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Abstract. Koopman and Perron–Frobenius operators are linear operators
that encapsulate dynamics of nonlinear dynamical systems without loss of
information. This is accomplished by embedding the dynamics into a larger
infinite-dimensional space where the focus of study is shifted from trajectory
curves to measurement functions evaluated along trajectories and densities
of trajectories evolving in time. Operator-theoretic approach to dynamics
shares many features with an optimization technique: the Lasserre moment–
sums-of-squares (SOS) hierarchies, which was developed for numerically solv-
ing non-convex optimization problems with semialgebraic data. This tech-
nique embeds the optimization problem into a larger primal semidefinite pro-
gramming (SDP) problem consisting of measure optimization over the set

of globally optimal solutions, where measures are manipulated through their
truncated moment sequences. The dual SDP problem uses SOS representa-
tions to certify bounds on the global optimum. This workshop highlighted
the common threads between the operator-theoretic dynamical systems and
moment–SOS hierarchies in optimization and explored the future directions
where the synergy of the two techniques could yield results in fluid dynamics,
control theory, optimization, and spectral theory.

Mathematics Subject Classification (2010): 37M25, 90C22, 93B28.

Introduction by the Organisers

In a remarkable outline of mathematics and its future at the beginning of XX-
th century, Poincaré suggested that complicated dynamics governed by non-linear
partial differential equations can be reduced to and analyzed with the novel (at that
time) linear infinite dimensional spectral methods advocated by Hilbert and Fred-
holm, [23]. Prompted by the advance of spectral theory for unitary and unbounded
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self-adjoint operators, Poincaré’s vision became reality a good two decades later
by landmark contributions of Carleman [7], Koopman [11] and von Neumann [27].
Although originally aimed at ergodic theory, these linear operator reductions of
dynamical systems have far reaching implications and a much wider, unexpected
area of applicability. The modern high potential of computer simulations and
accumulation of big data have imposed a reconsideration and full appreciation
of Poincaré’s bold prophecy. It suffices to note the recent surge of interest for
Carleman linearization, spectral analysis of Koopman’s operator or Koopman-von
Neumann mechanics. From our narrow perspective, we witness today a prolif-
eration of results utilizing this very operator-theoretic approach in the study of
dynamical and control systems [5, 9, 12, 22]. The need of integration of appar-
ently disparate efforts into a comprehensive theory was the principal motivation
of the mini-workshop. The main focus was the interplay between ergodic theory,
operator theory, geometric dynamical systems and convex optimization methods.

Two classes of linear operators were of particular interest for the workshop:
Koopman-type operators [5] and Perron–Frobenius-type operators [8, 12]. Koop-
man (or composition) operator is a linear infinite-dimensional operator that can
be defined for any nonlinear dynamical system. The linear operator retains the
full information of the nonlinear state-space dynamics. The formalism based on
Koopman operator representation holds promise for extension of dynamical sys-
tems methods to systems in high-dimensional spaces as well as hybrid systems,
with a mix of smooth and discontinuous dynamics. Recently, Koopman operator
properties have been intensely studied, and applications pursued in fields as di-
verse as fluid mechanics and power grid dynamics. Perron–Frobenius operator is
also a linear operator, and, when defined in an appropriate function space, the
adjoint to the Koopman operator. Physically, the Perron–Frobenius operator is
useful in studying propagation of dynamical systems’ densities. It has shown major
promise for applications such as Lagrangian properties of fluid flows and control
and optimization of dynamical systems. Next we describe the main themes of the
workshop.

One of the topics that indicates how merging of techniques from optimization
and ergodic theory can be useful is the development of dedicated convex optimiza-
tion techniques for the numerical study of dynamical systems. More specifically,
we are interested in tailoring the moment-SOS hierarchies of semidefinite program-
ming (SDP) – originally developed for polynomial optimization – to obtain rele-
vant information on the support of invariant measures for dynamical systems with
semialgebraic dynamics and constraints. Invariant measures have been studied ex-
tensively in dynamical systems theory [12] and Markov decision processes [10] and
it is now recognized that key properties of a dynamical system can be assessed
by considering only a few moments of a measure transported along the system
flow [1]. The constructive proof of the ergodic partition theorem [4, 19] provides
characterization of ergodic sets, which are the smallest invariant sets that ensure
measurability of partition. Ergodic sets are the supports of ergodic measures,
that can in turn be studied via their moments, or their Fourier coefficients in the
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periodic case. Here too, the key idea consists in observing the action of invari-
ant measures on a countable number of observables, or test functions, see e.g. [5]
or [18]. Even more recently, invariant measures and weak Kolmogorov–Arnold–
Moser (KAM) theory have been used to study geometrical properties of the joint
spectral radius (JSR) of a set of linear operators [6, 21].

Hierarchies of finite-dimensional convex optimization problems have been intro-
duced in the early 2000s to solve numerically non-convex optimization problems
with semialgebraic data, with convergence guarantees [13]. The overall strategy
consists of building a family of semidefinite programming (SDP) problems [2] of
increasing size, with primal SDP problems relaxing the original polynomial opti-
mization problem in the space of truncated moments of a measure supported on the
globally optimal solutions, and dual SDP problems certifying bounds on the global
optimum with specific polynomial sum-of-squares (SOS) representations. In the
context of polynomial optimization, this is called the moment-SOS hierarchy [15]
or sometimes Lasserre’s hierarchy [22], and this relies on fundamental results of
convex algebraic geometry, see [24] or [3]. The approach has been extended in [14]
to optimal control problems on ordinary differential equations (ODEs), and more
recently, to construct families of semialgebraic approximations of the support of
measures transported along the flow of controlled ODEs [9].

Another topic of interest was the relationship between geometric properties of
dynamical systems and spectral properties of the associated operators. In fact, the
hallmark of the work on the operator-theoretic approach in the last two decades
is the linkage between geometrical properties of dynamical systems - whose study
has been advocated and strongly developed by Poincaré and followers - with the
geometrical properties of the level sets of Koopman eigenfunctions [16,17,19]. The
operator-theoretic approach has been shown capable of detecting objects of key
importance in geometric study, such as invariant sets, but doing so globally, as
opposed to locally as in the geometric approach. It also provides an opportunity
for study of high-dimensional evolution equations in terms of dynamical systems
concepts [20,25] via a spectral decomposition, and links with associated numerical
methods for such evolution equations [26].

Judging by the contents of the lively discussions during lectures or daily ad-
hoc seminars, sometimes extended to the late hours of evening, we believe that
the workshop was a success. It has offered a timely and unique opportunity of
collaboration and exchange of views among experts in operator theory, convex
optimization, dynamical systems, and systems control. The seeds of a new research
group, strongly bonded by convergent mathematical interests, were laid on this
occasion.

The abstracts below offer an accurate picture of the scientific themes touched
during the mini-workshop.

Didier Henrion
Igor Mezić

Mihai Putinar
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measures and LMI relaxations. SIAM J. Control Optim. 47(4):1643-1666, 2008.
[15] J. B. Lasserre. Moments, positive polynomials and their applications. Imperial College

Press, London, UK, 2010.
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Dissipative Dynamics, Spaces of Observables for the Associated Koopman
Operator, and the GLA Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Mihai Putinar (joint with Marko Budǐsić)
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Abstracts

Polynomial optimization for analysis of dynamical systems

Amir Ali Ahmadi

The miniworkshop on applied Koopmanism (MFO 1606b) brought together two
mathematical communities who both work on computational analysis of dynamical
systems but with very different sets of tools. The first camp studies the Koopman
operator as a way of linearizing nonlinear dynamical systems but at the price of
going to infinite dimensions. The second camp, roughly speaking, uses algebraic
techniques in optimization to analyze dynamical systems through automatic con-
struction of Lyapunov functions. As I belong to the second camp and was speaking
in an early tutorial session by D. Henrion and myself, I spent my time giving an
overview of sum of squares optimization, its connection to semidefinite program-
ming, and its utility in proving Lyapunov inequalities for control problems. In this
report, I give a brief summary of my talk.

At the core of most algebraic methods in optimization and control is the sim-
ple idea of optimizing over polynomials that take only nonnegative values, either
globally or on certain regions of the Euclidean space. A multivariate polynomial
p(x) := p(x1, . . . , xn) is said to be (globally) nonnegative if p(x) ≥ 0 for all x ∈ R

n.
As an example, consider the task of deciding whether the following polynomial in
3 variables and degree 4 is nonnegative:

(1)
p(x) = x41 − 6x31x2 + 2x31x3 + 6x21x

2
3 + 9x21x

2
2

−6x21x2x3 − 14x1x2x
2
3 + 4x1x

3
3

+5x43 − 7x22x
2
3 + 16x42.

This may seem like a daunting task (and indeed it is as testing for nonnegativity
is NP-hard), but suppose we could “somehow” come up with a decomposition of
the polynomial as a sum of squares:

(2)
p(x) = (x21 − 3x1x2 + x1x3 + 2x23)

2 + (x1x3 − x2x3)
2

+(4x22 − x23)
2.

Then, we have at our hands an explicit algebraic certificate of nonnegativity of p(x),
which can be easily checked (simply by multiplying the terms out). A polynomial p
is said to be a sum of squares (SOS), if it can be written as p(x) =

∑
q2i (x) for some

polynomials qi. What is appealing here is that the question of existence of an SOS
decomposition (i.e., the task of going from (1) to (2)) can be cast as a semidefinite
program (SDP) and be solved efficiently, e.g., by interior point methods. This is
because of following equivalence [1] which is in fact very straightforward to prove:
A polynomial p(x) of degree 2d is a sum of squares if and only if it can be written
as

p(x) = zT (x)Qz(x),

where z(x) is the vector of all monomials of degree d in x and Q is a positive
semidefinite matrix.
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The question of when nonnegative polynomials admit a decomposition as a sum
of squares is one of the central questions of real algebraic geometry, dating back to
the seminal work of Hilbert [2], [3], and an active area of research today. This ques-
tion is commonly faced when one attempts to prove guarantees for performance
of algebraic algorithms in optimization and control.

In short, sum of squares decomposition is a sufficient condition for polynomial
nonnegativity. It has become quite popular because of three reasons: (i) the
decomposition can be obtained by semidefinite programming, (ii) the proof of
nonnegativity is in form of an explicit certificate and is easily verifiable, and (iii)
there is strong empirical (and in some cases theoretical) evidence showing that
in relatively low dimensions and degrees, “most” nonnegative polynomials are
sums of squares. Contrary to the low-dimensional situation, it is known that in
very high dimensions (exceeding thousands of variables with the current bounds
and with the degree fixed to four) most nonnegative polynomials are not sums of
squares [4]. Fortunately, many problems of interest in control theory have fairly
low dimensions.

Let us now explain why establishing nonnegativity of polynomials is an impor-
tant problem. We briefly present two fundamental application areas: the polyno-
mial optimization problem, and Lyapunov analysis of control systems.

1.1. The polynomial optimization problem. The polynomial optimization
problem (POP) is currently a very active area of research in the optimization
community. It is the following problem:

(3)
minimize p(x)
subject to x ∈ K := {x ∈ Rn | gi(x) ≥ 0, hi(x) = 0},

where p, gi, and hi are multivariate polynomials. The special case of problem (3)
where the polynomials p, gi, hi all have degree one is of course linear programming,
which can be solved very efficiently. When the degree is larger than one, POP
contains as special case many important problems in operations research; e.g.,
all problems in the complexity class NP, such as MAXCUT, travelling salesman,
computation of Nash equilibria, scheduling problems, etc.

A set defined by a finite number of polynomial inequalities (such as the set
K in (3)) is called basic semialgebraic. By a straightforward reformulation of
problem (3), we observe that if we could optimize over the set of polynomials,
nonnegative on a basic semialgebraic set, then we could solve the POP problem to
global optimality. To see this, note that the optimal value of problem (3) is equal
to the optimal value of the following problem:

(4)
maximize γ
subject to p(x)− γ ≥ 0, ∀x ∈ K.

Here, we are trying to find the largest constant γ such that the polynomial p(x)−γ
is nonnegative on the set K; i.e., the largest lower bound on problem (3). For ease
of exposition, we only explained how a sum of squares decomposition provides a
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sufficient condition for polynomial nonnegativity globally. But there are straight-
forward generalizations for giving SOS certificates that ensure nonnegativity of a
polynomial on a basic semialgebraic set; see, e.g., [1]. All these generalizations are
amenable to semidefinite programming and commonly used to tackle the polyno-
mial optimization problem.

1.2. Lyapunov analysis of dynamical systems. Numerous fundamental prob-
lems in nonlinear dynamics and control, such as stability, invariance, robustness,
collision avoidance, controller synthesis, etc., can be turned by means of “Lyapunov
theorems” into problems about finding special functions (the Lyapunov functions)
that satisfy certain sign conditions. The task of constructing Lyapunov functions
has traditionally been one of the most fundamental and challenging tasks in con-
trol. In recent years, however, advances in convex programming and in particular
in the theory of semidefinite optimization have allowed for the search for Lyapunov
functions to become fully automated. As a simple example, if the task at hand is
to establish global asymptotic stability of the origin for a polynomial differential
equation ẋ = f(x), with f : Rn → Rn, f(0) = 0, then the Lyapunov inequalities
that a radially unbounded Lyapunov function V would need to satisfy are [5]:

(5)
V (x) > 0 ∀x 6= 0

V̇ (x) = 〈∇V (x), f(x)〉 < 0 ∀x 6= 0.

Here, V̇ denotes the time derivative of V along the trajectories of ẋ = f(x), ∇V (x)
is the gradient vector of V , and 〈., .〉 is the standard inner product in Rn. If we
parametrize V as an unknown polynomial function, then the Lyapunov inequalities
in (5) become polynomial positivity conditions. The standard SOS relaxation for
these inequalities would then be:

(6) V SOS and − V̇ = −〈∇V, f〉 SOS.

The search for a polynomial function V satisfying these two SOS constraints is a
semidefinite program, which, if feasible, would imply1 a solution to (5) and hence
a proof of global asymptotic stability through Lyapunov’s theorem.

In general, by restricting attention to polynomial Lyapunov functions one may
introduce some conservatism. For example, the origin of the following simple
differential equation

ẋ = −x+ xy
ẏ = −y.

is globally asymptotically stable and yet there is no polynomial Lyapunov function
(of any degree!) that can prove this fact [7].

1Here, we are assuming a strictly feasible solution to the SDP (which unless the SDP has an
empty interior will be automatically returned by the interior point solver). See the discussion
in [6, p. 41].
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Regularizing singular measures for maximum entropy reconstruction

Marko Budǐsić

(joint work with Mihai Putinar)

Moment problems are a class of inverse problems whose input data are moments:
integrals of a basis set against an unknown measure or a distribution. The goal is
to characterize the measure in some way, ranging from determining whether there
is a (unique) measure that could generate the input data, to reconstruction or
approximation of the measure itself.

In applied dynamical systems moment problems most commonly appear as at-
tempts to reconstruct distributions of points in orbits from average values of func-
tions evaluated along trajectories. Additionally, one can phrase the reconstruction
of the spectral measure of the Koopman operator as a moment problem. Distri-
butions that appear in both of these settings are often singularly continuous. As
a result, they are poorly approximated by classical reconstruction techniques such
as Padé approximations, adapted to point mass measures, or maximum entropy
approximations, adapted to absolutely-continuous measures, i.e., those that have
densities.

This presentation reported on the joint work with Mihai Putinar, described
in two papers [1, 2] and in Putinar’s contribution to this volume, all of which
contain further references. The work extends the reach of the maximum entropy
algorithms from absolutely-continuous measures to a general class of measures.
Figure 1 represents a schematic description of the algorithm, which starts at the
finite set of input moments τµ and follows the full arrows to the approximation of
the measure µ. The algorithm hinges on the use of the Riesz–Herglotz formula to
represent the generating function for the moment sequence as an integral against
an auxiliary measure φ, which is always absolutely continuous. The procedure
calculates a finite set of moments τφ from a finite set of τµ and therefore regularize
a moment sequence of a singular measure into a moment sequence that is suitable
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as an input to a maximum entropy reconstruction. Once maximum entropy is used
to approximate the density dφ, the regularization of measures supported on one-
dimensional spaces can be inverted on the density level using Plemelj–Sokhotski
formulas, resulting in a density dµ serving as the approximation to the original
unknown measure µ.

In future work we plan to apply this technique to reconstruction of spectral
measures of the Koopman operator that arises in chaotic dynamical systems. Ad-
ditionally, we plan to explore the possibilities for extending the approach to mea-
sures with supports in higher-dimensional spaces.

µ φ

µ̊(z) φ̊(z)

τµ(k) τφ(k)

∫
e−ikϑdµ

i-lim
z→
e iϑ −

e-lim
z→
e iϑ
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−
iϑ z
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−
1 dφ

Triangular moment transformation

Hilbert transform of density Hφ′

exp(Hφ′) sin(φ′)

Figure 1. Relations between measures µ and φ, their moments,
and their analytic representations. Full arrows represent steps
actually performed in our implementation, while dashed arrows
represent analytical justifications that are not numerically evalu-
ated.
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Nonarchimedean linear programming and mean payoff games

Stéphane Gaubert

(joint work with X. Allamigeon, P. Benchimol and M. Joswig)

Tropical linear programs are defined as the images by the valuation of classical
linear programs over nonarchimedean ordered fields, like the field of Puiseux se-
ries with real coefficients. We survey two recent applications of tropical linear
programming:
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• bounding the complexity of mean payoff games by the complexity of piv-
oting methods in linear programming [3, 4];

• bounding the total curvature of the central path [2].
Mean payoff games are a class of deterministic zero-sum two-player perfect

information games, in which each player wishes to maximize his average payoff
per time unit. The question of the existence of a polynomial-time algorithm to
solve these games was raised by Gurvich, Karzanov and Khachyan [8]. These
games are among the problems known to be in NP ∩ coNP but not known to be
in P.

We next relate this problem to an older question, raised by Dantzig at the time
of the invention of the simplex algorithm, in 1947: the existence of a polynomial
time pivoting rule.

We show that a positive answer to Dantzig’s problem, in a form satisfying a mild
restriction, would yield a positive answer to the problem of Gurvich, Karzanov and
Khachyan. Given a linear program

min c · x, Ax ≤ b, x ≥ 0

a rule is said to be combinatorial if it depends only on the signs of minors of the
matrix (A b

c 0 ).

Theorem 1. [4] A combinatorial pivoting rule for the simplex algorithm which
would run in strongly polynomial time on all non-degenerate linear programs over
R would allow one to solve mean payoff games in strongly polynomial time.

Recall that an algorithm is strongly polynomial if the number of arithmetic
operations is bounded polynomially by the number of integers appearing in the
instance, and if these arithmetic operations are applied to integers of bitsize poly-
nomially bounded in the size of the input.

This theorem has been extended in [1] and [6] to cover more general semialge-
braic pivoting rules.

The proof relies on the equivalence of mean payoff games problems and feasi-
bility problems in tropical linear programming, established in an earlier work with
Akian and Guterman [5].

A general unsolved question in linear programming is the existence of a strongly
polynomial algorithm (Smale Problem 9). Interior point methods lead only to poly-
nomial time estimates. These methods consists in following an algebraic curve: the
central path arising from the logarithmic barrier. In order to analyse the complex-
ity of central path following methods in a way independent of the technicalities of
the method, Deza, Terlaky and Zinchenko proposed in [7] a continuous analogue
of Hirsch’s conjecture, stating that the total curvature of the central path can be
bounded linearly in the number of constraints.

We show in [2] that the image by the valuation of the central path over a
nonarchimedean field may coincide with the image of a simplex path. This leads
to the following counter example to the latter conjecture.

Theorem 2 ( [2]). There is a linear program with 3r+2 inequalities in dimension
2r + 2 such that the total curvature of the primal-dual central path is Ω(2r).
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The Lasserre hierarchy for polynomial optimization and optimal

control

Didier Henrion

The objective of this tutorial talk was to introduce the Lasserre hierarchy for
optimizing polynomials and solutions of differential equations with polynomial
vector fields and semialgebraic constraints, based on the sketchy lecture notes [1].

The Lasserre hierarchy consists first in reformulating a non-convex problem
as a linear optimization problem in a space of probability measures. Then, this
infinite-dimensional linear optimization problem is solved approximately with a
hierarchy of finite-dimensional semidefinite programming problems (i.e. linear
optimization in the cone of non-negative quadratic forms) of increasing size, with
convergence guarantees, obtained by exploiting the duality between the cone of
positive polynomials and the cone of moments, see [4] for a nice introduction.

A parallel can be drawn with Koopman operator techniques which are also
global linearizations. A non-linear differential equation is reformulated as an
infinite-dimensional system of linear equations obtained by evaluating observables
along trajectories.

The end of tutorial talk focused on applications of the Lasserre hierarchy to
approximate the volume of a semialgebraic set [2] and to approximate the region
of attraction of a controlled polynomial differential equation [3].
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Semidefinite approximations of the polynomial abscissa

Roxana Hess

(joint work with Didier Henrion, Jean B. Lasserre, Tien Son Pham)

This talk reports on some results of our joint work [3]. Let Q ⊂ Rn be compact
and semi-algebraic. The abscissa of a univariate parameterized polynomial

p : s 7→ p(q, s) :=

m∑

k=0

pk(q)s
k ∈ R[s], s ∈ C, q ∈ Q, pk ∈ R[q]

with pm ≡ 1 is the maximal real part of its roots, i.e. the abscissa is the map
a : Q → R, q 7→ a(q) := maxk=1,...,m ℜ(sk(q)), where sk(q) denote the roots of
p(q, ·). It occurs, for example, when studying linear differential equations as a
measure of the decay or growth rate of the solution. Furthermore, in the space
of controller parameters one is interested in the zero sublevel set of the abscissa,
called the stability region [2].

The abscissa function is continuous, but in general not locally Lipschitz. This
low regularity causes numerical difficulties when designing and optimizing control
laws and therefore motivates upper and lower approximations of the abscissa by
less complex functions, in our case polynomials of fixed degree.

For the approximation from above we rewrite the set of zeros as the compact
semi-algebraic set Z := {(q, x, y) ∈ Rn × R2 : q ∈ Q, pℜ(q, x, y) = pℑ(q, x, y) = 0}
with x = ℜ(s), y = ℑ(s) and pℜ, pℑ ∈ R[q, x, y] such that p = pℜ + ipℑ. Then the
abscissa is the optimal solution v of the infinite dimensional linear programming
problem

inf
v∈C(Q)

∫

Q

v(q) dq s.t. v(q)− x ≥ 0 for all (q, x, y) ∈ Z,

where C(Q) denotes the space of continuous functions fromQ to R. In order to gain
an implementable optimization problem, we build a hierarchy of finite dimensional
semidefinite programming problems by replacing the nonnegativity constraint by
a specific certificate of positivity as described in [4]. The resulting degree d poly-
nomials vd are upper approximations of the abscissa function. Furthermore, our
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main result states that the sequence (vd)d of increasing degree d converges to the
abscissa a in L1 norm on Q.

Constructing a lower bound on the abscissa proved to be much more challeng-
ing. We propose two methods: first, a direct one using elementary symmetric
functions which is very neat and general, but involves many variables, and second,
an approach using the Gauß-Lucas theorem which is computationally faster, but
more complicated and subject to assumptions.
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Set oriented numerics for dynamical systems

Oliver Junge

Since the mid-nineties, set oriented numerical methods have been developed for
the study of the global behavior of dynamical systems [2–4]. These methods can be
used to, e.g., approximate different types of invariant sets or invariant manifolds
but they also allow to extract statistical information on the dynamical behavior
via the computation of invariant measures or almost invariant sets be means of
the discretization of the Frobenius-Perron or the Koopman operator.

The methods are based on a multilevel approach which allows to cover the set
of interest – e.g. an invariant manifold or the support of an invariant measure –
by collections of subsets of state space. Since these methods yield outer approxi-
mations and since numerically ill-conditioned long term simulations are avoided,
these methods are quite robust. They are similar in spirit to the so-called cell
mapping approach, see e.g. [9, 11]. However, a significant difference is that in the
cell mapping case the numerical effort depends crucially on the dimension of state
space whereas for the multilevel schemes the efficiency essentially depends on the
complexity of the underlying invariant set.

More recent developments in this area comprise

• the rigorous verification of complicated dynamics in infinite-dimensional
systems, [1]: The method combines set-oriented numerical tools for the
computation of invariant sets and isolating neighborhoods, the Conley
index theory, and analytic considerations. For example, the existence of
period points, connecting orbits, and chaotic dynamics in the Kot-Schaffer
growth-dispersal model for plants has been shown.
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• the reliable quantification of transport rates among different subsets of
phase space [5]: Here, the concept of almost invariant sets is combined
with invariant manifold and lobe dynamics techniques. The result is a new
computational technique for computing key dynamical features, including
almost invariant sets, resonance regions as well as transport rates and
bottlenecks between regions in dynamical systems. This methodology can
be applied to a variety of multibody problems, including those in molecular
modeling, chemical reaction rates and dynamical astronomy.

• the construction of value functions for optimal control problems [10]: The
method is based on a set oriented approach for the discretization of the
problem in combination with graph-theoretic techniques. The central idea
is that a discretization of phase space of the given problem leads to an (all
source, single destination) shortest path problem on a finite graph.

• the construction of global optimal controllers for perturbed and quantized
systems [6–8]: The method is based on a set-oriented discretization of
the state space in combination with a new algorithm for the computation
of shortest paths in weighted directed hypergraphs. Based on this, tech-
niques for the design of optimal controllers are developed which are based
on a piecewise constant approximation of the value function of the under-
lying optimal control problem. The approach is particularly well suited
for problems with highly irregular value function, complicated state con-
straints and naturally handles hybrid and quantized systems.
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Joint spectral characteristics of matrix semigroups

Raphaël Jungers

Introduction. We introduce the joint spectral characteristics, which are numeri-
cal quantities that describe the asymptotic behaviour of matrix semigroups. They
have found many applications, in particular in Systems and Control. The refer-
ences mentioned are incomplete, and we apologize for omitting many important
ones.

Consider a finite set of m matrices M ⊂ Rn×n. (Generalizations exist to com-
plex matrices, infinite sets, etc. our goal here is to keep the discussion straightfor-
ward and focus on the ideas.) In many applications (ranging through Engineer-
ing, pure Mathematics, Computer Science), one may be interested in properties
of products whose factors are from this finite set of matrices. That is, we are
interested in the semigroup

M∗ = {Ai1 . . . Ait : Ai ∈ M}.

Joint spectral characteristics are numerical quantities that give quantitative char-
acterizations of (different aspects of) the asymptotic behaviour of the semigroup
M∗. They have emerged quite independently during the second half of the 20th
century. These quantities have attracted a lot of attention, not only because
of their applications, but probably also because, despite the apparent simplic-
ity of their definition, they turn out to be extremely hard to compute. See for
instance [1, 13] for typical complexity results on the topic.

We here give an interpretation of these quantities in terms of linear discrete time
switching systems, which are systems evolving according to the following law:

(1) x(k + 1) = Aσk
x(k) σk ∈ {1, . . . ,m}.

Thus, these systems are not uniquely defined, but any ‘switching signal’ σ implies a
well defined law of evolution for the system. The joint spectral characteristics can
in fact be viewed as the rate of growth of the system corresponding to a particular
definition of the switching signal.

The joint spectral characteristics. The first one can easily be understood as a
robust control quantity: it represents the worst case rate of growth of a switching
system:

ρ∞(M) = lim
t→∞

max
A∈Mt

{||A||1/t},

where Mt denotes the set of all products of length t. It is commonly referred to
as the Joint Spectral Radius (JSR in short) of the set M. It has been introduced
by Rota and Strang [12]. See [7] for a monograph on the topic.

The second quantity, often called the p-radius, finds motivations in functional
analysis. See [6, 14] for early work on the topic, and [9] for a more computational
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approach. It considers the average norm of all the products of length t :

ρp(M) = lim
t→∞

[
1

mt

∑

A∈Mt

||A||p

]1/(pt)

.

The next quantity also considers the asymptotic evolution of some average norm
among all the products of length t, but, here, the geometric average is taken:

ρ̄(M) = lim
t→∞

[
∏

A∈Mt

||A||

]1/(tmt)

.

In control, we often call it the Lyapunov exponent of the system (1) referring
implicitely to a system where (equal) probabilities are appended to each matrix
in the set, so that at each time step, one matrix is sampled from the set according
to the probabilities. In this context, the Lyapunov exponent provides the rate of
growth of the switching system with probability one. See [10,11] for a more formal
statement of this result and recent computational approaches.

The joint spectral subradius is the direct counterpart of the JSR, where the
minimal rate of growth is tracked, instead of the maximal one:

ρ̌(M) = lim
t→∞

min
A∈Mt

{||A||1/t}.

It represents the minimal open-loop rate of growth that one can hope for System
(1). The earliest reference we know of this quantity is [5]. See [4] for a recent
computational approach of it.

Finally, the last quantity is also concerned with the smallest possible rate of
growth, but now it is assumed that at every step k, one can choose the matrix
depending on the present value of x(k). This last joint spectral quantity is thus
smaller than the previous one. It has only been introduced formally recently [8],
but the reader can find earlier implicit studies of it in [2, 3]. The stabilizability
radius is defined as follows:

ρ̃ = sup
x0∈Rd

inf{λ ∈ R : ∃σ(·), M > 0 s. t. ∀t ≥ 0, |x(t)| ≤Mλt|x0|, x(0) = x0}.

Further work. Can these quantities be generalized to infinite dimensional linear
operators, like the Koopman operator? Can some kind of unique Koopman oper-
ator be defined for a given switching system? Normally, the Koopman operator
is defined for a single, well defined, function from the state-space to itself, not for
a switching system. Yet, we want to try the following definition (for the sake of
clarity we restrict here our attention to sets with only two matrices): For a given

set of matrices M = {A0, A1}, consider the normalized set M̂ = M/ρ(M), and

suppose that M̂∗ is bounded (this happens generically, and the conditions for this
nondefectiveness are well understood, see [7]). Then, one can define the following
nonlinear operator:

(2) f(x) =

{
A0x, when supA∈M̂∗ ||Ax||2 = supA∈M̂∗ ||AA0x||2

A1x, otherwise.
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We can then define a Koopman operator corresponding to the function f. Is this
the ‘right’ definition for the Koopman operator of a switching system? Does it
bring interesting information on the system?
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Moment-sum-of-squares hierarchies for set approximation and optimal

control

Milan Korda

(joint work with D. Henrion, Colin N. Jones)

This talk revolved around the idea of lifting (or embedding) a difficult nonlin-
ear problem into a higher dimensional (typically infinite dimensional) space where
this problem becomes linear. This infinite-dimensional problem is then approxi-
mated by a tractable finite-dimensional problem whose solutions provide informa-
tion about the solutions to the original nonlinear problem.
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A particular instance that fits into this framework is the problem of analyzing
the nonlinear discrete-time recurrence

(1) xt+1 = f(xt).

This recurrence is equivalently described by the infinite-dimensional linear Koop-
man operator

v 7→ Kv := v ◦ f

for all v ∈ F , where F is a suitable space of observables. This infinite dimensional
operator is then approximated by a finite-dimensional one (i.e., by a matrix) whose
spectral properties approximate the spectral properties of K which in turn give
information on various properties of (1), e.g., on invariant sets, isochrons, ergodic
partition, etc.

Lifting for controlled ODEs. In this talk we focused in more detail on a dif-
ferent lift-plus-approximate procedure particularly suited for studying problems
involving the continuous-time controlled ODE

(2) ẋ(t) =

∫

U

f(x(t), u) dνt(u),

where νt ∈ P (U) is the so-called relaxed control, where P (U) is the space of
probability measures on a compact control set U ⊂ Rm. Importantly from an
application perspective, by Filippov-Ważewski theorem, the set of trajectories of
the non-relaxed ODE ẋ(t) = f(x(t), u(t)), u ∈ L∞([0, T ];U), is dense in the
supremum norm in the set of trajectories of (2).

The nonlinear ODE (2) is lifted into an infinite-dimensional space of nonnegative
measures, where it is equivalently described by the so-called Liouville equation
(3)∫

Rn

v(T, x) dµT (x) =

∫

Rn

v(0, x) dµ0(x)+

∫

[0,T ]×Rn×U

∂v

∂t
+∇v(t, x)·f(x, u) dµ(t, x, u),

which is required to hold for all v ∈ C1([0, T ]×R
b). The variables in this equation

are the nonnegative measures (µ0, µ, µT ) ∈ M(Rn)×M([0, T ]×Rn×U)×M(Rn).
This equation is a valid lifting only for the finite-time interval [0, T ]. For the

infinite-time interval [0,∞), a valid lifting reads

(4) β

∫

Rn×U

v(x) dµ(x, u) =

∫

Rn

v(x) dµ0(x) +

∫

Rn×U

∇v · f(x, u) dµ(x, u) ∀v ∈ C1
b (R

n)

with variables (µ0, µ) ∈ M(Rn)×M(Rn × U) and a given discount factor β > 0.
Equations (3) and (4) are linear equations in the cone of nonnegative mea-

sures and the solutions to these equations are in one-to-one correspondence with
trajectories of (2).
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Approximation. The set of solutions to (3) and (4) over the cone of nonnegative
measures is then approximated by a finite-dimensional set of linear equations over
either a super-cone or sub-cone of the cone of nonnegative measures. If the set of
solutions to the finite-dimensional approximation is larger than that of the original
equation, then we obtain a relaxation of the original problem. If the set of solutions
is smaller, then we obtain a tightening of the original problem.

Crucially for practical applications, these finite-dimensional approximations
need to tractable in the sense that it is easy to optimize over the set of solu-
tions of this finite-dimensional approximation. One such tractable approximation
can be obtained provided that the supports of the measures are constrained to a
basic semialgebraic set of the form

X = {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . , ng}

with gi ∈ R[x] and provided that the vector field f(x, u) has polynomial entries,
i.e., f ∈ R[x, u]n. One can then utilize the well-known Lasserre’s moment-sum-of-
squares hierarchy [5], which provides a sequence of super-cones to M(X) defined
by

Msup
d (X) = {y ∈ R(

n+d

d ) |Md(y) � 0, Md(y, gi) � 0,

where Md(·) and Md(·, ·) are the so-called moment and localizing matrices and �
denotes positive semidefiniteness. The cones Msup

d (X) are semidefinite-program-
ming representable for each d ≥ 0 and form a nested sequence of super-cones of
M(X) indexed by the relaxation order d, i.e.,

Msup
d (X) ⊃ Msup

d+1(X) ⊃ M(X).

Restricting the set of test functions in either (3) or (4) to the basis spanning the
set of all multivariate polynomials up to a degree d, we obtain a set of linear
equations and an inclusion to an SDP representable cone Msup

d (X) and hence a
set over which it is possible to optimize using semidefinite programming.

This lift-plus-approximate scheme can be used to derive a convex characteri-
zation of the region of attraction (i.e., the backward reachable set), the forward
reachable set (these are the results of [1]) and the maximum controlled invariant
set [2] whose finite-dimensional relaxation provide a converging sequence of outer
approximations to these sets. These are the results of [1] and [2]. A converging
sequence of inner approximations to the region of attraction in the uncontrolled
setting was proposed in [4]

If, on the other we try to tighten rather than relax the set of solutions to the
Liouville’s equation over the cone of nonnegative measures, the situation is not as
straightforward. A natural way to do this is to restrict the nonnegative measures
to measures having a polynomial density belonging to an SDP representable qua-
dratic module generated by gi’s. This tightening, however, is too restrictive as no
measures with polynomial densities solving (3) or (4) typically exist. One than
has to resort to a modified lifting which leads to a different form of Liouville’s
equation for which measures with polynomial densities are guaranteed to exist.



320 Oberwolfach Report 7/2016

This lifting was developed in [3] and used to design a hierarchy of semidefinite-
programming problems providing an asymptotically optimal sequence of rational
feedback controllers for infinite-horizon discounted optimal control problems.
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Pure Koopmanism

Kari Küster

Given a dynamical system ϕ : K → K, the idea of switching to a Koopman system
consists of going from the state space K to an observable space F ⊆ {f : K → C}
and from the dynamics ϕ to the Koopman operator Tϕ : F → F , f 7→ f ◦ ϕ.
In the following, we choose F := C(K) for K compact and ϕ continuous. The
linear system (C(K);Tϕ) preserves all information about the underlying dynamical
system (K;ϕ) in the following sense (see [1, Th. 4.13 and Cor. 4.15] or [3, Th.
2.3.5]).

Theorem 1. Two dynamical systems (K;ϕ) and (L;ψ) are isomorphic (i.e., there
is a homeomorphism θ : K → L such that ψ ◦ θ = θ ◦ ϕ) if and only if the
corresponding Koopman systems (C(K);Tϕ) and (C(L);Tψ) are isomorphic (i.e.
there is an C∗-algebra isomorphism T : C(L) → C(K) such that T ◦Tψ = Tϕ ◦T ).

This makes it promising to investigate in detail the interplay between a dynam-
ical system and its Koopman system and to find “translations” of properties of
the dynamical system to properties of the Koopman system and vice versa.

Before giving examples, we recall the basic properties of the spectrum σ(Tϕ) of
the Koopman operator.

Theorem 2. (i) The spectral radius is r(Tϕ) = 1, hence σ(Tϕ) is contained in
the unit disk D.

(ii) If Tϕ be bijective, then σ(Tϕ) is a cyclic closed subset of the unit circle T.
(iii) If Tϕ is not bijective, then σ(Tϕ) = {0} ∪M for M ⊆ T cyclic and closed or

σ(Tϕ) = D.

This reveals that there are not so many possibilities for the spectrum σ(Tϕ) and
we therefore turn our attention to the point spectrum Pσ(Tϕ).
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Theorem 3. (i) 1 ∈ Pσ(Tϕ).
(ii) If λ ∈ Pσ(Tϕ), then λ

k ∈ Pσ(Tϕ) for every k ∈ N0.
(iii) Pσ(Tϕ) is cyclic, that is, for every λ = |λ|eiϕλ ∈ Pσ(Tϕ) also |λ|eiϕλk ∈

Pσ(Tϕ) for all k ∈ Z.
(iv) If K is metrizable, then Pσ(Tϕ) ∩ T is countable.

We give an example how to obtain information on the Koopman system from
the dynamical system (see [3, Th 3.0.2]).

Example 4. Take X :=
(
Ck; ‖ · ‖

)
and a matrix A ∈ Ck×k with ‖A‖ ≤ 1 for the

induced operator norm. For the closed unit ball U in X , consider the restriction
A
∣∣
U
: U → U , and the associated Koopman operator TA : C(U) → C(U), f 7→

f ◦A
∣∣
U
. How is the spectrum of the corresponding Koopman operator determined

by the spectrum of the dynamics A?

Theorem 5. (see [3, Th. 3.1.5 and Th. 3.1.14])

(i) If σ(A) ⊆ T, then Pσ(TA) is the group 〈σ(A)〉 generated by σ(A).
(ii) If there is λ ∈ σ(A) such that 0 < |λ| < 1 and σ(A) ∩ T 6= ∅, then D◦ ∪

〈σ(A) ∩ T〉 ⊆ Pσ(TA).
(iii) If there is λ ∈ σ(A) such that 0 < |λ| < 1 and σ(A)∩T = ∅, then Pσ(TA) =

D◦ ∪ {1}.

Remark 6. Even though the system (U ;A
∣∣
U
) is itself linear it makes sense to

investigate its Koopman linearization, since (U ;A
∣∣
U
) can be isomorphic to non-

linear dynamical systems (K;ϕ), e.g., via linearized stability analysis. Since the
point spectrum is an isomorphy invariant, we have Pσ(TA) = Pσ(Tϕ).

Next we draw conclusions from the Koopman system to its underlying dynamics.

Example 7. Consider C(K)r := lin{f ∈ C(K) : Tϕf = λf for some λ ∈ T}.
Since C(K)r is a commutative C∗-subalgebra of C(K), there is some compact
space L such that C(K)r ∼= C(L) by the Gelfand-Naimark theorem. This yields
the following partitioning of the state space.

Theorem 8. (see [3, Th. 4.2.3])) There is a disjoint decomposition of the state

space as K =
⋃̇
s∈LKs, where Ks := ψ−1(s) for a surjective continuous mapping

ψ : K → L. Moreover, for all s ∈ L exists some ts ∈ L such that ϕ(Ks) ⊆ Kts

and Kts1
6= Kts2

for s1 6= s2.

For a root of unity contained in the spectrum of the Koopman operator, we
even obtain a cyclic behavior of the dynamics.

Theorem 9. (see [3, Th. 3.2.4]) If {1, ζk, ζ2k , ..., ζ
k−1
k } ⊆ Pσ(Tϕ) and dimfix (Tϕ)

= 1, then K is a union of k pairwise disjoint, open and closed sets K1, ...,Kk and
ϕ(K1) ⊆ K2, ϕ(K2) ⊆ K3, ..., ϕ(Kk) ⊆ K1.

In some cases, the space C(K)r plays a particular important role.
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Definition 10. If (K;ϕ) is a dynamical system with corresponding Koopman
system (F ;Tϕ) we say that there exists a Jacobs-de-Leeuw-Glicksberg splitting if
F = Fs ⊕Fr with stable part

Fs := {f ∈ F ∃ (ni)i∈N ⊆ N with density 1 such that T ni

ϕ f
i→∞
−→ 0 weakly}

and reversible part Fr := lin{f ∈ F : ∃λ ∈ T such that Tϕf = λf}.

Theorem 11. (see e.g. [2, Th. I.1.11 and Th. II.4.1]) If Tϕ has relatively weakly
compact orbits, then it has a Jacobs-de Leeuw-Glicksberg splitting.
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Approximation of the Koopman-Operator eigenvalues of Trajectories

Uwe Küster

For a linear or nonlinear operator ϕ : K −→ K on a compact topological space K,
the Koopman-operator or composition operator is given by Tϕ : F −→ F defined
by Tϕ (f) = f ◦ ϕ forall f ∈ F . The so-called observables F are a closed linear
space of continuous functions on the state space K with the necessary stability
property f ◦ ϕ ∈ F for all f ∈ F . F might be the complete space of continuous
functions on the state space on the one hand or might be generated by a single
element f together with the stability property on the other hand. If the space of
observables increases, the Koopman operator on the inclosing space induces the
Koopman operator on the enclosed space. The Koopman operator is bounded, has
a spectrum and as subset the point spectrum of the eigenvalues and eigenvectors
associated to these. The eigenvectors are elements of the observables F . Eigenpairs
on an enclosed space are eigenpairs on the inclosing space. This approach enables
applying the concept of the spectrum and the spectral decomposition of a linear
operator to the analysis of nonlinear operators. Koopman theory is embedded in
ergodic theory of functional analysis. For the whole theoretical framework see the
book [1] and as introduction for the subject [7]. Reasoning the significance of the
theory in physical and technical application fields is done in [2] and with regard to
computational fluid dynamics in [6] and [8]. The generality of the approach can
be understood as potential for gaining insight in the results of complex numerical
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simulations as done by discretized Navier-Stokes equations (by any discretization
technique) including turbulent flows or the even more complicated systems for
weather forecast. In the case of the discretized partial diffferential equations the
state space is a compact part of the space of discretized functions or parameters
describing these, for example coefficients in spectral elements. It turns out, that it
might be enough to analyse the values of the observables on the states belonging to
one or a few trajectories to describe some spectral properties of the operator. This
makes numerical analysis feasible. Important is an appropriate problem dependent
selection of observables. The numerically spectrum as an approximation of the
subset of the spectrum depends on this selection. If the selection allows, then
the product of two numerically given eigenvalues is also an eigenvalue, unless the
product of the eigenvector observables disappears. The generality of the Koopman
approach enables for the analysis of dynamical systems where the state space
K has no evident algebraic structure as for agent based systems, which can be
used to describe emergence in complex systems based on simple rules. Unlike the
state space the observables have an algebraic structure. The Koopman operator
gives a linear view on all these nonlinear phenomena by its simple construction
and reflects spectral attributes as eigenvalues and eigenvectors in the space of
observables on the state space which can be used to decompose the state space in
different domains as levelsets of eigenfunctions (see [2]). The operator has not to
be known explicitly but its effect of iterating on the trajectories starting at some
states seen by observables. We assume a finite set of observables given as a vector
h ∈ ⊕imax

i=1 F . Starting with the state q0 we get n iterated states qk = ϕkq0 with the
observed vectorial values gk = h (qk). Reordering these as a Hankel type matrix
G0:n−p, 0:p for some p ≤ n of lines, which are shifted element by element, we get




h (q0) (Tϕ h) (q0) . . .
(
T pϕ h

)
(q0)

h (q1) (Tϕ h) (q1) . . .
(
T pϕ h

)
(q1)

h (q2) (Tϕ h) (q2) . . .
(
T pϕ h

)
(q2)

...
h (qn−p) (Tϕ h) (qn−p) . . .

(
T pϕ h

)
(qn)



=




g0 g1 . . . g0+p
g1 g2 . . . g1+p
g2 g3 . . . g2+p

...
gn−p gn−p+1 . . . gn




(1)

If there exist a normalized vector c such that G0:n−p, 0:pc ≈ 0 we can extract

approximated values g̃0:n by applying a (n+1)×(n+1) projektion Q as G̃0:n, 0:0 =
G0:n, 0:0 (I −Q) from the right, which depends on c. This leads to a decomposition
of the approximating values

g̃k =

p∑

l=1

vl λ
k
l ∀ k = 0, · · · , n(2)

where the complex values λl are the roots of the polynom λ 7→ c (λ) of degree p
given by the cofficient vector c, assuming here that they are unique. The vectors
vl are the so-called Koopman modes and have the same dimension as h. This de-
composition is the result of the so called Dynamic modes Decomposition of [5] for
the special case p = n. Preferable is a smaller number of modes p. Multiplying the
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Hankelmatrix of the approximating values from the left by a polynom coefficient
vector wi of degree p− 1 having all λl as roots except for l = i, we select a single
element viwi (λi) meaning that we have a Koopman eigenvector of the approxi-
mating sequence composed linearly on the values of h along the trajectory. Any
linear combination of the components of the vector vi is a Koopman eigenvector
for the approximating eigenvalue λi. The vector c can be the vector minimizing

the Rayleigh quotient <H(q0) c, c>
<c,c> for the matrix H (q0) = GT0:n−p, 0:pG0:n−p, 0:p.

Summing up matrices of this type for some different initial states q0, which are
not part of the same trajectory, it will be possible to extent the approxiative
decomposition for identical values λl on these different trajectories as long as
G0:n−p, 0:pc ≈ 0. The error can be described explicitely. By this way ensembles of
trajectories can be analysed by a common decomposition.

The composition allows for the extraction of approximative Koopman eigenfunc-
tions on the set of trajectories and may help for a deeper numerical investigation
of the properties of the behaviour of the operator on these trajectories. The role in
sense of a physical interpretation of the eigenfunctions depends on the observables
and might be not self-evident. For eigenvalues λ of modulus 1 the norm of the
vector consisting on related Koopman eigenfunctions will remain constant, only
the complex phase of this vector will vary with the number of iterations. A special
well known case is the mean value along the trajectory, which is surely invariant
for physically relevant cases. This is shown by von Neumanns mean ergodic theo-
rem for measure preserving operators under very general conditions (see [1] page
136).

Understanding nonlinear operators as given by a variety of applications in differ-
ent areas by there Koopman operator counterpart gives the chance of recognizing
structures in the state space motivated by a spectral decomposition.
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An invitation to evolution semigroups and linearized Euler operator

Yuri Latushkin

We survey results on the evolution semigroups and Koopman operators, and
demonstrate how they can be applied to the study of the essential spectrum of
the operator obtained by linearizing the two- or three-dimensional Euler equa-
tions of ideal incompressible fluids about a steady state solution. The results on
the evolution semigroups are taken from [1], while the applications to the Euler
equations follow [2, 5–8].

The evolution semigroup is a semigroups of weighted Koopman operators of the
type (Etu)(x) = Bt(ϕ−tx)u(ϕ−tx) where u is a vector valued function on a set X
with values in a Banach space, ϕt is a flow on X , and Bt is a cocycle over the flow
with values in the set of bounded linear operators in the Banach space, that is,
Bt+s(x) = Bs(ϕtx)Bt(x), x ∈ X . A typical example of the evolution semigroup is
the push forward semigroupEtu = Dϕt◦u◦ϕ−t, whereDϕt is the differential of the
flow ϕt on the smooth manifold generated by the vector field u0; the infinitesimal
generator of this semigroup is the Lie bracket Lu = −(u0 · ∇)u+ (u · ∇)u0.

Of particular interest is the evolution semigroup associated with the bicharac-
teristic amplitude system (BAS) for the Euler equations linearized about its steady
state solution u0. The linearized equation is of the form ut = −(u0 · ∇)u − (u ·
∇)u0 − ∇p where p is the pressure while the BAS is a finite dimensional system
obtained by inserting into this equation a fast oscillating solution. Using some
abstract isomorphism theorems for operator algebras we prove that the Fredholm
spectrum of the propagator of the linearized Euler equation is related to the spec-
trum of the generator of the evolution semigroup associated with the BAS.

One of the main set of results on the evolution semigroups is the construction of
a sequence of norm one functions un such that the norm of (L− λ)un approaches
zero as n → ∞; the sequence is called the approximate eigenfunction and λ is
called the approximate eigenvalue of the generator L of the evolution semigroup.
This general construction is applied and modified for the case of the linearized two
dimensional Euler equations. It is then used to prove that the spectrum of the
linearized operator on a Sobolev space is a vertical band whose width is determined
by the top Lyapunov exponent of the flow generated by u0 and the smoothness of
the space.

Another set of results relates the spectral radius of the evolution operator E,
(Eu)(x) = B(ϕ−1x)u(ϕ−1x), x ∈ X , acting in the space of continuous Rd vector
valued functions on a compact X and induced by a homeomorphism ϕ and a
continuous function B with values in the set of (d× d) matrices. Fix any ergodic
ϕ-invariant measure ν ∈ Erg(ϕ) on X . By the (Oseledets) Multiplicative Ergodic

Theorem, for ν-almost all x ∈ X there exist Lyapunov exponents λ
(1)
ν ≥ · · · ≥ λ

(d)
ν

and a B-invariant decomposition Rd = ⊕dj=1W
(j)
ν (x) such that

λ(j)ν = lim
n→∞

1

n
log ‖Bn(x)w‖Rd for each w ∈ W (j)

ν (x), j = 1, . . . , d.

Here, Bn(x) = B(ϕn−1x) · . . . · B(ϕx)B(x) is the cocycle over ϕn, n = 1, 2, . . . .
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The following formula holds for the spectral radius of the operator E, see [1]
and references therein:

(1) log sprad(E) = lim
n→∞

max
x∈X

‖Bn(x)‖Rd×d = sup
ν∈Erg(ϕ)

λ(1)ν .

This formula can be applied in computing the joint spectral radius ρ(A1, . . . , Am)
of given (d× d) matrices A1, . . . , Am defined by the formula

ρ(A1, . . . , Am) = lim
n→∞

max
1≤j0,...,jn−1≤m

‖Aj0 · . . . ·Ajn−1
‖Rd×d .

Let (X,ϕ) be the two sided full topological Markov shift withm symbols, that is,X
is the set of all two sided sequences x = (jk)k∈Z with the entries jk ∈ {1, . . . ,m}
and ϕ : (jk) 7→ (jk+1). We define a (constant on the cylinders Cj = {x =
(jk)k∈Z : j0 = j} and continuous on X) function B with values in the set of
(d× d) matrices by the formula B(x) = Aj0 where x = (. . . , j−1, j0, j1, . . .). Then
Bn(x) = B(ϕn−1x) · . . . · B(x) depends only on the entries j0, . . . , jn−1 of the
sequence x and max1≤j0,...,jn−1≤m ‖Aj0 · . . . ·Ajn−1

‖Rd×d = maxx∈X ‖Bn(x)‖Rd×d .
Formula (1) now yields the following relation:

ρ(A1, . . . , Am) = sup
ν∈Erg(ϕ)

λ(1)ν .

For interesting connections of the Multiplicative Ergodic Theorem and joint spec-
tral radii one should consult the important papers by I. Morris [3, 4].
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Analysis of dissipative nonlinear systems using the eigenfunctions of

the Koopman operator

Alexandre Mauroy

(joint work with Igor Mezić)

In this talk we investigated the interplay between the spectral properties of a
semigroup of Koopman operators and the stability properties of the underlying
nonlinear system. This result provides a new approach to global stability analysis
which mirrors the spectral stability analysis of linear systems.

Koopman eigenvalues and global stability. We consider a nonlinear dynam-
ical system described by a flow ϕ : R+ × Rn → Rn. The semigroup of Koopman
operators U tϕ : F → F , t > 0, is defined by the composition U tϕf(x) = f ◦ ϕ(t, x)
for all observable f : Rn → C, f ∈ F [2].

A Koopman eigenfunction φλ ∈ F satisfies U tϕφλ = eλtφλ for all t > 0, and
λ ∈ C is the corresponding Koopman eigenvalue. If the flow is induced by a vector
field ẋ = F (x), with F ∈ C1, then the Koopman eigenfunction φλ ∈ F ⊆ C1

satisfies the eigenvalue equation F · ∇φλ = λφλ.
It can be shown that if the flow ϕ admits an attractor Γ ⊂ X ⊆ Rn, then the

eigenfunctions φλ ∈ F ⊆ C0(X), with ℜ{λ} < 0, satisfy φλ(x) = 0 for all x ∈ Γ.
Moreover, we have the following result.

Theorem 1. Suppose that X ⊂ Rn is a forward invariant compact set and that the
semigroup of Koopman operators U tϕ admits an eigenfunction φλ ∈ F ⊆ C0(X)
with the eigenvalue ℜ{λ} < 0. Then the zero level set

M0 = {x ∈ X |φλ(x) = 0}

is forward invariant under ϕ and globally asymptotically stable.

Hyperbolic attractors and numerical methods. Theorem 1 can be used to
obtain necessary and sufficient (spectral) conditions for global stability of hyper-
bolic attractors.

Theorem 2 (Hyperbolic fixed point). Let X ⊂ Rn be a connected, forward in-
variant, compact set and let ϕ be the flow induced by ẋ = F (x), with F ∈ C2(X).
Assume that there exists x∗ ∈ X such that F (x∗) = x∗ and so that ∂F/∂x(x∗)
has N distinct eigenvalues with strictly negative real part. Then, the fixed point
x∗ is globally asymptotically stable in X if and only if the semigroup of Koopman
operators U tϕ has n distinct eigenfunctions φλk

∈ C1(X), with ℜ{λk} < 0 and
∇φλk

(x∗) 6= 0. Moreover, the eigenvalues λk are the eigenvalues of ∂F/∂x(x∗).

For a given vector field, the Koopman eigenfunctions φλk
can be computed

on a finite basis of polynomials, as an approximate (finite-dimensional) solution

φ̃λk
of the eigenvalue equation F (x) · ∇φλ = λφλ. According to Theorem 2, one

can therefore obtain a systematic spectral method for global stability analysis of
nonlinear systems. Moreover, the approximate eigenfunctions provide candidate
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Lyapunov functions V(x) =
(∑n

k=1 |φ̃λk
(x)|p

)1/p

, p ≥ 1, that can be used to

estimate the basin of attraction of the fixed point.
Similar results and numerical methods can be derived in the case of stable

hyperbolic limit cycles. See [3] for more details.

Differential positivity. The last part of the talk briefly focused on differential
positivity [1]. This is a joint work with F. Forni and R. Sepulchre. Let X be
a smooth manifold and consider a flow ϕ : R+ × X → X and its differential
∂ϕ(t, x) : TxX → Tϕ(x)X , where TxX denotes the tangent space at x ∈ X . The flow
is differentially positive with respect to a cone field K(x) ⊂ TxX if ∂ϕ(t, x)K(x) ⊆
K(ϕ(t, x)) for all x ∈ X , t > 0.

In joint work with A. Sootla, it was shown in [5] that a flow is differentially
positive if and only if the associated semigroup of Koopman operators is positive
with respect to the cone of functions HK = {f ∈ C1(X ) | ∂f(x) ∈ K∗(x)}, where
K∗(x) is the dual cone field of K(x). The cone HK can be derived from Koopman
eigenfunctions φλk

, and the cone field K(x) can be obtained through the differ-
entials ∂φλk

. It follows that the property of differential positivity is expressed
in terms of properties of Koopman eigenfunctions, a result which yields converse
results for differential positivity. In particular, stable hyperbolic nodes and limit
cycles are always differentially positive in their basin of attraction [4].
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The Koopman Operator Formalism

Igor Mezić

Driven by success in operator-based framework in quantum theory, Bernard Koop-
man proposed in his 1931 paper [1] to treat classical mechanics in a similar way,
using the spectral properties of an operator associated with dynamical system
evolution. It was only in the 1990’s that potential for wider applications of the
operator-theoretic approach has been realized [2, 3]. In this century the trend of
applications of this approach has continued, as summarized in [4]. This is partially
due to the fact that strong connections have been made between the spectral prop-
erties of the Koopman operator for dissipative systems and the geometry of the
state space. In fact, the hallmark of the work on the operator-theoretic approach
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in the last two decades is the linkage between geometrical properties of dynamical
systems - whose study has been advocated and strongly developed by Poincaré and
followers - with the geometrical properties of the level sets of Koopman eigenfunc-
tions [3,5]. The operator-theoretic approach has been shown capable of detecting
objects of key importance in geometric study, such as invariant sets, but doing so
globally, as opposed to locally as in the geometric approach. It also provides an
opportunity for study of high-dimensional evolution equations in terms of dynam-
ical systems concepts [6,7] via a spectral decomposition, and links with associated
numerical methods for such evolution equations [8].

An idea that permeates applied mathematics, theoretical physics and engineer-
ing is that of the expansion of a possibly complicated function of space and time
into an infinite sum of simpler components, some of which are then retained -
using criteria for “goodness” of approximation - for a simplified description of
the problem. The most common such examples are the Taylor and Fourier expan-
sions (or decompositions), with the more recent addition of wavelet decompositions
that are inherently multi-scale, and the expansion into Proper Orthogonal Modes,
called the Proper Orthogonal Decomposition (POD). An alternative concept has
emerged in [6], in which the author studied the problem of decomposing evolution
of a field from the perspective of operator theory. The idea is to provide a decom-
position that is based on the projection onto eigenfunctions of a linear operator -
the Koopman, or composition operator - associated with the dynamical evolution
of the underlying field. The approach is not based on the concept of closeness of
the projection to the full dynamics of the field, but on decomposition into dynam-
ically relevant modes. In the case of time-evolving processes these modes have the
property that they represent “collective” properties of evolution, where a spatial
shape is multiplied by a time-dependent function of form exp(λt) for complex λ
which is an eigenvalue of the Koopman operator.1 In fact, the resulting decom-
position in the case of a linear system is the eigenvalue decomposition. Thus, by
applying it, we achieve continuity in treatment of linear and nonlinear dynamics.
The resulting modes - that were named Koopman modes in [7] - are not necessarily
orthogonal.

Consider a general dynamical system

(1) ż = F (z),

defined on a state-space A (i.e. z ∈ A), where z is a state (possibly infinite-
dimensional) and F is a possibly nonlinear operator. We assume that A and N
are compact metric spaces with the associated Borel σ-algebras B and C and mea-
sures ν and ρ.

Denote by St(z0) the position at time t of trajectory of (1) that starts at time 0
at point z0 (provided solutions exist and are unique), for some value of parameter
vector p.

1Time dependence can be more complicated in the case of degenerate eigenvalues.
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Denote by g an arbitrary observable from A to observation space O. For a fluid
dynamics problem, an example is vorticity at a point, in which case O = R3. The
value of this observable g that the system trajectory starting from z0 at time 0
sees at time t is
(2) g(t, z0) = g(S

t(z0)).

Note that the space of observables g is a vector space. The family of operators
U t, acting on the space of observables parametrized by time t is defined by

(3) U tg(z0) = g(S
t(z0)).

Thus, for a fixed time τ , U τ maps the vector-valued observable g(z0) to g(τ, z0).
We call the family of operators U t the Koopman family associated with the the
continuous-time system (1). Since the Koopman operator is linear, the approach
we undertake is spectral. The Koopman family has the following spectral expan-
sion for a large class of dynamical systems with an attractor supporting an ergodic
invariant measure (see [6] for the discrete time version):

(4) U tg(z,x) = g∗(x)+

k∑

j=1

exp(λjt)φj(z)sj(x)+

∫ ∞

−∞

exp(i2παt)dE(α)(g(z,x)),

where g∗(x) is the time-average at a “field” point x, φj(z) is the Koopman operator
eigenfunction associated with eigenvalue λj , sj(x) is the Koopman mode - the
projection of the observable g on the eigenspace associated with λj , and E is a
complex continuous spectral measure on L2, which in the last part of the expansion
represents contribution from continuous part of the spectrum [9]. The expansion
(4), discovered in the discrete-time case in [6], is known as the Koopman Mode
Decomposition (KMD) [7].
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Dissipative Dynamics, Spaces of Observables for the Associated

Koopman Operator, and the GLA Theorem

Ryan Mohr

(joint work with Igor Mezić)

Let (X,Φ) be a dynamical system with state spaceX and flowmap Φ : T×X → X ,
where T is a group or semigroup representing time, and let F be a vector space of
functions (the space of observables) whose domain is X . The Koopman operator
U tΦ : T ×F → F is defined by composition1 with an observable

(1) U tΦf(·) = f ◦Φ(t, ·), (t ∈ T, f ∈ F).

It is easy to see that this operator is linear which immediately puts the tools of
functional analysis at our disposal. Thus we can analyze a nonlinear problem with
linear tools.

Spectral properties of the Koopman operator – and its eigenfunctions in partic-
ular – play an important role in the analysis of nonlinear dynamical systems [1].
However, such spectral characteristics are highly dependent on the choice of the
space F . Immediately, a few important questions arise. What space of observables
F do we choose? To what extent are the properties of Φ encoded by the operator
UΦ? And, how do we construct eigenfunctions of the operator?

These questions are fully settled in the classical setting of measure preserving
automorphisms. If (X,B(X), µ,Φ) is a measure preserving dynamical system,
where Φ : X → X is an automorphism and µ is a finite Borel measure, the nicest
and most natural choice for F is the Hilbert space L2(X,µ). With this choice,
UΦ : L2(µ) → L2(µ) is unitary and by the Spectral Theorem has an integral
representation UΦ =

∫ π
−π

eitdEΦ(t). In this case, the properties of Φ are encoded
fully in the spectral properties of UΦ. Eigenfunctions can be constructed from
certain generalized Fourier averages. That the limit of a function

(2) f∗
ω = lim

n→∞
n−1

n−1∑

k=0

e−iωkUkΦf, (f ∈ L2(µ)),

is an element of the eigenspace ker(eiωI − UΦ) can be easily deduced from the
continuity of UΦ. The existence of this limit in the L2-norm for all f ∈ L2(µ)
is guaranteed by von Neumann’s [2] or Yosida’s [5] ergodic theorem. Pointwise
convergence (µ-a.e. in X) is due to Birkhoff’s ergodic theorem (ω = 0) [2] or
Wiener-Wintner’s ergodic theorem (ω 6= 0) [4].

For dissipative dynamics, the situation is not so clear cut. Consider the simplest
example of dissipative dynamics, x′ = λx, for x ∈ R and 0 < λ < 1. This system

1For this reason, the Koopman operator is also called a composition operator in some contexts



332 Oberwolfach Report 7/2016

has a trivial invariant measure, δ0, supported at the fixed point. Choosing the
space of observables as L2(δ0), as we would in the non-dissipative case, gives
no information off the attractor since L2(δ0) is isomorphic to C and we have no
eigenfunctions other than the constant ones. At the other end, we can choose
the space of observables to be C(K) for some compact K. It turns out that the
spectrum is too large; there are simple examples where the point spectrum is all of
the unit disc. So what is the appropriate space of observables so that the operator
is spectral and we have an analog of (2)?

We give a construction of a natural F for Φ : R
d → R

d having a simple2

hyperbolic attractor A and where Φ is at least C2. The space constructed is in
essence a generalization of the Hardy space H2(D) on the open unit disc. The
construction relies on four basic facts. (i) If φ and ψ are eigenfunctions of
the operator and φψ exists in F and is nonzero, then the product φψ is also
an eigenfunction of the operator [1]. (ii) Topological conjugacies preserve point
spectra. In particular, if Φ : X → X and Ψ : Y → Y are topologically conjugate
via the homeomorphism h : X → Y and ψ is an eigenfunction of UΨ, then φ = ψ◦h
is an eigenfunction of UΦ at the same eigenvalue [1]. (iii) The set of eigenfunctions
is closed under complex-conjugation. (iv) Under certain technical conditions, for
any positively invariant compact set K in the basin of attraction and containing
the attractor, there is a topologically conjugacy h : Rd → Rd between Φ and its
linearization A around the attractor which reduces to the identity on the attractor
[3].

Let K be a compact, Φ-positively-invariant set in the basin of attraction of
A which contains A. Let h : K → Rd be the topological conjugacy given by
(iv). We build F in the following steps. (1) Find the principle eigenfunctions for
the linearized system. The principle eigenfunctions are those associated with the
generatorA that are bounded on the compact, A-positively-invariant set L = h(K)
in the basin of attraction. (2) Generate a unital ∗-algebra from the principle
eigenfunctions. The elements of this have an expansion into eigenfunctions due to
(i) and (iii) above. (3) Represent the algebra as a set of polynomials over a normed
commutative ring and equip it with a polynomial norm. The indeterminants are
the coordinates determined by the off-attractor principle eigenfunctions. The ring
is the portion of the algebra that is only a function on the attractor. It is a subset
of L2(A, µ), where µ is a measure supported on the attractor A and preserved by
A (or equivalently Φ since the two systems are identical on A). An element of
the algebra has a polynomial representation as g(θ, Y ) =

∑
|n|≤N fn(θ)Y

n, where

fn is a bounded L2(µ) function on the attractor, θ represents the coordinates on
the attractor, and Y = Y1 · · ·Yd are the determinants defined by the off-attractor
principle eigenfunctions. The polynomial norm is

‖g‖ =
N∑

n=0

‖fn(·)‖
2
L2(A,µ) .

2Simple in this case means a fixed point or limit cycle in Rd.
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As pointed out above, if the attractor is a fixed point then L2(A, µ) = L2({0}, δ0) ∼=
C and the above polynomial norm reduces to the regular polynomial norm.
(4) Complete the algebra under this norm, denoted by G, and pullback to a space
of functions defined on K by using the topological conjugacy h. The space of
observables F has the form

F = G ◦ h := {g ◦ h : g ∈ G}.

The form that F takes depends on both the algebra and the form that the conju-
gacy takes.

As a simple example, take Φ(x) = Ax + G(x) : Rd → Rd, where A is a diago-

nalizable matrix, G = O(|x|2), and assume there is an asymptotically stable fixed

point at the origin. Let (λi, vi) be the eigenpairs of A and (λi, wi) the eigenpairs
of A∗ normalized such that 〈vi, wj〉 = δij . The principle eigenfunctions of UA are
φi(x) = 〈x,wi〉. The indeterminants are Yi = φi/ ‖φi‖L,∞. The completion of the
generated unital ∗-algebra under the polynomial norm is the space of powers series
with square summable coefficients

G =





∑

n∈Nd

0

cn(Y
n1

1 · · ·Y nd

d ) : n = (n1, . . . , nd) ∈ N
d
0,

∑

n∈Nd

0

|cn|
2
<∞






To get F for UΦ we use the topological conjugacy.
By the construction, the spectrum of UΦ : F → F is restricted to isolated

circles centered at the origin and additionally UΦ is a contraction. When this
is the case, we have an analog of (2) which constructs eigenfunctions from time
averages. Instead of a generalized Fourier average, we now have a generalized
Laplace average. For f ∈ F and λ in the point spectrum,

(3) f∗
λ = lim

n→∞
n−1

n−1∑

k=0

λ−kUk(I − PΩ(λ))f

is an element of ker(λI − UΦ), where PΩ(λ) : F → F is a projection onto
span{ker(ωI − UΦ) : |ω| > |λ|} which commutes with UΦ. The convergence is
with respect to the norm and the proof is an application of Yosida’s mean ergodic
theorem [5]. We sketch the argument. Since the spectrum is restricted to isolated
circles, the projection I − PΩ is bounded and deletes the part of the spectrum
of UΦ with modulus greater than |λ|. It follows that λ is a peripheral eigenvalue
of UΦ(I − PΩ(λ)), hence

{
(λ−1UΦ(I − PΩ(λ)))

k : k ∈ N
}

is a power bounded se-
quence. The mean ergodic theorem gives that the Cesàro means of the sequence
converge in the strong topology to a λ−1UΦ(I − PΩ(λ))-invariant function and,
furthermore, the limit satisfies f∗

λ = (I − PΩ(λ))f
∗
λ . As of yet, the question of

pointwise convergence remains open.
In practice, the polynomial norm on this space is hard to compute since we must

first know the topological conjugacy and then get the polynomial representation
of the observable. Are there other spaces that have easier to compute norms and
such that (3) holds?
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Moment problems, maximal entropy and exponential transforms

Mihai Putinar

(joint work with Marko Budǐsić)

Maximum entropy has emerged as a natural additional assumption in numerous
inverse problems, way beyond its original statistical mechanics motivation. The
philosophical essay by Jaynes [6] contains convincing arguments for adopting max
entropy on a large scale. However, the method has its limitations and pitfalls.
We address one of these in the present abstract, and propose a remedy, based on
recent joint work with M. Budǐsić [2].

We start by exploring a simple example in one variable. Assume n is a fixed
degree and (a, b) is an interval on the real line, bounded or not. Given the mo-
ment data γ0, ..., γn, we seek a positive measure µ carried by the closure of (a, b)
satisfying

γk =

∫
xkdµ(x), 0 ≤ k < n,

and

γn ≥

∫
xndµ.

The max entropy method proposes to search µ of the from dµ(x) = exp(λ0 +
λ1x+ ...+ λnx

n)dx, assuming that the integrability condition
∫ b

a

exp(λ0 + λ1x+ ...+ λnx
n)dx <∞

is assured by the choice of the parity and sign of the leading term.
The proper choice of the parameters λk is made by imposing the optimality

(maximum entropy) condition:

(1) sup

{
λ0γ0 + ...+ λnγn −

∫ b

a

exp(λ0 + λ1x+ ...+ λnx
n)dx

}

where the supremum is taken over all admissible (i.e. integrable exponential) tuples
λ = (λ0, ..., λn). Let us similarly denote γ = (γ0, ..., γn) and x = (1, x, x2, ..., xn).

The starting point of our discussion is the observation that the functional

L(λ) = λ · γ −

∫ b

a

exp[λ · x]dx,
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is concave. Moreover, the inner critical points of the functional are given by the
vanishing gradient conditions:

∂L

∂λj
= γj −

∫ b

a

xj exp[λ · x]dx = 0,

which solve in a very elegant way the original moment problem.
The difficulty related to the above method lies in the complicated structure of

the set of admissible multipliers. For instance, in the unbounded support case
[0,∞) it is possible that the extremal value in problem (1) is attained on the
boundary of the set of admissible multipliers. For a detailed analysis of the inherent
pathologies see [4, 8].

Even worse, starting with the moment data γ0 = 1, γj = 0, 1 ≤ j < p, derived
from Dirac mass at x = 0, we immediately see that no exponential weight density
will match them.

One way to avoid such complications is to rely on Markov’s original idea of treat-
ing moment problems with a bounded weight (the L-moment problems). Specifi-
cally, given a finite positive measure µ on the real line one proves with standard
techniques of function theory of a complex variable that there exists an integrable
function ξ : R −→ [0, 1], satisfying the asymptotic equivalence

1 +

∫

R

dµ(t)

t− z
∼ exp(

∫
ξ(s)ds

s− z
), ℑz > 0, z 7→ ∞,

see for details the appendix in the monograph [7].
Denote by γj(ν) the j-th power moment of a measure ν. Note that at the level

of generating functions of moments we obtain following Markov a formal series
relation

1−
n∑

k=0

γk(µ)

zk+1
≡ exp[−

n∑

j=0

γj(ξds)

zj+1
] mod(

1

zn+2
).

This gives universal polynomial dependence relations

γk(µ) = Pk(γ0(ξds), ..., γk(ξds)),

and

γk(ξds) = Qk((γ0(µ), ..., γk(µ)).

Our recent works [2] aim at generalizing this classical exponential transform to
several variables, with emphasis on solving truncated moment problems of singular
measures, where the max entropy method fails. Quite specifically, let Γ ⊂ Rd be
a closed, solid, acute convex cone and µ be a finite positive measure supported by
its polar cone Γ∗. We consider the analytic extension of the Fantappiè transform:

Φ(−z, y) =

∫

Γ∗

dµ(x)

−z + x · y
, y ∈ Γ, ℑz > 0.

Note the positivity property

1

−z + x · y
−

1

−z + x · y
=

z − z

|z − x · y|2
,
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that is

(y ∈ Γ, ℑz > 0) ⇒ ℑΦ(−z, y) > 0.

By adapting a classical observation of Verblunsky [11] we obtain the following
multiplicative representation of the Fantappiè transform.

Theorem. Let µ be a finite positive measure supported on the cone Γ∗. For ev-
ery y ∈ Γ there exists a phase function ξy ∈ L1([0,∞), dt), 0 ≤ ξy ≤ 1, measurably
depending on y, such that

(2) 1 +

∫

Γ

dµ(x)

x · y − z
= exp

∫ ∞

0

ξy(t)dt

t− z
, ℑz > 0.

Moreover, if
∫
Γ∗

|x|ndµ(x) < ∞ for some n ∈ N, then
∫∞

0 tnξy(t)dt < ∞ for all
y ∈ Γ.

By combining this observation with the explicit form of the reproducing kernel
in the Hardy space of the tube domain over Γ, we obtain a versatile technique
of solving the original moment sequence via regularization and the max entropy
method. Once the phase function ξ is well approximated, Radon transform in-
version, or simply Hilbert transform inversion in one variable, contribute to the
recovery of the original measure µ.

The two articles [2] contain numerous illustrations of the method, theoretical
in nD, and numerical in 1D.
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Connections between Koopman and Dynamic Mode Decomposition

Clarence W. Rowley

(joint work with Matthew O. Williams and Ioannis G. Kevrekidis)

We present a method for determining finite-dimensional approximations of the
Koopman operator, directly from data, without the need for a model of the under-
lying dynamical system. We show that dynamic mode decomposition, a technique
developed in the fluid mechanics community, may be used to find such approxi-
mations, and we illustrate the approach with a number of examples.

Dynamic mode decomposition (DMD) is a method for approximating dynamics
from data. In the original formulation, introduced in [2, 3], one collects snapshots
of measurements y1, . . . ,yM+1 (vectors in R

N ), taken at equally spaced times, and
one assumes they are linearly related, as

ym+1 = Aym, m = 1, . . . ,M,

for some (unknown) N × N matrix A. One then uses a Krylov subspace algo-
rithm (considering the subspace spanned by {y1,y2, . . . ,yM+1}) to approximate
eigenvalues and eigenvectors of A, without explicit knowledge of A. These are
called DMD eigenvalues and eigenvectors, and they provide information about the
dynamics of the underlying system.

Here, we consider a more general definition, given in [4], in which one collects
pairs of snapshots (ym,y

#
m), for m = 1, . . . ,M , such that y#m is the measurement

one timestep after ym (but the ym need not be at different times). One then seeks
a matrix A such that

y#m = Aym, m = 1, . . . ,M.

It is clear that this formulation is a generalization of the original, with y#m = ym+1.
Stacking these snapshots into matrices

Y =
[
y1 · · · yM

]
, Y # =

[
y
#
1 · · · y

#
M

]
,

one defines the DMD modes and eigenvalues as eigenvectors and eigenvalues of the
matrix A = Y #Y +, where Y + denotes the pseudo-inverse of Y . It is shown in [4]
that the resulting eigenvalues are identical to those obtained by the original DMD
algorithm, and the DMD eigenvectors are nearly the same (more precisely, the
DMD eigenvectors from the original algorithm are projections of the eigenvectors
of A onto the subspace spanned by {ym}).

The connection with the Koopman operator was first established in [1], and
described more explicitly in [4, §4.1]. Consider a discrete-time dynamical system
evolving on a set X , according to the map x 7→ T (x). Here, we will take X
to be a measure space and define the Koopman operator K : L2(X) → L2(X)
by Kg = g ◦ T . Suppose we measure the system using a vector of observables
ψ = (ψ1, . . . , ψN ), where each ψn ∈ L2(X): that is, if x ∈ X is the state, then ψ(x)
is a vector of measurements of the state (suppose the ψn are continuous functions,
so that pointwise evaluation is well defined). Let us sample the system at states
x1, . . . , xM , and at the images of these points, T (x1), . . . , T (xM ), but suppose
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that we do not have access to the full states xm, but only to the measurements
ym = ψ(xm), y#m = ψ(T (xm)). One can then perform DMD on this dataset: one
constructs the matrices Y ,Y # as before, and defines A = Y #Y +. We then have
the following result:

Theorem 1. Suppose ϕ is an eigenfunction of K with eigenvalue λ, and suppose
ϕ lies in the span of the observables {ψ1, . . . , ψN}, so that

ϕ = w̄1ψ1 + · · ·+ w̄NψN = w∗ψ

for some constants (w1, . . . , wN ) = w ∈ CN . Suppose further that w lies in the
range of the data matrix Y . Then λ is an eigenvalue of A = Y #Y +, and w is a
left eigenvector of A: that is, w∗A = λw∗.

Thus, under the conditions of the theorem, Koopman eigenvalues are DMD
eigenvalues, and the corresponding Koopman eigenfunction may be found from
the left eigenvectors of the DMD matrix A.

The connection between DMD and the Koopman operator is explored further
in [5], which shows that the DMD matrix may be viewed as an approximation of
the Koopman operator, using a spectral collocation method, with basis functions
given by the observables ψn. These basis functions may be given explicitly, as
described above, or even implicitly, using a kernel function, as described in [6].

In the talk, a number of examples are shown, including approximating Koopman
eigenfunctions on separate basins of attraction in the Duffing equation, finding
almost-invariant sets in the double gyre, and finding low-dimensional descriptions
of a one-dimensional PDE, the Fitzhugh-Nagumo equation.
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