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ABSTRACT. The workshop focused on recent developments in non-Archi-
medean analytic geometry with various applications to other fields, in partic-
ular to number theory and algebraic geometry. These applications included
Mirror Symmetry, the Langlands program, p-adic Hodge theory, tropical ge-
ometry, resolution of singularities and the geometry of moduli spaces. Much
emphasis was put on making the list of talks to reflect this diversity, thereby
fostering the mutual inspiration which comes from such interactions.
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Introduction by the Organisers

The workshop on Non-Archimedean Analytic Geometry and Applications, or-
ganized by Vladimir Berkovich (Rehovot), Walter Gubler (Regensburg), Peter
Schneider (Miinster) and Annette Werner (Frankfurt) had 53 participants. Non-
Archimedean analytic geometry is a central area of arithmetic geometry. The first
analytic spaces over fields with a non-Archimedean absolute value were introduced
by John Tate and explored by many other mathematicians. They have found nu-
merous applications to problems in number theory and algebraic geometry. In the
1990s, Vladimir Berkovich initiated a different approach to non-Archimedean an-
alytic geometry, providing spaces with good topological properties which behave
similarly as complex analytic spaces. Independently, Roland Huber developed a
similar theory of adic spaces. Recently, Peter Scholze has introduced perfectoid
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spaces as a ground breaking new tool to attack deep problems in p-adic Hodge
theory and representation theory.

Recent years have seen a growing interest in such spaces since they have been
used to solve several deep questions in arithmetic geometry. The goal of the
workshop was to bring together researchers from different areas for an exchange of
ideas which may facilitate future developments. Meanwhile, applications of non-
Archimedean spaces have become so diverse that the workshop filled a gap in the
recent list of conferences by providing a platform to exchange new results, ideas
and open problems between the different branches of the subject. In fact, during
the months before the workshop the organizers received numerous requests, also
from some internationally renowned mathematicians, to be included in the list of
participants.

We had 19 one hour talks in this workshop. A summary of the topics can be
found below. All talks were followed by lively discussions, in the form of plenary
questions and also in the form of blackboard discussions in smaller groups. Several
participants explained work in progress or new conjectures or promising techniques
to attack open conjectures. The workshop provided a lively platform to discuss
these new idea with other experts.

During the workshop, we saw new structure results for affinoid spaces over
the ring of integers (Poineau) and recent progress regarding skeleta of Berkovich
spaces (Ducros and Loeser). Skeleta are polyhedral substructures which are defor-
mation retracts, and which can be used to investigate the topology of Berkovich
spaces. Loeser reported on his model-theoretic approach to skeleta (jointly with
Hrushovsky) which leads to the proof of local contractibility of Berkovich spaces
associated to varieties over non-Archimedean fields.

A surprising application of the non-Archimedean theory of skeleta to an impor-
tant problem in diophantine geometry was presented in Rabinoff’s talk. In joint
work with Katz and Zureick-Brown, partial very explicit solutions of the uniform
Mordell conjecture and of the uniform Manin-Mumford conjecture were proved.
The power of non-Archimedean geometry to give classical problems a new point of
view was also seen in Chambert-Loir’s talk on a non-Archimedean Ax—Lindemann
theorem and in Zhang’s conjecture of a non-Archimedean Poisson formula.

Several talks dealt with progress in tropical geometry and tropical moduli spaces
(Payne, Nicaise, Tyomkin, Ulirsch). Moreover, applications to mirror symmetry
were presented, in particular regarding a new and very promising theory of in-
tersections to deal with Gromov-Witten invariants (Yu). Geometric applications
of non-Archimedean geometry for resolutions of singularities in positive charac-
teristics are given via some precise analysis of de Jong’s alterations (Temkin).
Applications in positive characteristic included new results on p-adic curvature
(Esnault).

A very influential recent development is Scholze’s theory of perfectoid spaces,
which is based on adic spaces and which has become a crucial tool in p-adic
Hodge theory. In this area we have seen spectacular recent progress in a possible
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reduction of the local Langlands program in number theory to a purely geomet-
ric analog of the geometric Langlands conjectures (Fargues). Related areas are
relative p-adic Hodge theory (Kedlaya), p-adic representations (Strauch), Fourier
transformations on Q, (Baldassari) and overconvergent modular forms (Hansen).
Niziol presented interesting results with Colmez for p-adic nearby cycles using
syntomic cohomology.

Apart from the plenary talks, the participants had many discussions in small
groups. The organizers made a specific effort to invite Phd students and Postdocs.
Altogether we had 14 participants from this group. For most of them it was the first
Oberwolfach workshop they ever attended. The unique Oberwolfach atmosphere
provided a singular opportunity of meeting the international leaders of the subject
and of keeping track with current developments. During the breaks and in the
evenings many informal mathematical discussions took place, in which the young
participants played an active role.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Ehud de Shalit in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Affinoid spaces over Z
JEROME POINEAU

When developing analytic geometry over Q,, the first objects to consider are the
so-called Tate algebras Q,{T1,...,T,}. They contain the power series with coefli-
cients in Q, that converge on the closed unit disk of center 0 in Q. Remark that
this last condition behaves well thanks to the non-archimedean triangle inequality.

In the archimedean setting, one needs to modifiy it and is led to consider in-
stead “overconvergent Tate algebras” made of power series that converge in some
arbitrary neighborhood of the closed unit disk. The same construction actually
works over the ring of integers Z. Generalizing slightly, for rq,...,r, > 0, we de-
fine Z{r; 'Ty,..., 7, Tn}' to be the ring of power series with coefficients in Z that
converge in some neighborhood of the closed disk D = D(0, (r1,...,7,)) < C™.

To develop p-adic analytic geometry, one starts by studying the algebraic prop-
erties of those Tate algebras and, in particular, showing that they are noetherian.
In order to do so, techniques that are quite specific to the non-archimedean set-
ting are used, most notably the reduction map that enables to pass from a ring
of power series over k to a ring of polynomials over the residue field k. Over Z
(and over C to00), such methods do not exist and the noetherianity result appears
to be much more challenging. To the best of the knowledge of the author, until
very recently, the only available result in this direction was the following theorem
of D. Harbater, for n = 1.

Theorem 1 ([Har84, theorem 1.8]). For every r > 0, the ring Z{r—'T} is noe-
therian.

The proof is quite technical and relies on explicit descriptions. It is very unlikely
that such a strategy can be made to work for a larger number of variables.

1. THE COMPLEX SETTING

When replacing Z by C, the analogous result is known, as a consequence of the
following theorem of J. Frisch.

Theorem 2 ([Fri67, théoreme I, 9]). Let X be a complex analytic space and K be
a compact subset of X that is semi-analytic and Stein. Then, the ring O(K)' of
analytic functions that converge in some neighborhood of K is noetherian.

Recall that a subset K of a complex analytic space Xis said to be semi-analytic
if it is locally defined by a finite number of inequations involving analytic func-
tions and that it is said to be Stein if, for every coherent sheaf .# defined in a
neighborhood of K, we have

o for every x € K, the stalk .%#, is generated by the set of global sections
HO(K, Z)! (Cartan’s theorem A);
e for every ¢ > 1, HY(K,.#) = 0 (Cartan’s theorem B).
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The proof is very geometric and makes a crucial use of the following properties:

(1) the local rings &, are noetherian;

(2) the structure sheaf & is coherent;

(3) every compact semi-analytic space has finitely many connected compo-
nents.

When applied to the compact K = D(0, (r1,...,7,)) € C", the theorem shows
that the ring C{r; 'T1,..., 7, Ty} is noetherian.

2. BERKOVICH ANALYTIC SPACES OVER Z

In order to use a strategy that is similar to the one used in the complex set-
ting, one needs to have analytic spaces with good properties on which the rings
Z{r{'Ty,...,r; T,}" naturally appear as rings of functions on some compact sets.
Berkovich analytic spaces over Z meet all those requirements.

Those spaces have been defined by V. Berkovich at the end of the first chapter of
the monograph [Ber90]. Without going into the details, let us recall that the affine
analytic space A7*" of dimension n over Z is defined as the set of multiplicative
semi-norms on Z[T1, ..., T,], endowed with the topology of pointwise convergence.
An analytic function on this space is defined to be locally a uniform limit of rational
functions without poles.

Since the absolute values over Z can be archimedean or not, the spaces A"
contain fibers that are non-archimedean (and look like p-adic Berkovich ana-
lytic spaces) and others that are archimedean (and look like complex analytic
spaces, possibly modulo complex conjugation). Moreover, one may define a rela-
tive closed disk D = D(0, (r1,...,7,)) around the 0 section in A7*" and the ring
of functions that converge in some neighborhood of this disk is exactly the ring
Z{r'Ty,...,r; T,}T defined above. We refer to [PoilOb, annexe B] for a gentle
introduction and to [PoilOa] for more details, including a complete study of the
affine line.

3. LOCAL PROPERTIES

The article [Poil3] is devoted to the local study of analytic spaces over Z. The
main tool is a quite general local Weierstrass division theorem for the affine line
over a Banach ring (&7, | -|) with mild conditions on 7 (that are automatically
met if &7 is Z endowed with the usual absolute value or the completion of the ring
of functions on a relative disk over Z for instance).

Theorem 3 ([Poil3, théoréme 8.3]). Denote by m: X = A — B = A%™ the
projection morphism. Let b € B. Let P € J£(b)[T] be an irreducible polynomial
and let x be the point of the fiber X, = 7= 1(b) such that P(z) = 0. Let G be an
element of Ox , whose image in Ox, 5 is not zero.

Then, there exists a non-negative integer m such that every element F of Ox ,
may be written uniquely in the form F = QG + R, with Q € Ox, and R €
OB p[T]<m.-



Non-Archimedean Geometry and Applications 3279

With this result at hand, one may deduce many local properties of the space
A7™ by using a strategy that is close to the one used in the complex analytic
setting.

Corollary 4. o For every point x € Ay™, the local ring O, is henselian,
noetherian, regular and excellent.
e The structure sheaf 0 on A7™ is coherent.

Thanks to the Weierstrass division theorem, one may also prove a sort of noethe-
rianity result for coherent sheaves on Az

Corollary 5. Let U be an open subset of Ay*". Let F be a coherent sheaf on U
and let (Fm)mso be an increasing subsequence of subsheaves of % . Then, every
point x of U admits a neighborhood V' in U such that the sequence (Fp, |v)m=0 is
eventually constant.

4. GLOBAL PROPERTIES

In order to adapt the strategy of Frisch’s proof, we also need to know that disk
are Stein spaces. This is indeed the case.

Theorem 6. Letrq,...,7, > 0. Set D = Dﬁ(O, (r1,...,mn)) € AZ™. Let F be a
coherent sheaf defined in a neighborhood of D. Then, we have

o for every x € D, the stalk F, is generated by the set of global sections
HO(D, #)" (theorem A);
e for every ¢ =1, HY(D, %) = 0 (theorem B).

Let us explain some consequence of there results for affinoid spaces over Z. Let
us first give a definition in the spirit of the classical definition of affinoid spaces
in rigid geometry. Consider a disk D = D(0, (r1,...,7,)) = AZ*" and a finite
number of functions f1,..., fm € O(D)T. Set

V=V(f1,--, fm) ={zeD|Vie[1l,m], fi(z) = 0}
and denote by jy the inclusion of V in D. Let .# be the sheaf of ideals on D
generated by (f1,..., fm). An overconvergent affinoid space over Z is defined to
be a space isomorphic to (V,jy,'(0p/.#)). Tt is easy to deduce from theorem 6
that theorems A and B still hold for such spaces.

We would like to point out that those results are very similar to classical results
in rigid analytic geometry: theorem A is analogous to Kiehl’s theorem whereas
theorem B resembles Tate’s acyclicity theorem. For the former, this is clear.
For the later, let us remark that a short argument involving the exact sequence

gm Yo, g g /# — 0 and theorem B ensures that the global sections
on V are exactly those one might expect:

OV) ~Z{r ' Toy oo T} /(1o fon)
This means that, if one would like to follow Tate’s original construction and define
a presheaf on an affinoid space by its global sections on its affinoid domains, then

one would recover the structure sheaf we started with. In particular, this presheaf
is a sheaf, which is one important part of Tate’s acyclicity theorem.
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5. NOETHERIANITY

Let us finally go back to the noetherianity question we started with. The classical
proof of Frisch’s theorem uses a topological argument: compact semi-analytic
subsets have only finitely many connected components. This is unknown in the
theory of Berkovich analytic spaces over Z, where the topological aspects are not
well developed. (Let us however mention that T. Lemanissier recently proved that
those spaces are locally arcwise connected in [Lem15]).

However, by using corollary 5 and the noetherianity of C{r; 'T},..., 7 'T,}T,
one is able to prove the expected result. Let us mention that this strategy is close
to the one Langmann used in his proof of Frisch’s theorem (see [Lan77]).

Theorem 7. For every r1,...,r, € (0,1), the ring Z{r 'Ty,...,r; T, }T is noe-
therian.
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Overconvergent modular forms: A perfectoid point of view
DaviD HANSEN
(joint work with Przemyslaw Chojecki, Christian Johansson)

Let N > 5 be an integer, and let Y = Y1(N) < X = X; (V) be the usual modular
curves over Q. A holomorphic modular form weight k and level N admits two
rather distinct interpretations, which one might call the algebraic and analytic
points of view:

Algebraic: It’s a global section w(f) of the line bundle w®* on X¢.

Analytic: It’s a holomorphic function f on the upper half-plane h of moderate
growth, satisfying the transformation rule f(gzzidb) = (cz + d)Ff(z) for all v €
T1(N).
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How do we pass between these points of view? The key is that:

i. Writing Y for the universal cover of the complex analytic space Y&", there
is a canonical isomorphism Y = b of complex analytic spaces, and

ii. The pullback of w under the induced map 7 : h — Y&" is trivialized by a
canonical differential 7¢,, which satisfies Nean(72) = (cz + d) ™ ean(2).

The objects f and w(f) are then related by the identity
T w(f) = f(2) - S
Now fix a prime p { N, and let J = Y('jj c X = Xadp be the associated

analytic modular curves. For any open subgroup K < GL2(Z,,) we have associated
coverings Vg € Xg of Y < X.

Theorem (Katz, Coleman, Coleman-Mazur, Andreatta-Iovita-Stevens,
Pilloni, [1, 3]). For L/Q, finite and any continuous character x : Z; — L*,
there is a natural space M} = M (N) of “p-adic overconvergent modular forms
of weight k and level N”. This is an (ind-)Banach space over L with a natural
action of the Hecke algebra, and the association k — M varies analytically as a
function of k.

The definition of M mirrors the algebraic definition of classical modular forms.
More precisely, Andreatta-Iovita-Stevens and Pilloni define a line bundle w” on a
certain family of open subsets {X'(v) © Xk, () }o<v<e, and then set

M! = lim H°(X(v),w").
v—0+
When r(x) = 2¥,k € Z, there is a natural isomorphism w" = w®k|x(v), and the
assignment k — w" is analytic as a function of k; these two properties essentially
characterize w" uniquely.
In our work, we given an analytic definition of M. The replacement for the

upper half-plane h turns out to be given by (certain subspaces of) Scholze’s infinite
level modular curve:

Theorem (Scholze, [4]). There is a natural perfectoid space Xy, such that
Xy = lim XK(pn)

in the category of stably uniform adic spaces over Qp, equivariantly for natural
(right) actions of GL2(Qp) on both sides, and there is a natural Hodge-Tate period
map

THT - Xoo - Pl.

Using this theorem, we were able to prove the following result.

Theorem (Chojecki-H.-Johansson, [2]). There is a natural family of Ko(p)-
stable open affinoid perfectoid subsets Xy . = Xy indeved by w € Qso, with
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X S Xeow for w' = w, together with a natural global section 3 € O(Xup )
compatible with changing w and such that

«, _a3tc

ST 1 d

for all v € Ko(p). For any & as above and any w >, 0, the space
My w = {f € O(Xp.w) ®q, L | v*f = k(b + d)ilf Vv e KO(p)}
is well-defined, and M;[ ~ limyy o My compatibly with all structures.

So My ., = “functions on X, ,, satisfying a transformation law” gives a defi-
nition of M parallel to the analytic definition of classical modular forms. Aside
from its aesthetic pleasure, this interpretation of M also gives a new approach to
the construction of “overconvergent Eichler-Shimura maps.”
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Desingularization by char(X)-alterations
MICHAEL TEMKIN

1. THE MAIN RESULT

1.1. Desingularization. Let X be an integral algebraic variety. The famous
desingularization conjecture asserts that there exists a proper birational morphism
f: X" — X such that the variety X’ is regular. In addition, one conjectures
that given a closed subset Z & X one can arrange that Z’ = f~1(Z) is an snc
divisor. Also, it was conjectured by Grothendieck and is widely believed that the
same desingularization result holds for any quasi-excellent integral scheme X. The
conjecture was proved in characteristic zero by Hironaka (schemes of finite type
over a local quasi-excellent ring), see [1], and was extended to all quasi-excellent
schemes over Q by Temkin, see [4]. Also, it was proved very recently for quasi-
excellent threefolds by Cossart and Piltant, see [6]. Already for varieties of positive
characteristic the conjecture is widely open and very difficult in dimensions starting
with 4.
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1.2. de Jong’s altered desingularization. de Jong found a very successful
weakening of the desingularization conjecture: its proof is relatively simple (e.g.
when comparing with [1] or [6]), and yet, it has numerous applications. Namely,
de Jong proved in [2, Theorem 4.1] that for any integral scheme X of finite type
over a quasi-excellent base of dimension 2 (using [6] this can be pushed to dimen-
sion 3) there exists an alteration f: X’ — X, i.e. a proper dominant generically
finite morphism between integral schemes, such that X’ is regular. In addition, if
Z < X is closed then one can arrange that Z’ = f~1(Z) is an snc divisor.

1.3. Gabber’s /’-altered desingularization. de Jong’s theorem covers various
cohomological applications with coefficients containing Q. In order to deal with
cohomology theories where a prime [ is not inverted, e.g. Z/IZ or Z;-cohomology,
Gabber strengthened de Jong’s theorem as follows: keep the assumptions of the
de Jong’s theorem and assume that [ is a prime number invertible on X, then the
desingularizing alteration f: X’ — X can be chosen so that | does not divide the
degree deg(f) = [k(X') : k(X)], see [5, Theorems 2.1]. Such alterations are called
I’-alterations.

1.4. char(X)-altered desingularization. It is a natural question if Gabber’s
theorem can be strengthened so that deg(f) is not divisible by two (or more)
fixed primes invertible on X. In my recent work [7] I answer this affirmatively,
in fact, I prove that one can avoid all invertible primes simultaneously. By a
char(X)-alteration we mean an alteration X’ — X whose degree is only divisible
by primes non-invertible on X. The main result of [7] is that if X is of finite type
over a quasi-excellent threefold and Z & X is closed then there exists a char(X)-
alteration f: X’ — X such that X’ is regular and f~!(Z) is an snc divisor. In
particular, if X is of characteristic zero then f is a desingularization, and if X is

7

of characteristic p then deg(f) = p".

2. THE METHOD

2.1. I'-altered desingularization. de Jong refined his theorem in [3] as follows:
the altered desingularization f: X’ — X can be chosen so that the alteration
g: X'/Autx (X’) — X is generically radicial (in particular, deg(g) = p™ where
p is the exponential characteristic of k(X)). Gabber observed that the [-Sylow
subgroup G; of G = Autx(X’) acts tamely on X’ whenever [ is invertible on X
and proved a general difficult theorem on tame actions implying that there exists
a Gj-equivariant modification X” — X’ such that Y = X”/G, is regular. In
particular, Y — X is an [’-altered desingularization of X.

2.2. Tame distillation. If there exists a subgroup H € G acting tamely on X’
and |H/G]| is only divisible by primes non-invertible on X then the same argument
as above works with G; replaced by H. In general, such an H does not have to
exist and the main new tool of [7] is the following result that asserts that such an
H exists if one enlarges the alteration X’ — X. Tame distillation theorem, see
[7, Theorem 3.3.6]: for any alteration X’ — X of quasi-excellent schemes there
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exists an alteration Y/ — Y such that the composition Y/ — X factors into a
composition of a tame Galois covering Y’ — Y and a char(X)-alteration ¥ — X.

2.3. char(X)-altered desingularization. The tame distillation does not apply
directly to Gabber’s argument since in order to construct a large enough tamely
acting group H we have to replace the regular scheme X’ with its alteration Y’ and
one cannot ensure that Y is also regular. However, Illusie and Temkin discovered
in [5, Section 3] a more flexible proof of Gabber’s theorem which is also based
on division by [-Sylow subgroups (the main motivation was to extend Gabber’s
theorem to morphisms of finite type, see [5, Theorem 3.5]). Once one replaces
[-Sylow subgroups by the subgroups provided by the tame distillation theorem,
the argument of Illusie-Temkin applies almost verbatim and yields a proof of the
char(X)-alteration theorem. We refer to [7, Theorem 4.3.1] and its proof for
details.
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Derived non-archimedean analytic spaces
ToNy YUE YU
(joint work with Mauro Porta)

Motivations. Derived algebraic geometry is a far-reaching enhancement of clas-
sical algebraic geometry. We refer to Toén-Vezzosi [20, 21] and Lurie [11, 13] for
foundational works. The prototypical idea of derived algebraic geometry orig-
inated from intersection theory: Let X be a smooth complex projective variety.
Let Y, Z be two smooth closed subvarieties of complementary dimension. We want
to compute their intersection number. When Y and Z intersect transversally, it
suffices to count the number of points in the set-theoretic intersection Y nZ. When
Y and Z intersect non-transversally, we have two solutions: the first solution is to
perturb Y and Z into transverse intersection; the second solution is to compute
the Euler characteristic of the derived tensor product Oy ®I@X Oz of the struc-
tural sheaves. The second solution can be seen as doing perturbation in a more
conceptual and algebraic way. It suggests us to consider spaces with a structure
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sheaf of derived rings instead of ordinary rings. This is one main idea of derived
algebraic geometry.

Besides intersection theory, motivations for derived algebraic geometry also
come from deformation theory, cotangent complexes, moduli problems, virtual
fundamental classes, homotopy theory, etc. (see Toén [19] for an excellent intro-
duction). All these motivations apply not only to algebraic geometry, but also to
analytic geometry. Therefore, a theory of derived analytic geometry is as desirable
as derived algebraic geometry.

We propose to define a notion of derived space in non-archimedean analytic
geometry and then study their basic properties. By non-archimedean analytic
geometry, we mean the theory of Berkovich spaces over a non-archimedean field &k
with nontrivial valuation (cf. [1, 2]). Our approach is mainly based on the works of
Lurie [13, 14, 15, 12] on derived algebraic geometry and derived complex analytic
geometry.

A more direct motivation of our study on derived non-archimedean analytic
geometry comes from mirror symmetry. Mirror symmetry is a conjectural duality
between Calabi-Yau manifolds (cf. [23, 22, 4, 8]). More precisely, mirror symmetry
concerns degenerating families of Calabi-Yau manifolds instead of individual man-
ifolds. An algebraic family of Calabi-Yau manifolds over a punctured disc gives
rise naturally to a non-archimedean analytic space over the field C((¢)) of formal
Laurent series. In [9, §3.3], Kontsevich and Soibelman suggested that the theory of
Berkovich spaces may shed new light on the study of mirror symmetry. Progresses
along this direction are made by Kontsevich-Soibelman [10] and by Tony Yue Yu
[25, 24, 27, 26]. The works by Gross, Hacking, Keel, Siebert [7, 6, 5] are in the
same spirit.

In [26], a new geometric invariant is constructed for log Calabi-Yau surfaces, via
the enumeration of holomorphic cylinders in non-archimedean geometry. These in-
variants are essential to the reconstruction problem in mirror symmetry. In order
to go beyond the case of log Calabi-Yau surfaces, a general theory of virtual fun-
damental classes in non-archimedean geometry must be developed. The situation
here resembles very much the intersection theory discussed above, because moduli
spaces in enumerative geometry can often be represented locally as intersections
of smooth subvarieties in smooth ambient spaces. The virtual fundamental class is
then supposed to be the set-theoretic intersection after perturbation into transverse
situations. However, perturbations do not necessarily exist in analytic geometry.
Consequently, we need a more general and more robust way of constructing the
virtual fundamental class, whence the need for derived non-archimedean geometry.

Basic ideas and main results. Our previous discussion on intersection numbers
suggests the following definition of a derived scheme:

Definition 1 (cf. [19]). A derived scheme is a pair (X, Ox) consisting of a topo-
logical space X and a sheaf Ox of commutative simplicial rings on X, satisfying
the following conditions:

(i) The ringed space (X, m(Ox)) is a scheme.
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(ii) For each j > 0, the sheaf 7;(Ox) is a quasi-coherent sheaf of mo(Ox)-
modules.

In order to adapt Definition 1 to analytic geometry, we need to impose certain
analytic structures on the sheaf Ox. For example, we would like to have a notion
of norm on the sections of Ox; moreover, we would like to be able to compose
the sections of Ox with convergent power series. A practical way to organize
such analytic structures is to use the notions of pregeometry and structured topos
introduced by Lurie [13].

We define a pregeometry To, (k) which will help us encode the theory of non-
archimedean geometry relevant to our purpose. After that, we are able to introduce
our main object of study: derived k-analytic spaces. It is a pair (X', Ox) consisting
of an oo-topos X and a T.,(k)-structure Oy, satisfying analogs of Definition 1
Conditions (i)-(ii).

Our goal is to study the basic properties of derived k-analytic spaces and to
compare them with ordinary k-analytic spaces. Here are our main results:

Below all k-analytic spaces are assumed to be strict.

Theorem 2. The category of k-analytic spaces embeds fully faithfully into the
oo-category of derived k-analytic spaces.

Theorem 3. The c0-category of derived k-analytic spaces admits fiber products.

Let (Ang, 7q¢) denote the category of k-analytic spaces endowed with the quasi-
tale topology (cf. [3, §3]) and let Pq¢ denote the class of quasi-tale morphisms.
The triple (Anyg, 7qst, Pqst) constitutes a geometric context in the sense of [18]. The
associated geometric stacks are called higher k-analytic Deligne-Mumford stacks.

Theorem 4. The oo-category of higher k-analytic Deligne-Mumford stacks embeds
fully faithfully into the oo-category of derived k-analytic spaces. The essential
image of this embedding is spanned by n-localic discrete derived k-analytic spaces.

Further developments. In order to apply derived non-archimedean geometry to
enumerative geometry, mirror symmetry as well as other domains of mathematics,
we must show that derived non-archimedean analytic spaces arise naturally in
these contexts. The key to the construction of derived structures is to prove a
representability theorem in derived non-archimedean geometry. This will be the
main goal of our subsequent works.

Important ingredients in the proof of the representability theorem will include
the theories of analytification and deformation. Their counterparts in derived
complex geometry are studied by Mauro Porta in [16, 17] and his upcoming works.
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A non-archimedean Ax-Lindemann theorem
ANTOINE CHAMBERT-LOIR
(joint work with Francois Loeser)

1. INTRODUCTION

The classical Lindemann-Weierstrass theorem states that if algebraic numbers
ai,...,an are Q-linearly independent, then their exponentials exp(aq),...,
exp(ay,) are algebraically independent over Q. More generally, if a1, ..., q, are
complex numbers which are no longer assumed to be algebraic, Schanuel’s conjec-
ture predicts that the field Q(au, ..., an, exp(ay), ..., exp(ay,)) has transcendence
degree at least n over Q. In [1], Ax established power series and differential field
versions of Schanuel’s conjecture.

Theorem 1 (Exponential Ax-Lindemann). Let exp: C" — (C*)™ be the mor-
phism (z1,...,2n) — (exp(z1),...,exp(2z,)). Let V be an irreducible algebraic
subvariety of (C*)™ and let W be an irreducible component of a mazimal alge-
braic subvariety of exp~ (V). Then W is geodesic, that is, W is defined by a
finite family of equations of the form Y. | a;z; = b with a; € Q and be C.

In the breakthrough paper [6], Pila succeeded in providing an unconditional
proof of the André-Oort conjecture for products of modular curves. One of his
main ingredients was to prove an hyperbolic version of the above Ax-Lindemann
theorem, which we now state in a simplified version.

Let H denote the complex upper half-plane and j : H — C the elliptic modular
function. By an algebraic subvariety of H™ we shall mean the trace in H" of an
algebraic subvariety of C™. An algebraic subvariety of H” if said to be geodesic
if it is defined by equations of the form z; = ¢; and 2z = gxeze, with ¢; € C and

gre € GL3 (Q).

Theorem 2 (Hyperbolic Ax-Lindemann). Let j : H® — C™ be the morphism
(215 -y 2n) — (J(z1),...,79(2zn)). Let V be an irreducible algebraic subvariety
of C™ and let W be an irreducible component of a maximal algebraic subvariety
of j77Y(V). Then W is geodesic.

Pila’s method to prove this Ax-Lindemann theorem is quite different from the
differential approach of Ax. It follows a strategy initiated by Pila and Zannier in
their new proof of the Manin-Mumford conjecture for abelian varieties [9]; that ap-
proach makes crucial use of the bound on the number of rational points of bounded
height in the transcendental part of sets definable in an o-minimal structure ob-
tained by Pila and Wilkie in [8]. Recently, still using the Pila and Zannier strategy,
Klingler, Ullmo and Yafaev have succeeded in proving a very general form of the
hyperbolic Ax-Lindemann theorem valid for any arithmetic variety ([5], see also
[10] for the compact case).

In this work, we establish a non-archimedean analogue of theorem 2.
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2. STATEMENT OF THE NON-ARCHIMEDEAN AX-LINDEMANN THEOREM

Let p be a prime number and let F' be a finite extension of Q,. In this work, we
make use of Berkovich’s notion of F-analytic spaces, see [2].

The group PGL(2, F') acts by homographies on the F-analytic projective line
(P1)®», and on its F-rational points Py (F).

Recall (see [4]) that a Schottky subgroup of PGL(2, F) is a discrete subgroup
which is finitely generated and free. We say that such a subgroup I is arithmetic
if there exists a number field K < F such that I' «¢ PGL(2, K).

A Schottky subgroup T' of PGL(2, F') has a limit set £r which is a non-empty
compact I-invariant subset of Py (F); if the rank g of T' is > 2, then it is a perfect
set. Let then Qr = (P1)*\Lr; the group T acts freely on Qr and the quotient
space Qr/T" is naturally a F-analytic space so that the projection pr: Qr — Qp/T
is topologically étale. Moreover, Qr/T" is the F-analytic space associated with a
smooth, geometrically connected, projective F-curve Xr of genus g.

Let us now consider a finite family (T';)1<;<n of Schottky subgroups of PGL(2, F')
of rank > 2. Let us set Q@ = [[I_, Qr, and X = [, Xr,, and let p: Q — X°»
be the morphism deduced from the morphisms pr,: Qr, — X

We say that a closed subspace W of Q is irreducible algebraic if there exists an
F-algebraic subvariety Y of (P1)" such that W is an irreducible component of the
analytic space ) n Y?",

We say that W is flat if it can be defined by equations of the following form:

(1) z; = ¢, for some i€ {1,...,n} and c € §;

(2) zj = g- 2, for some pair (i, j) of elements of {1,...,n} and g € PGL(2, F).
We say that W is geodesic if, moreover, the elements g in (2) can be chosen such
that gI';g~! and T'; are commensurable (ie, their intersection has finite index in
both of them).

Here is the main result of this paper.

Theorem 3 (Non-archimedean Ax-Lindemann theorem). Let F' be a finite exten-
sion of Qp and let (T';)1<i<n be a finite family of arithmetic Schottky subgroups of
PGL(2, F) of rank = 2. As above, let us set Q = [ [\, Qr, and X = [[;_, Xr,, and
let p: Q@ — X" be the morphism deduced from the morphisms pr,: Qr, — X3
Let V' be an irreducible algebraic subvariety of X and let W <  be an irreducible
component of a mazimal algebraic subvariety of p~1(V3). Then W is geodesic.

3. SKETCH OF THE PROOF

The basic strategy we use is strongly inspired by that of Pila [6] (see also [7]),
though some new ideas are required in order to adapt it to the non-archimedean
setting. In particular, we have to replace the theorem of Pila-Wilkie [8] by the
non-archimedean analogue recently proved by Cluckers, Comte and Loeser [3].
The role of the o-minimal structure Rap oxp is now played by the subanalytic sets
(in F™) of Denef and van den Dries, and the rigid subanalytic sets of Lipshitz
and Robinson (in C}). Analytic continuation and monodromy arguments are
replaced by more algebraic ones and explicit matrix computations by group theory
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considerations. We also take advantage of the fact that Schottky groups are free
and of the geometric description of their fundamental domains.

Let V and W be are as the statement of theorem 3. Let Y be the Zariski
closure of W and let m be its dimension. Similarly as in Pila’s approach one
starts by working on some neighborhood of the boundary of our space (which,
instead of a product of Poincaré upper half-planes, is a product of open subsets of
the Berkovich projective line). We reduce to the case where, locally around some
rigid point £ € 2, W is the image of a section ¢ of the projection to the first m
coordinates, and that & € Lr, .

We consider good fundamental domains §; for the groups I'; and their product
§;let I' = [[T';. We then consider the subset G of PGL(2, F') consisting of points
(g1,---,9n) such that go = - -+ = g,,, = 1, and its subset R defined by the condition
dim(gW n § np~1(V)) = m. One proves that R is a subanalytic set. Studying
the action of I'; on a neighborhood of the limit set Lr;, one proves that every
element of 2 can be moved to an element of §; by applying an element of I'; of
controlled length in some fixed generators. Since the groups I'; are arithmetic and
free non-abelian, this allows to prove that for every real number T, R contains
» T¢ algebraic points of bounded degree and height < 7. Applying the p-adic
Pila-Wilkie theorem of [3], and making use of the maximality of W, we then
prove that the stabilizer of W inside Gy n I is infinite. This furnishes non-trivial
functional equations for the coordinates ¢; of the section ¢. From these functional
equations, we deduce that the Schwarzian derivative of ¢; is constant, hence zero,
because ¢; is algebraic. This implies that W is flat. A degree argument, relying
on the maximality of W again, allows then to conclude that W is geodesic.
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p-curvature and connections
HELENE ESNAULT
(joint work with Mark Kisin)

This is work in progress with Mark Kisin.

Grothendieck p-curvature conjecture predicts that if X/C is a smooth variety,
(E,V) is an integrable connection over C, then if for all closed points s € S
of a non-emtpy open of definition S of a model (Xg, (E,V)s), the p-curvature
Y((E,V)s) is trivial, then (E,V) has finite monodromy, or equivalently, (E,V)
is isotrivial, that is trivialized by a finite étale cover Y — X, or equivalently its
Tannaka group in the category MIC(X/C) of integrable connections is finite.

By André-Hrushovski [And04] one may replace C by a number field k, by [Kat72]
one may assume X is projective. Going up again to C, the topological Lefschetz
theorem reduces then the problem to X /k a smooth projective curve over a number
field k, and applying Belyi’s theorem [Bel80], one may also reduce the problem to
X =P"\{0,1, 00} over a number field k. The latter viewpoint had led Chudnosvkys
[Chu85] and André [And04] to prove the abelian version of the conjecture using
p-adic analysis and criteria & la Dwork for rationality of a power series in k[[z]],
k being a number field.

Furthermore, Katz [Kat72] proves that the Kodaira-Spencer class in characteristic
p of a Gauf-Manin connection (E, V), dies if the p-cuvature dies, a fact one can’t
show for a Z-polarized variation of Hodge structure which is not coming from
geometry. This enables him to show that Gaufl-Manin connections verify the
conjecture.

Using the more geometric reduction, that is X a smooth projective curve over a
number field k, we observe that if the conjecture is true, then necessarily F is a
direct sum of degree 0 stable bundle.

Let X be smooth projective over a number field k. One defines MIC®(X /k) to
be the full subcategory of MIC(X /k) consisting of integrable connections (E, V)
having a model (Xg, (E,V)g), for which (E, V), lifts to D(X,/k(s)) for infinitely
many char. k(s). One has full embeddings FinConn(X/k) ¢ MIC°(X/k) <
MIC(X/k), where FinConn(X/k) is the category of finite connections. Here
D(Xs/k(s)) is the sheaf of rings of relative differential operators. Let SS(X) be
the category of semi-stable vector bundles of degree 0, S(X) < SS(X) be the full
subcategory of polystable bundles. One defines MIC%P°! (X /k) = MIC°(X /k) to
be the category of polystable objects.

Proposition 1.1. Let (Es, V) € D(X/k(s)), k(s) finite field. Then EY and Ej
are semi-stable of degree 0. If in addition, (Es,Vs) is stable in MIC(Xs), then
both E! and Es are stable of degree 0.

Theorem 1.2. Let (E,V) e MIC°(X/k). Then E is semi-stable of degree 0. If
(E, V) is irreducible, then E is stable of degree 0.
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So one has the functor
©: MIC°(X/k) — SS(X), (E,V)— E

sending MICP*°!(X) to S(X). All four categories are Tannakian. We say E is fi-
nite if its Tannaka group (after choosing a rational point to define a neutralization)
in the corresponding category is finite.

Theorem 1.3. For (E,V) € MIC%P° (X /k), the functor ¢ induces an isomor-
phism m({E)) — n({(E,V))). In particular, if E is finite, so is (E, V).

Theorem 1.4. Assume X smooth projective over C and let (E,V) € MIC°(X)
be a Z-polarized variation of Hodge structure. Then (E,V) is finite.
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On non-archimedean Poissan’s equation
SHOU-WU ZHANG

Let us recall the classical Poisson’s equation on a compact Kéhler manifold (X,w)
which is the foundation for the Hodge theory. We take a normalization {w" = 1
where n = dim X. Then we have a Poisson’s equation:

Af=g,  fgeC?(X).
The uniqueness and existence of this equation are summarized by the following
exact sequence:

o

0— C— CP(X) -5 (X)L ¢ —> 0.

One important application is the existence of metrics on line bundles on X with
harmonic curvature form.
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In this talk, we try to formulate a non-archimedean analogue of Poisson’s equa-
tion on a variety X over an algebraically closed field C' with a complete and

nontrivial absolute value | -|. We first need to define a notion of a curvature form
and an operator £2. We use the notations in our paper [YZ] on Hodge index the-

"

orem with a modification: we change the notion “integrable metrized line bundle”
to “dsp metrized line bundles”, where dsp is the abbreviation of “difference of
semi-positive”. On X, we have a vector space Pic(X)gsp,r 0f dsp metrized R-line

0
bundles which includes a subspace Pic (X)g of flat metrized line bundles. We
define the dsp metrized Neron—Severi group by

~ ~ —~ 0
NS(X)R = PiC(X)dSpJR/PiC (X)R

For a metrized line bundle L € Isi\c(X)dspR, define its first Chern form c¢; (L) to
be its class in 1<T\S(X)R. We will work on the space C(X)qsp of dsp functions f on
X (C) defined by requiring that the metrized line bundle O(f) := (Ox., |[1|| = e~7)
is dsp. For an dspfunction f on X, we define the operator
0
—

C(X)ap — TB(X) Lf = ea(O()).

Let C'(X) denote the completion of C'(X)qsp with respect to the L®-norm. The in-
tersection theory on the models of X over O¢ defines to multilinear and continuous
pairing:

C(X)x NS(X)" — R,  (f,Li, - ,Ln) — JX fer(Ly) -+ (Ly).

By Gubler, C'(X) can be naturally identified with the space C(X?") continuous
function on the Berkovich space X®". Thus the above pairing define a so called
Chambert-Loir measure ¢1(L1) -+ - c1(Ly,) on X

Let Pic(X) denote the positive cone in Isi\c(X )dsp,r, namely R, -combinations
of ample line bundles with semipositive metrics and let 1<I\S(X )+ denote its image

in 1<I\S(X)R. We take a Kéhler form w on X as an element in 1<I\S(X)Jr with a
normalization Sw” = 1. Now we define a Lapace operator as

00 n—1
g3 fw
w™ '

A C(X)asp —> L' (X, w™), A(f) =

Without further restriction to both spaces, it is hard to say anything meaningful
about the kernel and the image of this operator. A key point of this talk is to put
a condition so called w-boundedness on both sides: we say a form a € 1<T\S(X)R is
w-bounded if there is an € > 0 such that both w + ea € 1<T\S(X)+; and we say a
function f € C'(X)asp is w-bounded if fr—ff is w-bounded. Let 1<T\S(X)w denote the
space of w-bounded forms, L (X) the space of w-bounded functions, and L} (X)
the space 1<T\S(X)w A w™ 1. Then we have a restricted Laplacien operator

A LX) — LL(X).
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Conjecture 1. For a given g € LL(X), the Poisson equation Af = g has a
solution f € L¥(X) if and only if § gw™ = 0.

Notice that the uniqueness of the Poisson equation has already been established
as a consequence of the local Hodge index theorem in [YZ]. Equivalently, we show
that the Laplacian equation A f = 0 has only constant solutions. One consequence
of the above conjecture is the existence of some canonical metric on any line bundle
on X:

Conjecture 2. For any line bundle M on X, there is an dspmetrization M
(unique up scale multiple) such that the curvature ci(M) is w-harmonic in the
following sense: ¢1(M) is w-bounded, and satisfies the following equation of mea-

sures:
cr(M)w" ™ = \(M)w"

where N(M) is a constant defined by c1(M) - [w]™ with [w] the class in NS(X)r

under the map 1<T\S(X)R —> NS(X)g.

The following are some results about these conjectures:

(1) Conjecture 1 (and then 2) holds for curves X. In fact in this case, we can
solve Poisson’s equation using a Green’s fucntions g(x,y) for the volume
form w. We can start with a green function go(z,y) for any volume form
wo (for example one associate to the admissible metrics), and define

g(z,y) = go(z,y) — Jgo(:v, Yw(w) — Jgo(:v, y)uy) + fgo(w, y)w(@)w(y).

(2) Conjecture 1 (and then 2) holds for the case w is a model metric. In
fact, in this case LX(X) and L. (X) are both finite dimensional with same
dimension, the quadratic form {f, Af) 2 is positive definite on LF(X)/C
by local Hodge index theorem. Thus A is bijective.

(3) Conjecture 1 (and then 2) holds for the case residue characteristic of C' is
0, and w is supported on a dual complex, by method of Bouckson—Favre—
Jonsson.

(4) Conjecture 2 holds when w comes from a polarized dynamical system in
the sense that there is an endomorphism f : X — X such that f*w = qw
with ¢ a constant > 1. This follows from the construction of admissible
metrics for any line bundle in [YZ].

We would like to give an application of Conjecture 2 to a variety X over a
global field K, including the function field K = k(C) for projective curve over
another field k with a fixed positive adelic metrized line bundle L on X. We write
w = ¢1(L)/ deg LY™ with n = dim X.

Conjecture 3. Any line bundle M on X has an admissible merization M in
the sense that at each place v of K the bundle M, has harmonic curvature form

c1(M,), and that
M- w"™ = \N(M)w"

Moreover such a metrization is unique up to multiples from EZJ(K) with degree 0.
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If we write Pic(X)g = Isi\c(X)R/Isi\c(K)degzo. The above conjecture gives a
section to the projection Pic(X)gr — Pic(X)g.

REFERENCES
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Arithmetic differential operators and representations of p-adic groups
MATTHIAS STRAUCH
(joint work with Christine Huyghe, Deepam Patel, and Tobias Schmidt)

Let L/Q, be a finite extension, and let Go be a smooth reductive group scheme
over the ring of integers Oy, of L. The purpose of the work [5] is to study locally
analytic representations of G = Go(L) in terms of sheaves of modules for (suitably
defined) arithmetic differential operators on formal models of the rigid analytic flag
variety of G = Gg x Spec(L).

1. Arithmetic differential operators. Denote by Xy the flag scheme for Gg. Let
1,...,Tq be coordinates on an affine open U c Xy. Let w be a uniformizer

of L. For non-negative integers m and k denote by ’D( ) «(U) the Or-module of
differential operators

(m
Z an @ k‘"‘qn 6"1-. .o

Tq

where a, € Ox,(U), n! = [T;n;!, ai™ = [T, 0", qn’,”) |1, and |n| =
m)

n1 + ...+ ng. These rings glue together to give a sheaf on,k on Xy. Let now
pr: X — X be an admissible blow-up, i.e., the blow-up of an ideal sheaf Z on X
which contains a power of w.

Key Lemma. Suppose I contains w’. Then, for all k > N the sheaf of rings
_1D( )k acts naturally on Ox . Therefore, for these k, the Ox-module pr*’D(m)
carries a structure of a sheaf of rings.

In the following we let kx be the minimal k such that w” is contained in Z. For
k = kx, put
DY) = D)y

Denote by X the completion of X along its special fiber, and let @3(:2) be the p-adic
completion of Dx ,2, which we consider as a sheaf on X. We put @ k Q= @gﬁg@@,

and let @3& kQ denote the inductive limit over all @;7?;)7@.
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2. Wide open congruence subgroups. Let G(k) = "ker (Go — Go(Or/@")) " be
the congruence subgroup scheme over Oy, of level k, and denote by CA-}(k)O the
completion of G(k) along the unit section. Let G(k)° be the rigid analytic generic
fiber of G(k)°. Then we consider

D™ (G(k)°) = Hom™ (O(G(k)*), L) ,

which is the analytic distribution algebra introduced by M. Emerton. Denote by
g the Lie algebra of G, and let 3 be the center of the enveloping U(g). We let
o be the central character of the trivial representation and put D**(G(k)®)g, =
D*(G(k)°) ®;,00 L.

Theorem 1. Let pr : X — Xy be an admissible formal blow-up of the smooth
formal scheme Xy which is the formal completion of Xy along its special fiber. Let
k= kx.

(i) X is .@;k@—aﬁine. That means that any coherent module & over -@;,k,(@ 18
generated by its global sections (as a @;1k1Q-m0dule), and that H (X, &) = 0 for
all i > 0.

(ii) The ring H°(X, -@;,k@) is canonically isomorphic to D**(G(k)®)g, -

(iii) The functor & w» HY(X,&) is an equivalence from the category of coher-
ent @;&Q-modules to the category of finitely generated D**(G(k)°)q,-modules. A
quasi-inverse is given by sending a finitely generated D**(G(k)°)g,-module M to

foc;k(M) = @;,k,(@ ®'Dan(G(k)o)90 M .
O

This result generalizes previous work of C. Huyghe [4].

3. Locally analytic representations. For a locally analytic representation V' of
Go = Go(Oyr) on a vector space over a finite extension K of L, we denote by
Vi (k)o—an the subspace of rigid analytic vectors for G(k)°, and we put

My (V) = HomSe™ (VG(k)o,an, K) .

This is naturally a module over the distribution algebra

D(G(k)O,GO)=Hom}?nt(Oan(GovK)G(k)ofan,K)= @ 0, #D™G(K)),
9€Go/Gr+1

where Ggi1 = G(k)°(L) = G(k + 1)(Op) for k = 0, and §, denotes the delta
distribution at g. It is shown in [3] that the representation V' is admissible in the
sense of Schneider and Teitelbaum if and only if for all k¥ » 0 the D(G(k)°, Go)-
module M (V) is finitely generated, and if the canonical map

D(G(k)?, Go) ®p@k+1)°,Go) Mr+1(V) —> M(V)
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is an isomorphism of D(G(k)°, Gy)-modules. A locally analytic representation of
G = G(L) is admissible if it is admissible as a Gp-representation.

4. Localization of admissible Go-representations. Let Fy be the system of all
admissible formal blow-ups of Xy, and put X, = ligle Fo X. This is the Zariski-
Riemann space of the rigid analytic flag variety of G, and it is also isomorphic to
the corresponding adic space. For a formal scheme X in Fy we set

T ._ gf
Dx = Dxrr0-
In the following we consider systems of sheaves (,/// x) , where .#x is a coherent
XeFo

_@;—module with a Go-action which extends the natural action of G, 41.

Definition. A Gy-equivariant coadmissible module on X, is a system of sheaves
(///35) as above, together with isomorphisms
x

7% ®gt Prs (///x') — Mx

1Grxt1

for any morphism pr : X’ — X in Fy. This system of isomorphisms is assumed
to satisfy the obvious transitivity condition for any sequence X” — X' — X of
morphisms in Fy.

For the precise definition of the tensor product on the left we refer to [5]. Given an
admissible Gy-representation V' with infinitesimal central character 8y, we consider

the system Loc! (V) = (///35(‘/))36 where

Mx(V) = Lock (M (V)

Proposition. (i) For any admissible Go-representation V the system Loc' (V) is
a Go-equivariant coadmissible module on X .

(i) Via the functor ZLocl, the category of admissible locally analytic Go-represen-
tations (with infinitesimal central character 6y) is (anti-)equivalent to the category
of Go-equivariant coadmissible modules on X . O

5. Passage to the limit: sheaves of @;fo-modules. Let spy : X5 — X be the
projection map. Given an open subset U < X, of the form Sp;l(U}:), for some
open Ux < X, we have that spy, (V) = pr=1(Ux) < X’ whenever pr : X’ — X is a
morphism in Fy. We then put

Z5L(U) = lim 7L, (pr,(U)) .
X'—x
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The open subsets of the form sp;1 (Ux) form a basis for the topology of X, and we
thus obtain a sheaf Z,, on X, !. Similarly, when .# = (,/// x) is a Gy-equivariant
coadmissible module one can form the sheaf .#,, with the property that

Mp(U) = lim ,///x/(spx,(U)) .

X'-x
This is a module for @:fo, and it is Gp-equivariant.

Proposition. The functor M ~~> My just described from Gy-equivariant coad-
missible modules on X4 to Go-equivariant .@;ro—modules s a fully faithful embed-

ding. ]

In particular, we have the functor

Vo ZLocl (V) = ZLoc' (V)

which is a (contravariant) fully faithful embedding of the category of admissible
locally analytic Go-representations (with infinitesimal central character 6p) to the
category of Gg-equivariant @;fo—modules. We call the objects in the essential image
of this functor coadmissible Gy-equivariant @;o -modules.

6. Localization of admissible G-representations. It is easy to see that the sheaf
@;o is not only Gg-equivariant but actually G-equivariant. Furthermore, if V' is
an admissible G-representation, then the sheaf .Z oclo (V) is also G-equivariant. A
coadmissible Gg-equivariant @;ro-module whose equivariant structure extends to
the full group G, will simply be called a coadmissible G-equivariant @;fo-module.

Theorem II. The functor V v Locl (V) is an anti-equivalence from the cat-
egory of admissible G-representations (with infinitesimal central character 6g) to

the category of coadmssible G-equivariant .@;fo -modules. Ol

For an application of the localization of locally analytic representations to partic-
ular representations furnished by an étale covering of the p-adic upper half plane
we refer to [6].
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LThis is the same sheaf as that introduced and studied for general smooth rigid analytic
spaces by K. Ardakov and S. Wadsley [1], [2]. It is a kind of Arens-Michael envelope of the usual
sheaf of (finite order) differential operators on a rigid analytic space.
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A p-adically entire function with integral values on Q,, Fourier
transform of distributions, and automorphisms of the perfectoid open
unit disc.

FRANCESCO BALDASSARRI

We deal with the formal perfectoid open unit disk D = Spa ¥, where ¥ =
Z,,[[Tl/p@]] complete in the (p,T)-adic topology. For any embedding Q, — K
in a perfectoid field set t := p°. The extension Dgo = D X Spaz, SpaK® is a formal
scheme whose generic fiber is the perfectoid open unit disc Dg = Dgo — {p = 0}
over K with tilt

Dy = Spa K’[[TYP"]] — {t = 0} .

We interpret 2 as the algebra Zy(Qp, Zp)pc of Z,-valued measures on Q, which
vanish at infinity, via the identification (1 + T')7 = d4, the Dirac mass centered at
g € Q. Notice that

(1+7T) = lim (1+TYP"?" ¢ 9.

n—o0
Then Z is weak dual of the space ¢ := €2 ..(Qp,Z,) of uniformly continuous
functions Q, — Z,, equipped with the supnorm. We regard D as the universal
covering of the p-divisible torus over Z,, so that Ag(d,) = 5q®5q, Vg e Qp.
We also consider the Zj,-algebra & consisting of p-adically entire functions f

with coefficients in Q,, such that f(Q,) < Z,, equipped with the topology of the
valuations w,., for r € Z, where

w(f) = inf wv,(f(2)).

zep—"C,

We set S = Z[1/p] n Rsg = S’U{0}. For ¢ > 0 and N = 1,2,..., we consider
Z,-subalgebras &, y of E®z, 2, consisting of the Yges aq(x)T? such that

1. ape(px) = aq(z), for any g € S;
2. for any r,v € Z and C' € R,
wy(ag) = C — c(max(gp”, 1) — 1) , for almost all ¢ with v(q) < v .

In particular, ag € Q,. Notice that any element of & @Zp@ may be viewed as an
endomorphism of D.
We show that, for any prime number p, there exists a power series

(1) U =U,(T)eT+T*Z[[T]],

which trivializes the addition law of the formal group of Witt p-covectors CW Zp
is p-adically entire, and assumes values in Z, all over Q,. So, we have

@) (o U(pr+py), V(e +y) = (.., Up), ¥(z)) + (..., U(py), U(y))
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in the sense of covectors, and therefore W satisfies the functional equation

(3) Z p_j\I/(pjT)”j =T.

j=0
We extend the formula of Dieudonné
0 ) © ) 0 _
HAH(ZZHTP ) = exp Z dOTP =1+ Z 9i(%0, T1, ..+, Tpiog, i) T"
i=0 i=0 i=1
where
0 o
AH(T) = exp(), T /p') € Z [[T]]
i=0
is the Artin-Hasse exponential series, and

[
{E(Z) _ Z pnflel
n=0

is the usual ghost component of the Witt vector (zg,x1,...) divided by p® to the
following identity, holding in a suitable completion & of Z[...,z_1;20,...][T],

e » 0 o
H AH(:CZ-TPI) = exp Z 0T =1 + Z gql. .. s Tlog, q]—1> L|log, )T

i=—0 i=—00 qes’

where now

Theorem 1.1. The specialization 7 - ERD, x; — V(p~'x), Vi € Z, produces
an element e(x,T) € é"L 1, namely

HAH (p~ :CT” ) = exp(x ZpZT” —1+ZG

i=—00 i=—00 qeS’

where, for any q € S, G4(z) € & and
(4) Gz +y) = Z Go, (7) Gy (y)

q1+q2=4q
where the sum is convergent, along the filter of cofinite subsets of its index set, in
the usual Fréchet topology of O(Aép).
Our main result is

Theorem 1.2. The endomorphism of D induced by e(x,T) is a group automor-
phism € : D —— D.
The following result was suggested to us by Jared Weinstein.

Theorem 1.3. For any perfectoid extension K/Q, the automorphism ex of Dy is
the untilted form of the automorphism of Dy induced by the Artin-Hasse function

taken modulo p, namely AH(T) € 1+ TF,[[T]]. That is ex = Hﬁl(b.
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The calculation of the action of ex of K-points of Di can be performed as
follows. Any K-valued point of Dk (0) identifies with a character

X (S 4) — (K7°,)
q— x(a) -
The sum
m(x) = D x(p '
i€z
converges in K. The image of y in Dg (1) is the additive character
(Sa +) - (1 + KOO) )
w14 Y Gy(@)x(q) ,
qeSs’

which converges in a neighborhood of x = 0 to the K-analytic function z —
exp(m(x)z) = (expm(x))* (resp. converges uniformly on Q,) along the filter of
cofinite subsets of S, and is a character because of (4).

The general formula producing the map (AH »)* according to the theory of
perfectoids is

(AH g )*(x)(z) = lim AH (x(x/p™)"" = lim AH(x(1/p")™" = (expm(x))" ,

n—o0 n—o0
for any x as before, and any z € Q. This coincides with the effect of ex of x.

In fact, if we allow calculations which exit the algebra é"Ll 1 and involve more
21
general locally analytic functions and distributions on @Q,, we have

g(x,T) =exp(x Z pTiTP) = nlgrolo exp(z Z p TP ) =

i=—00 1=—n

0
. —ip™tiyap™ — 1 p" \zp™
JgroloeXp(;p ™ ) Jim AH(T? )™,
a calculation that avoids using ¥, (z). But it seems hard to deduce the fact that
e(z,T) € & »_ 1, and our uniform description of (AH ;»)*(x)(z), from the previous

calculation.

The existence of a universal untilted form ¢ : D —— D of AH seems to go
beyond the expected properties of the tilting correspondence.

A more extended presentation can be found at
http://gaatp.gaati.org/slides/Baldassarri.pdf
http://people.math.unipr.it/andrea.bandini/Baldassarri.pdf
A paper will soon be made accessible.
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Pseudocoherent sheaves and applications
KIrAN S. KEDLAYA
(joint work with Ruochuan Liu)

In the theory of adic spaces developed in [1], many results are restricted to spaces
arising from strongly noetherian Banach rings; however, such results are not ade-
quate for modern applications to the theory of perfectoid spaces. Consequently, in
our previous paper [3], we were forced to develop some aspects of nonnoetherian
adic spaces from scratch, such as the theory of vector bundles.

In [4], we have been further forced to develop a replacement for the theory of
coherent sheaves. Our point of departure is the notion of a pseudocoherent module
over a ring R in the sense of [2], i.e., a module admitting a projective resolution
(not necessarily of finite length) consisting of finite projective R-modules. We
show that pseudocoherent modules over stably uniform adic Banach rings (such
as perfectoid rings) satisfy analogues of the classical theorems of Tate and Kiehl
in rigid analytic geometry. An important intermediate result is a weak flatness
theorem for rational localization maps of stably uniform adic Banach rings, which
are not known to be flat as morphisms of bare rings.

Our principal motivation for this work is to provide an ambient category con-
taining the relative (¢, I")-modules associated to rigid analytic spaces in [3], but
which is better suited to homological methods. Recall that for any affinoid space
X over a nonarchimedean field K of mixed characteristics, we define the pro-étale
topology in the sense of [5]. For this topology, the extended Robba ring forms a
sheaf of rings with @-action, which is acyclic on perfectoid subdomains; the rela-
tive (o, T')-modules over X are locally finite free sheaves over the extended Robba
ring equipped with semilinear p-actions. (There is no explicit action of a group T';
this role is instead played by the sheaf axiom.) In a similar vein, we may define
pseudocoherent (p, I')-modules; we show that these form an abelian category sat-
isfying the ascending chain condition. The main subtlety here is that we do not
know whether this category admits projective resolutions, so some care is required;
we ultimately reduce to the corresponding assertion for pseudocoherent modules
over the completed structure sheaf, where the analysis is somewhat easier.
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Algebraic-tropical correspondence for rational curves
ILyA TYOMKIN

Enumeration of curves in algebraic varieties is a classical problem that has a long
history going back to Ancient Greeks. Many tools have been developed to approach
enumerative problems including Schubert calculus, intersection theory, degenera-
tion techniques, quantum cohomology etc.

In late 90s, Kontsevich proposed to use combinatorial objects such as skeleta
of Berkovich analytifications in the Gromov-Witten theory and other enumerative
problems, and in early 2000s, Mikhalkin [2] introduced the notion of parameterized
tropical curves and used them to enumerate complex curves of a given genus in a
given linear system on toric surfaces. The tropical approach turned out to be a
powerful tool also in mirror symmetry and in real algebraic geometry, where it was
a break-through, and in particular, led to the calculation of Welschinger invariants
in many interesting cases, see e.g., [1, 2, 6].

Since 2005, few algebraic proofs of various versions of Mikhalkin’s correspon-
dence have been obtained by Nishinou-Siebert [3], Shustin [5], the author [7],
Ranganathan [4] and others. However, the proofs are relatively complicated, in-
volve techniques such as deformation theory, log-geometry, stacks, rigid analytic
spaces etc.; and assume the ground field to be of characteristic zero, or at least,
of big enough characteristic (cf. [7]).

In the talk, we discuss our recent results [8] about the algebraic-tropical cor-
respondence in the case of rational curves in toric varieties, having prescribed
tangencies to the toric boundary divisor, passing through given orbits, and satis-
fying multiple cross-ratio constraints. Namely, the setting is as follows:

We fix a complete discretely valued field F’ with algebraically closed residue field
k, and its algebraic closure F. We fix a pair of dual lattices N and M, a collection
ni,...,n,. € N such that 22:1 n; = 0 (notice that n; are allowed to coincide, be
non-primitive or zero); a collection of sublattices n; € L; € N, 1 < ¢ < r, such that
N/L; are torsion-free; a collection of Tr,,-orbits ¢; € (T /Tr,)(F) for all 1 < i < 7;
a collection of cross-ratios A € (FX)S, and a collection of ordered quadruples of
indices J; in {1,...,7r} for 1 < i < s. We consider the fan ¥ c Ny generated by
the rays p; := SpaunR+ (n;) for 1 <4 < r, and set X := Xy to be the corresponding
toric variety. We set O; to be the closure in X of the Tr,-orbit corresponding to
¢ Finally, we set A" := val(A) € Q° and O := {m > val(z™(p))|p € ¢;} < Ng.

The goal of the talk is to describe a natural relation between the following:

The set W of morphisms f: (C;q) — X, where (C;q) is a smooth projective
irreducible rational curve with v marked points such that

Degree and tangency profile: | div(f*2™) = > (n;, m)q;,
Toric constraint: f(q;) € O; for all i < r,
Cross-ratio constraint: ANC;q;,) = A for all i < s;

and the set W' of stable rational Ng-parameterized Q-tropical curves h: (T';e) —
Ng with r unbounded ends for which
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Degree and multiplicity profile: h(u;) = n; for all ¢ < r,
Affine constraint: h(v;) € O for all i < r,
Tropical cross-ratio constraint: | \'"(T;e;,) = A" for all i < s

where w; is the i-th infinite vertex of I', and v; the finite vertex attached to it.

As a first step, we explain how to construct a natural tropicalization map Tr: W —
W that associates to an algebraic curve with marked points (C; q) the dual graph
of the stable reduction equipped with a natural metric, or equivalently, the minimal
skeleton (T'; e) of the punctured Berkovich analytification; and to the morphism f
the parameterization h (see [7, 8] for details).

Then we introduce the notion of G-regularity for an abelian group G. To do
so, we consider the natural two-term complex associated to a constrained param-
eterized tropical curve h: (I';e) — Ng:

R 0 T S

Lipporan: @ Ne @ Z-> @ NOo@W/L)oDZ;
weV (T ~yeE®(T") ~yeE®(T") i=1 i=1

where the map is defined combinatorially in a natural way (see [8] for details).

We say that (T, h; O, A" is G-regular if Hl(LZF,h;O",)\”) ®z G) = 0, and G-

superabundant otherwise. Our main results assert the following:

Theorem (Realization). Let h: (T';e) — Ng be an element of W', and K < F a
complete discretely valued subfield of definition of O, X, and (I',h). Assume that
N0 for all i, and (T, h; O™, X'") is Q-regular. Then

(1) h: (T;e) — Ng belongs to the image of Tr: W — W',

(2) If (T, h; O, \'") is k-regular, T is three-valent, and HO(LZF,h;O”,)\”‘)) =0
then the fiber of the tropicalization map Tr over h: (I';e) — Ng consists of exactly
|H1(Lzr,h;0“‘.>\"))| morphism f: (C;q) — X, and all morphisms in the fiber are
defined over K.

Theorem (Correspondence). Assume that the constraints O and X are such that
O" and X' are tropically general, and

s+ 2 rank(N/L;) =r — 1.
i=1
If the characteristic of k is big enough then the map Tr: W — W' is surjective
and the size of the fiber over h: (I';e) — Ny is |H1(LEF,h;O“‘,A”))|' Moreover, all
curves in the fiber are defined over any field of definition of (T, h).

Finally, we indicate the strategy of the proofs, which are surprisingly short, ele-
mentary, and involve no deformation theory, log-geometry, stacks, or rigid analytic
spaces. Similarly to [4], we do not use the degeneration of the target, but unlike
the other proofs we use only the standard scheme theory.

Roughly speaking the proof of the Realization theorem consist of the following
steps: First, we introduce convenient coordinates, and express the moduli space
of stable maps that tropicalize to a given parameterized tropical curve and satisfy
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the constraints as the set of integral points in a fiber of an explicitly defined map
O of algebraic tori. Then we show that the reduction of © is the map of algebraic
tori associated to the homomorphism # in the complex LZD O AFTY which allows
us to prove flatness of ©, and to deduce the result from Mumford’s theorem on the
existence of quasi-sections (in this case the existence is easy, and can be achieved
directly without referring to Mumford’s theorem). The Correspondence theorem
then follows from the Realization theorem and a combinatorial lemma asserting
that if the constraints are tropically general then all curves in W are regular
enough. The latter is rather standard and straightforward.
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Refined curve counting, tropical geometry, and motivic Euler
characteristics

SAM PAYNE
(joint work with Johannes Nicaise and Franziska Schroeter)

This project investigates the relationship between two different approaches to
counting curves, one using Euler characteristics of relative Hilbert schemes of
points and the other using tropical geometry.

Suppose that C — B is a family of reduced and irreducible curves of genus g
with finitely many d-nodal fibers, in which all other fibers have geometric genus
greater than g — J. Such a condition is satisfied in many natural geometric situa-
tions, including, for instance, in the case of a general §-dimensional linear series of
sections of a sufficiently ample line bundle on a smooth projective surface. Then
the number of d-nodal fibers can be computed from Euler charactersitcs of relative
Hilbert schemes of points, as follows. The generating function

¢'~9 > x(Hilb'(C/B))q’

=0
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can be expressed uniquely as a sum

g
Z anl—r(l _ q)27‘—27

r=g—=4

where the coefficients n, are positive integers, and ngy—s is the number of 6-nodal
fibers in the family.

Gottsche and Shende have proposed to study refined curve counting invariants,
defined similarly, but with the Euler characteristic replaced by x, genus. More
precisely, the generating function

0

0" Y x, (Hilb' (¢/B))q’
i=0

can be expressed uniquely as a sum
o0
DINg (=g (1 —gy)"
=0

where the coefficients IV, are polynomials in the formal variable y that specialize to
the ordinary curve counting invariants n, by setting y = 1, and these coeflicients
N, are defined to be the refined invariants. (We follow the convention that n, = 0
for r outside the interval [g — 4, ¢].)

It is well-known that nodal curves on toric surfaces can also be counted trop-
ically. If C — B is the universal curve over the locus of reduced and irreducible
curves in a general d-dimensional linear series in the complete linear series of an
ample line bundle, then the number of §-nodal fibers can be computed as the num-
ber of parametrized tropical curves of genus g — J, with unbounded edge directions
specified by the ample line bundle, and passing through n — § points in general
position, counted with combinatorially defined multiplicities. Block and Gottsche
have proposed refined tropical curve counting invariants, which are combinatorially
defined polynomials in a formal variable y that specialize to the ordinary tropical
multiplicities by setting y = 1, and conjecture that the refined curve counting
invariant Ny_s for C — B should be recovered as a sum of these tropical refined
multiplicities over the same set of tropical curves.

The main goal of our project is to give a natural geometric interpretation for
the combinatorially defined refined tropical curve counting multiplicities of Block
and Gottsche. We observe that, for a given tropical curve T', the locus in B
parametrizing curves with tropicalization I' is a semialgebraic set Br. We write
Cr — Br for the universal family, and show that all of the curves in this family
are reduced and irreducible. Our strategy, then, is to define a geometric invariant
analogous to that of Gottsche and Shende, but for this semialgebraic family. The
generating function

o0
¢' 7 ) xy(Hilb'(Cr/Br))d’,
i=0
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where ,, (Hilb?(Cr/Br)) denotes the x,-specialization of the motivic measure of
this semialgebraic set, in the framework of Hrushovski and Kazhdan, can be ex-
pressed uniquely as a sum

o0
R ) e € e 77) R
r=0

in which the coefficients N, are polynomials in the formal variable y. We conjecture
that the Block—Gottsche refined tropical curve counting multiplicity of T" is equal
to the polynomial Ny_s. We prove this conjecture in the case g = 1. We also show
that the conjecture is correct after specializing to the ordinary Euler characteristic.
In other words, Ny_s5(1) is the ordinary tropical multiplicity of the curve I'.

Geometrization of the local Langlands correspondence
LAURENT FARGUES

Given a quasisplit reductive group G defined over a p-adic field F we first define
the moduli stack Bung of G-bundles over the curve we defined and studied in our
joint work with Fontaine. This is a ”perfectoid stack” in characteristic p over I,
the residue field of E. The points of Bung ®Fq are identified with Kottwitz set
B(G) of o-conjugacy classes in G(L) where L is the completion of the maximal
unramified extension of E. There is a dictionnary between Kottwitz description
of B(G) and reduction theory. In particular basic in Kottwitz sens is equivalent
to semi-stable for a G-bundle.

This stack has a nice Harder-Narasimhan stratification, in particular the semi-
stable locus is open. Its connected components are parametrized by 71 (G)r where
I' = Gal(E|E). In each of those components there is a unique semi-stable point
given by some b € G(L) basic. This is given by Kottwitz bijection

K B(G)basic l’ 1 (G)F
The associated semi-stable stratum is then the classifying stack

[Spa(F,)/Jo(E)]

where Jp is an inner form of G (all inner forms of G are reached in this way when
the center of G is connected, for example for GL,,). This is the classifying stack
of pro-étale J,(FE)-torsors.

_ Choose £ # p and let LG be the corresponding f-adic Langlands dual over
Q. Consider a Langlands parameter ¢ : Wg — LG. Note S, for the group of

automorphisms of ¢

S, =1{9€G | gpg™ = ).

Suppose ¢ is discrete that is to say S’%,/Z(CA?)F is finite.

We conjecture the existence of a "perverse Weil sheaf” %, on Bung ® Fq
equipped with an action of S, satisfying the following properties:



3308 Oberwolfach Report 57/2015

~

e the action of Z(G)'' < S, on the connected component given by o €
71 (G)r is given by « via the identification 7, (G)r = X*(Z(G)F).

e For b basic, via the inclusion of the corresponding semi-stable component
p, : [Spa(F,)/Js(E)] — Bung ® F,, the decomposition of the action of S,

® gr 7
Ty Fp = @ Zop

peS
Plz@r=r®

as smooth representations of J,(E) defines an L-packet {3@,1 P}p for a local
Langlands correpondence for the inner form J, of G. When b = 1, and
thus J, = G, F,1 is the unique generic element of the L-packet (and
thus the construction of .#, has to depend on the choice of a Whittaker
datum).

e There are Hecke correspondences defined between Bung and Bung x
Spa(E)®. They are parametrized by element u € X, (A)T where A is
a maximal split torus in G and X, (A)" is the positive Weyl chamber rel-
ative to the the choice of a Borel subgroup containing A. Then %, is an
eigenvector for those Hecke correspondences with eigenvalue 7, o ¢ seen as
an f-adic Weil local system on Spa(FE)°.

e 7, has to satisfy a local global compatibility with Caraiani-Scholze sheaf
Rrpr«Qp where mg is the Hodge-Tate period map associated to a Hodge
type Shimura variety.

This conjecture implies Kottwitz conjectural description of the discrete part
of the cohomology of Rapoport-Zink spaces. It is checked for GL; where this is
equivalent to local class field theory.

On skeleta
FrRANGOIS LOESER
(joint work with E. Hrushovski)

Let val : K — T'y, be a valued field. Here I'y, = I" U {00} with T’ an ordered
abelian group (no restriction on the rank of I' is assumed). Let V' be an algebraic
variety over K. In [2] we introduced the stable completion V of V, which is a
model-theoretic version of the Berkovich analytification. Points in V are definable
types on V that are dominated by their stable part. Vis naturally endowed with
a topology coming from the order topology on I'. A key feature of V is that it is
pro-definable in the geometric language of [1]. A subset of V is called iso-definable
resp. iso-definable I'-internal if it is pro-definably isomorphic to a definable set,
resp. to a definable subset of I'"*, for some n.

An important role is played by those types in V that satisfy a form of Abhyankar
equality, namely those definable types p on V such that there exists a definable
map f:V — W with W defined over the residue field and such that the Zariski
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dimension of the support of p and of f.(p) are equal. We call such types strongly
stably dominated and denote the set of those types by V#. When dim(V) < 1,
V# =V, but the inclusion is strict as soon as dim(V) > 2 as shown by the next
example. An important property of V# is that it naturally endowed with the
structure of an ind-definable space.

Example: Take K = F((t)) with F trivially valued and val(t) = 1. Consider a
non-algebraic power series p(z) = >, a;xz', with a; € F, and for any non negative
integer n, set v, () = Doci<n a;x'. For v € Ty, consider the complete type p. in
(z,y) generated by the generic type of the closed ball val(z) > 1 and the formulas
val(y — ¢n(z))) = min(n + 1,7).

One can check that p, belongs to (A2)# if and only ~ is finite, i.e. smaller than
ng for some integer ng. Furthermore, the mapping g : 'y, — A2 sending v to p,
is continuous and pro-definable but its image is not iso-definable in A2,

By a generalized interval we mean a definable set which is obtained by glueing
end-to-end a finite number of intervals in I'y;. We say an iso-definable I'-internal
subset V is topologically T-internal if it is pro-definably homeomorphic to a defin-
able subset of I'l , for some n.

Call a subset T = V a skeleton if T is topologically I'-internal, is contained in

V# and for any irreducible component V; of V, T n \71 if of o-minimal dimension
dim(V;) everywhere. The main result in [2] is the following theorem:

Theorem 1. Let V be a quasi-projective variety over a valued field. There exists
a continuous prodefinable map h : I % V - 17, with I a generalized interval,
which is a strong deformation retraction onto a subset T V with T a skeleton.
Furthermore, given a finite number of definable functions a; : V. — 'y one may
require h to respect the ;.

A first connection between V# and o-minimal geometry is provided by the
following proposition:

Proposition 1. Let V be a variety of dimension n, and let W < V be iso-definable
T-internal. If W is of pure o-minimal dimension n, then W < V7#.

In view of the following rigidity statement it explains the importance of the
space V# in the proof of Theorem 1:

Proposition 2 (rigidity). Let V be a variety of dimension n, and let W < V be
iso-definable T'-internal. If W is of pure o-minimal dimension n, and « : V- Iy
is pro-definable and finite-to-one on W, then any h : I X V- XA/, continuous
pro-definable with I a generalized interval respecting o, fives pointwise W.

We ended the talk by sketching the proof of the following recent result which
is included in the latest versions of [2].

Theorem 2. Let V be a quasi-projective variety over a valued field. Then V¥ is
exactly the union of all skeleta inside V.
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Sketch of proof: One has to prove that any point p in V# belongs to a skeleton.
By increasing the basis, one reduces to the case p is a realized type (recall V# is
ind-definable). The proof then proceeds by descending induction on the o-minimal
dimension, the case of maximal dimension being consequence of Proposition 2.

One deduces from Theorem 2 the following topological characterisation of the
points satisfying the equality in the Abhyankar inequality:

Corollary. The set V# is exactly the locus in 1% of points having local o-minimal
dimension the Zariski dimension of V; e.g., if V is of pure dimension n, V#
is the locus of points of o-minimal dimension n, namely those contained in an
iso-definable I'-internal set of o-minimal dimension n.
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Geometric invariants for non-archimedean semi-algebraic sets
JOHANNES NICAISE
(joint work with Franziska Schroeter, Sam Payne)

Let K be an algebraically closed real-valued field of equal characteristic zero, with
valuation ring R and residue field k. The prime example to keep in mind is the
field of complex Puiseux series K = U,~oC((t'/™)), which is an algebraic closure of
the field of complex Laurent series C((¢)). A semi-algebraic subset of an algebraic
K-variety X is a subset of X (K) that can locally be defined by Boolean operators
and inequalities of the form v(f) < v(g) where f, g are algebraic functions on X
and v denotes the valuation on K. The aim of my talk was to show how one can
attach geometric invariants to semi-algebraic sets over the field K using the theory
of motivic integration developed by Hrushovski and Kazhdan [3]. The motivation
for this construction is twofold:

(1) Semi-algebraic sets occur naturally in tropical and non-archimedean ge-
ometry. For instance, given a family of subvarieties of an algebraic torus,
the locus of fibers of the family with fixed tropicalization is semi-algebraic.
This follows from Robinson’s quantifier elimination for algebraically closed
valued fields.

(2) Even if one is ultimately interested in computing invariants for algebraic
varieties, it is often useful to know that one can compute these invariants
on semi-algebraic decompositions of the variety, for instance to obtain
tropical formulas.

Both motivations play a role in our project, which aims to give a geometric in-
terpretation of the refined tropical multiplicities of Block and Gottsche [1] and to
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obtain a tropical correspondence theorem for the refined curve counting invariants
of Gottsche and Shende [2]. The first results will appear in [7].

The central tool in our approach is the motivic volume defined by Hrushovski
and Kazhdan. This is a morphism

Vol : Ko(VFg) — Ko(Varg)

from the Grothendieck ring of semi-algebraic sets over K to the Grothendieck ring
of algebraic varieties over the residue field k. With the help of this morphism
we can extend all the classical motivic invariants in algebraic geometry to semi-
algebraic sets, by composing Vol with the motivic invariant on Ky(Varg). For
instance, this allows us to define the Hodge-Deligne polynomial, the x,-genus and
the Euler characteristic of a semi-algebraic set.

A common feature of all the theories of motivic integration is that they try to
understand the structure of semi-algebraic objects over K in terms of data living
over the residue field k (that is, algebraic k-varieties) and over the value group
|K*| (polyhedra). This aim is realized in the theory of Hrushovski and Kazhdan by
a complete description of the Grothendieck ring of semi-algebraic sets Ko(VF k)
as a tensor product of certain Grothendieck rings of k-varieties and polyhedra,
respectively. They show that Ko(VF ) is generated by the classes of the following
types of semi-algebraic sets:

e inverse images of closed |K*|-rational polyhedra I" in R™ under the tropi-
calization map trop : (K*)" — R™;

e tubes around subvarieties Y of the special fibers of smooth R-schemes X
of finite type.

Moreover, they express in a simple and elegant way all the relations that exist
between these classes. The motivic volume

Vol : Ko(VFK) — Ko(VaI'k)

is fully characterized by its values on the generators above:

e Vol(trop™"(T')) = [G}, ;] for every n > 1 and every closed |K*|-rational
polyhedron I' in R";
e the volume of the tube around Y in X equals [Y].

The motivation for the first expression is that we can think of trop™(I') as a (R*)"-
torsor over I', and that the volume of R* according to the second expression is
(G}, 1]- In many situations, the invariants of semi-algebraic sets defined in this
way have a natural geometric meaning. For instance, one can deduce from work
by Martin [6] and Hrushovski & Loeser [4] that the Euler characteristic of a semi-
algebraic set coincides with the one obtained from Berkovich’s theory of étale
cohomology for K-analytic spaces.

In order to be able to compute all of these motivic invariants in practice, we
have established a tropical expression for the classes in Ko(VFg) of schon subva-
rieties X of algebraic K-tori. Every tropical polyhedral decomposition ¥ of the
tropicalization of X gives rise to a semi-algebraic decomposition of X (K) whose
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pieces are the inverse images of the cells of ¥ under the tropicalization map. This
leads to an expression for [X (K)] in terms of the generators of Ko(VFg) given
above, involving the cells of 3 on the polyhedral level and the strata of the spe-
cial fiber of a certain model for X induced by ¥ on the residue field level. As a
corollary, we find the expression

Vol(X (K)) = > (=1 [in, X]
v
where 7y runs over the bounded open cells of ¥ and in, X denotes the corresponding
initial degeneration of X. A similar expression for the motivic nearby fiber of Denef
and Loeser was given by Katz and Stapledon in [5].
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Syntomic complexes and p-adic nearby cycles
WIESLAWA NIZIOL
(joint work with Pierre Colmez)

We compute syntomic cohomology of semistable affinoids in terms of cohomology
of (¢, T')-modules which, thanks to work of Fontaine-Herr, Andreatta-Iovita, and
Kedlaya-Liu, is known to compute Galois cohomology of these affinoids. For a
semistable scheme over a mixed characteristic local ring this implies a comparison
isomorphism, up to some universal constants, between truncated sheaves of p-adic
nearby cycles and syntomic cohomology sheaves. This generalizes the comparison
results of Kato, Kurihara, and Tsuji for small Tate twists (where no constants
are necessary) as well as the comparison result of Tsuji that holds over the al-
gebraic closure of the field. As an application, we combine this local comparison
isomorphism with the theory of finite dimensional Banach Spaces and finitness of
étale cohomology of rigid analytic spaces proved by Scholze to prove a Semistable
conjecture for formal schemes with semistable reduction.

Let Ok be a complete discrete valuation ring with fraction field K of charac-
teristic 0 and with perfect residue field k of characteristic p. Let O = W (k) and
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F = ﬁp[}—lj] so that K is a totally ramified extension of F; let e = [K : F'| be the
absolute ramification index of K. Let O’k denote the integral closure of & K in K.
Set Gx = Gal(K/K), and let ¢ = ¢y, 3, be the absolute Frobenius on W (k). For
a log-scheme X over O, X,, will denote its reduction mod p™, Xy will denote its

special fiber.

1.1. Statement of the main results. Let X be a (strict) semistable scheme
over Ok. For r = 0, let .7, (r)x be the (log) syntomic sheaf modulo p™ on Xg ¢t.
It can be thought of as a derived Frobenius and filtration eigenspace of crystalline
cohomology or as a relative Fontaine functor. Fontaine-Messing [4] have defined a
period map
0451;1/1 D Snr)x = *RiLZ/p"(r),

from syntomic cohomology to p-adic nearby cycles. Herei : Xg — X, j: Xip — X,
and X, is the locus where the log-structure is trivial. We set Z,(r)" := ]ﬁz,,(r),
for r = (p— 1)a(r) + b(r), 0 <b(r) <p—1.

We prove that the Fontaine-Messing period map aryl,\f, after a suitable trunca-
tion, is essentially a quasi-isomorphism. More precisely, we prove the following
theorem.

F

Theorem 1.1. For 0 < i < r, consider the period map
(1.2) af s AN I(r)x) > P RUGLZ/p"(r),, -

n

(i) If K has enough roots of unity' then the kernel and cokernel of this map are
annihilated by p™" for a universal constant N (not depending on p, X, K, n or
).

(ii) In general, the kernel and cokernel of this map are annihilated by p~ for an
integer N = N(e, p,r), which depends on e, r, but not on X or n.

For i <r < p—1, it is known that a stronger statement is true: the period map
(1.3) oM NS (r)x) S iR Zp (r) x,, -

r,n
is an isomorphism for X a log-scheme log-smooth over a henselian discrete valua-
tion ring Ok of mixed characteristic. This was proved by Kato [7], [8], Kurihara
[10], and Tsuji [14], [15]. In [13] Tsuji generalized this result to some étale local
systems. As Geisser has shown [5], in the case without log-structure, the isomor-
phism (1.3) allows to approximate the (continuous) p-adic motivic cohomology
(sheaves) of p-adic varieties by their syntomic cohomology; hence to relate p-adic
algebraic cycles to differential forms.

As an application of Theorem 1.1, one can obtain the following generalization
of the Bloch-Kato’s exponential map [2]. Let 2  be a quasi-compact formal,
semistable scheme over Ok (for example a semi-stable affinoid). For ¢ > 1, consider
the composition

ari: Hig (Ziw) = H(Z, 7 (1) q~—Hi (2L, Qp(r))-

IThe field F contains enough roots of unity and for any K, the field K (¢pn ), for n = ¢(K)+3,
where ¢(K) is the conductor of K, contains enough roots of unity.
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If X is a proper semistable scheme X over Ok, and 1 <i < r — 1, then the G-
representation V;_1 = H’, ' (X7, Qp(r)) is finite dimensional over Q,, Hiz' (Xx)
is finite dimensional over K, and Héﬁl (Xk) = D4r(Viz1). The map «,; for the
formal scheme 2" associated to X is then the Bloch-Kato’s map [11]

Dar(Vie1) — HY (G, Vie1) = HL (XK, Qp(r)).

Easy comparison between de Rham and syntomic cohomologies, together with
Theorem 1.1, yield the following result.

Corollary 1.4. Fori <r—1, the map
Qpjt Héﬁl(f%K,tr) - Hét(f%-K,tra Qp(r))

is an isomorphism. Moreover, the map o, : Hg;il((%”;(’tr) — HZ (Zk e, Qp(T))
is injective ( but not necessarily surjective: the case i = r =1 and Z = O
already provides a counterexample).

Recall how one shows that the period map o) from (1.3) is an isomorphism.

Under the stated assumptions one can do dévissage and reduce to n = 1. Then
one passes to the tamely ramified extension obtained by attaching the p’th root
of unity (,. There both sides of the period map (1.3) are invariant under twisting
by t € A and (,, respectively, so one reduces to the case r = ¢. This is the
Milnor case: both sides compute Milnor K-theory modulo p. To see this, one uses
symbol maps from Milnor K-theory to the groups on both sides (differential on
the syntomic side and Galois on the étale side). Via these maps all groups can be
filtered compatibly in a way similar to the filtration of the unit group of a local
field. Finally, the quotients can be computed explicitly by symbols [1], [6], [10],
[13] and they turn out to be isomorphic. This approach to the computation of p-
adic nearby cycles goes back to the work of Bloch-Kato [1] who treated the case of
good reduction and whose approach was later generalized to semistable reduction
by Hyodo [6].

Our proof is of very different nature: we construct another local (i.e., on affi-
noids of a special type, see below) period map, that we call «%**. Modulo some
(¢, T)-modules theory reductions, it is a version of an integral Lazard isomorphism
between Lie algebra cohomology and continuous group cohomology. We prove di-
rectly that it is a quasi-isomorphism and coincides with Fontaine-Messing’s map
up to constants as in Theorem 1.1. The (hidden) key input is the purity theorem
of Faltings [3], Kedlaya-Liu [9], and Scholze [12]: it shows up in the computation
of Galois cohomology in terms of (¢, I')-modules [9] which we use as a black box.
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Chabauty—Coleman on basic wide opens and applications to uniform
boundedness

JOSEPH RABINOFF
(joint work with Eric Katz, David Zureick-Brown)

1. UNIFORM BOUNDEDNESS QUESTIONS

This is a report on completed and continuing work on proving uniform bounded-
ness statements by using p-adic integration and applying the Chabauty—Coleman
method on basic wide open subdomains of Berkovich curves. By a curve, we will
always mean a smooth, proper, geometrically connected curve C over a field. We
will always denote the Jacobian of C by J.

We will consider the following (proved) conjectures, and their uniform variants.

Mordell Conjecture 1.1. Let C' be a Q-curve of genus g = 2. Then C has
finitely many Q-rational points.

The Mordell conjecture was proved by Faltings in 1983. Giving an explicit
bound on the size of C(Q) amounts to producing a number N, calculated in terms
of invariants of the curve C, such that #C(Q) < N. One might hope that the
only necessary invariant is the genus of the curve; this gives rise to the uniform
version of 1.1.

Uniform Mordell Conjecture 1.2. For g > 2, there ezists a number N = N(g)
such that for every Q-curve C' of genus g, we have #C(Q) < N(g).
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Perhaps the strongest currently known statement in the direction of Conjec-
ture 1.1 is the following theorem, which relies heavily on recent work of Stoll [Sto13].

Theorem 1 ([KRZB15, Theorem 1.1]). Let g = 3. For every Q-curve C of genus
g such that rankJ(Q) < g — 3, we have

#C(Q) < 769% — 82¢ + 22.

This theorem is proved with a variant of the techniques we will sketch in this
note. These techniques are based on the Chabauty—Coleman method; for this
reason it is not likely that the condition on the Mordell-Weil rank can be removed.
We will focus mostly on the following (proved) conjecture, and its uniform variant.

Manin—-Mumford Conjecture 1.3. Let C be a curve of genus g = 2 defined
over the complex numbers C. Let a: C <— J be the Abel-Jacobi map, defined with
respect to a choice of base point. Then only finitely many points of C map to
torsion points of J: in symbols, #a = (J(C)iors) < 0.

The Manin-Mumford conjecture was first proved by Raynaud in 1983, with
many subsequent proofs. As above, the uniform variant asserts a bound in terms
of the genus alone.

Uniform Manin—-Mumford Conjecture 1.4. For g > 2, there exists a number
N = N(g) such that for every C-curve C of genus g and every choice of Abel-
Jacobi map a: C — J, we have #a~ 1 (J(C)iors) < N(g)-

Buium [Bui96] proved that if C is defined over an unramified finite extension
K/Q, (for p > 3) and has good reduction, then

#a  (J(Cpliors) < p* 39[p(2g — 2) + 6g] g!.

One can use this result to give another proof of 1.3. Notice however that the bound
only depends on g (and p), and as such gives a uniform bound as in Conjecture 1.4
for curves over K with good reduction.

2. p-ADIC INTEGRATION
There are several flavors of p-adic line integration. We mention here the two that
we will employ. In this section we work entirely over C,.
2.1. The abelian integral. Using general considerations on p-adic Lie groups,
one can show that there exists a unique p-adic Lie group homomorphism
log: J(C,) — Lie(J) = HO(J,Q")*,

which induces the identity on Lie algebras. Using H°(J, Q') = H°(C,Q!), for
z,y € C(C,p) and w e HY(C, Q') we define

Ab py
j w = log(a(y) — o(x)) ().

x
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Noting that log kills J(C,)tors, we have

Ab py
(2.1) J w=0 forall =z,yea '(J(Cpios) and we H(C,Q).
2.2. The Berkovich—Coleman Integral. The Berkovich-Coleman integral as-
sociates to a path v: x v y in the Berkovich analytification C?", where x,y €
C(C,), and to a differential w € H°(C,Q'), a number

BC
J we C,.
¥

This integration theory enjoys many desirable properties, including;:
(1) BCSV only depends on the fixed end-point homotopy class of ~.

(2) BCS,Y is intrinsic to any analytic subdomain containing =y, i.e. it can be
calculated locally.

(3) BCSV df = f(y) — f(z) for an analytic function f defined on 7, i.e. the
integral satisfies the fundamental theorem of calculus.

Properties (2) and (3) imply that Bcsww can be computed locally using formal
antidifferentiation on domains in which w is exact.

2.3. Comparing the integrals. The abelian and Berkovich—Coleman integrals
do not necessarily coincide; however, their difference is well-controlled.
BCS

Vague Proposition 2.4. The difference fAbS is controlled by the tropical

Abel-Jacobi map.

See [KRZB15, Proposition 3.16, §3.5] for precise statements. We will give some
concrete consequences of 2.4, using the following notation. Let I' ¢ C®" be a
skeleton. This is a weighted metric graph, which we assume here and below has no
loop edges; this can always be achieved by adding more vertices. Let 7: C*" — T°
be the retraction map, let v € T', let V,, denote the union of v with all open edges
adjacent to v, and let U, = 771(V,,). This is an open analytic domain in C?".

Definition 1. An open subset of the form U, ¢ C?®" is called a basic wide open
subdomain.

It is not hard to see that Definition 1 coincides with Coleman’s notion [Col89,

§3]. Note that U, is simply-connected, so it makes sense to write Bcgzw for
z,y € U,.

Corollary 1 (to 2.4). Let v € T be a vertex, and let d = deg(v), the valency of v
in T'. Then there exists a subspace W < H°(C, Q') of codimension at most d — 1
such that Bcszw = Abszw for allwe W and z,y € U, (C,p).

It follows from Corollary 1 that BCSw = Awa on open discs, which explains
why the usual Chabauty—Coleman method does not require a comparison of the
two integrals. On an open annulus, which is a basic wide open associated to a point
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v of valency 2, there is one linear condition needed for BCSw = Awa; this was
discovered by Stoll [Sto13, Proposition 6.1]. On a “p-adic pair of pants”, i.e. a basic
wide open U, associated to a vertex v of valency 3, the equation BCSw = Awa
imposes two linear conditions. And so forth.

3. OVERALL TECHNIQUE

In this section we describe the overall strategy for using Chabauty—Coleman on
basic wide opens to obtain uniform Manin—Mumford statements. Throughout we
will work with a curve C' defined over C,,, with J its Jacobian. We proceed in the
following steps.

(1) Since C is hyperbolic, there exists a minimal skeleton I' ¢ C*". This is a
weighted metric graph of genus ¢g. The combinatorics of such graphs give
bounds on the number of vertices and edges of I', in terms of g alone.

(2) We have C*" = |JU,, where the union is taken over vertices of I. That
is, C®" is covered by a uniformly bounded number of basic wide open
subdomains.

(3) Suppose that, for each vertex v € ', we can find a nonzero global differen-
tial w, € H(C, Q') satisfying:

(E) wy =df, for f, € O(U,), i.e. w, is exact on U,,.

BC py Ab py
(08 J Wy = f wy for all z,y € U,(C,).

x x
We claim that conditions (E) and (I) suffice to prove a uniform Manin—-Mumford
statement.

(4) For a suitable choice of antiderivative f,,, all torsion points on U, are zeros
of f,. This is a consequence of (2.1) and (I).

Now we describe how to bound the number of zeros of f,. This plays the role of
the “p-adic Rolle theorem” part of the classical Chabauty—Coleman method, and
is central to [KRZB15]. Some of the assertions below are simplified to the point
of being not quite correct; see [KRZB15] for precise statements.

Let

G, = —log||lwy||: Vi — R.

Here the metric || - || on Q' comes from the canonical extension of Q! to a semistable
model of C defined using an integral version of Rosenlicht differentials. It can also
be defined using Temkin’s theory of metrization of differential pluriforms [Tem14],
or using the relative dualizing sheaf if C' has a semistable model over a discretely
valued subfield of C,,. In any case, G, is piecewise linear with integer slopes.

Proposition 1. div(G,) + Kt > 0.

Here div(G,) is the divisor of G, in the sense of divisors and linear equiva-
lence on metric graphs, and K is the canonical divisor of the weighted graph I'.
Proposition 1 can be phrased as saying “G, is a section of the tropical canonical
bundle.” It is a result in potential theory on Berkovich curves, and can be seen
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as a consequence of the Poincaré—Lelong formula as applied to the metrized line
bundle (Q*, ]| - |]).

A combinatorial analysis of piecewise-linear functions on weighted metric graphs
of genus g satisfying Proposition 1 yields the following consequence.

Corollary 2. On any segment where G, is linear, the slope of G, is bounded by
2g — 2 in absolute value.

(5) Bound the slopes of F,, == —log|f,| in terms of the slopes of G,
(6) The number of zeros of f, on U, is equal to the sum of the incoming slopes
of F, on the edges adjacent to v.

We currently handle (5) with a tedious Newton polygon argument. The result-
ing bound also depends on p and on the length of the shortest edge in I' adjacent
to v. Assertion (6) is another fact from potential theory, and can be derived from
the Poincaré-Lelong formula as applied to (O¢,| - |). Completing steps (1)—(6) in
general would give a complete proof of the uniform Manin—-Mumford conjecture,
at least for curves defined over a finitely ramified extension of C, (see Remark 1
below).

Remark 1. The entire argument presented above is carried out over C,,. However,
the bounds obtained in (5) for the slopes of F;, do depend on the shortest edge
length of I'. If C' admits a split semistable model over a subfield K < C, with
finite ramification index e over Q,, then all edges have length at least 1/e.

Remark 2. Our approach is a generalization of the Chabauty—Coleman method;
the main new ingredient is p-adic integration on wide open subdomains. In classical
Chabauty—Coleman, one only performs p-adic integration on open discs; for this
purpose it is not necessary to compare the two types of p-adic integration, as
mentioned above. (But see Remark 3 below.) Another interesting feature of our
method is that it uses p-adic integration to give geometric point-counting bounds,
instead of rational point bounds.

Remark 3. A variant of the argument outlined above is used to prove Theorem 1.
In this context, almost all ingredients are already contained in Stoll’s paper [Stol3],
which was a major inspiration. Indeed, for rational points bounds, it is only
necessary to integrate on open discs and open annuli (these being special cases of
wide open subdomains), where the theory simplifies considerably. Stoll was only
able to carry out step (5) for annuli in the case of hyperelliptic curves. From the
perspective of the uniform Mordell conjecture, the solution to (5) is the key new
ingredient contained in [KRZB15]; integration on more general wide opens is not
needed.
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4. CURRENT RESULTS AND WORK IN PROGRESS

Carrying out the program of §3, in [KRZB15, Theorem 1.3] we prove the following
theorem. We keep the notation from the previous section.

Theorem 2. Suppose that all edge lengths in T' are at least 1/e, and that for every
vertex v of I', one has

(1) g > 2g(v) + deg(v),

where g(v) is the weight of v and deg(v) is its valency. Then there is an explicit
constant N,(g,e) such that

#ail(J(CP)torS) < Np(g,€)
for any choice of Abel-Jacobi map a: C — J.

The condition () is designed to guarantee that (I) and (E) can be satisfied
(along with some trick to decrease the number of degrees of freedom needed to
choose the differential w,).

We are currently working on proving the uniform Manin-Mumford conjecture
for all Mumford curves over C,. This would be interesting in its own right, as
it would give a uniform bound on torsion packets on Shimura curves of bounded
genus (using the Cerednik-Drinfel’d uniformization); this can be seen as a Shimura
curve analogue of the Coleman-Kaskel-Ribet conjecture, which is a theorem of
Baker [Bak00]. We are also working on extending Buium’s arguments [Bui96] to
give a proof of uniform boundedness for curves over finite extensions of Q, with
compact-type reduction.
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Logarithmic structures, Artin fans, and tropical compactifications
MARTIN ULIRSCH

The theory of Artin fans has emerged in [AW13] and in [ACMW14] in the context
of logarithmic Gromov-Witten theory (also see [ACM+15]), but can be traced back
to the work of Olsson [Ols03] studying classifying stacks of logarithmic structures.
It has already found applications to the realizability problem for tropical curves
(see [Ranlbb]) as well as to a version of the correspondence between algebraic and
tropical curve counts (see [Ranl5a)).

Throughout let k be a field that is endowed with the trivial absolute value.
An Artin fan is a fine and saturated logarithmic algebraic stack, locally of finite
type over k, that is logarithmically étale over k. Despite this seemingly abstract
definition, Artin fans are essentially combinatorial objects and can be described
as geometric stacks over the category of Kato fans (see [Kat94]), an incarnation
of the geometry over the ”field with one element”.

Non-Archimedean geometry of Artin fans. Every fine and saturated log-
arithmic scheme X comes with a canonical strict morphism X — Ax into an
associated Artin fan Ax. If X is a T-toric variety, then the Artin fan Ay is
nothing but the quotient stack [X/T] and, in general, the Artin fan of a fine and
saturated logarithmic scheme X is étale locally constructed by these toric quo-
tient stacks. Applying Thuillier’s [Thu07] generic fiber functor (.)= we obtain the
following result.

Theorem 1 ([Ulil5b]). On the level of underlying topological spaces the analytic
map X= — A= is equal to the tropicalization map tropy : X 2 - ¥ constructed
in [Uli13].

If X is logarithmically smooth, by [Uli13, Theorem 1.2] the analytic map X= —
A3 factors through Thuillier’s [Thu07] deformation retraction px : X= — X=
onto the non-Archimedean skeleton &(X) of X and the skeleton &(X) is natu-
rally homeomorphic to Ax. Note, in particular, that this procedure canonically
endows the skeleton of a logarithmically smooth scheme with the structure of a
non-Archimedean analytic stack.

The case of toric varieties. For a T-toric variety X = X (A), defined by a ratio-
nal polyhedral fan A in the vector space Ng spanned by the cocharacter lattice N
of T', one can give a generalization of Theorem 1; it describes the Kajiwara-Payne
tropicalization map trop, : X" — Ng(A) from X" to a partial compactifica-
tion Ng(A) of N (see [Kaj08§] and [Pay09]) as a non-Archimedean analytic stack
quotient.

Theorem 2 ([Ulil4]). The Kajiwara-Payne tropicalization map tropy : X" —
Ngr(A) is a non-Archimedean analytic stack quotient of X*™ by the affinoid torus
T° associated to T .
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One can view Theorem 2 from a different perspective: It is the non-Archimedean
version of the fact that for a complex toric variety X = X(A) with big torus
T ~ G}, the logarithmic complex absolute value on C induces a homeomorphism

X(C)/(SH" ~ Ni(A) .

Theorem 2 therefore adds another layer to the analogy between the tropicalization
map and the complex moment map. Contrary to the Archimedean case, however,
we have to work with stack quotients and not with topological quotients, since the
underlying space of the affinoid torus T°° is not a group.

Tropical compactifications. Artin fans were already implicit in the work of
Tevelev [Tev07] on tropical compactifications and give a reinterpretation of basic
concepts of this theory in terms of logarithmic geometry. For example, the com-
pactification Y of a very affine variety Y < T in a T-toric variety X is a tropical
compactification if and only if Y is logarithmically faithfully flat. Moreover, a
tropical compactification is schén if and only if it is also logarithmically smooth.

In this language Tevelev’s existence theorem for tropical compactifications can
be generalized to the following toroidal version of the Raynaud-Gruson flattening
theorem (see [RG71]).

Theorem 3 ([Ulil5a]). Let F be a coherent sheaf on an logarithmically smooth
integral scheme X of finite type over k. Then there is a toroidal modification
X" — X such that the strict transform F$' of F is logarithmically flat over k.

Let Y be a closed subset of the locus Xy in X where the logarithmic structure
on X is trivial. Theorem 3 implies that after a toroidal modification X’ — X of
X the closure of Y in X’ is logarithmically flat over k and thus the intersections
of Y with the logarithmic strata of X’ are either empty or have the expected
dimensions. If X is a toric variety, this is precisely Tevelev’s result.
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Reified valuations spaces and skeletons of Berkovich spaces
ANTOINE DUCROS
(joint work with Amaury Thuillier)

Let k be any non-Archimedean field (possibly trivially valued). For every finite
family r = (r1,...7,) of non-negative real numbers, we denote by 7, the point of
the Berkovich space A;"™" defined by the semi-norm Y, a;T! — max |as|r!. The
map r +— 7, induces a homeomorphism between R and a closed subset S,, of
AP™ which is usually called the standard skeleton of A}"*". In a joint work with
Amaury Thuillier (currently in progress, and not yet available online) we prove —
among other things — the following result.

Theorem. Let X = .#(A) be a k-affinoid space and let f: X — A be a
morphism with zero-dimensional (hence finite) fibers. Set ¥ = f~1(S,). There
exists a finite family (g1, . . ., gm) of functions belonging to A such that the following
hold.

(1) The map (|g1], - - -, |gm|) from X to RZ induces a homeomorphism v between
¥ and a compact subset P of RYy which is piecewise monomial. This means that P
can be defined by a boolean combination of inequalities between monomial functions
with non-negative integral exponents; i.e., functions of the kind ax(' ...xSr with
a € Rxp and the e;’s in Z>y.

(2) For every analytic domain V of X and every analytic function h on V,
the subset «(V N X) of P is piecewise-monomial, and |h|o1™t: 1(V A X) — Rxp
is piecewise monomial with rational exponents (of course, negative exponents can
only occur for non-vanishing coordinates).
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The case where the f;’s are invertible. The proof is then simpler. Indeed,
this assumption on the f;’s implies that every point of ¥ is Zariski-generic on X
(more precisely, its Zariski-closure is an n-dimensional irreducible component of
X)), which allows through some standard tricks to algebraize the situation around
every point of X. Once we have done it, the above Theorem can be proved by
using either de Jong’s alterations or the model theory of valued fields; we refer to
the author’s papers [3] (for the first method) and [1] (for the second one).

Back to the general case. When the f;’s are allowed to vanish, points of X
can be non-generic (for instance, the origin of A™2" belongs to S,). In order
to understand what can happen around such a point, we have introduced a new
space of valuations. Before describing it, let us mention that Temkin has already
developped in [7] valuation theoretic tools for the local study of Berkovich spaces,
which have been described recently by Kedlaya [6] in a more “Huber-like” spirit in
terms of what he calls reified valuations (see the definition below). Though those
tools have proved powerful, we cannot use them here, for the following reason:
they give a very nice description of the germs of analytic domains around a given
point of a Berkovich space, but do not say anything about phenomena related to
the Zariski topology — which are crucial for our purposes. For example, Temkin’s
space associated to a rigid point x of a Berkovich space X consists of a single
point, no matter how bad the singularity of X at x is (this encodes the fact that
an analytic domain of X containing z is always a neighborhood of x or, otherwise
said, that every analytic function invertible at x has constant norm around z).

The space X. We are now going to describe the valuation space we have intro-
duced. First of all, let us recall’s Kedlaya definition of a reified valuation: if A is
a commutative ring, a reified valuation on A is a valuation A — T’y (where T" is an
arbitrary ordered abelian group, with multiplicative notation, and Ty = T" U {0})
together with an increasing embedding R~y < I'; there is a natural notion of
equivalence of reified valuations. If £: A — Iy is a reified valuation, its kernel
is a prime ideal p of A. The fraction field of A/p will be denoted by (), and
the natural map A — k(§) will be denoted by f — f(£). The reified valuation
¢ induces a reified valuation x(§) — T'g, which is denoted by |- |. Hence one has
E(f) =|f(&)] for every f e A (and we shall use the latter notation); the subgroup
R-o-|k(§)*| of T only depends (as an ordered group equipped with an embedding
of R+, up to isomorphism) on the equivalence class of &.

Now let X = .#(A) be a k-affinoid space. We denote by X the set of equivalence
classes of reified valuations £ on A that are bounded, that is such that | f(&)| < ||f]]e
for every f € A, where || - || is the spectral semi-norm. We endow it with the
topology generated by the subsets described by inequalities of the form |f| = A|g|
with f and g in A, with X in R>g, and with x in {<, <, >, >} (hence this is kind
of a constructible topology: any inequality, strict or non-strict, defines an open
subset). The topological space X is compact and totally disconnected.

The Berkovich space X can be identified with the subset of X consisting of
points ¢ such that |k(£)*| € Rsg (but the inclusion X < X is not a topologi-
cal embedding, because the topology of a Berkovich space makes the difference
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between strict and non-strict inequalities). This subset is dense in X: this is
essentially a rephrasing of Huber’s theorem [4], Th. 4.1.

Kedlaya’s space of continuous reified valuations can be identified with the subset
of X consisting of points ¢ such that for every A € |s(£)*|, there exists € € R~g
with & < A (there are no infinitesimal elements in the value group).

A general element of X can be thought of as mixing a “Kedlaya” part and an
algebraic, not reified valuation on Spec A (giving rise to infinitesimal elements).

There is a continuous map ¢: X — X, which is a retraction of the natural
inclusion X < X. If £ € X then ¢(£) = f — inf{\ € Rxo, |f(€)] < A}

Example. Let R be a positive real number and set X = .#(k{T/R}). Let T’
be an ordered group containing R~q, and let r € Iy such that r < R. The map
M a; Tt — max |a;|r® is then a bounded reified valuation on k{T/R}; it therefore
defines a point 7, of X, and there are three possibilities. If € Rxq, then 7, is
the usual Berkovich point. If r is infinitesimally closed to a positive real number p
(i.e., 7 # p but A= < r/p < X for every real number A > 1) then 7, is a Kedlaya
point, and ¢(n,) = n,. If r is infinitesimal (i.e., r > 0 and r < ¢ for every positive
real number ¢) then ¢(n,) = 0, and 7, is not a Kedlaya point; this a “new” point,
encoding the unique branch starting from the rigid point 0 (on a nodal curve one
would have two such points over every singular point). It can also be described as
the composition of the vanishing order at the origin with the absolute value of k.

Functoriality. FEvery morphism Y — X between k-affinoid spaces gives rise
to a continuous map ¥ — X. Assume that Y is an affinoid domain of X. By
Gerritzen-Grauert theorem, Y can be described by a positive boolean combination
7 of inequalities of the form |f| < A|g where f and g are analytic functions on
X and where A > 0. The image of the map ¥ — X is then the compact open
subset of X defined by the system ., but Y — X is not injective in general. The
problem comes from the fact that the Zariski topology of Y is, in general, strictly
finer than the restriction of the Zariski topology of X; this gives rise to (algebraic)
non-trivial valuations on @x (Y’) whose restriction to &x(X) is trivial, and then
(by composition with suitable Kedlaya or even Berkovich valuations) to distinct
points of ¥ having the same image on X.

Link with our theorem. Our general strategy consists in studying the preimage
¥ of the standard skeleton through its avatar £ on X, where our totally discon-
nected topology allows compactness arguments even while working on Zariski-open
subsets. Every point & of £ are Abhyankar, in the following sense: the sum of the

rational rank of |x(€)*|/|k*| and of the transcendence degree of I;\(f/)/ff is equal

to the dimension of {c(&)} . Hence most of our work is devoted to Abhyankar
points of X. Usually, we handle them by making kind of a dévissage between
their “Kedlaya” part, which is often not so difficult to deal with, and their “al-
gebraic” part, which requires more work and often relies on algebraic geometry
a la Grothendieck. For instance, we prove that if V' is an affinoid domain of X
and if £ is an Abhyankar point of X then ¢ has at most one pre-image on V
(hence the aforementioned pathologies cannot occur), and if it has one, say 7,
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then |k(n)*| = |x(&)*| and k(n) = k(). Key ingredients for the “algebraic” part
of this proof are: the good behavior of normality under a regular map (i.e., flat
with geometrically regular fibers) between noetherian schemes; and a result by
Raynaud describing, being given a flat morphism % — 2 of noetherian schemes,
which are the Cartier divisors on % that come from some Cartier divisor on 2~
(see [5], Errata, Prop. 21.4.9).
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