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Introduction by the Organisers

The workshop Model Theory: Groups, geometry, and combinatorics, organised by
Katrin Tent (Münster), Frank O. Wagner (Lyon) and Martin Ziegler (Freiburg)
was well attended with over 50 participants of various backgrounds: Model theory,
but also geometric group theory and combinatorics. There were a total of 20 talks:
thirteen 50-minute talks and seven 40-minute talks, plus a tutorial (three lectures)
by Zlil Sela on elimination of imaginaries in the free group, and a tutorial (two
lectures) by Pierre Simon and Sergei Starchenko on applications of model theory
in combinatorics.

Stability theory, created by Shelah and by now a classical subject, exhibits
the structure of models of stable theories by looking at forking-independence and
the interaction of types. For instance, in the case of the theory of algebraically
closed fields forking independence coincides with algebraic independence and types
are simply prime ideals in polynomial rings over subfields. While being a rich
and successful method, various important and model-theoretically well-understood
theories are unstable and a priori lie outside the scope of stability theory, such as
pseudofinite fields, real closed fields or henselian valued fields.
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Neostability began when the methods of stability theory were extended in two
directions in order to include a broader range of applications:

(1) To the class of simple theories. This class contains the pseudofinite fields
and, more generally, all bounded pseudo-algebraically closed fields.

(2) To the class of NIP -theories (theories without the independence property).
It has long been known that o-minimal theories are NIP; other important
examples are the p-adic numbers and algebraically closed valued fields.
But only recently an interesting model theory has been developed in gen-
eral.

These two extensions of the class of stable theories are orthogonal in the sense
that a theory is stable if and only if it is simple and NIP. Nevertheless, there is
a third class which contains the previous two, namely the NTP2-theories; certain
classes of henselian valued fields (ultraproducts of p-adic fields, for example) have
been shown to be strictly NTP2. The model theory of NTP2-theories is still in its
infancy, but it is expected that it will yield a unification of methods.

Even though forking independence is defined combinatorially, for a long time
there has been little interaction between model theory and combinatorics. This
has changed recently, due to two developments:

(1) The study of pseudofinite structures, i.e. the study of asymptotic limits
of finite structures, via the pseudofinite counting measure. Hrushovski
has realized that this yields a dimension theory, and that certain tools
from stability theory, such as the stabilizer theorem, can be generalized
to this context. This has been an important input in the classification of
approximate groups by Breuillard, Green and Tao; there are a number of
very recent results using the group configuration theorem from stability
theory.

(2) The interaction with graph and hypergraph theory. In fact, combinatorial
principles underlying NIP and stability can be used to prove certain cases
of the Erdös-Hajnal conjecture or the Szemerédi regularity lemma.

Finally, a new and important example of a stable theory whose behaviour is
quite different from the standard examples has arisen with Sela’s proof of the
stability of non-abelian free groups (as well as torsion-free hyperbolic groups). This
gave rise to new interactions between model theory and geometric group theory,
where a lot of basic questions are still open. For instance, there is currently no
full description of forking independence. Almost all work is done in the standard
models of the theory, and the saturated models are hardly understood. Moreover,
a good comprehension of the definable sets will have a great impact on other
questions about the free group.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.



Model Theory: groups, geometry, and combinatorics 7

Workshop: Model Theory: groups, geometry, and combinatorics

Table of Contents

Martin Bays (joint with Jonathan Kirby)
Categoricity of exponential maps of algebraic groups . . . . . . . . . . . . . . . . . 9

Emmanuel Breuillard (joint with H. Wang)
Erdös geometry and the group configuration . . . . . . . . . . . . . . . . . . . . . . . . . 10
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Abstracts

Categoricity of exponential maps of algebraic groups

Martin Bays

(joint work with Jonathan Kirby)

For G a complex algebraic group and LG its Lie algebra, consider the exponential
map expG : LG(C) → G(C). We consider the structure CexpG

of the complex
field expanded by expG. For G = Gm the multiplicative group, Zilber’s pseudo-
exponentiation [1] provides a conjectural categorical infinitary axiomatisation of
this structure. For G a linear group, expG is matrix exponentiation, and CexpG

is
interpretable in Cexp

Gm
. In the work discussed, we consider the case of G a simple

semiabelian variety. We develop a “generic” version of pseudo-exponentiation for
such G.

Fix a simple semiabelian variety G, i.e. G = Gm or G an abelian variety. Let
O := End(G), acting on G and, via differentials, on LG, and hence on LG × G.
Suppose G and its endomorphisms are over a field k0.

Definition 1. A Γ-field comprises a field K ≥ k0 and a divisible O-submodule
Γ(K) ≤ (LG×G)(K), such that K = k0(Γ(K)).

An embedding of Γ-fields K −֒→ F is an embedding Γ(K) −֒→ Γ(F ) which
induces a field embedding.

A Γ-field K is full if K is algebraically closed as a field and π1(Γ(K)) = LG(K)
and π2(Γ(K)) = G(K), where πi are the projection maps of the product.

Consider C and k0 as Γ-fields by defining Γ(C) to be the graph of expG and
Γ(k0) := {0}.

Our aim is to identify C as a Γ-field.
Using the topology on C, we can define a natural notion of closure for Γ-

subfields:

Definition 2. For K ≤ C a Γ-subfield, let ΓclC(K) be the Γ-subfield generated by
isolated points of V ∩ Γ(C)n for V ⊆ LGn ×Gn an irreducible subvariety defined
over K.

Let C0 := ΓclC(k0). Note that C0 is countable. More generally, ΓclC satisfies
the countable closure property (CCP): the closure of a countable set is countable.

For our purposes, we need a notion of closure which works for abstract Γ-fields,
with no mention of the topology:

Definition 3. Let F be a full Γ-field. A Γ-subfield K ≤ F is Γ-closed in F if for
any tuple γ ∈ Γ(F )m \ Γ(K)m, δ(γ/K) := trd(γ/K)− dim(G) ldO(γ/Γ(K)) > 0.

For a Γ-subfieldK ≤ F , define ΓclF (K) to be the smallest Γ-closed intermediate
Γ-subfield.

δ here is a Hrushovski predimension, and it follows by standard techniques that
ΓclF is a pregeometry.

It follows from Ax’s theorem of 1972 [2] that the two definitions of ΓclC agree.
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Definition 4. A Γ-field F is generically Γ-closed if F is full and for any finitely
generated Γ-field extension k ≥ ΓclF (k0) within F and any irreducible variety
V ⊆ LGn×Gn defined over k, if dim(V ) = n, and no translate of V by an element

of Γ(k) is defined over ΓclF (k0), and for every connected proper algebraic subgroup
H < Gn the image V/(LH ×H) under the quotient map satisfies dim(V/(LH ×
H)) > n − dim(H) and dim(πi(V/(LH × H)) > 0 for i = 1, 2, then there exists
γ ∈ V (F ) ∩ Γ(F )n which is O-linearly independent over Γ(k).

Conjecture 5. C is generically Γ-closed.

Theorem 6. There exists a unique Γ-field Bgen such that

• Bgen is generically Γ-closed;

• ΓclB
gen

(k0) ∼= ΓclC(k0) as Γ-fields;
• |Bgen| = 2ℵ0

• ΓclB
gen

satisfies (CCP).

If C is generically Γ-closed, then C ∼= Bgen.
Moreover, Bgen is quasiminimal: for any definable (or even invariant) subset

X ⊆ Bgen, either X is countable or Bgen \X is countable.

References

[1] Boris Zilber, Pseudo-exponentiation on algebraically closed fields of characteristic zero, Ann.
Pure Appl. Logic, 132(1):67-95, 2005.

[2] James Ax, Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic
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Erdös geometry and the group configuration

Emmanuel Breuillard

(joint work with H. Wang)

Erdös geometry studies finite sets within algebraic geometry. Landmark sam-
ples of this field include the sum-product phenomenon of Erdös and Szemerédi,
or the Szemerédi-Trotter theorem about the number of incidences of a finite set
of points and lines in the plane. Often the cardinality of the finite set tends to
infinity, and asymptotic statements are sought after. Classical statements of Erdös
geometry can then be reformulated in terms of pseudo-finite dimension in an ap-
propriate saturated model, shedding a new light on these questions. We refer the
reader to Hrushovski’s text [6] for an extensive description of this bridge between
combinatorics and model theory and a wealth of fascinating material for further
investigation.

1. The sum-product phenomenon states that there there exists a constant ǫ0 > 0
such that

|AA|+ |A+A| ≥ |A|1+ǫ0

for every finite subset A of real numbers of cardinality |A|. Here A+A is the sum
set and AA the product set of all pairs of elements from A.
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A conjecture of Erdös and Szemerédi asserts that ǫ0 can be taken as close to 2
as one may wish, provided |A| is sufficiently large.

2. A non-commutative analogue, in fact a generalization, of the sum-product
phenomenon was proven in [1] in the context of approximate subgroups.

Theorem 1 (Breuillard-Green-Tao). Given d, for every δ0 > 0 there is ǫ0 > 0
such that if A ⊂ GLd(C) is a finite set, then either

|AA| > |A|1+ǫ0 ,

or A is contained in at most |A|δ0 left cosets of a nilpotent subgroup of GLd(C).

3. Following [6] these statements admit a pseudofinite formulation, which has the
aesthetical advantage of removing the epsilons. For example fix a sequence of finite
sets Bi (in R say in case 1., or in GLd(C) in case 2.) with |Bi| → +∞ and set B
to be the ultraproduct of the Bi’s. For any other family of finite subsets Ai, we
may form their ultraproduct A and define the coarse pseudofinite dimension δ(A)
of A as the standard part

δ(A) := st
( log |B|
log |A|

)
= lim

U

log |Bi|
log |Ai|

.

Now the sum-product phenomenon of Erdös-Szemerédi can be reformulated
simply as max{δ(AA), δ(A + A)} > δ(A), while their conjecture is equivalent to
max{δ(AA), δ(A + A)} = 2δ(A). Similarly, the Breuillard-Green-Tao theorem
above says that δ(AA) > δ(A), unless there is a subset X of zero coarse dimension,
and a nilpotent subgroup N , such that A ⊂ XN .

4. Another way to generalize the sum-product phenomenon is to pick a polynomial
P in several indeterminates and ask for the number of values it can take when the
variables belong to A. We expect that this number is much greater than |A| unless
the polynomial has a special form. For example take P (a, b, c, d) = ab + c+ d to
recover the sum-product theorem. Bukh and Tsimerman, then Tao considered
this problem for finite fields in the regime when A is large. In characteristic zero
a theorem of Elekes and Ronyai says that a 2-variate polynomial P (x, y) must
expand (namely |P (A,A)| > |A|1+ǫ0), unless it has the form Q(f(x) + g(y)) or
the form Q(f(x)g(y)) for certain rational functions Q, f, g. A stronger result was
obtained afterwards by Elekes and Szabó:

Theorem 2 (Elekes-Szabó [3]). Let A,B,C be irreducible k-dimensional complex
algebraic varieties and F ⊂ A×B × C an irreducible subvariety whose projection
to each pair A×B, A×C and B×C is dominant and generically finite. Suppose
we are given three finite subsets X,Y, Z of large size n ≥ n0(degF, k) in A,B and
C respectively. Assume further that they are in general position (that is no proper
subvariety of bounded degree contains more than a bounded number of points).
Suppose that

(1) |X × Y × Z ∩ F | > n2−ǫ0 ,

then F is related to the graph of multiplication on an algebraic group G.
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Related here means that there are multifunctions α, β, γ from G to A,B and
C respectively, such that F is a component of the image of the graph {(x, y, z) ∈
G;xy = z}. Note that dimG = k. The constant ǫ0 here depends only on the
dimension k, and not on F . The case of curves is particularly interesting, as for
example, the theorem applies to the case when A = B = C = C and F is the
graph {(x, y, z) ∈ C3; z = P (x, y)} and allows to recover the Elekes-Ronyai result.

Another example is when F is the collinearity relation on a planar curve C and
A = B = C = C. In this case, one can use the above theorem to establish that
there cannot be more than n2−ǫ0 collinear triples from a given subset of C of size
n, unless the curve C itself is a line or an elliptic curve ([4, 8]).

5. Here is our contribution, which complements the Elekes-Szabó theorem:

Theorem 3 (B.+Wang [2]). In the conclusion of the Elekes-Szabó theorem, the
group G must be abelian. Furthermore, we can take ǫ0 = 1

Ck for some absolute
constant C > 0.

The proof relies on the observation (due to Balog-Szemerédi and Gowers) that
if a large subset A of a group has many triples a, b, c with ab = c, then there is a
large subset of it, which does not grow much under multiplication. This then allows
to apply Theorem 1, in the case when G is a linear algebraic group. In general
one needs to generalize Theorem 1 appropriately. This forces G to be nilpotent.
Finally the general position assumption on X,Y, Z forces G to be abelian. On the
other hand genuine abelian examples exists: for example take G to be a simple
abelian variety and X a large arithmetic progression. The explicit bound on ǫ0
relies on the use of a recent incidence theorem [5]. For curves (i.e. k = 1) one can
take ǫ0 = 1

6 , see [9] and [8].

6. We sketch the proof of the Elekes-Szabó theorem. It has three steps.
Step 1. One considers the fiber product

F := F ×B F = {(a, a′, c, c′) ∈ A× C; ∃b ∈ B s.t. (a, b, c) ∈ F and (a′, b, c′) ∈ F},
where A = A×A and C = C×C. Then (1) together with Cauchy-Schwarz implies

(2) |F ∩X ×X × Z × Z| ≫ n3−2ǫ0 .

The projection of F on each triple is dominant and generically finite, and the fibers
Fa and Fc for a := (a, a′) and c = (c, c′) are k-dimensional subvarieties of C and

A respectively (i.e. multifunctions C
a→ B

a′

→ C and A
c→ B

c′→ A). The left hand
side in (2) is the number of incidences a ∈ Fc.

Step 2. One now seeks to apply an incidence theorem à la Szemerédi-Trotter to

the above situation. A recent result of Fox et al. [5] gives such a bound: given n
points in Rd and n subvarieties of bounded degree, provided any two distinct points
lie on at most boundedly many common subvarieties, the number of incidences is

at most n
3
2
−η(d) for some explicit η(d) > 0. Here d = 4k.

Step 3. The last step consists in checking the assumption highlighted in italics
in Step 2. Thanks to the general position hypothesis on X,Y, Z, this will hold
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unless we are in the following group configuration, where b = a(c) and d = a′(b).
Hrushovski’s group configuration theorem (see [7, ch. 5]) ends the proof.
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Groups geometrically representable in profinite groups

Zoé Chatzidakis

(joint work with Özlem Beyarslan)

We study the automorphism group of the algebraic closure of a substructure A of
a pseudo-finite field F , or more generally, of a bounded perfect PAC field F . This
paper answers some of the questions of [1], and in particular that any finite group
which is geometrically represented in a pseudo-finite field must be abelian.

Notation. If F is a field, then F s denote the separable closure of F , and G(F )
the absolute Galois group of F , Gal(F s/F ). If p is a prime different from the
characteristic of F , then ζp and µp∞ denote a primitive p-th root of unity and
the group of all primitive pn-th roots of unity. We say that p divide #G(F ) if p
divides the order of some finite quotient of G(F ).

Definition 1. Let T be a complete theory. We say that a finite group G is
geometrically representable in T if there is a model M of T , and a subset A of M
containing an elementary substructure of M , and such that G is a quotient of the
profinite group Aut(acl(A)/dcl(A)).
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The proof of the main result starts with two easy observations, both of them
classical:

Lemma 2. Let F be a field, A = dcl(A) ⊆ F . Then acl(A) = Asep ∩ F , and is a
Galois extension of A. We have Aut(acl(A)/A) = Gal(acl(A)/A).

Lemma 3. Let A = dcl(A) be contained in a pseudo-finite field F and contain an
elementary substructure F0 of F . Then G(A) ≃ Gal(acl(A)/A) ×G(F0).

The main tool of the proof is the a result of Koenigsmann:

Theorem 4. (Thm 3.3 in [4]) Let K be a field with G(K) ≃ G1 ×G2. If a prime
p divides (#G1,#G2), then there is a non-trivial Henselian valuation v on K,
char(K) 6= p, and µp∞ ⊂ K(ζp). Furthermore, if Kv denotes the residue field of
v and π : G(K) → G(Kv) the canonical epimorphism, then G(K) is torsion-free
and (#π(G1),#π(G2)) = 1.

Theorem 5. Let F be a pseudo-finite field, and A = dcl(A) containing an ele-
mentary substructure F0 of F , G = Aut(acl(A)/A). If a prime p divides #G, then
char(F0) 6= p, F0 contains all primitive pn-th roots of 1 and G is abelian.

Sketch of proof. By Lemma 3, we know that G(A) ≃ G ×G(F0). By Theorem 4,
A has a non-trivial Henselian valuation v, and its characteristic is not divisible
by any prime dividing #G. As F0 is relatively algebraically closed in A, the
restriction of v to F0 is Henselian. But a PAC field with a non-trivial Henselian
valuation must be separably closed (by Cor 11.5.6 in [3]), and this implies that v
is trivial on F0, and that Gal(As/AF s

0 ) is contained in the inertia subgroup of v.
As G ≃ Gal(As/AF s

0 ), and the characteristic does not divide #G, it follows that
Gal(As/AF s

0 ) is abelian (see Theorem 5.3.3 and §5.3 in [2]), and therefore so is G.
Hence G(A) is abelian. Let p divide #G. Then some element γ of the valuation
group of A is not divisible by p, and therefore if v(a) = γ, then a does not have
a p-th root in A. As G(A) is abelian, the field F (a1/p) is a Galois extension of
A, and therefore A must contain ζp. This implies that µp∞ ⊂ F and finishes the
proof.

Remark 6. The proof generalises with almost no change to the case of perfect
bounded PAC fields, i.e., PAC fields with only finitely many separably algebraic
extension of degree n for every n. On the other hand, Beyarslan and Hrushovski
[1] have shown the converse: the theory of a perfect PAC field of characteristic
6= p and containing µp∞ represents every abelian p-group. The class of groups
geometrically representable in the theory of a PAC field is closed under direct
products.
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A census of homogeneous finite dimensional permutation structures

After Sam Braunfeld

Gregory Cherlin

The talk is based on recent work by Sam Braunfeld, a graduate student at Rutgers.
Cameron [1] classified the homogeneous structures with two linear orders, which

may be called permutation structures, and raised the question of a similar classi-
fication for structures with an arbitrary finite number of linear orders, which we
will refer to as higher dimensional permutation structures.

One asks first what the natural examples are. This is already unclear.
In Cameron’s case one has the following.

• The trivial permutation, on one point.
• Nontrivial primitive permutations: a pair of orders of type Q, with the 2nd
either equal to the first up to reversal, or independent from it (generic, or
random).

• Imprimitive examples derived from the lexicographic order of Q2.

The lexicographic order is most naturally represented as (Q2, <,E) with E a
convex equivalence relation (i.e., its classes are convex for the order <). However a
change of language presents this as a permutation (Q2, <1, <2) with <1 the given
order < and <2 obtained from <1 by reversing it either on the equivalence classes,
or between the equivalence classes.

Evidently Qk can also be represented as a homogeneous higher dimensional
permutation structure; the natural language for this involves the lexicographic
order < together with a nested sequence of equivalence relations E1 ⊆ · · · ⊆ Ek−1.
However this may also be presented in a language with n linear orders, for k ≤
2n−1.

This may possibly exhaust the obvious examples of homogeneous finite dimen-
sional permutation structures. However one may add a product construction il-
lustrated by the following.

Example 1. Let Q2 be viewed as a structure equipped with the equivalence rela-
tions

Ei(a, b) ⇐⇒ ai = bi

and the quasi-orders <∗
i defined by

a <∗
i b ⇐⇒ ai < bi

We can represent Q2 as a permutation structure by replacing E1, E2, <
∗
1, <

∗
2 by the

four lexicographic orders <1, <2, <3, <4 derivable from <1, <2 and their reversals.

This raises the general question as to what the lattice of ∅-definable equivalence
relations may look like in a homogeneous finite dimensional permutation structure.

Sam Braunfeld has proved the following [2].
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Theorem 2. 1. Let Λ be a finite distributive lattice. Then there is a homogeneous
finite dimensional permutation structure whose lattice of ∅-definable equivalence
relations is isomorphic with Λ.

2. Let Γ be a homogeneous finite dimensional permutation structure. Let Λ be
the lattice of ∅-definable equivalence relations in Γ. Suppose that the reduct of Γ
to the language Λ is homogeneous. Then Λ is distributive.

This gives us a “census” of homogeneous finite dimensional permutation struc-
tures which may be supposed as a working hypothesis to be representative of the
general case. This suggests various concrete conjectures.

Conjecture 3. 1. Any primitive homogeneous finite dimensional permutation
structure is generic, modulo a set of relations of the form

<i=<
±
j

requiring some pairs of orders to coincide up to reversal.
2. The minimal forbidden substructures of a homogeneous finite dimensional

permutation structure are of order at most 3. Furthermore, any such constraint
of order 3 will either be part of the requirement that a particular definable relation
be an equivalence relation, or will impose a convexity condition on the classes of
some definable equivalence relation, with respect to one of the orders.

It is less clear how constraints of order 2 fit into this picture, but Braunfeld has
proved the following.

Proposition 4. Let Γ be a finite dimensional permutation structure whose min-
imal forbidden substructures all have order 2. Then Γ is primitive and is of the
expected form (part (1) of the conjecture).

We add a few words about the proof of the main theorem. This uses the method
of amalgamation classes (Fräıssé).

Realization of a given distributive lattice Λ.
1. A structure equipped with equivalence relations Eλ (λ ∈ Λ) may be viewed as

a generalized ultrametric space with values in Λ: the triangle inequality becomes

d(a, b) ≤ d(a, c) ∨ d(b, c)
The usual amalgamation procedure for metric spaces can be seen to work for

Λ-ultrametric spaces if the lattice is distributive.
This gives a template structure, a realization of the lattice Λ by a homogeneous

structure in the language of equivalence relations Eλ (λ ∈ Λ).
2. The structure may be expanded generically by linear orders such that for

some generating set for Λ, each of the corresponding equivalence relations is convex
for one of the corresponding orders. This is the main step. It goes by a direct
construction if the minimal element 0, representing the relation of equality, is meet
irreducible; otherwise an indirect approach must be taken.

3. Once sufficiently many equivalence relations have been made convex, they
may be replaced by definable orders in the language, and the structure is then
presented as a finite dimensional permutation structure.
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Proof of distributivity
1. Use the orderings to prove an infinite index property: each E-class splits into

infinitely many F -classes for F < E. This may be viewed as a kind of Neumann’s
Lemma (no equivalence class for one relation is covered by finitely many proper
subclasses for other relations).

2. For each instance of the distributive law, one can build an amalgamation
diagram whose factors are furnished by Neumann’s Lemma, and whose completion
requires that instance of the distributive law.
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Computing certain invariants of topological spaces of dimension three

Javier de la Nuez González

(joint work with Chloé Perin, Rizos Sklinos)

1. Motivating example

The rank R∞ was introduced by Shelah [1]. Its value for a certain definable set
X can be defined as either the foundational rank for the forking preorder on the
class of non-empty definable sets contained in X or the exceptional value ∞ when
said pre-order is not well-founded (see [2]). Recall that in a stable theory with
elimination of imaginaries a definable set ∅ 6= X is said to fork over another set Y ,
which contains it, whenever for some k ∈ N, a family of k-inconsistent conjugates
of X over some defining parameters of Y can be found.

This notion is mainly relevant for superstable theories, which are precisely those
for which R∞ has only ordinal values. This is not the case for the common theory
Tfg of nonabelian free groups. A fairly elementary proof can be found in [3] and
this was known long before Sela’s proof that Tfg is stable (see [4]). In the work
in progress presented in the talk, lower bounds for the value of R∞ on particular
definable sets are given. Note that despite some recent progress (see [5]), the
question of which sets have ordinal rank is still open.

The starting point is the following example. Let F be the free group in two
generators, α, β, and consider the formula:

φ(x, y, [α, β]) ≡ [x, y] = [α, β]

Now, it is a well known fact ([6], Theorem 3.14) that the automorphisms σ : α 7→
α, β 7→ αβ and τ : α 7→ αβ, β 7→ β of F, which fix [α, β], generate a free subgroup
of Aut(F). Let S = 〈σ〉. For any m, the set Xn = S ◦ (τ ◦ S)n · (α, β) is invariant
under any element of S and contains infinitely many conjugates by elements of
S of the orbit Yn = (τ ◦ S)n · (α, β). Said fact implies that those conjugates are
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pairwise disjoint. Using that S · (α, β) is definable, one can prove that Xn and Yn
are definable. It follows that R∞(φ) ≥ ω.

One can generalize this by showing that R∞(φg) ≥ ω2g−1, for

φg(x̄) ≡ [x1, y1][x2, y2] · · · [xg, yg] = [α1, α2] · · · [α2g−1, α2g]

defined over the free group F2g with base α1, · · ·α2g. The interpretation of F2g as
the free group of an orientable surface Σg of genus g with one boundary component
(which corresponds to cg) and that of the automorphisms of Fg fixing cg as elements
of the modular group of Σ plays a fundamental role in generalizing the idea used in
the previous example. Roughly speaking, we can regard Mod(Σj) as a subgroup
of Mod(Σj+1) via the obvious embedding of Σj into Σj+1. Definability concerns
aside, the key is to show that for 1 ≤ j ≤ g−1, there is an element τ ∈Mod(Σj+1)
such that 〈Mod(Σj), τ〉 ∼= Mod(Σj) ∗ 〈τ〉. This involves a careful analysis of the
action of Mod(Σj+1) onto the complex of curves of Σj+1. This is a hyperbolic
simplicial complex with vertices in correspondence to homotopy classes of essential
simple closed curves in Σj and edges in correspondence to those pairs of classes
which can be realized disjointly. Complexes of curves of surfaces have been the
object of intense study on the part of geometric group theory and are very closely
linked to the Nielsen-Thurston classification of homeomorphisms on a surface (see
[7] for a survey). Our hope is to be able to generalize this method to provide lower

bounds for the Shelah rank of all those varieties associated to towers (see [8] for a
definition) in the free group. Apart from the case of centralizers, which have rank
1, no upper bounds for R∞ in Tfg are available yet.
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Dense-codense predicates in NTP1 theories

Jan Dobrowolski

(joint work with Hyongjoon Kim)

The goal of the talk is an exposition of the results of [5]. The main result states
that the NTP1 property is preserved when passing to the theory of lovely pairs
or to the theory of independent pairs of a geometric theory (i.e., a theory which
eliminates the symbol ∃∞ and in which the algebraic closure has the exchange
principle).

Definition 1. A formula φ(x; y) has TP1 (in a fixed theory T ) if there is a
collection of tuples (aη)η∈ωω such that:
(1) For all η ∈ ωω, the set {φ(x; aη|n

) : n < ω} is consistent,

(2) If η, ν ∈ ω<ω are incomparable (with respect to inclusion), then φ(x; aη) ∧
φ(x; aν) is inconsistent.
A theory T has TP1 if some formula does. Otherwise, we say that T has NTP1.

After a brief overview of the history of results on unary expansions (for example
in stable, simple and NIP contexts) we focus on the context of geometric theories.
We are concerned with two types of unary expansions, namely lovely pairs and
independent pairs in the sense of [2] and [3].

Definition 2. Given a geometric complete theory T in a language L and a model
M � T , add a new unary predicate symbol H to form an extended language
LH := L∪{H}. Let (M,H(M)) denote an expansion ofM to LH , whereH(M) :=
{x ∈M | H(x)}.

(1) (M,H(M)) is called a dense/co-dense expansion if, for any non-algebraic
L-type p(x) ∈ S1(A) where A ⊆ M has a finite dimension, p(x) has
realizations both in H(M) and in M \ aclT (A ∪H(M)).

(2) A dense/co-dense expansion (M,H(M)) is called a lovely pair if H(M) is
an elementary substructure of M .

(3) A dense/co-dense expansion (M,H(M)) is called an H-structure if H(M)
is an algebraically independent subset of M .

It was proved in [2] and [3] that, for any geometric theory T , all of its lovely
pairs (resp. H-structures) are elementarily equivalent (and it is well-known that
they form nonempty classes). Hence, one can define:

Definition 3. TP and T ind denote the common complete theories of the lovely
pairs and H-structures, respectively, associated with a given geometric theory T .
By T ∗, we mean either TP or T ind.

We present some basic tools used in investigation of T ∗. The following funda-
mental theorem (proved in [2],[3]) is of a particular importance.

Fact 4. For any H-independent tuples a, b,

tpH(a) = tpH(b) ⇔ tpT (aH(a)) = tpT (bH(b)).
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We mention some tools that are used in our proof, in particular, (a local version
of) the theorem from [4] stating the TP1 property is always witnessed by a formula
in a single variable.

In [1], it was proved that if a geometric theory T has the NTP2 property then
so does T ∗. Our main result states the same holds for NTP1.

Theorem 5. If T has NTP1, then so does T ∗.

Finally, we present a certain construction of a class of examples of geometric
NTP1 non-simple theories. Such theories can be obtained from theories of Fraisse
limits which are simple, by applying first the ’imaginary cover’ and then the ’pfc’
construction described in Subsection 6.3 of [4].
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A new notion of minimality in valued fields

Immanuel Halupczok

(joint work with Raf Cluckers, Silvain Rideau)

In this talk, I presented a new analogue of o-minimality in valued fields. More
precisely, suppose we are given a valued field K in some language L expanding the
language of valued fields. We aim for a simple set of axioms about (K,L) such
that:

(1) The axioms hold in any (K,L) where model theory is known to behave
well. In particular, we would like them to hold in the following settings:

• The field K can be any henselian valued field of characteristic 0 (and
arbitrary residue characteristic).

• The language L can be the pure valued field language, or an expansion
by analytic functions (e.g. in the very general sense of [1]), and an
additional arbitrary expansion on RV.

RV: RV is the quotient K/∼, where a ∼ b ⇐⇒ v(a− b) > v(a); we write rv : K → RV

for the canonical map. If there exists an angular component map ac : K → k, then
rv(a) = rv(b) ⇐⇒ (v(a) = v(b) ∧ ac(a) = ac(b)). In particular, if the language
contains ac, then we have a definable bijection RV\{0} → Γ×k×, where Γ is the value
group and k is the residue field.

(2) The axioms should imply a good understanding of definable sets and func-
tions. In particular, we would like to obtain the following:
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• a notion of dimension
• some form of cell decomposition
• that definable functions are almost everywhere continuous and even
differentiable

• the Jacobian property (see e.g. [1])

The Jacobian property: Since valued fields are totally disconnected, being almost
everywhere differentiable is not strong enough for many applications. The Jacobian
property provides an appropriate strengthening, stating that even on rather big sets,
definable functions have good approximations by linear functions.

Various notions of minimality in valued fields already exist, but most of them
only work in rather specific contexts, and not all of them imply everything we
want.

• The notions of p-minimality [4] and (to my knowledge) t-minimality [6]
only work in Qp and finite extensions.

• The notions of c-minimality [3] and v-minimality [5] only work in alge-
braically closed valued fields. (With a trick, v-minimality can also be
exploited in a more general class of valued fields, but it still does not cover
the full generality we would like to cover.)

• The notion of b-minimality [2] comes very close to our desires, but that
set of axioms is rather complicated and does not feel very natural. (In
particular, the Jacobian property has to be imposed as a separate axiom.)

The project of finding a notion of minimality with all desired properties is still
very much work in progress. In the talk, I presented a preliminary notion which
does imply all of (2), but which only works under the additional assumptions that
K has equi-characteristic 0 and that the value group is elementarily equivalent to
Z.
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Almost centralizers as a useful tool in Model theory

Nadja Hempel

Given an arbitrary subgroup of a definable group which is abelian, nilpotent or
solvable, one might ask if there is a definable abelian, nilpotent or solvable sub-
group containing the given subgroup. We call these definable envelopes. They
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always exists in groups definable in stable theories. Passing to simple theories,
one does not obtain definable envelopes in this strong sense. However, in groups
with a simple theories, due to Milliet, one can find a definable finite-by-abelian
group around any abelian subgroups (see [4]) and definable envelopes for nilpo-
tent and solvable subgroups “up to finite index”, i. e. finitely many translate of
the definable subgroup cover the given subgroup (see [5]). Using those, Palaćın
and Wagner showed in [6] that the Fitting subgroup, i. e. the group generated by
all normal nilpotent subgroups, of any group type-definable in a simple theory is
nilpotent and definable.

A crucial property of groups with a simple theory is that they satisfy a de-
scending chain condition up to finite index (DCC up to finite index) for uniformly
definable subgroups. We are interested in studying groups in which the DCC up
to finite index holds merely for centralizers:

Definition 1. A group G is called M̃c-group if for any two definable subgroups
H and N , such that N is normalized by H , there exists natural numbers nHN and
dHN such that any sequence of centralizers

CH/N (g0N) ≥ . . . ≥ CH/N (g0N, . . . , gmN) ≥ . . .

each having index at least dHN in its predecessor has length at most nHN .

A useful tool and object in this context are almost centralizers and the relation
“being almost contained”:

Definition 2. Let G be a group and A be a parameter set. Let H , K and N be
three A-invariant subgroups of G such that N is normalized by H .

• We say that H is almost contained in K, denoted by H . K, if the index
[H : H ∩K] is finite.

• The almost-centralizer of H in K modulo N is defined as follows:

C̃K(H/N) = {g ∈ NK(N) : H ∼ CH(g/N)}

Whereas the proof of the abelian and solvable case is easily adaptable to M̃c-
groups, the proof for nilpotent envelopes uses machinery from simple theories. I
isolated the two missing ingredients of the proof of Milliet for nilpotent envelopes
and gave a purely group theoretical approach. The results are summarized below:

Theorem 3 (H. [2]). Let A be a parameter set and G be a group. For H and
K two A-ind-definable subgroups (a union of a directed system of A-type-definable
subgroups) of G, we obtain the following:

• ( symmetry) If N is a subgroup of G which is the union of some A-definable
sets and normalized by H and K, then

H . C̃G(K/N) if and only if K . C̃G(H/N).

• ( generalized Neumann theorem) Let H and K be two A-definable sub-
groups of G such that H normalizes K. Suppose that

K ≤ C̃G(H) and H ≤ C̃G(K).
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Then we have that [K,H ] is finite.

These enabled us to obtain definable envelops for M̃c-groups as well as generalize
the result of Palaćın and Wagner on the Fitting subgroup.

Theorem 4 (H. [2]). Let G be an M̃c-group and H be a subgroup of G. Then the
following holds:

(1) If H is abelian, then there exists a definable finite-by-abelian subgroup of
G which contains H.

(2) If H is a nilpotent subgroup of class n, then there exists a definable nilpo-
tent subgroup N of G of class at most 2n which almost contains H.

(3) If H is a solvable subgroup of class n, then there exists a definable solvable
subgroup S of G of class at most 2n which almost contains H.

Theorem 5 (H. [2]). The Fitting subgroup of any M̃c-group is nilpotent and
definable.

For groups with a dependent theory, Shelah showed in [7] that any abelian
subgroup is contained in a definable abelian subgroup (in a saturated extension)
and Aldama generalized this result to nilpotent and normal solvable subgroups [1].

Together with Onshuus, we generalized the results on definable envelops for
simple and dependent groups to groups with an NTP2 theory. Whereas in the
proof of the abelian case we follow some of the ideas already present in the proof
of de Aldama, in the nilpotent case, we use additionally symmetry of the almost
centralizer and the generalized Neumann theorem presented as Theorem 3 above.

Theorem 6 (H., Onshuus [3]). Let G be a group definable in an NTP2 theory,
H be a subgroup of G and suppose that G is |H |+-saturated. Then the following
holds:

(1) If H is abelian, then there exists a definable finite-by-abelian subgroup of
G which contains H. Furthermore, if H was normal in G, the definable
finite-by-abelian subgroup can be chosen to be normal in G as well.

(2) If H is a solvable subgroup of class n which is normal in G, then there
exists a definable normal solvable subgroup of G of class at most 2n, for
which finitely many translates cover H.

(3) If H is a nilpotent subgroup of class n, then there exists a definable nilpo-
tent subgroup N of G of class at most 2n, for which finitely many translates
cover H. Moreover, if H is normal in G, the group N can be chosen to be
normal in G as well.

Another application of the results on almost centralizers is a generalization of
the following theorem of Neumann on bounded almost abelian groups.

Definition 7. A group H is almost abelian if the centralizer of any of its element
has finite index in H . H is bounded if there is a natural number d such that for
all h in H , the index [H : CH(h)] is at most d.

Fact 8 (B.H. Neumann). Any bounded almost abelian group G is finite-by-abelian.
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Palaćın and myself introduced a corresponding notion of bounded almost nilpo-
tent groups and proved, using symmetry of the almost centralizer as well as the
generalized Neumann theorem, that these are always nilpotent-by-finite.

Definition 9. A group H is almost nilpotent if there exists an almost central
series of finite length, i. e. a sequence of normal subgroups of H

{1} ≤ H0 ≤ H1 ≤ · · · ≤ Hn = H

such that Hi+1/Hi is a subgroup of Z̃(H/Hi) for every i ∈ {0, . . . , n− 1}.
We say that H is bounded if there is d such that for all i < n and g ∈ Gi+1 the

index [G : CG(g/Gi)] is at most d.

Theorem 10 (H., Palaćın). Any bounded almost nilpotent group is nilpotent-by-
finite.
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Classification of imaginaries in separably closed valued fields

Martin Hils

(joint work with Moshe Kamensky and Silvain Rideau)

1. Introduction

In their fundamental paper [1], Haskell, Hrushovski and Macpherson classified
imaginaries in the theory ACVF of algebraically closed non-trivially valued fields,
thus initiating the geometric model theory of valued fields. It is not hard to see
that if K |= ACVF, then K does not eliminate imaginaries, even if sorts for the
residue field kK and for the value group ΓK are added. Note that both kK and
ΓK are imaginary sorts. Indeed, let OK be the valuation ring, with maximal ideal
mK . Then kK = OK/mK and ΓK = K×/O×

K . In [1], the authors introduce the
following higher-dimensional analogues of kK and ΓK : for n ≥ 1, let

Sn(K) := GLn(K)/GLn(OK), the set of OK -lattices in Kn, and

Tn(K) :=
⋃̇

s∈Sn(K)
s/mKs.
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These are imaginary sorts, and ΓK
∼= S1(K) and kK ⊆ T1(K) canonically. The

geometric sorts are given by G := {VF} ∪ {Sn, Tn|n ≥ 1}, where VF is the sort of
the valued field. In [1], the authors give a natural language LG with sorts G, in
which ACVF eliminates quantifiers.

Fact 1 ([1]). The theory ACVF eliminates imaginaries in LG : for any ∅-definable
set D and any ∅-definable equivalence relation E on D there is a ∅-definable func-
tion f inducing an injection of D/E into a finite product of sorts from G.

In the meantime, it has been shown that other theories of valued fields eliminate
imaginaries down to the geometric sorts, e.g. for the theory RCVF of real closed
fields with a convex valuation by Mellor [5], for p-adic fields as well as for ultra-
products of p-adic fields by Hrushovski, Martin and Rideau [4], and for the theory
VDF of existentially closed valued differential fields of characteristic 0, satisfying
v(∂(x)) ≥ v(x) for every x, by Rideau [6]. We add a new item to this list, namely
separably closed valued fields of finite Ershov invariant.

2. Separably closed valued fields and the main result

We fix a prime p. Let K be a separably closed field of characteristic p. Then
[K : Kp] = pe for some e ∈ N∪ {∞}, where e is called the Ershov invariant of K.
In what follows, we suppose that e ≥ 1 is finite. Recall that K admits a p-basis,
i.e. a tuple (b1, . . . , be) of elements of K such that any a ∈ K may be uniquely
written as

a =
∑

ν∈pe

xpνb
ν , where bν :=

e∏

i=1

bνii and xν ∈ K.

The functions fν(a) := xν are called the p-coordinates, and they are definable
in the ring language (with parameters b). The function λ : K → Kpe

given by
λ(x) = (fν(x))ν∈pe is then a definable bijection, with inverse given by a polynomial
function.

Let Lλ := LRings ∪ {b1, . . . , be} ∪ {fν|ν ∈ pe}. The theory SCFp,e of separably
closed fields of characteristic 0 with p-basis (b1, . . . , be) and p-coordinate functions
fν is complete, eliminates quantifiers and imaginaries, and it is stable. Now let
Lλ
div := Lλ ∪ {|}, where | is a binary relation symbol.

Definition 2. Let SCVFp,e be the Lλ
div-theory of separably closed non-trivially

valued fields of characteristic p with p-basis (b1, . . . , be) and p-coordinate functions
fν , and where | is interpreted as x|y :⇔ v(x) ≤ v(y).

Fact 3 (Delon; Hong [3]). The theory SCVFp,e eliminates quantifiers. Its com-
pletions are NIP, and they are determined by the isomorphism type of the valued
field Fp(b1, . . . , be).

Let Lλ
G := Lλ ∪ LG . The following is our main result.

Theorem 4. Any completion of SCVFp,e eliminates imaginaries in Lλ
G .

We also characterise the stable stably embedded sets in SCVFp,e, as well as the
stably dominated types (in terms of ACVF), and we show the following results.
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Theorem 5. Work in a completion of SCVFp,e in the language Lλ
G. Then the

following holds:

(1) Definable types are dense, i.e. if D is a definable set over A = acl(A),
there is a global A-definable type p(x) implying ”x ∈ D”.

(2) Every type over an algebraically closed set A has a global AutA-invariant
extension.

(3) The theory SCVFp,e is metastable in the sense of [2], with good bases
given by models which do not admit any proper immediate separable ex-
tension.

3. Proof sketch of Theorem 4

Let K |= SCVFp,e. It is easy to see that Kp is dense in K, and so Kpn

is dense in
Kalg for every n ∈ N. In particular, Sn(K) = Sn(K

alg) and Tn(K) = Tn(K
alg) for

all n. It follows that every element from G(Kalg) is interdefinable (in ACVF) with
an element from G(K). By Fact 1, finite sets in G(Kalg) are coded in G(Kalg). It
is thus enough to show that any definable set X ⊆ Km is weakly coded in G. We
perform various reductions:

(1) There is n ≥ 1 such that λn(X) is semialgebraic, i.e. definable by a quantifier
free LRings ∪ {|}-formula with parameters from K. As λ is a ∅-definable bijection,
we may thus assume X is definable by such a formula ψ(x).

(2) By a result of Hong [3], we may find ψ as above such that X = ψ[K] is
dense in Y = ψ[Kalg] (in the valuation topology).

(3) Let V be the Zariski closure of X . Arguing by induction on dimension, we
may reduce to the case where V is irreducible, smooth, and defined over K as an
algebraic variety. It follows from Hensel’s lemma (essentially) that a semialgebraic
subset of V (Kalg) is Zariski-dense if and only if it has non-empty interior in the
valuation topology. Using this, we may reduce to the case where X is a closed
subset of V (K) and where Y is the closure of X in V (Kalg).

Having performed all these reductions, one may show that the ACVF-code of Y
(which exists in G(Kalg) by Fact 1 and thus in G(K) by what we have mentioned
in the beginning) serves as a code for X in SCVFp,e.
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Pseudofinite dimensions: Proper intersections and modularity

Ehud Hrushovski

(joint work with Boris Bukh and Jacob Tsimerman)

This is a report about work in progress with Boris Bukh and Jacob Tsimerman,
extending ideas from Terry Tao’s paper on expanding polynomials.

Let X be a definable set, M = limi→uMi an ultraproduct with X(Mi) finite.
We say that Y is pseudofinite. We have |X | ∈ R∗ = limi→u R. Sometimes we will
use a reference cardinality p ∈ R∗, p > N.

We have a fine valuation on R∗, with valuation ring

Ofin = convex hull of R

Mp = {r :
∧

n∈N

|r| < 1/n}.

And coarse valuation

Op = {r :
∧

n∈N

|r|n < p},

Mp = {r :
∨

n∈N

|r| < p−1/n}.

The fine and coarse pseudo-finite dimensions are

δ(X) = |valfin(|X |)|, δ(X) = |valp(|X |)|.
The value group of Op begins with R, so for |X | < pm one can also identify

δ(X) = st(log |X |/ log p) ∈ R, δ(X) = log |X |+ Ofin ∈ R∗/Ofin.

The measure at fine dimension α : If δ(X) = δ(X ′) = α,

µα(X)/µα(X
′) = st(|X/X ′|).

It is defined only up to a scalar multiple, but we will only write formulas that are
well-defined.

α ≈ β ⇐⇒ δ|α− β| < δ(α) ⇐⇒ δ(α) = δ(β) & µ(α) = µ(β).

α≈β ⇐⇒ δ|α− β| < δ(α).

Definition 1. Let X,X ′ ⊂ Y . Then X,X ′ intersect properly on Y if |X ∩
X ′|≈|X ||X ′|/|Y |.

In particular, if X,X ′ intersect (δ-) properly, then they intersect δ-properly, i.e.

δ(X ∩X ′) = δ(X) + δ(X ′)− δ(Y ),

and even, with µ = µδ(X)+δ(X′)−δ(Y ),

µ((X ∩X ′)× Y ) = µ(X ×X ′).
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Consider a family of definable sets Xa ⊂ Y , with δ(X) = δ(Xa) = α. After
taking into account a unary partition, we have generic proper intersections. More
precisely, decomposing µα =

∫
q µq over compact Lascar strong types q,

µq(Xa ∩Xb) = µq(Xa)µq(Xb).

More generally, for any definable B ⊂ Y with δ(B) = α, for generic a we have
δ-proper intersection of Xa, B on Y .

What can be said when δ(X) = δ(Xa)? Here we will discuss a theorem in a
setting with two languages L ⊂ L; take L to be the language of a pseudo-finite
field, and L an expansion by a pseudo-finite set or predicate. The language L will
be assumed to satisfy a strong form of definability of δ; but L is an arbitrary
pseudo-finite expansion. From now on, proper intersections and all other notions
refer to δ unless otherwise stated. We will say definable to refer to L, pseudo-finite
to refer to L.

In the first dichotomy theorem, non-modularity will enter via a hypothesis on
U of the following form: U ≤ X × Y (defined over F ) is purely non-modular if
for generic (a, b) ∈ U , acl(a) ∩ acl(b) = acl(F ).

For varieties U , this is equivalent to: if U ≤ X×WY ≤ X×Y , then dim(W ) = 0.
This hypothesis is in line with a number of theorems of stability such as Buech-

ler’s dichotomy, unimodularity, canonical base property of Pillay and Ziegler.
By contrast U is a purely modular interaction if a, b are independent over acl(a)∩

acl(b).

Proposition 2. Let M be a pseudo-finite structure. Let X,Y , U ⊂ X × Y , be
definable. Let B ⊂ Y be a pseudo-finite subset. Assume:

• (1) |Ua|/ ≈ is constant for a ∈ X;
(2) |U b|/ ≈ is constant for b ∈ Y .
(3) For some definable Qν ⊂ Y 2 (ν = 1, . . . , f) for (b, b′) ∈ Qν , |U b ∩

U b′ | ≈ αν

• Let W = {(x, y, y′) ∈ X × Y 2 : (x, y), (x, y′) ∈ U, (y, y′) ∈ ∪f
ν=0Qν . Then

W ≈ U ×X U and W (B) ≈ U ×X U(B).
• B ×B,Qν meet properly on Y × Y for each ν = 1, . . . , f .

Then there exists a pseudo-finite X ′ ⊂ X, X ′ ≈ X, such that for all a ∈ X ′, B
meets U(a, y) properly on Y

Remark 3. The condition W (B) ≈ U ×X U(B) follows from W ≈ U ×X U , given
that δ(B) = δ(Y ). The requirement δ(B) = δ(Y ) can be replaced by an explicit
lower bound on δ(B)/δ(Y ), below 1 and sometimes more generous.

Theorem 4. Let X,Y be L-definable sets (say varieties over a pseudo-finite field
F ), U ≤ X × Y purely non-modular. Then there exists an L-definable finite
partition Y = ∪k

i=1Yi such that whenever B ⊂ Yi is a pseudo-finite set with δ(B) =
δ(Y ), for almost all a ∈ X, Ua intersects B properly.

Corollary 5. For any pseudofinite A ⊂ X with δ(A) = δ(X), A × B intersects
U properly in X × Yi.
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Theorem 4 contains an assumption of non-modularity. On the other hand,
properness of intersections can fail in either direction for an approximate subgroup.

Let n < p/3 and let A be the image of A = [−n, n] ∩ Z in Z/pZ; let A′ be the
image of [1, n] ∩ Z. Let U = V =W = Ga.

Then the proper intersection dimension is 3δ(A) − codim(F,U) = 3δ(A) − 1.
But

δ(A3 ∩ F ) = 2δ(A) > 3δ(A)− δ(U) too many relations

(A′)3 ∩ F = ∅ too few relations

There are also interesting examples of improper intersections induced by approx-
imate subgroups, but less directly. The intersection of an approximate subgroup
with a generic curve inherits the improperness of intersection with the pullback
of the graph of addition; though the algebraic relation one sees on the curve is
unrelated to any one-dimensional algebraic group. More generally, let G be a com-
mutative algebraic group and let f : C  G. Let A be an approximate subgroup
of G. Then f−1(A)3 can have lower or upper improper intersection with f−1(+G).

With this in mind, one can ask whether approximate subgroups are the only
sources of improper intersections, at maximal coarse dimension. A positive partial
answer is given by the following result.

Consider R ≤ C1 × · · · × Cn with Ci a curve, dim(R) = n − d, such that R
projects onto each n− d-tuple.

Theorem 6. Assume n ≥ 4d, Bi ⊂ Ci, δ(Bi) = 1 and ΠiBi has improper
intersection with R. Then there exist fi : Ci  G, G a commutative algebraic
group, such that ΠiBi has improper intersection with f−1(+G).

When does dependence transfer from fields to henselian expansions?

Franziska Jahnke

1. Introduction and Motivation

There are many open questions connecting NIP and henselianity, e.g.,

Question 1. (1) Is any valued NIP field (K, v) henselian?
(2) Let K be an NIP field, neither separably closed nor real closed. Does K

admit a definable non-trivial henselian valuation?

Both of these questions have been recently answered positively in the special
case where ‘NIP’ is replaced with ‘dp-minimal’ (cf. Johnson’s results in [5]).

The question discussed in this talk is the following:

Question 2. Let K be an NIP field and v a henselian valuation on K. Is (K, v)
NIP?

Known results in this direction were obtained by Delon and Bélair (see [1] for
the relevant definitions):
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Theorem 3. Let (K, v) be a henselian valued field.

(1) [2] If the residue field Kv is NIP (as a pure field) of characteristic char(Kv)
= 0, then (K, v) is NIP (as a valued field).

(2) [1, Corollaire 7.6] Assume that (K, v) is Kaplansky and algebraically max-
imal of characteristic p > 0. If Kv is NIP (as a pure field) then (K, v) is
NIP (as a valued field).

The aim of this talk is to show that if K is an NIP field and v a henselian
valuation on K, then (K, v) is NIP or Kv is separably closed. As separably closed
fields are NIP, we obtain that the residue field Kv is always NIP (as a pure field).

2. Externally definable sets

Throughout the section, let M be a structure in some language L.
Definition 4. Let N ≻M be an |M |+-saturated elementary extension. A subset
A ⊆M is called externally definable if it is of the form

{a ∈M |x̄| |N |= ϕ(a, b)}
for some L-formula ϕ(x̄, ȳ) and some b ∈ N |ȳ|.

The notion of externally definable sets does not depend on the choice of N .

Definition 5. The Shelah-expansion MSh is the expansion of M by predicates
for all externally definable sets.

Proposition 6 (Shelah, see [7, Chapter 3]). If M is NIP then so is MSh.

Example 7. Let (K,w) be a valued field and v be a coarsening of w. Then, there
is a convex subgroup ∆ ≤ wK such that we have vK ∼= wK/∆. As ∆ is externally
definable in the ordered abelian group wK, the valuation ring Ov is definable in
(K,w)Sh.

3. p-henselian valuations

Throughout this section, let K be a field and p a prime. We define K(p) to be the
compositum of all Galois extensions of K of p-power degree (in a fixed algebraic
closure). Note that we have

• K 6= K(p) iff K admits a Galois extension of degree p and
• [K(p) : K] <∞ =⇒ K = K(p) or p = 2 and K(2) = K(

√
−1).

Definition 8. A valuation v on a fieldK is called p-henselian if v extends uniquely
to K(p). We call K p-henselian if K admits a non-trivial p-henselian valuation.

In particular, every henselian valuation is p-henselian for all primes p. Assume
K 6= K(p). Then, there is a canonical p-henselian valuation on K: We divide the
class of p-henselian valuations on K into two subclasses,

Hp
1 (K) = {v p-henselian on K |Kv 6= Kv(p)}

and
Hp

2 (K) = {v p-henselian on K |Kv = Kv(p)}.
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One can show that any valuation v2 ∈ Hp
2 (K) is finer than any v1 ∈ Hp

1 (K), i.e.
Ov2 ( Ov1 , and that any two valuations in Hp

1 (K) are comparable. Furthermore,
if Hp

2 (K) is non-empty, then there exists a unique coarsest valuation vpK in Hp
2 (K);

otherwise there exists a unique finest valuation vpK ∈ Hp
1 (K). In either case, vpK

is called the canonical p-henselian valuation (see [6] for more details).
The following properties of the canonical p-henselian valuation follow immedi-

ately from the definition:

• If K is p-henselian then vpK is non-trivial.
• Any p-henselian valuation on K is comparable to vpK .
• If v is a p-henselian valuation on K with Kv 6= Kv(p), then v coarsens
vpK .

Theorem 9 ([4, Theorem 3.1]). Fix a prime p. Let K be a field with K 6= K(p).
In case char(K) 6= p, assume that K contains a primitive pth root of unity. In
case p = 2 and char(K) = 0, assume further that K is not real. There exists a
parameter-free Lring-formula φp(x) independent of K with φp(K) = Ovp

K
.

4. External definability of henselian valuations

Proposition 10. Let (K, v) be henselian such that Kv is neither separably closed
nor real closed. Then v is definable in KSh.

Proof. (Sketch) Assume Kv is neither separably closed nor real closed. Choose
any prime p such that Kv has a finite Galois extension of degree divisible by p2.
We construct some finite extension (L, v′) of (K, v) such that vpL is ∅-definable on
L in Lring and such that vpL refines v′. The restriction of vpL to K is then definable
in Lring. Thus, v is definable in the Shelah expansion of K. �

Proposition 11. Let (K, v) be henselian such that Kv is real closed. Then v is
definable in KSh.

Proof. (Sketch) Assume that (K, v) is henselian and Kv is real closed. Using
the definability of the 2-henselian valuation, we reduce to the case that vK is
2-divisible. In this case, K is uniquely ordered. By [3, Corollary 3.6] and Beth
Definability Theorem, the ordering on K is Lring-definable. Let Ow ⊆ K be the
convex hull of Z in K. Then, Ow is definable in KSh. By [3, Proposition 2.2],
w is the finest henselian valuation ring on K with real closed residue field. In
particular, we get Ow ⊆ Ov and hence Ov is also definable in KSh. �

Corollary 12. Let K be NIP, v henselian on K.

(1) If Kv is not separably closed, then (K, v) is NIP.
(2) Kv is NIP as a pure field.

The question what happens in caseKv is separably closed remains. In particular
it would be interesting to know an answer to the following

Question 13. Let (K, v) be henselian, Kv NIP, not perfect. Is (K, v) NIP?
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Exact saturation in simple and NIP theories

Itay Kaplan

(joint work with Saharon Shelah, Pierre Simon)

A first order theory T has exact saturation at κ if it has a κ-saturated model
which is not κ+-saturated. When κ > |T | is regular, then any theory has exact
saturation at κ, hence we are only interested in the case where κ is singular.

Possibly adding set-theoretic assumptions, we expect that for a given theory T ,
having exact saturation at a singular cardinal κ does not depend on κ, and that
this property is an interesting dividing line within first order theories. We indeed
show this for stable, simple and NIP theories.

In the stable case, it was shown by Shelah in [1, IV, Lemma 2.18] that stable
theories have exact saturation at any κ.

We generalize this result to the simple case in the following sense. Let T be
simple and assume that κ is singular of cofinality greater than |T |, 2κ = κ+ and
�κ holds, then T has exact saturation at κ.

In the NIP case, Shelah showed that an NIP theory with an infinite indiscernible
set has exact saturation at any singular κ with 2κ = κ+ ([2, Claim 2.26]).

In this work we establish the precise dividing line for NIP theories: with the
same assumptions on κ, an NIP theory has exact saturation at κ if and only if it
is not distal. This gives a new characterization of distality within NIP theories.

The techniques used to construct models in the simple, stable and NIP non-
distal cases use the notion of a D-type and D-model, for a finite diagram (a collec-
tion of types in finitely many variables over some set, in our case an indiscernible
sequence). For instance in the stable case, we let I be an infinite indiscernible set
of size κ, and let DI be the collection of types over I in finitely many variables that
are isolated by their restriction to a smaller set. Then the type of a new element
in I is not a DI -type hence not realized in the model. In the simple case we use
the independence property to find an indiscernible sequence which witnesses it,
and in the NIP non-distal case we use a non-distal indiscernible sequence.
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A non-archimedean Ax-Lindemann theorem

François Loeser

(joint work with Antoine Chambert-Loir)

1. Introduction

The classical Lindemann-Weierstrass theorem states that if algebraic numbers
α1, ..., αn are Q-linearly independent, then their exponentials exp(α1), ..., exp(αn)
are algebraically independent over Q. More generally, if α1, . . . , αn are complex
numbers which are no longer assumed to be algebraic, Schanuel’s conjecture pre-
dicts that the field Q(α1, . . . , αn, exp(α1), . . . , exp(αn)) has transcendence degree
at least n over Q. In [1], Ax established power series and differential field versions
of Schanuel’s conjecture.

Theorem 1 (Exponential Ax-Lindemann). Let exp: Cn → (C×)n be the mor-
phism (z1, . . . , zn) 7→ (exp(z1), . . . , exp(zn)). Let V be an irreducible algebraic
subvariety of (C×)n and let W be an irreducible component of a maximal alge-
braic subvariety of exp−1(V ). Then W is geodesic, that is, W is defined by a
finite family of equations of the form

∑n
i=1 aizi = b with ai ∈ Q and b ∈ C.

In the breakthrough paper [6], Pila succeeded in providing an unconditional
proof of the André-Oort conjecture for products of modular curves. One of his
main ingredients was to prove a hyperbolic version of the above Ax-Lindemann
theorem, which we now state in a simplified version.

Let H denote the complex upper half-plane and j : H → C the elliptic modular
function. By an algebraic subvariety of Hn we shall mean the trace in Hn of an
algebraic subvariety of Cn. An algebraic subvariety of Hn is said to be geodesic
if it is defined by equations of the form zi = ci and zk = gkℓzℓ, with ci ∈ C and
gkℓ ∈ GL+

2 (Q).

Theorem 2 (Hyperbolic Ax-Lindemann). Let j : Hn → Cn be the morphism
(z1, . . . , zn) 7→ (j(z1), . . . , j(zn)). Let V be an irreducible algebraic subvariety
of Cn and let W be an irreducible component of a maximal algebraic subvariety
of j−1(V ). Then W is geodesic.

Pila’s method to prove this Ax-Lindemann theorem is quite different from the
differential approach of Ax. It follows a strategy initiated by Pila and Zannier in
their new proof of the Manin-Mumford conjecture for abelian varieties [9]; that ap-
proach makes crucial use of the bound on the number of rational points of bounded
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height in the transcendental part of sets definable in an o-minimal structure ob-
tained by Pila and Wilkie in [8]. Recently, still using the Pila and Zannier strategy,
Klingler, Ullmo and Yafaev have succeeded in proving a very general form of the
hyperbolic Ax-Lindemann theorem valid for any arithmetic variety ([5], see also
[10] for the compact case).

In this work, we establish a non-archimedean analogue of theorem 2.

2. Statement of the non-archimedean Ax-Lindemann theorem

Let p be a prime number and let F be a finite extension of Qp. In this work, we
make use of Berkovich’s notion of F -analytic spaces, see [2]. The group PGL(2, F )
acts by homographies on the F -analytic projective line (P1)

an, and on its F -
rational points P1(F ).

Recall (see [4]) that a Schottky subgroup of PGL(2, F ) is a discrete subgroup
which is finitely generated and free. We say that such a subgroup Γ is arithmetic
if there exists a number field K ⊂ F such that Γ ⊂ PGL(2,K).

A Schottky subgroup Γ of PGL(2, F ) has a limit set LΓ which is a non-empty
compact Γ-invariant subset of P1(F ); if the rank g of Γ is ≥ 2, then it is a perfect
set. Let then ΩΓ = (P1)

an \ LΓ; the group Γ acts freely on ΩΓ and the quotient
space ΩΓ/Γ is naturally a F -analytic space so that the projection pΓ : ΩΓ → ΩΓ/Γ
is topologically étale. Moreover, ΩΓ/Γ is the F -analytic space associated with a
smooth, geometrically connected, projective F -curve XΓ of genus g.

Let us now consider a finite family (Γi)1≤i≤n of Schottky subgroups of PGL(2, F )
of rank ≥ 2. Let us set Ω =

∏n
i=1 ΩΓi

and X =
∏n

i=1XΓi
, and let p : Ω → Xan be

the morphism deduced from the morphisms pΓi
: ΩΓi

→ Xan
Γi
.

We say that a closed subspace W of Ω is irreducible algebraic if there exists an
F -algebraic subvariety Y of (P1)

n such that W is an irreducible component of the
analytic space Ω ∩ Y an.

We say that W is flat if it can be defined by equations of the following form:

(1) zi = c, for some i ∈ {1, . . . , n} and c ∈ Ω;
(2) zj = g ·zi, for some pair (i, j) of elements of {1, . . . , n} and g ∈ PGL(2, F ).

Here is our main result:

Theorem 3 (Non-archimedean Ax-Lindemann theorem). Let F be a finite exten-
sion of Qp and let (Γi)1≤i≤n be a finite family of arithmetic Schottky subgroups of
PGL(2, F ) of rank ≥ 2. As above, let us set Ω =

∏n
i=1 ΩΓi

and X =
∏n

i=1XΓi
, and

let p : Ω → Xan be the morphism deduced from the morphisms pΓi
: ΩΓi

→ Xan
Γi
.

Let V be an irreducible algebraic subvariety of X and letW ⊂ Ω be an irreducible
component of a maximal algebraic subvariety of p−1(V an). Then W is flat.

3. Sketch of the proof

The basic strategy we use is strongly inspired by that of Pila [6] (see also [7]),
though some new ideas are required in order to adapt it to the non-archimedean
setting. In particular, we have to replace the theorem of Pila-Wilkie [8] by the
non-archimedean analogue recently proved by Cluckers, Comte and Loeser [3].



Model Theory: groups, geometry, and combinatorics 35

The role of the o-minimal structure Ran,exp is now played by the subanalytic sets
(in Fn) of Denef and van den Dries, and the rigid subanalytic sets of Lipshitz
and Robinson (in Cn

p ). Analytic continuation and monodromy arguments are
replaced by more algebraic ones and explicit matrix computations by group theory
considerations. We also take advantage of the fact that Schottky groups are free
and of the geometric description of their fundamental domains.

Let V and W be are as the statement of theorem 3. Let Y be the Zariski
closure of W and let m be its dimension. Similarly as in Pila’s approach one
starts by working on some neighborhood of the boundary of our space (which,
instead of a product of Poincaré upper half-planes, is a product of open subsets of
the Berkovich projective line). We reduce to the case where, locally around some
rigid point ξ ∈ Ω, W is the image of a section φ of the projection to the first m
coordinates, and that ξ1 ∈ LΓ1

.
We consider good fundamental domains Fj for the groups Γj and their product

F; let Γ =
∏

Γj . We then consider the subset G0 of PGL(2, F ) consisting of points
(g1, . . . , gn) such that g2 = · · · = gm = 1, and its subset R defined by the condition
dim(gW ∩ F ∩ p−1(V )) = m. One proves that R is a subanalytic set. Studying
the action of Γj on a neighborhood of the limit set LΓj

, one proves that every
element of Ω can be moved to an element of Fj by applying an element of Γj of
controlled length in some fixed generators. Since the groups Γj are arithmetic and
free non-abelian, this allows to prove that for every real number T , R contains
≫ T c algebraic points of bounded degree and height ≤ T . Applying the p-adic
Pila-Wilkie theorem of [3], and making use of the maximality of W , we then
prove that the stabilizer of W inside G0 ∩ Γ is infinite. This furnishes non-trivial
functional equations for the coordinates φj of the section φ. From these functional
equations, we deduce that the Schwarzian derivative of φj is constant, hence zero,
because φj is algebraic. This implies that W is flat.
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One relator groups and some equations over F

Larsen Louder

(joint work with Henry Wilson)

One relator groups are homologically coherent, i.e. if H ≤ G is a finitely generated
subgroup of a one relator group G, we have rk(H2(H,Z)) <∞.

Profinite NIP groups

Dugald Macpherson

(joint work with Katrin Tent)

We consider a profinite group G as a 2-sorted structure G of form G = (G, I),
where the group G is considered in the language of groups, and I indexes a basis
of open subgroups of G; that is, the language has a relation K ⊂ G × I so that
if Ki = {g : (g, i) ∈ K} for each i ∈ I, then {Ki : i ∈ I} is a basis of open
neighbourhood subgroups of 1. We say (G, I) is a full profinite group if every open
subgroup of G has the form Ki for some i ∈ I. The main theorem (see [5]) is that
a full profinite group (G, I) has NIP theory if and only if G has an open normal
subgroup N = P1 × . . . × Pt, where each Pi is a compact pi-adic analytic group,
for distinct primes p1, . . . , pt. By classical work of Lazard and others, there are
many conditions equivalent to a pro-p group G being p-adic analytic, and we may
now add to these the condition that G is NIP as a full 2-sorted pro-p group.

In the proof, it follows from the work of Lazard [3], and that of du Sautoy [2],
that if G = (G, I) is a ‘uniformly powerful’ pro-p group, then G is interpretable
in the structure Zan

p , the expansion of the ring of p-adic integers by convergent
power series functions considered by Denef and van den Dries in [1]. The latter
structure is well-known to be NIP, which rapidly yields the right-to-left direction
of the main theorem.

In the other direction, we first show that any full NIP profinite group has finite
rank, that is, there is a uniform bound on the number of topological generators
needed for closed subgroups of G. This, together with a structural result of Colin
Reid for finite rank profinite groups, and general profinite group theory, yields the
group-theoretic characterisation of NIP. It appears that the weaker model-theoretic
condition NTP2 already yields this characterisation.

Without the fullness assumption, we can still show that if G = (G, I) is a NIP
profinite group then G has an open definable normal subgroup which is pro-soluble.
This is shown by finding a family C of uniformly definable finite quotients of G,
by open normal subgroups which have trivial intersection. Any ultraproduct of
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C will be definable in an ultrapower of G, so will have a soluble definable normal
subgroup of bounded index, by Theorem 1.2 of [4].
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On the strong canonical base property

Daniel Palaćın

(joint work with Anand Pillay)

The study of geometric properties such as one-basedness has contributed to under-
stand not only geometric aspects of stability theory, but also it has been essential
for the applications of stability to other areas in mathematics. Recall that a set X
which is type-definable over a small set A is one-based if for any tuple ā fromX and
any set B, the canonical base of stp(ā/B) is contained in acl(A, ā). Hrushovski
and Pillay (see [2]) showed that if X is a type-definable one-based group then
it is rigid, i.e. all its type-definable connected subgroups are type-definable over
acl(A). Nevertheless, not every rigid group is one-based; for instance, semi-abelian
varietes over algebraically closed fields are rigid.

In the past few years relative version of one-basedness have come into scene.
The main example is the Canonical Base Property (CBP) whose model-theoretic
formulation was motivated by results of Campana and Fujiki in complex geometry
(see [6]) and the analogous results due to Pillay and Ziegler (see [7]) in differential
and difference varieties.

The CBP, named by Moosa and Pillay in [4], states for a stable theory of finite
U-rank that for any tuple ā and any set B, if c is the canonical base stp(ā/B) then
the type stp(c/ā) is almost internal to the family of U-rank 1 types (or equivalently,
to the family of non locally modular types of Morley rank 1).

This property of the finite rank context holds for the many-sorted theory CCM
of compact complex spaces (see [6]) as well as for the finite Morley rank part of
the theory DCF0 of differently closed fields of characteristic zero (see [7]). In both
cases, it yields the existence of a unique non locally modular strongly minimal
set up to non-orthogonality. Namely, the projective line over C in CCM and
the field of constants in the case of DCF0. Furthermore, as pointed out in [7], a
group-like version of the CBP yields an account of Mordell-Lang for function fields
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in characteristic zero, following Hrushovski’s proof but circumventing the use of
Zariski geometries.

An example of a finite rank theory, in fact ℵ1-categorical, where the CBP fails
is given in [3]. On the other hand, there, under suitable assumptions it is shown
that rigidity of definable Galois groups implies a strong version of the CBP. In fact,
this was generalized in [5] to arbitrary stable theories of finite rank using results
from [1]. By the definable Galois group of a stationary type p ∈ S(A) relative to a
family Q of partial types with parameters over A, we mean a type-definable group
that acts definable on the set of realizations of p, and it is naturally isomorphic to
the group of permutations of realizations of p which are induced by automorphisms
of the monster model that fix pointwise A as well as the realizations of the partial
types from Q. The existence of such a group is given by the general theory of
stability whenever p is internal to Q.

In this talk we shall present the equivalence between the strong canonical base
property (see condition (2) in the Theorem) and the rigidity of the relevant defin-
able Galois groups.

We assume that the ambient theory is stable of finite U-rank and that every non
locally modular type is non-orthogonal to ∅. Setting Q to be the family of types
tp(c) such that stp(c) is internal to the family of non locally modular strongly
minimal sets, we obtain:

Theorem 1. The following are equivalent:

(1) All definable Galois groups are rigid.
(2) For any tuple ā and any set B, if c is the canonical base of stp(ā/B), then

c is algebraic over ā and a tuple of realizations of types in Q.

As a consequence, the strong version of the CBP corresponds to a one-based
phenomena.
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Elimination of imaginaries over the free group

Zlil Sela

We gave 3 talks that aimed to sketch the approach towards a weak elimination of
imaginaries over the free (and hyperbolic) groups.

In the first talk we talked about a geometric approach to study sets of solutions
(varieties) over a free group. These include limit groups, their Grushko and JSJ
decompositions. Finally we describe the Makanin-Razborov diagram that one can
associate with a variety, that encodes all the points in a variety, or alternatively it
encodes all the homomorphisms from a given finitely generated group into a free
group.

In the second talk we surveyed some basic results on the first order theory of a
free group. We discussed Merzlyakov’s theorem on positive AE sentences. Then
we explained how can one use the Makanin-Razborov diagram to generalize Mer-
zlyakov theorem to positive formulas when the universal variables are restricted
to a given variety.

In the last part of the second talk, we described building blocks of the Boolean
algebra of the definable sets over the free groups. This uses the notions of rigid and
solid limit group, that enables one to encode exceptional families in a parametric
family of varieties.

In the last talk we sketched the approach towards weak elimination of imag-
inaries. First, we explained what is an envelope of a definable set. This is a
Diophantine set that contains the definable set, and such that (properly defined)
generic points in the Diophantine set are contained in the definable set. An enve-
lope is a useful tool in studying global properties of definable sets, like stability,
equationality, superstability, and definable equivalence relations.

We further described the 3 basic families of imaginaries: conjugation, left or
right cosets of cyclic groups, and double cosets of cyclic groups. We stated a result
that claims that these (families of) basic imaginaries are all not reals.

Then we explained the weak elimination theorem. It claims that given a defin-
able equivalence relation E(p, q), where p and q are m-tuples, it is possible to a
multi-function:

f : (Fk)
m → (Fk)

s ×R1 × . . .×Rℓ

where R1, . . . , Rℓ are sources for some of the 3 (families) of basic relations. f is a
multi-function, i.e., it sends every element in (Fk)

m into a finite (in fact, bounded)
set, it is a class function, and it separates between classes.

We gave a brief sketch of the proof of the weak elimination theorem. This
includes Diophantine envelopes, which is a generalization of the notion of envelopes
to a parametric family of definable sets, uniformization limit groups, and finally the
coupling of the quantifier elimination procedure with a procedure for separation
of variables, that constructs the multi-function f after finitely many steps.
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The Erdős-Hajnal property for distal theories

Pierre Simon

The class of distal theories was introduced a few years ago in [2] as an abstraction
of semi-algebraic structures (R and Qp are the prototypical examples of distal
structures). By definition, a first order theory T is distal if for every formula
φ(x; y), there is some formula ψ(x; z) such that for any finite A, one can find
instances ψ(x; di), i < N with di ∈ A|z| whose union covers x-space and such that
any ψ(x; di) implies a complete φ-type over A. One can think of this as cutting
x-space into finitely many cells ψ(x; di), having some control over φ on each cell.

If a theory is distal, then it is NIP (since distality implies that there are poly-
nomially many φ-types over finite sets). In fact, one can think of distal theories
as being NIP theories which are purely unstable in some sense. They are meant
to serve as an orthogonal complement to stable theories inside the class of NIP
theories.

Alon et al. proved that any bipartite graph definable by a semi-algebraic rela-
tion has the strong Erdős-Hajnal property: there is some δ > 0 such that for any
two finite sets A, B, there are A0 ⊆ A and B0 ⊆ B, |A0| ≥ δ|A| and |B0| ≥ δ|B|,
such that the graph restricted to A0 × B0 is either complete or empty. In a re-
cent paper [1], Chernikov and Starchenko give a generalization of this result to all
graphs definable in a distal theory. They also point out that this property does
not hold for ACFp, proving that this theory has no distal expansion. Thus, it
appears that distality is a meaningful property from the point of view of finite
combinatorics, which was rather unexpected.

In this talk, I presented a relatively short proof of Chernikov and Starchenko’s
theorem using the theory of generically stable measures in NIP as developed in
[3]. A measure (in an NIP theory) is generically stable if it can be obtained
as an ultraproduct of finite counting measures. The fundamental VC-theorem
implies that for such a measure µ(x), given a formula φ(x; y) and some ǫ > 0,
there is a finite set A such that if b and b′ have the same φ-type over A, then
µ(φ(x; b)△φ(x; b′)) ≤ ǫ. Then applying the definition of distality given above to
this φ and A easily gives the result.
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Definable fields in non abelian free groups

Rizos Sklinos

(joint work with Ayala Byron)

Non abelian free groups have been all proven to have the same first order the-
ory ([2],[1]). Although this theory admits quantifier elimination down to boolean
combination of ∀∃ formulas it is hard to determine when a subset of some finite
cartesian power of a non abelian free group is definable.

On the other hand, after the seminal work of Zilber [4] in understanding un-
countably categorical theories via some naturally defined pregeometries much at-
tention has been given to questions regarding the type of groups that are definable
in a first order theory or whether an infinite field is definable in it.

In this talk we presented the following theorem:

Theorem 1. Let F be a non abelian free group. Then no infinite field is definable
in F.

Our proof combines techniques from geometric group theory and geometric
stability. Roughly speaking a definable set (over a non abelian free group) would
either be internal to a finite set of centralizers of non trivial elements or it cannot
be given definably the structure of an abelian group. To conclude we prove that
centralizers of non trivial elements are 1-based (a result that had already been
proved by C.Perin) and the result follows, since by [3] our definable set would be
1-based.
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Tutorial: On th Szemerédi Regularity Lemma

Sergei Starchenko

In this tutorial we discuss the Szemerédi Regularity Lemma (see [3]) and present
its proof based on non-standard analysis and pseudo-finite measures.

We also consider special cases of graphs: graphs whose edge relation is stable,
and graphs whose edge relation has a finite VC-dimension.

In the stable case we obtain that the in Szemerédi regularity lemma we can
require in addition that there are no exceptional pairs (see [1]); and in a finite VC-
dimension case we obtain a polynomial bound on the number of sets in a partition
(see [2]).
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Laws for finite groups

Andreas Thom

One way to state the prime number theorem is to say that for any n ∈ Z, there
exists an abelian group G of size bounded by roughly log |n| and a homomorphism
ϕ : Z → G such that ϕ(n) 6= 0. Equivalently, there exists a subgroup Λ ⊂ Z of
index roughly bounded by log |n|, such that n 6∈ Λ. We study analogous questions
for the group F2 instead of Z – following a programme of quantifying residual
finiteness for non-commutative groups started by Bou-Rabee. We set:

D(w) := min{[F2 : Λ] | Λ < F2 subgroup, w 6∈ F2}
and

D⊳(w) := min{[F2 : Λ] | Λ < F2 normal subgroup, w 6∈ F2}.
To obtain a more tractable object to study, we define the divisibility functions:

d(n) := max{D(w) | 0 < |w| ≤ n},
and

d⊳(n) := max{D(w) | 0 < |w| ≤ n}.
A law for a group G is a word in F2, so that the associated word map w : G×

G → G is trivial, i.e., w(g, h) = 1G for all g, h ∈ G. The following elementary
lemma establishes a close relationship between the existence of certain laws and
the objective to bound the divisibility functions.
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Lemma 1. Let w ∈ F2 \ {1}. Then D(w) > n holds if and only if w is a law for
the group Sym(n). Similarly, D⊳(w) > n holds if and only if w is a law for all
groups of size bounded by n.

In order to provide lower bounds for the divisibility functions, we will provide
upper bounds for length of non-trivial laws for Sym(n) and the class of all finite
groups of size bounded above by n.

We start stating our results about laws for the symmetric group.

Theorem 2 (Kozma-T.). There exists a constant C such that for all n ∈ N, there
exists a law for Sym(n) of length bounded by

exp(C log(n)4 log log(n)).

Moreover, assuming Babai’s Conjecture on logarithmic diameter bounds for Cayley
graphs of simple groups, there exists a law of length

exp(C log(n) log log(n)).

This improves on previous bounds of exp(Cn) by Bogopolski, exp(Cn1/2 log(n))
by Gimadeev-Vyalyi [3] and exp(C(n log(n))1/2) by Bou-Rabee and McReynolds
[2]. This result has appeared as joint work with Gady Kozma in [5] – the proof
depends in various ways on the Classification of Finite Simple Groups.

The result for the class of finite groups of size bounded by n is the following:

Theorem 3. There exists a constant C such that for all n ∈ N, there exists a law
for the class of all finite groups of size bounded from above by n of length bounded
by

Cn log log(n)9/2

log(n)2
.

This result improves on previous bounds of Cn3 by Bou-Rabee [1] and Cn3/2 by
Kassabov-Matucci [4] and answers a question from [4]. This result has appeared
in the preprint [6] – again, the proof depends on the Classification of Finite Simple
Groups.
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Meridional rank versus bridge number

Richard Weidmann

(joint work with Michel Boileau, Ederson Dutra and Yeonhee Jang)

Given a projection of a knot, an arc is called a bridge if it overcrosses at least
once. The bridge number b(K) of a knot K is defined as the minimal number
of bridges in all projections of K. It follows easily from inspecting the Wirtinger
presentation of the knot group π1(S

3\K) that it is generated by b(K) meridians.
Here we call an element a meridian if is represented by a closed curve that is freely
homotopic to the meridian of the knot.

S. Cappell and J. Shaneson as well as K. Murasugi, have asked whether the min-
imal number of meridians needed to generate a knot group always coincides with
the bridge number. An affirmative answer to this question has been established
in a number of cases, in particular it is known in the case of torus knots, 3-bridge
knots and generalized Montesinos knots. More recently Cornwell and Hemminger
have given a positive answer for many iterated cable knots.

We greatly generalize the result of Cornwell and Hemminger by giving an af-
firmative answer for a class of knots that contains all knots whose exterior is a
graph manifold. The class we study contains 2-bridge knots and torus knots and
is closed under connected sums and satellite constructions with braid patterns.
The proof uses a a folding sequence in graphs of groups to compute the minimal
number of meridians needed to generate the knot group which is then shown to
agree with the bridge number using classical results of Schubert. This is joint work
with Michel Boileau, Ederson Dutra and Yeonhee Jang.

Actions on sets of Morley rank 2

Joshua Wiscons

(joint work with Tuna Altınel)

In [2], Borovik and Cherlin initiate a broad study of permutation groups of finite
Morley rank around the problem of finding an upper bound on the Morley rank
of a permutation group that depends only upon the Morley rank of the set being
acted on. It is not hard to see that such a bound does not exist in general, but in
the context of (definably) primitive actions, the problem becomes very interesting.
Using deep results from the theory of groups of finite Morley rank, including the
classification of the simple groups of even and mixed type, Borovik and Cherlin
did indeed succeed in finding a bound. That is, they prove the existence of a
function ρ : N → N that assigns to each r the maximum rank for a group of finite
Morley rank that has a faithful, primitive action on a set of rank r. However, parts
of their analysis are, in their words, “soft,” and throughout the paper they pose
many problems around the hope of finding a sharper, more natural bound on ρ.

In what follows, we will call (X,G) a permutation group if X is a set equipped
with a fixed faithful action of the group G. A key component of Borovik and
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Cherlin’s proof is a relationship they prove between ρ and the so-called degree of
generic transitivity. A permutation group of finite Morley rank (X,G) is said to be
generically n-transitive if G has an orbit O on Xn such that rk(Xn−O) is strictly
less than rk(Xn); the maximum n such that (X,G) is generically n-transitive will
be denoted by gtd(X,G). The relationship mentioned above is that

r · gtd(X,G) ≤ rkG ≤ r · gtd(X,G) + r(r − 1)/2

whenever (X,G) is a primitive permutation group of finite Morley rank. As such,
we turn our focus from bounding the rank of G to bounding gtd(X,G). Here, the
conjecture is quite clear.

Conjecture 1. If (X,G) is a transitive and generically (n+ 2)-transitive permu-
tation group of finite Morley rank with G connected and rkX = n, then (X,G) is
equivalent to (Pn(K),PGLn+1(K)) for some algebraically closed field K.

The case of rkX = 1 has been known since the 1980’s as a consequence of
Hrushovski’s theorem about actions on strongly minimal sets. Here we present a
solution to the rank 2 case.

Theorem 2 ([1, Theorem A]). If (X,G) is a transitive and generically 4-transitive
permutation group of finite Morley rank with rkX = 2, then (X,G) is equivalent
to (P2(K),PGL3(K)) for some algebraically closed field K.
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Mathematisches Institut
Universität Münster
Einsteinstrasse 62
48149 Münster
GERMANY

Prof. Dr. Francoise Delon

Equipe de Logique Mathématique
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Université Paris VII
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Université Paris VII
Case 7012
75205 Paris Cedex 13
FRANCE



48 Oberwolfach Report 1/2016

Prof. Dr. Ehud Hrushovski

Department of Mathematics
The Hebrew University
Givat Ram
Jerusalem 91904
ISRAEL

Dr. Franziska Jahnke

Mathematisches Institut
Universität Münster
Einsteinstrasse 62
48149 Münster
GERMANY

Dr. Itay Kaplan

Institute of Mathematics
The Hebrew University
Givat Ram
Jerusalem 91904
ISRAEL

Dr. Piotr Kowalski

Department of Mathematics
University of Wroclaw
pl. Grunwaldzki 2/4
50-384 Wroclaw
POLAND

Prof. Dr. Krzysztof Krupinski

Institute of Mathematics
Wroclaw University
pl. Grunwaldzki 2/4
50-384 Wroclaw
POLAND

Prof. Dr. Salma Kuhlmann

Fachbereich Mathematik u. Statistik
Universität Konstanz
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Département de Mathématiques
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Département de Mathématique
Université de Mons
Le Pentagone
20, Place du Parc
7000 Mons
BELGIUM

Prof. Dr. Thomas W. Scanlon

Department of Mathematics
University of California
Berkeley CA 94720-3840
UNITED STATES

Dr. Zlil Sela

Institute of Mathematics
The Hebrew University
Givat Ram
Jerusalem 91904
ISRAEL

Dr. Pierre Simon
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