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Introduction by the Organisers

The ideas developed in operator space theory are sometimes described as ‘non-
commutative analysis’ since they go beyond what we think of as classical analysis;
they replace positive real numbers and their estimates by positive operators and
operator estimates. Similarly, noncommutative geometry goes beyond classical
geometry by replacing topological spaces by C∗-algebras and Riemannian metrics
by self-adjoint ‘Dirac-type’ operators.

In this workshop, we brought together experts from operator space theory and
noncommutative geometry to explore how their specific research fields could be
mutually beneficial. The motivation for organising the workshop was the appear-
ance of operator space techniques in the study of the C∗-algebras of real reductive
groups and in the construction of the Kasparov product in unbounded KK-theory.
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The first day of the meeting saw a program of four introductory lectures, the
purpose being to acquaint participants from both sides with the main ideas behind
these research fields. Gilles Pisier gave a lecture on the development of operator
space theory, giving both the historical context and explaining the underlying
philosophy. The day continued with a talk by David Blecher on operator modules
and their tensor products, then by Nigel Higson on the representation theory of real
reductive groups and an operator space point of view on the Plancherel theorem.
The last talk of the day was given by Adam Rennie, who provided an overview
of KK-theory, explaining how operator spaces appear in the construction of the
unbounded Kasparov product.

In the early evening of the Monday there was a general opening session, in
which each participant presented themselves and their research in a three minute
mini-talk. This part of the workshop had an informal and light character. Its main
purpose was to ‘break the ice’ and to acquaint the participants with one another’s
research areas.

For the remainder of the week we scheduled each day a total of three research
talks by participants. All talks took place before lunch, so as to have free after-
noons open for conducting mathematical discussion and exploring common inter-
ests. While some participants engaged in discussions in smaller groups, we also
organised more spontaneous events in the remaining afternoons, which were at-
tended by the majority of participants. We made a concerted effort to maintain a
coherent theme on each day.

Tuesday morning saw talks by Matthew Kennedy, Alex Bearden and Tatiana
Shulman. On Tuesday afternoon we held a Q&A-session on the finer aspects of
the operator space techniques in KK-theory that appeared in Rennie’s talk on
Monday.

Matthias Lesch opened the session on Wednesday, followed by talks from Tyrone
Crisp and Nigel Higson, who presented their recent work on representation theory
and the rôle of operator spaces therein. After lunch we held an informal discussion
session whose main focus was upon exploring specific examples important to the
respective fields. Attendance to this session was high, lasting until dinner time.

On Thursday morning, David Blecher and Martijn Caspers gave talks, followed
by Gunther Cornelissen, who gave an overview of his work on the use of operator
space theory in problems related to number theory. The afternoon was free and
those interested went on a walk to Oberwolfach Kirche. Friday had talks by Iain
Forsyth, Francesca Arici and Adam Rennie on topics related to noncommutative
geometry.
Acknowledgments: The MFO and the workshop organisers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
The organisers are especially grateful to the advisory scientific committee David
Blecher, Alan Carey, Nigel Higson and Gilles Pisier for their active engagement
prior to the workshop.
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Abstracts

Introduction to operator spaces

Gilles Pisier

The theory of “operator spaces” is usually described as starting with the 1987 PhD
thesis of Z.J. Ruan who gave an “abstract” characterisation of operator spaces.
Soon after, Blecher-Paulsen and Effros-Ruan independently discovered that this
characterisation allows for the introduction of a duality in the category of operator
spaces; they systematically developed the theory from that point on. The more
recent books [1] and [2] describe its developments in the last 30 years since then.

The notion of an operator space sits inbetween that of a Banach space and
that of a C∗-algebra. They could also be called “noncommutative Banach spaces”
(although the commutative case should also be included here) or else “quantum
Banach spaces” (although the term “quantum” seems already overused).

An operator space is simply a closed subspace E ⊂ B(H) of the space B(H)
of all bounded operators on a Hilbert space H . This definition is slightly dis-
concerting: every Banach space E admits (for a suitable H) an isometric copy

Ẽ ⊂ B(H), therefore all Banach spaces can appear as operator spaces. But the
novelty is in the morphisms (and the isomorphisms) which are not those of the
category of Banach spaces. Instead of bounded linear maps, we use as morphisms
the completely bounded (in short c.b.) maps, which appeared as a powerful tool
in the early 1980s but were already implicit in the pioneering work of Stinespring
(1955) and Arveson (1969) on completely positive maps.

The underlying idea is the following. Given two operator spaces

E1 ⊂ B(H1), E2 ⊂ B(H2),

we want morphisms which respect the realisations of the Banach spaces E1 and
E2 as operator spaces. For instance, if there exists a representation π : B(H1) →
B(H2) (i.e. we have π(xy∗) = π(x)π(y)∗ and π(1) = 1, whence ‖π‖ = 1) such
that π(E1) ⊂ E2, then the “restriction” π|E1

: E1 → E2 must clearly be accepted
among morphisms, whence a first type. Of course, the drawback is that this class
of morphisms does not form a vector space. Yet there is a second natural type of
morphism that can correct this defect: suppose we are given two bounded operators
a : H1 → H2 and b : H1 → H2 and consider the mapping Mab : B(H1) → B(H2)
given by Mab x = axb∗. Then once again, if Mab(E1) ⊂ E2, it is natural to accept
the restriction of Mab to E1 as a morphism.

Completely bounded maps can be described as compositions of a morphism of
the first type followed by one of the second type. We will denote by CB(E,F )
the set (now a vector space) of all such maps from E into F . It turns out it can
be equipped with a norm, the c.b.-norm, with which it becomes a Banach space
in the following way. Let E ⊂ B(H) an operator space; we denote by Mn(E) the
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space of n× n matrices with coefficients in E, equipped with the norm

∀a = (aij) ∈Mn(E),

‖a‖Mn(E) = sup

{(∑

i

‖
∑

j

aij hj‖
2

) 1

2

∣∣∣∣ hj ∈ H
∑

‖hj‖
2 ≤ 1

}
.(1)

In other words, we view the matrix a as acting on H ⊕ · · · ⊕H and we compute
its usual norm.

Let E ⊂ B(H) and F ⊂ B(K) be two operator spaces. A linear map u : E → F
is completely bounded in the above sense if and only if the mappings un : Mn(E) →
Mn(F ) defined by un((aij)) = u((aij)) are uniformly bounded in the usual sense
for the norm defined in (1). Moreover if we define ‖u‖cb = supn≥1 ‖un‖ then we
have

‖u‖cb = min ‖a‖‖b‖

where the infimum is over all π, a, b that yield a factorisation as above.
The completely positive maps correspond to the case when a = b. Thus if
F = B(K) then the polarisation identity shows that any c.b. map is a linear
combination of four completely positive ones.

In our presentation, we described Arveson’s version of the Hahn-Banach theo-
rem for c.b. maps, the minimal tensor product and various examples related to
the C∗-algebras (full or reduced) of the free group. We explained why, in cer-
tain cases, the structure of the operator space linearly spanned by the unitary
generators of a C∗-algebra and the unit carries important information about the
algebra itself, such as exactness, residual finite-dimensionality, or the coincidence
of certain C∗-tensor products.

References
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Operator modules and their tensor products; positivity in operator

algebras

David P. Blecher

This is an extended abstract describing my contribution to the workshop and my
experience and impressions of the workshop and the Institute.

Description of the two one-hour talks I gave: The first talk I gave was
titled Operator modules and their tensor products. It was an introductory one-
hour talk on the first day. The slides for the talk may be found at the ad-
dress http://www.math.uh.edu/∼dblecher/mfo1.pdf and material for this lec-
ture was taken mostly from our works [2, 3, 4].

It began with a survey of operator space tensor products, then discussed opera-
tor algebras and operator modules. We showed that the most important examples
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of modules over C∗-algebras are operator modules and focused on the operator
space view of C∗-modules. Then we surveyed the module Haagerup tensor prod-
uct and its properties, applying this to C∗-modules and their generalisation over
non-self-adjoint operator algebras. A main point is that the operator space/module
Haagerup tensor product approach is supposed to allow one to treat theories in-
volving C∗-modules much more like ring theory in pure algebra. For example
there is a ‘calculus’ of algebraic formulae involving the module Haagerup tensor
product that is very useful and mostly requires the operator space setting to even
make sense. Thus a sub-theme of the talk was to illustrate why operator spaces
are necessary.

These ideas are currently being used in the spectacular work of Mesland [12],
Kaad, Higson and their collaborators (see e.g. [11, 10]) and others in noncommu-
tative geometry (the works just cited are just examples, there are many more in
the current literature).

The second talk was on new research, entitled Recent advances in operator al-
gebras: positivity, approximate identities and conditional expectations. Its subtitle
was The quest for positivity in (non-self-adjoint) operator algebras.

With Charles Read we have introduced and studied a new notion of (real)
positivity in operator algebras, with an eye to extending/generalizing certain C∗-
algebraic results and theories to more general algebras [6, 7]. As motivation,
note that the completely real positive maps on C∗-algebras or operator systems
are precisely the completely positive maps in the usual sense [1]. However, with
real positivity one may develop a useful order theory for more general spaces and
algebras.

As another motivation note that operator algebras, unlike C∗-algebras, need
not have approximate identities and it is often important (for example in many of
the applications to noncommutative geometry mentioned in the last paragraph)
to know when they do. We showed that the existence of contractive approximate
identities is explainable precisely in terms of our new positivity. We have continued
this work together with Read,and also with Matthew Neal and Narutaka Ozawa
(see e.g. [8, 9]).

Simultaneously, we are developing applications, for example to noncommuta-
tive topology (e.g. noncommutative Urysohn and Tietze for general operator al-
gebras), noncommutative peak sets and related noncommutative function theory,
lifting problems, peak interpolation, comparison theory, conditional expectations,
approximate identities and to new relations between an operator algebra and the
C∗-algebra it generates (see the papers cited here and references therein). We
described some recent aspects of this work and then focused on some current
applications to conditional expectations ([5] and work in progress).

Experience and impressions of the workshop and the Institute: The
workshop I attended was a ‘courting’ of two fields or communities, namely operator
spaces and noncommutative geometry. The conference organisers are extremely
strong young mathematicians who in their own research are all doing very exciting
and totally new things in noncommutative geometry, using operator spaces deeply
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and creatively in their approach to KK-theory. They did a great job in bringing
together experts in the two areas. Their personal warmth and enthusiasm set a
very productive, encouraging and positive tone to the conference. Indeed, to some
extent it felt like a family; there was real family bonding going on throughout the
week. I personally felt sad to leave at the end–a feeling I have not felt for decades
at a conference.

The organisers were careful to ensure that the introductory talks were appro-
priate. For example, they discussed the contents of my introductory talk at length
and in great detail beforehand, which I really appreciated and found improved it
greatly. I had not met most of the participants before. Indeed, I had not been
exposed much to noncommutative geometry (NCG) before, so the conference was
a great learning experience both consciously and subconsciously. The speakers
were very careful to speak in a way that would be accessible to those from the
other subject. I noticed and was very appreciative that the speakers were able to
transmit a huge amount of the ‘culture’ of their subject; this is very hard to get
from books or papers.

Indeed, there were many fruitful discussions throughout the week on the topics
of the conference. The most immediately valuable came in the form of questions
that have arisen in people’s work, some of which I was able to solve during the time
of the conference. Potential collaborations were initiated: with Matthew Kennedy
on noncommutative Choquet theory; Tyrone Crisp and Nigel Higson, on questions
like the exactness of the module Haagerup tensor product over a C∗-algebra and on
when the flip map on a module Haagerup tensor product of commutative algebras
is completely bounded; and with Bram Mesland and Jens Kaad on involutive
operator algebras and modules. I am continuing to work on some of these questions
in the weeks after the conference with these new collaborators and am making
progress.

I also wanted to express my regard and good impressions of the beautiful Ober-
wolfach Institute (MFO), its fantastic staff and the particular workshop I attended.
My room was extremely comfortable and quiet; the food and service were excellent.
I also enjoyed the interaction with the other groups who were there, over meals and
elsewhere. On the Wednesday I went on the lovely hike to San Roman with an-
other group (not my own). I made several good contacts amongst this friendly and
courteous group and discussed various mathematical professional matters, which
was very helpful. Similar comments apply to our group hike on Thursday. It was
a great bonding time which initiated several mathematical discussions (for exam-
ple discussions with Jens Kaad and Simon Brain about, respectively, involutive
operator algebras,Tomita-Takesaki theory and noncommutative Lp-spaces).

Most of all I was struck by the extremely high level of mathematics and the
serious, rarified and stimulating atmosphere throughout the Institute, suffused
with the love of mathematics. My graduate student Alex Bearden came to the
conference too, which was a great experience for him both mathematically (he got
several good suggestions and leads) and in terms of making professional contacts.
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He obtained some financial help from the MFO, for which he was very grateful,
since he would not otherwise have been able to attend.
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C
∗-envelopes of operator systems

Matthew Kennedy

Arveson conjectured in [1] the existence of an operator system X of a unique min-
imal C∗-algebraic extension C∗

e(X), called the C∗-envelope of X . Hamana proved
this conjecture using the existence of the injective envelope of X . Specifically,
he realized that Arveson’s conjecture was equivalent to the statement that every
operator system has a minimal C∗-algebraic injective extension. Below we briefly
summarize these facts.

Recall that an operator system is a unital self-adjoint subspace of a C∗-algebra.
Let X and Y be operator systems and let φ : X → Y be a linear map. The map φ
is positive if φ(x) ≥ 0 whenever x ≥ 0. For n ≥ 1, define φn :Mn ⊗X →Mn ⊗ Y
by φn := idn ⊗φ. Then φ is completely positive if each φn is positive. Similarly,
φ is completely isometric if each φn is isometric.

Definition 1. An operator system I is injective if for every pair of operator sys-
tems X,Y with a unital completely isometric map ι : X → Y and a completely
positive map X → I, there is a completely positive map ψ : Y → I such that
φ = ψ ◦ ι.
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Consider Definition 1 where X ⊂ Y and the embedding ι is simply the inclusion
map. In this case, ψ is a completely positive extension of φ with the property that
its range is also a subset of I.

Definition 2. For an operator system X, an extension of X is an operator system
Y with a unital completely isometric map ι : X → Y . The extension (Y, ι) is
essential if for every operator system Z, a unital completely positive map φ : Y →
Z is completely isometric whenever the restriction φ|X is completely isometric.

Theorem 1 (Hamana [2]). Every operator system X has a unique minimal injec-
tive extension I(X) called the injective envelope of X. Moreover, I(X) is simul-
taneously the unique maximal essential extension of X. Here uniqueness is up to
isomorphism.

A result of Choi and Effros showed that every injective operator system is
isomorphic (as an operator system) to a C∗-algebra. In particular, this implies
that every operator system has a minimal C∗-algebraic injective extension.

Theorem 2 (Hamana [2]). Every operator system X has a unique (up to ∗-
isomorphism) minimal C∗-algebraic extension C∗

e(X) called the C∗-envelope of
X that is characterized by the property that for any C∗-algebra A and any uni-
tal completely isometric map φ : X → A, there is a surjective *-homomorphism
C∗(φ(X)) → C∗

e(X).

Proof. Let X be an operator system. Since every essential extension of X embeds
completely isometrically into the injective envelope, C∗

e(X) is precisely the C∗-
algebra generated by the embedding of X in its injective envelope. �
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Completely positive maps in zero-error quantum information theory

Tatiana Shulman

(joint work with M. Shirokov)

The effect of superactivation of quantum channel capacities is one of the main
recent discoveries in quantum information theory. It means that the particular
capacity of tensor product of two quantum channels may be positive despite the
same capacity of each of these channels being zero.

This effect was originally observed by G. Smith and J. Yard, who gave examples
of two channels Φ and Ψ with zero quantum capacity such that the channel Φ⊗Ψ
has positive quantum capacity.
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The same phenomenon for (one-shot and asymptotic) zero-error classical ca-
pacities was established by T. Cubbit, J. Chen and W. A. Harrow in [1]. Simul-
taneously and independently, R. Duan presented a simple example of two low-
dimensional channels demonstrating superactivation of one-shot zero-error classi-
cal capacities [5].

The extreme form of superactivation of zero-error capacities was observed by
T. Cubbit and G. Smith in [2], who proved existence of two channels Φ and Ψ
with zero (asymptotic) zero-error classical capacity such that the channel Φ ⊗ Ψ
has positive zero-error quantum capacity.

In this talk we presented explicit examples of low-dimensional quantum chan-
nels which demonstrate different forms of superactivation of one-shot zero-error
capacities, in particular the extreme form of superactivation mentioned above. Al-
though the existence of such channels in sufficiently high dimensions follows from
the results in [2], their explicit low-dimensional examples were unknown.

We also discussed relations between the superactivation of one-shot zero-error
capacities and the results on transitive and reflexive subspaces of operators [4, 6].
It is essential that these results can be used for analysis of superactivation effects
for infinite dimensional quantum channels.

The results concerning transitive and reflexive subspaces of operators directly
show that the superactivation of one-shot zero-error classical capacities does not
hold for two channels Φ and Ψ if one of them, say Φ, is of certain type and the
second one Ψ is arbitrary. The result in this direction was obtained recently by J.
Park and S. Lee in [7] for the class of qubit channels. Our approach [8] gives a very
simple proof of this result and makes it possible to prove the analogous assertion
for several other classes of channels.

I would like to mention the fruitful discussions on topics related to my talk that
arose during my stay at MFO.
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Hilbert C
∗-modules for Σ∗-algebras

Alex Bearden

A C∗-subalgebra of B(H) is called a Σ∗-algebra if it is closed under limits of
weak*-convergent sequences. These algebras were first studied by Davies in [4]
and a similar class of algebras was studied in detail by Pedersen in several papers
(see [7, Section 4.5] for results and more references).

Every von Neumann algebra is evidently a Σ∗-algebra. The basic commutative
example is Bor(X) ⊆ B(ℓ2(X)), the space of bounded Borel-measurable functions
on a locally compact Hausdorff space X with its canonical representation. For
a noncommutative example, take the ideal of operators in B(H) with separable
range, i.e. the Σ∗-algebra generated by the compact operators.

The goal of our work is to find a theory for modules over Σ∗-algebras analogous
to the well known C∗-module theory and the lesser known theory of W ∗-modules
(see [6] for the former and [3, Section 8.5] for the latter).

For motivation, recall that a C∗-module Y over a W ∗-algebra M is a called a
W ∗-module if it is self-dual, i.e. if every boundedM -module map Y →M is of the
form 〈y| · 〉 for some y ∈ Y. There are several beautiful characterisations of W ∗-
modules (e.g. they are the C∗-modules with preduals) but the characterisation
most useful for our purposes is the following: a C∗-module Y over a von Neumann
algebra M ⊆ B(H) is a W ∗-module if and only if the canonical copy of Y in
B(H,Y ⊗M H) is weak*-closed. Thus we arrive at our definition.

Definition 1. A C∗-module X over a Σ∗-algebra B ⊆ B(H) is a Σ∗-module if
its canonical copy in B(H,X⊗B H) is weak*-sequentially closed.

This definition allows all of the natural analogues of the basic C∗- and W ∗-
module results to come through. Here is a sample.

Theorem 1. If X is a Σ∗-module over B ⊆ B(H), then BB(X) ⊆ B(X⊗BH) is a
Σ∗-algebra, and X is a left Σ∗-module over the Σ∗-algebra in B(X⊗BH) generated
by KB(X).

Similarly, one may define Morita equivalence in a way analogous to that of
both C∗- and W ∗-Morita equivalence and obtain analogues of the basic results
from those theories.

In C∗-module theory, one often has to make additional countability assumptions
(e.g. separability of the algebra or the existence of a countable set of generators for
the module) to obtain interesting results. There are analogous assumptions one can
make in the context of Σ∗-algebras that yield interesting results. For example, if
{xn} is a countable set in a C∗-module X over a Σ∗-algebraB such that the weak*-
sequentially closed subspace of B(H,X ⊗B H) generated by {xnb : b ∈ B, n ∈ N}
contains X, then X is a Σ∗-module if and only if it is self-dual.

This concludes the material covered in my talk during the workshop. In relation
to this project, I would like to thank Jens Kaad for pointing out a missing piece
in the Σ∗-Morita equivalence theory, Tyrone Crisp for a helpful general question
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about Σ∗-algebras, and Matthew Kennedy for several helpful suggestions and for
leading me to the related work in Robert Hart’s thesis [5].

Beyond this project, the organised lectures in the workshop were quite infor-
mative and inspiring. I found it astonishing to learn the very different ways that
operator space theory has found applications in other areas of noncommutative
analysis. For me, the result of the organised portion of the workshop was to open
my eyes to the likelihood of further interactions of operator space theory with non-
commutative geometry. This realisation will certainly affect the direction of my
studies and hopefully lead to more research into these areas and their connections.

Another mathematical highlight of the week for me was discussing aspects of
noncommutative Choquet theory with Matthew Kennedy and my advisor David
Blecher. I am hopeful and excited for these discussions to continue and lead to
collaboration and future projects in this beautiful area of mathematics.

Overall, my week in Oberwolfach was inspiring and extremely helpful mathe-
matically. I would like to offer my sincere thanks to the organisers for inviting me
and allowing me to present my work, to the NSF and the University of Houston
mathematics department for providing me with the funds to make this trip possi-
ble, and to the administration and staff at the MFO for making the stay extremely
pleasant and conducive to mathematical thinking.
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The resolvent expansion for second order elliptic differential

multipliers

Matthias Lesch

(joint work with H. Moscovici)

In my talk I reported on some technical aspects of the recent preprint [8]. A talk
of the same title had already been given at the MFO conference no 1525, see [9] for
a detailed report. I will not duplicate [9] here. I will rather give a brief informal
summary of the content of my talk.
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Let (M, g0) be a closed oriented surface and denote by △ the Laplacian on
functions. Then for any smooth function f ∈ C∞(M) there is an asymptotic
expansion

Tr
(
f · e−t△

)
∼tց0

∞∑

j=0

a2j(f, P ) · t
j−dimM/2,

where a2j(f, P ) =
∫
M
f(x) · ã2j(x) d vol(x) and ã2j is a smooth function depending

only on the jets of the metric at x.
Under a conformal change of metric g = e−hg0, h smooth real valued, the

new Laplacian becomes △g = eh△g0 . Furthermore, one has the following explicit
formula for the second heat coefficient:

a2(f,△g) =
1

24π

∫

M

f
(
△g0h+ 2Kg0

)
d volg0 .

As a consequence one obtains the Polyakov formula for the zeta–regularized de-
terminant:

log det
ζ

△g = log det
ζ

△g0 +
1

24π

∫

M

h
(
△g0h+ 2Kg0

)
d volg0 + log vol gh + C.

Osgood, Phillips and Sarnak [10] used this to prove that for fixed volume within
a conformal class detζ △g takes its extremum at the constant curvature metric.

In [3], Connes and Moscovici extended the results outlined above to the con-
formal Laplacian on the noncommutative torus. Their method made heavy use of
symbolic computer calculations which were verified independently by Fathizadeh
and Khalkhali [6]. In the arXiv version of loc. cit. the printout of the expanded
version of the second heat coefficient, obtained by symbolic calculations, fills about
20 pages.

In our paper [8] we achieve the following modest improvements of the previous
results mentioned above.

We proved a complete asymptotic expansion of the heat respective resolvent
trace of Laplace type operators on vector bundles over the noncommutative torus
(Heisenberg modules). Moreover we computed the second heat coefficient with-
out computer assistance. The second coefficient contains significant geometric
information, as in the case of classical Riemann surfaces. As discovered in [3] the
noncommutativity of the symbol exhibited a completely new phenomenon, namely
the appearance of universal entire functions in the expression for the second heat
coefficients. This has no counterpart in the commutative situation. The main
technical device which we developed is a pseudodifferential calculus adapted to
twisted C∗-dynamical systems, extending the well known calculi due to Connes [2]
and Baaj [1].

In my talk I focused on the global pseudodifferential calculus on the ordinary
torus to motivate and explain the corresponding calculi on C∗-dynamical systems.
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[2] A. Connes, C∗–algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290

(1980), no. 13, A599–A604.
[3] A. Connes and H. Moscovici, Modular curvature for noncommutative two-tori, J. Amer.

Math. Soc. 27 (2014), no. 3, 639–684.

[4] A. Connes and M. A. Rieffel, Yang-Mills for noncommutative two-tori, Operator algebras
and mathematical physics (Iowa City, Iowa, 1985), Contemp. Math., vol. 62, Amer. Math.
Soc., Providence, RI, 1987, pp. 237–266.

[5] F. Fathizadeh and M. Khalkhali, The Gauss-Bonnet theorem for noncommutative two tori
with a general conformal structure, J. Noncommut. Geom. 6 (2012), no. 3, 457–480.

[6] F. Fathizadeh and M. Khalkhali, Scalar curvature for the noncommutative two torus, J.
Noncommut. Geom. 7 (2013), no. 4, 1145–1183, arXiv:1110.3511 [math.QA].

[7] M. Lesch, Divided Differences in Noncommutative Geometry: Rearrangement Lemma,
Functional Calculus and Expansional Formula, J. Noncommut. Geom. (2016), to appear,
arXiv:1405.0863v2 [math.OA].

[8] M. Lesch and H. Moscovici, Modular curvature and Morita equivalence, arXiv:1505.00964
[math.QA].

[9] M. Lesch, The resolvent expansion for second order elliptic differential multipliers, Ober-
wolfach Reports 12 (2015), no. 2, 1654–1657.

[10] B. Osgood, R. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Funct.
Anal. 80 (1988), no. 1, 148–211.

Frobenius reciprocity and the Haagerup tensor product

Tyrone Crisp

(joint work with P. Clare, N. Higson)

One of the cornerstones of the representation theory of finite groups is the Frobe-
nius reciprocity theorem [5], asserting that induction and restriction of represen-
tations are adjoint functors:

(1) HomG(Ind
G
H X,Y ) ∼= HomH(X,ResGH Y )

whenever Y is a representation of a group G, and X is a representation of a sub-
group H . In view of the many important applications of this relation – Frobenius’s
computation of the character table of the symmetric groups being a notable early
example – one would naturally like to extend (1) to more general representation-
theoretic settings.

One setting familiar to many at this meeting is that of unitary representations
of locally compact groups on Hilbert spaces. In this category the functors of
induction and restriction are not adjoint to one another and, indeed, neither of
these functors admits any adjoint at all. In this talk, I explained how enlarging
the category to include representations on more general operator spaces sheds new
light on this and other adjoint functor problems for representations of groups and
C∗-algebras.

To set the problem in a fairly general context, let A and B be C∗-algebras and
let F be a C∗-correspondence from A to B (i.e. a Banach A-B bimodule whose
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norm is given by a positive-definite B-valued inner product). Tensor product with
F , in the sense of Rieffel [7], defines a functor

(2) F⊗Rieffel
B : *Rep(B) −→ *Rep(A)

from the category of ∗-representations of B to the category of ∗-representations
of A. Unitary induction of group representations, for example, is a functor of
this kind. In contrast to purely algebraic settings, where tensor product functors
always have right adjoints, the functor (2) need not possess any adjoint.

Blecher [1] has shown that C∗-correspondences are examples of a more general
kind of bimodule, namely operator bimodules, and that the functor (2) extends to
a functor

(3) F⊗Haagerup
B : OpMod(B) −→ OpMod(A)

between the categories of operator modules over A and B, using the Haagerup
tensor product [6]. Now, the bimodule F has an operator-theoretic adjoint F ∗,
defined by representing F concretely as a space of Hilbert space operators and
applying the usual adjoint operation. Haagerup tensor product with this operator
B-A-bimodule gives a functor

(4) F ∗⊗Haagerup
A : OpMod(A) −→ OpMod(B)

which turns out, in many cases of interest, to be an adjoint functor in the cate-
gorical sense:

Theorem (cf. [4]). If the functor (3) has a left adjoint, then the left adjoint is
(4). This happens if and only if the action of A on F is by B-compact operators.

Returning to group representations:

Corollary. Let H be a closed subgroup of a locally compact group G. The unitary
induction functor

IndG
H : OpMod(C∗(H)) −→ OpMod(C∗(G))

admits a left adjoint if and only if G/H is compact.

In some cases, the operator bimodule F ∗ is itself a C∗-correspondence – i.e. its
operator space structure comes from an A-valued inner product. In this case, the
functor (4) restricts to a functor on ∗-representations

(5) F ∗⊗Rieffel
A : *Rep(A) −→ *Rep(B)

which is automatically adjoint to (2). This situation arises, for example, in the
representation theory of real reductive groups:

Theorem ([2], [3]). Let G be a real reductive group, and let L be a Levi subgroup
of G. The functor of parabolic induction, from the unitary representations of L
to the unitary representations of G, admits a two-sided adjoint.
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Operator spaces and the Plancherel formula

Nigel Higson

(joint work with P. Clare and T. Crisp)

Let G be a real reductive group and let P = LN be a parabolic subgroup (for
instance let G be SL(2,R), let N be the subgroup of unipotent upper triangu-
lar matrices and let L be the diagonal matrices). In his thesis [3], Pierre Clare
introduced a Hilbert C∗-correspondence from C∗

r (G) to C∗
r (L) that implements

parabolic induction from L to G and, in doing so, raised the possibility of ap-
proaching the representation theory of G, as pioneered by Harish-Chandra and
others, from the point of view of noncommutative geometry.

The first steps in this direction were taken by Pierre Clare, Tyrone Crisp and
myself in [5] and [6], where we developed an analogue of Bernstein’s second adjoint
theorem [1] for categories of tempered representations of real reductive groups.
One unexpected aspect of this work was the appearance of operator spaces in the
proofs. Operator spaces reappeared in further work with Crisp [7] and they arose
yet again in unpublished work with Clare [4]. It therefore seems worthwhile to
investigate potential roles for operator space theory in representation theory and
noncommutative geometry more closely.

In connection with this, a first question that one might ask is this: does L2(G)
carry a natural operator space structure, or matrix-normed space structure? The
abstract Plancherel theorem (see for example [11, Chapter 14]) suggests a positive
answer. The explicit Plancherel theorem [11, Chapter 13] of Harish-Chandra then
prompts another question: can this structure be related to geometric structure
(and, in this way, can we find a new route to the Plancherel formula)?

In my joint work with Clare and Crisp, the operator space adjoint bimodule
C∗

r (N\G) of Clare’s correspondence C∗
r (G/N) is given the structure of a Hilbert

C∗-correspondence from C∗
r (L) to C∗

r (G). This is done from a spectral point
of view (using representation theory), and it is shown that the correspondence
C∗

r (G/N) ⊗C∗

r (L) C
∗
r (N\G) is very closely related to L2(G). As an operator bi-

module, the tensor product agrees with the Haagerup tensor product [2], and so
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can be accessed geometrically (as opposed to representation-theoretically). We
hope that this might be a first step towards approaching the Plancherel formula
through noncommutative geometry.

An interesting K-theoretic variation on this arises in my work with Clare in
which, among other things, we investigate extensions of computations that Laf-
forgue made in [8] to connect Harish-Chandra’s parametrisation of the discrete se-
ries with the Baum-Connes isomorphism. In the course of calculating a Kasparov
product it becomes necessary to understand the Hilbert space C∗

r (N\G) ⊗C∗

r (G)

L2(G/K) and relatives, and to construct connections on these tensor products in
the sense of Skandalis [10]. Once again, the tensor product can be calculated quite
easily from the spectral point of view, but the construction of connections requires
a more direct, geometric perspective. For this purpose it is very helpful to note
again that the tensor product is isometric with a Haagerup operator space tensor
product, which is at least in principle computable in geometric terms.

Even though the context is rather different, there are interesting parallels be-
tween the above K-theory computation and the work of Mesland [9] and collabo-
rators on the construction of unbounded representatives of the Kasparov product,
where operator spaces also play an important role. This became clear during
the workshop. Other conversations during the workshop, especially with David
Blecher concerning exactness properties of the Haagerup tensor product and with
Adam Rennie on the work of Watatani et al. [12] were extremely helpful and have
already stimulated new work.
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Hecke von Neumann algebras, operator spaces and absence of Cartan

subalgebras

Martijn Caspers

Hecke algebras arise as q-deformations of Coxeter groups. As a ∗-algebra they
are generated by self-adjoint operators Ts, with s in some generating set S, that
satisfy a relation (TsTt)

m(s,t) = 1 as well as the Hecke relation

(Ts − q)(Ts + 1) = 0

for a deformation parameter q > 0. Hecke algebras were used by Jones in his
knot invariants and play important roles in representation theory. Taking a GNS-
representation, these algebras generate a so-called Hecke–von Neumann algebra,
sayMq. These were studied earlier on by Dymara [3] and later by Davis–Dymara–
Januszkiewicz–Okun [4]. In the right-angled case it was proved by Garncarek [5]
that Mq is a factor for a certain range of q ∈ [ρ, ρ−1] and otherwise it is a sum
of a factor and C. Outside the right-angled case this question is still open. We
take Garncarek’s result as a starting point and assume that Mq is the Hecke–von
Neumann algebra of a right-angled Coxeter system.

The aim of this talk was to explain how operator spaces can be used to study the
von Neumann algebra Mq. In particular we showed that these algebras are non-
injective, have the completely bounded approximation property (CBAP) and have
the property of being strongly solid algebras. Recall that a von Neumann algebra
M ⊆ B(H) is injective if it is the image of a conditional expectation B(H) → M.
It follows from Connes’ characterisation of injectivity that an injective II1-factor
M with trace τ has the property that for all xi ∈ M we have

‖
∑

i

xi ⊗ xi‖M⊗Mop ≥ τ(
∑

i

x∗i xi).

We can violate this inequality for Mq as it is possible to identify Σd, the linear
span of Tw with w a word with letters in S of length d, with a finite sum of
Haagerup tensor products of row and column Hilbert spaces

Hc ⊗h Hc ⊗h C⊗h Hr ⊗h Hr.

Details can be found in [2]. Such techniques have previously been found in different
contexts in the study of free Araki-Woods factors or q-Gaussian algebras; see for
instance [7].

Using explicit Stinespring decompositions for radial multipliers and word length
cut-downs, we showed that Mq has the CBAP. Using the Gromov boundary action
of the Coxeter group generated by S we showed that Mq is strongly solid.
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Recall that a Cartan subalgebra of a von Neumann algebra is a maximal Abelian
subalgebra whose normaliser generates the von Neumann algebra itself. Cartan
subalgebras typically arise in crossed products of free ergodic probability measure-
preserving actions of discrete groups on a probability measure space. Their study
is central in classification programs for von Neumann algebras (for instance by
Popa–Vaes). On the other hand the group von Neumann algebra of a free group
does not have a Cartan subalgebra, as was shown by Voiculescu. Moreover it is
strongly solid, as was shown by Ozawa–Popa. Later on, other examples of von
Neumann algebras with no Cartan subalgebra have been found, see for instance
[1] or [6]. The conclusion of our results above is that Mq also does not have a
Cartan subalgebra.

Acknowledgments. I thank the organisers of this workshop. Fruitful discussions,
especially with Tyrone Crisp, Matthew Kennedy and Gilles Pisier, helped me to
put some of the material above into a wider context and may lead to follow-up
projects.
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Reconstruction problems in number theory in the light of C∗-algebras

Gunther Cornelissen

(joint work with Xin Li, M. Marcolli, V. Karemaker)

A global field K (a number field or a field of functions of a curve over a finite
field) has several associated invariants; there is often a tension between how well-
understood or computable they are and the question as to whether or not they
uniquely determine K. Invariants that we understand, such as zeta functions or
Abelianised Galois groups, often do not determine K; invariants that do determine
K, such as the absolute Galois group, remain mysterious.

We have described a dynamical system IK y XK in which a monoid (the
monoid of ideals of the ring of integers or of effective divisors) acts on a topologi-
cal space XK derived from the Abelianised Galois group, through the reciprocity
map from class field theory. The main result [4, 8, 7] says that for two fields K and
L, isomorphism is the same as topological conjugacy (or orbit equivalence) of the
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two associated dynamical systems, which in turn is equivalent to the existence of a
group isomorphism of groups of Dirichlet characters for K and L under which the
L-series agree; this is equivalent to the existence of a (complex) algebra isomor-
phism of algebraic crossed product algebras C(XK)⋊algIK ∼= C(XL)⋊

algIL which
maps C(XK) to C(XL). The result has an analogue in Riemannian geometry,
where an isometry can be detected by agreement of parametrised zeta-functions
tr(a∆s) for smooth functions a and the Laplace-Beltrami-operator ∆ [2].

The result came out of operator algebra theory. More specifically, one considers
Bost-Connes-style “quantum statistical mechanical” (QSM-) systems [1] as intro-
duced by Ha and Paugam [11]. where one considers the reduced crossed product
C∗-algebra AK := C(XK) ⋊ IK with a one-parameter group of automorphisms
σK : R → Aut(AK) such that t ∈ R scales monoid-like elments n by N(n)it,
where N(·) is the absolute norm map. Here, one can show [5] that two fields K
and L have the same zeta function if and only if their corresponding systems are
isomorphic.

This leads to general questions about reconstructing dynamical systems from as-
sociated operator algebras. It seems that non-involutive algebras or QSM-systems
do the job. For example, if Z acts on a topological spaces X , then the dynam-
ics can be reconstructed from the non-involutive algebra C(X) ⋊ Z+ (using only
positive powers of a group generator). For groups with more generators acting on
connected spaces, one retrieves the action up to “piecewise conjugacy” [9]. (Ob-
serve: the systems above have countable rank acting on a totally disconnected
space.) As a second example, if G is a finite multi-graph with first Betti number
b ≥ 2, universal covering tree T and fundamental group Γ (a free group of rank b),
then Ab := C(∂T )⋊Γ depends only on b, but, based on Busemann functions, one
can construct a QSM-system for Ab which does determine the graph uniquely [6].

Let me formulate some questions:

(1) Is it possible to reconstruct the dynamics IK y XK from the non-involu-
tive Banach algebra which is the closure of C(XK) ⋊alg IK in its natural
representation as bounded operators on Hilbert space?

(2) Is it possible to prove this without requiring that the MASA C(XK) is
respected?

(3) Is it possible to reconstruct K from AK , without reference to σK?

For more general dynamical systems where a (commutative) monoid I acts on a
topological space X , the dynamics can sometimes be reconstructed from the non-
involutive crossed product algebra C(X)⋊ I+, almost never from its C∗-envelope
C∗

env(C(X)⋊ I+), but sometimes there exists a suitable QSM-structure σ so that
(C∗

env(C(X)⋊ I+), σ) does the job. This prompts very general questions for pairs
of unital operator spaces A1, A2:

(4) Do there exist suitable one-parameter groups of automorphisms σi : R →
Aut(C∗

env(Ai)) such that A1
∼= A2 ⇐⇒ (C∗

env(A1), σ1) ∼= (C∗
env(A2), σ2)?

(5) Do there exist suitable actions of R on Ai such that A1
∼= A2 ⇐⇒

C∗
env(A1)⋊R+

∼= C∗
env(A2)⋊R+.
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One may find non-isomorphic operator spaces with isomorphic C∗-envelopes, for
example various (non-involutive) limits of matrix algebras all of whose C∗-enve-
lopes are isomorphic to the CAR-algebra; certain non-involutive graph algebras
whose enveloping algebras are Cuntz-Krieger algebras, or the Toeplitz algebras Tq
for 0 < q < 1 with one generator. It would be interesting to answer question (4)
positively for some of these examples by constructing suitable σ.

Finally, the “Langlands philosophy” roughly says that certain Galois represen-
tations in GLn(C) should correspond to certain modules over the Hecke algebra
Hn(K), the convolution algebra of compactly supported smooth functions on the
K- or K-adelic points of GLn. Here a dichotomy is given by the observation of
Karemaker [10] that H2(K) is the same up to Morita equivalence for all local fields
K, whereas for two number fields K,L that are Galois over Q, an isomorphism of
Hecke algebras that respects the L1-norm is the same as a field isomorphism [3].

At the workshop, I had various discussion about an operator space problem that
came up in work on distances between spectral triples, allowing a sharpening of
our understanding of the theory. I also met some previously-unkown-to-me people
with whom I will discuss Question (4) in the future. Finally, the workshop allowed
me to increase my understanding of the interaction between representation theory
and operator spaces in relation to Hecke algebras.
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Factorisation of equivariant spectral triples

Iain Forsyth

(joint work with A. Rennie)

For details of the following see [4]. Suppose M is a manifold carrying a smooth,
free action by a compact Lie group G. Then the manifoldM has the structure of a
principal G-bundle over M/G and locally there is the decomposition of manifolds
M ∼= G × (M/G) as G-spaces. So the manifold M “factorises” into two parts
in some sense, with one part coming from the group G and one coming from the
quotient space M/G.

Suppose M carries some additional information, such as that encoded by an
equivariant Dirac operator over M . What would it mean for a Dirac operator to
factorise? We would like to be able to somehow recover such a Dirac operator
from the Dirac operator on G and a Dirac operator on M/G. Our goal is to
make precise what this factorisation is, as well as to generalise this idea to the
noncommutative setting. An equivariant Dirac operator over a compact manifold
M defines an equivariant spectral spectral triple for C(M), so equivariant spectral
triples are the natural objects of consideration.

Let A be a separable C∗-algebra carrying an action by a compact group G, and
let (A,H,D) be an equivariant spectral triple for A. This spectral triple defines a

class in the equivariant KK-group KKj
G(A,C), where j = 0 (respectively j=1) if

(A,H,D) is even (respectively odd) [1]. There is the Kasparov product [6]

KKdimG
G (A,AG)×KKj−dimG

G (AG,C) → KKj
G(A,C),

so we say that (A,H,D) factorises in KK-theory if we can construct unbounded
Kasparov modules x and y defining respective classes in KKdimG

G (A,AG) and

KKj−dimG
G (AG,C) such that [x]⊗̂AG [y] = [(A,H,D)] under the Kasparov prod-

uct. We can also say that (A,H,D) factorises as an unbounded cycle if it is
recovered as the unbounded Kasparov product of x and y [2, 5, 8, 9].

At this point we restrict to the case that G is Abelian. To construct the un-
bounded Kasparov module x we require that the action of G on A satisfies the
spectral subspace assumption, [3]. The spectral subspace assumption is satisfied
if the action is free. Provided the spectral subspace assumption is satisfied, x is
constructed using the spin Dirac operator on G.

To construct the cycle y, we require a representation of the Clifford algebra
CldimG on H satisfying some compatibility conditions, which accounts for the shift
in KK-dimension. In the case A = C(M), this representation can be constructed
using the fundamental vector fields of G.

To check whether factorisation inKK-theory has been achieved, we test whether
Kucerovsky’s criteria are satisfied [7]. In this case this reduces to checking a pos-
itivity condition. If D is an equivariant Dirac operator on a compact manifold
M defining an equivariant spectral triple (C∞(M), L2(E),D), then factorisation
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in KK-theory is always achieved. Factorisation of (C∞(M), L2(E),D) as an un-
bounded cycle is achieved up to bounded perturbation if the orbits of G are em-
bedded isometrically in M .

The generalisation of these results to the case that G is compact and non-
Abelian is a work in a progress but it is expected that the results will carry
through without substantial difficulty.
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Gysin sequences for principal circle bundles via Cuntz-Pimsner

algebras

Francesca Arici

(joint work with S. Brain, J. Kaad, G. Landi, A. Rennie)

My talk focused on the noncommutative topology of principal circle bundles as
described in [4] and later in [3].

Classically, to any principal circle bundle π : P → X one can associate the Gysin
exact sequence, a long exact sequence in (singular) cohomology which relates the
topology of the total space of the bundle to that of the base space. This exact
sequence admits a version in complex topological K-theory, in the form of a six-
term exact sequence. There, a central rôle is played by the Euler class of the line
bundle L associated to P via the regular representation.

In the dual C∗-algebraic picture, the noncommutative counterpart of a line
bundle is a self-Morita equivalence bimodule over a C∗-algebra A, that is a right
full Hilbert C∗-module EA together with an isomorphism of A with the compact
endomorphisms KA(E). Through a natural universal construction this data gives
rise to two C∗-algebras, the Toeplitz algebra TE and the (Cuntz-)Pimsner algebra
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OE , which depend only on the isomorphism class of the pair (E, φ). These algebras
fit into an extension by compact operators

(1) 0 // KA(FE) // TE
π

// OE
// 0 .

Pimsner algebras were introduced in [12] for the more general case of an injective
left action φ : A → LA(E) and later generalised to the non-injective case in [10].
They provide a unifying framework for a range of important C∗-algebras including
crossed products by the integers and Cuntz-Krieger algebras. Generalised crossed
products, a related notion obtained from bi-Hilbertian bimodules in the sense of
[6], were independently constructed in [1]. In the case of self-Morita equivalence
bimodules, the resulting algebra agrees with the Cuntz-Pimsner algebra.

The algebra OE can be thought of as the total space of a noncommutative
principal circle bundle with base space A associated to the noncommutative line
bundle E. This analogy is spelled out in [4], both in the commutative and in the
quantum case, together with the explicit connections with the theory of Z-graded
C∗-algebras.

With a Pimsner algebra come two natural six term exact sequences in KK-
theory, which relate the KK-theories of the Pimsner algebra OE with that of the
C∗-algebra A. These exact sequences are noncommutative analogues of the Gysin
sequence, which, as mentioned before, in the commutative case relates the K-
theories of the total space and of the base space of a circle bundle. The classical
cup product with the Euler class is replaced by a Kasparov product with the
identity minus the class of the self-Morita equivalence bimodule E.

An interesting class of examples arises from quantum lens spaces as circle bun-
dles over quantum projective space, both weighted and unweighted. These were
studied in [2, 4], leading to a computation of the K-theory andK-homology groups
of these spaces, together with the description of explicit representatives of classes.
Such computations naturally lead to the observation of a striking similarity be-
tween the Cuntz-Pimsner exact sequences and the exact sequences associated to
the mapping cone of the inclusion ι : A→ OE .

While it is known that every exact sequence of C∗-algebra is equivalent to a
mapping cone exact sequence [11], determining the explicit form of the isomor-
phism between the corresponding exact sequences in KK-theory is a highly non-
trivial task. In [5] we use techniques developed in [7] to lift the unbounded repre-
sentative of the extension (1) constructed in [8] to the class in KK(M(A,OE), A).
This isomorphism is described in the case of bi-Hilbertian bimodules of finite
Jones-Watatani index in the sense of [9] subject to some additional assumption.

Comments from Magnus Goffeng and Jens Kaad about triangulated categories
and KK-equivalences gave some deeper insight on the latter problem. The paper
[5] will be finalised after the workshop and its final form reflects the positive
influence that the meeting had on this line of research.
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The non-commutative geometry of Cuntz-Pimsner algebras

Adam Rennie

My talk described a range of recent results contained in the papers [1, 3, 6]. These
results all centre around constructing representatives of the defining extension
of a Cuntz-Pimsner algebra OE of suitable bimodules over an algebra A. This
extension is the short exact sequence

(1) 0 → K ⊗A→ TE → OE → 0,

where K is the compact operators and TE is the Toeplitz algebra associated to
the bimodule. The class of bimodules turns out to be determined via Watatani’s
notion of finite right index bi-Hilbertian bimodules, as presented in [4]. For such bi-
modules, subject to one additional assumption, a singular operator-valued weight
Φ : TE → A can be constructed which vanishes on K ⊗ A ⊂ TE . This allows the
construction of the Kasparov module in bounded form, as described in [6]. Impos-
ing a further technical condition allows a more refined description of the under-
lying C∗-module and facilitates the construction of an unbounded representative,
[3]. Finally, Arici and Rennie had both observed a striking similarity between
K-theory calculations using the defining exact sequence (1) and the K-theory of
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the mapping cone exact sequence

(2) 0 → SOE →M(A,OE) → A→ 0

for the inclusion ι : A →֒ OE . Using a lift of the representative of the defing
extension to the mapping cone, provided by [2], the relationship was made precise
and explicit in [1].

The workshop produced the following benefits for this line of research. Ques-
tions and comments from Magnus Goffeng and Jens Kaad sharpened some of the
results of [1]. Some open questions concerning the existence of KK-equivalences
and applications to K-homology exact sequences were particularly helpful.

Another striking point was that bi-Hilbertian bimodules of finite right Watatani
index also appeared in the work of Tyrone Crisp and Nigel Higson. It is very
likely that these two lines of research will benefit each other, if only in matters of
technique, but probably also in more conceptual ways.
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41296 Göteborg

SWEDEN

Prof. Dr. Nigel Higson

Department of Mathematics

Pennsylvania State University

University Park, PA 16802

UNITED STATES

Dr. Jens Kaad

IMAPP Mathematics

Radboud University Nijmegen

Huygens Bldg.

Heyendaalseweg 135

6525 AJ Nijmegen

NETHERLANDS

Prof. Dr. Matthew Kennedy

Department of Pure Mathematics

University of Waterloo

200 University Avenue West

Waterloo, Ont. N2L 3G1

CANADA



Mini-Workshop: Operator Spaces and Noncommutative Geometry 295

Prof. Dr. Matthias Lesch

Mathematisches Institut

Universität Bonn

Endenicher Allee 60

53115 Bonn

GERMANY

Dr. Bram Mesland

Institut für Analysis

Leibniz Universität Hannover

30167 Hannover

GERMANY

Prof. Dr. Ryszard Nest

Institut for Matematiske Fag

Kobenhavns Universitet

Universitetsparken 5

2100 Kobenhavn

DENMARK

Prof. Dr. Gilles Pisier
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