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Introduction by the Organisers

The meeting Convex Geometry and its Applications, organised by Franck Barthe,
Martin Henk and Monika Ludwig, was held from December 6 to December 12,
2015. It was attended by 55 participants working in all areas of convex geometry.
Of these 19% were female and about one third were younger participants. The
programme involved 12 plenary lectures of one hour’s duration, 18 shorter lectures
and a problem session onWednesday evening. Some highlights of the program were
as follows.

In the opening lecture, Mark Rudelson gave a remarkable talk on the com-
plexity of the family of all n-dimensional unconditional bodies. The given double
exponentially lower bound (in n) not only answers a question by Pisier but it also
shows that the class of n-dimensional unconditional convex bodies cannot be well
approximated by projections of sections of an N -dimensional simplex as long as N
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is sub-exponential in n. The later result is relevant for the algorithmic treatment
of unconditional bodies.

Erwin Lutwak and Gaoyong Zhang shared a one hour lecture in order to intro-
duce new fundamental measures of convex bodies, the dual curvature measures.
These measures fill a longstanding gap in the (dual) Brunn-Minkowski theory and
may be regarded as the differentials of the dual quermassintegrals and as the miss-
ing dual counterparts to Federer’s area measures. The associated Minkowski prob-
lems miraculously join the classical (and completely solved) Aleksandrov problem
and the modern (and wide open) logarithmic Minkowski problem.

Shiri Artstein-Avidan gave a beautiful inspiring talk on Godbersen’s conjecture
on the mixed volumes of K and −K and recent developments. In particular, she
showed by a very elegant argument that the conjectured bound is true “in the
average”.

In the first part of his plenary talk, Pierre Calka gave a highly stimulating
introduction to the area of random polytopes. In the second part he introduced,
among others, a new method for Poisson random polytopes by which (now) explicit
calculations of limiting variances for certain geometric quantities (e.g., number of
k-faces, the volume) are possible.

Seymon Alesker presented a delicate new construction of continuous valuations
on convex sets which is based on quaternionic Monge-Ampère operators of convex
functions. One key ingredient here is a quaternionic version of a result by Chern-
Levine-Nierenberg in the complex case.

There were also several excellent talks by young researchers.
In a joint (plenary and short) lecture Eugenia Saoŕın Gomez and Judit Abardia

gave interesting characterizations of convex bodies valued operators which satisfy
certain types of inequalities such as Brunn-Minkowski and/or Rogers-Shephard
type inequalities.

Lukas Parapatits presented a complete classification of Borel measurable SL(n)-
covariant symmetric tensor valuations on convex polytopes containing the origin
in their interiors. This is a remarkable result that contains previous classification
results of vector and matrix valuations as special cases.

Using tools from convex geometry, Ronen Eldan gave a new universal con-
struction of a self-concordant barrier function. Due to the fundamental work
of Nesterov&Nemirovski, these functions are of central interest for interior point
methods.

Based on a functional adaption of Ball’s approach to cube slicing, Galyna
Livshyts presented optimal bounds for marginal densities of product measures
and in this way also an alternate approach to a recent theorem by Rudelson and
Vershynin.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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Abstracts

Characterization of Minkowski valuations by means of bounds on the
volume of the image

Judit Abardia

(joint work with A. Colesanti and E. Saoŕın Gómez)

Let Kn denote the set of convex bodies (compact and convex sets) in R
n, endowed

with the Hausdorff metric, and let Kns denote the set of convex bodies in Rn which
are symmetric with respect to the origin. Let (A,+) be an Abelian semigroup. An
operator ϕ : Kn −→ A is called a valuation if for any K,L ∈ Kn with K∪L ∈ Kn,

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L).

An active area of valuation theory deals with the characterization of classical
(and new) objects appearing in convex geometry. The first fundamental classifi-
cation result in this context goes back to Hadwiger, who classified the continuous,
translation invariant, real-valued valuations, i.e., (A,+) = (R,+) in the above def-
inition of valuation, which are also invariant under the rotations of the Euclidean
space. Since then, many other classification results have been obtained.

Together with the case of real-valued valuations, there has been an increasing
interest in the so-called Minkowski valuations. A valuation where (A,+) = (Kn,+)
is called aMinkowski valuation, i.e., it is a valuation which takes values in the space
of convex bodies endowed with the Minkowski sum, defined as

K + L = {x+ y : x ∈ K, y ∈ L}, K, L ∈ Kn.
A systematic study of characterization results in the theory of Minkowski val-
uations was started by M. Ludwig (see [5, 6]). She obtained, for instance, the
following characterization result for the difference body operator D : Kn −→ Kn
defined by

DK := K + (−K),

where −K := {x ∈ Rn : −x ∈ K}.
Theorem A ([6]). Let n ≥ 2. An operator ϕ : Kn −→ Kn is a continuous,
translation invariant, SL(n)-covariant Minkowski valuation if and only if there is
a λ ≥ 0 such that ϕ(K) = λDK.

If instead of SL(n)-covariance in Theorem A, SL(n)-contravariance is imposed,
then a characterization for the projection body operator is obtained (see [5]).

After these two seminal results of M. Ludwig, a lot of research on Minkowski
valuations has been launched and characterization results for other groups acting
on Kn and for certain subfamilies of Kn have been obtained.

A new classification result for the difference body operator, without using the
Minkowski valuation property has been obtained recently by R. Gardner, D. Hug
and W. Weil, in [3].
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Theorem B ([3]). Let n ≥ 2. An operator ϕ : Kn −→ Kns is a continuous,
translation invariant and GL(n)-covariant o-symmetrization if and only if there is
a λ ≥ 0 such that ϕK = λDK.

An o-symmetrization is an operator ϕ : Kn −→ Kns , taking values in the space
of symmetric convex bodies with respect to the origin.

Theorem B was obtained as part of a systematic study of operations between
convex sets (see also [4] and [7]).

With the aim of characterizing known operators in convex geometry by their
essential properties, it is also natural to consider inequalities satisfied by the cor-
responding operators. However, it seems that the first paper to consider some
inequality as a characterization property is [2], where the authors study contin-
uous, translation invariant, real-valued valuations satisfying a Brunn-Minkowski
type inequality. In the case of Minkowksi valuations, a characterization result for
the difference body using its fundamental affine inequality relating the volume of
the difference body DK and the volume of K - the so-called Rogers-Shephard or
difference body inequality - has been recently obtained in [1] (see the abstract of
the talk given by Eugenia Saoŕın Gómez).

In the next relation, the lower bound for the volume of DK is a direct con-
sequence of the Brunn-Minkowski inequality and the upper bound is the Rogers-
Shephard inequality.
For K ∈ Kn, it holds

2nvol(K) ≤ vol(DK) ≤
(
2n

n

)
vol(K).

Equality holds on the left-hand side if and only if K is centrally symmetric and on
the right hand side precisely if K is a simplex.

As stated in the abstract of Eugenia Saoŕın Gómez, we say that an operator
ϕ : Kn −→ Kn satisfies a Rogers-Shephard type inequality (in short RS) if there
exists a constant C > 0 such that for all K ∈ Kn

vol(ϕK) ≤ Cvol(K).

Analogously, ϕ satisfies a Brunn-Minkowski type inequality (in short BM) if there
exists a constant c > 0 such that for all K ∈ Kn

cvol(K) ≤ vol(ϕK).

In the talk, we presented the following result:

Theorem 1. Let n ≥ 2 and ϕ : Kn −→ Kns be a continuous translation invari-
ant Minkowski valuation satisfying Brunn-Minkowski and Rogers-Shephard type
inequality. Then, either ϕ is homogenous of degree one or there exist a cen-
tered segment S and an o-symmetric (n − 1)-dimensional convex body L, with
dim(L + S) = n such that ϕK = L+ vol(K)S for every K ∈ Kn.

In order to completely characterize those operators, it remains to describe the
1-homogeneous valuations which satisfy the properties in the theorem above. How-
ever, the above result represents a first step towards a better understanding of the
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continuous, translation invariant Minkowski valuations without any equivariance
under the action of some group G ⊆ GL(n).
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[2] A. Colesanti, D. Hug and E. Saoŕın Gómez, A Characterization of Some Mixed Volumes

via the Brunn-Minkowski Inequality, J. Geom. Anal. 24 (2014), 1064–1091.
[3] R. J. Gardner, D. Hug and W. Weil, Operations between sets in geometry, J. Europ. Math.

Soc. 15 (2013), 2297–2352.
[4] R. J. Gardner, D. Hug and W. Weil, The Orlicz-Brunn-Minkowski theory: a general frame-

work, additions, and inequalities, J. Differential Geom. 97 (2014), 427–476.
[5] M. Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), 158–168.
[6] M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (10) (2005), 4191–4213

(electronic).
[7] V. Milman and L. Rotem, Characterizing addition of convex sets by polynomiality of volume

and by the homothety operation, Commun. Contemp. Math. 17 (3) (2015) 1450022, 22 pp.

Constructing continuous valuations on convex sets via Monge-Ampère
operators

Semyon Alesker

The class of continuous (in the Hausdorff metric) valuations on convex sets has
been studied extensively since Hadwiger defined it explicitly in 1940’s. This class
turned out to be very rich in geometric examples, structures, and applications to
integral geometry. Despite numerous investigations, there are known rather few
methods to construct them. The goal of this talk is to describe a relatively new
method of construction based on the use of various Monge-Ampère (MA) operators
of convex functions. Real and complex MA operators are classically known and I
explain to use them in order to construct valuations (in fact, in this talk I omit the
description of the real case, since the method must be refined in order to produce
non-trivial examples of valuations). Furthermore I describe the quaternionic MA
operator, which I introduced some years ago, and use it to construct more examples
of valuations. Along the similar lines I have also introduced the MA operator in
two octonionic variables again with applications to construction of valuations.

Let us start with the reminder of the definition of the complex MA operator on
smooth functions. We write a complex variable z in the standard form z = x+ iy
with x, y ∈ R. Then we have standard differential operators on any smooth C-
valued function F :

∂F

∂z̄
:=

1

2

(
∂F

∂x
+ i

∂F

∂y

)
,
∂F

∂z
:=

∂F̄

∂z̄
=

1

2

(
∂F

∂x
− i

∂F

∂y

)
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Let Ω ⊂ C
n be an open subset. The complex Hessian of a C2-smooth function

f : Ω → R is defined by

HessC(f) :=

(
∂2f

∂zi∂z̄j

)n

i,j=1

.(1)

Then the complex MA operator of f is defined

MAC(f) := det

(
∂2f

∂zi∂z̄j

)
.(2)

In order to construct valuations on convex sets one has to extend the complex
MA operator to arbitrary convex functions. This can be done due to the following
theorem.

Theorem 1 (Chern-Levine-Nirenberg, 1969 [7]). For any convex (more generally,
continuous plurisubharmonic) function f : Ω → R one can define its complex MA
operator, denoted by MAC(f), which is a non-negative measure uniquely charac-
terized by the following properties:

(a) if f ∈ C2 then MAC(f) is as in (2);
(b) if a sequence of convex (more generally, continuous plurisubharmonic) func-

tions {fi} converges to a function f uniformly on compact subsets of Ω then

MAC(fi)
w→ MAC(f) weakly in sense of measures;

(c) for any open subset U ⊂ Ω one has MAC(f |U ) = MAC(f)|U .
Remark 2. A version of this result for the real MA operator on convex functions
was proven earlier by A. D. Alexandrov in 1958 [1].

Proposition 3. Let ψ ∈ Cc(C
n). Then the functional on convex compact subsets

of Cn given by

K 7→
∫

Cn

ψ ·MAC(hK),

where hK is the supporting functional of K, is a translation invariant continuous
valuation.

Notice that translation invariance is obvious, continuity follows from Theorem
1(b), and the valuation property follows from the next non-trivial result.

Theorem 4 (Blocki, 2000[6]). Let f, g,min{f, g} : Ω → R be convex (more gen-
erally, continuous psh) functions. Then

MAC(max{f, g}) +MAC(min{f, g}) = MAC(f) +MAC(g).

This theorem implies the valuation property since for K,L,K ∪L ∈ K(Cn) one
has

hK∪L = max{hK , hL}, hK∩L = min{hK , hL}.

Let us discuss the quaternionic case. Any q ∈ H is written in the standard form

q = t+ ix+ jy + kz with t, x, y, z ∈ R.
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We are going to define quaternionic MA operator. First for any smooth H-valued
function we define

∂F

∂q̄
:=

∂F

∂t
+ i

∂F

∂x
+ j

∂F

∂t
+ k

∂F

∂t
,
∂F

∂q
:=

∂F̄

∂q̄
=
∂F

∂t
− ∂F

∂x
i− ∂F

∂t
j − ∂F

∂t
k.

In the case of several quaternionic variables the operators ∂
∂qi

and ∂
∂q̄j

commute

with each other. Now define the quaternionic Hessian of a C2-smooth real valued

function f in n quaternionic variables: HessH(f) :=
(

∂2f
∂qi∂q̄j

)n
i,j=1

.

To define the MA operator one needs a notion of determinant. For matrices
with non-commuting entries there are several approaches, but no one of them is
as good as in the commutative setting. Fortunately the quaternionic Hessian of
a real valued function is a Hermitian matrix (i.e. aij = āji), and for them there
is a notion of the Moore determinant which seems to be as good as the usual
determinant of real symmetric or complex Hermitian matrices. To define it, recall
that for any A ∈Matn(H) one can define its realization AR ∈Mat4n(R) as follows.

A defines an R-linear operator Â : Hn → Hn given by multiplication Â(x) = Ax.
Identifying Hn ≃ R4n, we denote by AR the matrix of the corresponding operator
R

4n → R
4n. One has the following result (see the survey [5]):

Theorem 5. On the space of quaternionic Hermitian matrices of size n there
exists a real polynomial detM , called the Moore determinant, which is uniquely
characterized by the following two properties:

(a) for any quaternionic Hermitian matrix A one has det(AR) = (detM (A))4;
(b) detM (In) = 1.

I defined in [2] the quaternionic MA operator of a real valued C2-smooth func-
tion f in a domain Ω ⊂ Hn by

MAH(f) = det
M

(
∂2f

∂qi∂q̄j

)
.

In [2] I have extended theorems of Alexandrov and Chern-Levine-Nirenberg to the
quaternionic case thus defining MAH for convex (more generally, quaternionic psh)
functions. In [3] I proved the Blocki type formula for MAH (which looks exactly
the same as in the complex case). Hence it follows that for any ψ ∈ Cc(H

n) the
functional

K 7→
∫

Hn

ψ ·MAH(hK)

is a continuous translation invariant valuation.
In [4] I generalized the above constructions and results to the case of 2 octonionic

variables.
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On Godbersen’s conjecture and related inequalities

Shiri Artstein-Avidan

(joint work with K. Einhorn, D. I. Florentin and Y. Ostrover)

Recently, in the paper [2] we have shown that for any λ ∈ [0, 1] and for any convex
body K one has that

λj(1− λ)n−jV (K[j],−K[n− k]) ≤ Vol(K).

In particular, picking λ = j
n , we get that

V (K[j],−K[n− k]) ≤ nn

jj(n− j)n−j
Vol(K) ∼

(
n

j

)√
2π
j(n− j)

n
.

The conjecture for the tight upper bound
(
n
j

)
, which is what ones get for a body

which is an affine image of the simplex, was suggested in 1938 by Godbersen [3]
(and independently by Hajnal and Makai Jr. [4]).

Conjecture 1 (Godbersen’s conjecture). For any convex body K ⊂ Rn and any
1 ≤ j ≤ n− 1,

(1) V (K[j],−K[n− j]) ≤
(
n

j

)
Vol(K),

with equality attained only for simplices.

We mention that Godbersen proved the conjecture for certain classes of con-
vex bodies, in particular for those of constant width. We also mention that the
conjecture holds for j = 1, n− 1 by the inclusion K ⊂ n(−K) for bodies K with
center of mass at the origin. The bound from [2] quoted above seems to be the
currently smallest known upper bound for general j.

In this work we improve the aforementioned inequality and show

Theorem 2. For any convex body K ⊂ Rn and for any λ ∈ [0, 1] one has

n∑

j=0

λj(1− λ)n−jV (K[j],−K[n− j]) ≤ Vol(K).
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The proof of the inequality will go via the consideration of two bodies, C ⊂ R
n+1

and T ⊂ R2n+1. Both were used in the paper of Rogers and Shephard [6].
We shall show by imitating the methods of [6] that

Lemma 3. Given a convex body K ⊂ Rn define C ⊂ R× Rn by

C = conv({0} × (1 − λ)K ∪ {1} × −λK).

Then we have

Vol(C) ≤ Vol(K)

n+ 1
.

With this lemma in hand, we may prove our main claim by a simple computation

Proof of Theorem 2.

Vol(C) =

∫ 1

0

Vol((1 − η)(1− λ)K − ηλK)dη

=

n∑

j=0

(
n

j

)
(1− λ)n−jλjV (K[j],−K[n− j])

∫ 1

0

(1− η)n−jηjdη

=
1

n+ 1

n∑

j=0

(1− λ)n−jλjV (K[j],−K[n− j]).

Thus, using the lemma, we have that
n∑

j=0

(1− λ)n−jλjV (K[j],−K[n− j]) ≤ Vol(K).

�

Integration with respect to the parameter λ yields

Corollary 4. For any convex body K ⊂ Rn

1

n+ 1

n∑

j=0

V (K[j],−K[n− j])(
n
j

) ≤ Vol(K),

which can be rewritten as

1

n− 1

n−1∑

j=1

V (K[j],−K[n− j])(
n
j

) ≤ Vol(K).

So, on average the Godbersen conjecture is true. Of course, the fact that it
holds true on average was known before, but with a different kind of average,
namely by Rogers Shephard inequality for the difference body

n∑

j=0

(
n
j

)
(
2n
n

)V (K[j],−K[n− j]) ≤ Vol(K).

However, our new average is a uniform one, so we know for instance that the

median of the sequence (V (K[j],−K[n−j])
(nj)

)n−1
j=1 is less than one, so that at least for
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one half of the indices j = 1, 2, . . . , n− 1, the mixed volumes satisfy Godbersen’s
conjecture with factor 2.

Corollary 5. Let K ⊂ Rn be a convex body with Vol(K) = 1. For at least half of
the indices j = 1, 2, . . . n− 1 it holds that

V (K[j],−K[n− j]) ≤ 2

(
n

j

)
.

We mention that from the inequality of Theorem 2 we get as a by-product that
for K with Vol(K) = 1 one has

n−1∑

j=1

λj−1(1 − λ)n−j−1[V (K[j],−K[n− j])−
(
n

j

)
] ≤ 0

So that by taking λ = 0, 1 we see, once again, that V (K,−K[n− 1]) = V (K[n−
1],−K) ≤ n.

Our next assertion is connected with the following conjecture regarding the
unbalanced difference body

DλK = (1− λ)K + λ(−K).

Conjecture 6. For any λ ∈ (0, 1) one has

Vol(DλK)

Vol(K)
≤ Vol(Dλ∆)

Vol(∆)

where ∆ is an n-dimensional simplex.

Reformulating, Conjecture 6 asks whether the following inequality on the num-
bers Vj = V (K[j],−K[n− j]) holds

n∑

j=0

(
n

j

)
λj(1− λ)n−jVj ≤

n∑

j=0

(
n

j

)2

λj(1− λ)n−j .(2)

Clearly Conjecture 6 follows from Godbersen’s conjecture. It holds for λ = 1/2
by the Rogers-Shephard difference body inequality, it holds for λ = 0, 1 as then
both sides are 1, and it holds on average over λ by Lemma 3 (applied with λ = 1/2
to 2K). We recall that we know the following two inequalities on the sequence Vj :

n∑

j=0

λj(1− λ)n−jVj ≤
n∑

j=0

(
n

j

)
λj(1− λ)n−j .(3)

n∑

j=0

(
n

j

)
Vj ≤

n∑

j=0

(
n

j

)2

.(4)

In all three inequalities we may disregard the 0th and nth terms as they are equal
in both sides. We may take advantage of the fact that the jth and the (n − j)th

terms are the same in each inequality, and ask of the sum only up to (n/2) (but be
careful, if n is odd then each term appears twice, and if n is even then the middle
term appears only once).
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Theorem 7. For n ≤ 5 Conjecture 6 holds.
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Translation invariant Minkowski valuations on lattice polytopes

Károly J. Böröczky

(joint work with M. Ludwig)

Two classification theorems were critical in the beginning of the theory of valu-
ations on convex sets: first, the Hadwiger theorem [8] for valuations on convex
bodies (that is, compact convex sets) in Rn and second, the Betke & Kneser theo-
rem [5] for valuations on lattice polytopes (that is, convex polytopes with vertices
in Zn). In recent years, numerous classification results were established for convex-
body valued valuations (see, for example, [9, 10, 12, 7, 3, 1, 2, 20, 19, 22, 6, 17, 16,
21, 13]). The aim of this talk is to establish classification results for convex-body
valued valuations defined on lattice polytopes. The question leads us to define and
classify the discrete Steiner point.

A function z defined on a family F of subsets of Rn with values in an abelian
group (or more generally, an abelian monoid) is a valuation if

(1) z(P ) + z(Q) = z(P ∪Q) + z(P ∩Q)

whenever P,Q, P ∪Q,P ∩Q ∈ F and z(∅) = 0.
An operator Z : F → K(Rn) is called a Minkowski valuation if Z satisfies (1)

and addition on K(Rn) is Minkowski addition; that is,

K + L = {x+ y : x ∈ K, y ∈ L}.
An operator Z : F → K(Rn) is called SLn(R) equivariant if Z(φP ) = φZP for
φ ∈ SLn(R) and P ∈ F . Define SLn(Z) equivariance of operators on P(Zn)
analogously. For valuations Z : P(Rn) → K(Rn) that are SLn(R) equivariant and
translation invariant, a complete classification has been established. Let n ≥ 2.

Theorem 1 ([11]). An operator Z : P(Rn) → K(Rn) is an SLn(R) equivariant
and translation invariant Minkowski valuation if and only if there exists a constant
c ≥ 0 such that for every P ∈ P(Rn), we have

ZP = c(P − P ).
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The aim of this talk is to classify certain types of Minkowski valuations on lattice
polytopes. The following result is an analogue of Theorem 1. Let n ≥ 2.

Theorem 2. An operator Z : P(Zn) → K(Rn) is an SLn(Z) equivariant and
translation invariant Minkowski valuation if and only if there exist constants a,
b ≥ 0 such that for every P ∈ P(Zn), we have

ZP = a(P − ℓ1(P )) + b(−P + ℓ1(P )).

Here for a lattice polytope P , the point ℓ1(P ) is its discrete Steiner point that is
a new notion. It is defined as the one-homogeneous part of the Ehrhart expansion
of the discrete moment vector ℓ(P ) =

∑
x∈P∩Znx; namely,

ℓ(λP ) =

n+1∑

i=0

li(P )λ
i for λ ∈ N.

That such an expansion exists follows from results by McMullen [14]. The discrete
Steiner point is characterized in the following result.

Theorem 3. A function z : P(Zn) → Rn is an SLn(Z) and translation equi-
variant valuation if and only if z = ℓ1.

Theorem 3 corresponds to the well-known characterization of the classical Steiner
point due to Schneider [18].

An operator Z : F → K(Rn) is called SLn(R) contravariant if Z(φP ) = φ−t ZP
for φ ∈ SLn(R) and P ∈ F , where φ−t is the inverse of the transpose of φ.
Define SLn(Z) contravariance of operators on P(Zn) analogously. For SLn(R)
contravariant Minkowski valuations on P(Rn), a complete classification has been
established. Let n ≥ 2.

Theorem 4 ([11]). An operator Z : P(Rn) → K(Rn) is an SLn(R) contravariant
and translation invariant Minkowski valuation if and only if there exists a constant
c ≥ 0 such that for every P ∈ P(Rn), we have

ZP = cΠP.

Here ΠP is the so-called projection body of P . For operators on lattice polytopes,
we obtain the following result (here we do not quote the slightly more complicated
case n = 2).

Theorem 5. For n ≥ 3, an operator Z : P(Zn) → K(Rn) is an SLn(Z) con-
travariant and translation invariant Minkowski valuation if and only if then there
exists a constant c ≥ 0 such that for every P ∈ P(Zn), we have

ZP = cΠP.

Open problems

(1) Characterize all SLn(Z) equivariant Minkowski valuations on at most n-
dimensional lattice polytopes.

(2) Characterize all SLn(Z+iZ) equivariant and translation invariant Minkow-
ski valuations on at most 2n-dimensional lattice polytopes where Z + iZ
stands for the Gauß integers.
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Random polytopes: scaling limits and variance asymptotics

Pierre Calka

(joint work with T. Schreiber and J. Yukich)

This talk is based on a joint work with Tomasz Schreiber and Joe Yukich and on
several joint works with Joe Yukich, including a work in progress.

The study of so-called random polytopes defined as convex hulls of independent
and identically distributed random points in Rd, d ≥ 2, has started more than 50
years ago. Focus has quickly turned to the description of their asymptotic behavior
when the size of the input goes to infinity. In two seminal works published in 1963
and 1964 [9, 10], A. Rényi and R. Sulanke obtained explicit formulae for the
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asymptotics of the mean number of vertices, mean area and mean perimeter of
a planar random polytope. In particular, the growth of the number of extreme
points is polynomial in the case of a uniform distribution in a smooth convex
body while it is logarithmic for both the uniform distribution in a polytope and
the standard Gaussian distribution.

These results have been extended to higher dimensions in several subsequent
works and more recently, attention hase been drawn to second-order results and in
particular central limit theorems and variance estimates (see e.g. the survey [8]).
Sharp lower and upper bounds for the variance of the number of k-dimensional
faces and the volume were obtained by M. Reitzner [7], I. Bárány and V. H. Vu
[4] and M. Reitzner and I. Bárány [3] for the uniform distribution in a smooth
convex body, the standard Gaussian distribution and the uniform distribution in
a polytope respectively.

Showing the existence of limiting variances has proved to be more intricate.
When the size of the input is Poisson distributed, we present a new method
which provides the explicit calculation of limiting variances for the number of
k-dimensional faces, the volume and sometimes the intrinsic volumes in the cases
of uniform points in a smooth convex body, Gaussian points and uniform points
in a simple polytope. The technique is based on the introduction of a proper scal-
ing transformation and the use of so-called stabilization methods in the rescaled
space. This provides, as by-product, the convergence in distribution of the rescaled
boundary of the random polytope. We illustrate it with the particular cases of
uniform points in the unit-ball [6] and especially of uniform points in a simple
polytope [5].

In the first case, we define a global scaling transformation and we show that
the boundary of the convex hull and its associated so-called flower have explicit
scaling limits in the rescaled product space which are particular types of hull and
growth processes with parabolic grains.

0

B
d

Figure 1. The random polytope and its flower in the d-
dimensional unit-ball Bd (left); The scaling limits in the product
space Rd−1 × R of its boundary and flower (right).
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In the second case of uniform points in a simple polytope K, we first show that
the contributions of the convex hull near the vertices of K decorrelate asymptoti-
cally and that the contribution of the convex hull far from the vertices is negligible.
To do so, we use a technique introduced by I. Bárány and M. Reitzner [2] and based
on the construction of dependency graphs. We then define a local scaling transfor-
mation in the vicinity of a particular vertex. The construction of such a function
is based on the use of floating bodies of K which have proved on several occasions
to be key objects in the asymptotic study of random polytopes [1]. We obtain
dual scaling limits as hull and growth processes with cone-like grains for both the
boundary and the associated flower of the convex hull in the vicinity of a vertex
of K.

Figure 2. The random polytope and its flower in a d-dimensional
cube (left); The scaling limits in the product space Rd−1 × R of
its boundary and flower (right).

This leads us to get explicit limiting variances as explained in the theorem
below.

Theorem. Let K be a simple polytope of Rd, d ≥ 2, and Kλ be the convex hull of
the intersection of a homogeneous Poisson point process of intensity λ > 0 with K.
Then for every 1 ≤ k ≤ (d− 1), the variance of the number of k-dimensional faces

of Kλ divided by logd−1(λ) (resp. of the volume of Kλ divided by logd−1(λ)/λ2)
converges to cd,kf0(K) (resp. to c′df0(K)) where f0(K) is the number of vertices
of K, cd,k (resp. cd) being an explicit constant depending only on d and k (resp.
on d).

We have been unable up to now to show a similar result for a general polytope.
Indeed, it is still unclear whether the variance would be asymptotically additive
with respect to flags associated with a general polytope K. Nevertheless, this
presentation makes a new parallel between the asymptotic analysis of several types
of random polytopes and might pave the way for a unified treatment of the different
models.
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Wahrscheinlichkeitstheorie und verw. Gebiete 2 (1963), 75–84.
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Valuations on spaces of functions

Andrea Colesanti

(joint work with L. Cavallina and N. Lombardi)

Let X be a space of functions, all defined on a common domain, which will be Rn

or the unit sphere Sn−1 in all the examples that we will consider. A (real-valued)
valuation on X is an application µ : X → R such that

µ(f ∨ g) + µ(f ∧ g) = µ(f) + µ(g)

for every f and g in X such that f ∨ g, f ∧ g ∈ X (here ∨ and ∧ denote the
point-wise maximum and minimum).

The study of valuations on spaces of functions stems principally from the theory
of valuations on convex bodies, which is currently one of the most active and
prolific branches of convex geometry. In analogy with celebrated results concerning
valuations of convex bodies (e.g. the Hadwiger theorem), the typical goal in the
context of spaces of functions is to characterize all valuations on the spaceX which
have some continuity, invariance and possibly monotonicity property.

The following is a very synthetic summary of what have been achieved in this
area.

• X = space of definable functions; µ rigid motion invariant and continuous
(w.r.t a suitable topology). A Hadwiger type theorem was obtained in [20]
and [1].

• X = Lp(Rn) or X = Lp(Sn−1); µ continuous and rigid motion invariant.
A classification results was proved in [16]. See also [8] and [2] for related
results.
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• X = W 1,p(Rn) or X = BV (Rn) (functions of bounded variation); µ con-
tinuous and SL(n) invariant. Classification results were obtained in [19],
[18], [14] and [13].

• X = space of convex functions or of quasi-concave functions; µ rigid motion
invariant, continuous w.r.t. a suitable topology and monotone. Classifica-
tion results are proved in [3] and [4].

The results that we have mentioned so far concern real-valued valuations, but
there are also studies regarding other types of valuations (e.g. matrix-valued
valuations, or Minkowski and Blaschke valuations, etc.) that are interlaced with
the results previously mentioned. A strong impulse to these studies have been
given by Ludwig in the works [10], [11], [12] (see also [17] and [15]).

To illustrate briefly what happens in one specific example, we focus on quasi-
concave functions. A function f : Rn → [0,∞) is called quasi-concave if for every
level t > 0 the set

Lf(t) = {x ∈ R
n : f(x) ≥ t}

is a convex body (a compact convex subset of Rn). This class of functions includes,
for instance, characteristic functions of convex bodies as well as log-concave func-
tions. Let X be the class of quasi-concave functions. Here is an easy way to
construct a valuation on this space. For a fixed t > 0, given f ∈ X consider the
quantity

Vi(Lf (t))

where Vi is the i-th intrinsic volume. This is already a valuation, as we will see, but
we can make the construction more articulate: we may sum over different levels
and multiply each summand by a weight. Even more generally we may consider
the quantity

(1) µ(f) =

∫ ∞

0

Vi(Lf (t))dν(t) ∀ f ∈ X,

where ν is an arbitrary Radon measure on (0,∞). To see that this is a valuation
just notice that for every f, g ∈ X and t > 0

Lf∨g(t) = Lf(t) ∪ Lg(t), Lf∧g(t) = Lf(t) ∩ Lg(t).
These relations and the valuation property of intrinsic volumes lead to

Vi(Lf∨g(t)) + Vi(Lf∧g(t)) = Vi(Lf(t)) + Vi(Lg(t)).

If we now integrate both sides of the previous equality with respect to ν we obtain
the valuation property for µ. It can be proved that (1) is finite for every f ∈ X if
and only if the support of ν is bounded away from zero, i.e. ν(0, δ) = 0 for some
δ > 0. Moreover µ is: (a) rigid motion invariant (i.e. µ(u) = µ(f ◦ T ) for every
f ∈ X and rigid motion T ); (b) increasing (f ≤ g implies µ(f) ≤ µ(g)). Finally,
if (and only if) ν is non-atomic then µ is continuous in the following sense: (c) if
fi, i ∈ N, is a monotone sequence of elements of X converging point-wise in Rn to
f ∈ X , then µ(fi) → µ(f).
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In [4] it is proved that properties (a)-(c) characterize valuations of type (1), up
to linear combinations.

The perspectives of developments of the research in this area are wide. It is nat-
ural to investigate and possibly characterize continuous and invariant valuations
on spaces like, for instance, the space of continuous functions or other familiar
functions spaces. One possible direction of research is the classification of val-
uations defined on support functions (e.g. restricted to the unit sphere), under
suitable conditions of continuity and invariance. This could lead, in principle,
to analytic proofs of results like Hadwiger’s theorem or McMullen decomposition
theorem.
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New conjectures in the Geometry of Numbers

Daniel Dadush

(joint work with O. Regev)

1. Introduction

A k-dimensional Euclidean lattice L ⊆ Rn is defined to be all integer linear combi-

nations of k linearly independent vectors B = (~b1, . . . ,~bk) in Rn, where we call B

a basis for L. The determinant of L is defined as
√
det(BTB), which is invariant

to the choice of basis for L. The dual lattice of L is L∗ = {~y ∈ span(L) : 〈~y, ~x〉 ∈
Z, ∀~x ∈ L}. It is easy to verify that B(BTB)−1 yields a basis for L∗ and that
det(L∗) = 1/ det(L).
In this paper, we study the relationship between the questions:

(1) How can we bound the number of lattice points inside a centrally sym-
metric convex body?

(2) When can we guarantee that a convex body contains a lattice point?

It is generally understood that these questions are in essence dual to each other,
and showing strong quantitative relationships between these questions is an im-
portant area within the geometry of numbers.

2. Reversing Minkowski’s Theorem

Beginning with the first question, given a symmetric convex body K ⊆ Rn and
lattice L ⊆ Rn, Minkowski’s classical convex body theorem tells us that

|K ∩ L| ≥ ⌈2−nvoln(K)/ det(L)⌉.
While the above bound is very useful, it is easy to come up with examples

where is it very far from being tight. In particular, if the set of lattice points
K ∩ L lives a lower dimensional subspace, the volumetric bound can easily be
confused by extraneous parts of the lattice. A natural attempt to fix this, is to
not only compute Minkowski’s bound on the lattice itself, but also on its lattice
subspaces. A linear subspaceW ⊆ Rn, a lattice subspace of L if W admits a basis
of vectors in L. From here, if we define

M(K,L) = max
W lat. sub. of L
0≤d=dim(W )≤n

vold(K ∩W )/ det(L ∩W ),

Minkowski’s convex body theorem implies that

|K ∩ L| ≥M(K/2,L).
By convention, we define the determinant / volume of a 0-dimensional set (i.e. for
d = 0 above) to be 1, and hence we note that M(K,L) ≥ 1 always.

With this strengthened volumetric lower bound, we may now ask again whether
it is close to being tight. In this spirit, we prove the following theorem:
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Theorem 1 (Weak Reverse Minkowski). For a symmetric convex body K and
n-dimensional lattice L in Rn, we have that |K ∩ L| ≤ M(3nK,L). Futhermore,
letting Bn2 denote the unit Euclidean ball, |Bn2 ∩ L| ≤M(3

√
nBn2 ,L).

The above theorem is in fact a relatively simple consequence of Minkowski’s
second theorem and a bound on the number of lattices points in terms of successive
minima due to Henk [5]. However, it seems to be far very far from tight, in
particular, it seems possible that the factor 3n could be replaced by a factor
O(log n), i.e. exponentially better! Indeed, the worst current example we know of
so far, corresponds to K = {x ∈ Rn :

∑n
i=1 |xi| ≤ 1} (the ℓ1 ball) and L = Zn,

which shows that we cannot hope better than this. Given, we posit the following
(optimistic) conjecture:

Conjecture 2 (Strong Reverse Minkowski). For a symmetric convex body K
and n-dimensional lattice L in Rn, |K ∩ L| ≤ M(O(log n)K,L). Furthermore,
|Bn2 ∩ L| ≤M(O(

√
logn)Bn2 ,L).

Here we note that the main interesting point in the above conjecture is that
the required dilation factor may be sub-polynomial in the lattice dimension n,
representing a potentially new phenomena in the geometry of numbers.

In the next section, we relate our main application of this conjecture.

3. The Kannan-Lovász Conjecture

Continuing to the second question, i.e. when can we guarantee that a convex body
contains lattice points, one of the most elegant ways is to examine the covering
radius of the body with respect to the lattice. Given a convex body K and n-
dimensional lattice L in Rn, we define the covering radius

µ(K,L) = inf{s ≥ 0 : L+ sK = R
n} ,

or equivalently, the minimum scaling s of K for which sK+~t contains a point of L
for every translations ~t ∈ R

n. Note that if µ(K,L) ≤ 1, then K contains a lattice
point in every translation.

With this definition, we may rephrase the question as: when is the covering
radius of a convex body smaller than 1? or more generally, is there a good alternate
“dual” characterization of the covering radius? We note good answers to this
question have been important in the context of discrete optimization. In particular,
they have played a crucial role in the development of algorithms for the Integer
Programming problem, where given a convex body K and lattice L, the goal is to
compute a point in K ∩ L or decide that K ∩ L = ∅.

A first satisfactory answer in this context is known as Khinchine’s Flatness
theorem, which states that either µ(K,L) ≤ 1 or K has small lattice width, i.e. K
is “flat”. Improving the quantitative estimates on how “flat” K must be has
been a focus of much research [6, 1, 7, 8, 2, 3, 4]. Letting the width norm of K
be widthK(~z) = max~x∈K〈~z, ~x〉 − min~x∈K〈~z, ~x〉, for ~z ∈ Rn, we define the lattice
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width of K w.r.t. to L as

width(K,L) = min
y∈L∗\{~0}

widthK(~y).

The best current estimate on flatness can now be stated as follows:

Theorem 3 (Khinchine’s Flatness Theorem).

1 ≤ µ(K,L)width(K,L) ≤ Õ(n4/3) .

We note that the estimate can be improved for O(n) for ellipsoids [2] and
O(n log n) for centrally symmetric convex bodies [3]. However, for any convex
body, there exists a lattice for which the rhs is Ω(n), hence the relationship between
lattice width and the covering radius cannot be made sub-polynomial in general.

Circumventing this problem, Kannan & Lovász [7] defined a volumetric gener-
alization of flatness, proving the following bounds:

Theorem 4 ([7]).

1 ≤ µ(K,L) max
W lat. sub. of L∗

1≤d=dim(W )≤n

vold(πW (K))1/d det(L∗ ∩W )1/d ≤ n

where πW is the orthogonal projection onto W .

We note that the standard flatness theorem corresponds to setting d = 1. In
this context, there are no known examples for which the rhs need be larger than
O(log n)! This bound is in fact achieved forK = conv(~e1, 2~e2, . . . , n~en) and L = Zn

(~e1, . . . , ~en denotes the standard basis). Kannan & Lovász asked whether this is
indeed the worst case, thus we henceforth call an affirmative answer to this question
as the Kannan-Lovász conjecture. Specializing the conjecture to the important
special case K = Bn2 , we get:

Conjecture 5 (The ℓ2 Kannan-Lovász Conjecture).

Ω(1) ≤ µ(K,L) max
W lat. sub. of L∗

1≤d=dim(W )≤n

det(L∗ ∩W )1/d/
√
d ≤ O(

√
logn),

where the upper bound is obtained by the lattice generated by the basis B =
(~e1, ~e2/

√
2, . . . , ~en/

√
n).

The main contribution of our paper is to show that the ℓ2-version of the Kannan-
Lovász conjecture is implied up to poly-logarithmic factors by a strong reverse
Minkowski inequality:

Theorem 6. Let f(n) denote the least number such that for any n-dimensional
lattice L ⊆ Rn,

|Bn2 ∩ L| ≤M(f(n)Bn2 ,L).
Then the ℓ2 Kannan-Lovász conjecture holds with bound O(log nf(n)).

In fact, the above theorem holds assuming a weaker alternate characterization
of the so-called lattice smoothing parameter [9], which is implied by 2. To achieve
the reduction in Theorem 6, we rely on a novel convex relaxation for the covering



3204 Oberwolfach Report 56/2015

radius and a rounding strategy for the corresponding dual program to extract the
relevant subspace.
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The entropic barrier: a simple and optimal universal self-concordant
barrier

Ronen Eldan

The objective of this talk is to demonstrate how to use elementary tools from
convexity to introduce a new universal construction of a so-called self-concordant
barrier function, an object of central importance in the theory of Interior Point
Methods (IPMs). A self-concordant barrier over a convex body is a convex func-
tion going to infinity at the boundary of the body, and whose derivatives satisfy
certain (quantitative) regularity conditions. The algorithms which use these func-
tions (introduced by Nesterov and Nemirovski) have revolutionized mathematical
optimization. Our construction is very simple to describe and turns out to be the
first universal construction which attains optimal parameters. This talk will as-
sume no prior knowledge in mathematical optimization or interior point methods.

To introduce the definition of a self-concordant barrier, we introduce some no-
tation. For a C3-smooth function g : Rn → R, denote by ∇2g[·, ·] its Hessian
which we understand as a bilinear form over Rn. Likewise, by ∇3g[·, ·, ·] we denote
its third derivative tensor. The definition of a self-concordant barrier is as follows.

Definition 1. A function g : int(K) → R is a barrier for K if

g(x) −−−−→
x→∂K

+∞.
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A C3-smooth convex function g : int(K) → R is self-concordant if for all x ∈
int(K), h ∈ Rn,

(1) ∇3g(x)[h, h, h] ≤ 2(∇2g(x)[h, h])3/2.

Furthermore it is ν-self-concordant if in addition for all x ∈ int(K), h ∈ Rn,

(2) ∇g(x)[h] ≤
√
ν · ∇2g(x)[h, h].

Let K ⊂ Rn be a convex body, namely a compact convex set with a non-empty
interior. Our main result is:

Theorem 2. Let f : Rn → R be defined for θ ∈ Rn by

(3) f(θ) = log

(∫

x∈K
exp(〈θ, x〉)dx

)
.

Then the Fenchel dual f∗ : int(K) → R, defined for x ∈ int(K) by f∗(x) =
supθ∈Rn〈θ, x〉 − f(θ), is a (1 + ǫn)n-self-concordant barrier on K, with ǫn ≤
100
√
log(n)/n, for any n ≥ 80.

From a theoretical point of view, one of the most important results in the theory
of IPM is Nesterov and Nemirovski’s construction of the universal barrier, which
is a ν-self-concordant barrier that always satisfies ν ≤ Cn, for some universal
constant C > 0. Theorem 2 is the first improvement (for convex bodies) over
this seminal result: we show that in fact there always exists a barrier with self-
concordance parameter ν = (1 + o(1))n.

Our proof relies on elementary techniques from high dimensional convex ge-
ometry. In particular, the bound (1) relies on the analysis of extremal points on
the set of log-concave measures, using the Krein-Milman theorem (and following
a result of Fradelizi-Guédon). The main ingredient in the proof of the bound (2)
is the Prekopa-Leindler inequality.

The Integral Geometry of indefinite orthogonal groups

Dmitry Faifman

(joint work with A. Bernig and S. Alesker)

1. Overview

1.1. General theory. Valuation theory bridges convex and integral geometry.
For the classical theory, see [5]. For a survey of recent developments following
Alesker’s pivotal work [1], see [3]. For us, a continuous valuation on V = Rn

will be a continuous map φ : K(V ) → C from the set of compact convex sets
in V equipped with the Hausdorff metric, into the complex numbers, satisfying
φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L) whenever K,L,K ∪ L ∈ K(V ). The space
of translation-invariant continuous valuations is denoted Val(V ). It has a natural
topology of a Banach space. We write Val±k (V ) for the k-homogeneous even/odd
valuations. McMullen’s direct sum decomposition reads Val(V ) = ⊕nk=0 Valk(V ).
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Now Val(V ) is a Banach representation of GL(n), and as such has a dense
subspace of smooth elements, denoted Val∞(V ). The Alesker-Poincare duality is
a non-degenerate pairing

Valk(V )⊗Val∞n−k(V ) → C

The elements of the weak dual of Val∞n−k(V ) are the generalized valuations, de-

noted Val−∞
k (V ). One has the natural inclusions Val∞(V ) ⊂ Val(V ) ⊂ Val−∞(V ).

Generalized valuations can be thought of as valuations on smooth convex bodies.
A basic problem in valuation theory is to describe the G-invariant valuations for

various subgroups G ⊂ GL(n). For example, Hadwiger’s famous theorem states
that Valk(V )SO(n) = Span(µk), where µk is the k-th intrinsic volume. A theorem
of Alesker describes the compact Lie groups that possess a finite-dimensional space
of invariant valuations - those are precisely the groups acting transitive on Sn−1.
Moreover, the G-invariant valuations are then smooth.

1.2. Compact groups. A central role in integral geometry is played by kine-
matic formulas. Those come in many flavors. In our setting we will consider two
types of kinematic formulas - intersectional and additive. For example, for the
special orthogonal group, the intersectional and additive kinematic formula are
respectively

∫

g∈SO(n)

∫

x∈V
µk(A ∩ (gB + x))dxdg =

∑

i+j=n+k

cijk µi(A)µj(B)

∫

g∈SO(n)

µk(A ∩ gB)dg =
∑

i+j=k

dijk µi(A)µj(B)

where cijk , d
ij
k are certain explicit coefficients. The existence of such formulas is

immediate from Hadwiger’s theorem.
Given a Lie compact group G ⊂ GL(n) as above one defines the kinematic

operators, which are in fact co-products:

aG, kG : Val(V )G → Val(V )G ⊗Val(V )G

kG(φ)(A,B) =

∫

G

∫

V

φ(A ∩ (gB + x))dxdg

aG(φ)(A,B) =

∫

G

φ(A + gB)dg

By a theorem of Bernig and Fu, those operators are conjugate through the Alesker-
Fourier duality:

F⊗ F(kG(φ)) = aG(Fφ)

Using the rich algebraic structure on Val∞ introduced by Alesker, Bernig and Fu
were able to determine the kinematic formulas explicity for G = U(n) the unitary
group, see [4].
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2. Indefinite orthogonal group

2.1. Invariant valuations. What happens when G is non-compact? It turns
out that to have an interesting theory, one has to consider generalized valuations
instead of just smooth (or continuous). The first non-compact group to be consid-
ered was the Lorentz group in [2]. Generalizing the results therein to the indefinite
orthogonal group G = O(p, q), the Hadwider-type theorem is the following

Theorem 1 (Bernig-F.). For 1 ≤ k ≤ n− 1, dimVal−∞
k (V )O(p,q) = 2.

An explicit description of those spaces can be provided through the Klain em-
bedding. Non-formally, an even generalized k-homogeneous valuation is uniquely
described by its values on k-dimensional parallelotopes. In these terms, we have
the following result

Theorem 2 (Bernig-F.). One has the basis Val−∞
k (V )O(p,q) = Span{φ0k, φ1k},

where, writing E = Span{u1, ..., uk} for independent vectors u1, ..., uk, and Bu the
parallelotope they span,

φ0k(Bu) =

{ | detQ(ui, uj)| 12 , signQ|E = (k, 0), (k − 4, 4), . . .

−| detQ(ui, uj)|
1
2 , signQ|E = (k − 2, 2), (k − 6, 6), . . .

0 otherwise

and

φ1k(Bu) =

{ | detQ(ui, uj)| 12 , signQ|E = (k − 1, 1), (k − 5, 5), . . .

−| detQ(ui, uj)| 12 signQ|E = (k − 3, 3), (k − 7, 7), . . .
0 otherwise

Those valuations are not continuous, but they do in fact depend continuously on
k-dimensional bodies. Such valuations form the Klain-continuous class, denoted
ValKC(V ), and they play an important role in the theory - this class admits
many of the operations available for smooth or continuous valuations, such as
restrictions, kinematic operators and the Alesker-Fourier transform.

2.2. Kinematic formulas. Now to write kinematic formulas for O(p, q), one has
to fight the non-compactness of O(p, q). The first step is to eliminate the group
from the polarizing operators. For this, we need to consider the space of bival-
uations, BVal(V ), consisting of continuous functions K(V ) × K(V ) → C which
are valuations in every variable. Most of the notions above extend naturally to
bivaluations.

We define the kinematic operators k0, a0 : Val(V ) → BVal(V ) by k0(φ)(A,B) :=∫
V
φ(A ∩ (B + x))dx, a0(φ)(A,B) := φ(A + B). Let k+0 , a

+
0 denote the bi-even

component of the operators. It turns out that k+0 , a
+
0 extend to operators between

spaces of Klain-continuous (bi)valuations, satisfying the Bernig-Fu relation (F ⊗
F)k+0 (φ) = a+0 (Fφ). Thus we may focus on one type of kinematic operators.

We still have to deal with the non-compactness of G. For simplicity we will
consider only the even component of the kinematic formulas, equivalently, we will
consider origin-symmetric bodies A,B. We will only consider the simplest degree of
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homogeneity which is non-trivial for additive kinematic operators, k = 2. Higher
degrees remain to be understood. For φ ∈ Val−∞

2 (V )O(p,q), origin symmetric
smooth A,B and g ∈ O(p, q), φ(A + gB) = φ(A) + φ(B) + a+0 φ(A, gB). Only the
last summand depends on g and thus interesting for a kinematic formula. This
term is not always integrable though, and a correction term is sometimes needed.

There is a natural bivaluation ψQ ∈ BVal1,1(V )O(p,q) associated with the (p, q)-
quadratic form on V , which is denoted Q. It is given by its Klain embedding,
namely, ψQ(u, v) = |Q(u, v)| for u, v ∈ V . We then can prove the following:

Theorem 3 (F.). The integrals
∫

O(p,q)

a+0 φ
0
2(A, gB)dg

∫

O(p,q)

(
a+0 φ

1
2(A, gB)− ψQ(A, gB)

)
dg

converges in the sense of Klain-continuous bivaluations. In particular, they con-
verge for smooth convex bodies A,B.

When combined with the Hadwiger-type classification, we conclude that those

integrals are given by a finite linear combination of the form
∑1
i,j=0 cijφ

i
1(A)φ

j
1(B).

The computation of the coefficients, and more importantly, determining to which
extent the algebraic apparatus availalbe for compact groups extends to the non-
compact setting, remain to be done.
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Do Minkowski averages get progressively more convex?

Matthieu Fradelizi

(joint work with M. Madiman, A. Marsiglietti and A. Zvavitch)

The question of the title has its origin in the formal analogy between the Informa-
tion Theory and the Brunn-Minkowski theory, which comes from the statements
of the two fundamental inequalities of each theory:



Convex Geometry and its Applications 3209

Theorem 1 (Brunn-Minkowski inequality). Let A and B be two compact sets in
Rn. Then

|A+B| 1
n ≥ |A| 1

n + |B| 1
n .

Theorem 2 (Entropy Power Inequality (EPI)). Let X and Y be two independent
random vectors in Rn. Then

N(X + Y ) ≥ N(X) +N(Y ),

where for X with density f , N(X) = 1
2πee

2
n
H(X) and H(X) = −

∫
f log(f).

In this talk, we shall review some of the conjectures made to support this anal-
ogy and some of the results obtained to prove, disprove and modify those.

1) Blachman-Stam inequality. Elaborating on this analogy, Dembo-Cover-
Thomas conjectured in [4] the following analogue of the Blachman-Stam inequality:
for any convex bodies A, B

|A+B|
∂(A+B)

≥ |A|
∂(A)

+
|B|
∂(B)

.

In [5] in 2003, with Giannopoulos and Meyer we established that the conjecture
holds true in dimension 1 and 2 but it is false in dimension n ≥ 3.

2) Concavity of entropy power. As an analogue of the concavity of entropy
power, Costa and Cover conjectured in [3] that for any compact set A in R

n,

t 7→ |A+ tBn2 |
1
n is concave.

They also established the inequality if A is convex. With Marsiglietti in 2014 in
[6] we proved that the conjecture holds true in dimension 1, in dimension 2 for A
connected and in dimension n for A finite and t ≥ t(A). But it is false in dimension
n ≥ 2 in general. We don’t know if for any compact A there exists a t(A) ≥ 0 so
that the result holds true for t ≥ t(A).

3) Monotonicity of entropy. Artstein, Ball, Barthe and Naor have proved in
2004, in [1], the monotonicity of the entropy in the following sense:
Let X1, . . . , Xm, . . . be independent random vectors; then

m 7→ H

(
X1 + · · ·+Xm√

m

)
is non-decreasing.

Pursuing the analogy, Bobkov, Madiman and Wang conjectured in 2011, in [2],
that for any compact set A in Rn, if we denote

A(m) =

m times︷ ︸︸ ︷
A+ · · ·+A

m

then m 7→ |A(m)| is non-decreasing. More generally we investigate in [7] if the
Minkowski averages get progressively more convex, that is if the sequence A(m)
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comes closer in a monotone way to conv(A), with respect to different distances.
Considering the volume difference, the question reduces to Bobkov-Madiman-
Wang’s conjecture to which we give the following partial answer.

Theorem 3 (F., Madiman, Marsiglietti, Zvavitch [7]). Let A be a compact set in
Rn. Then m 7→ |A(m)| is non-decreasing for n = 1 but there are counter-examples
for n ≥ 12.

The counter-example in dimension n = 12 is built as the union of two convex
sets in supplementary subspaces: A = ([−1, 1]6 × {0}) ∪ ({0} × [−1, 1]6). Then∣∣A+A

2

∣∣ >
∣∣A+A+A

3

∣∣.

Figure 1. A counterexample in R12.

4) We also consider the distance to the convex hull measured in Hausdorff
distance. Let A be compact in Rn. We denote d(A) = dH(A, conv(A)):

d(A) = inf{r > 0; conv(A) ⊂ A+ rBn2 } = sup
x∈conv(A)

inf
a∈A

|x− a|.

Shapley-Folkmann-Starr proved in [9] that for A compact in Rn,

d(A(m)) ≤ min

(√
n

m
,

1√
m

)
R(A).

In [7], we observe that for m ≥ c(A), d(A(m + 1)) ≤ m
m+1d(A(m)), where c(A)

is an affine invariant measure of convexity defined by Schneider in [8] by c(A) =
inf{λ > 0;A + λconv(A) is convex}. Moreover Schneider proved that c(A) ≤ n
with equality if and only if A is a set of n + 1 affinity independent points; and if
A is connected then c(A) ≤ n− 1. Using the above observation, we deduce:

Corollary 4 (F., Madiman, Marsiglietti, Zvavitch [7]). Let A be a compact set in
R
n. Then m 7→ d(A(m)) is non-increasing for n = 1 and n = 2, for n = 3 if A is

connected, for m ≥ n.

We also prove the following theorem regarding Schneider’s convexity index.

Theorem 5 (F., Madiman, Marsiglietti, Zvavitch [7]). Let A be a compact set in
Rn. Then for any m ∈ N,

c(A(m+ 1)) ≤ m

m+ 1
c(A(m)).
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Operations between functions

Richard J. Gardner

(joint work with M. Kiderlen)

Throughout mathematics and wherever it finds applications, there is a need to
combine two or more functions to produce a new function. The four basic arith-
metic operations, together with composition, are so fundamental that there seems
no need to question their existence or utility, for example in calculus. In more ad-
vanced mathematics, other operations make their appearance, but are still some-
times tied to simpler operations, as is the case for convolution, which via the
Fourier transform becomes multiplication. Of course, a myriad of different opera-
tions have been found useful. One such is Lp addition +p, defined for f and g in
a suitable class of nonnegative functions by

(1) (f +p g)(x) = (f(x)p + g(x)p)1/p ,

for 0 < p < ∞, and by (f +∞ g)(x) = max{f(x), g(x)}. Particularly for 1 ≤ p ≤
∞, Lp addition is of paramount significance in functional analysis and its many
applications. It is natural to extend Lp addition to −∞ ≤ p < 0 by defining

(f +p g)(x) =

{
(f(x)p + g(x)p)1/p , if f(x)g(x) 6= 0,
0, otherwise.

when −∞ < p < 0, and (f +−∞ g)(x) = min{f(x), g(x)}.
But what is so special about Lp addition, or, for that matter, ordinary addi-

tion? This is one motivation for our investigation, which focuses on operations
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∗ : Φ(A)m → Φ(A), m ≥ 2, where Φ(A) is a class of real-valued (or extended-real-
valued) functions on a nonempty subset A of n-dimensional Euclidean space Rn.
We offer a variety of answers, usually stating that an operation ∗ satisfying just
a few natural properties must belong to rather special class of operations. What
emerges is the beginning of a structural theory of operations between functions.

Our most general results need no restriction on Φ(A) other than that it is a cone
(i.e., rf ∈ Φ(A) whenever f ∈ Φ(A) and r ≥ 0) of real-valued functions, a property
enjoyed by the classes of arbitrary, or continuous, or differentiable functions, among
many others. For example, we prove (Theorem A) that if m = 2, Φ(A) is a cone
containing the constant functions, and ∗ is pointwise, positively homogeneous,
monotonic, and associative, then ∗ must be one of 40 types of operations. Of the
properties assumed, the last three are familiar (monotonic means increasing). The
first property, pointwise, means that there is a function F : E ⊂ Rm → R such
that

(2) (∗(f1, . . . , fm))(x) = F (f1(x), . . . , fm(x)),

for all f1, . . . , fm in Φ(A) and all x ∈ A, where ∗(f1, . . . , fm) denotes the result of
combining the functions f1, . . . , fm via the operation ∗. The pointwise property is,
to be sure, a quite restrictive one, immediately eliminating composition, for exam-
ple. Nonetheless, (2) is general enough to admit a huge assortment of operations,
and it is surprising that with just three other assumptions the possibilities can be
narrowed to a relatively small number.

For nonnegative functions, the situation is easier, because a result of Pearson
[5] now does most of the work. If Φ(A) is a cone of nonnegative functions and
∗ is pointwise, positively homogeneous, monotonic (or pointwise continuous), and
associative, then ∗ must one of six types of functions (or three types of functions,
respectively), including Lp addition, for some −∞ ≤ p 6= 0 ≤ ∞. Except for
Lp addition, the various types of functions are either rather trivial or a trivial
modification of Lp addition.

Applications to convex analysis stem from two key lemmas, one of which states
that a pointwise operation ∗ : Φ(A)m → Cvx(A) must be monotonic, with an
associated function F that is increasing in each variable, when Φ(A) is Cvx(A),
Cvx+(A), Supp(Rn), or Supp+(Rn). Here Cvx(A) is the class of real-valued convex
functions on a nontrivial convex set A in Rn, Supp(Rn) is the class of support
functions of nonempty compact convex sets in Rn, and the superscript + denotes
the nonnegative functions in these classes.

We prove (Theorem B) that ∗ : Cvx(A)m → Cvx(A) is pointwise and positively
homogeneous if and only if there is a nonempty compact convex set M ⊂ [0,∞)m

such that

(3) (∗(f1, . . . , fm))(x) = hM (f1(x), . . . , fm(x)) ,

for all f1, . . . , fm ∈ Cvx(A) and all x ∈ A, where hM is the support function ofM .
We call an operation defined by (3), for an arbitrary nonempty subset M of Rm,
M -addition. As far as we know, such operations ∗ : Cvx(A)m → Cvx(A) have
not be considered before. The same result also characterizes the pointwise and
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positively homogeneous operations ∗ : Cvx+(A)m → Cvx+(A) as those satisfying
(3) for some 1-unconditional compact convex setM in Rm, but in this case, at least
for m = 2, such operations were first introduced by Volle [7]. He observed that
if ‖ · ‖ is a monotone norm on R2 (i.e., ‖(x1, y1)‖ ≤ ‖(x2, y2)‖ whenever x1 ≤ x2
and y1 ≤ y2), then the operation (f +‖·‖ g)(x) = ‖ (f(x), g(x)) ‖ still preserves the
convexity of nonnegative real-valued functions, where (1) corresponds to the Lp
norm. From Theorem B it is easy to characterize Volle’s operations as being, with
trivial exceptions, precisely the pointwise and positively homogeneous operations
∗ : Cvx+(A)2 → Cvx+(A). Moreover, we show, again with trivial exceptions, that
any pointwise, positively homogeneous, and associative operation ∗ : Cvx+(A)2 →
Cvx+(A) must be Lp addition, for some 1 ≤ p ≤ ∞. Another result (Theorem C)
completely characterizes the pointwise, positively homogeneous, and associative
operations ∗ : Cvx(A)2 → Cvx(A); with trivial exceptions, they are either ordinary
addition or defined by

(f ∗ g)(x) =





(f +p g)(x), if f(x), g(x) ≥ 0,
f(x), if f(x) ≥ 0, g(x) < 0,
g(x), if f(x) < 0, g(x) ≥ 0,
− (|f |+q |g|) (x), if f(x), g(x) < 0,

(4)

for all f, g ∈ Cvx(A) and x ∈ A and for some 1 ≤ p ≤ ∞ and −∞ ≤ q ≤ 0.
Here Theorem A is used in an essential way, the function F associated with the
operation ∗ defined by (4) (with m = 2) being one of the 40 listed in that result.
Again, it appears that these operations have not been considered before. A further
result (Theorem D) provides a somewhat surprising characterization of ordinary
addition by showing it to be the unique pointwise operation ∗ : Cvx(A)2 → Cvx(A)
satisfying the identity property, i.e., f ∗ 0 = 0 ∗ f = f , for all f ∈ Cvx(A). An
example shows why does not seem to be a natural version of Theorem D that
applies to the class Cvx+(A).

All the results in the previous paragraph have counterparts for operations ∗ :
Supp(Rn)m → Supp(Rn) or ∗ : Supp+(Rn)m → Supp+(Rn); indeed, the same
results hold verbatim, if the condition of positive homogeneity is omitted. Such
operations can be transferred in a natural manner to operations between compact
convex sets, so they are in part anticipated by work of Gardner, Hug, and Weil
[1], of which the present paper can be regarded as a sequel. Even in this context,
however, part of Theorem C is new, giving a partial answer to the still unresolved
question of the role of associativity in classifying operations between arbitrary
compact convex sets.

In convex analysis it is essential to work not only with real-valued functions but
also with extended-real-valued functions and we devote a section of the paper to
this task.

We stress that for each of the previously described results, and indeed those
throughout the paper, we provide a full set of examples showing that none of
the assumptions we make can be omitted. In particular, the assumption that the
operations are pointwise is essential. Nevertheless, in certain circumstances it is
possible to classify operations that are not necessarily pointwise, provided they
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are associative. Our inspiration here is the work of Milman and Rotem [4] on
operations between closed convex sets, and we lean heavily on their methods to
achieve our results. In what follows, Cvx+(A) is the class of nonnegative extended-
real-valued convex functions and Supp+(Rn) is the class of support functions of
nonempty closed convex sets in Rn containing the origin. We prove (Theorem E)
that any operation ∗ : Cvx+(A)2 → Cvx+(A) or ∗ : Supp+(Rn)2 → Supp+(Rn)
that is monotonic, associative, weakly homogeneous, and has the identity and δ-
finite properties, must be Lp addition, for some 1 ≤ p ≤ ∞. The δ-finite property is
a certain weak technical condition. Weak homogeneity is introduced for the first
time and serves two purposes: It directly relates to (and is much weaker than)
positive homogeneity and it allows us to avoid the slightly artificial “homothety”
property used in [4]. Indeed, we prove that in the presence of monotonicity and the
identity property, the homothety property implies weak homogeneity. We establish
a corresponding result (Theorem F) for operations ∗ : Supp+(Rn)2 → Supp+(Rn),
which immediately yields a characterization of Lp addition as an operation between
closed convex (or compact convex) sets containing the origin, that strengthens [4,
The orems 2.2 and 6.1].

Returning to pointwise operations, we briefly mention two other contributions.
The first is the introduction of Orlicz addition between functions. This is motivated
by the recent discovery of Orlicz addition of sets, a generalization of Lp addition
of sets; see [2, 8]. Orlicz addition +ϕ of functions turns out to be an operation
+ϕ : Φ(A)m → Φ(A) in several useful instances, for example when Φ(A) is the

class of nonnegative Borel or nonnegative continuous functions on A, or Cvx+(A),
or Supp+(Rn). It has the remarkable features that the function F associated
with +ϕ (as in (2)) is implicit and that when m = 2, +ϕ is in general neither
commutative nor associative.

The second contribution referred to above is a characterization of the Asplund
sum among operations between log-concave functions on Rn.

Problem. Find results in the spirit as those described above for operations that
are neither necessarily pointwise nor associative.
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Brascamp-Lieb inequality and quantitative versions of Helly’s theorem

Apostolos Giannopoulos

(joint work with S. Brazitikos)

We present new quantitative versions of Helly’s theorem; recall that the classical
result asserts that if F = {Fi : i ∈ I} is a finite family of at least n + 1 convex
sets in Rn and if any n + 1 members of F have non-empty intersection then⋂
i∈I Fi 6= ∅. Variants of this statement have found important applications in

discrete and computational geometry.

(A) Quantitative Helly-type results were first obtained by Bárány, Katchalski and
Pach. In particular, they proved the following volumetric result:

Let {Pi : i ∈ I} be a family of closed convex sets in Rn such that
∣∣⋂

i∈I Pi
∣∣ > 0.

There exist s 6 2n and i1, . . . , is ∈ I such that

|Pi1 ∩ · · · ∩ Pis | 6 n2n2

∣∣∣∣∣
⋂

i∈I
Pi

∣∣∣∣∣ .

The example of the cube [−1, 1]n in R
n, expressed as an intersection of exactly

2n closed half-spaces, shows that one cannot replace 2n by 2n−1 in the statement
above. Naszódi has recently proved a volume version of Helly’s theorem with a
constant 6 (cn)2n, where c > 0 is an absolute constant. In fact, a slight mod-
ification of Naszódi’s argument leads to the exponent 3n

2 instead of 2n. In [5],
relaxing the requirement that s 6 2n to the weaker one that s = O(n), Brazitikos
has improved the exponent to n:

Theorem 1 (Brazitikos). There exists an absolute constant α > 1 with the fol-
lowing property: for every family {Pi : i ∈ I} of closed convex sets in Rn, such
that P =

⋂
i∈I Pi has positive volume, there exist s 6 αn and i1, . . . , is ∈ I such

that
|Pi1 ∩ · · · ∩ Pis | 6 (cn)n |P |,

where c > 0 is an absolute constant.

The proof of Theorem 1 involves a theorem of Srivastava and the following ap-
proximate geometric Brascamp-Lieb inequality (we state below its reverse coun-
terpart too).

Theorem 2 (Brazitikos). Let γ > 1. Assume that u1, . . . , um ∈ Sn−1 and
c1, . . . , cm > 0 satisfy

In � A :=
s∑

j=1

cjuj ⊗ uj � γIn



3216 Oberwolfach Report 56/2015

and set κj = cj〈A−1uj, uj〉 > 0, 1 6 j 6 m. If f1, . . . , fm : R −→ [0,+∞) are
integrable functions then

∫

Rn

m∏

j=1

f
κj

j (〈x, uj〉)dx 6 γ
n
2

m∏

j=1

(∫

R

fj(t)dt

)κj

.

Also, if w, h1, . . . , hm : R −→ [0,∞) are integrable functions and w(x) >

sup
{∏m

j=1 h
κj

j (θj) : θj ∈ R , x =
∑m

j=1 θjcjuj
}
, then

∫

Rn

w(x)dx > γ−
n
2

m∏

j=1

(∫

R

hj(t) dt

)κj

.

(B) A continuous version of Theorem 2 can be also obtained. We say that a Borel
measure ν on Sn−1 is a γ-approximation of an isotropic measure (for some γ > 1)
if

In � Tν =

∫

Sn−1

u⊗ u dν(u) � γIn.

Following Barthe’s argument for the isotropic case and a generalization of the
so-called Ball-Barthe lemma (proved by Lutwak, Yang and Zhang for isotropic
measures on the sphere) one can obtain a continuous Brascamp-Lieb inequality
and its reverse form for a γ-approximation of an isotropic measure.

Theorem 3 (Brazitikos-Giannopoulos). Let ν be a γ-approximation of an isotropic
Borel measure on Sn−1 and let (fu), u ∈ Sn−1 be a family of functions fu : R −→
[0,+∞) that satisfy natural continuity conditions. Then,

∫

Rn

exp

(∫

Sn−1

log fu(〈x, u〉)〈T−1
ν u, u〉dν(u)

)
dx

6 γ
n
2 exp

(∫

Sn−1

log

(∫

R

fu

)
〈T−1
ν u, u〉 dν(u)

)
.

Also, if h is a measurable function such that

h

(∫

Sn−1

θ(u)u dν(u)

)
> exp

(∫

Sn−1

log fu(θ(u))〈T−1
ν u, u〉 dν(u)

)

for every integrable function θ, then

γ
n
2

∫

Rn

h(y) dy > exp

(∫

Sn−1

log

(∫

R

fu

)
〈T−1
ν u, u〉 dν(u)

)
.

(C) Bárány, Katchalski and Pach proved a quantitative Helly-type theorem for
the diameter in place of volume:

Let {Pi : i ∈ I} be a family of closed convex sets in Rn such that diam
(⋂

i∈I Pi
)
=

1. There exist s 6 2n and i1, . . . , is ∈ I such that

diam (Pi1 ∩ · · · ∩ Pis) 6 (cn)n/2,

where c > 0 is an absolute constant.

In the same work the authors conjecture that the bound should be polynomial
in n; in fact they ask if (cn)n/2 can be replaced by c

√
n. Relaxing the requirement
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that s 6 2n, and using a similar strategy as in [5], Brazitikos proved in [6] the
following:

Theorem 4 (Brazitikos). There exists an absolute constant α > 1 with the fol-
lowing property: if {Pi : i ∈ I} is a finite family of convex bodies in Rn with
int
(⋂

i∈I Pi
)
6= ∅, then there exist z ∈ Rn, s 6 αn and i1, . . . is ∈ I such that

z + Pi1 ∩ · · · ∩ Pis ⊆ cn3/2

(
z +

⋂

i∈I
Pi

)
,

where c > 0 is an absolute constant.

It is clear that Theorem 4 implies polynomial estimates for the diameter:

Theorem 5 (Brazitikos). There exists an absolute constant α > 1 with the fol-
lowing property: if {Pi : i ∈ I} is a finite family of convex bodies in Rn with
diam

(⋂
i∈I Pi

)
= 1, then there exist s 6 αn and i1, . . . is ∈ I such that

diam(Pi1 ∩ · · · ∩ Pis) 6 cn3/2,

where c > 0 is an absolute constant.

(D) The proof of Theorem 4 is based on the following non-symmetric version of
a lemma of Barvinok: There exists an absolute constant α > 1 with the following
property: if K is a convex body whose minimal volume ellipsoid is the Euclidean
unit ball, then there is a subset X ⊂ bd(K) ∩ Sn−1 of cardinality card(X) 6 αn
such that

Bn2 ⊆ cn3/2conv(X),

where c > 0 is an absolute constant. The random analogue of this fact is given by
the next theorem (see [8]).

Theorem 6 (Brazitikos-Chasapis-Hioni). There exists an absolute constant β > 1
with the following property: if K is a convex body in Rn whose center of mass is at
the origin, if N = ⌈βn⌉ and if x1, . . . , xN are independent random points uniformly
distributed in K then, with probability greater than 1− e−n we have

K ⊆ c1n conv({x1, . . . , xN}),

where c1 > 0 is an absolute constant.

A consequence of Theorem 6 is the next estimate for the vertex index vi(K)
(studied by Bezdek and Litvak in the symmetric case) of a not necessarily sym-
metric convex body K in Rn.

Theorem 7 (Brazitikos-Chasapis-Hioni). There exists an absolute constant c2 > 0
such that for every n > 2 and for every convex body K in Rn,

vi(K) 6 c2n
2.
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Random geometry in spherical space

Daniel Hug

(joint work with I. Bárány, G. Last, A. Reichenbacher, M. Reitzner, R. Schneider
and W. Weil)

Random geometry in Euclidean space Rd has been studied extensively and much
progress has been made within the last 20 years. Very recently, spherical space
has come into focus in this context, which is quite natural from the pure mathe-
maticians viewpoint but is also suggested by applications in stochastic geometry.

We start this talk with a study of random spherical polytopes generated as the
spherically convex hull of random points sampled in a hemisphere. In contrast
to the Euclidean case, we obtain closed form expressions (as well as asymptotic
results) for some of the geometric characteristics of spherical polytopes (see [1]).
In particular, we take the opportunity to introduce or recall some of the relevant
geometric functionals such intrinsic volumes, quermassintegrals, number of k-faces,
k-face contents and generalizations thereof in spherical space.

Second, we consider random tessellations of the unit sphere Sd−1 generated
by great subspheres of codimension 1 (the intersections of S

d−1 with (d − 1)-
dimensional linear subspaces). Equivalently, we study conical tessellations of Rd by
codimension 1 linear subspaces. For various geometric functionals, we obtain mean
value formulas for certain random cones, the Schläfli-cone Sn and the Cover-Efron
cone Cn, which are shown to be dual to each other. The Schläfli cone is obtained
by picking at random (with equal chances) one of the (Schläfli) cones generated
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Figure 1. Random spherical polytope in a hemisphere together
with its reflection in the origin. c©cinderella

by stochastically independent random linear subspaces H1, . . . , Hn ∈ G(d, d − 1),
which all follow the same distribution. In addition to mean value formulas, we also
derive some explicit second order moments (and thus covariances) in the isotropic
case (see [5]).

Figure 2. Tessellation of the sphere by great subspheres and
one of the induced spherical cells together with its reflection in
the origin. c©cinderella

In Euclidean space, the problem of determining the asymptotic or limit shape
(if it exists) of large cells in Poisson driven random tessellations has become known
as Kendall’s problem (see [2, 3, 4]). In spherical space, the statement of the prob-
lem has to be modified since “large cells” cannot occur. We discuss and provide
spherical analogues in the high intensity regime. This involves geometric inequal-
ities of isoperimetric type and related stability results in spherical space (see [6]).
We briefly point to applications for the study of the Boolean model on the sphere
(see [7]). In this context it is interesting to note that an immediate spherical
analogue of Hadwiger’s famous characterization theorem for Minkowski function-
als in Euclidean space is unknown in the spherical setting. Hence, rotational
integral-geometric formulas for functionals on the sphere have to be established in
a different way.
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Figure 3. Boolean model of spherical caps (kindly provided by
Michael Klatt).
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Sampling from a convex body using projected Langevin Monte-Carlo

Joseph Lehec

(joint work with S. Bubeck and R. Eldan)

Framework and main result. Let K ⊂ Rn be a convex body containing the
Euclidean ball of radius 1, and contained in the Euclidean ball of radius R. Let
V : K → R be a convex function. We assume that V is Lipschitz with constant
L and that its gradient is Lipschitz with constant β. We consider the probability
measure µ given by

µ(dx) = Z e−V (x)
1{x∈K} dx,

where Z is just the normalization constant. Our goal is to generate a random
sample from the log-concave measure µ.
Let η be a positive parameter and let ξ1, ξ2, . . . be an i.i.d. sequence of standard
Gaussian random vectors in R

n. We study the following Markov chain, which we
call Projected Langevin Monte Carlo:

(1) Xk+1 = PK
(
Xk −

η

2
∇V (Xk) +

√
η ξk+1

)
,

where PK is the Euclidean projection on K. Our main result states as follows.
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Theorem 1. Let ε > 0. If the parameter η and the number of steps N satisfy:

η ≈ R2

N
, N ≈ R6 max(n,RL,Rβ)12

ε12
,

then we have

TV(XN , µ) ≤ ε.

Moreover, we have a slightly better result when V is constant, in other words when
µ is the uniform measure on K: The same conclusion holds with

N ≈ R6n7

ε8
.

There is a long line of works in theoretical computer science proving similar
results, starting with Dyer, Frieze, Kannan [2]. For the constant potential case,
the best estimate is due to Lovasz and Vempala [3] who showed that essentially
n4 steps of the hit–and–run walk are enough to approximate the uniform measure
on K. The starting point of this work is Dalalyan’s article [1] which treats the
unconstrained case (K = Rn) and assumes furthermore that the potential V is
uniformly convex. Let us sketch briefly his argument.
Dalalyan’s argument. Let (Wt) be a standard Brownian motion on Rn and consider
the Langevin SDE associated to the potential V :

(2) dYt = dWt −
1

2
∇V (Yt) dt.

It is well–known that the measure µ given by µ(dx) = Z e−V (x) dx is stationary
and that the process is ergodic: Yt → µ in law as t → +∞. Now fix a positive
parameter η and consider the following discretization of (2)

(3) dỸt = dWt −
1

2
∇f(Ỹ⌊t/η⌋η) dt.

It is easily seen that the law of the sequence (Ỹkη) coincides with that of the
Markov chain given by (1) (when K = Rn). Next write:

TV(Ỹt, µ) ≤ TV(Ỹt, Yt) + TV(Yt, µ).

Assuming that∇2V ≥ α In for some positive α, Bakry–Émery’s theory easily yields
an exponential decay for the second term. To bound the first term, rewrite (3) as

dỸt = dW̃t −
1

2
∇f(Ỹt) dt

where

dW̃t = dWt +
1

2
∇V (Ỹt) dt−

1

2
∇V (Ỹ⌊t/η⌋η) dt.

This shows that it is enough to bound the total variation between W and W̃ ,
which is done using the hypothesis ∇2V ≤ β In and Girsanov’s formula. Putting
everything together Dalalyan shows that essentially n3 steps of the algorithm are
enough to approximate the measure µ.
Now we want to adapt this argument to the case where the measure µ is supported
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on a convex body K. For simplicity, we shall only consider the constant potential
case. Thus the measure µ is uniform on K and the algorithm reads

(4) Xk+1 = PK (Xk +
√
η ξk+1) ,

The first step is to understand what is the underlying continuous process.
The reflected Brownian motion. Let w : [0, T ) → Rn be a path with w(0) ∈ K. We
say that a couple of paths (x, ϕ) solves the Skorokhod problem associated to w if

• x(t) ∈ K, for all t < T .
• x = w + ϕ

• The path ϕ satisfies ϕ(t) = −
∫ t
0
νs L(ds) where L is a measure on [0, T ]

supported on the set {t ∈ [0, T ) : x(t) ∈ ∂K} and νs is an outer unit
normal at x(s).

Tanaka [4] showed that for every piecewise continuous w there is a unique solution
(x, ϕ) to the Skorokhod problem. The path x is called the reflection of w at the
boundary of K and L is called the local time of x at the boundary.
Let (Wt) be a standard Brownian motion and let (Yt) be its reflection at the
boundary of K. It is not hard to see that (Yt) is Markov and that µ (the uniform
measure on K) is stationary. Moreover Yt → µ in law as t → ∞. Now fix a

parameter η > 0 and let W̃t = W⌊t/η⌋η be the discretized Brownian motion. It is

not hard to see that the reflection (Ỹt) of (W̃t) at the boundary of K is constant

on intervals [kη, (k + 1)η) and that the sequence (Ỹkη) has the same law as the
Markov chain given by (4).

Analysis of the algorithm. Our goal is to bound TV(Ỹt, µ). Following Dalalyan we
write

TV(Ỹt, µ) ≤ TV(Ỹt, Yt) + TV(Yt, µ).

We use a coupling argument to deal with the second term (Bakry–Émery does
not apply anymore). Let (Wt) and (W ′

t ) be two Brownian motions started from
x and x′ respectively and let (Yt) and (Y ′

t ) be their respective reflections at the
boundary of K. We couple (Wt) and (W ′

t ) in such a way that for each time t, the
increment dW ′

t is the reflection of dWt with respect to the hyperplane median to
[Yt, Y

′
t ] (this is called mirror coupling). Then using the convexity of K it is pretty

straightforward to show that

P(Y and Y ′ have not yet met at time t) ≤ ‖x− x′‖√
2πt

.

This implies easily that TV(Yt, µ) ≤ R√
2πt

.

The first term cannot be dealt with as easily as before, just because no matter how
small η is, the total variation between the Brownian motion W and its discretiza-

tion W̃ is always 1. On the other hand, using a deterministic inequality of Tanaka
and an easy estimate on the local time of (Yt) at the boundary, it is possible to

bound the expected distance between Yt and Ỹt:

E

[
|Yt − Ỹt|

]
. n3/4t1/2η1/4.
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The last step is to show that one can pass from this transport cost estimate to a
total variation estimate. We shall not spell this out here. Let us just say that it
uses the mirror coupling again, alongside with an estimate of the hitting time of
the boundary of K for a Brownian motion started from a uniform point in K.
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On sharp bounds for marginal densities of product measures

Galyna Livshyts

(joint work with G. Paouris and P. Pivovarov)

We present an alternate approach to a recent theorem of Rudelson and Vershynin
on marginal densities of product measures [18]. To fix the notation, if f is a
probability density on Euclidean space Rn and E is a subspace, the marginal
density of f on E is defined by

πE(f)(x) =

∫

E⊥+x

f(y)dy (x ∈ E).

In [18], it is proved that if f(x) =
∏n
i=1 fi(xi), where each fi is a density on R,

bounded by 1, then for any k ∈ {1, . . . , n− 1}, and any subspace E of dimension
k,

(1) ‖πE(f)‖1/kL∞(E) ≤ C,

where C is an absolute constant.
In [18], it is pointed out that when k = 1, the constant C in (1) may be taken to

be
√
2. This follows from a theorem of Rogozin [17], which reduces the problem to

f = 1Qn
where Qn = [−1/2, 1/2]n is the unit cube, together with Ball’s theorem

[1], [2] on slices of Qn. More precisely, one can formulate Rogozin’s Theorem as
follows: if θ is a unit vector with linear span [θ], then

(2)
∥∥π[θ](f)

∥∥
L∞([θ])

≤
∥∥π[θ](1Qn

)
∥∥
L∞([θ])

for any f in the class

Fn =

{
f(x) =

n∏

i=1

fi(xi) : ‖fi‖L∞(R) ≤ 1 = ‖fi‖L1(R) , i = 1, . . . , n

}
.
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By definition of the marginal density and the Brunn-Minkowski inequality,
∥∥π[θ](1Qn

)
∥∥
L∞([θ])

= max
x∈[θ]

|Qn ∩ (θ⊥ + x)|n−1

= |Qn ∩ θ⊥|n−1,

where |·|n−1 denotes (n− 1)-dimensional Lebesgue measure. Ball’s theorem gives

|Qn ∩ θ⊥|n−1 ≤
√
2, which shows C =

√
2 works in (1).

Since Ball’s theorem holds in higher dimensions, i.e.,

(3) max
E∈Gn,k

|Qn ∩ E⊥|1/kn−k ≤
√
2 (k ≥ 1),

where Gn,k is the Grassmannian of all k-dimensional subspaces of Rn, it is natural

to expect that C =
√
2 works in (1) for all k > 1. However, in the absence of a

multi-dimensional analogue of Rogozin’s result (2), the authors of [18] prove (1)
with an absolute constant C via different means.

Our goal is to show that one can determine the optimal C for suitable k > 1
directly by adapting Ball’s arguments giving (3), and a related estimate, to the
functional setting. The main result of this talk is the following theorem.

Theorem 1. Let 1 ≤ k < n and E ∈ Gn,k. Then there exists a collection of
numbers {γi}ni=1 ⊂ [0, 1] with

∑n
i=1 γi = k such that for any bounded functions

f1, . . . , fn : R → [0,∞) with ‖fi‖L1(R) = 1 for i = 1, . . . , n, the product f(x) =∏n
i=1 fi(xi) satisfies

(4) ‖πE(f)‖L∞(E) ≤ min

((
n

n− k

)n−k
2

, 2k/2

)
n∏

i=1

‖fi‖γiL∞(R) .

In particular, the theorem implies that if f ∈ Fn and E ∈ Gn,k, then

(5) ‖πE(f)‖L∞(E) ≤ min

((
n

n− k

)n−k
2

, 2k/2

)
.

As noted in [2], if f = 1Qn
, the bound

(
n

n−k

)(n−k)/2
is achieved when n − k

divides n and E0 ∈ Gn,k is chosen so that Qn ∩ E⊥
0 is a cube of suitable volume;

note that
(

n
n−k

)n−k
2 ≤ ek/2. When k ≤ n/2, the bound 2k/2 is sharp when

Qn ∩ E⊥
0 is a box of suitable volume. Thus for such k, Theorem 1 implies

(6) sup
E∈Gn,k

‖πE(f)‖L∞(E) ≤ sup
E∈Gn,k

‖πE(1Qn
)‖L∞(E) (f ∈ Fn).
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Dual curvature measures and their Minkowski problems

Erwin Lutwak, Gaoyong Zhang

(joint work with Y. Huang and D. Yang)

The Brunn-Minkowski theory centers around the study of geometric functionals
of convex bodies as well as the differentials of these functionals. The fundamental
geometric functionals in the Brunn-Minkowski theory are the quermassintegrals
(which include volume and surface area as special cases). The differentials of the
quermassintegrals are geometric measures called area measures and (Federer’s)
curvature measures.

There are two extensions of the Brunn-Minkowski theory: the dual Brunn-
Minkowski theory, which emerged in the mid-1970s, and the Lp Brunn-Minkowski
theory actively investigated since the early 1990s but dating back to the 1950s.
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Lp surface area measure and its associated Minkowski problem in the Lp Brunn-
Minkowski theory were introduced some two decades ago. The logarithmic Min-
kowski problem and the centro-affine Minkowski problem are unsolved singular
cases of the Lp Minkowski problem.

Minkowski-type problems in the dual Brunn-Minkowski theory had not been
previously encountered. While, over the years, the “duals” of many concepts and
problems of the classical Brunn-Minkowski theory have been discovered and stud-
ied, the duals of Federer’s curvature measures (and thus their associatedMinkowski
problems) within the dual Brunn-Minkowski theory have remained elusive. Behind
this lay an inability to calculate the differentials of the dual quermassintegrals. It
was the elusive nature of the duals of Federer’s curvature measures that kept the
PDEs of the dual theory well hidden. It turns out that the duals of Federer’s
curvature measures contain a number of surprises. Perhaps the biggest is that
they connect known measures that were never imagined to be related.

The quermassintegrals, are the principal geometric functionals in the Brunn-
Minkowski theory. In differential geometry, the quermassintegrals are the integrals
of intermediate mean curvatures of closed smooth convex hypersurfaces. In integral
geometry, the quermassintegrals are the means of the projection areas of convex
body K in Rn:

(1) Wn−i(K) =
ωn
ωi

∫

G(n,i)

voli(K|ξ) dξ, i = 1, . . . , n,

where ξ ∈ G(n, i), the Grassmann manifold of i-dimensional subspaces in Rn,
while K|ξ is the image of the orthogonal projection of K onto ξ, where voli is just
Lebesgue measure in ξ, and ωi is the i-dimensional volume of the i-dimensional
unit ball. The integration here is with respect to the rotation-invariant probability
measure on G(n, i).

Aleksandrov’s variational formula for the Minkowski combination states that
for each convex body K,

(2)
d

dt
Wn−j−1(K + tL)

∣∣∣
t=0+

=

∫

Sn−1

hL(v) dSj(K, v), j = 0, . . . , n− 1,

holds for each convex body L. Here,K and L are convex bodies and the Minkowski
combination K + tL is defined by hK+tL = hK + thL, where hQ : Sn−1 → R is
used to denote the support function of the convex body Q. The Borel measures
S0(K, ·), . . . , Sn−1(K, ·) on Sn−1 defined by (2) are the classical area measures and
were introduced by Fenchel & Jessen and Aleksandrov.

In addition to the area measures of Aleksandrov and Fenchel & Jessen, associ-
ated with a convex body K are the curvature measures of Federer, C0(K, ·), . . . ,
Cn−1(K, ·). These measures are defined on Rn but are supported on ∂K. By
restricting our attention to convex bodies in Rn that contain the origin in their
interiors, and using the fact that each ray emanating from the origin intersects
a unique point on ∂K and a unique point on the unit sphere Sn−1, there is an
obvious pull-back that sends the curvature measure Cj(K, ·) to a measure Cj(K, ·)
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that is defined on the unit sphere. The measure C0(K, ·) was first defined by Alek-
sandrov, who called it the integral curvature of K. The total measures of both
area measures and curvature measures give the quermassintegrals:

Sj(K,S
n−1) = Cj(K,S

n−1) = nWn−j(K),

for j = 0, 1, . . . , n− 1.

A theory dual to the theory of mixed volumes was introduced in 1970s. The
duality, as a guiding principle, is conceptual in a heuristic sense and has motivated
much investigation. The main geometric functionals in the dual Brunn-Minkowski
theory are the dual quermassintegrals. The following integral geometric definition
of the dual quermassintegrals, via the volume of the central sections of the body,
shows their dual nature to the quermassintegrals defined in (1),

(3)
∼
Wn−i(K) =

ωn
ωi

∫

G(n,i)

voli(K ∩ ξ) dξ, i = 1, . . . , n.

The volume functional V is both the quermassintegralW0 and the dual quermass-

integral
∼
W 0.

For each convex body K in Rn that contains the origin in its interior, we

construct explicitly a set of Borel measures
∼
C0(K, ·), . . . ,

∼
Cn(K, ·), on Sn−1 that we

call the dual curvature measures of K associated with the dual quermassintegrals,
and such that ∼

Cj(K,S
n−1) =

∼
Wn−j(K), j = 0, . . . , n.

These geometric measures can be viewed as the differentials of the dual quermass-
integrals.

While the curvature measures of a convex body depend closely on the body’s
boundary, its dual curvature measures depend more on the body’s interior, but
yet have deep connections with classical concepts. In the case j = n, the dual

curvature measure
∼
Cn(K, ·) turns out to be the cone volume measure of K (see,

e.g., [1]). In the case j = 0, the dual curvature measure
∼
C0(K, ·) is Aleksandrov’s

integral curvature of the polar body of K (divided by n).
We establish dual generalizations of Aleksandrov’s variational formula. Suppose

K is a convex body in Rn that contains the origin in its interior, f : Sn−1 → R is
a continuous function. For a sufficiently small δ > 0, define a family of logarithmic
Wulff shapes,

[[[K, f ]]]t = {x ∈ R
n : x · v ≤ ht(v), for all v ∈ Sn−1},

for each t ∈ (−δ, δ), where ht(v), for v ∈ Sn−1, is given by

log ht(v) = log hK(v) + tf(v) + o(t, v),

where limt→0 o(t, ·)/t = 0, uniformly on Sn−1.

We prove that for 1 ≤ j ≤ n, and each convex body K that contains the origin

in the interior, there exists a Borel measure
∼
Cj(K, · ) on Sn−1 such that

(4)
d

dt

∼
Wn−j([[[K, f ]]]t)

∣∣∣
t=0

= j

∫

Sn−1

f(v) d
∼
Cj(K, v),
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for each continuous f : Sn−1 → R.

The main problem to be solved is the following dual Minkowski problem:

Suppose k is a fixed integer such that 1 ≤ k ≤ n.1 If µ is a finite Borel measure
on Sn−1, find necessary and sufficient conditions on µ so that µ is the k-th dual

curvature measure
∼
Ck(K, ·) of some convex body K in Rn.

For k = n the dual Minkowski problem is just the logarithmic Minkowski prob-
lem (also known as the L0-Minkowski problem). See e.g., [1]. When the measure
µ has a density function g : Sn−1 → R, the partial differential equation that is the
dual Minkowski problem is a Monge-Ampère type equation on Sn−1:

(5)
1

n
h|∇h|k−n det(hij + hδij) = g.

where (hij) is the Hessian matrix of the (unknown) function h with respect to an
orthonormal frame on Sn−1, and δij is the Kronecker delta.

If 1
nh|∇h|k−n were omitted in (5), then (5) would become the partial differen-

tial equation of the classical Minkowski problem. If only the factor |∇h|k−n were
omitted, then equation (5) would become the partial differential equation asso-
ciated with the logarithmic Minkowski problem. The gradient component in (5)
significantly increases the difficulty of the problem when compared to the classical
Minkowski problem or the logarithmic Minkowski problem. Existence of solutions
to the PDE (5) when the “data” is a measure is much more complicated to prove
and depends on “measure concentration”.

Suppose k is a fixed integer such that 1 ≤ k ≤ n. We say that a finite Borel
measure µ on Sn−1 satisfies the k-subspace mass inequality, if

µ(Sn−1 ∩ ξi)
µ(Sn−1)

< 1− k − 1

k

n− i

n− 1
,

for each ξi ∈ G(n, i) and for each i = 1, . . . , n− 1.

The main theorem is:

Suppose k is a fixed integer such that 1 ≤ k ≤ n. If the finite even Borel measure
µ on Sn−1 satisfies the k-subspace mass inequality, then there exists an origin-

symmetric convex body K in R
n such that

∼
Ck(K, ·) = µ.

The case of k = n was proved in [1]. Necessity is wide open, even when restricted
to origin-symmetric bodies
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The isotropy constant and boundary properties of convex bodies

Mathieu Meyer

(joint work with S. Reisner)

Let Kn be the set of all convex bodies in Rn endowed with the Hausdorff distance.
We prove that if K ∈ Kn has positive generalized Gauss curvature at some point
of its boundary, then K is not a local maximizer for the isotropy constant LK .

Geometric means of convex sets and functions and related problems

Vitali Milman, Liran Rotem

The first section of this report is based on the talk “Geometric means of convex
sets and functions” delivered by Rotem during the workshop. The second section
is based on questions asked by Milman during the problem session. This report is
based on the content of two papers – [5] and [8].

1. Geometric means of convex sets and functions

Denote by Cvx (Rn) the class of convex, lower semi-continuous functions ϕ : Rn →
(−∞,∞]. For ϕ0, ψ0 ∈ Cvx (Rn) we define their geometric mean ρ = G(ϕ0, ψ0)
by setting

(1)
ϕn+1(x) =

1

2
(ϕn(x) + ψn(x))

ψn+1(x) =
1

2
inf
y∈Rn

(ϕn(x+ y) + ψn(x− y))

for all n, and defining

ρ(x) = lim
n→∞

ϕn(x) = lim
n→∞

ψn(x).

It is not difficult to prove that the sequences {ϕn}∞n=0 and {ψn}∞n=0 indeed converge
pointwise to a common limit, under some weak assumptions on ϕ0 and ψ0. For
example, it is enough to assume that ϕ0 and ψ0 are everywhere finite. In the
special case where ϕ0 and ψ0 are 2-homogeneous this process was considered by
Asplund ([1]).

A similar process may be carried out for convex bodies. Denote by Kn0 the class
of closed, convex sets in K ⊆ Rn such that 0 ∈ K. For a fixed 1 ≤ p < ∞, and
given A0, B0 ∈ Kn0 , we set

(2)

An+1 =
1

21/p
(An +p Bn)

Bn+1 =

[
1

211/p
(A◦

n +p B
◦
n)

]◦
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Here K◦ denotes the polar body of K, and +p denotes the p-addition of convex
bodies (introduced by Firey in [4]). If A0 and B0 are compact then the common
limit

G = lim
n→∞

An = lim
n→∞

Bn

exists in the Hausdorff sense, and is called the p-geometric mean of A0 and B0.
We denote G = Gp(A0, B0).

In order to understand the name “geometric mean”, one should think about the
polarity map K 7→ K◦ as an inversion, i.e. K◦ = ”K−1”. Similarly, one should
think about the Legendre transform ϕ∗ of a function ϕ ∈ Cvx (Rn) as ”ϕ−1”. The
first result following this ideology was probably the inequality

K + T

2
⊇
(
K◦ + T ◦

2

)◦

proved by Firey in [3]. Firey called this result an arithmetic mean-harmonic mean
inequality. And indeed, if one thinks of K◦ as the inverse of K, the right hand
side is exactly the harmonic mean of K and T . Similarly, the harmonic mean of

ϕ, ψ ∈ Cvx (Rn) is
(
ϕ∗+ψ∗

2

)∗
, which is same as the inf-convolution that appears

in (1).
Another manifestation of the same ideology is the following theorem proved in

[8]:

Theorem 1. For every ϕ ∈ Cvx (Rn) one has

(ϕ+ δ)
∗
+ (ϕ∗ + δ)

∗
= δ,

where δ(x) = 1
2 |x|

2
.

This theorem is the analogue of the trivial identity 1
x+1 + 1

1/x+1 = 1 for every

x > 0. It has applications for Santaló type inequalities and for the theory of
summands.

Once we accept the above principle, the name “geometric mean” becomes easy
to explain. For fixed numbers x0, y0 > 0, define sequences {xn} and {yn} by

(3) xn+1 =
xn + yn

2
, yn+1 =

(
x−1
n + y−1

n

2

)−1

.

It is an easy exercise that limn→∞ xn = limn→∞ yn =
√
x0y0. The processes

(1) and (2) are the natural analogues of (3), which justifies the use of the term
“geometric mean”.

We now list some of the properties of the geometric mean. We start with
Theorem 2 that summarizes some of its basic properties. The first four parts of
the theorem are analogues of trivial results about the geometric mean of numbers.

Theorem 2. For every everywhere-finite ϕ, ψ, ϕ′, ψ′ ∈ Cvx (Rn), every compact
K,T,K ′, T ′ ∈ Kn0 and every 1 ≤ p < ∞, the geometric mean has the following
properties:
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• G(ϕ, ϕ) = ϕ and Gp(K,K) = K.
• G is monotone in its arguments: If K ⊆ K ′ and T ⊆ T ′ then Gp(K,T ) ⊆
Gp(K

′, T ′). Similarly if ϕ ≤ ϕ′ and ψ ≤ ψ′ then G(ϕ, ψ) ≤ G(ϕ′, ψ′).
• G(ϕ, ψ)∗ = G(ϕ∗, ψ∗) and Gp(K,T )◦ = Gp(K

◦, T ◦).
• G(ϕ, ϕ∗) = δ and Gp(K,K

◦) = D (the Euclidean unit ball).
• For every linear map u we haveG(ϕ◦u, ψ◦u) = G(ϕ, ψ)◦u andGp(uK, uT )
= u ·Gp(K,T ) .

For ellipsoids, we have the following result:

Theorem 3. For any centered ellipsoids E1 and E2 the mean Gp(E1, E2) is an
ellipsoid, which is independent of p.

Notice that for p = 2, whenever A0 and B0 in the process (2) are ellipsoids
all the sets An and Bn are ellipsoids as well, so it is not surprising that the limit
G2(A0, B0) is an ellipsoid. However, for p 6= 2, the sets An and Bn are not
ellipsoids, and still the limit Gp(A0, B0) is an ellipsoid.

It is easy to check that for numbers, the function G(x, y) =
√
xy is concave on

(R+)
2
. For functions we have the following analogous result (taken from [8]):

Theorem 4. The function (ϕ, ψ) → G(ϕ, ψ) is concave in its arguments. More
explicitly, fix everywhere-finite ϕ0, ϕ1, ψ0, ψ1 ∈ Cvx (Rn) and 0 < λ < 1. Define
ϕλ = (1 − λ)ϕ0 + λϕ1 and ψλ = (1− λ)ψ0 + λψ1. Then

G (ϕλ, ψλ) ⊇ (1− λ) ·G (ϕ0, ψ0) + λG(ϕ1, ψ1).

This theorem implies a similar theorem for sets, where the addition taken is the
2-addition: For every convex bodies K0,K1, T0, T1 ∈ Kn0 one has

G2 (Kλ, Tλ) ⊇
√
1− λG2(K0, T0) +2

√
λG2(K1, T1),

where Kλ =
√
1− λK0 +2

√
λK1 and Tλ =

√
1− λT0 +2

√
λT1. Perhaps surpris-

ingly, however, it turns out that the geometric mean of sets is not concave with
respect to the regular Minkowski addition.

In order to better understand the body Gp(K,T ), let us compare it with another
known construction. Given K,T ∈ Kn0 , Böröczky, Lutwak, Yang and Zhang ([2])
define the logarithmic mean (or 0-mean) of K and T to be

L(K,T ) =
{
x ∈ R

n : 〈x, θ〉 ≤
√
hK(θ)hL(θ) for all θ

}
,

where hK is the support function ofK. Let us also define L∗(K,T ) = (L (K◦, T ◦))◦.
Notice that L∗(K,T ) is simply the smallest convex body such that rL∗(θ) ≥√
rK(θ)rT (θ), where rK is the radial function of K.

Theorem 5. For every 1 ≤ p <∞ we have L∗(K,T ) ⊆ Gp(K,T ) ⊆ L(K,T ) .

In general the inclusions above may be strict. However, at least in some direc-
tions, we will always have equality:

Corollary 6. Fix K,T ∈ Kn0 . Assume that in direction η the bodies K and T
have parallel supporting hyperplanes, with normal vector θ. Then hGp(K,T )(θ) =√
hK(θ)hT (θ) and rGp(K,T )(η) =

√
rK(η)rT (η) for all p.
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Notice there are always such directions η – the points where η 7→ rK(η)

rT (η)
attains

its extrema.

2. Related problems

If one interprets K◦ as ”K−1”, most constructions we know in convexity are
“rational constructions” – built by a finite number of additions and “inversions”.
It appears that the time has come for “irrational constructions” as well. The
geometric mean described above is one example. Let us describe two more:

(1) In [6], Molchanov builds continued fractions of convex sets. In particular,
if K ⊇ D is a compact convex body then the process

(
K +

(
K + (K + · · · )◦

)◦)◦

converges to a limit Z. This Z is the unique solution of the “quadratic
equation” Z◦ = Z + K. More generally, one may also consider periodic
continued fractions with period > 1 to be solutions of more generalized
quadratic equations.

(2) Once the geometric mean is defined, one may define the Gauss arithmetic-
geometric mean in the same way it is done for numbers (see, e.g. [7]):
Given A0, B0 we set

An+1 =
An +Bn

2
Bn+1 = G(An, Bn)

(where G is, say, G1 defined above). The common limit limn→∞An =
limn→∞Bn is the arithmetic-geometric mean of A0 and B0, which we will
denote by Mag(A0, B0). The geometric-harmonic mean, Mhg(A0, B0), is
defined similarly.

In order to further develop the “irrational” theory of convexity the following open
problems need to be addressed:

(1) We want to think about the relation G(A,B) = P as “A is polar to B
with respect to P”. To justify this intuition, the following questions need
to be answered:
(a) Does G(A,B) = D imply that B = A◦?
(b) A “rational” variant of the previous question is the following: Assume

A+B = A◦ +B◦. Does it follow that B = A◦? If the answer to this
question is “no”, the answer to the previous question is “no” as well.

(c) Let P be a convex body such that for every A there exists a B with
G(A,B) = P . Does it follow that P is an ellipsoid?

(2) (a) Is it true that Gp(A,B) = G1(A,B) for all A,B?
(b) Define the upper elliptic envelope of G(A,B) as

Eu(A,B) =
⋂{

G(E1, E2) : E1, E2 are ellipsoids with
A ⊆ E1 and B ⊆ E2

}
.

Is it true that Eu(A,B) = G(A,B)?



Convex Geometry and its Applications 3233

(c) Do we have G(A, λB) =
√
λG(A,B) for λ > 0?

A positive answer to (2b) will imply a positive answer for (2a) and (2c)
as well.

(3) Under what conditions |G(A,B)|2 ≥ |A| |B|? Here |·| denotes the (Lebes-
gue) volume. We now that the answer is not “always”, even if A and B
are assumed to be origin-symmetric. By the Blaschke–Santaló inequality
the inequality holds whenever A is origin-symmetric and B = A◦.

(4) (a) Does there exist an “exponential map”, i.e. a map E : Kn0 → Kn0 such
that E ({0}) = D and

E

(
A+B

2

)
= G (E(A), E(B))?

(b) In the opposite direction, does there exists a “logarithmic map” with
the property

L (G(A,B)) =
L(A) + L(B)

2
,

and what is its natural domain?
For numbers, it is proved in [7] that

Mgh(N, 1) =
2

π
log 4N +O

(
1/N2

)
,

and perhaps a similar result will hold in our case as well. We would
like to thank Hermann König for referring us to the paper [7].

(5) Is it true that G(Mag(A,B),Mgh(A,B)) = G(A,B)? This property does
hold for numbers.
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On randomized Dvoretzky’s theorem for subspaces of Lp

Grigoris Paouris

(joint work with P. Valettas and J. Zinn)

In 1961 Dvoretzky [1] gave an affirmative answer to a question of Grothendieck by
proving that every finite dimensional normed space has lower dimensional subspace
which is almost Euclidean and the dimension grows with respect to the dimension
of the ambient space. The optimal dependance on the dimension was proved 10
years later by V. Milman in his groundbreaking work [4]. Milman;s result states
that for any ε ∈ (0, 1) there exists a function c(ε) > 0 with the following property:
for every n-dimensional normed space X there exists k ≥ c(ε) logn and linear map
T : ℓk2 → X with ‖x‖2 ≤ ‖Tx‖X ≤ (1 + ε)‖x‖2 for all x ∈ ℓk2 – we say that ℓk2 can

be (1 + ε)-embedded into X and we write: ℓk2
1+ε→֒ X . The example of X = ℓn∞

shows that this result is best possible with respect to n. Milman also showed
a “randomized” version of the above theorem where a “random” subspace in a
“critical” dimension is almost Euclidean. The best bounds on the dependance on
ε (c(ε) = ε2) on the “randomized” version of the above theorem is due to Gordon
[3] (see also [7]). We have investigate the problem of the dependance on ε in the
“randomized Dvoretzky’s Theorem” in the case of the classical spaces ℓnp . Here

Bnp := {x ∈ Rn : ‖x‖p ≤ 1 where ‖x‖p := (
∑n

i=1 |xi|p)
1
p .

Theorem 1. [5] Let 1 ≤ p ≤ ∞. Then, for each n and for any 0 < ε < 1
the random k-dimensional section of Bnp with dimension k ≤ k(n, p, ε) is (1 + ε)-
Euclidean with probability greater than 1 − C exp(−ck(n, p, ε)), where k(n, p, ·) is
defined as:

i. If 1 ≤ p < 2, then

k(n, p, ε) ≃ ε2n, 0 < ε < 1.(1)

ii. If 2 < p < ε0 logn, then

k(n, p, ε) ≃





(Cp)−pε2n, 0 < ε ≤ (Cp)p/2n− p−2
2(p−1)

p−1ε2/pn2/p, (Cp)p/2n− p−2
2(p−1) < ε ≤ 1/p

εpn2/p/ log 1
ε ,

1
p < ε < 1

.(2)

In fact for p < ε0 logn and p ≃ logn we have:

k(n, p, ε) ≃ logn/ log
1

ε
.(3)

iii. If p ≥ ε0 logn, then

k(n, p, ε) ≃ ε logn/ log
1

ε
, 0 < ε < 1.(4)

where C, c, ε0 > 0 are absolute constants.

The proof of the above theorem depends sharp concentration inequalities for
the p-norms with respect to the Gaussian measure. To achieve this we are using
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functional inequalities as log-Sobolev inequality and “L1−L2 Talagrand’s inequal-
ity”.
Using these ideas we were able to investigate the dependance on ε in the case
of subspaces of Lp. The above result extends the aforementioned result in the
case where p is “fixed”. This new results improves a previous result of Figiel,
Linderstrauss and Milman [2].

Theorem 2. [6] For any p > 2 there exists a constant c(p) > 0 with the following
property: for any n-dimensional subspace X of Lp and for any ε ∈ (0, 1) there

exists k ≥ c(p)min{ε2n, (εn)2/p} so that ℓk2 can be (1 + ε)-embedded into X.
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Centro-affine tensor valuations

Lukas Parapatits

(joint work with C. Haberl)

Let p be a nonnegative integer and define

Mp,0(K) = (n+ p)

∫

K

x⊗p dx

for allK ∈ Kn. The mapMp,0 is a continuous valuation from Kn to Symp(Rn), i.e.
to the space of symmetric tensors of order p. Furthermore,Mp,0 is SL(n)-covariant
in the sense that

Mp,0(ϑK) = ϑ ·Mp,0(K)

for all ϑ ∈ SL(n). The action of the SL(n) on (Rn)⊗p is uniquely determined by

ϑ · (v1 ⊗ · · · ⊗ vp) = (ϑv1)⊗ · · · ⊗ (ϑvp)

for all v1, . . . , vp ∈ Rn.
Define

M0,p(K) =

∫

Sn−1

u⊗p hK(u)1−p dSK(u)
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for all K ∈ Kno , i.e. for all convex bodies containing the origin in the interior. The
map M0,p is a continuous valuation from Kno to Symp(Rn). Furthermore, M0,p is
SL(n)-contravariant in the sense that

M0,p(ϑK) = ϑ−t ·M0,p(K).

In fact, these two examples are part of a larger family. Let r, s be nonnegative
integers and define

M̂ r,s(K) =

∫

∂K

x⊗r ⊗ uK(x)⊗s〈x, uK(x)〉1−s dHn−1(x)

for all K ∈ Kno . The map M̂ r,s is a continuous valuation from Kno to (Rn)⊗(r+s).
It is compatible with the SL(n) in the sense that

M̂ r,s(ϑK) =
(
ϑ⊗r ⊗

(
ϑ−t
)⊗s)

M̂ r,s(K).

The following classification result for maps on Pno , i.e. on the space of convex
polytopes containing the origin in the interior, is proved in [3].

Theorem 1. Let n ≥ 3, p ≥ 2 and µ : Pno → Symp(Rn). The map µ is an SL(n)-
covariant measurable valuation if and only if it is a linear combination of Mp,0

and M0,p◦∗, where ∗ denotes the polar body.

In the plane additional examples show up. Denote by ρ the rotation about an
angle of π2 . Define

M r,s
ρ (K) =

∫

∂K

x⊙r ⊙ (ρuK(x))⊙s〈x, uK(x)〉1−s dH1(x)

for all K ∈ K2
o. The map M r,s

ρ is an SL(2)-covariant continuous valuation from

K2
o to Symr+s(R2). The result in the plane reads as follows.

Theorem 2. Let p ≥ 2 and µ : P2
o → Symp(R2). The map µ is an SL(2)-

covariant measurable valuation if and only if it is a linear combination of M i,p−i
ρ ,

i ∈ {0, . . . , p} \ {p− 1}, and ρ ·Mp,0◦∗.
Similar results for p = 0 and p = 1 were already established in [1, 2] but are also

a consequence of the work in [3]. The first results of this type were established by
Monika Ludwig, see e.g. [4, 5, 6].

References

[1] C. Haberl and L. Parapatits, The centro-affine Hadwiger theorem, J. Amer. Math. Soc. 27
(3) (2014), 685–705.

[2] C. Haberl and L. Parapatits, Moments and valuations, Amer. J. Math., to appear.
[3] C. Haberl and L. Parapatits, Centro-affine tensor valuations, preprint
[4] M. Ludwig, Valuations of polytopes containing the origin in their interiors, Adv. Math. 170

(2) (2002), 239–256.
[5] M. Ludwig, Moment vectors of polytopes, Rend. Circ. Mat. Palermo (2) Suppl. No. 70, part

II (2002), 123–138.
[6] M. Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (1) (2003), 159–188.



Convex Geometry and its Applications 3237

Random ball-polyhedra and inequalities for intrinsic volumes

Peter Pivovarov

(joint work with G. Paouris)

I discussed inequalities for intrinsic volumes and associated randomized versions.
Recall that the intrinsic volumes V1, . . . , Vn can be defined via the Steiner formula:
for any convex body K ⊆ Rn and ε > 0,

|K + εB| =
n∑

j=0

ωn−jVj(K)εn−j,

where |·| denotes n-dimensional Lebesgue measure, B = Bn2 is the unit Euclidean

ball in Rn, ωn−j is the volume of Bn−j2 , and V0 ≡ 1; V1 is a multiple of the mean-
width, 2Vn−1 is the surface area and Vn = |·| is the volume. The Vj ’s satisfy the
extended isoperimetric inequality: for 1 6 j < n,

(1)

(
Vn(K)

Vn(B)

)1/n

6

(
Vj(K)

Vj(B)

)1/j

;

as well as the generalized Urysohn inequality: for 1 < j 6 n,

(2)

(
Vj(K)

Vj(B)

)1/j

6
V1(K)

V1(B)
.

The classical isoperimetric inequality corresponds to j = n − 1 in (1); Urysohn’s
inequality to j = n in (2) (or j = 1 in (1)). The Alexandrov-Fenchel inequality for
mixed volumes implies both (1) and (2).

Known inequalities from stochastic geometry for the expected intrinsic vol-
umes of random polytopes in convex bodies can be seen as randomized versions
of (1). Such inequalities have their roots in the classical Sylvester’s problem and
build on work of Busemann, Groemer, Rogers-Shephard, Pfiefer, Campi-Gronchi,
Hartzoulaki-Paouris, among others; see the references in [3]. Drawing on [3], one
can formulate a type of stochastic dominance as follows. Assume that |K| = |B|
and sample independent random vectorsX1, . . . , XN according to the uniform den-
sity 1

|K|1K , i.e., P (Xi ∈ A) = 1
|K|
∫
A 1K(x)dx for Borel sets A ⊆ R

n. Additionally,

sample independent random vectors Z1, . . . , ZN according to 1
|B|1B. Then for all

1 6 j 6 n and s > 0,

(3) P (Vj(conv{X1, . . . , XN}) > s) > P (Vj(conv{Z1, . . . , ZN}) > s) ,

where conv denotes the convex hull. Integrating in s yields

(4) EVj(conv{X1, . . . , XN}) > EVj(conv{Z1, . . . , ZN}).
By the law of large numbers, the latter convex hulls converge to their respective
ambient bodies and thus whenN → ∞, Vj(K) > Vj(B) whenever Vn(K) = Vn(B),
which is equivalent to (1). Thus (1) can be seen as a global inequality which
arises through a random approximation procedure in which stochastic domination
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holds at each stage. Kindred results in [3] are related to inequalities in Lp-Brunn-
Minkowski theory due to Lutwak, Yang and Zhang. The inequalities above involve
volume and can be proved using Steiner symmetrization for convex bodies and
rearrangement inequalities in the setting with probability densities.

A randomized version of (2) arises through a different random model but shares
similar characteristics, despite the fact that it need not involve volume. The model
for such random sets is motivated by work of Bezdek, Lángi, Naszódi and Papez
[1] on ball-polyhedra, which are intersections of finitely many congruent Euclidean
balls. To fix the notation, let B(x,R) be the closed Euclidean ball centered at
x ∈ Rn with radius R. Let f be the density of a continuous probability distribution
on Rn and assume that f is bounded and, for simplicity, that ‖f‖∞ ≤ 1. Sample
independent random vectors X1, . . . , XN according to f and Z1, . . . , ZN according
to the density 1B(0,rn), where rn satisfies |B(0, rn)| = 1. Our main result in [4] is
that for 1 6 j 6 n and s > 0,

(5) P

(
Vj

(
N⋂

i=1

B(Xi, R)

)
> s

)
6 P

(
Vj

(
N⋂

i=1

B(Zi, R)

)
> s

)
.

By sampling the Xi’s in a particular star-shaped set, (5) leads to a stochastic
dominance that underlies (2). We find this fact surprising since (5) deals with sets
(or uniform densities f on those sets) of a given volume and compares Vj - V1 is
not singled out in the formulation. Given a convex body K with support function
hK and R > 0, define a star-shaped set A(K,R) by specifying its radial function:

ρA(K,R)(−θ) = R− hK(θ) (θ ∈ Sn−1).

We prove that, in the Hausdorff metric,

K = lim
R→∞

⋂

x∈A(K,R)

B(x,R)

and writing r(K,R, n) = ω
−1/n
n |A(K,R)|1/n (which is the radius of a Euclidean

ball with the same volume as A(K,R)),

R− r(K,R, n) >

∫

Sn−1

hK(θ)dσ(θ);

and equality holds as R → ∞. Thus if we sample independent random vec-
tors X1, X2, . . . according to f = 1

|A(K,R)|1A(K,R) and Z1, Z2, . . . according to
1

|A(K,R)|1r(K,R,n)B, inequality (5) (with a suitable renormalization) implies

(6) EVj

(
N⋂

i=1

B(Xi, R)

)
6 EVj

(
N⋂

i=1

B(Zi, R)

)
.

As N → ∞,

(7) Vj


 ⋂

x∈A(K,R)

B(x,R)


 6 Vj

(
⋂

z∈rB
B(z,R)

)
.
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As R→ ∞, we ultimately arrive at

Vj(K) ≤ Vj((w(K)/2)B),

where w(K) is the mean width of K, which is (2). Thus (5) can be seen as a ran-
domized version of the generalized Urysohn inequality in which the extremal sets
are not Euclidean balls but random ball-polyhedra generated using the uniform
measure on the Euclidean ball.

As mentioned above, (1) and (2) share a common result - Urysohn’s inequal-
ity. Since we have two different randomzied inequalities that lead to Urysohn’s
inequality, namely for random ball-polyhedra by taking j = n in (6), and for ran-
dom convex hulls by taking j = 1 in (4), it is natural to investigate the relationship
between the two randomized forms. It turns out that the random ball-polyhedra
version implies the random convex hull version. This is a consequence of a result
of Gorbovickis [2], which has been used to establish the Kneser-Poulsen conjecture
for large radii.
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The centroid body: algorithms and statistical estimation for
heavy-tailed distributions

Luis Rademacher

(joint work with J. Anderson, N. Goyal and A. Nandi)

Independent component analysis (ICA) is the problem of efficiently recovering a
matrix A ∈ Rn×n from i.i.d. observations of X = AS where S ∈ Rn is a random
vector with mutually independent coordinates. This problem has been intensively
studied, but all existing efficient algorithms with provable guarantees require that
the coordinates Si have finite fourth moments. We consider the heavy-tailed ICA
problem where we do not make this assumption, about the second moment. This
problem also has received considerable attention in the applied literature. In the
present work, we first give a provably efficient algorithm that works under the
assumption that for constant γ > 0, each Si has finite (1 + γ)-moment, thus sub-
stantially weakening the moment requirement condition for the ICA problem to be
solvable. We then give an algorithm that works under the assumption that matrix
A has orthogonal columns but requires no moment assumptions. Our techniques
exploit standard properties of the multivariate spherical Gaussian distribution in
a novel way and draw ideas from convex geometry. In particular, a contribution
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of this work is the algorithmic use of the centroid body from convex geometry to
play a role analogue to the covariance matrix but for a heavy-tailed distribution.

This abstract is based on [1].
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On the complexity of the set of unconditional convex bodies

Mark Rudelson

This is a report on paper [5].
In [1] Barvinok and Veomett posed a question whether any n-dimensional con-

vex symmetric body can be approximated by a projection of a section of a simplex
whose dimension is subexponential in n. The importance of this question stems
from the fact that the convex bodies generated this way allow an efficient con-
struction of the membership oracle. The question of Barvinok and Veomett has
been answered in [3], where it was shown that for all 1 ≤ n ≤ N , there exists an
n-dimensional symmetric convex body B such that for every n-dimensional convex
body K obtained as a projection of a section of an N -dimensional simplex one has

d(B,K) ≥ c

√
n

ln 2N ln(2N)
n

,

where d(·, ·) denotes the Banach-Mazur distance and c is an absolute positive
constant. Moreover, this result is sharp up to a logarithmic factor.

One of the main steps in the proof of this result was an estimate of the com-
plexity of the set of all convex symmetric bodies in Rn, i. e., the Minkowski or
Banach–Mazur compactum. The complexity is measured in terms of the maximal
size of a t-separated set with respect to the Banach–Mazur distance

d(K,D) = inf{l ≥ 1 | D ⊂ TK ⊂ lD},
where the infimum is taken over all linear operators T : Rn → R

n. A set A in a
metric space (X, d) is called t-separated if the distance between any two distinct
points of A is at least t. It follows from [3] that for any 1 ≤ t ≤ cn, the set of all
n-dimensional convex bodies contains a t-separated subset of cardinality at least

(1) exp(exp(cn/t)).

Note that for t = O(1), the estimate above shows that the complexity of the
Minkowski compactum is doubly exponential in terms of the dimension. This fact
has been independently established by Pisier [4], who asked whether a similar
statement holds for the set of all unconditional convex bodies and for the set of
all completely symmetric bodies. We show that the answer to the first question is
affirmative, and to the second one negative.
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Consider unconditional convex bodies first. A convex symmetric body K ⊂ R
n

is called unconditional if it symmetric with respect to all coordinate hyperplanes.
This property can be conveniently reformulated in terms of the norm generated
by K. For x ∈ Rn, set

‖x‖K = min{a ≥ 0 | x ∈ aK}.
The body K is unconditional if thew norm generated by it is a function of the
absolute values of the coordinates.

Our main result shows that the complexity of the set Kuncn of unconditional
convex bodies at the scale t is doubly exponential as long as t = O(1). More
precisely, we prove the following theorem.

Theorem 1. Let 1 ≤ t ≤ c̃n1/2 log−5/2 n. The set of n-dimensional unconditional
convex bodies contains a t-separated set of cardinality at least

exp

(
exp

(
c

t2 log4(1 + t)
n

))
.

Here, c̃ and c are positive absolute constants.

Note that unlike the estimate (1), which is valid for 1 ≤ t ≤ cn, the estimate

above holds only in the range 1 ≤ t ≤ c̃n1/2 log−5/2 n. By a theorem of Lin-
denstrauss and Szankowski [2], the maximal Banach–Mazur distance between two
n-dimensional unconditional bodies does not exceed Cn1−ε0 for some ε0 ≥ 1/3.
This means that a non-trivial estimate of the cardinality of a t-separated set in
Kuncn is impossible whenever t > n1−ε0 .

Following the derivation of Theorem 1.1 [1], one can show that Theorem 1
implies a result on the hardness of approximation of an unconditional convex
body by a projection of a section of a simplex refining the solution of the problem
posed by Barvinok and Veomett.

Corollary 2. Let n ≤ N . There exists an n-dimensional unconditional convex
body B, such that for every n-dimensional convex body K obtained as a projection
of a section of an N -dimensional simplex one has

d(B,K) ≥ c

(
n

logN

)1/4

· log−1

(
n

logN

)
,

where c is an absolute positive constant.

In particular, Corollary 2 means that to be able to approximate all unconditional
convex bodies in Rn by projections of sections of an N -dimensional simplex within
the distance O(1), one has to take N ≥ exp(cn).

Consider now the set of completely symmetric bodies. We will call an n-
dimensional convex body completely symmetric if it is unconditional and invariant
under all permutations of the coordinates. This term is not commonly used. In
the language of normed spaces, completely symmetric convex bodies correspond
to the spaces with 1-symmetric basis. However, since the term “symmetric convex
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bodies” has a different meaning, we will use “completely symmetric” for this class
of bodies.

The set of completely symmetric convex bodies is much smaller than the set
of all unconditional ones. This manifests quantitatively in the fact that the car-
dinality of a t-separated set of completely symmetric bodies is significantly lower.
Namely, we prove the following proposition.

Proposition 3. Let t ≥ 2. The cardinality of any t-separated set in Kcs does not
exceed

exp

(
exp

(
C
log2 n

log t

))
.

This proposition means, in particular, that the complexity of the set of com-
pletely symmetric convex bodies is not doubly exponential in the dimension, which
answers the second question of Pisier.
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On bodies with directly congruent projections

Dmitry Ryabogin

(joint work with M. A. Alfonseca and M. Cordier)

In this talk we address the following problem (see [3, Problem 3.2, page 125]).

Problem 1. Suppose that 2 ≤ k ≤ n− 1 and that K and L are convex bodies in
Rn such that the projection K|H is congruent to L|H for all H ∈ G(n, k). Is K a
translate of ±L?

Here we say that K|H , the projection of K onto H , is congruent to L|H if
there exists an orthogonal transformation ϕ ∈ O(k,H) in H such that ϕ(K|H) is
a translate of L|H ; G(n, k) stands for the Grassmann manifold of all k-dimensional
subspaces in Rn.

If the corresponding projections are translates of each other the answer to Prob-
lem 1is known to be affirmative [3, Theorems 3.1.3], (see also [1], [7]). Besides, for
Problem 1, with k = n−1, Hadwiger established a more general result and showed
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that it is not necessary to consider projections onto all (n − 1)-dimensional sub-
spaces; the hypotheses need only be true for one fixed subspace H , together with
all subspaces containing a line orthogonal to H . In other words, one requires only
a “ground” projection on H and all corresponding “side” projections. Moreover,
Hadwiger noted that in Rn, n ≥ 4, the ground projection might be dispensed with
(see [5], and [3, pages 126–127]).

If the corresponding projections of convex bodies are rotations of each other,
the results in the case k = 2 were obtained by the third author in [6].

In the general case of rigid motions, Problem 1 is open for any k and n. In the
special case of direct rigid motions, i.e., when the general orthogonal group O(k)
is replaced by the special orthogonal group SO(k), the problem is open as well.

Golubyatnikov [4] obtained several interesting results related to the cases k =
2, 3 [4, Theorem 2.1.1, page 13; Theorem 3.2.1, page 48]. In particular, he gave an
affirmative answer to Problem 1 in the case k = 2 if the projections of K and L
are directly congruent and have no direct rigid motion symmetries.

If the bodies are symmetric, then the answer to Problems 1 is known to be
affirmative and it is a consequence of the Aleksandrov Uniqueness Theorem about
convex bodies, having equal volumes of projections (see [3, Theorem 3.3.1, page
111]).

In this talk we follow the ideas from [4] and [6] to obtain several Hadwiger-type
results related to Problems 1 in the case k = 3. In order to formulate these results
we introduce some notation and definitions.

Let n ≥ 4 and let Sn−1 be the unit sphere in Rn. We will use the notation w⊥

for the (n − 1)-dimensional subspace of Rn orthogonal to w ∈ Sn−1. We denote
by dK(ζ) the diameter of a convex body K, which is parallel to the direction
ζ ∈ Sn−1. We will also denote by O = Oζ ∈ O(n) the orthogonal transformation
satisfying O|ζ⊥ = −I|ζ⊥ , and O(ζ) = ζ.

We define the notion of rigid motion symmetry for sets. Let D be a subset of
H ∈ G(n, k), 3 ≤ k ≤ n−1. We say that D has a rigid motion symmetry if ϕ(D) =
D + a for some vector a ∈ H and some non-identical orthogonal transformation
ϕ ∈ O(k,H) inH . Similarly,D has a direct rigid motion symmetry if ϕ(D) = D+a
for some vector a ∈ H and some non-trivial rotation ϕ ∈ SO(k,H). In the case
when D is a subset of H ∈ G(n, 3), and ξ ∈ (H ∩ Sn−1), we say that D has
a (ξ, απ)-symmetry if ϕ(D) = D + a for some vector a ∈ H and some rotation
ϕ ∈ SO(3, H) by the angle απ, α ∈ (0, 2), satisfying ϕ(ξ) = ξ. If, in particular,
the angle of rotation is π, we say that D has a (ξ, π)-symmetry.

1. Results about directly congruent projections

We start with the following 4-dimensional result.

Theorem 1. Let K and L be two convex bodies in R4 having countably many
diameters. Assume that there exists a diameter dK(ζ), such that the “side” pro-
jections K|w⊥, L|w⊥ onto all subspaces w⊥ containing ζ are directly congruent,
see Figure 1. Assume also that these projections have no (ζ, π)-symmetries and
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no (u, π)-symmetries for any u ∈ (ζ⊥∩w⊥∩S3). Then K = L+ b or K = OL+ b
for some b ∈ R4.

If, in addition, the “ground” projections K|ζ⊥, L|ζ⊥, are directly congruent and
do not have rigid motion symmetries, then K = L+ b for some b ∈ R4.

Figure 1. Diameter dK(ζ), side projection K|w⊥ and ground
projection K|ζ⊥.

We state a straight n-dimensional generalization of Theorem 1 as a corollary.

Corollary 2. Let K and L be two convex bodies in Rn, n ≥ 4, having countably
many diameters. Assume that there exists a diameter dK(ζ) such that the “side”
projections K|H, L|H onto all 3-dimensional subspaces H containing ζ are directly
congruent. Assume also that these projections have no (ζ, π)-symmetries and no
(u, π)-symmetries for any u ∈ (ζ⊥ ∩H ∩ Sn−1). Then K = L+ b or K = OL+ b
for some b ∈ Rn.

If, in addition, the “ground” projections K|G, L|G onto all 3-dimensional sub-
spaces G of ζ⊥, are directly congruent and have no rigid motion symmetries, then
K = L+ b for some b ∈ Rn.

In particular, we see that if K and L are convex bodies in Rn, n ≥ 4, hav-
ing countably many diameters, and directly congruent projections onto all 3-
dimensional subspaces, and if the “side” and “ground” projections related to one
of the diameters satisfy the conditions of the above corollary, then K and L are
translates of each other.

This statement was proved by Golubyatnikov [4, Theorem 3.2.1, page 48] under
the stronger assumptions that the “side” projections have no direct rigid motion
symmetries. Theorem 1 and Corollary 2 under the same stronger assumptions
are implicitly contained in his proof. To weaken the symmetry conditions on the
“side” projections we replace the topological argument from [4] with an analytic
one based on ideas from [6].



Convex Geometry and its Applications 3245

We note that the assumption about countability of the sets of the diameters
of K and L can be weakened. Instead, one can assume, for example, that these
sets are subsets of a countable union of the great circles containing ζ. We also
note that the set of bodies considered in the above statements contains the set
of all polytopes whose three dimensional projections do not have rigid motion
symmetries. This set of polytopes is an everywhere dense set with respect to the
Hausdorff metric in the class of all convex bodies in Rn, n ≥ 4.
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The role of the Rogers-Shephard inequality in the classification of the
difference body

Eugenia Saoŕın Gómez

(joint work with J. Abardia)

Let Kn denote the set of convex bodies (compact and convex sets) in R
n and

h(K, v) = hK(v) the support function of K ∈ Kn in the direction v ∈ Rn. If
A ⊂ Rn is measurable, we write Vol(A) for its volume (n-dimensional Lebesgue
measure) and GL(n) and SL(n) to denote the general and special linear groups in
Rn.

The difference body DK ofK ∈ Kn is the Minkowski sum ofK and its reflection
in the origin, i.e.,

(1) DK := K + (−K).

The Rogers-Shephard inequality ([3]) constitutes the fundamental (affine) in-
equality relating the volume of the difference body DK and the volume of K. It
is usually introduced together with a lower bound, which is a consequence of the
Brunn-Minkowski inequality:
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Let K ∈ Kn. Then

(2) 2nVol(K) ≤ Vol(DK) ≤
(
2n

n

)
Vol(K).

As an operator on convex bodies

D : Kn −→ Kn
K 7→ DK,

the difference body enjoys several properties. It is continuous in the Hausdorff
metric, SL(n)-covariant and homogeneous of degree 1. Further, K 7→ DK is a
translation invariant Minkowski valuation.

An operator φ : Kn −→ Kn is said to be G-covariant for a group of transfor-
mations G if for any K ∈ Kn it holds

φ(gK) = gφK for any g ∈ G,

and it is homogeneous of degree k ∈ R if for any K ∈ Kn,
φ(λK) = λkφK for any λ > 0.

The operator φ is a Minkowski valuation if for any K,L ∈ Kn with K∪L ∈ Kn,
φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L),

where the addition on Kn is the vectorial addition. An operator φ is translation
invariant if

φ(K + t) = φ(K) for any t ∈ R
n.

Indeed, in [2] M. Ludwig proved that already continuity, translation invariance,
Minkowski valuation and SL(n)-covariance are enough to determine the difference
body operator.

Theorem C ([2]). Let n ≥ 2. An operator φ : Kn −→ Kn is continuous, trans-
lation invariant and SL(n)-covariant Minkowksi valuation if and only if there is a
λ ≥ 0 such that φK = λDK.

If the image of the operator φ is restricted to origin symmetric convex bodies,
a characterization in the same direction is provided by R. Gardner, D. Hug and
W. Weil in [1]. Following their notation, let the subclass Kns of convex bodies
symmetric with respect to the origin (for short, o-symmetric), an operator φ :
Kn −→ Ks is called an o-symmetrization.

Theorem D ([1]). Let n ≥ 2. An operator φ : Kn → Kns is a continuous,
translation invariant and GL(n)-covariant o-symmetrization if and only if there is
a λ ≥ 0 such that φK = λDK.

However, none of the above classifications makes use of the fundamental affine
isoperimetric inequalities attached to it, namely, (2).

It is our goal to understand whether these two inequalities may play a role in
classifying the difference body operator. To this aim we introduce the following
two definitions.
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We say that an operator φ : Kn → Kn satisfies a Rogers-Shephard type inequality
(in short RS) if there exists a constant C > 0 such that for all K ∈ Kn,
(3) Vol(φK) ≤ C Vol(K).

Analogously, φ satisfies a Brunn-Minkowski type inequality (in short BM) if there
exists a constant c > 0 such that for all K ∈ Kn,
(4) cVol(K) ≤ Vol(φK).

In general, if any of the assumptions in Theorems C and D is replaced by
Rogers-Shephard inequality, there is, in general, no possibility of getting close to
a characterization of the difference body. The following examples are intended to
illustrate this issue.

Example 1. Let L ∈ Kns have dimension at most n− 1. Then, the operator

φ : Kn −→ Kn
K 7→ L

is a continuous, Minkowski valuation which is also an o-symmetrization and trans-
lation invariant. It satisfies RS but it is not GL(n)-covariant. Further, it does not
satisfy BM.

Example 2. Let p ∈ Rn. The operator

φp : Kn −→ Kn
K 7→ K − p.

is a continuous Minkowski valuation, which clearly satisfies RS and BM. However,
φp is neither an o-symmetrization, nor GL(n)-covariant or translation invariant.

The last example shows also that the three conditions continuity, Minkowski
valuation and RS together, neither characterize the difference body nor imply
GL(n)-covariance.

Example 3. Let a(K) denote the center of gravity (centroid) of K. The operator

K 7→ conv ((K − a(K)) ∪ (−K + a(−K)))

satisfies BM and RS. Moreover, it is a GL(n)-covariant o-symmetrization, but this
is (because of a(K)) not continuous on Kn.

Example 4. Let L ∈ Kns have dimension at most n− 1. Then, the operator

φK =

{
DK, if dimK = n
L, otherwise

is an o-symmetrization, translation invariant and satisfies both RS and BM. It is
however, not continuous.

If L is chosen to be the origin, then it is also GL(n)-covariant, monotonic and
one homogeneous.
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Example 5. Let ω(K) denote the mean width of K (see e.g. [4, (1.30)]). Let us
consider the operator

φ : Kn −→ Kn
K 7→ Bω(K),

where Bω(K) denotes the ball centered at the origin and of radius ω(K).
The operator φ is a continuous, o-symmetrization, translation invariant and

Minkowski valuation which satisfies BM. It is also monotonic and homogeneous of
degree 1. However, it neither satisfies RS nor is GL(n)-covariant.

Example 6. Let φK = Vol(K)1/nBn. It is a continuous o-symmetrization satis-
fying BM and RS. Further, it is translation invariant and homogeneous of degree
one. It is clearly not a Minkowski valuation.

The following example is particularly important for us. It connects the actual
extended abstract with the one by J. Abardia.

Example 7.

φK = L+Vol(K)S

where S is a centered segment and L is an o-symmetric (n− 1)-dimensional con-
vex body so that dim(S + L) = n. The operator φ is a continuous, translation
invariant Minkowski valuation, and also an o-symmetrization which satisfies a
Rogers-Shephard and a Brunn-Minkowski type inequality. Brunn-Minkowski and
Rogers-Shephard inequality hold since

Vol(L+Vol(K)S) = Vol(K)V (L[n− 1], S).

In the talk by J. Abardia, it is proven that a continuous, translation invari-
ant Minkowski valuation, which is an o-symmetrization and satisfies a Rogers-
Shephard and a Brunn-Minkowski type inequality is either of the above type or
one-homogeneous.

In view of the above examples, a characterization of the difference body using
RS and BM, if possible, needs several assumptions.

Our main result in this direction is the following:

Theorem 8. Let n ≥ 2. Let φ : Kn → Kn be a continuous, GL(n)-covariant
operator. Then, the following statements are equivalent

(1) φ satisfies a Rogers-Shephard type inequality
(2) dimφK = dimK for every K ∈ Kn
(3) there exists K ∈ Kn, dimK ≤ n− 1, 0 /∈ affK with dimφK = dimK
(4) φ is additive
(5) there exist a, b ≥ 0 such that φK = aK + b(−K)

As a consequence of this we obtain the following corollary.

Corollary 9. Let n ≥ 2. An o-symmetrization φ : Kn → Kns is continuous,
GL(n)-covariant and satisfies a Rogers-Shephard type inequality if and only if there
exists λ ≥ 0 such that φK = λDK.



Convex Geometry and its Applications 3249

The main tools to prove the above statements are the next two results. The
first is a slight modification of a result by R. Gardner, D. Hug and W. Weil:

Theorem 10. [1, Lemma 7.4, Lemma 8.1 and Theorem 8.2] Let n ≥ 2. The
operator φ : Kn → Kn is continuous and GL(n)-covariant if and only if there is a
planar convex body M ⊂ R2 such that

(5) h(φK, x) = hM (hK(x), h−K(x)) ,

for all K ∈ Kn and all x ∈ Rn. In this case we say that M is an associated planar
convex body to φ.

The second one is the following proposition:

Proposition 11. Let n ≥ 2 and φ : Kn → Kn be continuous and GL(n)-covariant
withM ∈ K2 as associated convex body and let ω(K,u) denote the width of K ∈ Kn
in the direction u ∈ Sn−1. Then,

(1) φK = {0} for every K ∈ Kn iff hM (1, 1) = 0
(2) ω(K,u)hM (1, 1) ≤ ω(φK, u), ∀u ∈ Sn−1

(3) if φ 6≡ 0, then affK ⊆ aff φK
(4) If K,L ∈ Kn satisfy ω(K,u) ≤ ω(L, u) for every u ∈ Sn−1,

then Vol(K) ≤ 2−n
(
2n
n

)
Vol(L)

The role of a Brunn-Minkowski type inequality in classifying the difference body
happens not to be relevant accompanied of GL(n)-covariance and continuity, as
we prove in the following result.

Theorem 12. Let n ≥ 2. If φ : Kn → Kn, φ 6≡ 0, is a continuous and GL(n)-
covariant operator, then it satisfies a Brunn-Minkowski type inequality.
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Iterations of the projection body operator and a remark on Petty’s
conjectured projection inequality

Christos Saroglou

(joint work with A. Zvavitch)

The projection body of a convex body K in Rd is defined as the body with support
function

hΠK(x) = |K|x⊥|, for all x ∈ S
d−1,
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where K|x⊥ denotes the orthogonal projection of K onto the subspace x⊥ = {y ∈
Rd : 〈x, y〉 = 0}. The direct application of Cauchy projection formula gives us

hΠK(x) =
1

2

∫

Sd−1

|〈x, y〉|dSK(y), x ∈ S
d−1,

where SK is the surface area measure of K, viewed as a measure on Sd−1. When
SK is absolutely continuous (with respect to the Lebesgue measure on the sphere),
its density fK is called curvature function of K.

It is very interesting to study the iterations of projection body operator. It
is trivial to see that the projection body of Euclidean ball Bd2 is again, up to a
dilation, Bd2 , moreover the same property is true for a unit cube Bd∞. Weil proved
that if K is a polytope in Rd, then Π2K is homothetic to K if and only if K is a
linear image of cartesian products of planar symmetric polygons or line segments.
But no other description of fixed points of projection body operator is known as
well as no much known about possible convergence of the sequence ΠmK. Clearly,
Weil’s result tell us that one cannot expect in general that ΠmK → Bd2 , with
respect to the Banach-Mazur distance. It seems more plausible, however, that
ΠmK → Bd2 , if K has absolutely continuous surface area measure and d ≥ 3 (for
d = 2, if K is symmetric, then Π2K = 4K). We prove the following:

Theorem 1. Let d ≥ 3. There exists an εd > 0 with the following property: For
any convex body K in Rd, with absolutely continuous surface area measure and the
curvature function fK satisfying ‖fTK − 1‖∞ < εd, for some T ∈ GL(d), we have
ΠmK → Bd2 , in the sense of the Banach-Mazur distance.

The idea of the above theorem follows from the study of the properties of
intersection body operator done by Fish, Nazarov, Ryabogin and Zvavitch. The
authors proved that Bd2 is a local attractor:

Theorem E. Let d ≥ 3. There exists an εd > 0 with the following property: For
any star body K in Rd, which satisfies ‖ρTK − 1‖∞ < εd, for some T ∈ GL(d) (in
other words, K is close, in Banach-Mazur distance, to Bd2 ), we have ImK → Bd2 ,
in the sense of the Banach-Mazur distance.

Here, IK denotes the intersection body of K. The intersection body IK of a
star body K was defined by Lutwak using the radial function of the body IK:

ρIK(u) = |K ∩ u⊥|, for u ∈ S
d−1.

Again it is trivial to see that IBd2 is a dilate of Bd2 and I2K = 4K for symmetric
K ⊂ R2, but no much information is known about other fixed points of I

Another reason to consider Theorem 1 is that it can be applied to study of
Petty’s conjectured inequality. Indeed, it was shown by Petty that the quantity
P (K) := |ΠK|/|K|d−1 is affine invariant. Petty also conjectured the following:

Conjecture 2. Let d ≥ 3. The affine invariant P (K) is minimal if and only if K
is an ellipsoid.
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The restriction d ≥ 3 is because in the plane it is well known that |ΠK| ≥ 4|K|,
with equality if and only if K is symmetric Petty’s conjecture, if true, would be
a very strong inequality, as it would imply a number of important isoperimetric
inequalities, such as the classical isoperimetric inequality, the Petty projection
inequality (a remarkable functional form of the latter was established by G. Zhang),
and the affine isoperimetric inequality.

Very little seem to be known about the conjecture of Petty. For instance, as
shown by Saroglou, Steiner symmetrization fails for this problem. A useful fact,
established by Schneider, is that

(1) P (K) ≥ P (ΠK),

with equality if and only if K is homothetic to Π2K In particular, it follows that
every solution to the Petty problem must be a zonoid (a body which is a limit of
Minkowski sum of segments).

Although bodies with minimal surface area significantly larger than the surface
area of the ball (of the same volume) are known to satisfy the Petty conjecture no
natural class of convex bodies was known to satisfy the Petty conjecture (natural
class means that is connected with respect to the Banach-Mazur distance and
contains the ball). Below, we have a result towards this direction.

Theorem 3. Let d ≥ 3. There exists an εd > 0 with the following property: For
any non-ellipsoidal convex body K in R

d, which has absolutely continuous surface
area measure and satisfies ‖fTK − 1‖∞ < εd, for some T ∈ GL(d), we have
P (K) > P (Bd2 ).

Denote by Wi the i-th quermassintegral functional in Rd, i = 0, 1, . . . , d − 1,
which is the mixed volume of d− i copies of a convex body K with i copies of Bd2
Recall the Aleksandrov-Fenchel inequalities for quermassintegrals:

(2) W d−i
i+1 (K) ≥ ωdW

d−i−1
i (K), i = 0, . . . , d− 2,

where K is any convex body and ωd = |Bd2 | proved that if Petty’s conjecture was
proven to be true, then a family of inequalities that are stronger than (2) would
have been established. These conjectured inequalities involve the notion of the
i-th projection body ΠiK of K, whose support function is given by:

hΠiK(u) =Wi|u⊥(K|u⊥), i = 0, . . . , d− 2,

where Wi|u⊥ stands for the i-th quermassintegral in u⊥. Note that ΠK = Π0K.
Actually, Lutwak established a certain member of this family of inequalities:

(3) Wd−2(Πd−2K) ≥ ω2
d−1Wd−2(K),

where d ≥ 3, with equality if and only if K is a ball. To see that (3) is stronger
than (2) (in the sense that it interpolates (2)), for i = d − 1, note that since
Wd−1(K) is proportional to the mean width of K, we get:

(4) Wd−1(Πd−2K) = ωd−1Wd−2(K),
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Thus by (2) we obtain:
ωd
ω2
d−1

Wd−2(Πd−2K) ≤W 2
d−1(K),

with equality if and only if Πd−2K is a ball.
Theorem 3 allows us to prove a stronger version of Lutwak’s inequality:

Theorem 4. Let K be a convex body in Rd, d ≥ 3. Then,

Wd−2(Πd−2K) ≥ d(d− 2)ω2
d−1

(d− 1)2ωd
W 2
d−1(K) +

ω2
d−1

(d− 1)2
Wd−2(K).

This inequality is sharp for the ball. Moreover, if K is not centrally symmetric,
then the inequality is strict.

Projection functions, area measures and the Alesker–Fourier
transform

Franz E. Schuster

(joint work with F. Dorrek)

The Busemann–Petty problem was one of the most famous problems in convex
geometric analysis of the last century. It asks whether the volume of an origin-
symmetric convex body K in Rn is smaller than that of another such body L, if
all central hyperplane sections of K have smaller volume than those of L. After a
long list of contributions it was eventually shown that the answer is affirmative if
n ≤ 4 and negative otherwise (see [6, 7, 20] and the references therein). A crucial
step in the final solution was taken by Lutwak [12] who showed that the answer to
the Busemann–Petty problem is affirmative if and only if every origin-symmetric
convex body in Rn is an intersection body. This class of bodies first appeared in
Busemann’s definition of area in Minkowski geometry and has attracted consider-
able attention within different subjects since the seminal paper by Lutwak.

Since its final solution, various generalizations of the original Busemann–Petty
problem have been investigated. Each of these variants is related to a certain
generalization of the notion of intersection body in a similar way that Lutwak’s
intersection bodies are related to the Busemann–Petty problem. Of particular
interest is the following notion of j-intersection bodies introduced by Koldobsky.

Definition ([8]) Let 1 ≤ j ≤ n − 1 and let D and M be origin-symmetric star
bodies in Rn. Then D is called the j-intersection body of M if

volj(D ∩ E⊥) = voln−j(M ∩ E)

for every n− j dimensional subspace E of Rn.

Note that if j = 1, then j-intersection bodies coincide with Lutwak’s intersection
bodies. The class of j-intersection bodies was investigated by several authors, in
particular, in connection with the lower dimensional Busemann–Petty problem
(see, e.g., [8, 15, 16, 19]). The fundamental result about j-intersection bodies is
the following Fourier analytic characterization by Koldobsky.
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Theorem 1 ([9]). Let 1 ≤ j ≤ n − 1 and let D and M be origin-symmetric star
bodies in Rn. Then D is the j-intersection body of M if and only if

(1) F−j ρ(D, ·)j =
(2π)n−jj

n− j
ρ(M, ·)n−j .

Here and in the following, F−jg denotes the restriction to Sn−1 of the usual
Fourier transform in Rn of the −j-homogeneous extension of g ∈ L2(Sn−1). We
refer to [10] for more information.

As a natural dual to Koldobsky’s notion of j-intersection bodies, we introduce
the class of j-projection bodies.

Definition Let 1 ≤ j ≤ n− 1 and let K and L be origin-symmetric convex bodies
with non-empty interior in Rn. Then K is called the j-projection body of L if

volj(K|E⊥) = voln−j(L|E)

for every n− j dimensional subspace E of Rn.

Note that if j = 1, then j-projection bodies coincide with the classical projection
bodies of Minkowski. Examples of j-projection bodies of intermediary degree were
given by McMullen [13, 14], Schnell [18], and Schneider [17]. However, apart from
a few examples very little seems to be known about this class of convex bodies.
Our goal was therefore to start a more systematic investigation and, in particular,
to prove the following analogue of Koldobsky’s characterization of j-intersection
bodies, Theorem 1.

Theorem 2 ([5]). Let 1 ≤ j ≤ n− 1 and let K and L be origin-symmetric convex
bodies with non-empty interior in Rn. Then K is the j-projection body of L if and
only if

(2) F−j Sj(K, ·) =
(2π)n−jj

n− j
Sn−j(L, ·).

Here Sj(K, ·) and Sn−j(L, ·) are the area measures of order j and n− j of the
convex bodies K and L, respectively.

Theorem 2 is a generalization of a well known Fourier analytic characterization
of Minkowski’s projection bodies (see, e.g., [11]). One way to prove this result
exploits a connection to the theory of valuations. Recall that a map φ : Kn → R

is called a valuation if

φ(K) + φ(L) = φ(K ∪ L) + φ(K ∩ L)
whenever K ∪ L is convex. Let Val∞(j), denote the space of smooth translation

invariant valuations (of degree j ∈ {0, . . . , n}). As part of their modern recon-
ceptualization of integral geometry, Alesker [1] and Bernig and Fu [3] discovered
natural product and convolution structures on the space Val∞. More recently,
Alesker [2] showed that there exists a Fourier type transform F : Val∞j → Val∞n−j
which relates these structures in the same way the usual product and convolution
of functions on Rn are related by the classical Fourier transform. The following



3254 Oberwolfach Report 56/2015

result connects the Alesker-Fourier transform on even spherical valuations with
the class of j-projection bodies.

Theorem 3 ([5]). Let 1 ≤ j ≤ n− 1 and let K and L be origin-symmetric convex
bodies with non-empty interior in Rn. Then K is the j-projection body of L if and
only if

φ(K) = (Fφ)(L)

for all even φ ∈ Val∞,sph
j .

Here Val∞,sph
j denotes the subspace of smooth spherical valuations. These

valuations correspond to spherical representations of the group SO(n) with respect
to SO(n− 1) (see, e.g., [4]).
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On the thin-shell conjecture for the Schatten classes

Beatrice-Helen Vritsiou

(joint work with J. Radke)

We study whether the thin-shell conjecture holds true for the unit balls of the
Schatten classes. Let Snp denote the space of n × n real or complex matrices
endowed with the norm that sends each matrix T to the ℓp norm of its singular-
values-vector, or in other words to the norm

‖s(T )‖p :=
(

n∑

i=1

|si(T )|p
)1/p

of the vector s(T ) = (s1(T ), . . . , sn(T )) of the eigenvalues of
√
T ∗T (ordered in an

non-increasing way). The unit balls Kp of S
n
p , p ∈ [1,∞], have been studied in the

past with respect to other important conjectures or questions in Convex Geometry
as well: we build on some of the techniques appearing in [5], where König, Meyer
and Pajor showed that the Schatten classes satisfy the hyperplane conjecture, or
in [4], where Guédon and Paouris proved Paouris’ theorem on concentration of
volume for the Schatten classes (this was before Paouris’ theorem (see [6]) was
established for all isotropic convex bodies, as are the balls Kp, through more
general methods).

One of the key ideas that we as well employ is to reduce estimates about mo-
ments of the Euclidean norm with respect to the uniform measure on the balls Kp,
which are convex bodies of an n2 or a 2n2-dimensional real space, to estimates
about moments of the Euclidean norm with respect to a density fp on R

n now;
the new density is no longer a uniform, or even a log-concave, density, but it is
invariant under permutations of the coordinates of vectors in Rn. We then take
advantage of these symmetry properties of the new density fp to get very precise
recursive identities that involve the variance of the Euclidean norm, which is what,
in the case of the thin-shell conjecture, we need to bound. In a little more detail,
we obtain identities that involve the quantities

∫

Rn

‖x‖42 · fp −
(∫

Rn

‖x‖22 · fp
)2

=

n ·
[∫

Rn

x41 · fp −
(∫

Rn

x21 · fp
)2
]
+ n(n− 1) ·

[∫

Rn

x21x
2
2 · fp −

(∫

Rn

x21 · fp
)2
]
,

(1)

where the equality here follows from the aforementioned symmetry properties of
the density fp.
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We are able, through these identities, to get tight estimates for the above quan-
tities when p is really large, that is, when p is at least as large as the dimension of
the balls Kp. This allows us to establish the thin-shell conjecture for the Schatten
classes Snp when p & n2 logn, and in particular for the case of the operator (or
spectral) norm (p = ∞) in all dimensions.

Our second main result is the following: given any p > 1, if the thin-shell con-
jecture is true for Kp, then we must have some rather strong negative correlation
property; namely, the cross term in (1) must be negative to counteract the first
term in (1). Recall that, in the case of the ℓp balls, the thin-shell conjecture follows
immediately from a similar negative correlation property which Ball and Perissi-
naki established in [1]; in that case however, all one needs to know is that the
cross terms are non-positive. On the contrary, in the case of the Schatten classes
the cross terms have to be negative (and sufficiently large in absolute value) if we
want to conclude that the conjecture is true. An immediate consequence of this
is that this negative correlation property holds for all p for which we have already
verified the conjecture, and, in particular, for the operator norm.

It would be of course very interesting to see what happens for the Schatten
classes corresponding to the remaining p: the estimates that we have get pro-
gressively worse as p gets smaller; still, up to n logn say, they continue to give
something better than the best thus far known bound for the Schatten classes
with respect to the thin-shell conjecture (this bound is due to Barhe and Cordero-
Erausquin [2], and is slightly better than the best bound known for all isotropic
convex bodies (see [3])). One more consequence of these estimates is that the
abovementioned negative correlation property remains true for the Schatten classes
corresponding to these smaller p as well. Unfortunately, just showing that the cross
term in (1) is non-positive (or even that it is negative, but without getting precise
estimates on its magnitude) for the remaining Schatten classes Snp would yield no
better bound for the variance than the one in [2]. This suggests that the thin-shell
conjecture for the remaining Schatten classes might be a strictly more difficult
problem than establishing (even rather strong) negative correlation properties,
and perhaps to deal with it one needs the introduction of quite different methods
as well; that said, both questions seem intriguing in their own right, and it would
be perhaps useful to even try to treat the latter one independently of the former
one.

Finally, it seems worthwhile to explore whether the methods mentioned here
can also be employed in the study of other problems from Convex Geometry or
Probability that concern the Schatten classes.
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The floating body in real space forms

Elisabeth M. Werner

(joint work with F. Besau)

1. Introduction

Two important and closely tied notions in affine convex geometry are the floating
body and the affine surface area of a convex body. The affine surface area was
introduced by Blaschke in 1923 [6] and is now omnipresent in geometry. Much of
this can be attributed to the important and strong properties of the affine surface
area which make it an effective and powerful tool. For instance, it is at the very
core of the rapidly developing Lp and Orlicz Brunn–Minkowski theory (see e.g.
[10, 11, 13, 26, 27, 30, 36, 42, 43]). A characterization of affine surface area was
achieved by Ludwig and Reitzner [24]. It had a profound impact on valuation
theory of convex bodies starting a strong line of research (see e.g. [17, 22, 23, 25,
32, 35]) leading up to the very recent characterization of all centro-affine valuations
by Haberl and Parapatits [18]. There is a natural inequality associated with affine
surface are, the affine isoperimetric inequality, which states that among all convex
bodies with fixed volume, affine surface area is maximized for ellipsoids. This
inequality has led to a rich theory (see e.g. [2, 3, 18, 19, 26, 27, 29, 44, 45]). There
are numerous other applications for affine surface area. We only mention a few
cornerstones, such as, the approximation theory of convex bodies by polytopes
[7, 8, 14, 15, 21, 33, 37, 39], affine curvature flows [1, 20, 40], information theory
[2, 9, 31] and partial differential equations [28].

We introduce the floating bodies for spaces of constant curvature. Those admit
a natural and intrinsic definition for floating bodies similar to Euclidean space.
Our considerations lead to a seminal new surface area measure for convex bodies,
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which we call the floating area. This floating area is intrinsic to the constant
curvature space and not only coincides with affine surface area in the flat case,
but also has similar properties in the general case. Namely, the floating area is a
valuation and upper semi-continuous. However, the group of transformations that
leave it invariant is inherited from the space of constant curvature, in which it is
intrinsic.

We draw a complete picture of this new notion of floating bodies and the floating
area related to them in constant curvature spaces. An emphasis will be put on
hyperbolic space. For all proofs and more details we refer to [5].

2. The µ-Floating Body

We introduce the µ-floating body, or weighted floating body, which serves as a
unifying framework for dealing with Euclidean, spherical and hyperbolic floating
bodies. In the following we recall facts from Euclidean convex geometry. For
general references we refer to [12, 16, 34].

A convex body is a compact convex subset and the set of convex bodies is
denoted by K(Rn). The subset of convex bodies with non-empty interior is K0(R

n).
We denote the Euclidean volume by voln and integration is simply denoted by dx.
If a σ-finite Borel measure µ is absolutely continuous to another σ-finite Borel
measure ν on an open set D ⊆ Rn, then this is denoted by µ ≪D ν and µ is
equivalent to ν onD, µ ∼D ν, if and only if µ≪D ν and ν ≪D µ. Evidently, by the
Radon–Nikodym Theorem, for a σ-finite Borel measure µ we have that µ ∼D voln
if and only if there is Borel function fµ : D → R such that dµ(x) = fµ(x)dx and
voln({fµ = 0}) = 0. For a convex body K ∈ K0(R

n) we consider σ-finite measures
µ such that µ ∼intK voln, where intK denotes the interior of K. Thus without
loss of generality we may assume µ to be a σ-finite Borel measure on Rn with
support K and for any measurable set A we have

µ(A) =

∫

A∩ intK

fµ(x) dx.

We denote the set of σ-finite measures µ on Rn with support K and which are
equivalent to voln on intK by M(K, voln). The subset of measures that are non-
negative, that is, positive almost everywhere on intK, is denoted by M+(K, voln).

Definition 1 (µ-Floating Body). Let K ∈ K0(R
n) and let µ ∈ M+(K, voln). For

δ > 0, we define the µ-floating body Fµ
δ K, by

Fµ
δ K =

⋂
{H− : µ(H+ ∩K) ≤ δ

n+1
2 },

where H+ is an arbitrary closed half-space of Rn and H− denotes the complemen-
tary closed half-space.

The µ-Floating Body is very similar to the notion of weighted floating bodies
which was introduced by the second author in [41].
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It is shown in [5] that the µ-floating body exists (i.e. is non-empty) if δ is small
enough and, since it is an intersection of closed half-spaces, it is a convex body
contained in K.

3. Statement of Principal Results

For λ ∈ R we denote the simply connected complete real space form with constant
sectional curvature λ by Spn(λ). These include the special cases of the sphere
S
n = Spn(1), hyperbolic space H

n = Spn(−1) and Euclidean space R
n = Spn(0).

The set of convex bodies in a space form is denoted by K0(Sp
n(λ)), K0(S

n) or
K0(H

n).
A totally geodesic hypersurface H in a real space form Spn(λ) is isometric to

Spn−1(λ) and splits the space into two open and connected parts which are called
half-spaces. We denote the closed half-spaces corresponding to a totally geodesic
hypersurface H by H+ and H−. The standard Riemannian volume measure on
Spn(λ) is volλn, i.e., we have

dvolλn(x) =
(
1 + λ‖x‖2

)−n+1
2 dx.

According to Definition 1, we then define the λ-Floating Body with µ = volλn(x)
as follows.

Definition 2 (λ-Floating Body). Let λ ∈ R and K ∈ K0(Sp
n(λ)). For δ > 0 the

λ-floating body Fλ
δ K is defined by

Fλ
δ K =

⋂{
H− : volλn

(
K ∩H+

)
≤ δ

n+1
2

}
.

The particular cases λ = 1 and λ = −1 give the Spherical Floating Body Fs
δ K

[4] and the Hyperbolic Floating Body Fh
δ K [5].

In the main theorem we prove the following:

Theorem 3. Let K ∈ K0(Sp
n(λ)). Then the right-derivative of volλn(Fλ

δ K) at
δ = 0 exists. That is,

lim
δ→0+

volλn(K)− volλn(Fλ
δ K)

δ
= cnΩ

λ(K),

where cn = 1
2

(
n+1
κn−1

) 2
n+1

. Ωλ(K) is called the λ-floating area of K and we have

Ωλ(K) =

∫

bdK

Hλ
n−1(K,x)

1
n+1 dvolλbdK(x).

Here we consider bdK as a immersed submanifold of Spn(λ) and denote by

dvolλbdK the intrinsic volume form and by Hλ
n−1(K,x) the intrinsic generalized

Gauss-Kronecker curvature on the boundary inherited by Spn(λ). κn−1 is the
(n− 1)- dimensional volume of the (n− 1)- dimensional Euclidean unit ball.

For λ = 0, i.e. for the Euclidean Space, Theorem 3 was first established in this
complete form by E. Werner and C. Schütt in [38]. For λ = 1 the theorem was
proved only very recently by the authors in [4].
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We prove the complete form for all λ ∈ R by a new unifying approach which
consists in considering geodesic Euclidean models for the space forms Spn(λ).

Corollary 4. Given a convex body K ∈ K0(B
n) we have that

lim
δ→0+

volhn
(
K \ Fh

δ K
)

δ
= cn

∫

bdK

Hh
n−1(K,x)

1
n+1 dvolhbdK(x)

Theorem 3 leads us to introduce the Floating Area or Equi-affine surface area.

Definition 5 (λ-Floating Area). For a convex body K in a space form of sectional
curvature λ ∈ R we define the λ-floating area

Ωλ(K) =
1

cn
lim
δ→0+

volλn
(
K \ Fλ

δ K
)

δ
.

Some of the properties of the Floating Area are collected in the next proposition.

Proposition 6 (Properties of the Floating Area). Let K be a convex body in a
space form of sectional curvature λ ∈ R. Then we have
(i) Ωλ can be localized to a measure on bdK: For a Borel subset B ⊂ bdK,

Ωλ(B) =

∫

B

Hλ
n−1(K,x)

1
n+1 dvolλbdK(x).

(ii) Ωλ is upper semi-continuous with respect to the Hausdorff metric.
(iii) Ωλ is a valuation, that is, if K,L and K ∪ L are convex bodies then

Ωλ(K) + Ωλ(L) = Ωλ(K ∪ L) + Ωλ(K ∩ L).
(iv) Ωλ vanishes on polytopes.

Again, for all proofs and more details we refer to [5]
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A discrete version of Koldobsky’s slicing inequality

Artem Zvavitch

(joint work with M. Alexander and M. Henk)

As usual, we will say that K ⊂ Rd is a convex body if K is a convex, compact
subset of Rd equal to the closure of its interior. We say that K is origin-symmetric
if K = −K, where λK = {λx : x ∈ K}, for λ ∈ R. For a set K we denote
by dim(K) its dimension, that is, the dimension of the affine hull of K. We will
also denote by vold the d-dimensional Hausdorff measure, and if the body K is
d-dimensional we will call vold(K) the volume of K. Finally, let us denote by ξ⊥

a hyperplane perpendicular to a unit vector ξ, i.e.

ξ⊥ = {x ∈ R
d : x · ξ = 0}.

The slicing problem of Bourgain is, undoubtedly, one of the major open prob-
lems in convex geometry asking if a convex, origin-symmetric body of volume one
must have a large (in volume) hyperplane section. More precisely, it asks whether
there exists an absolute constant L1 so that for any origin-symmetric convex body
K in Rd

(1) vold(K)
d−1
d ≤ L1 max

ξ∈Sd−1
vold−1(K ∩ ξ⊥).

The problem is still open, with the best-to-date estimate of L1 ≤ O(d1/4) estab-
lished by Klartag, who improved the previous estimate of Bourgain. Recently,
Koldobsky proposed an interesting generalization of the slicing problem: Does
there exists an absolute constant L2 so that for every even measure µ on Rd, with
a positive density, and for every origin-symmetric convex body K in Rd such that

(2) µ(K) ≤ L2 max
ξ∈Sd−1

µ(K ∩ ξ⊥)vold(K)
1
d ?

Koldobsky was able to solve the above question for a number of special cases of
the body K and provide a general estimate of O(

√
d). The most amazing fact

here is that the constant L2 in (2) can be chosen independent of the measure µ
under the assumption that µ has even positive density. In addition, Koldobsky
and the speaker were able to prove that L2 is of order O

(
d1/4

)
if one assumes

that the measure µ is s-concave. We note that the assumption of positive density
is essential for the above results and (2) is simply not true if this condition is
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dropped. Indeed, to create a counterexample consider an even measure µ on R
2

uniformly distributed over 2N points on the unit circle, then the constant L2 in
(2) will depend on N .

During the 2013 AIM workshop on “Sections of convex bodies” Koldobsky asked
if it is possible to provide a discrete analog of inequality (2): Let Zd be the standard
integer lattice in Rd, define #K = card(K ∩Zd), the number of points of Zd in K.

Question: Does there exist a constant L3 such that

#K ≤ L3 max
ξ∈Sd−1

(
#(K ∩ ξ⊥)

)
vold(K)

1
d ,

for all convex origin-symmetric bodies K ⊂ Rd containing d linearly independent
lattice points?

We note here that we require that K contains d linearly independent lattice
points, i.e., dim(K ∩ Z

d) = d, in order to eliminate the degenerate case of a
body (for example, take a box [−1/n, 1/n]d−1× [−20, 20]) whose maximal section
contains all lattice points in the body, but whose volume may be taken to 0 by
eliminating a dimension.

Koldobsky’s question is yet another example of an attempt to translate ques-
tions and facts from classical Convexity to more general settings including Discrete
Geometry. The properties of sections of convex bodies with respect to the integer
lattice were extensively studied in Discrete Tomography by Gardner, Gritzmann,
Gronchi, Zhong and many others. Many interesting new properties were proved
and a series of exciting open questions were proposed. It is interesting to note
that after translation many questions become quite non-trivial and counterintu-
itive, and the answer may be quite different from the continuous case. In addition,
finding the relation between the geometry of a convex set and the number of inte-
ger points contained in the set is always a non-trivial task. One can see this, for
example, from the history of Khinchin’s flatness theorem and facts around it.

The main goal of this talk is to present main step towards a solution of Koldob-
sky’s question. First we discuss a solution for the 2-dimensional case. The solution
is based on the classical Minkowski’s First and Pick’s theorems from the Geometry
of Numbers and gives a general idea of the approach to be used for high dimen-
sional case. Next, we apply a discrete version of the theorem of F. John due to T.
Tao and V. Vu to give a partial answer to Koldobsky’s question and show that the
constant L3 can be chosen independent of the body K and as small as O(d)7d/2.
We also present a simple proof that in the case of unconditional bodies (i.e. bod-
ies symmetric with respect to coordinate hyperplanes) L3 can be chosen of order
O(d) which is best possible, as can be seen from the example of a cross-polytope.
Finally, we prove the discrete analog of Brunn’s theorem and use it to show that
the constant L3, for the general case, can be chosen as small as O(1)d. In fact,
our work contains a slightly more general result that

#K ≤ O(1)ddd−mmax (#(K ∩H)) vold(K)
d−m

d ,
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where the maximum is taken over all m-dimensional linear subspaces H ⊂ R
d. We

also provide a short observation that L1 ≤ L3.

Reporter: Jesús Yepes Nicolás
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Université Lille I
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Université de Paris-Est Marne-la-Vallée
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Mathématiques Appliquées
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