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Introduction by the Organisers

The theory of lattices in Euclidean spaces is a very old subject which is still of great
interest because of its various connections to other mathematical theories. As is
well-known, the “Geometry of Numbers” developed at the end of the nineteenth
century by Hermann Minkowski, following the pioneering works of Hermite, had a
profound influence on the development of algebraic number theory. One goal of the
workshop “Lattices and Applications in Number Theory” was to attest the vitality
of this trend in modern number theory and to show how the theory of Euclidean
lattices still provide tools for important discoveries. It was also an occasion for
researchers from fairly different areas to exchange their ideas.

The meeting brought together 54 mathematicians from 11 countries. There
were eleven one-hour talks, aimed at introducing to non-experts the various topics
addressed during the week and presenting recent developments as well. Besides,
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eight shorter talks (45 minutes) on some recent developments were proposed, and
two afternoon sessions of short presentations (5 × 20 minutes) were organised.

We briefly describe below some of the main topics that were addressed during
the workshop, and point out some of the results exposed.

• Arakelov geometry is the natural setting for a modern view on the “Ge-
ometry of Numbers”, in which Euclidean lattices appear as a particular
instance of Hermitian bundles over arithmetic curves. A striking illustra-
tion is the very deep theorem of Zhang on successive minima of Hermitian
bundles which can be seen as an analogue of Minkowski’s classical the-
orem about the successive minima of Euclidean lattices. The talks by
Gaël Rémond, Éric Gaudron, Jean–Benôıt Bost, and Christophe Soulé
pertained to this topic. A closed formula for an absolute version (i.e. over
Q) of the Hermite constant was presented in Rémond’s talk.
• Applications of Voronoi’s algorithm to arithmetic groups : In a famous
paper dating from 1907, Voronoi defined a face-to-face tiling of the cone
of positive semidefinite quadratic forms by so-called perfect domains and
described an algorithm to enumerate these domains up to SLn(Z) equiv-
alence. It was observed in the 1970s (Ash, Soulé) that Voronoi’s tessela-
tion could also be used to compute the (co)homology of SLn(Z). Since
then, and up to very recently, this observation, extended to more general
arithmetic groups, gave rise to a substantial amount of work by various
researchers. Philippe Elbaz–Vincent explained one of these recent devel-
opments in his talk during the meeting (triviality of K8(Z) and applica-
tion to the Vandiver Conjecture). The talks by Dan Yasaki and Joachim
Schwermer dealt with related topics. Finally, Roland Bacher explained a
construction of families of integral perfect lattices of minimum 4 which
as a by-product shows that the number of perfect lattices grows at least
exponentially in the dimension.
• In the tradition of Siegel’s works, classical modular forms play a central
role in many questions involving lattices (representation numbers, mass
formulas, classification of genera). This also was illustrated during the
workshop, e.g. in Rainer Schulze–Pillot’s and Jeremy Rouse’s talks.
• Arithmetic groups and algebraic modular forms : A recent development in
the study of arithmetic groups is the theory of algebraic modular forms,
initially developed by Benedict Gross, where a connection between modu-
lar forms theory and Bruhat-Tits buildings of algebraic groups is studied.
The intermediate objects again are lattices, which generalise naturally to
integral forms of algebraic groups. Also other notions like genera and mass
formulas have been transferred to more general arithmetic groups (dating
back to works by Borel, Harish–Chandra and Kneser, and more recently
in the fundamental works by Gopal Prasad). A comprehensive introduc-
tion to the subject was provided in the talk by Joshua Lansky and David
Pollack. Other talks pertaining to this topic were those of Jessica Fintzen
and Sebastian Schönnenbeck.
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Other crucial topics, not falling within the previous categories, were also ad-
dressed: packing and energy minimization problems and related applications of
semidefinite optimization, counting arguments for dense lattices in certain fami-
lies, but also algebraic topology and the algebraic theory of quadratic forms.

All speakers were considerate of the great variety of topics related to lattice
theory in this conference and addressed their talks to this broad audience. This
concept and the open and stimulating atmosphere of the location lead to many
discussions. It was also very fruitful for the many young participants.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Siegel fields

Gaël Rémond

(joint work with Éric Gaudron)

The aim of our paper [2] is to extend Minkowski’s theorem/Siegel’s lemma to infi-
nite algebraic extensions of Q. To formulate the problem, we replace the classical
setting of metrized lattice by the framework of adelic spaces.

Definition 1. Given a subfield K ⊂ Q, we define an adelic space to be a finite
dimensional K-vector space E equipped with a collection of norms ‖ · ‖v on Ev =
E ⊗K Kv for each place v of K. The adelic space E is said to be rigid if there
exist an isomorphism ϕ : E → Kn and an adelic matrix A ∈ GLn(AK) such that
for each place v and each x ∈ Ev we have ‖x‖v = |Avϕv(x)|v.

Here ϕv denotes ϕ⊗ idKv : Ev → Kn
v , the adèles AK are AQ⊗K and | · |v is the

standard norm on Kn
v given by |(y1, . . . , yn)|v = max(|y1|v, . . . , |yn|v) if v is finite

and |(y1, . . . , yn)|v = (|y1|2v + · · ·+ |yn|2v)1/2 otherwise.
When K is a number field, we define the heights of a point and of the space by

the products

(1) H(x) =
∏

v

‖x‖[Kv:Qv ]/[K:Q]
v (x ∈ E), H(E) =

∏

v

| detAv|[Kv :Qv]/[K:Q]
v

where Av are the components of an adelic matrix A as in the definition. These
definitions extend to the general case, using the fact that both A and x are defined
over a number subfield of K; alternatively, one can use a more intrisic approach
through integration over the set of places, see [2, part 2].

We now let Λ1(E) = inf{H(x) | x ∈ E \ {0}} be the first minimum of E. For
a number field, Siegel’s lemma is the statement that Λ1(E)n ≤ (nδK/Q)

n/2H(E)
where n = dimE and δK/Q is the root discriminant. Accordingly, we define the
following avatar of Hermite’s constant for K.

Definition 2. For n ≥ 1, let cK(n) = sup{Λ1(E)n/H(E) | E rigid adelic space
over K of dimension n}.

Our main definition is then as follows.

Definition 3. The field K is said to be a Siegel field if cK(n) < +∞ for all n ≥ 1.

Examples of Siegel fields are of course all the number fields but also Q by the
absolute Siegel’s lemma of Roy-Thunder [3] or by Zhang [5], who gives the estimate
c
Q
(n) ≤ exp(n(Hn−1)/2) where Hn = 1+1/2+ · · ·+1/n is the harmonic number.

We provide new examples such as the real algebraic numbers R ∩Q or the towers
of number fields with bounded root discriminant (e. g. class field towers).

Our first result gives examples of fields with no Siegel’s lemma.
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Theorem 1. If [K : Q] =∞ and K has Northcott property then K is not a Siegel
field.

Here we say, after Bombieri and Zannier [1], that K has Northcott property if
the number of elements of K of bounded height is finite. This is certainly true
for number fields (and false for Q) but [1] provide more examples such as the field
Q(Q1/d) of all dth roots of rational numbers (for some fixed d ≥ 1). Yet other
examples come form [4].

We state as an open problem the question of whether there exists a field K
having neither the Siegel nor the Northcott property. Likewise, we would like
to know if certain specific interesting fields are Siegel: for example the maximal
abelian extension Qab or the field of totally real numbers (these two do not have
Northcott property).

If we assume K to be a Siegel field, we can prove stronger statements. First we
have for free a version of Minkowski’s second theorem.

Proposition 1. If E is a rigid adelic space of dimension n over K, we have
Λ1(E) · · ·Λn(E) ≤ cK(n)H(E).

Here we use the classical successive minima defined with a linear condition, that
is Λi(E) = inf{max(H(x1), . . . , H(xi)) | x1, . . . , xi ∈ E, linearly independent} but
we can in fact obtain a much stronger version if we use Zhang’s successive minima
Zi(E) = inf{supx∈S H(x) | S ⊂ E, dimS ≥ i} ≥ Λi(E) where S denotes the
Zariski closure of S.

Theorem 2. If K is a Siegel field with [K : Q] = ∞, there exists u(K) ∈ R
such that for any rigid adelic space E of dimension n, we have Z1(E) · · ·Zn(E) ≤
u(K)ncK(n)H(E).

In fact, this statement implies Theorem 1 because the mere finiteness of Z2(E)
(any E) implies that K can not have the Northcott property. The proofs of both
the Proposition and Theorem 2 relie on a modification of the norms: rather easily
and for archimedean places in the first case, in a more intricate way and at finite
places in the second. In fact, the construction involved in the proof of the latter
even gives more and allows to state the following exact computation of the Hermite
constant of Q (Zhang’s bound is in fact optimal).

Theorem 3. We have c
Q
(n) = exp(n(Hn − 1)/2).
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[2] É. Gaudron and G. Rémond, Corps de Siegel, J. reine angew. Math., to appear, 61 pages,
DOI: 10.1515/crelle-2014-0096

[3] D. Roy and J. Thunder, An absolute Siegel’s lemma, J. reine angew. Math., 476, 1996, p.
1–26. Addendum and erratum. ibid. 508. 1999. p. 47–51.



Lattices and Applications in Number Theory 95

[4] M. Widmer, On certain infinite extensions of the rationals with Northcott property,
Monatsh. Math., 162, 2011, p. 341–353.

[5] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc., 8, 1995, p.
187–221.

Adelic quadratic spaces

Éric Gaudron

(joint work with Gaël Rémond)

We examine the links between linear and quadratic equations through the search
of algebraic solutions of small heights.

The starting point is a theorem by Cassels (1955, [1]) and Davenport (1957, [3])
which asserts that if q : Qn → Q is a non-zero isotropic quadratic form with integral
coefficients (ai,j)i,j then there exists a vector x = (x1, . . . , xn) ∈ Zn \{0} such that
q(x) = 0 and

n∑

i=1

x2
i ≤


2γ2

n−1

∑

i,j

a2i,j




(n−1)/2

(γn−1 is the Hermite constant). Our aim is to give a generalization of this state-
ment in the context of rigid adelic spaces (introduced in the preceding talk by
Gaël Rémond).

Let K be an algebraic extension of Q and n be a positive integer. We denote
by cK(n) the supremum over all rigid adelic spaces E over K of the real numbers

inf {HE(x)
nH(E)−1 ; x ∈ E \ {0}}

(HE(x) and H(E) are the heights of x and E with respect to the metrics on E).
According to [6], the field K is called a Siegel field if cK(n) < +∞ for all n ≥ 1.

We have cQ(n) = γ
n/2
n ,

cK(n) ≤
(
n|∆K/Q|1/[K:Q]

)n/2

if K is a number field of absolute discriminant ∆K/Q and

c
Q
(n) = exp

{
n

2

(
1

2
+ · · ·+ 1

n

)}

(see [6]).
An adelic quadratic space (E, q) over K is a rigid adelic space E/K endowed

with a quadratic form q : E → K. In this framework, several problems can be
raised (here, small = of small height):

1) Existence of a small isotropic vector,
2) Existence of a small maximal totally isotropic subspace,
3) Existence of a basis of E composed of small isotropic vectors.
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There exist between 25 and 30 articles in the literature dealing with these questions
(essentially when K a number field or Q). A common divisor to these works is
the notion of Siegel’s lemma. We shall provide solutions to these three problems,
which are optimal with respect to the height of q.

The following statement gives an answer to the problem 2.

Theorem 1. Assume q is isotropic. Then, for all ε > 0, there exists a maximal
totally isotropic subspace F of E of dimension d ≥ 1 and height

H(F ) ≤ (1 + ε)cK(n− d) (2H(q))
(n−d)/2

H(E).

Here H(q) is the height of q built from local operators norms (see [7]). For
instance, in the context of Cassels and Davenport Theorem, one can prove that
H(q) ≤ (

∑
i,j a

2
i,j)

1/2. Theorem 1 generalizes and improves theorems by Schlick-

ewei (1985, K = Q, [9]), Vaaler (1987, K number field, [10]) and Fukshansky
(2008, K = Q, [5]). Using a Siegel’s lemma in such a subspace F , we obtain an
answer to Problem 1:

Lemma 1 (Quadratic Siegel’s lemma). If q is isotropic then, for all ε > 0, there
exists x ∈ E \ {0} such that q(x) = 0 and

HE(x) ≤ (1 + ε)
(
cK(n) (2H(q))(n−d)/2H(E)

)1/d
.

The proof of Theorem 1 follows from an estimate of the height of a suitable
q-orthogonal symmetric of an almost minimal height subspace F (chosen among
maximal totally isotropic subspaces of E) and from a Siegel’s lemma used with
the quotient E/F . To be interesting, Theorem 1 must be applied in a Siegel field
(cK(n − d) < ∞). But the converse is true: it can be also proved that to be a
Siegel field is a necessary condition when a quadratic Siegel’s lemma exists (take
q(x) = ℓ(x)2 with ℓ : E → K a linear form and use [6, § 4.8]).

Now, let us tackle the problem of a small isotropic basis of an adelic quadratic
space (E, q) over a Siegel field K. Assume that there exists a nondegenerate
isotropic vector in E. It is well known then that there exists a basis (e1, . . . , en)
of E such that q(ei) = 0 for all 1 ≤ i ≤ n. Our goal is to have also the heights
of ei’s small. An obvious approach rests on an induction process, choosing ei ∈
E \ K.e1 ⊕ · · · ⊕ K.ei−1 with small height and q(ei) = 0. That leads us to the
following variant of the quadratic Siegel’s lemma:

1a) Let I be an ideal of the ring of polynomials of E and denote by Z(I) the
set of zeros {x ∈ E ; ∀P ∈ I, P (x) = 0}. How to bound

inf {HE(x) ; q(x) = 0 and x 6∈ Z(I)} ?
(Quadratic Siegel’s lemma avoiding an algebraic set.)

To simplify, we state our result only for the standard adelic space E = Kn.

Theorem 2. Let q : Kn → K be a quadratic form and let I be an ideal of
K[X1, . . . , Xn] generated by polynomials of (total) degree ≤M . Assume (i) q 6= 0
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and (ii) ∃x 6∈ Z(I) ; q(x) = 0. Then there exists a constant c(n,K) ≥ 1, which
depends only on n and K, such that the vector x in condition (ii) can also be
chosen with height

HKn(x) ≤ c(n,K)M3H(q)(n−d+1)/2

where d is the dimension of maximal totally isotropic subspaces of (Kn, q).

The constant c(n,K) can be made fully explicit (see [7, § 7]). This statement
generalizes and improves previous results by Masser (1998, K = Q, Z(I) hyper-
plane, [8]), Fukshansky (2004, K number field, Z(I) union of hyperplanes, [4]) and
Chan, Fukshansky & Henshaw (2014, [2]). Moreover the exponent (n − d + 1)/2
of H(q) is best possible: take E = Qn, a, d ≥ 1 integers, Z(I) = {xd = 0} and

q(x) = 2xd+1xd − a2x2
d − (xd+2 − axd+1)

2 − · · · − (xn − axn−1)
2.

We have H(q) = Oa→+∞(a2) and if x is isotropic then |xn| ≥ an−d+1|xd|/4. The
proof of Theorem 2 relies on an avoiding Siegel’s lemma and a geometric lemma.
From Theorem 2 can easily be deduced a small-height isotropic basis of E.

Complete proofs and further results are given in [7].
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On the special linear group SL2 over orders in division algebras
defined over some number field

Joachim Schwermer

Given an algebraic number field k, its ring of integers Ok, let D be a finite-
dimensional central division algebra defined over k. If ℓ/k is a field extension
we denote by Dℓ the ℓ-algebra D ⊗k ℓ. Let GL(2, D) be the connected reductive
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algebraic k-group whose group of ℓ-rational points is the general linear group
GL2(Dℓ) = {x ∈ M2(Dℓ) | nrdM2(Dℓ)(x) 6= 0}. Then the special linear group
SL(2, D), defined as the kernel of the k-homomorphism GL(2, D) → Gm induced
by the reduced norm, is a connected, almost simple, simply-connected algebraic
k-group of k-rank 1. We denote by G∞ the group of real points of the algebraic Q-
group obtained by restriction of scalars from SL(2, D), and we denote by X∞ the
corresponding symmetric space. An Ok-order Λ inD gives rise to an arithmetically
defined subgroup ΓΛ in SL2(D). It can be viewed as a discrete subgroup in the
real Lie group G∞. The group ΓΛ acts properly on X∞, and, if ΓΛ is torsion-free,
the orbit space is a non-compact locally symmetric space but of finite volume.

Generally we are interested in the geometry of these spaces X∞/ΓΛ, their co-
homology and the corresponding theory of automorphic forms [7]. In this talk we
focused on the geometry of these spaces at infinity and the question how to deter-
mine the number cs(ΓΛ) of ΓΛ-conjugacy classes of minimal parabolic k-subgroups
of SL(2, D). This number plays an important role in various compactifications of
X∞/ΓΛ, for example, the so-called Borel-Serre compactification. If the underlying
division algebra is the field k itself then, in the case of the maximal order Ok,
the number cs(ΓOk

) coincides geometrically with the number of cusps, given as
the cardinality of the coset space obtained by the natural action of ΓOk

on the
projective space P1

k. As shown, e.g., in [6], there is a bijection

P1
k/ΓOk

−̃→Cℓ(Ok)

with the class group of k, thus, cs(ΓOk
) is the class number hk of k.

Suppose that Λ is a maximal Ok-order Λ in D. Following Fröhlich [1], we denote
by LF1(Λ) the set of isomorphism classes of locally free left Λ-modules of rank 1.
In an adelic approach, this set can be parametrized by the double cosets

LF1(Λ) −̃→ UΛ \D∗
A/D

∗

where UΛ denotes the units of Λ embedded into the adelic points of the algebraic
group SL(1, D). The cardinality of this set is finite. Furthermore, it is independent
of the choice of the maximal Ok-order Λ in D, thus it is denoted by hD. Now, due
to the Ph.D. thesis work of the Vienna students Christian Lacher [5] and Sophie
Koch [2], [3], the following results hold true:

(1) If D is not totally definite, then cs(ΓΛ) = hD, in particular, cs(ΓΛ) is
independent of the choice of the maximal order Λ (see [5]).

(2) If D is totally definite, i.e. D ramifies at all archimedean places v ∈ V
of k and Dv

∼= H the Hamilton quaternion algebra, then cs(ΓΛ) is also
independent of the choice of the maximal order Λ (see [2], [3]).

(3) If D is totally definite and the narrow class number of k satisfies h+
k = 1,

then cs(ΓΛ) = h2
D (see [5]). [This generalizes a result obtained in a classical

approach in [4] for totally definite quaternion algebras defined over Q.]

The starting point for the proof of these assertions is a general result obtained
in [5] which gives a lower bound resp. an upper bound for cs(ΓΛ) by certain
arithmetic invariants attached to Λ. However, beyond the results alluded to, in
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the general case of a totally definite quaternion division algebras, not subject to the
condition in (3), one finds in [2] various examples where cs(ΓΛ) is not a multiple
of hD.

We concluded the talk by briefly describing the topological nature [as fibre
bundles] of the boundary components of the Borel-Serre compactification of the
spaces X∞/ΓΛ in question.
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On the Moy–Prasad filtration and supercuspidal representations

Jessica Fintzen

Let k be a nonarchimedean local field with residual characteristic p > 0. Let K be
a maximal unramified extension of k with residue field Fp, and let G be a reductive
group over K. In [2, 3], Bruhat and Tits defined a building B(G,K) associated
to G. For each point x in B(G,K), they constructed a compact subgroup Gx of
G(K), called parahoric subgroup. In [8, 9], Moy and Prasad defined a filtration of
these parahoric subgroups by smaller subgroups

Gx = Gx,0 D Gx,r1 D Gx,r2 D . . . ,

where 0 < r1 < r2 < . . . are real numbers depending on x. For simplicity, we
assume that r1, r2, . . . are rational numbers. The quotient Gx,0/Gx,r1 can be iden-

tified with the Fp-points of a reductive group Gx, and Gx,ri/Gx,ri+1 (i > 0) can

be identified with an Fp-vector space Vx,ri on which Gx acts.
If G is defined over k, this filtration was used to associate a depth to complex

representations of G(k), which can be viewed as a first step towards a classification
of these representations. In 1998, Adler ([1]) used the Moy–Prasad filtration to
construct supercuspidal representations of G(k), and Yu ([12]) generalized his
construction three years later. Kim ([6]) showed that for large primes p Yu’s
construction yields all supercuspidal representations. However, the construction
does not give rise to all supercuspidal representations for small primes.
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In 2014, Reeder and Yu ([10]) gave a new construction of supercuspidal repre-
sentations of smallest positive depth, which they called epipelagic representations.
A vector in the dual V̌x,r1 = (Gx,r1/Gx,r2)

∨
of the first Moy–Prasad filtration quo-

tient is called stable in the sense of geometric invariant theory if its orbit under Gx

is closed and its stabilizer in Gx is finite. The only input for the new construction
of supercuspidal representations in [10] is such a stable vector. Assuming that G
is a semisimple group that splits over a tamely ramified field extension, Reeder
and Yu gave a necessary and sufficient criterion for the existence of stable vectors
for sufficiently large primes p. In [5], we removed the assumption on the prime p
for absolutely simple split reductive groups G, which yielded new supercuspidal
representations for split groups. One application of the results in [4] presented
during the talk is a criterion for the existence of stable vectors for all primes p for
a much larger class of semisimple groups. This class includes semisimple groups
that split over a tamely ramified field extension, i.e. those considered by [10] for
large primes p, but it also includes arbitrary simply connected or adjoint semisim-
ple groups. As a consequence we obtain supercuspidal representations of non-split
p-adic reductive groups, in particular for small p now.

Our method of proof assumes the result for large primes and semisimple groups
that split over a tamely ramified extension, and we transfer it to arbitrary residue
field characteristics and a larger class of groups G. This is done via a comparison
of the Moy–Prasad filtrations for different primes p.

More precisely, we show for a large class of reductive groups over finite exten-
sions of Qur

p (or Fp((t))
ur), which we call good groups (see Definition 3.1 in [4]),

that the Moy–Prasad filtration is in a certain sense (made precise below) inde-
pendent of the residue field characteristic p. The class of good groups contains
reductive groups that split over a tamely ramified field extension as well as simply
connected and adjoint semisimple groups and arbitrary restriction of scalars of any
of these. The restriction to this large subclass of reductive groups is necessary as
the main result in [4] (Theorem 1 below) fails in general. Given a good reductive
group G over K, a rational point x of the Bruhat-Tits building B(G,K) and an
arbitrary prime q coprime to a certain integer N that depends on the splitting
field of G (for details see Definition 3.1 in [4]), we construct a finite extension Kq

of Qur
q , a reductive group Gq and a point xq in B(Gq ,Kq). To this data, one can

attach as above a Moy–Prasad filtration. The corresponding reductive quotient
Gxq is a reductive group over Fq that acts on the quotients Vxq,ri , which are

identified with Fq-vector spaces. We then have the following theorem.

Theorem 1 ([4]). For each i ∈ Z>0, there exists a split reductive group scheme
H over Z[1/N ] acting on a free Z[1/N ]-module V satisfying the following. For
every prime q coprime to N , there exist isomorphisms H

Fq
≃ Gxq and V

Fq
≃

Vxq,ri such that the induced representation of H
Fq

on V
Fq

corresponds to the above

mentioned representation of Gxq on Vxq,ri . Moreover, there are isomorphisms
HFp

≃ Gx and VFp
≃ Vx,ri such that the induced representation of HFp

on VFp
is
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the representation of Gx on Vx,ri . In other words, we have commutative diagrams

H
Fp
× V

Fp

//

≃×≃

��

V
Fp

≃

��

H
Fq
× V

Fq

//

≃×≃

��

V
Fq

≃

��

Gx ×Vx,ri
// Vx,ri Gxq ×Vxq,ri

// Vxq,ri .

This theorem allows to compare the Moy–Prasad filtration representations for
different primes.

We also give a new description of the Moy–Prasad filtration representations
for reductive groups that split over a tamely ramified field extension of K. Let
m be the order of x. We define an action of the group scheme µm of m-th

roots of unity on a reductive group G
Fp

over Fp, and denote by G
µm,0

Fp
the con-

nected component of the fixed point group scheme. In addition, we define a re-
lated action of µm on the Lie algebra Lie(G

Fp
)(Fp), which yields a decomposition

Lie(G
Fp
(Fp)) = ⊕m

i=1 Lie(GFp
)i(Fp). Then we prove in [4] that the action of Gx on

Vx,ri corresponds to the action of G
µm,0

Fp
on one of the graded pieces Lie(G )j(Fp)

of the Lie algebra of G
Fp
. This was previously known by [10] for sufficiently large

primes p, and representations of the latter kind have been studied by Vinberg [11]
in characteristic zero and generalized to positive characteristic coprime to m by
Levy [7]. To be precise, we even prove a global version of the above mentioned
result. See Theorem 4.1 in [4] for details. We also show that the same statement
holds true for all good reductive groups after base change of H and V to Q, see
Corollary 4.4 in [4].

This allows us to classify the points of the building B(G,K) whose first Moy–
Prasad filtration quotient contains stable vectors, which then yields supercuspidal
representations (Corollary 5.5 in [4]). Similarly, the existence of semistable vectors
is independent on the residue field characteristic (Theorem 5.1 in [4]).
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The period lattices of the generalized Legendre curves

Ling Long

(joint work with Alyson Deines, Jenny Fuselier, Holly Swisher, Fang–Ting Tu)

Given i, j, k,N ∈ N, λ ∈ Q (the algebraic closure of Q), the generalized Legendre

curve X
[N ;i,j,k]
λ is the smooth model of the curve

C
[N ;i,j,k]
λ : yN = xi(1− x)j(1− λx)k.

We use J
[N ;i,j,k]
λ to denote the Jacobian variety of X

[N ;i,j,k]
λ . These curves have

been studied by Wolfart [8], Archinard [3] and others. They satisfy very nice
properties: their period lattices can be computed explicitly using classical Gauss
hypergeometric functions and their local zeta functions can be computed using
hypergeometric functions over finite fields which are defined in a few versions by
Greene [5], Katz [6], McCarthy [7] respectively. Below we modify their defini-
tion slightly so that they are more parallel to the classical setting (for details
see [4]). Part of our motivation is study 2-dimensional abelian varieties with
quaternionic multiplication (QM) in the sense that their endomorphism algebras
contain a quaternion algebra. In particular, we are interested in when one can

construct such abelian varieties from the factors of J
[N ;i,j,k]
λ . Below we consider

the cases N = 3, 4, 6 in which the primitive part of J
[N ;i,j,k]
λ , denoted by Jprim

λ , is
2-dimensional.

Classical hypergeometric functions are an important class of special functions
with many applications in mathematics and physics. Their properties are built
on essentially two functions: the gamma function Γ(x) and the beta function: for
Re (a) > 0,Re(b) > 0,

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)

Γ(a+ b)
.

Now we define Gauss hypergeometric function using an idea of Euler. When
Re(c) > Re(b) > 0, we first define the period function

2P1

[
a b

c
;λ

]
:=

∫ 1

0

xb−1(1− x)c−b−1(1− λx)−adx.
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Then

2P1

[
a b

c
; 0

]
=

∫ 1

0

xb−1(1− x)c−b−1dx = B(b, c− b).

Now let

2F1

[
a b

c
;λ

]
:= B(b, c− b)−1

2 P1

[
a b

c
;λ

]
=

∞∑

k=0

(a)k(b)k
(c)k

λk

k!
,

where (a)k := a(a + 1) · · · (a + k − 1) = Γ(a+k)
Γ(a) . Gauss hypergeometric functions

2F1

[
a b

c
;λ

]
satisfy many nice symmetries, see [1].

Let p be an odd prime, Fq be a finite field of size q = pe. Use F̂×
q to denote the

set of all multiplicative characters on F×
q . For each χ ∈ F̂×

q , we use χ to denote its

complex conjugation. Let ε be the trivial character. For each χ ∈ F̂×
q , including ε,

we assume χ(0) = 0. Let Ψ be a non-trivial additive character of Fq. Define the

Gauss sum of χ ∈ F̂×
q as g(χ) :=

∑
x∈F

×

q
χ(x)Ψ(x). The Jacobi sum of A,B ∈ F̂×

q

is defined as J(A,B) =
∑

x∈Fq
A(x)B(1− x). It is well-known to the experts that

Gauss sums (resp. Jacobi sums) are finite field analogues of the gamma (resp.
beta) function. To be more explicit, there is a dictionary between the complex
and finite field settings, see [4]. Below we assume q ≡ 1 mod N .

1
N ↔ a primitive character ηN of order N

a = i
N , b = j

N ↔ A,B ∈ F̂×
q , A = ηiN , B = ηjN

xa ↔ A(x)
−a ↔ A
Γ(a) ↔ g(A)

B(a, b) ↔ J(A,B)∫ 1

0
dx ↔ ∑

x∈F

Base on the above dictionary, we define the finite field period functions by:

2P1

[
A B

C
;λ; q

]
:=
∑

x∈Fq

B(x)CB(1− x)A(1− λx),

with

2P1

[
A B

C
; 0; q

]
= J(B,CB)

Now we define the finite field hypergeometric functions.

2F1

[
A B

C
;λ; q

]
:= J(B,CB)−1

2P1

[
A B

C
;λ; q

]
.

These 2F1 functions satisfy many properties parallel to the classical 2F1 functions.

Coming back to the generalized Legendre curves X
[N ;i,j,k]
λ , we assume 0 ≤

i, j, k < N,N ∤ i + j + k, λ ∈ Q \ {0, 1} so that the corresponding curve is an N -
cold cyclic cover of BCP 1 which ramifies at 0,1,∞, 1/λ. Wolfhart gave an explicit
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way to compute the period lattice using hypergeometric functions. Meanwhile,

to compute the number of points on X
[N ;i,j,k]
λ over Fq, we will need character

sums of the form η(xi(1 − x)j(1 − λx)k) with ηN = ε, which can be written
explicitly as period functions 2P1 over finite fields. Thus the period functions

provide a way to compute the Galois representations associate with J
[N ;i,j,k]
λ of

Gal(Q/Q(λ, e2πi/N )). The symmetries of classical hypergeometric functions can

be transferred to the Galois representations of X
[N ;i,j,k]
λ . On the other hand, one

has

Lemma 1.

2P1

[
A B

C
;λ

]
= C(λ)CAB(λ− 1)

J(B,CB)

J(A,CA)
2P1

[
A B

C
;λ

]
,

In terms of Galois representation, when λ ∈ Q, this Lemma relates the 2-
dimensional Galois representations corresponding the left hand side with its com-
plex conjugation. In the application of finding 2-dimensional abelian varieties with

QM, we will like the factor J(B,CB)

J(A,CA)
on the right corresponds to a finite order char-

acter of Gal(Q/Q(λ, ζN )). By the Hasse conjecture proved by Yamamoto [10],
the corresponding beta quotient has to be an algebraic number. The converse
also holds due to a transcdendal theorem of Wüstholz [9] on periods of abelian
varieties.

Theorem 1 ([2]). Let N = 3, 4, 6, 0 < i, j, k < N ,N ∤ i + j + k. Then for each

λ ∈ Q, the endomorphism algebra of Jprim

λ contains a quaternion algebra over Q
if and only if

B

(
N − i

N
,
N − j

N

)/
B

(
k

N
,
2N − i− j − k

N

)
∈ Q.
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Algebraic modular forms

Joshua M. Lansky, David J. Pollack

We review the theory of algebraic modular forms on connected reductive algebraic
Q-groups G such that G(R) is compact modulo center. Early instances of such
modular forms were studied by Eichler, Ihara, Hashimoto, and Ibukiyama, among
others. Following Gross’s general framework [1], we define the space of algebraic
modular forms M(V,K) of weight V and level K =

∏
Kp to be

M(V,K) = {f : G(Q̂)→ V (Q) such that f(γgk) = γf(g) for γ ∈ G(Q), k ∈ K},

where V is a Q-rational representation of G, and K is an open compact subgroup

of G(Q̂). (Here Q̂ is the ring of finite adeles of Q.) The space M(V,K) carries an
action of the Hecke algebra HK of K-bi-invariant, compactly supported functions

on G(Q̂) given by

Tf(g) =

∫

G(Q̂)

T (x)f(gx)dx

for T ∈ HK .
The compactness mod center of G(R) makes M(V,K) amenable to efficient

calculation. Since irreducible HK-submodules of M(V,K)⊗C correspond to irre-
ducible automorphic representations of G(A) having K-fixed vectors and infinite
component V ⊗ C, such calculations yield information on the automorphic spec-
trum of G.

We outline a method for computing a basis for M(V,K) and the action of HK

on M(V,K) (as in [5]). The assumption on G(R) implies that G(Q)\G(Q̂)/K
is finite. Choosing representatives gi for these double cosets, and letting Γi =
G(Q) ∩ giKg−1

i , we see

M(V,K) ∼= ⊕V Γi .

Note that once we compute representatives gi corresponding to a maximal level
K, it is straightforward to obtain representatives for deeper levels. To find the gi
at a maximal level requires a separate analysis. For example, see [2] in the case
where G is a compact form of GSP4.

To compute the action of the Hecke algebra on M(V,K) we need to decompose
Kp-double cosets into single cosets. We derive a solution to this problem in the case
in which G is split over Qp and Kp is a hyperspecial maximal compact subgroup
of G(Qp) (see [5] and, for a more general decomposition, [4]).
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Theta invariants, infinite dimensional Euclidean lattices and
Diophantine geometry

Jean-Benôıt Bost

1. In the classical analogy between number fields and function fields, an Euclidean
lattice E := (E, ‖.‖) — defined by a free Z-module of finite rank E and some Eu-
clidean norm ‖.‖ on the R-vector space ER := E⊗ZR— appears as the counterpart
of a vector bundle V on a smooth projective curve C over some field k.

In this analogy, the arithmetic counterpart of the dimension

h0(C, V ) := dimk Γ(C, V )

of the space of sections of V is the non-negative real number

h0
θ(E) := log

∑

v∈E

e−π‖v‖2

.

This correspondence goes back to the classical German school of number theory.
Indeed, it is conspicuous when comparing the proof of the meromorphic contin-
uation and functional equation for the zeta function of a number field by Hecke
([Hec17]) and for the zeta function of a function field k(C) (when k is a finite field)
by F. K. Schmidt ([Sch31]).

More recently, the invariant h0
θ(E) has been investigated in the perspective

of Arakelov geometry, notably by Roessler ([Roe93]), van der Geer and Schoof
([vdGS00]) and Groenewegen ([Gro01]).

Another arithmetic counterpart of the dimension h0(C, V ), already introduced
in substance by Weil ([Wei39]) and considered more systematically by Arakelov
and his followers (see for instance [Man85] and [Szp85]), is defined as:

h0
Ar(E) := log |{v ∈ E | ‖v‖ ≤ 1}|.

More generally, for any t ∈ R∗
+, we let:

h0
Ar(E, t) := log |{v ∈ E | ‖v‖2 ≤ t}|.

This talk is devoted to the properties of the invariant h0
θ and of its extension to

certain infinite dimensional generalizations of Euclidean lattices. One may refer
to [Bos15] for more details and proofs.

2. It is possible to compare the two arithmetic counterparts h0
θ(E) and h0

Ar(E) of
the geometric invariant h0(C, V ).
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Theorem 1. For any Euclidean lattice E of positive rank rkE, we have:

(1) −π ≤ h0
θ(E)− h0

Ar(E) ≤ (rkE/2). log rkE + log(1− 1/2π)−1.

The first inequality in (1) is straightforward. The proof of the second one
relies on the techniques introduced by Banaszczyk in his work on transference
inequalities in geometry of numbers ([Ban93]).

To any Euclidean lattice E, we may attach its theta function, namely the func-
tion θE on R∗

+ defined by:

θE(t) :=
∑

v∈E

e−πt‖v‖2

.

By the very definition of h0
θ(E), we have:

h0
θ(E) := log θE(1).

Conversely, for any δ ∈ R, we may define consider the Euclidean lattice

E ⊗O(δ) := (E, e−δ‖.‖)
deduced from E by scaling its norm by the factor e−δ. Then (the logarithm of)
the theta function θE may be seen as an arithmetic counterpart of the Hilbert
function of a vector bundle:

log θE(t) = h0
θ(E ⊗O(−(1/2) log t)).

Theorem 2. For any Euclidean lattice E and any t ∈ R∗
+, the limit

h̃0
Ar(E, t) := lim

n→+∞

1

n
h0
Ar(E

⊕n
, t)

exists and satisfies:

h̃0
Ar(E, t) = sup

n≥1

1

n
h0
Ar(E

⊕n
, t) < +∞.

The function h̃0
Ar(E) and log θE on R∗

+ are real analytic, and respectively con-
cave and convex. They are related by Legendre duality:

for every x ∈ R∗
+, h̃

0
Ar(E, x) = inf

β>0
[πβx + log θE(β)]

and
for every β ∈ R∗

+, log θE(β) = sup
x>0

[h̃0
Ar(E, x)− πβx].

When E is the “trivial” Euclidean lattice (Z, |.|), Theorem 2 may be derived
form the results of Odlyzko and Mazo [MO90].

To establish its general version, in [Bos15] we first prove a generalization of
Cramér’s theorem in the theory of large deviation that is valid, not only on a
probability space, but on some measured space with possibly infinite total mass.
Theorem 2 is a consequence of this generalized Cramér’s theorem applied to the
set E equipped with the counting measure.

This extension of Cramér’s theorem is closely related to the formalism of sta-
tistical thermodynamics. This relation actually suggests some properties of the
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invariants h̃0
Ar(E, t). For instance, the following corollary may be understood as

an avatar of the second law of thermodynamics:

Corollary 1. For any two Euclidean lattices E1 and E2, we have:

h̃0
Ar(E1 ⊕ E2, t) = max

t1,t2>0

t1+t2=t

(
h̃0
Ar(E1, t1) + h̃0

Ar(E2, t2)
)
.

2. The infinite dimensional generalizations of Euclidean lattices we are interested
in, with a view towards Diophantine geometry, are the pro-Euclidean lattices. They
naturally occur as projective limits of countable systems of Euclidean lattices

(2) E• : E0
q0←− E1

q1←− · · · qi−1←− Ei
qi←− Ei+1

qi+1←− . . . .

Here, for every i ∈ N, we have denoted by Ei some Euclidean lattice (Ei, ‖.‖i) and
by qi a surjective morphism of Z-modules

qi : Ei+1−→Ei

such that the norm ‖.‖i on Vi,R coincides with the the quotient norm deduced from
the norm ‖.‖i+1 on Ei+1,R by means of the surjective R-linear map

qi,R := qi ⊗ IdR : Ei+1,R−→Ei,R.

A pro-Euclidean lattice may actually be defined directly, without explicit men-
tion of projective systems of Euclidean lattices, as a triple

Ê := (Ê, EHilb
R , ‖.‖)

consisting in the following data:

• an abelian topological group Ê, isomorphic to Zn (for some n ∈ N)
equipped with the discrete topology, or to ZN equipped with the prod-
uct topology of the discrete topology on each factor Z;
• a dense real vector subspace EHilb

R of the topological real vector space

ÊR := Ê⊗̂ZR, defined as the completed tensor product of Ê by R;
• a norm ‖.‖ on EHilb

R that makes (EHilb
R , ‖.‖) a real Hilbert space; this

Hilbert space topology on EHilb
R is moreover required to be finer than the

topology induced by the topology of ÊR.

To any projective system E• as (2) above, one attaches a pro-Euclidean lattice

lim←−E• := (Ê, EHilb
R , ‖.‖)

by defining Ê as the pro-discrete Z-module Ê := lim←−i
Ei and (EHilb

R , ‖.‖) as the

projective limit, in the category of real normed vector spaces, of the projective
system:

(E0,R, ‖.‖0)
q0,R←− (E1,R, ‖.‖1)

q1,R←− · · · qi−1,R←− (Ei,R, ‖.‖i)
qi,R←− (Ei+1,R, ‖.‖i+1)

qi+1,R←− . . .

To any pro-Euclidean lattice Ê := (Ê, EHilb
R , ‖.‖), we may attach some infinite

dimensional generalizations of the invariant h0
θ(E) previously defined for finite
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dimensional Euclidean lattices. Notably we may consider the invariant in [0,+∞]
defined as:

h0
θ(Ê) := log

∑

v∈Ê∩EHilb
R

e−π‖v‖2

.

Theorem 3. For any projective system of Euclidean lattices E• as in (2) above,
if there exists some δ ∈ R∗

+ such that

∑

i∈N

h0
θ(ker qi ⊗O(δ)) < +∞,

then the pro-Euclidean lattice lim←−E• satisfies

h0
θ(lim←−E•) = lim

i→+∞
h0
θ(Ei) < +∞.

In Diophantine geometry, notably in transcendence theory, one often encounters
problems and constructions that involve some formal geometry over a number
field, or over its ring of integers, together with some complex analysis. The pro-
Euclidean lattices and their θ-invariants h0

θ are precisely devised to investigate the
combination of such formal and analytic data.
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Arithmetic surfaces and successive minima

Christophe Soulé

1) Let F be a number field, OF its ring of integers, and S = Spec (OF ). Consider
a semi-stable curve f : X → S with generic fiber XF , a geometrically connected
curve over K, of genus g ≥ 2. Let ω = ωX/S be the relative dualizing sheaf of X
over S. We endow ω with its Arakelov metric [1]. Consider also an hermitian line
bundle L = (L, h) over X . We let d = deg(L) be the degree of the restriction of L
to XF . We assume that d ≥ 2g−1. The OF -module Λ = H0(X,L) is projective of
rank N = d+1− g. It is equipped with the L2-metric: if s and t are two sections
of L over X(C),

〈s, t〉L2 =

∫

X(C)

h(s(x), t(x)) dv ,

where dv is the probability measure on X(C) defined by ω.

We are interested in studying the OF -lattice Λ = (Λ, 〈 , 〉L2), as well as its dual:

Λ
∗
= (H1(X,ω ⊗ L−1)/torsion, 〈 , 〉L2)

(Serre duality). For any integer k, 1 ≤ k ≤ N we let

µk(Λ) := Inf {µ ∈ R / ∃ e1, . . . , ek ∈ Λ,

linearly independent in Λ⊗ F , and such that log ‖ei‖ ≤ µ for every i = 1, . . . , k}.
We define similarly µk(Λ

∗
).

On the other hand, if M1 and M2 are two hermitian line bundles on X , we
denote by M1 ·M2 ∈ R, the arithmetic intersection number of M1 and M2, a
number introduced by Arakelov [1] and, in this generality, by Deligne.

Our goal is to bound the successive minima µk(Λ) and µk(Λ
∗
) by means of

arithmetic intersection numbers.

2) It follows from the definitions that

µ1(Λ) ≤ µ2(Λ) ≤ . . . ≤ µN (Λ).

Furthermore, the second Minkowski’s theorem (extended to number fields by
Bombieri and Vaaler) asserts that µ1(Λ) + . . . + µN (Λ) is (essentially) equal to

−d̂eg(Λ), the opposite of the arithmetic degree .

The arithmetic Riemann-Roch theorem computes d̂eg(Λ) in terms of arithmetic
intersection numbers (at least if H1(X,L) is torsion-free):

d̂eg(Λ) =
L
2

2
− ω · L

2
+

ω2

12
+ C∞ ,

where C∞ is an analytic constant.

3) The numbers µk(Λ) and µN+1−k(Λ
∗
) are essentially equal, so the following

result can be viewed as an upper bound for µk(Λ).
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Theorem 1. [2, 3]: Let L = ω⊗n+1, n ≥ 1. Assume k < (g − 1)n. Then

µk(Λ
∗
) ≥ k + n

4g(g − 1)

ω2

[F : Q]
− C(g, n).

4) Assume d = deg(L) is even and let

n = d− 2g + 2.

Theorem 2. [4]

µ d
2+1(Λ

∗
) ≥ (ω − L)2

2n[F : Q]
− C(g, d).

5) Assume d ≥ 2g + 1. Let

µ(Λ) =
µ1(Λ) + . . .+ µN (Λ)

N
.

Theorem 3. [5]

L
2

[F : Q]
+ 2dµ(Λ) ≥ 2dg(d− 2g)

d2 + d− 2g2
(µ(Λ)− µ1(Λ))− C∞.
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Perfect forms over CM quartic fields

Dan Yasaki

Let F number field, with ring of integersO, and let n be a positive intger. A perfect
form over F is form that is uniquely determined by its arithmetic minimum and
set of minimal vectors. For fixed F and n, there are finitely many perfect n-ary
forms up to the equivalence of GLn(O). Work of Voronoi [8], generalized by Ash
[1] and Koecher [6], gives an algorithm for computing explicit representatives for
each equivalence class. The representatives give rise to a decomposition of the
symmetric space X associated to the real points of the restriction of scalars of the
general linear group over F . One first identifies X with a cone C of forms up to
humoured. Then there is a collection Σ of polyhedral cones so that

⋃

σ∈Σ

σ ∩ C = C,

and Σ gives a reduction theory in the following sense.
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(1) There are finitely many GLn(O)-orbits in Σ.
(2) Each y ∈ C is contained in a unique open cone in Σ.
(3) For each σ ∈ Σ with σ ∩ C 6= ∅, the stabilizer of σ is finite.

The codimension 0 cones in Σ can be described in terms of perfect forms over F .
The collection Σ induces a tessellation of X .

The tessellation allows one to compute the Voronoi complex that can be used
to explicitly compute certain spaces of cuspidal automorphic forms on GL2. For
n = 2 and F = Q, the tessellation is the well-known triangulation of the upper
half-plane given by the SL2(Z)-orbit of the ideal triangle with vertices at 0, 1, and
∞. Similar tessellations have been computed by Cremona and his students [2, 3, 7]
for hyperbolic 3-space for the purposes of computing Bianchi modular forms, the
case where F is a complex quadratic field.

There has not been many computations done for CM quartic fields. See [4, 9]
for Q(ζ5) and [5] for Q(ζ12). The current project classifies perfect forms up to
equivalence for 26 different CM quartic fields as a first step to explore cuspidal
automorphic forms on GL2 over these other fields.
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Fundamental domains of arithmetic quotients of reductive groups

Takao Watanabe

Let G be a connected reductive algebraic group defined over a number field k.
Assume G is k-isotropic. A domain Ω in the adele group G(A) is called a funda-
mental domain (abbreviated as f.d.) for G(k)\G(A) if Ω is contained in the closure
(Ω◦)− of the interior Ω◦of Ω, G(k)(Ω◦)− = G(A) and γΩ◦ ∩ (Ω◦)− is empty for
all γ ∈ G(k) \ {e}. Our purpose is to construct a f.d. for G(k)\G(A)1, where
G(A)1 = {g ∈ G(A) : |χ(g)|A = 1 for ∀χ ∈ Homk(G,Gm)}. Fix a maximal
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k-parabolic subgroup P ⊂ G. Denote by Z a maximal central k-split torus of G
and by K a maximal compact subgroup of G(A). We choose a generator αP ∈
Homk(P/Z,Gm) appropriately and then define the height HP : G(A) −→ R>0 by
HP (pk) = |αP (p)|−1

A for p ∈ P (A), k ∈ K. The arithmetical minimum mP (g) for
g ∈ G(A)1 is defined to be minx∈XP HP (xg), where XP denotes P (k)\G(k). Then
XP (g) = {x ∈ XP : mP (g) = HP (xg)} is a finite subset of XP by Northcott’s
theorem. Denote by R1 the domain {g ∈ G(A)1 : XP (g) = {e} } in G(A)1 ,
where e ∈ XP is the trivial class. Let R−

1 denote the closure of R1 in G(A)1. Our
results are stated as follows:

(1) R1 is an open P (k) invariant set, G(k)R1 is dense in G(A)1 and G(k)R−
1 =

G(A)1.
(2) For γ ∈ G(k), γR1 ∩ R

−
1 is nonempty if and only if γ ∈ P (k).

(3) If ΩP is a f.d. for P (k)\R−
1 , then ΩP yields a f.d. for G(k)\G(A)1 and any

local maximum of mP is attained on the boundary ∂ΩP ∩ ∂R1.

In the case of G = GLn, we can construct ΩP explicitly. In particular, if P is a
maximal parabolic subgroup whose Levi subgroup is isomorphic with GL1×GLn−1,
then ΩP yields a generalization of Korkine–Zolotarev reduction domain.
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Practical computation of Hecke operators

Mathieu Dutour-Sikirić

The computation of automorphic forms for a group Γ is a major problem in number
theory. The only known computational way to approach the higher rank cases is
by computing the action of Hecke operators on the cohomology (see [1]).

Henceforth, we consider the explicit computation of the cohomology by using
cellular complexes invariant under the group. For the group GLn(Z) there are
many possible invariant complexes:

• The perfect form theory (Voronoi I) for lattice packings (full face lattice
known for n ≤ 7, perfect domains known for n ≤ 8)
• The central cone compactification (Igusa & Namikawa) (Known for n ≤ 6)
• The L-type reduction theory (Voronoi II) for the Delaunay tessellations
(Known for n ≤ 5)
• The C-type reduction theory (Ryshkov & Baranovski) for edges of Delau-
nay tessellations (Known for n ≤ 5)
• The Minkowski reduction theory it uses the successive minima of a lattice
to reduce it (Known for n ≤ 7) not face-to-face.
• Venkov’s reduction theory also known as Igusa’s fundamental cone (finite-
ness proved by Crisalli and Venkov)
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Thus the Voronoi I decomposition known as perfect form is the most appropriate
from the computational viewpoint. For an element g in GLn(Q) we can consider
the action on the perfect form cellular complex. For rank 1 extreme rays the
action can be done trivially. For higher dimensional faces, this is more complex
and requires the solution of linear system over the full cellular complex. This
approach generalizes the one of [2] and can in principle be applied to a ring of
integers.

The solution of such large systems becomes problematic. As it turns out we need
methods for finding sparse solution of linear systems. Here we use the approach of
Compressed Sensing where this problem is named “basis pursuit” and implemented
the approach of [3] in C++.

For the exceptional symplectic group Sp4(Z) there exist a special complex on
which the group acts (see [4] for details). We then explain how the element of
Sp4(Q) can be made to act on this complex and allow to find the Hecke operators.
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One-class genera of positive definite Hermitian forms

Markus Kirschmer

Let E/K be a CM-extension of number fields with non-trivial Galois automor-
phism : E → E. Let V be a vector space over E of rank m ≥ 3 equipped with a
definite hermitian form Φ: V × V → E, i.e.

• Φ(ax+ x′, y) = aΦ(x, y) + Φ(x′, y) for all a ∈ E and x, x′, y ∈ V .

• Φ(x, y) = Φ(y, x) for all x, y ∈ V .
• Φ(x, x) it totally positive for all non-zero x ∈ V .

Let ≀,O be the maximal orders of K and E respectively. Two lattices in (V,Φ),
i.e. finitely generated O-submodules of V of full rank, are said to be in the same
genus if their completions are isometric everywhere. The genus gen(L) of a lattice
L consists of finitely many isometry classes, say represented by L1, . . . , Lh(L). The
goal of this talk is to describe a method to enumerate the lattices L with class
number h(L) ≤ B for some small integer B. In particular, for B = 1 this yields
the one-class genera i.e. the lattices for which the local-global principle holds. The
method depends on (1) some reduction maps and (2) Siegels mass formula.

Given a prime ideal P of O, we define the map ρP on the set of lattices in V
by L 7→ L + (P−1L ∩ PL#) where L# = {x ∈ V | Φ(x, L) ⊆ O}. These maps
have been used by Gerstein in [2] and generalize Watson’s p-maps [3]. Clearly,
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h(L) ≥ h(ρP(L)) and after rescaling and applying these maps ρP(L) repeatedly,
one can assume that L is A-squarefree, i.e.

• pL#
p ⊆ Lp ⊆ L#

p for all prime ideals p of ≀.
• A ⊆ {Φ(x, y) | x, y ∈ L} ⊆ O where A is an integral ideal of O that only
depends on (the narrow class group of) K.

So the main problem is to enumerate the A-squarefree lattices L with h(L) ≤ B.

Themass of L is the rational number mass(L) :=
∑h(L)

i=1
1

#Aut(Li)
where Aut(Li)

denotes the stabilizer of Li in the unitary group of (V,Φ). Siegel’s celebrated mass
formula shows that mass(L) can be expressed as follows:

mass(L) = 21−m[K:Q] ·
m∏

i=1

L(χi, 1− i) ·
∏

p

λ(Lp) .

Here χ be the non-trivial character of Gal(E/K) and L(χi) is the L-series with
character χi. The local factors λ(Lp) are known in almost all cases, c.f. [1] for
details. In the talk we will see how to compute the local factors for squarefree
lattices which are not already known.

Siegel’s mass formula and the analytic class number formula show that

(∗) B ≥ #µ(E)·mass(L) ≥ cm·disc(m
2−1)/2

K ·NrK/Q(discE/K)m
′−1/2 ·

∏
p
λ(Lp)

︸ ︷︷ ︸
≥1

.

Here µ(E) is the group of roots of unity in E, m′ = m(m− (−1)m)/4, cm is a
constant, discK is the absolute value of the discriminant of K and discE/K is the
relative discriminant of E/K.

(1) Eq. (∗) yields an upper bound on discK and thus all possible base fields
K.

(2) For K fixed, eq. (∗) leaves only finitely many possibilites for discE/K .
Using class field theory, this gives all possible extensions E/K.

(3) For E and K fixed, eq. (∗) leaves only finitely many possibilities for
{p | λ(Lp) > 1} since λ(Lp) > NrK/Q(p)

m−1/2 if λ(Lp) > 1. This gives
finitely many possibilities for the genus of L.
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Simultaneous computation of Hecke operators

Sebastian Schönnenbeck

Let G be a connected semisimple linear algebraic group defined over Q such that
G(R) is compact. We fix an open and compact subgroup K ≤ G(Af ) and a Q-
rational representation V of G (where Af denotes the finite adeles of Q). Following
Gross (cf. [1]) we define the space of algebraic modular forms of levelK and weight
V as follows:

M(V,K) :=
{
f : G(Af )→ V | f(gγk)=gf(γ) for γ∈G(Af),

g∈G(Q),k∈K

}
.

This is a finite-dimensional vector space which comes equipped with an action of
the Hecke algebra HK = H(G,K) of compactly supported K-bi-invariant func-
tions on G(Af ) (with multiplication given by convolution). With respect to the
natural basis of characteristic functions on double cosets ofK this action is given as
follows: For γ ∈ G(AK) we decompose KγK =

⊔
i γiK and thus get the operator

T (γ) = T (KγK) acting via

(T (γ)f)(x) =
∑

i

f(xγi).

As long as the group G is sufficiently well-behaved it is possible to explicitly
compute these double coset decompositions and thus determine the action of HK

on M(V,K) (cf. the talk of Joshua Lansky and David Pollack as well as their
article [2]). Here we want to present an approach using the adjacency relation in
the local affine buildings of G to compute the action of several Hecke operators at
once.

To that end let now K1 and K2 be two open and compact subgroups of G(Af ).
We fix coset representatives K1 =

⊔
i li(K1 ∩K2) and K2 =

⊔
j mj(K1 ∩K2).

Definition 1. (1) We define the transfer operator T 1
2 = T (K1,K2) via

T 1
2 : M(V,K1)→M(V,K2), (T 1

2 f)(x) =
∑

j

f(xmj).

(2) We define the Venkov element ν1,2 = ν(K1,K2) with respect to K1 and
K2 as

ν(K1,K2) =
∑

i,j

1limjK1 ∈ HK1 .

Note that one can equivalently think of T (K1,K2) as a kind of Hecke operator
corresponding to the double coset K2idK1.

Lemma 1. The following holds:

(1) The operators T (K1,K2) and T (K2,K1) are adjoint to each other with
respect to suitably defined scalar products on the spaces M(V,K1) and
M(V,K2).

(2) T (K2,K1)T (K1,K2) acts as the Hecke operator T (ν(K1,K2)) on the space
M(V,K1).
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In applications it is often far less expensive to compute the operator T (K1,K2)
than the action of an arbitrary Hecke operator in HK1 . Hence if we have control
over the double cosets appearing in ν(K1,K2) (and their coefficients) we can po-
tentially use this method to determine the action of the Hecke algebra. Our main
result is, that we can explicitly write down the decomposition in certain situations:

Theorem 1. Let G be simply connected, Ki =
∏

p Ki,p products of local factors

with K1,p = K2,p for all p 6= q and K1,q,K2,q parahoric subgroups of G(Qq), which

contain a common Iwahori subgroup I. Let W̃ be the extended affine Weyl group

and Wi ≤ W̃ with Ki,q = IWiI, W1,2 = W1 ∩W2 and [W1,2\W2/W1,2] a system
of representatives of elements of shortest lengths. Then the following holds:

ν1,2 =
∑

κ∈[W1,2\W2/W1,2]

[I(W1 ∩ κW1)I : I(W1 ∩ κW1 ∩W2)I]1K1κK1 .

A similar result still holds if G is no longer simply connected.
For simply connected groups of type Cn the method turns out to be particularly

powerfull and the action of the whole (local) Hecke algebra can be computed using
transfer operators.

Theorem 2. Let G be of type Cn simply connected, K1 as above with K1,q hy-
perspecial. If Ki,q, 2 ≤ i ≤ n+ 1, runs through the n further conjugacy classes of
maximal parahoric subgroups, then the corresponding elements ν(K1,Ki) form a
minimal generating system for the local Hecke algebra HK1,q .

Since T 1
2 T

2
1 also constitutes a Hecke operator (acting on M(V,K2)) using this

method in the Cn case we get 2n Hecke operators (plus some additional informa-
tion) out of n computations.
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Perfect forms of rank 6 8, triviality of K8(Z) and the
Kummer/Vandiver conjecture

Philippe Elbaz-Vincent

The author is partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-

01) and the ANR ARRAND.

The following work builds on previous joint work with H. Gangl and C. Soulé [4]
and ongoing works with M. Dutour Sikiric and J. Martinet.

For any positive integer n we let Sn be the class of finite abelian groups the order
of which has only prime factors less than or equal to n.
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1. Voronöı theory

Let N > 2 be an integer. We let CN be the set of positive definite real quadratic
forms inN variables. Given h ∈ CN , letm(h) be the finite set of minimal vectors of
h, i.e. vectors v ∈ ZN , v 6= 0, such that h(v) is minimal. A form h is called perfect
when m(h) determines h up to scalar: if h′ ∈ CN is such that m(h′) = m(h),
then h′ is proportional to h. Denote by C∗

N the set of non-negative real quadratic
forms on RN the kernel of which is spanned by a proper linear subspace of QN ,
by X∗

N the quotient of C∗
N by positive real homotheties, and by π : C∗

N → X∗
N the

projection. Let XN = π(CN ) and ∂X∗
N = X∗

N −XN . Let Γ be either GLN (Z) or
SLN (Z). The group Γ acts on C∗

N and X∗
N on the right by the formula

h · γ = γt h γ , γ ∈ Γ , h ∈ C∗
N ,

where h is viewed as a symmetric matrix and γt is the transpose of the matrix γ.
Voronöı proved that there are only finitely many perfect forms modulo the action
of Γ and multiplication by positive real numbers [10](Thm. p.110). The following
table gives the current state of the art on the enumeration of perfect forms.

rank 1 2 3 4 5 6 7 8 9

#classes 1 1 1 2 3 7 33 10916 > 500000

The classification of perfect forms of rank 8 was achieved by Dutour Sikiric,
Schürmann and Vallentin in 2005 [2]. We refer to the book of Martinet [7] for
more details on the results up to rank 7. Given v ∈ ZN − {0} we let v̂ ∈ C∗

N be
the form defined by

v̂(x) = (v | x)2 , x ∈ RN ,

where (v | x) is the scalar product of v and x. The convex hull in X∗
N of a finite

subset B ⊂ ZN − {0} is the subset of X∗
N which is the image under π of the

quadratic forms
∑
j

λj v̂j ∈ C∗
N , where vj ∈ B and λj > 0. For any perfect form

h, we let σ(h) ⊂ X∗
N be the convex hull of the set m(h) of its minimal vectors.

Voronöı proved in [10](§§8-15), that the cells σ(h) and their intersections, as h
runs over all perfect forms, define a cell decomposition of X∗

N , which is invariant
under the action of Γ. We endow X∗

N with the corresponding CW -topology.
According to [1](VII.7), there is a spectral sequence Er

pq converging to the

equivariant homology groupsHΓ
p+q(X

∗
N , ∂X∗

N ;Z) of the homology pair (X∗
N , ∂X∗

N),
and such that

E1
pq =

⊕

σ∈Σ⋆
p

Hq(Γσ,Zσ) ,

where Zσ is the orientation module of the cell σ and Σ⋆
p is a set of representatives,

modulo Γ, of the p-cells σ in X∗
N which meet XN . Since σ meets XN , its stabilizer

Γσ is finite and, by [4], when q is positive, the groupHq(Γσ,Zσ) lies in SN+1. When
Γσ happens to contain an element which changes the orientation of σ, the group
H0(Γσ,Zσ) is killed by 2, otherwise H0(Γσ,Zσ) ∼= Zσ. The resulting complex
(E1

•,0, d
1
•) (see [4]) will be denoted by VorΓ, and we call it the Voronöı complex.

In [4], VorΓ has been computed for Γ = GLN (Z), SLN (Z) up to N = 7. Due



Lattices and Applications in Number Theory 119

to the number of perfect forms in rank 8, it is not possible to use this method.
Fortunately, in order to get the information on K8(Z), we only need to know the
8-cells of the Voronöı complex associated to GL8(Z).

2. The 8−dimensional cells of VorGL8(Z)

Using his previous work [6], Martinet has shown that one can compute all the
possible sublattices of finite index associated to “well-rounded” cells. The lattices
L with perfection ranks equal to n contain a unique sublattice L′ generated by
minimal vectors of L, and L′ has a unique basis up to permutation and changes of
signs. Hence the classification of minimal classes (modulo the action of GL8(Z))
coincide with the following index classification.

i = 1 2 3 4 22 5 6 7 8 4 · 2 total

n = 8 1 4 2 4 1 1 0 0 0 0 13

Hence, there are 13 classes (modulo GL8(Z)) of 8−dimensional cells (see also the
Table 1 of [3]). We can find those classes by generating randomly 8−dimensional
cells from the simplicial perfect forms of rank 8 and computing their relative
spectrum (see [4]). It turns out that they all have their orientations changed by
their stabilizers.

Proposition 1. The group H8(VorGL8(Z)) is trivial modulo S2.

3. Application to K8(Z) and the Kummer/Vandiver conjecture

Let Q (resp. QN ) be the category defined by Quillen [8] made of free Z-modules
of finite rank (resp. of rank at most N). If BQ is the classifying space of Q, we
get (by the very definition) Km(Z) = πm+1(BQ). We also have the Hurewicz map
hm : Km(Z) → Hm+1(BQ,Z), and HN (BQ) ∼= HN (BQN ). Quillen (op. cit.)
proved that there are long exact sequences

· · · → Hm(BQN−1,Z)→ Hm(BQN ,Z)→ Hm−N (GLN (Z), StN )

→ Hm−1(BQN−1,Z)→ · · · ,
and, according to Lee and Szczarba [5] , H0(GLN (Z), StN ) = 0 when N > 1. From
the computations of [4] and the results of the previous section, we get

Proposition 2. The group H9(BQ) is trivial modulo S7.
Pushing further the techniques used in [4] on the Hurewicz map h8, we get

Proposition 3. The p-torsion of the kernel of h8 is bounded by 5.

Finally, using the fact that the p-torsion part of K8(Z) is trivial if p is a regular
prime (see [11]).

Theorem 1. The group K8(Z) is trivial.
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Let Q(ζp) be the cyclotomic extension of Q obtained by adding p-th roots of
unity and C be the p-Sylow subgroup of the class group of Q(ζp). The group
∆ = Gal(Q(ζp)/Q) ∼= (Z/p)× acts upon C via the Teichmüller character ω : ∆→
(Z/p)×, with g(x) = xω(g) and xp = 1. For all i ∈ Z let

C(i) = {x ∈ C such that g(x) = ω(g)ix for all g ∈ ∆} .
The subgroup C+ of C fixed by the complex conjugation Q(ζp) is the direct sum

of the groups C(i) for i even and 0 6 i 6 p− 3. The Kummer/Vandiver conjecture
states (see [9]) that the groups C(i) vanish for i even and 0 6 i 6 p− 3. From the
triviality of K8(Z) we deduce.

Corollary 1. The groups C(p−5) are zero for all odd prime p.
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The Gaussian core model in high dimensions

Henry Cohn

(joint work with Matthew de Courcy–Ireland)

In the Gaussian core model, point particles interact via a Gaussian pair potential
[3]. Given a configuration C of particles in Rn, the energy of a particle x ∈ C is
given by

Eα(x, C) =
∑

y∈C\{x}

e−α|x−y|2.
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The energy Eα(C) of C is the average of Eα(x, C) over all x ∈ C. The density of
C is the number of particles per unit volume in space. Energy and density are
well-defined for periodic configurations, among others.

What are the ground states of this system? In other words, if we fix the density
of C to be 1 (so that the particles do not simply recede to infinity), how low can
Eα(C) reach? In low dimensions many intricate phenomena occur [2], but little is
known about high dimensions.

What is known follows from an averaging argument. Specifically, the Siegel
mean value theorem implies that the expected energy of a random lattice of deter-
minant 1 is (π/α)n/2. Thus, the ground state energy is no higher than this bound.
For example, the simplest case is α = π, in which case the ground state energy is
at most 1.

We prove that for fixed α < 4π/e, the ground state energy of the Gaussian core

model for density 1 and potential function r 7→ e−αr2 is asymptotic to (π/α)n/2

as n→∞ (in the sense that their ratio tends to 1). Thus, the averaging argument
based on the Siegel mean value theorem is asymptotically sharp for α < 4π/e, and
random lattices are the ground states. We do not know whether it is sharp for
larger values of α.

The proof uses the linear programming bounds from Section 9 of [1], as well as
analogies with Beurling-Selberg extremal problems in analytic number theory.
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[2] H. Cohn, A. Kumar, and A. Schürmann, Ground states and formal duality relations in the
Gaussian core model, Phys. Rev. E (3) 80 (2009), no. 6, 061116, 7 pp.

[3] F. H. Stillinger, Phase transitions in the Gaussian core system, J. Chem. Phys. 65 (1976),
no. 10, 3968–3974.

Lattices from Abelian groups

Lenny Fukshansky

(joint work with Albrecht Böttcher, Stephan Ramon Garcia, Hiren Maharaj)

Function field lattices were originally introduced by Rosenbloom and Tsfasman
in [7], where they were studied for their good asymptotic packing density proper-
ties. This construction is reviewed in [10] as follows. Let F be an algebraic function
field (of a single variable) with the finite field Fq as its full field of constants. Let
P = {P0, P1, P2, . . . , Pn−1} be the set of rational places of F . Corresponding
to each place Pi, let vi denote the corresponding normalized discrete valuation
and let O∗

P be the set of all nonzero functions f ∈ F whose divisor has support
contained in the set P . Then O∗

P is an Abelian group,
∑n

i=1 vi(f) = 0 for each

f ∈ O∗
P , and we let deg f :=

∑
vi(f)>0 vi(f) = 1

2

∑n−1
i=0 |vi(f)|. Define the ho-

momorphism φP : O∗
P → Zn (here n = |P|, the number of rational places of F )
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by φP(f) = (v0(f), v1(f), . . . , vn−1(f)). Then LP := Image(φP ) is a finite-index
sublattice of the root lattice An−1.

We discuss an algebraic construction of lattices which generalizes the func-
tion field lattices. Given a finite Abelian group G and a subset S = {g0 :=
0, g1, . . . , gn−1} of G, we define the sublattice LG(S) of An−1 by

(1) LG(S) =



X = (x0, . . . , xn−1) ∈ An−1 :

n−1∑

j=1

xjgj = 0



 .

The general problem we consider is the following.

Investigate geometric properties of lattices LG(S). Specifically, what are their
minimal norms and determinants? How many minimal vectors do these lattices
have? Are they well-rounded? Generated by their minimal vectors? Have bases of
minimal vectors? What can be said about their automorphism groups?

The answers to these questions certainly depend on the group G and the set S.
As the result of the abstract construction of function field lattices outlined above,
we obtain LP = LG(S), where S = {[Pi − P0] : 0 ≤ i ≤ n− 1} is a set of divisor

classes and G is the subgroup of the divisor class group Cl0(F ) generated by S.
Thus, in this case S is not simply a subset of G, but a generating set for G, and
lattices defined in (1) are a generalization of function field lattices. In [5], [1], [3]
we addressed the questions raised above in several situations:

• The field F is the function field of an elliptic curve of a finite field, in which
case G = S and the groups that can appear this way are always of the
form Z/m1Z×Z/m2Z (with further restrictions on the pairs (m1,m2)) as
characterized by Rück [8].
• The Abelian group G is arbitrary, but the set S coincides with all of G;
this is a generalization of function field lattices from elliptic curves.
• The field F is a Hermitian function field, in which case the generating set
S is a proper subset of the group G.

Here we state our results. For an Abelian group G, write LG for the lattice
LG(G). The automorphism group Aut(LG) can be identified with a finite subgroup
of GLn−1(Z). We also identify Sn−1, the group of permutations on n− 1 letters,
with the corresponding subgroup of GLn−1(Z) consisting of permutation matrices.

Theorem 1 ([1]). Let G be an Abelian group of order n. Then:

(1) For every G, detLG = n3/2.

(2) |LG| =





√
8 if G = Z/2Z,√
6 if G = Z/3Z,

2 for every other G.
(3) For G = Z/4Z, the lattice LG is not well-rounded.
(4) For every G 6= Z/4Z, the lattice LG has a basis of minimal vectors.
(5) For every G, Aut(LG) ∩ Sn−1

∼= Aut(G).

As mentioned above, the lattices coming from elliptic curves via the Rosenbloom-
Tsfasman construction were considered in [5] and [9], and they are a special case of
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the lattices LG in Theorem 1. In addition to these results, we also have a formula
for the number of minimal vectors in lattices LG.

Theorem 2. Assume that n ≥ 4 and let κ denote the order of the subgroup
G2 := {x ∈ G : 2x = 0} of G. Then the number of minimal vectors in LG is

(2)
n

κ
· (n− κ)(n− κ− 2)

4
+
(
n− n

κ

)
· n(n− 2)

4
.

The result of Theorem 2 was established for lattices from elliptic curves in [5],
but the argument is the same for any lattice of the form LG. Furthermore, we
obtained bounds for the covering radii of the lattices LG. Recall that the covering
radius of a lattice L is defined as

(3) µ(L) = inf

{
r ∈ R>0 :

⋃

X∈L

(B(r) +X) = spanR L

}
,

where B(r) is the ball of radius r centered at the origin in spanR L. In [9], Min
Sha, building on our previous results from [5], proved that

(4) µ(LG) ≤ µ(An−1) +
√
2,

where

µ(Am) =

{
1
2

√
m+ 1 if m is odd,

1
2

√
m+ 1− 1/(m+ 1) if m is even;

see [4, Chap. 4, Sec. 6.1]. In [1], we derived an improvement of (4) for the case
when G is a cyclic group:

(5) µ
(
LZ/nZ

)
<

1

2

√
(n− 1) + 4 log(n− 2) + 7− 4 log 2 + 10/(n− 1).

We also have some partial results on the properties of the lattices LG(S) in the
more general situation when S is a proper subset of G containing the identity. Sup-
pose |G| = n, |S| = m ≤ n. Define Aut(G,S) := {σ ∈ Aut(G) : σ(g) ∈ S ∀g ∈ S}.
Notice that every element of Aut(G) fixes 0 and permutes the other elements of
G, which allows us to identify Aut(G) with a subgroup of Sn−1, the group of per-
mutations on n− 1 letters. Think of Sm−1 as the subgroup of Sn−1 consisting of
all permutations of the corresponding subset S \ {0} of m − 1 letters. Each ele-
ment of Aut(G,S) induces a permutation of S, and hence gives rise to an element
of Sm−1. Let us write Aut(G,S)∗ for the group of permutations of S which are
extendable to automorphisms of G. In other words, every element of Aut(G,S)∗

is a restriction σ|S : S → S of some element σ ∈ Aut(G,S) and every element of
Aut(G,S) arises as an extension τ̂ : G→ G of some element τ ∈ Aut(G,S)∗.

Theorem 3 ([3]). Aut(G,S)∗ is isomorphic to a subgroup of Aut(LG(S))∩Sm−1.
If S is a generating set for G, then Aut(G,S)∗ ∼= Aut(LG(S)) ∩ Sm−1.

More concretely, if the lattice LG(S) comes from a Hermitian curve

(6) yq + y = xq+1

over a finite field Fq2 , where q is a prime power, we obtained some further results.
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Theorem 4 ([3]). If LG(S) comes from a Hermitian curve as in (6), then:

(1) |LG(S)| =
√
2q and detLG(S) =

√
q3 + 1(q + 1)q

2−q.
(2) The lattice LG(S) is generated by minimal vectors.
(3) The lattice LG(S) contains at least q7 − q5 + q4 − q2 minimal vectors.

Additional observations on these lattices involve a connection to spherical de-
signs. Let n ≥ 2. A collection of points y1, . . . ,ym on the unit sphere Σn−2 in
Rn−1 is called a spherical t-design for some integer t ≥ 1 if

∫
Σn−2

f(X) dν(X) =
1
m

∑m
k=1 f(yk) for every polynomial f(X) = f(X1, . . . , Xn−1) with real coefficients

of degree ≤ t, where ν is the surface measure normalized so that ν(Σn−2) = 1.
For n = 2, this means that f(−1) · 12 + f(1) · 12 = 1

m

∑m
k=1 f(yk) with y1, . . . , ym ∈

{−1, 1}. Recall that a full-rank lattice in Rn−1 is called strongly eutactic if its set of
minimal vectors (normalized to lie on the unit sphere) forms a spherical 2-design.
Strongly eutactic lattices are of great importance in extremal lattice theory (see
[6]). The lattices LG coming from Abelian groups are full-rank sublattices of An−1

and may hence be viewed as full-rank lattices in Rn−1. For these lattices, we have
the following result.

Theorem 5 ([2]). The lattice LG is strongly eutactic if and only if the Abelian

group G has odd order or G = (Z/2Z)k for some k ≥ 1.
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Representation numbers and their averages

Rainer Schulze-Pillot

Let (V,Q), (W,Q′) be positive definite quadratic spaces over Q of dimensions
m,n with associated symmetric bilinear forms B,B′ and b = 2B, b′ = 2B′, with
B(x, x) = Q(x). Let Λ be a Z-lattice on V with Gram matrix A, N a Z-lattice on
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W with Gram matrix T with respect to B, T = (t) if n = 1. The genus of Λ is
denoted by gen(Λ).

Definition 1 (Representation numbers).

r(Λ, N) =#{φ : N → Λ | φ an isometric embedding }
=#{X ∈Mm,n(Z) | tXAX = T }
=r(A, T ) = r(Λ, T ).

r∗(Λ, N) = r∗(A, T ) counts primitive representations, i.e, representations satsis-
fying Λ ∩Qφ(N) = φ(N) resp. X has elementary divisors 1.

The first part of the talk gave a survey of known results on asymptotic formulae
for these representation numbers and of results about existence of representations
of T by Λ for sufficiently large minimum of T .

The best known asymptotic results are for m ≥ 2n+3 for general n (Raghavan,
Kitaoka [6, 4]) and for m = 3, 4 for n = 1 (Kloosterman [5], Tartakovski [7],
Duke/Schulze-Pillot [2], not effective for m = 3), the best known existence results
are for m ≥ n+ 3 (Ellenberg, Venkatesh [3]) and are at present not effective.

In particular, results of either type appear to be out of reach at present for
n > 1 with m− n = 2.

Recently, Einsiedler, Lindenstrauss, Michel and Venkatesh announced a differ-
ent type of result for the case m = 4, n = 2:

Theorem 1 (Einsiedler, Lindenstrauss, Michel, Venkatesh, 2012). Let Λ be an
ideal of a maximal order in a definite quaternion algebra B over Q, fix a prime p
not ramified in B and 0 < δ < 1

2 .

Let −d run over negative fundamental discriminants with p split in Q(
√
−d)

and Q(
√
−d) ⊆ B, for each such d fix a set Sd of classes of binary quadratic forms

of discriminant −d with |Sd| ≥ dδ.
Then for d sufficiently large all Λ′ ∈ gen(Λ) represent some T ∈ Sd.
For Sd(c) = {T | det(T ) = d, c ≤ min(T ) ≤ d

1
2−δ} and c large enough, all

T ∈ Sd(c) are represented by all Λ′ ∈ gen(Λ).

This new approach suggests to consider the following problems:

(1) Study representations of forms in subsets Sd of Td := {T | det(T ) = d} by
individual Λ or by all Λ′ ∈ gen(Λ).

(2) How many T ∈ Td are represented by a given Λ?
(3) What is the average rav(Λ, d) over the T ∈ Td of r(Λ, T )?
(4) Can we compute the asymptotics of this average?

The rav(Λ, d) are known from the theory of Siegel modular forms: They are the
coefficients of the Koecher-Maaß Dirichlet series of the Siegel theta series of Λ.

To compute averages rav(Λ, d) :=
∑

det(T )=d
r(Λ,T )
#O(T ) over T with det(T ) = d

fixed connect this to
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• pairs of representations of d by two ternary Z-lattices Li, Lj associated to
Λ = Iij in the case of square determinant. (Böcherer/SP [1])
• representations of d by a ternary oK-lattice for non square determinant
∆, with K = Q(

√
∆).

Since the asymptotic representation behaviour of the ternary lattices involved
is known, this gives the asymptotics of rav(Λ, T ).

In the talk I discussed the latter case, adapting an idea for a reformulation of
the former case due to Hiroshi Saito. The former case can then be viewed as the
degenerate case K = Q+Q.

A crucial tool is the following simple lemma of Skolem-Noether type which is a
consequence of the classical Skolem-Noether theorem:

Lemma 1. Let B/K be a central simple algebra, x 7→ xI an involution of the
second kind with fixed field K0. Let C1 be a commutative K0-algebra, let ϕ : C1 →
B an embedding (of K0-algebras) such that ϕ(C1) and K are linearly disjoint over

K0 (i. e., ϕ̃(C1) = Kϕ(C1) ∼= K ⊗K0 C1), denote by C2 the centralizer in B of

ϕ̃(C1). Then {α ∈ B | αϕI = ϕα, αI = α} is a K0-vector space of dimension
dimK(C2). In particular, if B is a division algebra there exists α ∈ B with αI = α
and α−1ϕα = ϕI .

For simplicity of notation restrict now to the case of prime determinant.

Theorem 2. Let ∆ be a prime discriminant, D the definite quaternion algebra
over Q ramified (only) at p = ∆, K = Q(

√
∆), DK = D ⊗Q K, V = {α ∈ DK |

ᾱτ = α}. Let R be a symmetric maximal order in DK and Λ = R ∩ V , put
L = {z ∈ Z1 + 2R | tr(x) = 0}. Let Λi = yiRτ(y−1

i ) with yi ∈ D×
K,A, n(yi) ∈ Q×

A

be a lattice in the genus of Λ, put Li = yiLy
−1
i .

Then for all d ∈ N one has

r∗av(Λi, d) = r∗(Li, d),

where r∗(Li, d) denotes the number of Z-primitive representations of d by Li.

Theorem 3. In the situation of the previous theorem one has

r∗av(Λi, d) = r∗av(span(Li), d) + O(d1−
25
256+ǫ)

and
rav(Λi, d) ≥ C2d

1−ǫ for d > C1.

For δ > 0 there is a constant C3 = C3(δ) with:
For all d ≥ C3 with −d a fundamental discriminant
νd := #{T | det(T ) = d, r(Λi, T ) 6= 0} satisfies

νd ≥ (1 − δ)
h(−d)
2tµomax

,

where µ = µ(gen(Λ)) is the mass of the genus of Λ and omax = omax(gen(Λ)) the
maximal order of the group of automorphisms of a lattice in the genus of Λ.

In particular: For d large enough a positive proportion of the classes of binary
quadratic forms of discriminant −d is represented by Λ.
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The above results lead to estimates for averages of Fourier coefficients of Siegel
cusp forms of degree 2 which are obtained as Yoshida liftings of type one (lifting
a pair of elliptic cusp forms) or of type two (lifting a Hilbert cusp form). these
estimates are better than what one obtains by summing up estimates for the
individual Fourier coefficients.

This raises the question whether similar average estimates are possible for more
general Siegel modular forms. In degree 2 such a type of estimate would follow from
Böcherer’s conjecture and a subconvexity bound for central values of quadratic
twists of the spinor zeta function of such a cusp form.
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The largest squarefree exception of a quaternary quadratic form

Jeremy Rouse

The study of integers represented by positive-definite quadratic forms has a long
history, beginning with Fermat’s two-square theorem, and the four-square theorem
of Lagrange. Tartakovski showed that if Q is a positive-definite quadratic form
in four variables and n is a positive integer which is primitively represented by
Q modulo k for all k, then n is represented by Q provided n is sufficiently large.
The focus of the present work is to discuss how large n must be in terms of the
invariants of Q. Applications of such include the universality theorems of Conway-
Schneeberger, Bhargava [1], and Bhargava-Hanke [2].

Suppose that Q = 1
2~x

TA~x is a positive-definite quaternary quadratic form,
where A is a matrix with integer entries and even diagonal entries. Let D(Q) =
det(A) and N(Q) be the smallest positive integer N so that NA−1 has integer en-
tries and even diagonal entries. Using the circle method, Browning and Dietmann
proved [3] that if n≫ D(Q)10+ǫ, and n satisfies appropriate local conditions, then



128 Oberwolfach Report 3/2016

n is represented by Q. This is an improvement over the earlier work of Schulze-
Pillot [4] where the bound n≫ N(Q)14+ǫ is given. The main result of the present
talk is the following.

Theorem 1. Let ǫ > 0. Then there is a constant Cǫ so that if D(Q) is a funda-
mental discriminant, n is locally represented by Q, and n ≥ CǫD(Q)2+ǫ, then n is
represented by Q.

The above result is ineffective in that the constant Cǫ cannot be explicitly
given if ǫ is small. The source of the ineffectivity is lower bounds for values of
L-functions. However, for a given Q, only finitely many L-functions are involved
and they can be effectively enumerated.

The method of proof is to consider the theta series θQ(z) =
∑∞

n=0 rQ(n)q
n.

This is a weight 2 modular form for Γ0(N(Q)) and a certain quadratic character
χD(Q). This theta series decomposes as

θQ(z) = E(z) + C(z)

=

∞∑

n=0

aE(n)q
n +

∞∑

n=1

aC(n)q
n.

We have the lower bound aE(n) ≫ n1−ǫ√
D(Q)

provided n is squarefree and locally

represented. We can decompose C(z) as

C(z) =

s∑

i=1

cigi(diz)

where the gi(z) are normalized Hecke eigenforms. The coefficients of such a form
are bounded by d(n)

√
n and so we have |aC(n)| ≤ CQd(n)

√
n, where CQ =∑s

i=1 |ci/
√
di|.

To bound CQ, one uses the Petersson inner product. This is a tool that was
used in the work of Fomenko [5]. We develop lower-bounds for the value at s = 1

of L(Ad2gi, s), which is (up to an explicit constant) equal to 〈gi, gi〉. In addition,
we develop a formula for the Petersson norm of C(z) that is a quickly converging
infinite series and also only involves the Fourier coefficients of C(z) at infinity.
This enables us to prove that 〈C,C〉 is bounded (independent of D(Q)), and this
gives CQ ≪ D(Q)1/2+ǫ. This yields the stated result above.

In conclusion here are two open problems. First, what is the right conjecture
about the largest n that is locally represented but not represented? Is it true that
such an n is ≪ D(Q)1+ǫ? Second, it would be very interesting to prove that any
n≫ D(Q)2+ǫ is represented for a larger class of quadratic forms.

The talk is based on the contents of [6].
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Weakly admissible lattices and primitive lattice points

Martin Widmer

We generalise Skriganov’s notion of (weak) admissibility for lattices to include
standard lattices occurring in Diophantine approximation and algebraic number
theory (e.g. ideal lattices), and we shall present a counting result for primitive
lattice points in sets such as aligned boxes. The motivation for this comes from
classical results due to Chalk and Erdős [4] as well as more recent work of Dani,
Laurent, and Nogueira [2, 3] on inhomogeneous Diophantine approximation by
primitive points.

Consider the tuple S = (m,β) where m = (m1, . . . ,mn) ∈ Nn,
β = (β1, . . . , βn) ∈ (0,∞)n, and n ∈ N = {1, 2, 3, . . .}. We write

x = (x1, . . . ,xn) (xi ∈ Rmi)

for the elements in

E := Rm1 × · · · × Rmn ,

and | · | to denote the Euclidean norm. We set

N := dimE =

n∑

i=1

mi,

t :=
n∑

i=1

βi,

and we assume that N > 1. We write

Nmβ(x) =

n∏

i=1

|xi|βi

for the multiplicative β-norm on E.
Let C ⊂ E be a coordinate subspace, compatible with the structure introduced,

i.e.,

C = {x ∈ E;xi = 0 (for all i ∈ I)}
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where I ⊂ {1, . . . , n}. We fix such a pair (S, C), and for Γ ⊂ E and ρ > 0 we
define the quantities

ν(Γ, ρ) := inf{Nmβ(x)
1/t;x ∈ Γ\C, |x| ≤ ρ},

Nmβ(Γ) := lim
ρ→∞

ν(Γ, ρ).

As usual we always interpret inf ∅ =∞ and∞ > x for all x ∈ R. Special instances
of the above quantities were introduced by Skriganov in [1].

By a lattice we always mean a lattice of full rank. Let Λ be a lattice in E. We
say Λ is a weakly admissible for (S, C) if ν(Λ, ρ) > 0 for all ρ > 0. We say Λ is
admissible for (S, C) if Nmβ(Λ) > 0.

Note that weak admissibility for a lattice in E depends only on the choice of
C whereas admissibility depends on C and β. Also notice that a lattice Λ in RN

is weakly admissible (or admissible) in the sense of Skriganov [1] if and only if Λ
is weakly admissible (or admissible) for (S, C) with C = {0} and mi = βi = 1
(for all 1 ≤ i ≤ N). For such lattices and aligned boxes Skriganov proved error
terms for the lattice point counting problem. His error terms are surprisingly
sharp with respect to the volume of the box but they involve the N -th power of
the last successive minimum which makes them inappropriate for sieving, despite
their slow growth in terms of the volume of the box. Moreover, Skriganov’s notion
of weak admissibility is too restrictive for many applications. Let us give some
nontrivial examples that illustrate that our notion of weak admissibility captures
new interesting cases.

Let Θ ∈Matr×s(R) be a matrix with r rows and s columns and consider

Λ =

[
Er Θ
0 Es

]
Zr+s = {(p+Θq,q); (p,q) ∈ Zr × Zs}.

We take n = 2, m1 = r, m2 = s and C = {(x1,x2);x2 = 0}. Then the lattice Λ is
weakly admissible for (S, C) (for every choice of β) if p+Θq 6= 0 for every q 6= 0.
If β = (1, β) then Λ is admissible for (S, C) if we have

|p+Θq||q|β ≥ cΛ(1)

for every (p,q) with q 6= 0 and some fixed cΛ > 0. The above lattice Λ naturally
arises when considering Diophantine approximations for the matrix Θ. Recall
that the matrix Θ is called badly approximable if (1) holds true with β = s/r
(by Minkowski’s convex body theorem s/r is the minimal possible exponent).
W. M. Schmidt has shown that the Hausdorff dimension of the set of badly ap-
proximable matrices is full, i.e., rs.

We fix a pair (S, C), and we let Γ ⊂ E. We introduce the quantities

λ(Γ) := inf{|x|;x ∈ Γ\0},
and

µ(Γ, ρ) := inf{λ(Γ ∩ C), ν(Γ, ρ)}.



Lattices and Applications in Number Theory 131

Now we introduce the sets in which we count the lattice points. For notational
reasons it is convenient to permute the coordinate tuples xi so that I = {l, l +
1, . . . , n} for some l ∈ {1, . . . , n+ 1}, and hence

C = Cl = {x ∈ E;xi = 0 (for all l ≤ i ≤ n)}.
For Q = (Q1, . . . , Qn) ∈ (0,∞)n we consider the β-weighted geometric mean

Q =

(
n∏

i=1

Qβi

i

)1/t

,

and we assume throughout this note that

Qi ≤ Q ≤ Qj (for all 1 ≤ i < l ≤ j ≤ n).

We set

Qmax := max
1≤i≤n

Qi,

Qmin := min
1≤i≤n

Qi.

For all 1 ≤ i ≤ n let πi : E → Rmi be the projection defined by πi(x) = xi. We
assume throughout that ZQ ⊂ E is convex and such that for all 1 ≤ i ≤ n

πi(ZQ) ⊂ Byi(Qi) for some yi ∈ Rmi .

Here Byi(Qi) denotes the Euclidean ball in Rmi about yi of radius Qi, and we
write y = (y1, . . . ,yn).

Let Λ be a lattice in E and Λ = AZN for a matrix A ∈ GLN (R). Note that
Λ = BZN if and only if there exists T ∈ GLN(Z) with B = AT . Moreover,
with gcd(z) := gcd(z1, . . . , zN) we have gcd(z) = gcd(Tz). Hence, we can define
primitive lattice points as follows. For x = Az ∈ Λ with z ∈ ZN\0 we define

gcd(x) := gcd(z).

We say x ∈ Λ\0 is primitive if gcd(x) = 1, and we put

Λ∗ := {x ∈ Λ\0; gcd(x) = 1}.
We can now state our counting result.

Theorem 1. Suppose Λ is a weakly admissible lattice for (S, C). Then there
exists a constant c = c(N,y) depending only on N and |y| such that for all Q
large enough we have

∣∣∣∣∣|ZQ ∩ Λ∗| −
VolZQ

ζ(N) detΛ

∣∣∣∣∣ ≤ c

((
Q

µ

)N−1

+ 3
log(ηQ/µ)

log log(ηQ/µ)

(
Q

µ

))

where ζ(·) denotes the Riemann zeta function, µ = µ(Λ, Qmax), and η = 1 +
|y|/Qmin.
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Discriminants and the monoid of quadratic rings

John Voight

We consider the natural monoid structure on the set of quadratic rings over an
arbitrary base scheme and characterize this monoid in terms of discriminants [1],
as follows.

Let R be a commutative ring. An R-algebra is a ring B equipped with an
embedding R →֒ B of rings (mapping 1 ∈ R to 1 ∈ B) whose image lies in
the center of B; we identify R with its image via this embedding. A quadratic
R-algebra is an R-algebra S that is locally free of rank 2 as an R-module.

Let S be a quadratic R-algebra. Then S is commutative and has a unique
standard involution, an R-linear map σ : S → S such that xσ(x) ∈ R for all
x ∈ S. We say S is separable if S is projective as an S⊗RS-module via x⊗y 7→ xy;
equivalently, S is étale over R.

Let Quad(R) be the set of isomorphism classes of quadraticR-algebras. Further,
let Quad(R)free be the subset of quadratic R-algebras such that S is free as an
R-algebra and let Quad(R)sep be the subset of quadratic separable R-algebras.
If S ∈ Quad(R)free, then S ≃ R[x]/(x2 − tx + n) with t, n ∈ R, and further
S ∈ Quad(R)sep if and only if (x− σ(x))2 = t2 − 4n ∈ R×.

If S, T ∈ Quad(R)sep with σ, τ the respective standard involutions, then the
ring S ∗T := (S⊗R T )σ⊗τ , the fixed subring under σ⊗ τ , has S ∗T ∈ Quad(R)sep,
so ∗ defines a binary operation on Quad(R)sep that gives Quad(R)sep the structure
of an abelian group of exponent 2.

Theorem 1. There is a unique system of binary operations

∗R : Quad(R)×Quad(R)→ Quad(R),

one for each commutative ring R, such that:

(i) Quad(R) is a commutative monoid under ∗R, with identity element the
isomorphism class of R×R;

(ii) The association R 7→ (Quad(R), ∗R) from commutative rings to commuta-
tive monoids is functorial in R: for each ring homomorphism φ : R→ R′,
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the diagram

Quad(R)×Quad(R)
∗R

//

��

Quad(R)

φ∗

��

Quad(R′)×Quad(R′)
∗R′

// Quad(R′)

is commutative; and
(iii) If S, T ∈ Quad(R)sep with standard involutions σ, τ , then S ∗R T is the

fixed subring of S ⊗R T under σ ⊗ τ .

A discriminant over R is a quadratic form d : L → R with L an invertible
(locally free rank 1) R-module such that d is a square modulo 4: there exists an
R-linear map t : L→ R such that

d(x) ≡ t(x)2 (mod 4R)

for all x ∈ L. Let Disc(R) be the set of discriminants up to similarity; then Disc(R)
is a commutative monoid under ⊗.

The map

disc(S) :
∧2

S → R

x ∧ y 7→ (xσ(y) − σ(x)y)2

is a discriminant.

Theorem 2. The diagram of commutative monoids

Quad(R)free //

disc

��

Quad(R)
∧2

//

disc

��

Pic(R)

Disc(R)free // Disc(R) // Pic(R)

is functorial and commutative with exact rows and surjective columns.

We define the Artin-Schreier group AS(R) to be the additive quotient

AS(R) =
R[4]

℘(R)[4]
where ℘(R)[4] = {n = r + r2 ∈ R : r ∈ R} ∩R[4]

and R[4] = {a ∈ R : 4a = 0}. We have a map i : AS(R) →֒ Quad(R) sending the
class of n ∈ AS(R) to the isomorphism class of the algebra S = R[x]/(x2− x+n).
The group AS(R) is an elementary abelian 2-group.

Theorem 3. The fibers of the map disc : Quad(R) → Disc(R) have a unique
action of the group AS(R) compatible with the inclusion AS(R) →֒ Quad(R).
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Counting ideal lattices in Zd

Stefan Kühnlein

(joint work with Lenny Fukshansky, Rebecca Schwerdt)

Given a monic polynomial f ∈ Z[X ] of degree d, we denote by πf the map from
Z[X ]/(f)→ Zd sending [c0 + c1X + · · ·+ cd−1X

d−1] to (c0, . . . cn−1).
A subgroup U in Zd of rank d is called an ideal lattice if for some monic f as

above it is the image of an ideal under πf .
Those ideals play a role, e.g., in Gentry’s fully homomorphic encryption scheme.

It might therefore be of interest to compare their frequency with that of arbitrary
subgroups of full rank in Zd. Let an(d) be the number of all ideal lattices in Zd of
index n.

It turns out that for fixed d this sequence is multiplicative, i.e. for coprime m,n
we have amn(d) = am(d) · an(d).

Setting ζd(s) :=
∑∞

n=1
an(d)
ns we deduce from this multiplicativity the existence

of an Euler-product decomposition. We found that ζ0(s) = 1, ζ1(s) = ζ(s), the
Riemann-zetafunction, ζ2(s) = ζ(2s)ζ(s − 1) and ζ3(s) = ζ(3s)ζ(s − 1)ζ(2s− 2).

This shows that for d ≤ 1 every sublattice is an ideal lattice (which is not
surprising), for s = 2 the ideal lattices have positive density in the set of all
lattices, and that for d = 3 the number of all ideal lattices of index ≤ N is ∼ cN2,
while the number of all sublattices of index less than N is ∼ c′N3. These results
follow from the Tauberian theorem applied to ζd(s).

For d ≥ 1 we guess in general

ζd(s) = ζ(ds) ·
d−1∏

j=1

ζ(j(s− 1))

but did not proof this yet. This always converges for ℜ(s) > 2.

On the density of cyclotomic lattices constructed from codes

Philippe Moustrou

The sphere packing problem for lattices consists in finding the biggest proportion
of space that can be filled by a collection of disjoint spheres having the same
radius, with centers at the lattice points. This problem is solved for dimension n
up to 8 and for n = 24. Here we are interested in asymptotic lower bounds for the
best lattice packing when the dimension grows. Usually, these bounds come from
theoretical results, and do not provide an algorithm to construct a dense lattice.
A problem of interest is thus to find some constructive proofs of these theorems.

Let ∆n denote the supremum of the sphere packing density that can be achieved
by a lattice in dimension n. Let us recall that Minkowski-Hlawka proved by an
averaging argument that asymptotically ∆n ≥ 1

2n−1 . Later Rogers improved this
bound by a linear factor. As Rush did for Minkowski-Hlawka’s bound, Gaborit and
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Zémor in [1] gave an ”effective” proof of Roger’s result: for infinitely many dimen-
sions n, they exhibited a finite (although with exponential size) family of lattices,
constructed from linear codes via Construction A, containing lattices achieving
this density. Moreover in their construction the lattices afford the action of a
cyclic group of order half the dimension.

Recently, Venkatesh [2] showed that for infinitely many dimensions n, ∆n ≥
n log log n

2n+1 , which is the first result improving the linear growth of the numerator.
He obtained this result by considering lattices in cyclotomic fields invariant under
the action of the group of roots of unity.

Here we use an adaptation of Construction A for cyclotomic fields in order
to exhibit finite families of lattices that reach Venkatesh’s density for the same
sequence of dimensions. We also provide lattices with density larger than cn

2n for
a set of dimensions which is somewhat larger than that of Gaborit and Zémor.
With some slight modifications in our construction, we obtain lattices that are
moreover symplectic, a property of interest in the study of principally polarized
abelian varieties, thus complementing the result of Autissier [3].
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Vanishing criterion of automorphic forms on tube domains

Tomoyoshi Ibukiyama

If sufficiently many Fourier coefficients of a Siegel modular form f vanish, then f
itself vanishes. Effective version of this claim has been known by Siegel [4] and by
Poor and Yuen [3]. Hilbert modular cases and Hermitian modular cases are also
treated for example by Okazaki, Burgos Gil and Pacetti, and M. Klein. I gave a
talk on a theoretical criterion for the vanishing of automorphic forms on general
tube domains. Most of the proofs are obtained by generalizing the arguments of
Poor and Yuen in [3].

1. Fundamental assumption

Let D be a tube domain. By definition, we may write D = V (R) +
√
−1Ω, where

V (R) is a formally real Jordan algebra and Ω is the symmetric cone Ω = {x2;x ∈
V (R)×} associated to V (R). As well known, there are five kinds of simple formally
real Jordan algebras, and Ω are typical symmetric cones. They are

I) real symmetric matrices,
II) hermitian matrices,
III) quaternion hermitian matrices,
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IV) Rn with an algebraic structure defined by a quadratic form of signature
(n− 1, 1),

V) 3× 3 symmetric matrices over the (real division) Cayley algebra.

We assume that there exists a semisimple algebraic group G over Q such that
G0(R)/center = Aut(D), where G0(R) is the topological connected component
of G(R) and Aut(D) is the group of biholomorphic automorphisms. We assume
that G has a maximal parbolic Q- subgroup P corresponding to the 0-dimensional
boundary component of the Baily-Borel-Satake compactification. We also assume
that dimG > 3 to exclude the exceptional case. The unipotent radical U of
P is abelian. We put V = Lie(U). We can regard V (R) as a formally real
Jordan algebra. We sometimes identify U and V . We can define an natural
automorphy factor Jk(g, Z) of weight k for positive integers k, g ∈ G(Q) and
Z ∈ D, the precise definition being omitted here. Let Γ be an arithmetic subgroup
of G0(Q) = G(Q) ∩G0(R). For any g ∈ G0(Q), we write

(f |k[g])(Z) = Jk(g, Z)−1f(gZ).

We may identify g−1Γg ∩ U(R) as a lattice L′
g of V (R). The algebra (a vector

space) V (R) has a natural Euclidean inner product (∗, ∗). We define the dual
lattice Lg of L′

g by

Lg = {v ∈ V (Q); (x, v) ∈ Z}.
In particular, if g = 1, we write L1 = L. If f is a holomorphic function on D
such that f |k[γ] = f for all γ ∈ Γ, then we say that f is an automorphic form of
weight k. If f is an automorphic form, then for any g ∈ G(Q), we have a Fourier
expansion

(f |kg)(Z) =
∑

T∈Lg

ag(T )e
2πi(T,Z).

By Koecher principle, we have ag(T ) = 0 unless T ∈ Ω, where Ω is the closure of
Ω in V (R). When f is a cusp form, by definition, we have ag(T ) = 0 unless T ∈ Ω.

2. Kernel property

A subset K ⊂ Ω is called kernel if it satisfies the following conditions (1), (2), (3)
(See [1], [3]).

(1) K is closed and convex, and K = R≥1K,.
(2) 0 6∈ K.
(3) R>0 ⊃ Ω.
For a kernel K, we put

K⊔ = {x ∈ V (R); (x, y) ≥ 1 for all y ∈ K}.
Then it is known that (K⊔)⊔ = K (See [1]).

For a cusp form f , we define

supp(f) = {T ∈ L ∩ Ω; a(T ) 6= 0}.
We denote by ν(f) the closed convex hull of R≥1supp(f). We have
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Theorem 1. The set ν(f) is a kernel.

The proof is similar to the proof of the Koecher principle.
Now we put φf (Z) = det(Y )k/2|f(Z)|. Here det is the Haupt norm of the

Jordan algebra V (R) and Y is the imaginary part of Z. It is well known that
φf (Z) attains the maximum on D. Also we have φf (γZ) = φf (Z) for any γ ∈ Γ.
Denote by Z0 = X0 + iY0 any point of D which attains the maximum of φf (Z).
We may assume that Z0 is in a fundamental domain of Γ. By using Theorem 1
and a similar argument as in [3], we can show

Theorem 2. We have
k

4π
Y −1
0 ∈ ν(f).

3. Fundamental domain and criterion

Let K be a maximal compact subgroup of G0(R) defined by the stabilizer of
√
−1e,

where e is the unit of the Jordan algebra V (R). As explained in [2], by Borel and
Harish-Chandra, there exists a so-called Siegel set S ⊂ G0(R) with SK = S, such
that there exists a finite set C = {gi} ⊂ G(Q) ∩G0(R) which satisfies

G0(R) =
⋃

i

ΓgiS (∗).

Now we fix any function φ on a set Ω1 with Ω ⊂ Ω1 ⊂ Ω which satisfies the
following four conditions.

i) φ(s) ≥ 0 for s ∈ Ω1 and φ(s) > 0 for s ∈ Ω.
ii) φ(λs) = λφ(s) for λ ∈ R with λ > 0.
iii) φ(s1 + s2) ≥ φ(s1) + φ(s2) for s1, s2 ∈ Ω1.
iv) φ(L) is discrete in R.

Such φ is called a type two function. There are various different choices of φ.

Theorem 3. Let f be a cusp form of weight k of Γ and φ be a type two function.
Then we have the following results.

(1) If

min
gi

φ(supp(f |k[gi]) >
k

4π
sup
z∈D

inf
g∈∪Γgi

φ(Im(g−1Z)−1)

then f = 0.
(2) Put φΓ,S = supZ∈S/K φ(Im(Z)−1). If

min
gi

φ(supp(f |k[gi]) >
k

4π
φΓ,S,

then f = 0.

In order to make this criterion work effectively, we have to solve the following
problems.
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Open problems

(1) Give exact parameters of the Siegel set S for Γ which satisfies (*).
(2) For such a Siegel set S, evaluate φΓ,S for a concretely chosen φ.

Acknowledgment: This work was supported by JSPS KAKENHI Grant Number
25247001.
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Analytic properties of some indefinite theta series

Martin Westerholt-Raum

Theta series

θL(τ) =
∑

l∈L

exp
(
2πi q(l)τ

)
, τ ∈ H =

{
τ = x+ iy ∈ C : y > 0

}

for definite, integral lattices (L, q) are holomorphic modular forms. In particular,
θL is annihilated by the anti-holomorphic differential ∂τ . Equivalently, it lies in
the kernel of the differential operators y2∂τ , which is covariant for the slash actions
of SL2(R) on C(H):

(
f
∣∣
k

(
a b
c d

) )
(τ) := (cτ + d)−kf

(
aτ + b

cτ + d

)
for all

(
a b
c d

)
∈ SL2(R).

y2∂τ
(
f
∣∣
k
g
)
=
(
y2∂τ f

)∣∣
k−2

g for all g ∈ SL2(R).

The indefinite case is less clear. Summing the above exponential naively over
the lattice yields a non-convergent series. After choosing a majorant q+ of q, one
can define a theta series

θq
+

L (τ) =
∑

l∈L

exp
(
2πi (q(l)x+ q+(l)iy)

)
,

which converges and is a modular form in a suitable sense. Its analytic properties
from the perspective of (covariant) differential operators are unclear, however. One
introduces an additional variable z = u+ iv ∈ L⊗ C, and instead studies

θq
+

L (τ, z) =
∑

l∈L

exp
(
2πi (q(l)x+ q+(l)iy + 〈u, l〉+ 〈iv, l〉+)

)
,

where 〈l, l′〉 = q(l+ l′)− q(l)− q(l′) and 〈l, l′〉+ are the bilinear forms attached to q
and q+. The behavior with respect to differentials ∂z and ∂z is straightforwardly

determined. In addition, one checks that θq
+

L is annihilated by a Casimir operator
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for the real Jacobi group SL2(R) ⋉ (L ⊗ R2) ×̃R, which is an order 3 differential
operator if rk(L) = 1 and of order 4, otherwise.

There is another notion of indefinite theta series, which is connected to mock
theta series appearing in Zwegers’s thesis. The idea is to sum over an appropriate
cone C in L⊗ R:

holθCL (τ) ≈
∑

L∩C

exp(2πi q(l)τ).

To give a precise definition for a non-degenerate lattice that has signature
(rk+(L), rk−(L)), we choose vectors ci,1, ci,2 ∈ L ⊗ R for 1 ≤ i ≤ rk−(L) with
mutually orthogonal span{ci,1, ci,2}, and q(ci,1) < 0, q(ci,2) = 0 . We further set

C = {(ci,1, ci,2) : 1 ≤ i ≤ rk−(L)}. Then
holθCL (τ, z) =

∑

L

∏

i

(
sgn〈ci,1, l〉 − sgn〈ci,2, l〉

)
exp

(
2πi (q(l)τ + 〈z, l〉

)
.

We show that there is a modular completion of holθCL in terms of θq
+

L with q+

given by the majorant attached to the maximal negative subspace L− = span{ci,1 :

1 ≤ i ≤ rk−(L)} of L ⊗ R. This completion is annihilated by the above Casimir
operator for the real Jacobi group, by rk+(L) many covariant differential operators
of order 1, and by rk−(L) many order 2 covariant differential operators.

This completion can be interpreted as an extension of Schrödinger-Weil repre-
sentations. In particular, we obtain a well-behaved geometric realization of a re-
ducible, indecomposable Harish-Chandra module. In the case of reductive groups,
this only occurs for induced representations and the attached Eisensetein and theta
series. Can one connect indefinite theta series of the above kind to principal series
of the real Jacobi group?

From Grothendieck’s Chern classes to lattices of dimension 14 and
determinant 2

Jean Lannes

(joint work with H.-W. Henn)

Let R be a unital commutative ring with 2 ∈ R×; the theory developped by
Grothendieck in his paper “Classes de Chern et représentations linéaires des
groupes discrets” [1] leads to the definition of an unstable algebra over the mod 2
Steenrod algebra, let us say Chn(R), and of a natural morphism

γn,R : Chn(R)→ H∗(GLn(R);F2) .

Examples 1. • The morphism γn,C identifies with the morphism

H∗(BGLtop
n (C);F2)→ H∗(BGLdis

n (C);F2)

GLtop
n (C) and GLn(C) denoting the group GLn(C) equipped respectively

with the usual and discrete topology.
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• Similarly the morphism γn,R identifies with the morphism

H∗(BGLtop
n (R);F2)→ H∗(BGLdis

n (R);F2) .

• If R is a finite field (with char(R) 6= 2), then the work of Quillen [2] implies
that γn,R is an isomorphism. In this case the algebra Chn(R) is not too
difficult to determine; for example, for |R| ≡ −1 mod 4, one checks that

Chn(R) identifies with the subalgebra of H∗(BGLdis
n (R);F2) generated by

the classes w2
k and Sqk−1wk, 1 ≤ k ≤ n.

• One checks

Chn(Z[ 12 ])
∼= Chn(F3)⊗Chn(C) Chn(R) .

Question: For which n is γn,Z[ 12 ] an isomorphism?

One knows that it is the case for n ≤ 3 (the case n = 3, due to Henn, is
already delicate [3]). The question above led us to compare the mod 2 homology
of the orthogonal groups O(Λ) and O(F3 ⊗ Λ), Λ denoting a finite-dimensional
free module over Z[ 12 ] equipped with a positive non-degenerate symmetric bilinear
form. To do this comparison we use an avatar of the Bruhat-Tits building for
O(Q2 ⊗ Λ) defined in terms of integral lattices L with 2L♯ ⊂ L (see for example
[4]). A byproduct of our study is that γn,Z[ 12 ] is not an isomorphism for n ≥ 14

(the preceeding record, by Bill Dwyer, was n ≥ 32 [5]). The technical tool to
obtain this result is the proposition stated hereafter.

Let G be a discrete group endowed with an action on a CW-complex X which
satisfies the following assumptions:

• dimX <∞;

• H̃∗(X ;F2) = 0;
• the action is cellular;
• the isotropy subgroups of all cells are “uniformly” finite.

One denotes by Xs the 2-singular locus of X : the subspace of those points in
X which are fixed by some element of order 2.

Proposition 1. Let G and X be as above. If there exists a group homomorphism
α : G → F , with F finite, which induces an isomorphism on H∗( ;F2), then one
has H∗

G(X,Xs;F2) = 0.
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Energy minimization and formal duality of periodic point
configurations

Achill Schürmann

(joint work with Henry Cohn, Renaud Coulangeon, Abhinav Kumar, Christian
Reiher)

Point configurations that minimize energy for a given pair potential function occur
in diverse contexts of mathematics and its applications. There exist numerous
numerical approaches to find locally optimal or stable configurations. However,
a mathematical rigorous treatment proving optimality of a point configuration is
quite difficult.

Universal Optimality. In [1] Cohn and Kumar introduced the notion of a uni-
versally optimal point configuration, that is, a set of points in a given space,
minimizing energy for all completely monotonic potential functions. It turned out
that there exist several fascinating examples among spherical point sets. Consid-
ering infinite point sets in Euclidean spaces appears more difficult though. Even a
proper definition of potential energy bears subtle convergence problems. However,
for periodic sets such problems can be avoided. These sets are a union of finitely
many translates of a given full-rank lattice L ⊂ Rn (a discete subgroup of Rn).
In particular, a full-rank-lattice L ⊂ Rn itself is a periodic set. In general we can

write Λ =
⋃N

i=1(ti + L) where t1, . . . , tN are some vectors in Rn. For a potential
function f , the f -energy of Λ is defined as

(1) E(f,Λ) =
1

m

N∑

i=1

∑

x∈Λ,x 6=ti

f(|ti − x|).

A periodic point set is called universally optimal if it minimizes f -energy for all
completely monotonic potential functions f .

Experiments in the Gaussian Core Model. Working with local variations of
periodic sets it is often convenient to work with a parameter space up to trans-
lations and orthogonal transformations, as introduced in [5]. In [3] we under-
took an experimental study of energy minima among periodic sets of low di-
mensions (n ≤ 9) in the Gaussian core model, that is, for potential functions
gc(r) := exp(−πc r2), with c > 0. Cohn and Kumar conjectured the hexagonal
lattice, the E8 root lattice and the 24-dimensional Leech lattice Λ24 to be univer-
sally optimal. Our experiments support their conjecture in dimension 2 and 8.
In dimension 4, to our own surprise, numerical experiments suggest that the root
lattice D4 is universally optimal as well. In all other dimensions the situation is
much less clear. In dimension 3, for c in a small intervall around 1, there is a phase
transition, for which periodic point-configurations seem not to minimize energy at
all. For all larger c > 1 the fcc-lattice (also known as D3) and for all smaller c < 1
the bcc-lattice (also known as D∗

3) appear to be energy minimizers.
In dimensions 5, 6 and 7 non-lattice packings seem to minimize energies, in

contrast to a conjecture of Torquato and Stillinger from 2008. In dimension 5 and 7
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the conjectured optimal configurations are sets D+
n (α) = {(x1, ..., xn−1, αxn) : x ∈

D
+
n } where D

+
n = Dn ∪

(
(12 , . . . ,

1
2 ) + Dn

)
is the periodic set consisting of two

translates of the root lattice Dn. Unexpectedly, in dimension 9 the 2-periodic set
D

+
n appears to be universally optimal.

Local Optimality. Even in dimension 2 a proof of universal optimality appears
to be quite difficult and not yet established. In higher dimensions proofs showing
optimality for a given or even all potential functions seem currently out of reach.
In [4] we therefore considered a kind of local universal optimality among periodic
sets. We showed that lattices whose shells are spherical 4-designs and which are
locally optimal among lattices can not locally be improved to another periodic set
with lower energy. (For a corresponding result for the case c → ∞ see [6].) By
a result due to Sarnak and Strömbergsson, this implies local universal optimality
for the D4 and the E8 root lattice, as well as for the Leech lattice Λ24. In an
ongoing project we are currently hoping to generalize this kind of local optimality
for gc-energies with large c to certain periodic sets. In particular for 2-periodic
sets, whose shells are all spherical 3-designs such a result seems possible. It would
imply local optimality of D+

9 (at least for large c).

Formal Duality. Maybe the most interesting result of our numerical experiments,
is the observation that all energy minimizing periodic sets (at least for n ≤ 9) ap-
pear to satisfy a certain kind of formal duality. It generalizes the familiar lattice
duality, which has been known for long: If a lattice L is a minimizer for gc-energy
among lattices, then its dual lattice L∗ is a minimizer for g1/c-energy, due to the

Poisson summation formula
∑

x∈L f(x) = δ(L)
∑

y∈L∗ f̂(y). Here δ(L) denotes the

point density of L and f̂ the Fourier transform of f . By a result of Córdoba the
Poisson summation formula holds for all Schwartz functions only if L is a lattice.

For periodic sets Λ =
⋃N

i=1(ti + L) we therefore consider the average pair sum

Σf (Λ) :=
1

N

N∑

j,k=1

∑

z∈L

f(z + tj − tk)

instead. We say two periodic sets Λ and Γ are formally dual to each other if
Σf (Λ) = δ(Λ)Σf̂ (Γ) for every Schwartz function f : Rn → R. Assuming Γ =
⋃M

j=1(sj +K) with a lattice K, it can be shown that Λ−Λ ⊆ K∗ and Γ−Γ ⊆ L∗

in case Λ and Γ are formally dual to each other. Since the notion of formal duality is
invariant towards translations, we may assume 0 ∈ Λ,Γ, which allows us to reduce
the study of formal duality to the study of finite sets in finite abelian groups: It can

be shown that T = {t1, . . . , tN} ⊆ G = K∗/L and S = {s1, . . . , sM} ⊆ Ĝ = L∗/K
(respectively Λ and Γ) are formally dual to each other if and only if

∣∣∣∣∣∣
1

N

N∑

j=1

exp (2πi〈tj, s〉)

∣∣∣∣∣∣

2

=
1

M
# {(k, l) : 1 ≤ k, l ≤M and s = sk − sl}
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for every s ∈ Ĝ. As the right hand side is rational and the left hand side is usually
not, it shows that formal duality among periodic sets is a rather rare phenome-
non. This makes it somehow even more mysterious that energy minimizers in low
dimensions all appear to have this property.

In [2] we collected all that is known about formal duality so far. Next to a
reduction of the general classification to the study of finite sets in dual abelian
groups, we provide a complete list of currently known primitive formally dual
pairs (which are not obtained as cross-products or as cosets of proper subgroups
of other formally dual sets). The lattice case Z, corresponding to trivial finite

sets and groups T = G = S = Ĝ = {0}, is the case of classical lattice duality.
There is only one known other 1-dimensional pair of primitive formally (self-)dual
sets, which we baptized TITO (for two-in-two-out). It is obtained by setting

G = Ĝ = Z/4Z and T = S = {0, 1}. A closer investigation of the conjectured
energy minimizers from our numerical experiments revealed that all of them are
obtained by linear images of cross products of these basic examples! However, we
found one additional family of formally dual sets (in dimension 2) which we did
not observe in energy minimization problems so far: For α, β ∈ (Z/pZ) \ {0} the
sets S =

{
(αn2, βn) : n ∈ Z/pZ

}
and T =

{
(n, n2) : n ∈ Z/pZ

}
are formally dual

in the cyclic groups G = Ĝ = (Z/pZ)2.

Conclusion. Already these first steps of work on energy minimization of periodic
pointsets revealed quite interesting, partially unexpected, new phenomena. We
expect that improved numerical simulations could reveal a lot more, for instance a
better understanding of phase transitions and a better understanding of periodic
point configurations in dimensions beyond n = 9. Using the theory of generalized
theta series it may be possible to prove local universal optimality of 2-periodic sets
like D

+
9 . The phenomenon of formal duality certainly deserves further studies. A

full classification, at least in dimension 1 and 2, should be possible with additional
efforts. Can someone provide an explanation why energy minimizing periodic sets
appear to have this rather rare formal duality property? We hope that future work
will help to shed more light on this still mysterious phenomenon.
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New upper bounds for the density of translative packings of superballs

Maria Dostert

(joint work with Cristóbal Guzmán, Fernando Mário de Oliveira Filho, Frank
Vallentin)

The sphere packing problem is one of the most famous geometric optimization
problems. In materials science also densest packings of superballs Bp

3 (unit balls
for the lp3-norm) in three dimensions are of interest. Jiao, Stillinger, and Torquato
[5] computed lower bounds for the maximal density of packings of superballs by
using stochastic optimization and numerical simulation. Although they allowed
for congruent packings, the computer simulation returned only lattice packings as
candidates for maximizers.

We determine upper bounds for the maximal density of translative packings of
superballs by using the infinite dimensional linear program of Cohn and Elkies [2].
It was originally designed for the packing of round spheres and until now, it was
only used for this case. The rotational symmetry of a sphere allows the restriction
of the optimization variable f , which has to be a continuous L1-function, to be
radial. For superballs, we cannot use this restriction. Therefore, the optimization
problem is much harder to solve. Instead of optimizing over the entire space of
L1-functions, we optimize over polynomials p up to a fixed degree 2d and we use

f̂ = p(u)e−π||u||2 for calculating the function f from p. We get the L1-function

f(x) =
∫
Rn p(u)e−π||u||2e2πiu·x dx and the following optimization problem

ϑt(Bp
3 ) = inf f(0)

p ∈ R[u]≤2d

p(0) ≥ vol Bp
3

p(x) ≥ 0 ∀x ∈ R3 \ {0}
f(x) ≤ 0 ∀x /∈ (2Bp

3 )
◦

By using the decomposition of p into spherical harmonics, we are able to deter-
mine f from p by solving a system of linear equations. The more difficult constraint
is the nonnegativity condition, which is generally NP-hard to check. Therefore, it
will be replaced by a sum of squares (SOS) condition, which gives a semidefinite
relaxation. A polynomial p ∈ R[u1, . . . , un]≤2d = R[u]≤2d of degree at most 2d is
said to be SOS, if and only if, there exist polynomials q1, . . . , qm ∈ R[u]≤d, such
that p(x) =

∑n
i=1 q

2
i (x). The advantage of using a SOS condition is that this can

be checked efficiently by using a solver for semidefinite programs (SDP). But for
n = 3 and d = 15 the positive semidefinite matrix Q of the corresponding SDP
has dimension 816, which is too large for current SDP solvers.

We can assume that the function f of Cohn-Elkies is invariant under the sym-
metry group of Bp

3 and so we can restrict the program to polynomials which are
invariant under this group. This symmetry group is the octahedral group B3,
which is a finite reflection group. Gaterman and Parrilo [3] developed an abstract
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theorem to simplify the SOS condition for polynomials, which are invariant un-
der a finite matrix group. We make this theorem concrete by considering finite
reflection groups.

The invariant ring C[x]G of a finite reflection group G ⊆ GLn(C) is generated
by its basic invariants θ1, . . . , θn.

C[x]G = C[θ1, . . . , θn]

The coinvariant algebra is

C[x]G = C[x]/(θ1, . . . , θn),

which is a |G|-dimensional graded algebra. In particular,

C[x] = C[x]G ⊗ C[x]G

holds. The action of G on C[x]G is equivalent to the regular representation of G.

Let Ĝ be the set of irreducible representations of G up to equivalence and dπ be

the dimension of π ∈ Ĝ. Then the coinvariant algebra C[x]G has a basis

ϕπ
ij , with π ∈ Ĝ, 1 ≤ i, j ≤ dπ,

of homogeneous polynomials, such that

gϕπ
ij = (π(g)j)

T




ϕπ
i1
...

ϕπ
idπ


 , i = 1, . . . , dπ ,

holds, where π(g)j is the j-th column of the unitary matrix π(g) ∈ U(dπ).
For the group B3, all irreducible unitary representation are orthogonal repre-

sentations. Therefore, we can just consider real polynomials.

Theorem Let G ⊆ GLn(R) be a finite group generated by reflections. The cone
of G-invariant polynomials which can be written as sum of squares equals



p ∈ R[x] : p =

∑

π∈Ĝ

〈P π, Qπ〉, P π is a SOS matrix polynomial in θi



 .

Here 〈A,B〉 = Tr(BTA) denotes the trace inner product, the matrix P π is an
SOS matrix polynomial in the variables θ1, . . . , θn, i.e. there is a matrix Lπ with
entries in R[x]G such that P π = (Lπ)TLπ holds and Qπ ∈ (R[x]G)dπ×dπ is defined
componentwise by

[Qπ]kl =

dπ∑

i=1

ϕπ
kiϕ

π
li.
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This theorem can also be formulated for the complex case, but then we have to
consider complex conjugation. A Hermitian symmetric polynomial p ∈ C[z, w] is
a sum of Hermitian squares if there are polynomials q1, . . . , qr ∈ C[z] so that

p(z, w) =

r∑

i=1

qi(z)qi(w)

holds.
By using the theorem, the matrix Q can be decomposed into many smaller

block matrices, and thus we are able to solve the program by using an SDP solver.
Afterwards, we check whether the solution is feasible for the Cohn-Elkies theorem
by using interval arithmetic to get rigorous bounds.

We can also use this approach to compute upper bounds for the density of
translative packings of Platonic and Archimedean solids having tetrahedral sym-
metry. Zong [7] published in 2014 upper bounds for the maximal density of transla-
tive packings of tetrahedra (0.3840 . . .) and of cuboctahedra (0.9601 . . .), which we
both improved to 0.3754 . . . and 0.9364 . . .

Body Lower bound Upper bound
Regular octahedron (B1

3) 0.9473 . . . [6] 0.9729 . . .
B3

3 0.8095 . . . [5] 0.8236 . . .
B4

3 0.8698 . . . [5] 0.8742 . . .
B5

3 0.9080 . . . [5] 0.9224 . . .
B6

3 0.9318 . . . [5] 0.9338 . . .
Regular tetrahedron 0.3673 . . . [4] 0.3745 . . .
Truncated cube 0.9737 . . . [1] 0.9845 . . .
Truncated tetrahedron 0.6809 . . . [1] 0.7292 . . .
Rhombic cuboctahedron 0.8758 . . . [1] 0.8794 . . .
Truncated cuboctahedron 0.8493 . . . [1] 0.8758 . . .
Cuboctahedron 0.9183 . . . [4] 0.9364 . . .
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Some integral perfect lattices of minimum 4

Roland Bacher

For d ≥ 7, the d-dimension integral lattice of all integral vectors in Zd+2 which
are orthogonal to (1, 1, . . . , 1) and to (1, 2, 3, . . . , n + 2) has minimum 4 and is
perfect (see the monograph [2] for definitions). This construction can be relaxed
by leaving a few “holes” in the vector (1, 2, . . . ). More precisely, the lattice given
by all integral vectors with zero coefficient-sum and which are orthogonal to a fixed

vector of the form (1, 2, . . . , i1− 1, î1, i1 +1, . . . , î2, . . . , îk, . . . , d+ k+2) is perfect
if d ≥ max(7, 2(k + 1)3 − 1), see [1, Theorem 2.2]. Moreover, all those lattices are
essentially non-isomorphic, after taking into account that two vectors (1, 2, . . . )
with holes in respective symmetric positions yield lattices which are obviously
isometric. It follows that the number pd of perfect d-dimensional lattices (up to
similitude, of course) grows faster than any polynomial in d, see [1, Theorem 2.5].

In this talk we gave an improvement to at least exponential growth for pd. This
is done by twisting the above construction in the following way: Allow only at
most one “hole” in every set Bn + 1, Bn + 2, . . . , Bn + B − 1 of B consecutive
integers (forming the coefficients of (1, 2, . . . ) for some large integer B (taking
B = 60 certainly works), we get again perfect lattices if the dimension is large
enough. There is now an exponentially growing number of such lattices and they
are again all essentially non-isomorphic. Details of a close (but technically slightly
easier) variation of this construction are currently being written up.

Let me finish this short abstract by mentionning that the above lattices are
closely related to the lattices considered in Lenny Fukshansky’s talk. Indeed,
almost all of the lattices considered by Fukshansky are also perfect by section 5
(which considers exactly Fukshansky’s lattices) in [1].
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Rationally isomorphic Hermitian forms

Eva Bayer-Fluckiger

(joint work with Uriya First)

Let R be a discrete valuation ring and let F be its fraction field. Assume that 2
is a unit in R. The following theorem is well-known:

Theorem 1. Let f, f ′ be two unimodular quadratic forms over R. If f and f ′

become isomorphic over F , then they are isomorphic over R.

Over the years, this result has been generalized in many ways: to other local
rings, and other types of forms (instead of quadratic). Many of these results are
consequences of a conjecture of Grothendieck and Serre (see [10], [6] and [7]) :
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Conjecture 1. Let R be a regular local integral domain with fraction field F . Then
for every smooth reductive group scheme G over R, the induced map H1

et(R,G)→
H1

et(F,G) is injective.

The Grothendieck-Serre conjecture was recently proved by Fedorov and Panin,
provided R contains a field k (see [5] for the case where k is infinite and [9] for
the case k is finite. Many special cases of the conjecture were known before.
In particular, when dimR = 1 the conjecture was shown without any further
restriction on R by Nisnevich (see [8]).

Recently, Auel, Parimala and Suresh generalized the above theorem in a dif-
ferent way, considering quadratic forms that are not unimodular, but “close” to
being unimodular. They show the following (cf. [1] , Corollary 3.8) :

Theorem 2. Let q and q′ be two quadratic forms over R with simple degener-
ation of multiplicity one. If q and q′ become isomorphic over F , then they are
isomorphic.

Recall from [1] that a quadratic form over R is said to have simple degenera-
tion of multiplicity one if it is isomorphic to the orthogonal sum of a unimodular
quadratic form and a form of rank one of the shape 〈π〉, where π is a uniformizer.

Note that this result cannot be seen as a consequence of the Grothendieck–Serre
conjecture, since the corresponding group scheme is not reductive.

This is the starting point of our research. Our aim is to put the result of Auel,
Parimala and Suresh in a different perspective, and to study how far one can gen-
eralize it. Our point of view is inspired by the treatment of non-unimodular forms
in [2]. Roughly speaking, idea is that non-unimodular forms in a hermitian cate-
gory can be treated as unimodular forms over a different “module-like” category in
a way which is compatible with flat base change. In this setting, the condition of
being “simply degenerate of multiplicity one” is equivalent to having a particular
“base module”.

We prove the following (cf. [4]) :

Theorem 3. Let A be a maximal R–order in a separable F–algebra, and let σ :
A → A be an R–linear involution. Let f and f ′ be two hermitian forms over
(A, σ) such that f and f ′ have isomorphic semisimple coradicals. If f and f ′ are
isomorphic over (AF , σF ), then they are isomorphic.

Note that this is a generalization of the result of Auel, Parimala and Suresh.
We also obtain a cohomological result, in the spirit of the Grothendieck–Serre
conjecture – note however that the group scheme considered here is not reductive.

We also prove a result on quadratic forms invariant by a finite group. Let Γ
be a finite group, and assume that the order of Γ is invertible in R. Recall that
a Γ–quadratic form is a pair (P, f), where P is a projective R[Γ]–module of finite
rank, and f : P × P → R is a quadratic form such that f(gx, gy) = f(x, y) for all
x, y ∈ P and all g ∈ Γ. We have the following :
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Theorem 4. Let (P, f) and (P ′, f ′) be two Γ-forms over R with isomorphic
semisimple coradicals. If (PF , fF ) ∼= (P ′

F , f
′
F ) as Γ-forms, then (P, f) ∼= (P ′, f ′)

as Γ-forms.

The strategy of the proof is to establish a “descent result” for unimodular
hermitian forms over hereditary orders. Indeed, the endomorphism rings of the
objects of the “module–like category” we use are hereditary. This is actually our
main technical result. It is proved in two main steps: one one hand, prove the
result in the case where R is complete, on the other hand, deduce the general
case from this result by patching techniques. These two steps are contained in the
papers [3] and [4].
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Institut de Mathématique de Bordeaux
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