΓ which is a non-empty
compact Γ-invariant subset of P1pF q; if the rank g of Γ is ě 2, then it is a perfect
set. Let then ΩΓ “ pP1qanzLΓ; the group Γ acts freely on ΩΓ and the quotient
space ΩΓ{Γ is naturally a F -analytic space so that the projection pΓ : ΩΓ Ñ ΩΓ{Γ
is topologically étale. Moreover, ΩΓ{Γ is the F -analytic space associated with a
smooth, geometrically connected, projective F -curve XΓ of genus g.

Let us now consider a finite family pΓiq1ďiďn of Schottky subgroups of PGLp2, F q
of rank ě 2. Let us set Ω “

śn
i“1 ΩΓi

and X “
śn

i“1XΓi
, and let p : Ω Ñ Xan

be the morphism deduced from the morphisms pΓi
: ΩΓi

Ñ Xan
Γi

.
We say that a closed subspace W of Ω is irreducible algebraic if there exists an

F -algebraic subvariety Y of pP1qn such that W is an irreducible component of the
analytic space Ω X Y an.

We say that W is flat if it can be defined by equations of the following form:

(1) zi “ c, for some i P t1, . . . , nu and c P Ω;
(2) zj “ g ¨ zi, for some pair pi, jq of elements of t1, . . . , nu and g P PGLp2, F q.

We say that W is geodesic if, moreover, the elements g in (2) can be chosen such
that gΓig

´1 and Γj are commensurable (ie, their intersection has finite index in
both of them).

Here is the main result of this paper.

Theorem 3 (Non-archimedean Ax-Lindemann theorem). Let F be a finite exten-
sion of Qp and let pΓiq1ďiďn be a finite family of arithmetic Schottky subgroups of
PGLp2, F q of rank ě 2. As above, let us set Ω “

śn
i“1 ΩΓi

and X “
śn

i“1XΓi
, and

let p : Ω Ñ Xan be the morphism deduced from the morphisms pΓi
: ΩΓi

Ñ Xan
Γi
.

Let V be an irreducible algebraic subvariety of X and letW Ă Ω be an irreducible
component of a maximal algebraic subvariety of p´1pV anq. Then W is geodesic.

3. Sketch of the proof

The basic strategy we use is strongly inspired by that of Pila [6] (see also [7]),
though some new ideas are required in order to adapt it to the non-archimedean
setting. In particular, we have to replace the theorem of Pila-Wilkie [8] by the
non-archimedean analogue recently proved by Cluckers, Comte and Loeser [3].
The role of the o-minimal structure Ran,exp is now played by the subanalytic sets
(in Fn) of Denef and van den Dries, and the rigid subanalytic sets of Lipshitz
and Robinson (in Cn

p ). Analytic continuation and monodromy arguments are
replaced by more algebraic ones and explicit matrix computations by group theory
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considerations. We also take advantage of the fact that Schottky groups are free
and of the geometric description of their fundamental domains.

Let V and W be are as the statement of theorem 3. Let Y be the Zariski
closure of W and let m be its dimension. Similarly as in Pila’s approach one
starts by working on some neighborhood of the boundary of our space (which,
instead of a product of Poincaré upper half-planes, is a product of open subsets of
the Berkovich projective line). We reduce to the case where, locally around some
rigid point ξ P Ω, W is the image of a section φ of the projection to the first m
coordinates, and that ξ1 P LΓ1

.
We consider good fundamental domains Fj for the groups Γj and their product

F; let Γ “
ś

Γj . We then consider the subset G0 of PGLp2, F q consisting of points
pg1, . . . , gnq such that g2 “ ¨ ¨ ¨ “ gm “ 1, and its subset R defined by the condition
dimpgW X F X p´1pV qq “ m. One proves that R is a subanalytic set. Studying
the action of Γj on a neighborhood of the limit set LΓj

, one proves that every
element of Ω can be moved to an element of Fj by applying an element of Γj of
controlled length in some fixed generators. Since the groups Γj are arithmetic and
free non-abelian, this allows to prove that for every real number T , R contains
" T c algebraic points of bounded degree and height ď T . Applying the p-adic
Pila-Wilkie theorem of [3], and making use of the maximality of W , we then
prove that the stabilizer of W inside G0 X Γ is infinite. This furnishes non-trivial
functional equations for the coordinates φj of the section φ. From these functional
equations, we deduce that the Schwarzian derivative of φj is constant, hence zero,
because φj is algebraic. This implies that W is flat. A degree argument, relying
on the maximality of W again, allows then to conclude that W is geodesic.
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p-curvature and connections

Hélène Esnault

(joint work with Mark Kisin)

This is work in progress with Mark Kisin.

Grothendieck p-curvature conjecture predicts that if X{C is a smooth variety,
pE,∇q is an integrable connection over C, then if for all closed points s P S

of a non-emtpy open of definition S of a model pXS , pE,∇qSq, the p-curvature
ψppE,∇qsq is trivial, then pE,∇q has finite monodromy, or equivalently, pE,∇q
is isotrivial, that is trivialized by a finite étale cover Y Ñ X , or equivalently its
Tannaka group in the category MICpX{Cq of integrable connections is finite.

By André-Hrushovski [And04] one may replace C by a number field k, by [Kat72]
one may assume X is projective. Going up again to C, the topological Lefschetz
theorem reduces then the problem to X{k a smooth projective curve over a number
field k, and applying Belyi’s theorem [Bel80], one may also reduce the problem to
X “ P1zt0, 1,8u over a number field k. The latter viewpoint had led Chudnosvkys
[Chu85] and André [And04] to prove the abelian version of the conjecture using
p-adic analysis and criteria à la Dwork for rationality of a power series in krrxss,
k being a number field.

Furthermore, Katz [Kat72] proves that the Kodaira-Spencer class in characteristic
p of a Gauß-Manin connection pE,∇qs dies if the p-cuvature dies, a fact one can’t
show for a Z-polarized variation of Hodge structure which is not coming from
geometry. This enables him to show that Gauß-Manin connections verify the
conjecture.

Using the more geometric reduction, that is X a smooth projective curve over a
number field k, we observe that if the conjecture is true, then necessarily E is a
direct sum of degree 0 stable bundle.

Let X be smooth projective over a number field k. One defines MIC0pX{kq to
be the full subcategory of MICpX{kq consisting of integrable connections pE,∇q
having a model pXS , pE,∇qSq, for which pE,∇qs lifts to DpXs{kpsqq for infinitely
many char. kpsq. One has full embeddings FinConnpX{kq Ă MIC0pX{kq Ă
MICpX{kq, where FinConnpX{kq is the category of finite connections. Here
DpXs{kpsqq is the sheaf of rings of relative differential operators. Let SSpXq be
the category of semi-stable vector bundles of degree 0, SpXq Ă SSpXq be the full
subcategory of polystable bundles. One defines MIC0,polpX{kq Ă MIC0pX{kq to
be the category of polystable objects.

Proposition 1.1. Let pEs,∇sq P DpXs{kpsqq, kpsq finite field. Then E∇
s and Es

are semi-stable of degree 0. If in addition, pEs,∇sq is stable in MICpXsq, then
both E1

s and Es are stable of degree 0.

Theorem 1.2. Let pE,∇q P MIC0pX{kq. Then E is semi-stable of degree 0. If
pE,∇q is irreducible, then E is stable of degree 0.
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So one has the functor

ϕ : MIC0pX{kq Ñ SSpXq, pE,∇q ÞÑ E

sending MICp,polpXq to SpXq. All four categories are Tannakian. We say E is fi-
nite if its Tannaka group (after choosing a rational point to define a neutralization)
in the corresponding category is finite.

Theorem 1.3. For pE,∇q P MIC0,polpX{kq, the functor ϕ induces an isomor-
phism πpxEyq Ñ πpxpE,∇qyq. In particular, if E is finite, so is pE,∇q.

Theorem 1.4. Assume X smooth projective over C and let pE,∇q P MIC0pXq
be a Z-polarized variation of Hodge structure. Then pE,∇q is finite.
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On non-archimedean Poissan’s equation

Shou-Wu Zhang

Let us recall the classical Poisson’s equation on a compact Kähler manifold pX,ωq
which is the foundation for the Hodge theory. We take a normalization

ş
ωn “ 1

where n “ dimX . Then we have a Poisson’s equation:

∆f “ g, f, g P C8pXq.

The uniqueness and existence of this equation are summarized by the following
exact sequence:

0 ÝÑ C ÝÑ C8pXq
∆

ÝÑ C8pXq
ş

¨ωn

ÝÑ C ÝÑ 0.

One important application is the existence of metrics on line bundles on X with
harmonic curvature form.
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In this talk, we try to formulate a non-archimedean analogue of Poisson’s equa-
tion on a variety X over an algebraically closed field C with a complete and
nontrivial absolute value | ¨ |. We first need to define a notion of a curvature form

and an operator BB̄
πi

. We use the notations in our paper [YZ] on Hodge index the-
orem with a modification: we change the notion “integrable metrized line bundle”
to “dsp metrized line bundles”, where dsp is the abbreviation of “difference of

semi-positive”. On X , we have a vector space xPicpXqdsp,R of dsp metrized R-line

bundles which includes a subspace xPic
0
pXqR of flat metrized line bundles. We

define the dsp metrized Neron–Severi group by

xNSpXqR :“ xPicpXqdsp,R{ xPic
0
pXqR.

For a metrized line bundle L̄ P xPicpXqdsp,R, define its first Chern form c1pL̄q to

be its class in xNSpXqR. We will work on the space CpXqdsp of dsp functions f on

XpCq defined by requiring that the metrized line bundle pOpfq :“ pOX , ||1|| “ e´fq
is dsp. For an dspfunction f on X , we define the operator

BB̄

πi
: CpXqdsp ÝÑ xNSpXqR,

BB̄

πi
f :“ c1p pOpfqq.

Let CpXq denote the completion of CpXqdsp with respect to the L8-norm. The in-
tersection theory on the models of X over OC defines to multilinear and continuous
pairing:

CpXq ˆ xNSpXqn ÝÑ R, pf, L̄1, ¨ ¨ ¨ , L̄nq ÞÑ

ż

X

fc1pL̄1q ¨ ¨ ¨ pL̄nq.

By Gubler, CpXq can be naturally identified with the space CpXanq continuous
function on the Berkovich space Xan. Thus the above pairing define a so called
Chambert–Loir measure c1pL̄1q ¨ ¨ ¨ c1pL̄nq on Xan.

Let PicpXq` denote the positive cone in xPicpXqdsp,R, namely R`-combinations

of ample line bundles with semipositive metrics and let xNSpXq` denote its image

in xNSpXqR. We take a Kähler form ω on X as an element in xNSpXq` with a
normalization

ş
ωn “ 1. Now we define a Lapace operator as

∆ : CpXqdsp ÝÑ L1pX,ωnq, ∆pfq :“
BB̄
πi
fωn´1

ωn
.

Without further restriction to both spaces, it is hard to say anything meaningful
about the kernel and the image of this operator. A key point of this talk is to put

a condition so called ω-boundedness on both sides: we say a form α P xNSpXqR is

ω-bounded if there is an ǫ ą 0 such that both ω ˘ ǫα P xNSpXq`; and we say a

function f P CpXqdsp is ω-bounded if BB̄
πi
f is ω-bounded. Let xNSpXqω denote the

space of ω-bounded forms, L8
ω pXq the space of ω-bounded functions, and L1

ωpXq

the space xNSpXqω ^ ωn´1. Then we have a restricted Laplacien operator

∆ : L8
ω pXq ÝÑ L1

ωpXq.
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Conjecture 1. For a given g P L1
ωpXq, the Poisson equation ∆f “ g has a

solution f P L8
ω pXq if and only if

ş
gωn “ 0.

Notice that the uniqueness of the Poisson equation has already been established
as a consequence of the local Hodge index theorem in [YZ]. Equivalently, we show
that the Laplacian equation ∆f “ 0 has only constant solutions. One consequence
of the above conjecture is the existence of some canonical metric on any line bundle
on X :

Conjecture 2. For any line bundle M on X, there is an dspmetrization M̄

(unique up scale multiple) such that the curvature c1pM̄q is ω-harmonic in the
following sense: c1pM̄q is ω-bounded, and satisfies the following equation of mea-
sures:

c1pM̄qωn´1 “ λpMqωn

where λpMq is a constant defined by c1pMq ¨ rωsn with rωs the class in NSpXqR
under the map xNSpXqR ÝÑ NSpXqR.

The following are some results about these conjectures:

(1) Conjecture 1 (and then 2) holds for curves X . In fact in this case, we can
solve Poisson’s equation using a Green’s fucntions gpx, yq for the volume
form ω. We can start with a green function g0px, yq for any volume form
ω0 (for example one associate to the admissible metrics), and define

gpx, yq “ g0px, yq ´

ż
g0px, yqωpxq ´

ż
g0px, yqµpyq `

ż
g0px, yqωpxqωpyq.

(2) Conjecture 1 (and then 2) holds for the case ω is a model metric. In
fact, in this case L8

ω pXq and L1
ωpXq are both finite dimensional with same

dimension, the quadratic form xf,∆fyL2 is positive definite on L8
ω pXq{C

by local Hodge index theorem. Thus ∆ is bijective.
(3) Conjecture 1 (and then 2) holds for the case residue characteristic of C is

0, and ω is supported on a dual complex, by method of Bouckson–Favre–
Jonsson.

(4) Conjecture 2 holds when ω comes from a polarized dynamical system in
the sense that there is an endomorphism f : X ÝÑ X such that f˚ω “ qω

with q a constant ą 1. This follows from the construction of admissible
metrics for any line bundle in [YZ].

We would like to give an application of Conjecture 2 to a variety X over a
global field K, including the function field K “ kpCq for projective curve over
another field k with a fixed positive adelic metrized line bundle L̄ on X . We write
ω “ c1pL̄q{ degL1{n with n “ dimX .

Conjecture 3. Any line bundle M on X has an admissible merization M̄ in
the sense that at each place v of K the bundle M̄v has harmonic curvature form
c1pM̄vq, and that

M̄ ¨ ωn “ λpMqωn`1.

Moreover such a metrization is unique up to multiples from yDivpKq with degree 0.
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If we write ĂPicpXqR “ xPicpXqR{ xPicpKqdeg“0. The above conjecture gives a

section to the projection ĂPicpXqR ÝÑ PicpXqR.

References

[YZ] X. Yuan and S. Zhang, The arithmetic Hodge index theorem for adelic line bundles,
Preprint.

Arithmetic differential operators and representations of p-adic groups

Matthias Strauch

(joint work with Christine Huyghe, Deepam Patel, and Tobias Schmidt)

Let L{Qp be a finite extension, and let G0 be a smooth reductive group scheme
over the ring of integers OL of L. The purpose of the work [5] is to study locally
analytic representations of G “ G0pLq in terms of sheaves of modules for (suitably
defined) arithmetic differential operators on formal models of the rigid analytic flag
variety of G “ G0 ˆ SpecpLq.

1. Arithmetic differential operators. Denote by X0 the flag scheme for G0. Let
x1, . . . , xd be coordinates on an affine open U Ă X0. Let ̟ be a uniformizer

of L. For non-negative integers m and k denote by D
pmq
X0,k

pUq the OL-module of
differential operators

ÿ

n“pn1,...,ndq

an̟
k|n| q

pmq
n !

n!
Bn1

x1
¨ . . . ¨ Bnd

xd
,

where an P OX0
pUq, n! “

ś
j nj!, q

pmq
n ! “

ś
j q

pmq
nj !, q

pmq
nj “ t

nj

pm u, and |n| “

n1 ` . . . ` nd. These rings glue together to give a sheaf D
pmq
X0,k

on X0. Let now
pr : X Ñ X0 be an admissible blow-up, i.e., the blow-up of an ideal sheaf I on X0

which contains a power of ̟.

Key Lemma. Suppose I contains ̟N . Then, for all k ě N the sheaf of rings

pr´1D
pmq
X0,k

acts naturally on OX. Therefore, for these k, the OX-module pr˚D
pmq
X0,k

carries a structure of a sheaf of rings.

In the following we let kX be the minimal k such that ̟k is contained in I. For
k ě kX, put

D
pmq
X,k “ pr˚D

pmq
X0,k

.

Denote by X the completion of X along its special fiber, and let D
pmq
X,k be the p-adic

completion of D
pmq
X,k, which we consider as a sheaf on X. We put D

pmq
X,k,Q “ D

pmq
X,k bQ,

and let D
:
X,k,Q denote the inductive limit over all D

pmq
X,k,Q.
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2. Wide open congruence subgroups. Let Gpkq “ 11ker
`
G0 Ñ G0pOL{̟kq

˘
11 be

the congruence subgroup scheme over OL of level k, and denote by pGpkq˝ the
completion of Gpkq along the unit section. Let Gpkq˝ be the rigid analytic generic

fiber of pGpkq˝. Then we consider

DanpGpkq˝q “ Homcont
L

´
OpGpkq˝q, L

¯
,

which is the analytic distribution algebra introduced by M. Emerton. Denote by
g the Lie algebra of G, and let z be the center of the enveloping Upgq. We let
θ0 be the central character of the trivial representation and put DanpGpkq˝qθ0 “
DanpGpkq˝q bz,θ0 L.

Theorem I. Let pr : X Ñ X0 be an admissible formal blow-up of the smooth
formal scheme X0 which is the formal completion of X0 along its special fiber. Let
k ě kX.

(i) X is D
:
X,k,Q-affine. That means that any coherent module E over D

:
X,k,Q is

generated by its global sections (as a D
:
X,k,Q-module), and that HipX, E q “ 0 for

all i ą 0.

(ii) The ring H0pX,D:
X,k,Qq is canonically isomorphic to DanpGpkq˝qθ0 .

(iii) The functor E ù H0pX, E q is an equivalence from the category of coher-

ent D
:
X,k,Q-modules to the category of finitely generated DanpGpkq˝qθ0-modules. A

quasi-inverse is given by sending a finitely generated DanpGpkq˝qθ0-module M to

L oc
:
X,kpMq “ D

:
X,k,Q bDanpGpkq˝qθ0

M .

l

This result generalizes previous work of C. Huyghe [4].

3. Locally analytic representations. For a locally analytic representation V of
G0 “ G0pOLq on a vector space over a finite extension K of L, we denote by
VGpkq˝´an the subspace of rigid analytic vectors for Gpkq˝, and we put

MkpV q “ Homcont
K

´
VGpkq˝´an,K

¯
.

This is naturally a module over the distribution algebra

DpGpkq˝, G0q “ Homcont
K

´
CanpG0,KqGpkq˝´an,K

¯
“

à

gPG0{Gk`1

δg ˚ DanpGpkq˝q ,

where Gk`1 “ Gpkq˝pLq “ Gpk ` 1qpOLq for k ě 0, and δg denotes the delta
distribution at g. It is shown in [3] that the representation V is admissible in the
sense of Schneider and Teitelbaum if and only if for all k " 0 the DpGpkq˝, G0q-
module MkpV q is finitely generated, and if the canonical map

DpGpkq˝, G0q bDpGpk`1q˝,G0q Mk`1pV q ÝÑ MkpV q
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is an isomorphism of DpGpkq˝, G0q-modules. A locally analytic representation of
G “ GpLq is admissible if it is admissible as a G0-representation.

4. Localization of admissible G0-representations. Let F0 be the system of all
admissible formal blow-ups of X0, and put X8 “ lim

ÐÝXPF0
X. This is the Zariski-

Riemann space of the rigid analytic flag variety of G, and it is also isomorphic to
the corresponding adic space. For a formal scheme X in F0 we set

D
:
X :“ D

:
X,kX,Q .

In the following we consider systems of sheaves
´
MX

¯
XPF0

, where MX is a coherent

D
:
X-module with a G0-action which extends the natural action of GkX`1.

Definition. A G0-equivariant coadmissible module on X8, is a system of sheaves´
MX

¯
X

as above, together with isomorphisms

D
:
X b

D
:

X1 ,Gk
X

`1
pr˚

´
MX1

¯
»

ÝÑ MX

for any morphism pr : X1 Ñ X in F0. This system of isomorphisms is assumed
to satisfy the obvious transitivity condition for any sequence X2 Ñ X1 Ñ X of
morphisms in F0.

For the precise definition of the tensor product on the left we refer to [5]. Given an
admissible G0-representation V with infinitesimal central character θ0, we consider

the system L oc:pV q “
´
MXpV q

¯
X

where

MXpV q “ L oc
:
X,kX

´
MkX

pV q
¯
.

Proposition. (i) For any admissible G0-representation V the system L oc:pV q is
a G0-equivariant coadmissible module on X8.

(ii) Via the functor L oc:, the category of admissible locally analytic G0-represen-
tations (with infinitesimal central character θ0) is (anti-)equivalent to the category
of G0-equivariant coadmissible modules on X8. l

5. Passage to the limit: sheaves of D
:
8-modules. Let spX : X8 Ñ X be the

projection map. Given an open subset U Ă X8 of the form sp´1
X pUXq, for some

open UX Ă X, we have that spX1 pV q “ pr´1pUXq Ă X1 whenever pr : X1 Ñ X is a
morphism in F0. We then put

D
:
8pUq “ lim

ÐÝ
X1ÑX

D
:
X1

´
spX1 pUq

¯
.
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The open subsets of the form sp´1
X pUXq form a basis for the topology of X8, and we

thus obtain a sheaf D8 on X8
1. Similarly, when M “

´
MX

¯
X

is a G0-equivariant

coadmissible module one can form the sheaf M8 with the property that

M8pUq “ lim
ÐÝ

X1ÑX

MX1

´
spX1 pUq

¯
.

This is a module for D
:
8, and it is G0-equivariant.

Proposition. The functor M ù M8 just described from G0-equivariant coad-

missible modules on X8 to G0-equivariant D
:
8-modules is a fully faithful embed-

ding. l

In particular, we have the functor

V ù L oc:
8pV q “ L oc:pV q8

which is a (contravariant) fully faithful embedding of the category of admissible
locally analytic G0-representations (with infinitesimal central character θ0) to the

category of G0-equivariant D
:
8-modules. We call the objects in the essential image

of this functor coadmissible G0-equivariant D
:
8-modules.

6. Localization of admissible G-representations. It is easy to see that the sheaf

D
:
8 is not only G0-equivariant but actually G-equivariant. Furthermore, if V is

an admissible G-representation, then the sheaf L oc:
8pV q is also G-equivariant. A

coadmissible G0-equivariant D
:
8-module whose equivariant structure extends to

the full group G, will simply be called a coadmissible G-equivariant D
:
8-module.

Theorem II. The functor V ù L oc:
8pV q is an anti-equivalence from the cat-

egory of admissible G-representations (with infinitesimal central character θ0) to

the category of coadmssible G-equivariant D
:
8-modules. l

For an application of the localization of locally analytic representations to partic-
ular representations furnished by an étale covering of the p-adic upper half plane
we refer to [6].
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A p-adically entire function with integral values on Qp, Fourier
transform of distributions, and automorphisms of the perfectoid open

unit disc.

Francesco Baldassarri

We deal with the formal perfectoid open unit disk D “ Spa D , where D “
ZprrT 1{p8

ss complete in the pp, T q-adic topology. For any embedding Qp ãÑ K

in a perfectoid field set t :“ p5. The extension DK˝ “ DˆSpaZp
Spa K˝ is a formal

scheme whose generic fiber is the perfectoid open unit disc DK “ DK˝ ´ tp “ 0u
over K with tilt

DK5 “ Spa K5rrT1{p8

ss ´ tt “ 0u .

We interpret D as the algebra D0pQp,Zpqpc of Zp-valued measures on Qp which
vanish at infinity, via the identification p1 ` T qq “ δq, the Dirac mass centered at
q P Qp. Notice that

p1 ` T qq “ lim
nÑ8

p1 ` T 1{pn

qqp
n

P D .

Then D is weak dual of the space C :“ C 0
unifpQp,Zpq of uniformly continuous

functions Qp Ñ Zp, equipped with the supnorm. We regard D as the universal

covering of the p-divisible torus over Zp, so that ∆Dpδqq “ δq pbδq, @q P Qp.

We also consider the Zp-algebra E consisting of p-adically entire functions f
with coefficients in Qp such that fpQpq Ă Zp, equipped with the topology of the
valuations wr, for r P Z, where

wrpfq “ inf
xPp´rCp

vppfpxqq .

We set S “ Zr1{ps X Rě0 “ S1 9Yt0u. For c ą 0 and N “ 1, 2, . . . , we consider
Zp-subalgebras Ec,N of E pbZp

D , consisting of the
ř

qPS aqpxqT q such that

1. apqppxq “ aqpxq, for any q P S;
2. for any r, v P Z and C P R,

wrpaqq ě C ´ cpmaxpqpr, 1qN ´ 1q , for almost all q with vpqq ď v .

In particular, a0 P Qp. Notice that any element of E pbZp
D may be viewed as an

endomorphism of D.
We show that, for any prime number p, there exists a power series

p1q Ψ “ ΨppT q P T ` T 2ZrrT ss ,

which trivializes the addition law of the formal group of Witt p-covectors yCWZp
,

is p-adically entire, and assumes values in Zp all over Qp. So, we have

p2q p. . . ,Ψppx` pyq,Ψpx` yqq “ p. . . ,Ψppxq,Ψpxqq ` p. . . ,Ψppyq,Ψpyqq
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in the sense of covectors, and therefore Ψ satisfies the functional equation

p3q
8ÿ

j“0

p´jΨppjT qp
j

“ T .

We extend the formula of Dieudonné
8ź

i“0

AHpxiT
pi

q “ exp
8ÿ

i“0

xpiqT pi

“ 1 `
8ÿ

i“1

gipx0, x1, . . . , xtlogp iuqT
i ,

where

AHpT q “ expp
8ÿ

i“0

T pi

{piq P ZppqrrT ss

is the Artin-Hasse exponential series, and

xpiq “
iÿ

n“0

pn´ixp
i´n

n

is the usual ghost component of the Witt vector px0, x1, . . . q divided by pi to the

following identity, holding in a suitable completion xP of Zppqr. . . , x´1;x0, . . . srT s,

8ź

i“´8

AHpxiT
pi

q “ exp
8ÿ

i“´8

xpiqT pi

“ 1 `
ÿ

qPS1

gqp. . . , xtlogp qu´1, xtlogp quqT
q

where now
xpiq “

ÿ

nďi

pn´ixp
i´n

n .

Theorem 1.1. The specialization xP Ñ E pbD , xi ÞÑ Ψpp´ixq, @i P Z, produces
an element εpx, T q P E p

p´1
,1, namely

εpx, T q “
8ź

i“´8

AHpΨpp´ixqT pi

q “ exppx
8ÿ

i“´8

p´iT pi

q “ 1 `
ÿ

qPS1

GqpxqT q ,

where, for any q P S, Gqpxq P E and

p4q Gqpx` yq “
ÿ

q1`q2“q

Gq1pxqGq2 pyq ,

where the sum is convergent, along the filter of cofinite subsets of its index set, in
the usual Fréchet topology of OpA2

Qp
q.

Our main result is

Theorem 1.2. The endomorphism of D induced by εpx, T q is a group automor-

phism ǫ : D
„

ÝÝÑ D.

The following result was suggested to us by Jared Weinstein.

Theorem 1.3. For any perfectoid extension K{Qp the automorphism ǫK of DK is
the untilted form of the automorphism of DK5 induced by the Artin-Hasse function

taken modulo p, namely AHpT q P 1 ` TFprrT ss. That is ǫK “ AH
7
K5 .
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The calculation of the action of ǫK of K-points of DK can be performed as
follows. Any K-valued point of DKp0q identifies with a character

χ : pS1,`q ÝÑ pK˝˝, ¨q

q ÞÝÑ χpqq .

The sum

πpχq :“
ÿ

iPZ

χpp´iqpi

converges in K. The image of χ in DKp1q is the additive character

pS,`q ÝÑ p1 `K˝˝, ¨q

x ÞÝÑ 1 `
ÿ

qPS1

Gqpxqχpqq ,

which converges in a neighborhood of x “ 0 to the K-analytic function x ÞÑ
exppπpχqxq “ pexpπpχqqx (resp. converges uniformly on Qp) along the filter of
cofinite subsets of S, and is a character because of (4).

The general formula producing the map pAHK5 q7 according to the theory of
perfectoids is

pAHK5 q7pχqpxq “ lim
nÑ8

AHpχpx{pnqqp
n

“ lim
nÑ8

AHpχp1{pnqqxp
n

“ pexpπpχqqx ,

for any χ as before, and any x P Qp. This coincides with the effect of ǫK of χ.

In fact, if we allow calculations which exit the algebra E p
p´1

,1 and involve more

general locally analytic functions and distributions on Qp, we have

εpx, T q “ exppx
8ÿ

i“´8

p´iT pi

q “ lim
nÑ8

exppx
8ÿ

i“´n

p´iT pi

q “

lim
nÑ8

expp
8ÿ

i“0

p´iT pn`i

qxp
n

“ lim
nÑ8

AHpT pn

qxp
n

,

a calculation that avoids using Ψppxq. But it seems hard to deduce the fact that

εpx, T q P E p
p´1

,1, and our uniform description of pAHK5 q7pχqpxq, from the previous

calculation.

The existence of a universal untilted form ǫ : D
„

ÝÝÑ D of AH seems to go
beyond the expected properties of the tilting correspondence.

A more extended presentation can be found at
http://gaatp.gaati.org/slides/Baldassarri.pdf
http://people.math.unipr.it/andrea.bandini/Baldassarri.pdf
A paper will soon be made accessible.
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Pseudocoherent sheaves and applications

Kiran S. Kedlaya

(joint work with Ruochuan Liu)

In the theory of adic spaces developed in [1], many results are restricted to spaces
arising from strongly noetherian Banach rings; however, such results are not ade-
quate for modern applications to the theory of perfectoid spaces. Consequently, in
our previous paper [3], we were forced to develop some aspects of nonnoetherian
adic spaces from scratch, such as the theory of vector bundles.

In [4], we have been further forced to develop a replacement for the theory of
coherent sheaves. Our point of departure is the notion of a pseudocoherent module
over a ring R in the sense of [2], i.e., a module admitting a projective resolution
(not necessarily of finite length) consisting of finite projective R-modules. We
show that pseudocoherent modules over stably uniform adic Banach rings (such
as perfectoid rings) satisfy analogues of the classical theorems of Tate and Kiehl
in rigid analytic geometry. An important intermediate result is a weak flatness
theorem for rational localization maps of stably uniform adic Banach rings, which
are not known to be flat as morphisms of bare rings.

Our principal motivation for this work is to provide an ambient category con-
taining the relative pϕ,Γq-modules associated to rigid analytic spaces in [3], but
which is better suited to homological methods. Recall that for any affinoid space
X over a nonarchimedean field K of mixed characteristics, we define the pro-étale
topology in the sense of [5]. For this topology, the extended Robba ring forms a
sheaf of rings with ϕ-action, which is acyclic on perfectoid subdomains; the rela-
tive pϕ,Γq-modules over X are locally finite free sheaves over the extended Robba
ring equipped with semilinear ϕ-actions. (There is no explicit action of a group Γ;
this role is instead played by the sheaf axiom.) In a similar vein, we may define
pseudocoherent pϕ,Γq-modules; we show that these form an abelian category sat-
isfying the ascending chain condition. The main subtlety here is that we do not
know whether this category admits projective resolutions, so some care is required;
we ultimately reduce to the corresponding assertion for pseudocoherent modules
over the completed structure sheaf, where the analysis is somewhat easier.
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[2] L. Illusie, Généralités sur les conditions de finitude dans les catégories derivées, Expose I in
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Algebraic-tropical correspondence for rational curves

Ilya Tyomkin

Enumeration of curves in algebraic varieties is a classical problem that has a long
history going back to Ancient Greeks. Many tools have been developed to approach
enumerative problems including Schubert calculus, intersection theory, degenera-
tion techniques, quantum cohomology etc.

In late 90s, Kontsevich proposed to use combinatorial objects such as skeleta
of Berkovich analytifications in the Gromov-Witten theory and other enumerative
problems, and in early 2000s, Mikhalkin [2] introduced the notion of parameterized
tropical curves and used them to enumerate complex curves of a given genus in a
given linear system on toric surfaces. The tropical approach turned out to be a
powerful tool also in mirror symmetry and in real algebraic geometry, where it was
a break-through, and in particular, led to the calculation of Welschinger invariants
in many interesting cases, see e.g., [1, 2, 6].

Since 2005, few algebraic proofs of various versions of Mikhalkin’s correspon-
dence have been obtained by Nishinou-Siebert [3], Shustin [5], the author [7],
Ranganathan [4] and others. However, the proofs are relatively complicated, in-
volve techniques such as deformation theory, log-geometry, stacks, rigid analytic
spaces etc.; and assume the ground field to be of characteristic zero, or at least,
of big enough characteristic (cf. [7]).

In the talk, we discuss our recent results [8] about the algebraic-tropical cor-
respondence in the case of rational curves in toric varieties, having prescribed
tangencies to the toric boundary divisor, passing through given orbits, and satis-
fying multiple cross-ratio constraints. Namely, the setting is as follows:

We fix a complete discretely valued field F with algebraically closed residue field
k, and its algebraic closure F . We fix a pair of dual lattices N and M , a collection
n1, . . . , nr P N such that

řr
i“1 ni “ 0 (notice that ni are allowed to coincide, be

non-primitive or zero); a collection of sublattices ni P Li Ď N , 1 ď i ď r, such that
N{Li are torsion-free; a collection of TLi

-orbits ζi P pTN{TLi
qpF q for all 1 ď i ď r;

a collection of cross-ratios λ P pF
ˆ

qs, and a collection of ordered quadruples of
indices Ji in t1, . . . , ru for 1 ď i ď s. We consider the fan Σ Ă NR generated by
the rays ρi :“ SpanR`

pniq for 1 ď i ď r, and set X :“ XΣ to be the corresponding
toric variety. We set Oi to be the closure in X of the TLi

-orbit corresponding to
ζi. Finally, we set λtr :“ valpλq P Qs and Otr

i :“ tm ÞÑ valpxmppqq | p P ζiu Ď NQ.
The goal of the talk is to describe a natural relation between the following:

The set W of morphisms f : pC; qq Ñ X, where pC; qq is a smooth projective
irreducible rational curve with r marked points such that

Degree and tangency profile: divpf˚xmq “
ř

pni,mqqi,
Toric constraint: fpqiq P Oi for all i ď r,

Cross-ratio constraint: λpC; qJi
q “ λi for all i ď s;

and the set Wtr of stable rational NQ-parameterized Q-tropical curves h : pΓ; eq Ñ
NQ with r unbounded ends for which
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Degree and multiplicity profile: hpuiq “ ni for all i ď r,
Affine constraint: hpviq P Otr

i for all i ď r,
Tropical cross-ratio constraint: λtrpΓ; eJi

q “ λtri for all i ď s

where ui is the i-th infinite vertex of Γ, and vi the finite vertex attached to it.

As a first step, we explain how to construct a natural tropicalization map Tr : W Ñ
Wtr that associates to an algebraic curve with marked points pC; qq the dual graph
of the stable reduction equipped with a natural metric, or equivalently, the minimal
skeleton pΓ; eq of the punctured Berkovich analytification; and to the morphism f

the parameterization h (see [7, 8] for details).
Then we introduce the notion of G-regularity for an abelian group G. To do

so, we consider the natural two-term complex associated to a constrained param-
eterized tropical curve h : pΓ; eq Ñ NQ:

L‚
pΓ,h;Otr ,λtrq :

à

wPV f pΓq

N ‘
à

γPEbpΓq

Z
θ
ÝÑ

à

γPEbpΓq

N ‘
rà

i“1

pN{Liq ‘
sà

i“1

Z;

where the map is defined combinatorially in a natural way (see [8] for details).
We say that pΓ, h;Otr,λtrq is G-regular if H1pL‚

pΓ,h;Otr ,λtrq bZ Gq “ 0, and G-

superabundant otherwise. Our main results assert the following:

Theorem (Realization). Let h : pΓ; eq Ñ NQ be an element of Wtr, and K Ă F a
complete discretely valued subfield of definition of O, λ, and pΓ, hq. Assume that
λtri ‰ 0 for all i, and pΓ, h;Otr,λtrq is Q-regular. Then

(1) h : pΓ; eq Ñ NQ belongs to the image of Tr : W Ñ Wtr.

(2) If pΓ, h;Otr,λtrq is k-regular, Γ is three-valent, and H0pL‚
pΓ,h;Otr ,λtrqq “ 0

then the fiber of the tropicalization map Tr over h : pΓ; eq Ñ NQ consists of exactly
|H1pL‚

pΓ,h;Otr ,λtrqq| morphism f : pC; qq Ñ X, and all morphisms in the fiber are

defined over K.

Theorem (Correspondence). Assume that the constraints O and λ are such that
Otr and λtr are tropically general, and

s `
rÿ

i“1

rankpN{Liq “ r ´ 1.

If the characteristic of k is big enough then the map Tr : W Ñ Wtr is surjective
and the size of the fiber over h : pΓ; eq Ñ NQ is |H1pL‚

pΓ,h;Otr ,λtrqq|. Moreover, all

curves in the fiber are defined over any field of definition of pΓ, hq.

Finally, we indicate the strategy of the proofs, which are surprisingly short, ele-
mentary, and involve no deformation theory, log-geometry, stacks, or rigid analytic
spaces. Similarly to [4], we do not use the degeneration of the target, but unlike
the other proofs we use only the standard scheme theory.

Roughly speaking the proof of the Realization theorem consist of the following
steps: First, we introduce convenient coordinates, and express the moduli space
of stable maps that tropicalize to a given parameterized tropical curve and satisfy
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the constraints as the set of integral points in a fiber of an explicitly defined map
Θ of algebraic tori. Then we show that the reduction of Θ is the map of algebraic
tori associated to the homomorphism θ in the complex L‚

pΓ,h;Otr ,λtrq, which allows

us to prove flatness of Θ, and to deduce the result from Mumford’s theorem on the
existence of quasi-sections (in this case the existence is easy, and can be achieved
directly without referring to Mumford’s theorem). The Correspondence theorem
then follows from the Realization theorem and a combinatorial lemma asserting
that if the constraints are tropically general then all curves in Wtr are regular
enough. The latter is rather standard and straightforward.
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Refined curve counting, tropical geometry, and motivic Euler
characteristics

Sam Payne

(joint work with Johannes Nicaise and Franziska Schroeter)

This project investigates the relationship between two different approaches to
counting curves, one using Euler characteristics of relative Hilbert schemes of
points and the other using tropical geometry.

Suppose that C Ñ B is a family of reduced and irreducible curves of genus g
with finitely many δ-nodal fibers, in which all other fibers have geometric genus
greater than g ´ δ. Such a condition is satisfied in many natural geometric situa-
tions, including, for instance, in the case of a general δ-dimensional linear series of
sections of a sufficiently ample line bundle on a smooth projective surface. Then
the number of δ-nodal fibers can be computed from Euler charactersitcs of relative
Hilbert schemes of points, as follows. The generating function

q1´g
8ÿ

i“0

χpHilbipC{Bqqqi
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can be expressed uniquely as a sum

gÿ

r“g´δ

nrq
1´rp1 ´ qq2r´2,

where the coefficients nr are positive integers, and ng´δ is the number of δ-nodal
fibers in the family.

Göttsche and Shende have proposed to study refined curve counting invariants,
defined similarly, but with the Euler characteristic replaced by χy genus. More
precisely, the generating function

q1´g
8ÿ

i“0

χypHilbipC{Bqqqi

can be expressed uniquely as a sum

8ÿ

r“0

Nr q
1´rp1 ´ qqr´1p1 ´ qyqr´1,

where the coefficients Nr are polynomials in the formal variable y that specialize to
the ordinary curve counting invariants nr by setting y “ 1, and these coefficients
Nr are defined to be the refined invariants. (We follow the convention that nr “ 0
for r outside the interval rg ´ δ, gs.)

It is well-known that nodal curves on toric surfaces can also be counted trop-
ically. If C Ñ B is the universal curve over the locus of reduced and irreducible
curves in a general δ-dimensional linear series in the complete linear series of an
ample line bundle, then the number of δ-nodal fibers can be computed as the num-
ber of parametrized tropical curves of genus g´δ, with unbounded edge directions
specified by the ample line bundle, and passing through n ´ δ points in general
position, counted with combinatorially defined multiplicities. Block and Göttsche
have proposed refined tropical curve counting invariants, which are combinatorially
defined polynomials in a formal variable y that specialize to the ordinary tropical
multiplicities by setting y “ 1, and conjecture that the refined curve counting
invariant Ng´δ for C Ñ B should be recovered as a sum of these tropical refined
multiplicities over the same set of tropical curves.

The main goal of our project is to give a natural geometric interpretation for
the combinatorially defined refined tropical curve counting multiplicities of Block
and Göttsche. We observe that, for a given tropical curve Γ, the locus in B

parametrizing curves with tropicalization Γ is a semialgebraic set BΓ. We write
CΓ Ñ BΓ for the universal family, and show that all of the curves in this family
are reduced and irreducible. Our strategy, then, is to define a geometric invariant
analogous to that of Göttsche and Shende, but for this semialgebraic family. The
generating function

q1´g
8ÿ

i“0

χypHilbipCΓ{BΓqqqi,
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where χypHilbipCΓ{BΓqq denotes the χy-specialization of the motivic measure of
this semialgebraic set, in the framework of Hrushovski and Kazhdan, can be ex-
pressed uniquely as a sum

8ÿ

r“0

Nr q
1´rp1 ´ qqr´1p1 ´ qyqr´1,

in which the coefficients Nr are polynomials in the formal variable y. We conjecture
that the Block–Göttsche refined tropical curve counting multiplicity of Γ is equal
to the polynomial Ng´δ. We prove this conjecture in the case g “ 1. We also show
that the conjecture is correct after specializing to the ordinary Euler characteristic.
In other words, Ng´δp1q is the ordinary tropical multiplicity of the curve Γ.

Geometrization of the local Langlands correspondence

Laurent Fargues

Given a quasisplit reductive group G defined over a p-adic field E we first define
the moduli stack BunG of G-bundles over the curve we defined and studied in our
joint work with Fontaine. This is a ”perfectoid stack” in characteristic p over Fq

the residue field of E. The points of BunG b Fq are identified with Kottwitz set
BpGq of σ-conjugacy classes in GpLq where L is the completion of the maximal
unramified extension of E. There is a dictionnary between Kottwitz description
of BpGq and reduction theory. In particular basic in Kottwitz sens is equivalent
to semi-stable for a G-bundle.

This stack has a nice Harder-Narasimhan stratification, in particular the semi-
stable locus is open. Its connected components are parametrized by π1pGqΓ where
Γ “ GalpE|Eq. In each of those components there is a unique semi-stable point
given by some b P GpLq basic. This is given by Kottwitz bijection

κ : BpGqbasic
„

ÝÑ π1pGqΓ.

The associated semi-stable stratum is then the classifying stack
“
SpapFqq{JbpEq

‰

where Jb is an inner form of G (all inner forms of G are reached in this way when
the center of G is connected, for example for GLn). This is the classifying stack
of pro-étale JbpEq-torsors.

Choose ℓ ‰ p and let LG be the corresponding ℓ-adic Langlands dual over
Qℓ. Consider a Langlands parameter ϕ : WE Ñ LG. Note Sϕ for the group of
automorphisms of ϕ

Sϕ “ tg P pG | gϕg´1 “ ϕu.

Suppose ϕ is discrete that is to say Sϕ{Zp pGqΓ is finite.

We conjecture the existence of a ”perverse Weil sheaf” Fϕ on BunG b Fq

equipped with an action of Sϕ satisfying the following properties:
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‚ the action of Zp pGqΓ Ă Sϕ on the connected component given by α P

π1pGqΓ is given by α via the identification π1pGqΓ “ X˚pZp pGqΓq.
‚ For b basic, via the inclusion of the corresponding semi-stable component
xb : rSpapFqq{JbpEqs ãÑ BunG bFq, the decomposition of the action of Sϕ

x˚
b Fϕ “

à
ρP ySϕ

ρ
|ZpxGqΓ

“κpbq

Fϕ,ρ

as smooth representations of JbpEq defines an L-packet
 
Fϕ,ρ

(
ρ

for a local

Langlands correpondence for the inner form Jb of G. When b “ 1, and
thus Jb “ G, Fϕ,1 is the unique generic element of the L-packet (and
thus the construction of Fϕ has to depend on the choice of a Whittaker
datum).

‚ There are Hecke correspondences defined between BunG and BunG ˆ
SpapEq˛. They are parametrized by element µ P X˚pAq` where A is
a maximal split torus in G and X˚pAq` is the positive Weyl chamber rel-
ative to the the choice of a Borel subgroup containing A. Then Fϕ is an
eigenvector for those Hecke correspondences with eigenvalue rµ ˝ϕ seen as
an ℓ-adic Weil local system on SpapEq˛.

‚ Fϕ has to satisfy a local global compatibility with Caraiani-Scholze sheaf

RπHT˚Qℓ where πHT is the Hodge-Tate period map associated to a Hodge
type Shimura variety.

This conjecture implies Kottwitz conjectural description of the discrete part
of the cohomology of Rapoport-Zink spaces. It is checked for GL1 where this is
equivalent to local class field theory.

On skeleta

François Loeser

(joint work with E. Hrushovski)

Let val : K Ñ Γ8 be a valued field. Here Γ8 “ Γ Y t8u with Γ an ordered
abelian group (no restriction on the rank of Γ is assumed). Let V be an algebraic

variety over K. In [2] we introduced the stable completion pV of V , which is a

model-theoretic version of the Berkovich analytification. Points in pV are definable

types on V that are dominated by their stable part. pV is naturally endowed with

a topology coming from the order topology on Γ. A key feature of pV is that it is

pro-definable in the geometric language of [1]. A subset of pV is called iso-definable
resp. iso-definable Γ-internal if it is pro-definably isomorphic to a definable set,
resp. to a definable subset of Γn, for some n.

An important role is played by those types in pV that satisfy a form of Abhyankar
equality, namely those definable types p on V such that there exists a definable
map f : V Ñ W with W defined over the residue field and such that the Zariski



Non-Archimedean Geometry and Applications 3309

dimension of the support of p and of f˚ppq are equal. We call such types strongly
stably dominated and denote the set of those types by V #. When dimpV q ď 1,

V # “ pV , but the inclusion is strict as soon as dimpV q ě 2 as shown by the next
example. An important property of V # is that it naturally endowed with the
structure of an ind-definable space.

Example: Take K “ F pptqq with F trivially valued and valptq “ 1. Consider a
non-algebraic power series ϕpxq “

ř
iě0 aix

i, with ai P F , and for any non negative

integer n, set ϕnpxq “
ř

0ďiďn aix
i. For γ P Γ8 consider the complete type pγ in

px, yq generated by the generic type of the closed ball valpxq ě 1 and the formulas

valpy ´ ϕnpxqqq ě minpn ` 1, γq.

One can check that pγ belongs to pA2q# if and only γ is finite, i.e. smaller than

n0 for some integer n0. Furthermore, the mapping g : Γ8 Ñ xA2 sending γ to pγ

is continuous and pro-definable but its image is not iso-definable in xA2.
By a generalized interval we mean a definable set which is obtained by glueing

end-to-end a finite number of intervals in Γ8. We say an iso-definable Γ-internal

subset pV is topologically Γ-internal if it is pro-definably homeomorphic to a defin-
able subset of Γn

8, for some n.

Call a subset Υ Ă pV a skeleton if Υ is topologically Γ-internal, is contained in

V # and for any irreducible component Vi of V , Υ X pVi if of o-minimal dimension
dimpViq everywhere. The main result in [2] is the following theorem:

Theorem 1. Let V be a quasi-projective variety over a valued field. There exists

a continuous prodefinable map h : I ˆ pV Ñ pV , with I a generalized interval,

which is a strong deformation retraction onto a subset Υ Ă pV with Υ a skeleton.
Furthermore, given a finite number of definable functions αi : V Ñ Γ8 one may
require h to respect the αi.

A first connection between V # and o-minimal geometry is provided by the
following proposition:

Proposition 1. Let V be a variety of dimension n, and letW Ă pV be iso-definable
Γ-internal. If W is of pure o-minimal dimension n, then W Ă V #.

In view of the following rigidity statement it explains the importance of the
space V # in the proof of Theorem 1:

Proposition 2 (rigidity). Let V be a variety of dimension n, and let W Ă pV be

iso-definable Γ-internal. If W is of pure o-minimal dimension n, and α : pV Ñ Γ8

is pro-definable and finite-to-one on W , then any h : I ˆ pV Ñ pV , continuous
pro-definable with I a generalized interval respecting α, fixes pointwise W .

We ended the talk by sketching the proof of the following recent result which
is included in the latest versions of [2].

Theorem 2. Let V be a quasi-projective variety over a valued field. Then V # is

exactly the union of all skeleta inside pV .
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Sketch of proof: One has to prove that any point p in V # belongs to a skeleton.
By increasing the basis, one reduces to the case p is a realized type (recall V # is
ind-definable). The proof then proceeds by descending induction on the o-minimal
dimension, the case of maximal dimension being consequence of Proposition 2.

One deduces from Theorem 2 the following topological characterisation of the
points satisfying the equality in the Abhyankar inequality:

Corollary. The set V # is exactly the locus in pV of points having local o-minimal
dimension the Zariski dimension of V ; e.g., if V is of pure dimension n, V #

is the locus of points of o-minimal dimension n, namely those contained in an
iso-definable Γ-internal set of o-minimal dimension n.

References

[1] D. Haskell, E. Hrushovski, D. Macpherson, Definable sets in algebraically closed valued
fields: elimination of imaginaries, J. Reine Angew. Math. 597 (2006), 175–236.

[2] E. Hrushovski, F. Loeser, Non-archimedean tame topology and stably dominated types, An-
nals of Mathematics Studies, 192, Princeton University Press, 2016.

Geometric invariants for non-archimedean semi-algebraic sets

Johannes Nicaise

(joint work with Franziska Schroeter, Sam Payne)

Let K be an algebraically closed real-valued field of equal characteristic zero, with
valuation ring R and residue field k. The prime example to keep in mind is the
field of complex Puiseux series K “ Yną0Cppt1{nqq, which is an algebraic closure of
the field of complex Laurent series Cpptqq. A semi-algebraic subset of an algebraic
K-variety X is a subset of XpKq that can locally be defined by Boolean operators
and inequalities of the form vpfq ď vpgq where f, g are algebraic functions on X

and v denotes the valuation on K. The aim of my talk was to show how one can
attach geometric invariants to semi-algebraic sets over the field K using the theory
of motivic integration developed by Hrushovski and Kazhdan [3]. The motivation
for this construction is twofold:

(1) Semi-algebraic sets occur naturally in tropical and non-archimedean ge-
ometry. For instance, given a family of subvarieties of an algebraic torus,
the locus of fibers of the family with fixed tropicalization is semi-algebraic.
This follows from Robinson’s quantifier elimination for algebraically closed
valued fields.

(2) Even if one is ultimately interested in computing invariants for algebraic
varieties, it is often useful to know that one can compute these invariants
on semi-algebraic decompositions of the variety, for instance to obtain
tropical formulas.

Both motivations play a role in our project, which aims to give a geometric in-
terpretation of the refined tropical multiplicities of Block and Göttsche [1] and to
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obtain a tropical correspondence theorem for the refined curve counting invariants
of Göttsche and Shende [2]. The first results will appear in [7].

The central tool in our approach is the motivic volume defined by Hrushovski
and Kazhdan. This is a morphism

Vol : K0pVFKq Ñ K0pVarkq

from the Grothendieck ring of semi-algebraic sets over K to the Grothendieck ring
of algebraic varieties over the residue field k. With the help of this morphism
we can extend all the classical motivic invariants in algebraic geometry to semi-
algebraic sets, by composing Vol with the motivic invariant on K0pVarkq. For
instance, this allows us to define the Hodge-Deligne polynomial, the χy-genus and
the Euler characteristic of a semi-algebraic set.

A common feature of all the theories of motivic integration is that they try to
understand the structure of semi-algebraic objects over K in terms of data living
over the residue field k (that is, algebraic k-varieties) and over the value group
|K˚| (polyhedra). This aim is realized in the theory of Hrushovski and Kazhdan by
a complete description of the Grothendieck ring of semi-algebraic sets K0pVFKq
as a tensor product of certain Grothendieck rings of k-varieties and polyhedra,
respectively. They show that K0pVFKq is generated by the classes of the following
types of semi-algebraic sets:

‚ inverse images of closed |K˚|-rational polyhedra Γ in Rn under the tropi-
calization map trop : pK˚qn Ñ Rn;

‚ tubes around subvarieties Y of the special fibers of smooth R-schemes X

of finite type.

Moreover, they express in a simple and elegant way all the relations that exist
between these classes. The motivic volume

Vol : K0pVFKq Ñ K0pVarkq

is fully characterized by its values on the generators above:

‚ Volptrop´1pΓqq “ rGn
m,ks for every n ě 1 and every closed |K˚|-rational

polyhedron Γ in Rn;
‚ the volume of the tube around Y in X equals rY s.

The motivation for the first expression is that we can think of trop´1pΓq as a pR˚qn-
torsor over Γ, and that the volume of R˚ according to the second expression is
rGn

m,ks. In many situations, the invariants of semi-algebraic sets defined in this
way have a natural geometric meaning. For instance, one can deduce from work
by Martin [6] and Hrushovski & Loeser [4] that the Euler characteristic of a semi-
algebraic set coincides with the one obtained from Berkovich’s theory of étale
cohomology for K-analytic spaces.

In order to be able to compute all of these motivic invariants in practice, we
have established a tropical expression for the classes in K0pVFKq of schön subva-
rieties X of algebraic K-tori. Every tropical polyhedral decomposition Σ of the
tropicalization of X gives rise to a semi-algebraic decomposition of XpKq whose
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pieces are the inverse images of the cells of Σ under the tropicalization map. This
leads to an expression for rXpKqs in terms of the generators of K0pVFKq given
above, involving the cells of Σ on the polyhedral level and the strata of the spe-
cial fiber of a certain model for X induced by Σ on the residue field level. As a
corollary, we find the expression

VolpXpKqq “
ÿ

γ

p´1qdimpγqrinγXs

where γ runs over the bounded open cells of Σ and inγX denotes the corresponding
initial degeneration ofX . A similar expression for the motivic nearby fiber of Denef
and Loeser was given by Katz and Stapledon in [5].
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Syntomic complexes and p-adic nearby cycles

Wies lawa Nizio l

(joint work with Pierre Colmez)

We compute syntomic cohomology of semistable affinoids in terms of cohomology
of pϕ,Γq-modules which, thanks to work of Fontaine-Herr, Andreatta-Iovita, and
Kedlaya-Liu, is known to compute Galois cohomology of these affinoids. For a
semistable scheme over a mixed characteristic local ring this implies a comparison
isomorphism, up to some universal constants, between truncated sheaves of p-adic
nearby cycles and syntomic cohomology sheaves. This generalizes the comparison
results of Kato, Kurihara, and Tsuji for small Tate twists (where no constants
are necessary) as well as the comparison result of Tsuji that holds over the al-
gebraic closure of the field. As an application, we combine this local comparison
isomorphism with the theory of finite dimensional Banach Spaces and finitness of
étale cohomology of rigid analytic spaces proved by Scholze to prove a Semistable
conjecture for formal schemes with semistable reduction.

Let OK be a complete discrete valuation ring with fraction field K of charac-
teristic 0 and with perfect residue field k of characteristic p. Let OF “ W pkq and
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F “ OF r 1
p

s so that K is a totally ramified extension of F ; let e “ rK : F s be the

absolute ramification index of K. Let OK denote the integral closure of OK in K.
Set GK “ GalpK{Kq, and let φ “ φW pkq be the absolute Frobenius on W pkq. For

a log-scheme X over OK , Xn will denote its reduction mod pn, X0 will denote its
special fiber.

1.1. Statement of the main results. Let X be a (strict) semistable scheme
over OK . For r ě 0, let SnprqX be the (log) syntomic sheaf modulo pn on X0,ét.
It can be thought of as a derived Frobenius and filtration eigenspace of crystalline
cohomology or as a relative Fontaine functor. Fontaine-Messing [4] have defined a
period map

αFM
r,n : SnprqX Ñ i˚Rj˚Z{pnprq1

Xtr

from syntomic cohomology to p-adic nearby cycles. Here i : X0 ãÑ X , j : Xtr ãÑ X ,
and Xtr is the locus where the log-structure is trivial. We set Zpprq1 :“ 1

paprq Zpprq,

for r “ pp ´ 1qaprq ` bprq, 0 ď bprq ď p´ 1.
We prove that the Fontaine-Messing period map αFM

r,n , after a suitable trunca-
tion, is essentially a quasi-isomorphism. More precisely, we prove the following
theorem.

Theorem 1.1. For 0 ď i ď r, consider the period map

(1.2) αFM
r,n : H

ipSnprqXq Ñ i˚Rij˚Z{pnprq1
Xtr

.

(i) If K has enough roots of unity1 then the kernel and cokernel of this map are
annihilated by pNr for a universal constant N (not depending on p, X , K, n or
r).

(ii) In general, the kernel and cokernel of this map are annihilated by pN for an
integer N “ Npe, p, rq, which depends on e, r, but not on X or n.

For i ď r ď p´ 1, it is known that a stronger statement is true: the period map

(1.3) αFM
r,n : H

ipSnprqXq
„
Ñ i˚Rij˚Z{pnprqXtr

.

is an isomorphism for X a log-scheme log-smooth over a henselian discrete valua-
tion ring OK of mixed characteristic. This was proved by Kato [7], [8], Kurihara
[10], and Tsuji [14], [15]. In [13] Tsuji generalized this result to some étale local
systems. As Geisser has shown [5], in the case without log-structure, the isomor-
phism (1.3) allows to approximate the (continuous) p-adic motivic cohomology
(sheaves) of p-adic varieties by their syntomic cohomology; hence to relate p-adic
algebraic cycles to differential forms.

As an application of Theorem 1.1, one can obtain the following generalization
of the Bloch-Kato’s exponential map [2]. Let X be a quasi-compact formal,
semistable scheme over OK (for example a semi-stable affinoid). For i ě 1, consider
the composition

αr,i : Hi´1
dR pXK,trq Ñ HipX ,S prqqQ

αFM
rÝÝÑHi

étpXK,tr,Qpprqq.

1The field F contains enough roots of unity and for any K, the field Kpζpn q, for n ě cpKq`3,

where cpKq is the conductor of K, contains enough roots of unity.
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If X is a proper semistable scheme X over OK , and 1 ď i ď r ´ 1, then the GK-
representation Vi´1 “ Hi´1

ét pXK ,Qpprqq is finite dimensional over Qp, Hi´1
dR pXKq

is finite dimensional over K, and Hi´1
dR pXKq “ DdRpVi´1q. The map αr,i for the

formal scheme X associated to X is then the Bloch-Kato’s map [11]

DdRpVi´1q Ñ H1pGK , Vi´1q “ Hi
étpXK ,Qpprqq.

Easy comparison between de Rham and syntomic cohomologies, together with
Theorem 1.1, yield the following result.

Corollary 1.4. For i ď r ´ 1, the map

αr,i : Hi´1
dR pXK,trq Ñ Hi

étpXK,tr,Qpprqq

is an isomorphism. Moreover, the map αr,r : Hr´1
dR pXK,trq Ñ Hr

étpXK,tr,Qpprqq
is injective ( but not necessarily surjective: the case i “ r “ 1 and X “ Øˆ

K

already provides a counterexample).

Recall how one shows that the period map αFM
r,n from (1.3) is an isomorphism.

Under the stated assumptions one can do dévissage and reduce to n “ 1. Then
one passes to the tamely ramified extension obtained by attaching the p’th root
of unity ζp. There both sides of the period map (1.3) are invariant under twisting
by t P Acr and ζp, respectively, so one reduces to the case r “ i. This is the
Milnor case: both sides compute Milnor K-theory modulo p. To see this, one uses
symbol maps from Milnor K-theory to the groups on both sides (differential on
the syntomic side and Galois on the étale side). Via these maps all groups can be
filtered compatibly in a way similar to the filtration of the unit group of a local
field. Finally, the quotients can be computed explicitly by symbols [1], [6], [10],
[13] and they turn out to be isomorphic. This approach to the computation of p-
adic nearby cycles goes back to the work of Bloch-Kato [1] who treated the case of
good reduction and whose approach was later generalized to semistable reduction
by Hyodo [6].

Our proof is of very different nature: we construct another local (i.e., on affi-
noids of a special type, see below) period map, that we call αLaz

r . Modulo some
pφ,Γq-modules theory reductions, it is a version of an integral Lazard isomorphism
between Lie algebra cohomology and continuous group cohomology. We prove di-
rectly that it is a quasi-isomorphism and coincides with Fontaine-Messing’s map
up to constants as in Theorem 1.1. The (hidden) key input is the purity theorem
of Faltings [3], Kedlaya-Liu [9], and Scholze [12]: it shows up in the computation
of Galois cohomology in terms of pϕ,Γq-modules [9] which we use as a black box.
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Chabauty–Coleman on basic wide opens and applications to uniform
boundedness

Joseph Rabinoff

(joint work with Eric Katz, David Zureick-Brown)

1. Uniform boundedness questions

This is a report on completed and continuing work on proving uniform bounded-
ness statements by using p-adic integration and applying the Chabauty–Coleman
method on basic wide open subdomains of Berkovich curves. By a curve, we will
always mean a smooth, proper, geometrically connected curve C over a field. We
will always denote the Jacobian of C by J .

We will consider the following (proved) conjectures, and their uniform variants.

Mordell Conjecture 1.1. Let C be a Q-curve of genus g ě 2. Then C has
finitely many Q-rational points.

The Mordell conjecture was proved by Faltings in 1983. Giving an explicit
bound on the size of CpQq amounts to producing a number N , calculated in terms
of invariants of the curve C, such that #CpQq ď N . One might hope that the
only necessary invariant is the genus of the curve; this gives rise to the uniform
version of 1.1.

Uniform Mordell Conjecture 1.2. For g ě 2, there exists a number N “ Npgq
such that for every Q-curve C of genus g, we have #CpQq ď Npgq.
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Perhaps the strongest currently known statement in the direction of Conjec-
ture 1.1 is the following theorem, which relies heavily on recent work of Stoll [Sto13].

Theorem 1 ([KRZB15, Theorem 1.1]). Let g ě 3. For every Q-curve C of genus
g such that rankJpQq ď g ´ 3, we have

#CpQq ď 76g2 ´ 82g ` 22.

This theorem is proved with a variant of the techniques we will sketch in this
note. These techniques are based on the Chabauty–Coleman method; for this
reason it is not likely that the condition on the Mordell–Weil rank can be removed.
We will focus mostly on the following (proved) conjecture, and its uniform variant.

Manin–Mumford Conjecture 1.3. Let C be a curve of genus g ě 2 defined
over the complex numbers C. Let α : C ãÑ J be the Abel–Jacobi map, defined with
respect to a choice of base point. Then only finitely many points of C map to
torsion points of J : in symbols, #α´1pJpCqtorsq ă 8.

The Manin–Mumford conjecture was first proved by Raynaud in 1983, with
many subsequent proofs. As above, the uniform variant asserts a bound in terms
of the genus alone.

Uniform Manin–Mumford Conjecture 1.4. For g ě 2, there exists a number
N “ Npgq such that for every C-curve C of genus g and every choice of Abel–
Jacobi map α : C ãÑ J , we have #α´1pJpCqtorsq ď Npgq.

Buium [Bui96] proved that if C is defined over an unramified finite extension
K{Qp (for p ě 3) and has good reduction, then

#α´1pJpCpqtorsq ď p4g 3g
“
pp2g ´ 2q ` 6g

‰
g!.

One can use this result to give another proof of 1.3. Notice however that the bound
only depends on g (and p), and as such gives a uniform bound as in Conjecture 1.4
for curves over K with good reduction.

2. p-adic integration

There are several flavors of p-adic line integration. We mention here the two that
we will employ. In this section we work entirely over Cp.

2.1. The abelian integral. Using general considerations on p-adic Lie groups,
one can show that there exists a unique p-adic Lie group homomorphism

log : JpCpq ÝÑ LiepJq “ H0pJ,Ω1q˚,

which induces the identity on Lie algebras. Using H0pJ,Ω1q “ H0pC,Ω1q, for
x, y P CpCpq and ω P H0pC,Ω1q we define

Abż y

x

ω – logpαpyq ´ αpxqqpωq.
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Noting that log kills JpCpqtors, we have

Abż y

x

ω “ 0 for all x, y P α´1pJpCpqtorsq and ω P H0pC,Ω1q.(2.1)

2.2. The Berkovich–Coleman Integral. The Berkovich–Coleman integral as-
sociates to a path γ : x ù y in the Berkovich analytification Can, where x, y P
CpCpq, and to a differential ω P H0pC,Ω1q, a number

BCż

γ

ω P Cp.

This integration theory enjoys many desirable properties, including:

(1)
BCş

γ
only depends on the fixed end-point homotopy class of γ.

(2)
BCş

γ
is intrinsic to any analytic subdomain containing γ, i.e. it can be

calculated locally.

(3)
BCş

γ
df “ fpyq ´ fpxq for an analytic function f defined on γ, i.e. the

integral satisfies the fundamental theorem of calculus.

Properties (2) and (3) imply that
BCş

γ
ω can be computed locally using formal

antidifferentiation on domains in which ω is exact.

2.3. Comparing the integrals. The abelian and Berkovich–Coleman integrals
do not necessarily coincide; however, their difference is well-controlled.

Vague Proposition 2.4. The difference
BCş

´
Abş

is controlled by the tropical
Abel–Jacobi map.

See [KRZB15, Proposition 3.16, §3.5] for precise statements. We will give some
concrete consequences of 2.4, using the following notation. Let Γ Ă Can be a
skeleton. This is a weighted metric graph, which we assume here and below has no
loop edges; this can always be achieved by adding more vertices. Let τ : Can Ñ Γ
be the retraction map, let v P Γ, let Vv denote the union of v with all open edges
adjacent to v, and let Uv “ τ´1pVvq. This is an open analytic domain in Can.

Definition 1. An open subset of the form Uv Ă Can is called a basic wide open
subdomain.

It is not hard to see that Definition 1 coincides with Coleman’s notion [Col89,

§3]. Note that Uv is simply-connected, so it makes sense to write
BCşy

x
ω for

x, y P Uv.

Corollary 1 (to 2.4). Let v P Γ be a vertex, and let d “ degpvq, the valency of v
in Γ. Then there exists a subspace W Ă H0pC,Ω1q of codimension at most d ´ 1

such that
BCşy

x
ω “

Abşy
x
ω for all ω P W and x, y P UvpCpq.

It follows from Corollary 1 that
BCş

ω “
Abş

ω on open discs, which explains
why the usual Chabauty–Coleman method does not require a comparison of the
two integrals. On an open annulus, which is a basic wide open associated to a point



3318 Oberwolfach Report 57/2015

v of valency 2, there is one linear condition needed for
BCş

ω “
Abş

ω; this was
discovered by Stoll [Sto13, Proposition 6.1]. On a “p-adic pair of pants”, i.e. a basic

wide open Uv associated to a vertex v of valency 3, the equation
BCş

ω “
Abş

ω

imposes two linear conditions. And so forth.

3. Overall technique

In this section we describe the overall strategy for using Chabauty–Coleman on
basic wide opens to obtain uniform Manin–Mumford statements. Throughout we
will work with a curve C defined over Cp, with J its Jacobian. We proceed in the
following steps.

(1) Since C is hyperbolic, there exists a minimal skeleton Γ Ă Can. This is a
weighted metric graph of genus g. The combinatorics of such graphs give
bounds on the number of vertices and edges of Γ, in terms of g alone.

(2) We have Can “
Ť
Uv, where the union is taken over vertices of Γ. That

is, Can is covered by a uniformly bounded number of basic wide open
subdomains.

(3) Suppose that, for each vertex v P Γ, we can find a nonzero global differen-
tial ωv P H0pC,Ω1q satisfying:

(E) ωv “ dfv for fv P OpUvq, i.e. ωv is exact on Uv.

(I)
BCż y

x

ωv “
Abż y

x

ωv for all x, y P UvpCpq.

We claim that conditions (E) and (I) suffice to prove a uniform Manin–Mumford
statement.

(4) For a suitable choice of antiderivative fv, all torsion points on Uv are zeros
of fv. This is a consequence of (2.1) and (I).

Now we describe how to bound the number of zeros of fv. This plays the role of
the “p-adic Rolle theorem” part of the classical Chabauty–Coleman method, and
is central to [KRZB15]. Some of the assertions below are simplified to the point
of being not quite correct; see [KRZB15] for precise statements.

Let

Gv – ´ log ||ωv|| : Vv ÝÑ R.

Here the metric || ¨ || on Ω1 comes from the canonical extension of Ω1 to a semistable
model of C defined using an integral version of Rosenlicht differentials. It can also
be defined using Temkin’s theory of metrization of differential pluriforms [Tem14],
or using the relative dualizing sheaf if C has a semistable model over a discretely
valued subfield of Cp. In any case, Gv is piecewise linear with integer slopes.

Proposition 1. divpGvq `KΓ ě 0.

Here divpGvq is the divisor of Gv in the sense of divisors and linear equiva-
lence on metric graphs, and KΓ is the canonical divisor of the weighted graph Γ.
Proposition 1 can be phrased as saying “Gv is a section of the tropical canonical
bundle.” It is a result in potential theory on Berkovich curves, and can be seen
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as a consequence of the Poincaré–Lelong formula as applied to the metrized line
bundle pΩ1, || ¨ ||q.

A combinatorial analysis of piecewise-linear functions on weighted metric graphs
of genus g satisfying Proposition 1 yields the following consequence.

Corollary 2. On any segment where Gv is linear, the slope of Gv is bounded by
2g ´ 2 in absolute value.

(5) Bound the slopes of Fv – ´ log |fv| in terms of the slopes of Gv.
(6) The number of zeros of fv on Uv is equal to the sum of the incoming slopes

of Fv on the edges adjacent to v.

We currently handle (5) with a tedious Newton polygon argument. The result-
ing bound also depends on p and on the length of the shortest edge in Γ adjacent
to v. Assertion (6) is another fact from potential theory, and can be derived from
the Poincaré–Lelong formula as applied to pOC , | ¨ |q. Completing steps (1)–(6) in
general would give a complete proof of the uniform Manin–Mumford conjecture,
at least for curves defined over a finitely ramified extension of Cp (see Remark 1
below).

Remark 1. The entire argument presented above is carried out over Cp. However,
the bounds obtained in (5) for the slopes of Fv do depend on the shortest edge
length of Γ. If C admits a split semistable model over a subfield K Ă Cp with
finite ramification index e over Qp, then all edges have length at least 1{e.

Remark 2. Our approach is a generalization of the Chabauty–Coleman method;
the main new ingredient is p-adic integration on wide open subdomains. In classical
Chabauty–Coleman, one only performs p-adic integration on open discs; for this
purpose it is not necessary to compare the two types of p-adic integration, as
mentioned above. (But see Remark 3 below.) Another interesting feature of our
method is that it uses p-adic integration to give geometric point-counting bounds,
instead of rational point bounds.

Remark 3. A variant of the argument outlined above is used to prove Theorem 1.
In this context, almost all ingredients are already contained in Stoll’s paper [Sto13],
which was a major inspiration. Indeed, for rational points bounds, it is only
necessary to integrate on open discs and open annuli (these being special cases of
wide open subdomains), where the theory simplifies considerably. Stoll was only
able to carry out step (5) for annuli in the case of hyperelliptic curves. From the
perspective of the uniform Mordell conjecture, the solution to (5) is the key new
ingredient contained in [KRZB15]; integration on more general wide opens is not
needed.
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4. Current results and work in progress

Carrying out the program of §3, in [KRZB15, Theorem 1.3] we prove the following
theorem. We keep the notation from the previous section.

Theorem 2. Suppose that all edge lengths in Γ are at least 1{e, and that for every
vertex v of Γ, one has

(:) g ą 2gpvq ` degpvq,

where gpvq is the weight of v and degpvq is its valency. Then there is an explicit
constant Nppg, eq such that

#α´1pJpCpqtorsq ď Nppg, eq

for any choice of Abel–Jacobi map α : C ãÑ J .

The condition (:) is designed to guarantee that (I) and (E) can be satisfied
(along with some trick to decrease the number of degrees of freedom needed to
choose the differential ωv).

We are currently working on proving the uniform Manin–Mumford conjecture
for all Mumford curves over Cp. This would be interesting in its own right, as
it would give a uniform bound on torsion packets on Shimura curves of bounded
genus (using the Čerednik–Drinfel’d uniformization); this can be seen as a Shimura
curve analogue of the Coleman–Kaskel–Ribet conjecture, which is a theorem of
Baker [Bak00]. We are also working on extending Buium’s arguments [Bui96] to
give a proof of uniform boundedness for curves over finite extensions of Qp with
compact-type reduction.
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Logarithmic structures, Artin fans, and tropical compactifications

Martin Ulirsch

The theory of Artin fans has emerged in [AW13] and in [ACMW14] in the context
of logarithmic Gromov-Witten theory (also see [ACM+15]), but can be traced back
to the work of Olsson [Ols03] studying classifying stacks of logarithmic structures.
It has already found applications to the realizability problem for tropical curves
(see [Ran15b]) as well as to a version of the correspondence between algebraic and
tropical curve counts (see [Ran15a]).

Throughout let k be a field that is endowed with the trivial absolute value.
An Artin fan is a fine and saturated logarithmic algebraic stack, locally of finite
type over k, that is logarithmically étale over k. Despite this seemingly abstract
definition, Artin fans are essentially combinatorial objects and can be described
as geometric stacks over the category of Kato fans (see [Kat94]), an incarnation
of the geometry over the ”field with one element”.

Non-Archimedean geometry of Artin fans. Every fine and saturated log-
arithmic scheme X comes with a canonical strict morphism X Ñ AX into an
associated Artin fan AX . If X is a T -toric variety, then the Artin fan AX is
nothing but the quotient stack rX{T s and, in general, the Artin fan of a fine and
saturated logarithmic scheme X is étale locally constructed by these toric quo-
tient stacks. Applying Thuillier’s [Thu07] generic fiber functor p.qi we obtain the
following result.

Theorem 1 ([Uli15b]). On the level of underlying topological spaces the analytic
map Xi Ñ Ai is equal to the tropicalization map tropX : Xi Ñ ΣX constructed
in [Uli13].

If X is logarithmically smooth, by [Uli13, Theorem 1.2] the analytic map Xi Ñ
Ai

X factors through Thuillier’s [Thu07] deformation retraction pX : Xi Ñ Xi

onto the non-Archimedean skeleton SpXq of X and the skeleton SpXq is natu-
rally homeomorphic to AX . Note, in particular, that this procedure canonically
endows the skeleton of a logarithmically smooth scheme with the structure of a
non-Archimedean analytic stack.

The case of toric varieties. For a T -toric variety X “ Xp∆q, defined by a ratio-
nal polyhedral fan ∆ in the vector space NR spanned by the cocharacter lattice N
of T , one can give a generalization of Theorem 1; it describes the Kajiwara-Payne
tropicalization map trop∆ : Xan Ñ NRp∆q from Xan to a partial compactifica-
tion NRp∆q of NR (see [Kaj08] and [Pay09]) as a non-Archimedean analytic stack
quotient.

Theorem 2 ([Uli14]). The Kajiwara-Payne tropicalization map tropX : Xan Ñ
NRp∆q is a non-Archimedean analytic stack quotient of Xan by the affinoid torus
T ˝ associated to T .
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One can view Theorem 2 from a different perspective: It is the non-Archimedean
version of the fact that for a complex toric variety X “ Xp∆q with big torus
T » Gn

m the logarithmic complex absolute value on C induces a homeomorphism

XpCq
L

pS1qn » NRp∆q .

Theorem 2 therefore adds another layer to the analogy between the tropicalization
map and the complex moment map. Contrary to the Archimedean case, however,
we have to work with stack quotients and not with topological quotients, since the
underlying space of the affinoid torus T ˝ is not a group.

Tropical compactifications. Artin fans were already implicit in the work of
Tevelev [Tev07] on tropical compactifications and give a reinterpretation of basic
concepts of this theory in terms of logarithmic geometry. For example, the com-
pactification Y of a very affine variety Y Ď T in a T -toric variety X is a tropical
compactification if and only if Y is logarithmically faithfully flat. Moreover, a
tropical compactification is schön if and only if it is also logarithmically smooth.

In this language Tevelev’s existence theorem for tropical compactifications can
be generalized to the following toroidal version of the Raynaud-Gruson flattening
theorem (see [RG71]).

Theorem 3 ([Uli15a]). Let F be a coherent sheaf on an logarithmically smooth
integral scheme X of finite type over k. Then there is a toroidal modification
X 1 Ñ X such that the strict transform F st of F is logarithmically flat over k.

Let Y be a closed subset of the locus X0 in X where the logarithmic structure
on X is trivial. Theorem 3 implies that after a toroidal modification X 1 Ñ X of
X the closure of Y in X 1 is logarithmically flat over k and thus the intersections
of Y with the logarithmic strata of X 1 are either empty or have the expected
dimensions. If X is a toric variety, this is precisely Tevelev’s result.
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Reified valuations spaces and skeletons of Berkovich spaces

Antoine Ducros

(joint work with Amaury Thuillier)

Let k be any non-Archimedean field (possibly trivially valued). For every finite
family r “ pr1, . . . rnq of non-negative real numbers, we denote by ηr the point of
the Berkovich space An,an

k defined by the semi-norm
ř
aIT

I ÞÑ max |aI |rI . The
map r ÞÑ ηr induces a homeomorphism between Rě0 and a closed subset Sn of
An,an

k , which is usually called the standard skeleton of An,an
k . In a joint work with

Amaury Thuillier (currently in progress, and not yet available online) we prove –
among other things – the following result.

Theorem. Let X “ M pAq be a k-affinoid space and let f : X Ñ An,an
k be a

morphism with zero-dimensional (hence finite) fibers. Set Σ “ f´1pSnq. There
exists a finite family pg1, . . . , gmq of functions belonging to A such that the following
hold.

(1) The map p|g1|, . . . , |gm|q from X to Rm
ě0 induces a homeomorphism ι between

Σ and a compact subset P of Rm
ě0 which is piecewise monomial. This means that P

can be defined by a boolean combination of inequalities between monomial functions
with non-negative integral exponents; i.e., functions of the kind axe11 . . . xemm with
a P Rě0 and the ei’s in Zě0.

(2) For every analytic domain V of X and every analytic function h on V ,
the subset ιpV X Σq of P is piecewise-monomial, and |h| ˝ ι´1 : ιpV X Σq Ñ Rě0

is piecewise monomial with rational exponents (of course, negative exponents can
only occur for non-vanishing coordinates).
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The case where the fi’s are invertible. The proof is then simpler. Indeed,
this assumption on the fi’s implies that every point of Σ is Zariski-generic on X

(more precisely, its Zariski-closure is an n-dimensional irreducible component of
X), which allows through some standard tricks to algebraize the situation around
every point of Σ. Once we have done it, the above Theorem can be proved by
using either de Jong’s alterations or the model theory of valued fields; we refer to
the author’s papers [3] (for the first method) and [1] (for the second one).

Back to the general case. When the fi’s are allowed to vanish, points of Σ
can be non-generic (for instance, the origin of An,an belongs to Sn). In order
to understand what can happen around such a point, we have introduced a new
space of valuations. Before describing it, let us mention that Temkin has already
developped in [7] valuation theoretic tools for the local study of Berkovich spaces,
which have been described recently by Kedlaya [6] in a more “Huber-like” spirit in
terms of what he calls reified valuations (see the definition below). Though those
tools have proved powerful, we cannot use them here, for the following reason:
they give a very nice description of the germs of analytic domains around a given
point of a Berkovich space, but do not say anything about phenomena related to
the Zariski topology – which are crucial for our purposes. For example, Temkin’s
space associated to a rigid point x of a Berkovich space X consists of a single
point, no matter how bad the singularity of X at x is (this encodes the fact that
an analytic domain of X containing x is always a neighborhood of x or, otherwise
said, that every analytic function invertible at x has constant norm around x).

The space uX. We are now going to describe the valuation space we have intro-
duced. First of all, let us recall’s Kedlaya definition of a reified valuation: if A is
a commutative ring, a reified valuation on A is a valuation A Ñ Γ0 (where Γ is an
arbitrary ordered abelian group, with multiplicative notation, and Γ0 “ Γ Y t0u)
together with an increasing embedding Rą0 ãÑ Γ; there is a natural notion of
equivalence of reified valuations. If ξ : A Ñ Γ0 is a reified valuation, its kernel
is a prime ideal p of A. The fraction field of A{p will be denoted by κpξq, and
the natural map A Ñ κpξq will be denoted by f ÞÑ fpξq. The reified valuation
ξ induces a reified valuation κpξq Ñ Γ0, which is denoted by | ¨ |. Hence one has
ξpfq “ |fpξq| for every f P A (and we shall use the latter notation); the subgroup
Rą0 ¨ |κpξqˆ| of Γ only depends (as an ordered group equipped with an embedding
of Rą0, up to isomorphism) on the equivalence class of ξ.

Now let X “ M pAq be a k-affinoid space. We denote by uX the set of equivalence
classes of reified valuations ξ onA that are bounded, that is such that |fpξq| ď ||f ||8
for every f P A, where || ¨ ||8 is the spectral semi-norm. We endow it with the
topology generated by the subsets described by inequalities of the form |f | ’ λ|g|
with f and g in A, with λ in Rě0, and with ’ in tă,ď,ą,ěu (hence this is kind
of a constructible topology: any inequality, strict or non-strict, defines an open
subset). The topological space uX is compact and totally disconnected.

The Berkovich space X can be identified with the subset of uX consisting of
points ξ such that |κpξqˆ| Ă Rą0 (but the inclusion X Ă uX is not a topologi-
cal embedding, because the topology of a Berkovich space makes the difference
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between strict and non-strict inequalities). This subset is dense in uX: this is
essentially a rephrasing of Huber’s theorem [4], Th. 4.1.

Kedlaya’s space of continuous reified valuations can be identified with the subset
of uX consisting of points ξ such that for every λ P |κpξqˆ|, there exists ε P Rą0

with ε ă λ (there are no infinitesimal elements in the value group).
A general element of uX can be thought of as mixing a “Kedlaya” part and an

algebraic, not reified valuation on Spec A (giving rise to infinitesimal elements).
There is a continuous map c : uX Ñ X , which is a retraction of the natural

inclusion X Ă uX . If ξ P uX then cpξq “ f ÞÑ inftλ P Rě0, |fpξq| ď λu.

Example. Let R be a positive real number and set X “ M pktT {Ruq. Let Γ
be an ordered group containing Rą0, and let r P Γ0 such that r ď R. The mapř
aiT

i ÞÑ max |ai|r
i is then a bounded reified valuation on ktT {Ru; it therefore

defines a point ηr of uX , and there are three possibilities. If r P Rě0, then ηr is
the usual Berkovich point. If r is infinitesimally closed to a positive real number ρ
(i.e., r ‰ ρ but λ´1 ă r{ρ ă λ for every real number λ ą 1) then ηr is a Kedlaya
point, and cpηrq “ ηρ. If r is infinitesimal (i.e., r ą 0 and r ă ε for every positive
real number ε) then cpηrq “ 0, and ηr is not a Kedlaya point; this a “new” point,
encoding the unique branch starting from the rigid point 0 (on a nodal curve one
would have two such points over every singular point). It can also be described as
the composition of the vanishing order at the origin with the absolute value of k.

Functoriality. Every morphism Y Ñ X between k-affinoid spaces gives rise
to a continuous map uY Ñ uX. Assume that Y is an affinoid domain of X . By
Gerritzen-Grauert theorem, Y can be described by a positive boolean combination
S of inequalities of the form |f | ď λ|g where f and g are analytic functions on
X and where λ ě 0. The image of the map uY Ñ uX is then the compact open
subset of uX defined by the system S , but uY Ñ uX is not injective in general. The
problem comes from the fact that the Zariski topology of Y is, in general, strictly
finer than the restriction of the Zariski topology of X ; this gives rise to (algebraic)
non-trivial valuations on OXpY q whose restriction to OXpXq is trivial, and then
(by composition with suitable Kedlaya or even Berkovich valuations) to distinct
points of uY having the same image on uX.

Link with our theorem. Our general strategy consists in studying the preimage
Σ of the standard skeleton through its avatar uΣ on uX, where our totally discon-
nected topology allows compactness arguments even while working on Zariski-open
subsets. Every point ξ of uΣ are Abhyankar, in the following sense: the sum of the

rational rank of |κpξqˆ|{|kˆ| and of the transcendence degree of Ąκpξq{k̃ is equal

to the dimension of tcpξqu
Zar

. Hence most of our work is devoted to Abhyankar
points of uX . Usually, we handle them by making kind of a dévissage between
their “Kedlaya” part, which is often not so difficult to deal with, and their “al-
gebraic” part, which requires more work and often relies on algebraic geometry
à la Grothendieck. For instance, we prove that if V is an affinoid domain of X
and if ξ is an Abhyankar point of uX then ξ has at most one pre-image on uV
(hence the aforementioned pathologies cannot occur), and if it has one, say η,
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then |κpηqˆ| “ |κpξqˆ| and Ąκpηq “ Ąκpξq. Key ingredients for the “algebraic” part
of this proof are: the good behavior of normality under a regular map (i.e., flat
with geometrically regular fibers) between noetherian schemes; and a result by
Raynaud describing, being given a flat morphism Y Ñ X of noetherian schemes,
which are the Cartier divisors on Y that come from some Cartier divisor on X

(see [5], Errata, Prop. 21.4.9).
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Institut de Mathématiques de Jussieu
Case 247
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Institut de Mathématiques de Jussieu
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Université Paris 7
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