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Abstract. Within the last decade image and geometry processing have be-
come increasingly rigorous with solid foundations in mathematics. Both areas
are research fields at the intersection of different mathematical disciplines,
ranging from geometry and calculus of variations to PDE analysis and nu-
merical analysis. The workshop brought together scientists from all these
areas and a fruitful interplay took place. There was a lively exchange of ideas
between geometry and image processing applications areas, characterized in
a number of ways in this workshop. For example, optimal transport, first
applied in computer vision is now used to define a distance measure between
3d shapes, spectral analysis as a tool in image processing can be applied in
surface classification and matching, and so on. We have also seen the use of

Riemannian geometry as a powerful tool to improve the analysis of multival-
ued images.

This volume collects the abstracts for all the presentations covering this
wide spectrum of tools and application domains.

Mathematics Subject Classification (2010): 65Dxx, 68Uxx.

Introduction by the Organisers

The workshop brought together researchers from different disciplines and stimu-
lated lively interactions between the participants. A wide range of methodologies
in image analysis, computer vision and surface processing is based on variational
methods and partial differential equations. Moreover, concepts from differential
geometry play a fundamental role not only in the direct processing and manipula-
tion of surfaces but also in imaging. In particular, the shape space perspective in
vision and geometric modeling leads to the study of infinite dimensional manifolds
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whose elements are whole surfaces or images. Important tasks in many applications
are linked to the development of an effective, fully fledged Riemannian calculus on
these shape spaces. The role of analysis is to predict the qualitative behavior of so-
lutions, to study relaxation strategies and to rigorously connect different problem
formulations, e.g. by proving Γ-convergence of approximate or discrete models.
Numerical analysis plays a decisive role in the construction of efficient algorithms,
the verification of convergence and the suitable implementation using for instance
duality methods from constrained optimization. In this interplay it is turning out
as essential to dovetail the strengths of geometry, analysis and numerics in order to
get deeper insight into the models and to come up with new models and methods.
In the computer science and engineering communities it has recently been recog-
nized that for many applications the most robust and efficient tools are based on
novel mathematical models and state of the art numerical simulation tools. The
workshop tried to foster this development.

We here give a few examples:
There was a strong focus on optimal transport methods both in imaging and

in geometry processing. In the past two decades concepts from finite dimen-
sional classical geometry have been successfully transferred to infinite-dimensional
spaces, where shapes are contour curves of geometric objects, surfaces, image in-
tensity maps, or probability densities. With the increase of the complexity of ap-
plications efficient numerical computation became increasingly important. Recent
advances are preparing the ground for new applications such as the computation
of barycenters between images and textures or the use of the Wasserstein distance
as a regularizer in the context of inverse problems. Optimal transport does not
only play a decisive role in image analysis but it turned out to be very useful in
geometry processing as well. In fact, during the talks new links between existing
methodologies and concepts of optimal transport were identified and extensively
discussed.

To automatically establish correspondences between different objects or differ-
ent poses of the same object is one of the most challenging tasks in geometry
processing. A particular difficulty is that the surfaces describing the objects are
frequently of different topology and triangulated differently. Instead of point to
point matching so called functional maps offer an interesting generalization which
was discussed from different perspectives.

Architectural geometry attracted significant attention in the last decade. It
is a perfect example for a field where computer graphics not only uses advanced
concepts from mathematics, but also drives the development of new mathematical
techniques via the exploration of surprising links between classical geometry and
architectural design with manufacturing constraints. Here, the desire to model
free form surfaces in architecture give new impulses and applications to classical
geometry and integrable systems. In particular the design of folding patterns and
folding strategies raised deeper discussions during the workshop.

Different shape space approaches like the flow of diffeomorphism approach, the
metamorphosis approach or the space of curves with a Sobolev-type metric we
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presented during the workshop. A particular focus was on interesting generaliza-
tions and extensions of the underlying geometric calculus. In particular tools for
the animation of curves and geometries and a smooth keyframe interpolation were
presented.

The workshop brought together mathematicians from PDE analysis, geometry,
approximation theory, numerics with scientists from computer graphics, computer
vision and geometric modeling. The talks represented a wide spectrum, ranging
from existence theory and Γ convergence to real time computation and from differ-
ential geometry in ∞ dimensions to the effective algorithms in computer graphics.
Besides the general 40 min talks there were shorter presentations of 15 min given
by the younger participants. Some of the participants from different disciplines
met actually for the first time at Oberwolfach. Most of the talks were on the latest
results, in many cases only very recently submitted to major conferences in the
field.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Numerical Optimal Transport and Applications

Gabriel Peyré

(joint work with J.D. Benamou, G. Carlier, M. Cuturi and L. Nenna)

Optimal transport (OT) has become a fundamental mathematical theoretical tool
at the interface between calculus of variations, partial differential equations and
probability. It took however much more time for this notion to become mainstream
in numerical applications. This situation is in large part due to the high compu-
tational cost of the underlying optimization problems. There is however a recent
wave of activity on the use of OT-related methods in fields as diverse as computer
vision, computer graphics, statistical inference, machine learning and image pro-
cessing. In the talk was reviewed an emerging class of numerical approaches for the
approximate resolution of OT-based optimization problems. These methods make
use of an entropic regularization of the functionals to be minimized, in order to
unleash the power of optimization algorithms based on Bregman-divergences ge-
ometry. This results in fast, simple and highly parallelizable algorithms, in sharp
contrast with traditional solvers based on the geometry of linear programming. For
instance, they allow for the first time to compute barycenters (according to OT
distances) of probability distributions discretized on computational 2-D and 3-D
grids with millions of points. This offers a new perspective for the application of
OT in machine learning (to perform clustering or classification of bag-of-features
data representations) and imaging sciences (to perform color transfer or shape
and texture morphing). These algorithms also enable the computation of gradient
flows for the OT metric, and can thus for instance be applied to simulate crowd
motions with congestion constraints.

References

[1] J-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré, Iterative Bregman Projections
for Regularized Transportation Problems, SIAM Journal on Scientific Computing, 37(2)
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Combinatorial Solutions to Elastic Shape Matching

Daniel Cremers

In this presentation, the focus was on four different instances of elastic shape
matching, namely the matching between two planar shapes, the matching between
two 3D shapes, the matching between a shape and an image and the matching
between a planar and a 3D shape. In all cases, combinatorial formulations for
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elastic shape matching were discussed, and it was shown how optimal or near-
optimal solutions can be computed using dynamic programming or integer linear
programming.

This is based on joint work with Frank R. Schmidt, Thomas Windheuser, Ulrich
Schlickewei, Dirk Farin, Thomas Schoenemann, Zorah Lhner, Emanuele Rodola
and Michael Bronstein.

Variational Frequencies – Multiscale Models through Variational

Nonlinear Eigenfunction Analysis

Guy Gilboa

(joint work with Martin Burger, Michael Moeller, Dikla Horesh, Raz Nossek,
Daniel Cremers, Lina Eckardt)

Recent studies of convex functionals and their related eigenvalue problems show
surprising analogies to harmonic analysis based on classical transforms (e.g.
Fourier). Thus new types of models and processing algorithms can be designed,
such as ones based on the Total-Variation Transform.

We further investigate the atoms of regularizers where a new flow which can
generate a large variety of nonlinear eigenfunctions is presented. In this context,
the notion of highly stable structures under a gradient flow, referred to as pseudo-
eigenfunctions, will be defined and discussed.
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An Interactive Approach to Planar Laplacian Growth using Complex

Barycentric Coordinates

Mirela Ben-Chen

(joint work with Aviv Segall and Orestis Vantzos)

The physical setting of Hele-Shaw flow involves injection of air into a viscous liquid
trapped between two parallel plates separated by a small gap, also known as a Hele-
Shaw cell [1]. Such flows generate intricate patterns which have inspired artists
and designers. It would therefore be potentially useful, for Computer Graphics
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applications, to simulate such patterns numerically, and allow the user to control
the finger formation, while preserving the physical behavior and appearance of
the liquid. While a plethora of methods exist for numerically simulating this
phenomenon in the Computational Fluid Dynamics literature, the vast majority
requires copious amounts of computational resources, and are thus not amenable to
user control at interactive rates. Furthermore, traditional fluid simulation methods
from Computer Graphics, such as full Navier-Stokes simulations, are unnecessarily
computationally heavy: there is no need to simulate the full behavior of the fluid in
the domain, since the fingering phenomena happen at the moving free boundary.

In the spirit of recent methods for fluid simulation using boundary tracking, we
suggested a boundary integral formulation for this problem. Our main observation
was that the problem formulation shares many properties with the problem of
planar shape deformation, where the behavior is prescribed by user constraints,
rather than by the laws of physics. We therefore proposed to leverage a reduced
model successfully used for shape deformation, namely generalized barycentric co-
ordinates, in order to parameterize the behavior of the flow. As the Hele-Shaw
flow is governed by a harmonic function, we used complex holomorphic barycentric
coordinates, which simplify the derivation and analysis.

We first provided some background, by explaining the classical work which
reformulates the Hele-Shaw model equations in terms of a complex potential
function [2], as well as providing a brief reminder to Cauchy-Green (CG) coor-
dinates [3]. Then we showed two approaches for leveraging the CG Coordinates
for simulating Hele-Shaw flows. The first is based on a time-varying conformal
map from a regular polygon circumscribed in the unit disk to the fluid domain.
We showed how the Polubarinova-Galin [2] equations combined with the discrete
Cauchy-Green coordinates yield a complex linear system of equations, whose so-
lution defines the time-varying conformal map. In this setting, we can reproduce
the qualitative cusp behavior which is associated with this flow when there is no
surface tension.

In our second approach, we modeled directly the complex potential as a sum of
Green functions and a holomorphic function represented using the CG coordinates
on the fluid domain. In this much more general setting, we were able to model
various singularities and different boundary conditions, as well as exterior flows,
two-phase flows, and flows with obstacles. Finally, we showed a few applications
of our method to generating interesting animations for Computer Graphics.

References
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Barycentric Subspace Analysis: an extension of PCA to Manifolds

Xavier Pennec

We address in this work the problem of Principal Component Analysis (PCA) on
Riemannian manifolds. In a Euclidean space, the principal k-dimensional affine
subspace of the Principal Component Analysis (PCA) procedure is equivalently
defined by minimizing the variance of the residuals (the projection of the data
point to the subspace) or by maximizing the explained variance within that affine
subspace. This is due to Pythagoras’ theorem, which does not hold in more gen-
eral manifolds. A second important observation is that principal components or
different orders are nested, which allows to build forward and backward estimation
methods by iteratively adding or removing principal components.

Generalizing PCA to manifolds first requires to define the equivalent of affine
subspaces in manifolds. For the zero-dimensional subspace, intrinsic generalization
of the mean on manifolds naturally comes into mind: the Fréchet mean is the set
of global minima of the variance, as defined by Fréchet in general metric spaces
[3]. The set of local minima of the variance was named Karcher mean by W.S
Kendall [8] after the work of Karcher et al. [6] on Riemannian centers of mass (see
[7] for a discussion of the naming and earlier works).

The one-dimensional component is then quite naturally a geodesic which should
pass through the mean point. Higher-order components are more difficult to define.
The simplest generalization is tangent PCA (tPCA), which amounts to unfold the
whole distribution in the tangent space at the mean, and to compute the principal
components of the covariance matrix in the tangent space. The method is thus
based on the maximization of the explained variance. tPCA was used implicitly or
explicitly in a lot of statistical works on shape spaces and Riemannian manifolds
because it is simple and efficient. However, if tPCA is good for analyzing data
which are sufficiently centered around a central value (unimodal or Gaussian-like
data), it is often not sufficient for multimodal or large support distributions (e.g.
uniform on close compact subspaces).

Instead of an analysis of the covariance matrix, Fletcher et al. [2] proposed to
rely on the least square distance to subspaces which are totally geodesic at a point.
These Geodesic Subspaces (GS) are spanned by the geodesics going through a point
with tangent vector restricted to belong to a linear subspace of the tangent space.
The procedure was coined Principal Geodesic Analysis (PGA). However, the least-
square procedure was computationally expensive, so that it was approximated
in practice with tPCA in [2]. A complete implementation of the original PGA
procedure was only provided recently by Sommer et al. [11]. PGA is intrinsic
and allows to build a flag (sequences of embedded subspaces) of principal geodesic
subspaces which is consistent with a forward component analysis approach: we
build iteratively the components from dimension 0 (the mean point), dimension
1 (a geodesic) and higher dimensions by iteratively selecting the direction in the
tangent space at the mean that optimally reduce the square distance of data point
to the geodesic subspace. In this procedure, the mean(s) always belong to geodesic
subspaces even when they are not part of the support of the distribution.
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To alleviate this problem, Huckemann et al. [9] proposed to relax the fact that
the base-point of the geodesic subspace has to be the Fréchet mean: they start
at the first order component directly with the geodesic that best fits the data,
which is not necessarily going through the mean. The second principal geodesic
is chosen orthogonally to the first one, and higher order components are added
orthogonally at the crossing point of the first two components. The method was
named Geodesic PCA (GPCA). Further relaxing the assumption that second and
higher order components should cross at a single point, Sommers [10] proposed to
parallel transport the second direction along the first principal geodesic to define
the second coordinates, and iteratively define higher order coordinates through
horizontal development along the previous modes. Other principal decompositions
have been proposed, like Principal graphs [4], extending the idea of principal points
and k-means.

All the cited methods except the last one are intrinsically forward methods
that build successively larger and larger approximation spaces for the data. A
notable exception is the concept of Principal Nested Spheres (PNS), proposed by
Jung, et al. [5] as a general framework for non-geodesic decomposition of high-
dimensional spheres or high-dimensional planar landmarks shape spaces. Here,
subsphere can be viewed as a slicing of a higher dimensional sphere by an affine
hyperplane. In this process, the nested subsphere is not of radius one, unless
the hyperplane is passing through the origin. The backward analysis approach,
determining a decreasing family of subspace, has been recently generalized to more
general manifold with the help of a “nested sequence of relations” [1]. However, up
to know, such a sequence of relationships was only known for spheres or Euclidean
spaces.

In this work, we first propose a new and more general types of family of sub-
spaces in manifolds, barycentric subspaces (BS), that generalize geodesic subspaces
and nested spheres. Barycentric subspaces can naturally be nested, which allow
the construction of inductive forward or backward nested subspaces approximat-
ing data points. The second main idea is to rephrase PCA in Euclidean spaces as
an optimization on flags of linear subspaces (a hierarchies of properly embedded
linear subspaces of increasing dimension). We propose for that an extension of
the unexplained variance criterion that generalizes nicely to flags of barycentric
subspaces in Riemannian manifolds. This results into a particularly appealing
generalization of PCA on manifolds, that we call Barycentric Subspaces Analysis
(BSA).

Barycentric subspaces are implicitly defined as the locus of points which are
weighted means of k + 1 reference points. Depending on the generalization of
the mean that we use on manifolds, Fréchet mean, Karcher mean or exponential
barycenter, we obtain the Fréchet / Karcher or Exponential barycentric subspaces
(FBS / KBS / EBS) barycentric subspaces. As the definition relies on points and
do not explicitly on tangent vectors to parametrize geodesics, an interesting side
effect is that BS can also be extended to more general geodesic spaces that are
not Riemannian. For instance, in stratified spaces, it naturally allows to have
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principal subspaces that span over several strata. For Riemannian manifolds, we
show that these definition are subsets of each other outside the cut locus of the
reference points. The EBS is the largest of these barycentric subspaces. It is not
defined by minimization and exhibits some affine properties which are depending
on the connection and not of the metric. We define the affine span as the closure
of the EBS. When the manifold is complete, this implies that the affine span is also
complete. In generic conditions, we show that barycentric subspaces are stratified
spaces that are locally submanifolds of dimension k almost everywhere. Their
singular set of dimension k − l corresponds to the case where l of the reference
point belongs to the affine span defined by the k − l other reference points. In
non-generic conditions, points may coalesce along certain directions, defining non
local jets instead of a regular k + 1-tuple. Geodesic subspaces (in a restricted
sense), which are defined by k tangent vectors at a point, correspond to the limit
of the affine span when the k-tuple converges towards that jet.

We then exemplify the equations of barycentric subspaces in one of the simplest
manifold: the sphere. We show that the affine span of k + 1 different reference
points on the n-dimensional sphere is the k-dimensional great subsphere that con-
tains the reference points. In fact, any k+1-tuple of points of a great k-dimensional
subsphere generates the same affine span, which is also a geodesic subspace. This
coincidence of spaces is due to the very high symmetry of the sphere. For sec-
ond order jets, we show that we obtain subspheres of different radii, which show
that Principal Nested Spheres are also a limit case of affine spans. We conjecture
that this can be generalized to higher order derivatives in general manifolds using
techniques from sub-Riemannian geometry. This way, some non-geodesic decom-
position schemes such as loxodromes and splines could probably also be seen as
limit cases of barycentric subspaces. Among the points of the spherical affine span,
determining which ones belong to the Karcher barycentric subspaces (KBS) turns
out to be a difficult problem. Practical experiments show that the index of the
variance at critical points can be arbitrary, thus subdividing the EBS into many
regions. As a result, the KBS covers only a small portion of the subsphere contain-
ing the reference points in generic conditions, while the affine span recovers the
full subsphere. This suggests that the affine span might be the most interesting
definition for subspace analysis purposes.

Finally, we discuss the use to these barycentric subspaces to generalize PCA on
manifolds. Barycentric subspaces can be naturally nested, by defining an ordering
of the reference points. Like for PGA, this allows the construction of a forward
nested sequence of subspaces which contains the Fréchet mean. In addition, BSA
also allows the construction of backward nested sequence which may not contain
the mean. However, the criterion on which these constructions are based can
be optimized for one subspace at a time only and not for the whole sequence of
hierarchical subspaces. In order to obtain a global criterion, we rephrase PCA in
Euclidean spaces as an optimization on flags of linear subspaces (a hierarchies of
properly embedded linear subspaces of increasing dimension) and we propose an
extension of the unexplained variance criterion that generalizes nicely to flags of
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affine spans in Riemannian manifolds. This results into a particularly appealing
generalization of PCA on manifolds, that we call Barycentric Subspaces Analysis
(BSA).
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A Spectral Perspective on Shapes

Ron Kimmel

(joint work with Yonathan Aflalo, Haim Brezis, Alex Bronstein, Michael
Bronstein, Anastasia Dubrovina, Dan Raviv, Nir Sochen, Aaron Wetzler)

The differential structure of surfaces captured by the Laplace Beltrami Operator
(LBO) can be used to construct a space for analyzing visual and geometric infor-
mation. The decomposition of the LBO at one end, and the heat operator at the
other end provide us with efficient tools for dealing with images and shapes. De-
noising, matching, segmenting, filtering, exaggerating are just few of the problems
for which the LBO provides a convenient operating environment. In the talk were
reviewed the optimality of a truncated basis provided by the LBO, and a selection
of relevant metrics by which such optimal bases are constructed. A specific exam-
ple is the scale invariant metric for surfaces, that we argue to be a natural choice
for the study of articulated shapes and forms.
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One of the main topics in our understanding the world we live in is shape
matching and comparison. The problem is challenging when dealing with non-rigid
objects. In the lecture we introduced some computational methods for compar-
ing shapes. Like the Gromov-Hausdorff distance that measures the discrepancy
between metric spaces. A measure we have been able to adopt and adapt from
theoretical analysis to practice, and recently efficiently approximate it by working
in the spectral domain.

Just a couple of years ago, the field of computer vision was about extracting the
geometry out of an image, while computer graphics dealt with the inverse problem,
of generating images out of the geometry, and efficiently manipulating it. In this
talk we assume that geometry is somehow provided. The problem we would try
to tackle is what next.

The questions we would like to answer involve many fields ranging from art to
medical imaging. For example, is Leonardo Da-Vinci’s face actually embedded in
his painting of the Mona-Lisa? Are two instances of the same heart at different
times of a cardiac cycle similar? How could we compare two different postures of a
given hand? In order to provide computational tools for comparing, matching, and
eventually understanding surfaces, we would like to define measures that would
allow us to treat articulated objects given as deformable surfaces. We would try
to answer the question of how should we compare shapes in nature. To that end,
we treat each shape as its own metric space. To simplify the problems we will first
focus on what is a “natural” deformation, or more correctly - invariant. Let us
consult our imagination, and resort to a famous British writer and mathematician.

Charles Lutwidge Dodgson, known by his pen-name as Lewis Carroll, wrote a
short story about Alice Adventures in Wonderland. In his story, after eating a
cake, Alice experienced “opening like the largest telescope that ever was!” saying
“good-bye” to her feet. She was going through, what we probably refer to as an
Affine transformation. Her feelings about the deformation of her body were in-
trinsic, independent of the space she was embedded in. Well, this is not exactly
true, as “seeing” her legs depart from her eyes involve a space in which rays of
light traveling from her shoes to her eyes make it a Euclidean one. Trying to sim-
plify, or failing to comprehend, Walt Disney, projected his perception of Carroll’s
thoughts into an animated figure. Disney took a complicated eight parameters
transformation and simplified it into a single parameter one - scaling. Now, he
had a problem, in order to understand that Alice is going through a change, he
had to position her in a reference embedding space – like the house she was explor-
ing, and reference objects like the white rabbit. We argue that scaling, in a local
sense, somewhat richer than what Disney portrayed, is important in describing
and matching natural creatures.

We start with a simple example. Consider two planar curves that differ only
by their scale. What would be a scale invariant measure of distance along these
curves? The change in angle of the velocity (or the tangent) would be such a mea-
sure. A scale invariant measure of length is realized by multiplying the Euclidean
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arclength by the curvature. Dividing the unit velocity by the radius of the oscu-
lating circle at each point along the curve provides the required local (differential)
invariant. We extend this intuitive construction to surfaces. The main difference
is that for curves, the curvature is an extrinsic property while for surfaces we are
lucky to have the Gaussian curvature which is an intrinsic property.

When dealing with surfaces we are lucky. Gauss discovered a beautiful quan-
tity which is now known as the Gaussian curvature. In fact, he was so profoundly
touched by his discovery that there is such a number which is invariant to em-
bedding, that he named his discovery as the remarkable theorem. The Gaussian
curvature is equal to the multiplication of the two principal curvatures, and is
independent of how the surface is embedded in space. This is an important prop-
erty, since as we make expressions and poses, we do not change much the surface
of our body, while embedding it differently in 3D space. So, in a sense, we preserve
the Gaussian curvature. Now, assume we would like to compare a small hand to
a large one and claim they are the same, while being invariant to local scaling.
To that end, we use the metric of the surface, which is the matrix translating an
infinitesimal displacement on parametric space to a displacement on the surface.

Like curves, in order to define a scale invariant metric, what we have to do is
multiply the metric by the Gaussian curvature. In fact we obtain a pseudo metric
since the Gaussian Curvature can vanish. Now, what do these locations signify?
We claim that interesting regions are those where there is an efficient Gaussian
curvature. The rest are “tubes” or connecting manifolds whose functional purpose
is insignificant for most functional behavior of objects. Using the scale invariant
metric, we can define an invariant Laplacian that would allow us to construct an
invariant and optimal spectral basis.

The interested reader is referred to [1, 2, 3, 4, 5], and the soon to be published
paper on Spectral generalized-MDS.

This work has been supported by grant agreement no. 267414 of the European
Community’s FP7-Advanced ERC Program.
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Finite identification and local linear convergence of proximal splitting

algorithms

Jalal M. Fadili

(joint work with Jingwei Liang, Gabriel Peyré and Russell Luke)

Convex nonsmooth optimization has become ubiquitous in most quantitative dis-
ciplines of science. One can think for instance of large-scale inverse problems
in signal/image processing, geometry processing, machine learning or statistics.
Proximal splitting algorithms are very popular to solve structured convex optimiza-
tion problems. Within these algorithms, the Forward-Backward and its variants
(e.g. inertial Forward-Backward, FISTA, Forward-Backward-Forward), Douglas-
Rachford and the alternating directions method of multipliers (ADMM) are widely
used. The goal of this work is to investigate the local convergence behavior of these
schemes when the involved functions are partly smooth relative to the so-called
active/identifiable smooth submanifold. The notion of partial smoothness was
introduced in [1]. This concept captures essential features of the geometry of non-
smoothness which are along the active submanifold. Loosely speaking, a partly
smooth function behaves smoothly as we move on the identifiable submanifold,
and sharply if we move normal to it. In fact, the behaviour of the function and
of its minimizers depend essentially on its restriction to this submanifold, hence
offering a powerful framework for algorithmic and sensitivity analysis theory.

In this work [2, 4, 3], we show that (i) all the aforementioned splitting algo-
rithms correctly identify the active manifolds in a finite number of iterations (finite
activity identification), and (ii) then enter a local linear convergence regime, which
we characterize precisely in terms of the structure of the involved active manifolds.
For problems involving quadratic and polyhedral functions, we show how to get
finite termination of Forward-Backward-type splitting. These results may have
numerous applications including in signal/image processing, sparse recovery and
machine learning. Indeed, the obtained results explain the typical behaviour that
has been observed numerically for many problems in these fields such as the Lasso,
the group Lasso, the fused Lasso and the nuclear norm regularization to name only
a few.
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Bilevel learning for variational regularisation models

Carola-Bibiane Schönlieb

(joint work with M. Benning, L. Calatroni, C. Chung, J. C. De Los Reyes, T.
Valkonen, V. Vlačić)

We consider learning approaches in variational imaging, based on bilevel optimiza-
tion (see, e.g. [1, 2]), and emphasize the importance of their treatment in function
space. Schematically, a bilevel learning approach proceeds in the following way:

(1) We consider a training set of pairs (fk, uk), k = 1, 2, . . . , N . Here, fk
denotes the imperfect image data, which we assume to have been mea-
sured with a fixed device with fixed settings, and the images uk represent
the ground truth or images that approximate the ground truth within a
desirable tolerance.

(2) We determine a setup of a variational regularization model which gives
solutions that are in average ‘optimal’ with respect to the training set in
(i). Generically, this can be formalized as

(1a) min
(R,d,K,α)

N
∑

k=1

F (u∗k(R, d,K, α))

subject to

(1b) u∗k(R, d,K, α) = argminu {R(u) + d(K(u), fk)} , k = 1, . . . , N.

Here R is a regularizing energy that models a-priori knowledge about the
image u, d(·, ·) is a suitable distance function that models the relation of
the data f to the unknown u, and α > 0 is a parameter that balances our
trust in the forward model against the need of regularization. Moreover,
F (u∗k(R, d,K, α)) is a given cost function, that evaluates the optimality of
the reconstructed image u∗k(R, d,K, α) by comparing it to its counterpart
in the training set. A standard choice for F is the least-squares distance
F (u∗k(R, d,K, α)) = ‖u∗k(R, d,K, α) − uk‖22, which can be interpreted as
seeking a reconstruction with maximal signal to noise ratio (SNR). The
bilevel problem (1) accommodates optimization of (1b) with respect to the
regularization R, the fidelity distance d, the forward operator K (corre-
sponding to optimizing for the acquisition strategy) and the regularization
strength α. In our work so far, we focus on optimizing R within the group
of total variation (TV) - type regularizers, an optimal selection of α and
an optimal choice for the distance d within the class of L2 and L1 norms,
and the Kullback-Leibler divergence.

(3) Having determined an optimal setup (R∗, d∗,K∗, α∗) as a solution of (1),
its generalization qualities are analyzed by testing the resulting variational
model on a validation set of imperfect image data and ground truth images,
with similar properties to the training set in (i).
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A recent review paper on this approach [4] includes results on the existence and
structure of minimizers, as well as optimality conditions for their characterization,
of (1) for the case when (1b) is given by

u∗k(α, λ) = argminu

N
∑

i=1

∫

Ω

λi(x)φi(x, [Ku](x)) dx+
M
∑

j=1

∫

Ω

αj(x)d|Aju|(x),

which is optimized for the parameter vectors α = (α1, ..., αM ) and λ = (λ1, ..., λN ).
More details on these analytical results can be found in[1, 5]. Based on this infor-
mation, Newton type methods are studied for the solution of the problems at hand,
combining them with sampling techniques in case of large databases [3]. There we
also demonstrate the application of the bilevel approach for learning parameters in
different total variation - type regularizers, fidelity distances encoding three differ-
ent noise models, and spatially dependent regularization weights. In a follow-up
paper [6] we also discuss the analysis and numerical realization of a bilevel learning
approach for spatial-temporal regularizers in the context of dynamic imaging.
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Sobolev Metrics on the Space of Curves – Theory and Applications

Martins Bruveris

(joint work with Martin Bauer, Philipp Harms and Jakob Møller-Andersen)

Riemannian metrics on the space of curves are used in shape analysis to describe
deformations that take one shape to another and to define a distance between
shapes. This talk discusses the mathematical properties of a class of Riemann-
ian metrics – Sobolev metrics with constant coefficients – and their use in shape
analysis.

The underlying space is

Imm(S1,Rd) = {c ∈ C∞(S1,Rd) : c′ 6= 0} ,
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the space of smooth, regular curves. A Sobolev metric with constant coefficients
of order n is a Riemannian metric of the form

Gc(h, k) =

∫

S1

a0〈h, k〉+ · · ·+ an〈Dn
s h,D

n
s k〉ds ,

where Dsh = 1
|c′|h

′ and ds = |c′| dθ are differentiation and integration with respect

to arc length respectively and the aj are constants satisfying aj ≥ 0 and a0, an > 0.
Depending on the order these metrics exhibit very different behaviours. The

L2-metric – meaning n = 0 – is the most simple case. The geodesic distance
induced by this metric,

dist(c0, c1) = inf
c

∫ 1

0

√

Gc(ct, ct) dt ,

the infimum being taken over all paths c connecting c0 and c1, vanishes [5]. This
means that any two curves can be connected by paths of arbitrary short length.
While any nonconstant path still has positive length, the statement is that this
length can be made arbitrary small. This is a purely infinite-dimensional phenom-
enon – on finite dimensional Riemannian manifolds the topology induced by the
geodesics distance coincides with the manifold topology.

Having ruled out L2-metrics for shape analysis we move on to H1-metrics. The
most practical H1-type metric is

Gc(h, k) =

∫

S1

1

4
〈Dsh, v〉2 + |Dsh

⊥|2 ds ,

where v = c′

|c′| is the unit length tangent vector along the curve and Dsh
⊥ =

Dsh − 〈Dsh, v〉v is the projection of Dsh to {v}⊥; in other words the metric
weighs the tangential and normal components of Dsh differently.

This metric is practical, because there exists a nonlinear transformation – called
the square root velocity transform – that maps the space isometrically onto a
codimension 2 submanifold of a flat Riemannian space [6]. A flat Riemannian
manifold is numerically very simple: geodesics are straight lines, the geodesic
distance can be computed explicitly. Because of these properties this metric has
been used in a variety of applications. From a mathematical perspective however
this metric is not complete [2].

The completeness problem can be addressed by moving to H2- or higher order
metrics. Let n ≥ 2. First one observes that an Hn-metric can be extended to a
smooth Riemannian metric on the space of Sobolev immersions,

In(S1,Rd) = {c ∈ Hn(S1,Rd) : c′(θ) 6= 0} ⊂ Hn(S1,Rd) .

This is not the case for H1-metrics, because I1(S1,Rd) is not well-defined: the
H1-topology is not strong enough to enforce the pointwise condition c′(θ) 6= 0.
For Hn-metrics we have the following theorem.

Theorem 1 ([3, 4]). Let n ≥ 2 and let Gn be a reparametrization invariant Sobolev
metric on Imm(S1,Rd) of order n with constant coefficients. Then

(A) (In(S1,Rd), distn) is a complete metric space;
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(B) (In(S1,Rd), Gn) is geodesically complete;
(C) Any two elements of In(S1,Rd) can be joined by a minimizing geodesic.

(B) holds also on the space Imm(S1,Rd) of smooth immersions and on the quotient
space Imm(S1,Rd)/Diff(S1).

Numerical discretization of H2-metrics is subject to ongoing research. We are
employing an approach via B-splines to transform the minimization of the Rie-
mannian energy

E(c) =

∫ 1

0

Gc(ct, ct) dt ,

into a finite dimensional optimization problem. The use of B-splines allows us to
control the smoothness in both θ- and t-variables; there are analytic expressions
available for the derivatives and the spline basis is local in nature allowing us to
exploit the sparsity present in the problem. We have so far employed H2-metrics
to study the nuclear shape variations in fluorescence microscopy images of HeLa
cells [1].
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Functional characterization of intrinsic and extrinsic geometry

Justin Solomon

(joint work with Etienne Corman, Mirela Ben-Chen, Leonidas Guibas, & Maks
Ovsjanikov)

We propose a novel way to capture and characterize distortion between pairs of
shapes by extending the recently proposed framework of shape differences built
on functional maps [1, 2]. We modify the original definition of shape differences
slightly and prove that, after this change, the discrete metric is fully encoded in
two shape difference operators and can be recovered by solving two linear systems
of equations. Then, we introduce an extension of the shape difference operators
using offset surfaces to capture extrinsic or embedding-dependent distortion, com-
plementing the purely intrinsic nature of the original shape differences. Finally,
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we demonstrate that a set of four operators is complete, capturing intrinsic and ex-
trinsic structure and fully encoding a shape up to rigid motion in both discrete and
continuous settings. We highlight the usefulness of our constructions by showing
the complementary nature of our extrinsic shape differences in capturing distor-
tion ignored by previous approaches. We additionally provide examples where we
recover local shape structure from the shape difference operators, suggesting shape
editing and analysis tools based on manipulating shape differences.
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Close-to-Conformal Deformations of Volumes

Albert Chern

(joint work with Ulrich Pinkall, Peter Schröder)

There is no 3D conformal deformation within R3 other than the Möbius trans-
formations, yet in applications of volumetric deformations there is a demand for
low shear distortion nature of conformality. A direct optimization for 3D con-
formality is numerically difficult. In our work, we analyze the obstruction from
having a conformal map, and discover that in order to obtain a close-to-conformal
deformation, one only needs to find an eigenfunction of the Laplacian associated
to a special connection, revealing a relation to the (non-abelian) gauge theory in
quantum physics. A volumetric shape f : M →֒ R3 (M is a 3-manifold) is con-

formal to a deformed shape f̃ : M → R3 if df̃ is a scale-rotation of df ; in other
words, there is a quaternion field ψ : M → H so that df̃ = ψdfψ. The necessary
(and sufficient, for simply connected domains,) condition for ψ is that there exists
G :M → R3 such that ∇Gψ = 0, where ∇G := (d+ 1

2Gdf). This observation that

∇Gψ is the obstruction from yielding a conformal map is turned into a fast algo-
rithm. Given a vector field G arbitrarily given by a user, we return the deformed
shape f̃ as the least-squares solution of df̃ = ψdfψ in which ψ is the first eigen-
function of ∆G := (∇G)†∇G, which is indeed the minimizer of

∫

M
|∇Gψ|2 with

constraint
∫

M
|ψ|2 = 1. Solving only linear problems, we produce results that

achieve conformal quality comparable to that obtained from far more expensive
approaches.

References
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Total Variation Denoising and Support Localization of the Gradient

Vincent Duval

(joint work with Antonin Chambolle, Gabriel Peyré, Clarice Poon)

The Rudin-Osher-Fatemi model is a standard image denoising model [1]. Given a
noisy image f +w where f ∈ L2(R2) is the original image and w ∈ L2(R2) is some
additive noise, one estimates f with

(1) uλ,w = argmin

{

λ

∫

R2

|Du|+ 1

2

∫

R2

(f + w − u)2; u ∈ L2(R2)

}

,

where λ > 0. There is a large body of literature about this model, especially [2, 3]
which describe the jump set of the solution depending on f , but most works do
not take into account the effect of the noise (i.e. they assume w = 0).

In this work we study the effect of a small noise w with a small regularization
parameter λ. While it is clear that, as λ→ 0+ and ‖w‖L2 → 0+, the solution uλ,w
converges towards f in L2, we focus on a more precise convergence in terms of level
lines and support of the gradient. We show that, as λ→ 0 and ‖w‖L2/λ→ 0, and
provided a source condition holds, almost every level line of uλ,w converges in the
Hausdorff sense towards the corresponding level line of f , whereas the outer limit
of the support of |Duλ,w| is contained in some set that we characterize, called the
extended support. In particular, this implies that the indicator function of any
calibrable sets C ⊂ R

2 is stable to noise, in the sense that for all δ > 0, all the
level lines are contained in

(2)
{

x ∈ R
2; dist(x, ∂C) ≤ δ

}

,

provided λ and ‖w‖L2/λ are small enough.
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Connectivity Constraints in Image Segmentation and

3D Reconstruction using Convex Optimization

Jan Stühmer

(joint work with Daniel Cremers, Peter Schröder, Martin Oswald)

We provide an efficient framework for topological constraints in image segmenta-
tion and 3D reconstruction. Specifically, we show how connectivity can be imposed
as a monotonicity constraint along the connected paths of a predefined graph, in
this case a geodesic shortest path tree. While this reformulation of connectivity is
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not as general as the existence of any connected path, we can include our formu-
lation as a linear constraint. We provide an efficient projection scheme onto the
feasible set and solve the relaxed convex optimization problem using a proximal
algorithm. We show that thresholding a minimizer of the relaxed optimization
problem yields a minimizer of the discrete image segmentation problem.
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On Learning better models for imaging

Thomas Pock

(joint work with Karl Kunisch, Yunjin Chen, Wei Yu, Kernstin Hammernik,
Erich Kobler)

Variational methods are arguable one of the most successful methods for solv-
ing inverse problems in imaging. Typical applications are image denoising, image
deblurring, image inpainting, and image reconstruction. A crucial aspect in vari-
ational methods is the choice of the regularisation term, since it can be used to
impose a prior on the regularity of the solution (e.g. piecewise constant, piecewise
smooth, oscillating patterns, ...). In our first approach we use a bilevel optimiza-
tion approach to learn optimal regularisation weights of a regularization term that
is comprised of a weighted sum of convex terms each of them penalizing the ℓ1
norm of a certain linear transform applied to the image. We then show that a
major shortcoming of this model is the convexity of the regulariser which does
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not allow to improve the model beyond a certain accuracy. Hence, in our second
model we propose to learn both the parameters of nonconvex potential functions
and the linear transforms, which are usually given by small filter kernels. With
this approach we were able to achieve state-of-the-art results in several imaging
applications. Finally, we show how we can drastically improve both the quality
and the computational efficiency by giving up the restriction to learn a variational
model. In fact, we show that if we directly learn a fixed number of gradient de-
scent steps, where the potential functions and the linear operators are allowed to
change in each iteration we can achieve better results while reducing the computa-
tional complexity by one to two orders of magnitude. Since the resulting scheme
is allowed to dynamically change the potential functions and the linear operators,
it can be interpreted as a time-dynamic reaction-diffusion PDE. Moreover, the
proposed scheme can also be interpreted as particular type of convolutional neural
network and hence in some sense bridging the gap between variational methods,
PDEs, and convolutional neural networks.

Semi-discrete optimal transport and application to inverse problems

in optics

Quentin Mérigot

(joint work with Jun Kitagawa, Boris Thibert)

Many problems in geometric optics or convex geometry can be recast as opti-
mal transport problems: this includes the far-field reflector problem, Alexandrov’s
curvature prescription problem, etc. A popular way to solve these problems nu-
merically is to assume that the source probability measure is absolutely continuous
while the target measure is finitely supported. We refer to this setting as semi-
discrete optimal transport. In this setting, optimal transport plans are induced by
a decomposition of the source domain into weighted Voronoi cells, one per Dirac
mass in the target. The problem is then to determine weights such that the mass
of each weighted Voronoi cell equals the mass in front of the corresponding Dirac.

Among the several algorithms proposed to solve semi-discrete optimal transport
problems, one currently needs to choose between algorithms that are slow but come
with a convergence speed analysis (such as [3]) or algorithms that are much faster
in practice but which come with no convergence guarantees (derived from the
variational formulation first presented in [1]). Algorithms of the first kind rely
on coordinate-wise increments and the number of iterations required to reach the
solution up to an error of ε is of order N3/ε, where N is the number of Dirac
masses in the target measure. On the other hand, algorithms of the second kind
typically rely on the formulation of the semi-discrete optimal transport problem
as an unconstrained convex optimization problem which is solved using a Newton
or quasi-Newton method.

The purpose of our work is to bridge this gap between theory and practice by
introducing a damped Newton’s algorithm which is experimentally efficient and
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Figure 1. Evolution of weighted Voronoi cells in the damped
Newton algorithm for semi-discrete optimal transport.

by proving the global linear convergence of this algorithm. The main assumptions
for the convergence of this damped Newton’s algorithm are the following:

• First, the cost function must satisfy a condition that appeared in the
regularity theory for optimal transport, called the Ma-Trudinger-Wang
condition. We rely on a discrete formulation of this condition which is in-
spired by Loeper [2]. At the discrete level, this condition asks that certain
generalized Voronoi cells must be convex under a change-of-coordinates
induced by the cost itself.

• Second, the support of the probability density should be connected in
a strong sense. More precisely, we assume that the probability density
satisfies a L1 weighted Poincaré-Wirtinger inequality. We also require
that the density is C1,α and that it is supported inside a c-convex domain.

Under these two assumptions, which includes applications to several inverse prob-
lems arising from geometric optics (reflector and lens design), we prove that the
algorithm converges globally with linear rate and locally with 1 + α rate. An
numerical example, showing the evolution of the weighted Voronoi diagram is dis-
played in Figure 1.
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Curved Folded Surfaces

Martin Kilian

(joint work with Aron Monszpart, Niloy Mitra)

Originally popularized by David Huffman [1], curved folded shapes continue to
capture the interest and imagination of architects, artists, and hobbyists. The
possibility of folding a set of simple curves, commonly referred to as creases, on a
single flat sheet into a complex freeform surface, without any joining or gluing, is
both intriguing and fascinating.

Artists and designers create such curved folded surfaces by a combination of
trial-and-error, prior experience, and prototyping with paper. Although the act of
folding a flat piece of paper can be simulated to mimic the folding or crumpling
processes, such approaches require force specifications which are often unknown.

Instructions for actually folding such surfaces are difficult to produce. The key
complexity comes from the requirement that multiple creases should be simulta-
neously folded to arrive at a final shape. Otherwise, the surface can easily reach a
‘locked’ configuration (i.e., cannot be further folded without producing undesirable
creases or damage the sheet). Note that this is different from classical Origami
with straight folds that are folded sequentially. Hence, curved folded surfaces are
almost always manually created, often requiring significant experience, expertise,
and many folding attempts (see [2]). This greatly restricts wide spread usage of
curved folded surfaces.

However, for architectural and industrial applications, it is highly desirable to
have an automated folding process. Unfortunately, very little is known in this
context. A rare exception is the particular demonstrations from RoboFold [3].
Such robotic folding, however, strongly limits the type of folded surfaces due to
space required for robotic arm manipulation and also for placing suction cups on
the sheet.

In this work, we introduce String Actuated Curved Folded Surfaces as a ver-
satile yet simple contraption for folding complex curved folded surfaces starting
from their unfolding. We ask the question of how to fold a given (flat) crease
pattern (CP) by simply pulling a network of strings. This requires answering:
(i) what is the final folded shape along with the folding path; and, more impor-
tantly, (ii) how to actuate the sequence with easy-to-rig networks of strings.

Our method works in two phases: first, it finds a folding sequence that takes
a flat CP to its folded form via an appropriate isometric deformation; and then
discovers a corresponding stringing sequence (i.e., which surface points to con-
nect) that can be actuated to produce the same folding sequence. Technically, we
introduce the notion of string-actuated deformation modes as local deformation
vectors that characterize surface deformations under contraction of strings con-
necting pairs of surface points. We then demonstrate how solving for a network of
strings amounts to expressing the desired folding sequence in terms of a minimal
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number of such string-actuated deformation modes. The resultant solution imme-
diately gives the final network of strings which when pulled folds the flat sheet to
a curved folded surface.

We demonstrate our approach on a set of classical crease patterns and validate
them by physically constructing them. In summary, we introduce string-actuated
curved folded surfaces as a contraption of strings which when pulled can bring a
flat sheet to a folded shape by simultaneously actuating multiple curved folds to
appropriately reshape the surface. This allows, for the first time, a computational
framework to fold a CP and in the process making the resultant curved folded
surface much easier to rig and realize.
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Isotopic Approximation within a Tolerance Volume

Pierre Alliez

(joint work with Manish Mandad, David Cohen-Steiner)

Faithful approximation of complex shapes with simplicial meshes is a multifaceted
problem, involving geometry, topology and their discretization. This problem has
received considerable interest due to its wide range of applications and the ever-
increasing accessibility of geometric sensors. Geometric guarantees usually refer to
upper bounds on the approximation error and to the absence of self-intersections.
Topological guarantees refer to homotopy, homeomorphism or isotopy. In our con-
text isotopy means that there exists a smooth deformation that maps one shape
to another while maintaining a homeomorphism between the two. A vast array of
methodologies has been proposed for shape approximation over the years, ranging
from decimation to optimization through clustering and refinement. Fewer, how-
ever, provide error bounds. In addition, they only apply to specific types of input
geometry, and often fail to satisfy geometric and topological guarantees.

In R3, Chazal and Cohen-Steiner [1] showed that when seeking a homeomor-
phic approximation S′ of a connected surface S, a simple topological condition is
sufficient to guarantee that the two surfaces are isotopic. If S and S′ are homeo-
morphic, then S and S′ are isotopic if S′ is contained in a topological thickening
of S and separates the boundary components of this thickening. In this work we
contribute a constructive approach for this theoretical result in the form of an al-
gorithm that matches these conditions in order to ensure that the output surface
mesh is an isotopic approximation. We state the problem as follows. The input is
a tolerance volume Ω that is a topological thickening of a surface S which we want
to approximate. By topological thickening of S we mean a compact subset of R3
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homeomorphic to S × [0, 1]. Our goal is to generate as output a surface triangle
mesh located within Ω, isotopic to the boundary components of Ω, and with a
low triangle count. This approximation problem was originally stated by Klee for
polytopes in arbitrary dimensions. In 2D, the problem is commonly referred to as
the minimum nested polygon problem. The 3D instance of this problem, referred
to as minimum nested polyhedron problem has been shown to be NP-hard.

Despite being a long standing problem, there is still no robust and practical
solution to this enduring scientific challenge. Yet, it is both relevant to, and timely
for, the increasing variety of industrial applications that involve raw geometric
data. In this work we develop an algorithm for the above problem that yields
approximations with very low triangle count, while enjoying topological guarantees
under relatively mild assumptions on the tolerance volume. Note that while the
assumption that Ω is a proper thickening makes the analysis easier, it is not
always necessary and our approach may also work when boundary components
of Ω have, for instance, additional spurious handles. If Ω is not provided as
input, we may generate it from a possibly defect-laden approximation of S (Σ,
e.g., a point cloud or a polygon soup) using either simple offsets in the noise-free
case, or sublevel sets of a robust distance function. Hence, under relatively mild
conditions, our algorithm is able to solve the problem of robust reconstruction,
repair and simplification concurrently.

Figure 1. Overview of our algorithm. Top: input tolerance Ω,
sampling of ∂Ω, mesh refinement by inserting a subset of the
sample points, and topology condition met. Samples that are
well classified are depicted in green, and in red otherwise. The
boundary of the simplicial tolerance volume ∂Γ is depicted with
blue edges. Bottom: simplification of ∂Γ, mutual tessellation of
zero-set, simplification of zero-set, and final output.

Figure 1 depicts the three main steps of our approach: First, the initializa-
tion step generates a dense point sample S on the boundary of the tolerance
volume ∂Ω. Second, we proceed coarse-to-fine through refinement of a 3D Delau-
nay triangulation by inserting one sample of S at a time, and while maintaining
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a piecewise-linear function interpolated on the triangulation. The function value
at the triangulation vertices is set in accordance to the index of each boundary
component ∂Ωi (+1 or −1). The term zero-set refers to the isosurface where the
interpolated function evaluates to zero. Refinement is performed until the zero-
set is entirely contained into Ω and matches the topology of Ω. All samples are
then well classified, and the tolerance volume is approximated by Γ, referred to as
the simplicial tolerance volume. Third, we proceed mainly fine-to-coarse through
simplifying Γ, inserting the zero-set into Γ via mutual tessellation, and simplifying
the zero-set while preserving the validity of the embedding.
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Variational approaches for phase-image processing with applications in

MRI

Kristian Bredies

(joint work with Clemens Diwoky, Christian Langkammer, Andreas Lesch,
Gernot Reishofer, Stefan Ropele, Rudolf Stollberger)

While most medical and natural images are associated with a linear gray-level scale
or a color-space representation, the data of some tomographic imaging modalities
are naturally complex-valued with the phase playing an important role. This is
in particular true for magnetic resonance imaging (MRI) where commonly, only
the magnitude is used for diagnostic evaluation. However, due to the fact that
phase images reveal certain physical information, the mathematical processing of
latter is important for several applications within MRI. We discuss two of these
applications, fat-water separation and quantitative susceptibility mapping (QSM).

In fat-water separation, the capabilities of an MRI device to image nuclear
magnetic resonance (NMR) spectra are exploited. Here, a short NMR spectrum
is imaged in each point enabling the separation of fat and water, as fat induces a
so-called chemical shift in the spectrum. This can be done by solving the equation

(1) sm = S(αw, αf , δB0, R
∗
2)m = (αwwm + αffm)e2πiδB0tme−R

∗

2tm ,

for m = 1, . . . ,M , αw, αf water and fat intensities, (wm)m, (fm)m given ideal
water and fat NMR signals, respectively, γ the gyromagnetic ratio, (tm)m given
echo times and, δB0, R

∗
2 magnetic field and material inhomogeneities, respec-

tively. While R∗
2 can be assumed to be known, the robust recovery of the phase

image associated with δB0 is decisive for a solution with respect to αw, αf , as
otherwise erroneous fat-water swaps may occur. We propose a variational ap-
proach that bases on a quadratic residual associated with (1), i.e., r2(δB0) =
minαw ,αf

‖S(αw, αf , δB0, R
∗
2) − s‖2. If (tm)m is equispaced, i.e., tm = t0 +mδt,

then r2 is a trigonometric polynomial whose local minima can be determined by
substituting z = e2πiδB0δt and polynomial root finding [5]. Restriction of r to
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(a) Magnitude and phase of input
images.

(b) Unregularized
reconstruction.

(c) TGV2-regularized
reconstruction.

Figure 1. Example for fat-water separation. (a) shows input
data s1, . . . , s5 for equispaced echo times, (b) unregularized re-
construction with fat-water swaps (marked red), (c) regularized
reconstruction via (2) (left to right/top to bottom: water image
αw, fat image αf , inhomogeneity phase image δB0, fat fraction).

the local minima and convex relaxation gives rrelax whose integral over the image
domain Ω shall be minimized. In order to avoid fat-water swaps, spatial regular-
ity is enforced by second-order total generalized variation (TGV) [3, 6, 2] that is
suitable to account for the piecewise smooth structure of δB0 [8]:

(2) min
z

∫

Ω

rrelax
(

x, z(x)
)

dx+TGV2
α(z).

This problem may efficiently be solved by a convex optimization algorithm [4, 1],
however, the relaxation is not tight in general such that only suboptimal δB0

may be recovered, for instance, by thresholding. In practice, this yields good
approximations of the phase image δB0 and, consequently, accurate water and fat
images, see Figure 1 for an example with real data.

For quantitative susceptibility mapping, MR phase data can be related to one
component of the magnetic flux field in the imaged object, allowing to image and
quantify the magnetic susceptibility χ, i.e., the magnetization of a material under
the magnetic field applied in an MR device. The relation between χ and the
measured phase ϕwrap can be described by

ϕwrap = c(χ ∗ d) mod 2π, d(r) =
2z2 − x2 − y2

4π|r|5 , r = (x, y, z),

where c is a norming constant and d the magnetic dipole moment with respect
to the z-axis. With ϕwrap only available in a region of interest Ω, recovering χ
constitutes a deconvolution problem for wrapped data. Usually, this problem is
solved by performing three steps: (1) phase-data unwrapping, giving ϕunwrap, (2)
removal of the harmonic background field, i.e., all contributions from χ outside Ω,
giving ϕqsm, and (3) regularized deconvolution in Ω, giving χ. These steps can,
however, also be put in an integrative convex variational problem [7], allowing for
robust and efficient numerical solution. It relies on the fact that the Laplacian of
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(a) Measured magnitude/phase data.
(b) Reconstructed quantitative susceptibility maps.

Figure 2. Example for quantitative susceptibility mapping using
MRI phase data. (a) shows measured gradient echo data (magni-
tude image gives brain region Ω, phase gives input data ϕwrap),
(b) integrative reconstruction via solution of (3).

the unwrapped phase may be expressed in terms of ϕwrap [9]:

∆ϕqsm = ∆ϕunwrap = ℑ
(

(∆eiϕ
wrap

)e−iϕwrap)

,

taking into account that harmonic background fields in Ω are canceled with the
Laplacian. On the other hand, we have ∆d = � δ0 in the distributional sense where

� = 1
3

(

∂2

∂x2 +
∂2

∂y2
−2 ∂2

∂z2

)

, such that the deconvolution problem is transformed into

a wave-like partial differential equation c�χ = ∆ϕqsm. Introducing an H−2-like
discrepancy and regularizing χ with TGV yields the convex variational problem

(3) min
χ,ψ

1

2

∫

Ω

|ψ|2 dr +TGV2
α(χ) subject to ∆ψ = c�χ−∆ϕqsm in Ω.

This problem may efficiently and robustly be solved with first-order primal-dual
algorithms [4, 1], see Figure 2 for a numerical example.
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Non-Smooth Variational Methods for Restoring Manifold-Valued

Images

Gabriele Steidl

(joint work with Miroslav Bačák, Ronny Bergmann, Friedericke Laus, Johannes
Persch, Andreas Weinmann)

We introduce a new non-smooth variational model for the restoration of manifold-
valued data which includes second order differences in the regularization term.
While such models were successfully applied for real-valued images, we introduce
the second order difference and the corresponding variational models for manifold
data, which up to now only existed for cyclic data. The approach requires a combi-
nation of techniques from numerical analysis, convex optimization and differential
geometry. First, we establish a suitable definition of absolute second order differ-
ences for signals and images with values in a manifold. Employing this definition,
we introduce a variational denoising model based on first and second order differ-
ences in the manifold setup. In order to minimize the corresponding functional,
we develop an algorithm using an inexact cyclic proximal point algorithm. We
propose an efficient strategy for the computation of the corresponding proximal
mappings in symmetric spaces utilizing the machinery of Jacobi fields. For the
n-sphere and the manifold of symmetric positive definite matrices, we demon-
strate the performance of our algorithm in practice. We prove the convergence of
the proposed exact and inexact variant of the cyclic proximal point algorithm in
Hadamard spaces. These results which are of interest on its own include, e.g., the
manifold of symmetric positive definite matrices.

Besides the cyclic proximal point algorithm we investigate the applicability of
the Douglas-Rachford algorithm for the processing of manifold-values data. We
suggest the DR algorithm or more precisely its parallel version for the problem
of restoring images with values in a symmetric Hadamard manifold. For the con-
vergence proof we investigate the corresponding reflection operators. We prove
that the reflections of certain distance functions on the manifold are nonexpansive
which is an interesting result on its own. Furthermore, the reflection of the involved
indicator function of a special closed convex set is nonexpansive on manifolds with
constant curvature. The performance of the generalized Douglas-Rachford algo-
rithm for our model is based on analytic expressions for the proximal mappings.
It requires the evaluation of exponential and logarithmic functions which can be
done efficiently. Several numerical examples demonstrate the advantageous per-
formance of the suggested algorithm compared to other existing methods as the
cyclic proximal point algorithm or half-quadratic minimization. Numerical con-
vergence is also observed for the manifold of symmetric positive definite matrices
with the affine invariant metric which does not have a constant curvature.



Mathematical Imaging and Surface Processing 189

References

[1] R. Bergmann, F. Laus, G. Steidl, and A. Weinmann. Second order differences of cyclic data
and applications in variational denoising. SIAM Journal on Imaging Sciences, 7(4):2916–
2953, 2014.
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A varifold approach to surface approximation and mean curvature

estimation on point clouds

Blanche Buet

(joint work with Gian Paolo Leonardi, Simon Masnou)

Estimation of the curvature is a central issue when dealing with discrete objects,
it is for instance very useful to the detection of sharp features or for objects
smoothing (through a mean curvature motion for instance). Yet, it is well known
that, unlike the classical mean curvature of a regular surface, there is no unique
notion of discrete curvature but many of them, depending in particular on the
choice of a discretization. The cotangent formula provides a notion of discrete
curvature for polyhedral surfaces, while the discrete curvature of digital shapes
can be computed from the volumes of the intersection with local balls, with good
convergence properties [1]. There is a common idea between these two approaches:
mean curvature is related the area’s first variation. This is exactly the strategy
used to define a very weak notion of mean curvature in a wide class of objects:
varifolds. Varifolds have been introduced by F. Almgren in 1965 to study minimal
surfaces. They have been widely used in order to study existence and regularity of
solutions to geometric variational problems, but in general for theoretical purpose,
with the noticeable exception of [2] where a varifold structure on triangulated
surfaces is used for shape registration. The great interest of varifolds is that
on one hand, the structure is flexible enough so that both regular surfaces and
discrete approximations can be provided with a varifold structure, allowing to
study surfaces and their different discretizations in a consistent unified setting.
And on the other hand, the structure is rich enough to be endowed with a notion
of curvature using the aforementioned strategy.

We aim at connecting these successful tools from geometric measure theory
(varifolds) to practical issues in discrete geometry (surface comparison, notion of
discrete curvature, geometric motions etc.).
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Simulation of Singular Waves on Curved Surfaces

Omri Azencot

(joint work with Orestis Vantzos, Mirela Ben-Chen)

Designing water wave simulations which feature realistic effects is essential to
many graphics applications. Perhaps the most flexible simulation method will
allow artists to prescribe each (wave) front separately, i.e., model each front as a
concentrated singular wave which has its own shape and directional speed. One
obvious, yet crucial, requirement from these singular waves is that they behave as
waves, and in particular, they should propagate over topography and interact with
boundaries and with each other in a convincing manner. The latter interaction
is extremely important for a faithful representation of waves – contrary to other
geometrical fronts, waves reconnect after collision, i.e., waves can pass through
other waves and maintain their shape. The purpose of this paper is to suggest an
efficient method allowing to easily design and simulate singular wave fronts which
maintain the above characteristics.

To this end, we consider a model that describes the evolution of these waves on
a fixed domain facilitating a 2D partial differential equation (PDE). To capture
the reconnection effect, the resulting equations implement the following key ob-
servation. Upon collision, an exchange of momentum occurs between the involved
fronts. The derived model can be interpreted as the advection of the concen-
trated momentum over the velocity field (a non-linear term) where the velocity
is a smoothened version of the momentum (a non-local term). Interestingly, the
above setup is reminiscent of the vorticity equation (see e.g., [1]) which governs
the kinematics of ideal incompressible flows where vorticity is being transported
by the velocity and these quantities are linked through the Biot–Savart law.

To better assess the proposed approach, we will try to classify it with respect
to other methods for simulation of fronts and waves. From a broader perspective,
our model can be considered as part of the family of shallow water equations
(see e.g., [2]). In these models, the assumptions of columnar motion and averaged
velocity over the fluid height naturally lead to a reduction of dimensionality. Thus,
although the 3D Navier-Stokes (NS) equations could capture the effects we are
interested in, the involved computational cost is too prohibitive for practical uses
when compared to a 2D model such as ours. Moreover, qualitative properties are
usually hard to infer from the general NS model. For instance, certain singular
solutions are known to exist for our model, allowing for a better qualitative and
quantitative understanding of the model.
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Alternative approaches to wave simulation are commonly based on insights from
linearized water wave theory (see e.g., [3]). At the core of the linearized model we
are given descriptions of the wave function as a sum of sinusoidal functions and
of the wave propagation speed as the solution of the eikonal equation. Numerical
methods based on this framework can be categorized into the following two groups.
The first group of techniques treat the propagated front as a geometrical wave and
thus obtain viscosity solutions, i.e., concentrated fronts are possible, however, the
superposition principle of waves does not hold. Schemes from the second group
approximate the wave function, and the obtained results do exhibit superposition,
but modeling singular waves is difficult. Our method enjoys the advantages of
both approaches, thus achieving superimposed singular waves.

The PDE we use is known in the mathematical literature as the Euler–Poincaré
(EPDiff) equation (see e.g., [4]). While there are some works which manage to
discretize this complex PDE in various configurations, its discretization is still con-
sidered a non-trivial task as it involves several challenges. For example, any dis-
crete method must be relatively accurate since the advected momentum is highly
concentrated thus discretization errors become visible quite quickly. Moreover, the
stability and behaviour of the fronts depend heavily on the particular non-linearity
of the equation; if that is not discretized correctly, the singular waves will be un-
stable regardless of how numerically accurate the discretization is. Similarly, time
integration is equally important as it is expected to preserve the properties of the
continuous problem as much as possible. Finally, the spatial differential operators
should gracefully handle boundaries and deal with curved domains.

In this work, we present a fully (time- and space-) discrete scheme for the
EPDiff equation, with the explicit aim that it is variational, i.e., that it conserves
a physically appropriate energy, and that it is applicable to general meshes of com-
plex surfaces. The first goal is achieved via a novel time integrator, which despite
being fully explicit, is energy preserving (and therefore stable) by construction, un-
der some mild conditions. Furthermore, the scheme is based on standard discrete
(differential and interpolation) operators that are well-behaved on unstructured
triangulations of curved surfaces. Overall, our method is extremely efficient as
it involves, per step, at most three sparse linear solves with a fixed matrix, that
depends only on the mesh and thus can be pre-factored for the entire simula-
tion. Moreover, as a post-processing step, we can couple the wavefronts tracked
by our scheme (commonly calculated with the eikonal equation instead) with pe-
riodic waves of various speeds, to achieve a combined reconnection-superposition-
dispersal effect. Finally, we show several results including bending of waves due
to curvature effects, plausible behavior of waves interacting with boundaries, and
reconnection of singular fronts after collision.
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Time Discrete Geodesic Calculus in the Space of Images

Alexander Effland

(joint work with Benjamin Berkels, Martin Rumpf, Florian Schäfer, Stefan
Simon, Kirsten Stahn, Benedikt Wirth)

In this talk the space of images is considered as a Riemannian manifold using
the metamorphosis approach [3, 4, 5], where the underlying Riemannian metric
simultaneously measures the cost of image transport and intensity variation. A
robust and effective variational time discretization of geodesic paths is proposed.
This requires to minimize a discrete path energy consisting of a sum of consecu-
tive image matching functionals over a set of image intensity maps and pairwise
matching deformations. For square-integrable input images an existence result for
the discrete connecting geodesic paths defined as minimizers of this variational
problem as well as the Γ-convergence of a suitable interpolation (in time) of the
discrete path energy are presented. A spatial discretization via finite elements
combined with an alternating descent scheme in the set of image intensity maps
and the set of matching deformations is shown to approximate discrete geodesic
paths numerically. Computational results underline the efficiency of the proposed
approach (see [1]).

In the second part of this talk, Bézier curves in the space of images are com-
puted via the Riemannian version of de Casteljau’s algorithm, which is based on
a hierarchical scheme of convex combinations along geodesic curves (see [2]).

In the final part, the discrete exponential map for the metamorphosis model is
introduced and a local existence as well as a local uniqueness result are stated,
which are based on a suitable fixed point iteration derived from the Euler-Lagrange
equations of a variational reformulation of the exponential map. To compute the
discrete exponential map, an alternating update scheme based on this fixed point
iteration is employed.
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Numerical study of 1D optimal structures

Édouard Oudet

We focus our attention on shape optimization problems in which one dimensional
connected objects are involved. Very old and classical problems in calculus of
variation are of this kind: euclidean Steiner’s tree problem, optimal irrigation
networks, cracks propagation, etc. In a first part we recall some previous work
in collaboration with F. Santambrogio related to the functional relaxation of the
irrigation cost. We establish a Γ-convergence of Modica and Mortola’s type and
illustrate its efficiency from a numerical point of view by computing optimal net-
works associated to simple sources/sinks configurations. We also present more
evolved situations with non dirac sinks in which a fractal behavior of the optimal
network is expected.

In the last part of the talk we restrict our study to the euclidean Steiner’s tree
problem. We recall recent numerical approach which have been developed the
last five years to approximate optimal trees: partitioning formulation, relaxation
with geodesic distance terms and energetic constraints. To conclude this talk,
we describe the first results obtained in collaboration with A. Massaccesi and B.
Velichkov to certify the optimality of a given tree. Based on a generalization of
the notion of calibration introduced by A. Massaccesi, we introduce a nonsmooth
convex programming framework to study existence of such certifications. With
our discrete parametrization of generalized calibration, we are able to recover
the theoretical optimal matrix fields which certify the optimality of simple trees
associated to the vertices of regular polygons.

Linear Conformal Parameterization with Boundary Control

Keenan Crane

We devise a new algorithm for conformal surface parameterization that provides
explicit control over the shape of the boundary curve—in particular, its target
curvature or length. Boundary control facilitates applications in digital geometry
processing such as surface remeshing, texture mapping, and 3D fabrication. A
notable feature of this algorithm is that it involves factorization of only a single
sparse Laplace matrix. In contrast, existing methods either (i) are linear, but
do not offer boundary control (e.g., least-squares conformal maps (LSCM)), or
(ii) provide boundary control, but require nonlinear optimization (e.g., conformal
equivalence of triangle meshes (CETM)).

The method is based around three key “tricks,” namely (i) a convex variational
problem for constructing a planar curve that approximates given curvature data,
(ii) construction of holomorphic functions via harmonic extension and conjugation,
and (iii) a change of variables that replaces a holomorphic map with the logarithm
of its leading coefficient. These three tricks are then composed in various ways to
achieve different boundary conditions.
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More explicitly, let M be a topological disk with metric g and corresponding
complex structure J : TM → TM , J ◦ J = −id. An immersion f : M → C is
holomorphic if df(JX) = ıdf(X) for all tangent vector fields X on M . We are
interested in the image curve γ := f(∂M)—in particular, its associated curvature
κ and length element dℓ. For any holomorphic f , its differential df is a holomorphic
1-form, and hence can be expressed as df = gdz for some holomorphic function g in
conformal coordinates z. Moreover, since g is holomorphic, so is its logarithm. If
we express g as aeıθ (with a, θ : ∂M → R), then the function log(g) = log(a) + ıθ
is also holomorphic; hence, the angle of rotation θ and logarithmic scale factor
u := log(a) will be conjugate harmonic functions. Hence, we can prescribe the scale
or the angle by prescribing either u or θ along the boundary, and then “inverting”
this process, i.e., by computing the harmonic extension and conjugation of the
given boundary data.

An attractive property of this scheme is that conjugate harmonic functions are
solutions to real linear-elliptic problems which are easy to solve numerically. In
practice, however, the scheme can only be implemented if we already have confor-
mal coordinates z : M → C. Although one could “bootstrap” the method using
any existing approach (e.g., LSCM or CETM), we propose a simple alternative that
will also aid the development of more sophisticated boundary conditions. The ba-
sic idea is to compute an initial boundary curve that approximates an isometric
mapping along the boundary. In particular, let κg be the geodesic curvature along
∂M . We first compute the target curvature function κ that best approximates
κg while exhibiting a unit turning number, which can be achieved by solving the
convex-quadratic optimization problem

min
κ:M→R

||κ− κg||2

s.t.

∫

∂M

κ ds = 2π,

where || · || denotes the L2 norm on real-valued functions along ∂M , and ds is the
length element along the domain boundary. Computationally, the solution can
be obtained via a simple closed-form expression. However, unit turning number
does not alone ensure that κ is integrable. We therefore find the minimal scaling
that produces a closed curve. Letting α denote the cumulative curvature with
respect to some arbitrary point on ∂M , and T := eıα being a unit tangent field
that exhibits this curvature, we solve another convex-quadratic program

min
u:M→R

||u− 1||2

s.t.

∫

∂M

uT ds = 0.

In this case, computing a solution is no harder than inverting a 2×2 matrix whose
entries are easily computed from the given boundary data. We have implemented
this algorithm using a standard piecewise linear finite elements on a simplicial
domain (though it would not be difficult to adopt a different discretization). The
operations above can be composed to achieve:
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• maps with minimal area distortion,
• maps to arbitrary polygonal domains (i.e., not just rectangular),
• parameterizations corresponding to a cone metric, and
• Riemann mappings to the unit disk.

We also explore an iterative scheme for mapping to a domain with a prescribed
boundary curve, up to reparameterization. In particular, one can show that the
relationship between the curvature κ of γ and the curvature κ0 of the conformal
coordinates z are related by κ = κ0+ρ

a
, where ρ := d

dℓ0
θ is the change in target

angle with respect to arc length dℓ0 along the boundary curve γ0 := z(∂M).
Equivalently, we can write κdℓ = κ0dℓ0 + ρdℓ0, in analogy with the change in
mean curvature half-density used to compute conformal surface deformations [1].
For a continuously-varying family of holomorphic maps, we can likewise analyze
the “time derivative” of curvature ρ̇ = ȧκ+aκ̇ to obtain a Robin boundary problem
for the change in scale factor, namely, ∆u = 0 subject to ∂u̇

∂n
− κu̇ = κ̇, where n

denotes the normal to the boundary. Solutions to this problem can be numerically
integrated to flow to a target boundary curve.
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On conical discrete isothermic nets

Christian Müller

Different discretizations of curvature line parametrized surfaces lead to nets with
different properties. Conical nets, which is one example of a discrete curvature
line parametrization, are motivated by freeform architecture [2] because of their
face offset property. That is, to any (simply connected) conical net there is a 1-
parameter family of parallel nets (i.e., corresponding faces and edges are parallel)
such that the distance between corresponding faces is constant over the mesh.
Equivalently, for each vertex there is a cone of revolution tangent to all faces
around that vertex, or equivalently, in each vertex the sums of opposite angles are
equal.

In analogy to smooth curvature line parametrized surfaces we add the Koenigs
property (i.e., dualizability) to our net to obtain conical discrete isothermicity [3].

A Möbius transformation applied to the vertices of a conical discrete isothermic
net however gives us a net that is no longer isothermic. To overcome that unwanted
property we apply the transformation to an underlying circle pattern instead. We
can show that the centers of the new circle pattern is a conical discrete isothermic
net.

On the other hand we define a one parameter family ∇λ of discrete connections
on the trivial vector bundle Z2 × R3,1. We can show that this particular family
of connections is actually flat if and only if the net is a special conical discrete
isothermic net, namely one where the circle pattern contains the intersection points
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of the diagonals of the quads. This characterizing property exists in accordance
with the circular discrete as well as the smooth isothermic surfaces cases [1].
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A Sparse Multi-Scale Algorithm for Dense Optimal Transport

Bernhard Schmitzer

Discrete optimal transport solvers do not scale well on dense large problems since
they do not explicitly exploit the geometric structure of the cost function. In
analogy to continuous optimal transport we provide a framework to verify global
optimality of a discrete transport plan locally.

This allows construction of an algorithm to solve large dense problems by con-
sidering a sequence of sparse problems instead. The algorithm lends itself to being
combined with a hierarchical multi-scale scheme. Any existing discrete solver can
be used as internal black-box.

An important component of the algorithm is the careful selection of the sparse
sub-problems, which depends on the cost function. We explicitly describe this for
several costs, including the squared Euclidean distance.

A significant reduction of run-time and memory requirements is observed.
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Riemannian splines in the space of shells

Behrend Heeren

(joint work with M. Rumpf, P. Schröder, M. Wardetzky and B. Wirth)

We want to smoothly interpolate a sequence of given shapes in the space of dis-
crete shells (i.e. triangle meshes). However, the straightforward interpolation path
given by the piecewise time-discrete geodesic (as proposed in [1]) is only piecewise
smooth with jumps at the fixed shapes. Since we are interested in a globally smooth

path we introduce the elastic functional F [S(t)] =
∫ 1

0
gS(t)(

D
dt
Ṡ(t), D

dt
Ṡ) dt, where

D
dt
Ṡ denotes the covariant derivative of Ṡ along the path S. In the Euclidean
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case we have D
dt
Ṡ = S̈ and minimizers of F subject to the interpolation con-

straints are given by cubic splines. Furthermore, S̈(tk) ≈ 4τ−4‖Sk − Sk−1+Sk+1

2 ‖2
for Sk = S(tk) and tk = kτ for k = 0, . . . ,K and τ = K−1. If we replace
the squared Euclidean norm ‖ · ‖2 by an approximation W of the squared Rie-

mannian distance (cf. [1]), and 1
2 (Sk−1 + Sk+1) by the midpoint S̃k of a time-

discrete geodesic between Sk−1 and Sk+1, we get a consistent approximation of F
given by FK [S0, . . . ,SK ] = 4K3

∑K−1
k=1 W [Sk, S̃k], subject to the constraints that

(Sk−1, S̃k,Sk+1) are time-discrete geodesics for k = 1, . . . ,K − 1. Minimizers of
FK are then denoted as Riemannian splines or elastic curves.

To increase efficiency in computations we adapt the variable transformation pro-
posed in [2] by considering edge lengths, dihedral angles and triangle volumes as
primal variables. After optimizing FK in these variables we seek for an embedded
mesh that fits the prescribed quantities best in a least squares sense (reconstruc-
tion). The resulting optimization scheme is fast (as all reconstructions can be
done in parallel) and leads to smooth and visually appealing interpolation paths.
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How to discretise elastic curves in ∞-dimensional shape spaces?

Benedikt Wirth

(joint work with Martin Rumpf)

A classical method for interpolation of points ŷ1, ..., ŷN in R
n by a continuous

curve y : [0, 1] → Rn is cubic B-spline interpolation. This interpolation can also

be interpreted as the variational problem of minimising the energy
∫ 1

0
|ÿ(t)|2dt

among all interpolating curves, which is related to elastic bending energy. In
order to generalise the approach for shape animation, where the interpolation
points ŷ1, ..., ŷN represent keyframes, one can consider shape spaces which have
the structure of an (infinite-dimensional) Riemannian manifold (M, g). One then
seeks the interpolating curve y : [0, 1] → M which minimises

F [y] =

∫ 1

0

gy(t)(
D
∂t
ẏ(t), D

∂t
ẏ(t)) dt ,

where D
∂t
ẏ = ∇ẏ ẏ is the covariant derivative of the velocity ẏ along the curve y.

For this energy a simple finite difference type discretisation can be found, based
on the following motivation. In Rn, discretising a curve y by points yi = y(iτ)
for i = 0, . . . ,K and a time step τ = 1

K
, the squared second derivative can be

approximated by finite differences as

|ÿ|2 ≈ |yi−1−2yi+yi+1

τ2 |2 = 4K4|yi−1+yi+1

2 − yi|2 = 4K4dist2(yi, ỹi) ,
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where ỹi is the midpoint of yi−1 and yi+1 and can thus be expressed as

ỹi = argminydist
2(yi−1, y) + dist2(y, yi+1) .

This approach generalises to the Riemannian manifold M by interpreting dist as
the Riemannian distance (cf. also [1, 2]). In most shape manifolds, the squared
Riemannian distance is expensive to compute, but it can often be replaced by a
computationally cheap approximation [3]

W (x, y) = dist2(x, y) +O(dist3(x, y)) .

Thus we are led to the following discrete version of F , acting on a discrete or
discretised curve (y0, . . . , yK) ∈ MK according to

F[(y0, . . . , yK)] = 4K3
K−1
∑

i=1

W (yi, ỹi) for ỹi = argminyW (yi−1, y)+W (y, yi+1) .

Note that this discretisation approach is fully analogous to the discretisation of
the continuous path energy

E [y] =
∫ 1

0

gy(t)(ẏ(t), ẏ(t)) dt via E[(y0, . . . , yK)] = K
K
∑

i=1

W (yi−1, yi) ,

whose convergence properties are analysed in [4].
It can be shown that the discrete energy Γ-converges against the continuous one

as the number of discrete points K is increased (which almost immediately implies
that minimisers of the discrete energy converge against continuous minimisers,
justifying the above discretisation). In detail, we assume the same conditions on
(M, g) and W as in [4], i. e. there are c∗, C∗, C, ε ≥ 0 such that

• M ⊂ V ֒֒→ Y for Banach spaces V , Y , and M has smooth boundary,
• g is equivalent to the V -norm, c∗‖v‖2V ≤ gy(v, v) ≤ C∗‖v‖2V ,
• |gy(v, v) − gỹ(v, v)| ≤ β(‖y − ỹ‖Y )‖v‖2V for β ∈ C([0,∞)) with β(0) = 0,

• |W (y, ỹ)− dist2(y, ỹ)| ≤ Cdist3(y, ỹ) for all y, ỹ ∈ M with dist(y, ỹ) ≤ ε,
• W (y, ỹ) ≥ γ(dist(y, ỹ)) for some γ with limd→∞ γ(d) = ∞,
• W and g sufficiently smooth (see [4] for details),

and we define the interpolation operator η, η(y0, . . . , yK) : [0, 1] → M, as the
piecewise cubic polynomial curve with

η(y0, . . . , yK)(2i−1
2 τ) = yi−1+yi

2 , η̇(y0, . . . , yK)(2i−1
2 τ) = yi − yi−1 .

Then, introducing G = E + νF and G = E + νF for a fixed weighting parameter
ν ≥ 0, the following can be shown.

Lemma 1. Let y ∈W 2,2((0, 1);V ), then ηKy := η(y(0), y(τ), . . . , y(1))⇀ y weakly

in W 2,2((0, 1);V ) as K = 1
τ
→ ∞.

Lemma 2. Let y∈C∞([0, 1];V ), then ηKy→y strongly in W 2,2((0, 1);V ) as K→∞.

Lemma 3. If dK := maxi∈{1,...,K} |yi−yi−1| is small enough, then |G[η(y0, . . . , yK)]−
G[(y0, . . . , yK)]| ≤ f(‖η(y0, . . . , yK)‖W 2,2)/

√
K for some increasing function f .
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The proof of the last lemma essentially compares the Euler–Lagrange equa-
tions satisfied by ỹi with the differential equation defining the covariant derivative
D
∂t
ẏ(t), using multiple Taylor expansions of W and exploiting gy =W,11(y, y)(·, ·)

(the subscript denotes the second derivative with respect to the first argument).

This results in the relation D
∂t
η̇(y0, . . . , yK)(iτ) = 2 ỹi−yi

τ2 + err and thus in
∫ 1

0
gη(

D
∂t
η̇, D

∂t
η̇) dt =

∑K−1
i=1 gyi(2

ỹi−yi
τ2 , 2 ỹi−yi

τ2 )τ + err1 = 4K3W (ỹi, yi) + err2,
where the errors can be estimated in terms of K.

The above lemmas can finally be combined in a straightforward way to yield
the actual Γ-convergence result.

Theorem 2. We have Γ(w − W 2,2((0, 1);V )) − limK→∞ GK = G, where w −
W 2,2((0, 1);V ) refers to weak convergence in W 2,2((0, 1);V ) and where

GK [y] =

{

G[(y0, . . . , yK)] if y = η(y0, . . . , yK),

∞ else.
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Towards Robust Non-spectral Shape Signatures

Maks Ovsjanikov

(joint work with Mathieu Carriere, Umberto Castellani, Antonin Chambolle,
Etienne Corman, Simone Melzi, Steve Oudot)

Point-based shape signatures or descriptors are prevalent in a wide variety of
shape analysis and processing tasks including symmetry detection, shape match-
ing, shape segmentation, and shape retrieval among others. Although a large
number of signatures has been proposed throughout the years, one class, loosely
called spectral or diffusion-based (point) descriptors has been particularly promi-
nent (e.g. [1, 2, 3, 4] among others), especially in the field of isometric or near-
isometric shape analysis, characterized by shapes undergoing deformations that
approximately preserve geodesic distance. Diffusion-based descriptors are robust
in the presence of small non-isometric perturbations and under certain conditions
can be shown to characterize the intrinsic structure of the shape completely [2, 4].
At the same time, the information they provide about the structure of the shapes
in practice is limited and often does not allow to disambiguate points in large
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(especially flat) areas of the shapes. In this talk we describe two alternative ap-
proaches to build point signatures that provide complementary information to the
one present in existing descriptors. One of our approaches is based on considering
the topological structure of the family of geodesic balls centered at a point [5],
and another is obtained by considering discrete-time functional evolution, rather
the classical continuous time diffusion. In the former case, we can show how the
topology of the union of balls can be compactly characterized by a so-called persis-
tence diagram, and moreover how to construct a kernel on such diagrams, leading
to a signature with strong theoretical stability guarantees. We show how such
signatures can be computed and how they can be used within the standard Ma-
chine Learning algorithms such as e.g. Support Vector Machines for classifying
shapes and their parts, for which existing descriptors provide very little informa-
tion [5]. In the latter case, we show how discrete-time evolution can lead to a class
of descriptors that can be computed efficiently and that provide information that
is complementary to the one in existing point signatures [6]. Finally, we argue
that although existing point descriptors are able to capture information about the
structure of shapes in a robust and often informative way, there is still significant
room for improvement before the entire shape structure is captured, thus inviting
further work in this direction.
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Orbifold Tutte Embeddings

Yaron Lipman

(joint work with Noam Aigerman)

Injective parameterizations of surface meshes are vital for many applications in
computer graphics, geometry processing and related fields. Tutte embedding, and
its generalization to convex combination maps, are among the most popular ap-
proaches for computing parameterizations of surface meshes into the plane, as they
guarantee bijectivity, and their computation only requires solving a sparse linear
system. However, they are only applicable to disk-type and toric surface meshes.



Mathematical Imaging and Surface Processing 201

In this work we suggest a generalization of Tutte embedding to other surface
topologies - euclidean and hyperbolic orbifolds. The symmetric properties of the
orbifolds naturally extend the notion of convex combination maps while maintain-
ing their global injectivity property; the only required change from previous Tutte
embedding-type algorithms is the boundary conditions that ensure the image of
the map is the desired orbifold. The orbifold Tutte embedding covers in particular
the common, yet untreated case, of sphere-type surfaces.

In the euclidean case the orbifold Tutte embedding, similarly to the classic Tutte
embedding, only requires solving a sparse linear system for its computation. In case
the cotangent weights are used (and are positive), the orbifold Tutte embedding
globally minimizes the Dirichlet energy and is shown to approximate conformal
and four-point quasiconformal mappings.

In the hyperbolic case, the orbifold Tutte embedding allows incorporating arbi-
trary number of cone singularities and topologies. Although not linear anymore, it
can be shown that a critical point of the Dirichlet energy yields a globally bijective
mapping into the desired hyperbolic orbifold. A critical point of the Dirichlet en-
ergy can be computed using standard smooth optimization techniques. Lastly, we
demonstrate an application of the hyperbolic orbifold Tutte embedding to home-
omorphic collective matching of surface meshes.

A sub-Riemannian modular approach for diffeomorphic deformations

Alain Trouvé

(joint work with Barbara Gris, Stanley Durrlemann)

The structure of a collection of shapes can been revealed if one considers the
transformations morphing one shape into another as was pointed out beautifully
by D’Arcy Thompson in its Theory of Transformations (Growth of Forms, 1917).
This very idea has been developed into a versatile theoretical and computational
framework dealing with the construction of numerous shapes spaces via the action
of group of diffeomorphisms on the ambient space and the construction of various
metrics on shape spaces inherited from the choice of a right invariant distance on
the group of diffeomorphisms. However, this infinite dimensional nonparametric
geometrical framework is not addressing the more difficult pattern theoretic ques-
tion of the “understanding” of the relations between a collection of shapes through
the use of a descriptive language for deformations as pioneered by Ulf Grenander.
In this talk we describe an attempt to define a hierarchy of deformation modules
stable under a simple composition rule where each module is generating a global
deformation field according to a finite numbers of internal control parameters and
leading to a sub-Riemannian approach of diffeomorphic deformations.
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Accordion or Hallucination? Incompressibility of Origami Cylinders

Etienne Vouga

(joint work with Friedrich Bös, Omer Gottesman, Max Wardetzky)

Consider the experiment of crushing a soda can: axially compressing a thin cylin-
der. It has long been known that (i) such compression results in diamond-shaped
(Yoshimura) crease patterns [4] and (ii) crushing an ideal cylinder unavoidably in-
duces in-plane stress in the cylinder. However, various questions about the global
rigidity and flexibility of such thin-walled cylinders and their idealized counter-
parts, the rigid origami cylinders, still remain poorly understood despite the fact
that considerable effort has been put into the study of planar collapsible, or rigid-
foldable, origami. Furthermore, there exist numerous examples of origami cylinders
that appear to be truly rigidly foldable – deformable purely isometrically, without
any in-plane strain. But is this really so?

The famous bellows theorem [1] states that a flexible closed surface must main-
tain its enclosed volume during isometric deformation. Applied to the problem
of foldable origami cylinders, the bellows theorem rules out rigid foldability pro-
vided that the cylinder’s top and bottom do not alter shape when being deformed
(since then the cylinder could be sealed with end caps to form a closed surface).
Recently Yasuda and Yang [3], building on the work of Tachi [2], have shown that
it is possible to construct origami cylinders that are rigid-foldable; their pattern,
however, contains a distinctive vertical crease where the pattern doubles back on
itself. We show that the pattern obtained by Yasuda and Yang is very special in
its ability to compress origami cylinders isometrically (i.e., without introducing in-
plane strain): we show that fold patterns that do not include these vertical

fold lines are incompressible.
Our proof relies on three key insights. First, a candidate fold pattern can be

split into a stack of horizontal strips that contain no fold lines that intersect each
other in the strip’s interior. Compressibility of the entire fold pattern can then be
reduced to compressibility of each of the pattern’s strips. Secondly, we investigate
the problem of embedding a single strip as an origami cylinder with prescribed
height in 3D space. We show that such an embedding is not always possible for
every prescribed height. However, it is possible to embed any strip for every
prescribed height if one cuts the cylinder, i.e., does not require the strip to close
up into a cylinder. We prove that the number of embeddings of such open strips
with prescribed height is finite.

Finally, we measure for each embedding of an open strip the failure to close up
into a cylinder. This is done by evaluating the distance between corresponding
points on both sides of the cut. We define two gap functions measuring this
distance at the upper and lower boundary of the strip. Clearly, an embedding
closes up into a cylinder if and only if both gap functions vanish. We prove that
for any continuous vertical compression of an open strip, the upper and lower
gap functions are analytic functions of the embedded height. We show these
functions cannot be identically zero in the absence of vertical folds. Far from
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Figure 1. Top-left : a seemingly-compressible origami cylinder.
We prove that this compression is a hallucination: mathemat-
ically, the cylinder is rigid. The paper must non-isometrically
stretch to compress. Top-right : two origami cylinder patterns
and their isometric embeddings in R3. Every origami pattern can
be cut (orange line) into horizontal strips. Bottom: a strip can-
not always be isometrically embedded in R3, but cutting the strip
open always allows an essentially finite number of embeddings, at
the cost of a gap where the cut was made.

being isometrically compressible, a given fold pattern can thus be embedded at
only a discrete set of heights as an origami cylinder.
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On the Convergence of the iterates of the “FISTA” algorithm

Charles Dossal

(joint work with A. Chambolle)

Many problems in image processing, such as denoising, deconvolution or debluring
can be solved minimizing a structured convex function F defined on an Hilbert
space X , sum of two convex functions f and g where f may be a data fidelity term
and g a regularization term. If one of these functions, let us say f is differentiable
and its gradient is L−Lipschitz, and if the proximal map of g defined by

(1) proxγg(x) = argmin
z∈X

1

2
||z − x||2 + γg(z)

can be computed, the Forward-Backward algorithm provides a minimizing se-
quence of F : the sequence (xn)n≥0 defined by xn+1 = T (xn) where
T = proxγg ◦ (Id− γ∇f) with γ < 2

L
weakly converge to a minimizer of F . More-

over it exists C > 0 such that f(xn) − f(x∗) ≤ C
n

where x∗ is a minimizer of
f . In 2009, using the ideas of Nesterov, Beck and Teboulle proposed in [1] an
acceleration of the Forward-Backwared algorithm, called “FISTA”, based on an
over-relaxation of the sequence (xn)n≥0:

(2) yn+1 = xn +
tn − 1

tn+1
(xn − xn−1) and xn+1 = T (yn+1)

for a suitable choice of the sequence (tn)n≥0.

The new sequence (xn)n≥0 generated by this method satisfies f(xn)− f(x∗) ≤ C′

n2

but it is not known whether it converges to a minimiser. The talk presented
the proof of the main Theorem of [2], which asserts the weak convergence of the
sequence generated by an variant of “FISTA” ensuring the same convergence rate
as the original method. The proof use quasi-Fejér monotone sequences and relies
on classical analysis theorems, such as Opial’s Lemma. The essential tool is a new
summability property of the sequence F (xn)− F (x∗).
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Uniformization of elliptic and hyperelliptic curves via discrete

conformal equivalence.

Stefan Sechelmann

(joint work with Alexander I. Bobenko, Boris Springborn)

We introduce the concept of discrete conformal equivalence of triangle meshes.
Two combinatorially equivalent euclidean triangle meshes are conformally equiva-
lent if there exist scale factors associated to vertices such that corresponding edge
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lengths are equal up to multiplication with adjacent scale factors [3, 5, 1, 2]. Eu-
clidean edge lengths ℓij of a mesh are related to new euclidean (1), spherical (2),

or hyperbolic (3) edge length ℓ̃ij via the formulas

ℓ̃ij = µiµjℓij(1)

sin
( ℓ̃ij
2

)

= µiµjℓij(2)

sinh
( ℓ̃ij
2

)

= µiµjℓij .(3)

In particular a euclidean triangulation inscribed in the sphere or the hyperboloid
is conformally equivalent to the corresponding mesh with edges on the sphere or
the hyperboloid.

The uniformization problem: for all vertices i find a scale factor µi such that
∑

ijk∋i α
i
jk = 2π can be solved efficiently via a variational principle which leads to

a convex optimization problem in the euclidean and hyperbolic case.
We treat elliptic and hyperelliptic curves as their corresponding 2-sheeted

branched cover of the Riemann sphere Ĉ. An elliptic/hyperelliptic curve is given
as the 1-complex-dimensional manifold

(4)

{

(λ, µ) ∈ C
2 | µ2 =

2g+2
∏

i=1

(λ− λk)

}

with branch points λ1, . . . , λ2g+2 ∈ C. We state the following characterization of
hyperelliptic curves via the geometry of the corresponding uniformizing group [4].

Theorem 3. Let R be a closed hyperbolic surface of genus g. Then the following
statements are equivalent:

(i) R is hyperelliptic
(ii) R has a set of 2g simple closed geodesics which all intersect in one point

and which intersect in no other point.
(iii) R has a fundamental polygon that is a 4g-gon with opposite sides identified

and equal opposite angles.

We construct the fundamental polygons in question via uniformization of dis-
cretized versions of hyperelliptic curves, i.e., triangulated branched covers of the
sphere. The resulting geometry exhibits the expected behavior of symmetry and
simple closed geodesics.

We present examples where the corresponding fundamental domain is a regular
polygon, i.e., the curves

(5)

{

(λ, µ) ∈ C
2 | µ2 = λ

2g
∏

i=1

(λ− e
ikπ
g )

}

.

We give an example where an initially hyperelliptic surface given as a branched
cover of the Riemann sphere is distorted. We observe how the geometry of the
uniformizing group is distorted accordingly.
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Figure 1. Discrete uniformization of a hyperelliptic curve of
genus 2. The geometry of the uniformizing group respects the
structure given by the characterization of hyperelliptic curves
in Theorem 3. Fundamental polygon (shaded area) and closed
geodesics (dashed lines).

Elliptic curves are genus-1 surfaces given by Equation (4) for g = 1. They
can be mapped conformally onto a parallelogram in the euclidean plane. The
normalized parallelogram ratio τ , i.e., the modulus or conformal invariance of the
torus, can be used to measure the accuracy of the discretization. We find that the
convergence behavior of discretized elliptic curves is governed by the number of
vertices in the mesh if the mesh obeys a certain quality measure in terms of length
cross-ratios.

We briefly introduce the concept of discrete elliptic functions constructed by
the inverse procedure of the uniformization of elliptic curves. A flat triangulated
torus is mapped to a triangulated 2-sheeted branched cover of the sphere. A
similar construction can be obtained for hyperelliptic curves if the location of the
branch points on the surface is known, e.g., via the fixed points of an extrinsic
hyperelliptic involution.
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Spectral Gradient Fields Embedding

Alon Shtern

(joint work with Ron Kimmel)

A popular approach for finding the correspondence between two nonrigid shapes
is to embed their two-dimensional surfaces into some common Euclidean space,
defining the comparison task as a problem of rigid matching in that space. We
propose to extend this line of thought and introduce a novel spectral embedding,
which exploits gradient fields for point to point matching. With this new embed-
ding, a fully automatic system for finding the correspondence between shapes is
introduced. The method is demonstrated to accurately recover the natural maps
between nearly isometric surfaces and shown to achieve state-of-the-art results on
known shape matching benchmarks.
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On Approximations of the Curve Shortening and Mean Curvature

flows based on the DeTurck trick

Hans Fritz

(joint work with Charles M. Elliott)

We present novel numerical schemes for the computation of the curve shorten-
ing and mean curvature flows that are based on special reparametrizations. The
main idea is to use special solutions to the harmonic map heat flow in order
to reparametrize the equations of motion. This idea is widely known from the
Ricci flow as the DeTurck trick. The reparametrization leads to new systems of
PDEs for the reparametrized embedding. These new PDEs are called the curve
shortening-DeTurck and mean curvature-DeTurck flows. We introduce a variable
time scale for the harmonic map heat flow and apply a certain splitting of the
time derivative. Discretization then leads to families of numerical schemes for the
reparametrized flows. For the curve shortening flow this family unveils a surpris-
ing geometric connection between the numerical schemes in [2] and [3]. For the
mean curvature flow we obtain schemes with good mesh properties similar to those
in [1]. Error estimates for the semi-discrete scheme of the curve shortening flow
are proved by Schauder’s fixed point theorem. We present numerical experiments
for the curve shortening and mean curvature flows which show the behaviour of
the fully-discrete schemes with respect to the redistribution of mesh points. For
certain numerical examples, we can outperform the benchmark scheme of [1] with
respect to the mesh quality. We also discuss the generalization of our ideas to
other settings.



208 Oberwolfach Report 4/2016

References

[1] J. W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation
of evolving hypersurfaces in R3, J. Comput. Phys. 227 (2008), 4281–4307.

[2] J. W. Barrett, H. Garcke and R. Nürnberg, The Approximation of Planar Curve Evolu-
tions by Stable Fully Implicit Finite Element Schemes that Equidistribute, Numer. Methods
Partial Differential Equations 27 (2011), 1–30.

[3] K. Deckelnick and G. Dziuk, On the approximation of the curve shortening flow, Calculus

of Variations, Applications and Computations: Pont-à-Mousson, Pitman Research Notes in
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Connecting Linear Systems and Morphology

Joachim Weickert

(joint work with Martin Schmidt)

Mathematical morphology is the oldest theory for extracting shape information in
images and has found numerous applications in the last five decades. It is well-
known that there are striking analogies between linear shift-invariant systems and
morphological systems for image analysis [2, 3]. So far, however, the relations
between both system theories are mainly understood on a pure convolution /
erosion level, where morphology is expressed as linear system theory in the maxplus
algebra [1]. A formal connection on the level of differential or pseudodifferential
equations and their induced scale-spaces is still missing: Only a specific result for
the homogeneous diffusion scale-space is known so far [6].

The goal of this talk is to close this gap. A simple and fairly general framework
is presented that allows to translate a linear shift-invariant evolution equation into
its morphological counterpart and vice versa. It is based on a scale-space repre-
sentation by means of the symbol of its (pseudo)differential operator. Introducing
a novel transformation, the Cramér–Fourier transform, and applying results from
convex analysis puts us in a position to relate the symbol to the structuring func-
tion of a morphological scale-space of Hamilton–Jacobi type.

Our main result is as follows. We consider a linear shift-invariant (LSI) pseu-
dodifferential evolution of type

∂tu(x, t) = P (∇)u(x, t),

u(x, 0) = f(x),

where f denotes the initial image, and P is a pseudodifferential operator with
symbol p. We show that under suitable prerequisites its morphological counterpart
is given by the Hamilton–Jacobi evolution

∂tv(x, t) = p(∇v(x, t)),
v(x, 0) = f(x).

As an application we derive the morphological counterparts of various linear
shift-invariant scale-spaces, such as the Poisson scale-space, alpha-scale-spaces,
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summed alpha-scale-spaces, relativistic scale-spaces, and their anisotropic variants.
Our findings are illustrated by experiments.

This talk is based on a recent technical report [5] that generalises results pre-
sented at a conference [4].

References

[1] B. Burgeth and J. Weickert. An explanation for the logarithmic connection between linear

and morphological system theory. International Journal of Computer Vision, 64(2/3):157–
169, Sept. 2005.

[2] L. Dorst and R. van den Boomgaard. Morphological signal processing and the slope trans-
form. Signal Processing, 38:79–98, 1994.

[3] P. Maragos. Morphological systems: Slope transforms and max-min difference and differen-
tial equations. Signal Processing, 38(1):57–77, 1994.

[4] M. Schmidt and J. Weickert. The morphological equivalents of relativistic and alpha-scale-
spaces. In J. Aujol, M. Nikolova, and N. Papadakis, editors, Scale Space and Variational
Methods in Computer Vision, volume 9087 of Lecture Notes in Computer Science, pages
28–39. Springer, Berlin, 2015.

[5] M. Schmidt and J. Weickert. Morphological counterparts of linear shift-invariant scale-
spaces. Technical Report 365 (revised), Dept. of Mathematics, Saarland University,
Saarbrücken, Germany, Feb. 2016.

[6] R. van den Boomgaard. The morphological equivalent of the Gauss convolution. Nieuw
Archief Voor Wiskunde, 10(3):219–236, Nov. 1992.

Reporter: Albert R. Chern



210 Oberwolfach Report 4/2016

Participants

Dr. Pierre Alliez

INRIA Sophia Antipolis
B.P. 93
2004 Route des Lucioles
06902 Sophia Antipolis Cedex
FRANCE

Omri Azencot

Computer Science Department
TECHNION
Israel Institute of Technology
Haifa 32000
ISRAEL

Prof. Dr. Mirela Ben-Chen

Computer Science Department
TECHNION
Israel Institute of Technology
Haifa 32000
ISRAEL

Prof. Dr. David Bommes

Graduiertenschule AICES
RWTH Aachen
Schinkelstrasse 2
52062 Aachen
GERMANY

Dr. Kristian Bredies

Institut für Mathematik
Karl-Franzens-Universität Graz
Heinrichstrasse 36
8010 Graz
AUSTRIA

Dr. Martins Bruveris

Brunel University London
John Crank Building
Kingston Lane
Uxbridge Middlesex UB8 3PH
UNITED KINGDOM

Dr. Blanche Buet

Laboratoire de Maths d’Orsay
Université Paris Sud
Bat. 425
91405 Orsay Cedex
FRANCE

Prof. Dr. Antonin Chambolle
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Università di Pisa
Largo Bruno Pontecorvo, 5
56127 Pisa
ITALY

Prof. Dr. Edouard Oudet

Laboratoire Jean Kuntzmann
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