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Introduction by the Organisers

The workshop “New Developments in Functional and Highly Multivariate Sta-
tistical Methodology” organized by Gerda Claeskens (KU Leuven), Holger Dette
(Ruhr-Universität Bochum), Irène Gijbels (KU Leuven) and Peter Hall (University
of Melbourne) was held from February 22 till February 27, 2016. The meeting was
very well attended with 26 participants, coming from all over the globe: Europe,
North America, and Australia. During the workshop we had 17 talks of about 50
minutes each followed by a discussion of about 10 to 15 minutes. We also had
four talks by young researchers on Tuesday afternoon, each of them presenting
their research results in this area during 25 minutes, followed by a short discus-
sion. One of the senior participants could be present thanks to a Simons Visiting
Professorship, and three of the young researcher participants got travel support
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through special grants (OWLG, NSF). In addition the workshop was attended by
one of the annual laureates of the DMV-students conference.

During the workshop we also organized a “floor discussion”. During this session
on Thursday late afternoon many thoughts on interesting future research direc-
tions were formulated. Some uncharted challenging areas were highlighted, which
require attention to develop novel statistical methodology. The session unfolded
in a lively discussion with a lot of brainstorming on further scientific progress.

Unfortunately one of the organizers, Professor Peter Hall passed away on Ja-
nuary 9, 2016. Since many of the workshop’s participants collaborated with Peter,
we organized a small memorial session, in which attention went to his outstanding
qualities as a scientist that we were so fortunate to witness and learn from. During
the many small contributions to this session the main focus was on his extra-
ordinary human personality that we all knew and will dearly miss.

The focus of the workshop was on recent developments in statistical techniques
for highly multivariate data and functional data. The key issue is to subtract from
the data valid conclusions regarding the stochastic process that led to the observed
data, and further, amongst other objectives, to perform good predictions for some
quantities of interest. Standard statistical techniques can be inappropriate for
the analysis of highly multivariate or complex data. There were several talks on
flexible regression models, for functional data as well as for high-dimensional mul-
tivariate data. This also included classification problems and statistical method-
ology when dealing with the complication of having incomplete data. Other talks
discussed specific issues of variable selection and model selection. Classical di-
mension reduction methods, such as principal component analysis, and how they
are adopted to functional data as well as to vector time series led to interesting
scientific discussions. Other talks dealt with recent developments in inverse or
deconvolution problems in the context of high-dimensional or functional data. All
talks contributed to initiate lively discussions on how to arrive at valid conclusions
regarding the data generating stochastic process.

The excellent scientific programme was complemented by the Wednesday after-
noon hike to St. Roman, that was done jointly with participants of the workshop
on “Asymptotic Geometric Analysis” that took place the same week. In fact there
were some common scientific elements of interest between the two workshops, in
particular with respect to probability theory (characteristic inequalities for Gauss-
ian processes, small ball probabilities, depths in functional spaces). Participants
from both workshops attended some talks at the other workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Alexander Aue in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Fréchet Regression for Random Objects

Hans-Georg Müller

(joint work with Alexander Petersen)

We introduce the notion of Random Objects as complex data points that are ele-
ments of a bounded metric space that is not necessarily a vector space. Therefore,
Hilbert space based methods that are commonly used in Functional Data Analysis,
such as functional principal components, cannot be used. Some Random Objects
can be transformed into a Hilbert space and therefore can be considered to be
“quasi-Hilbert”.

An example for such “quasi-Hilbert” data are random samples of density func-
tions, due to the constraint that they are non-negative and integrate to 1. The
analysis of random density functions was pioneered by [1]. Due to their inherent
constraints, densities do not live in a vector space and therefore commonly used
Hilbert space based methods of functional data analysis are not applicable. To
address this problem, we consider a transformation approach, mapping probability
densities to a Hilbert space of functions by applying a continuous and invertible
map.

Basic methods of functional data analysis, such as the construction of functional
modes of variation, functional regression or classification, can then be implemented
by using representations of the densities in this linear space. Representations of
the densities themselves are obtained by applying the inverse map from the lin-
ear functional space to the density space. Transformations of interest include log
quantile density and log hazard transformations, among others. Rates of conver-
gence are derived for the representations that are obtained for a general class of
transformations under certain structural properties. If the subject-specific densi-
ties need to be estimated from data, these rates correspond to the optimal rates of
convergence for density estimation. The proposed methods are illustrated through
simulations and applications in brain imaging, see [2].

Next we consider the case where the random objects are not quasi-Hilbert, i.e.,
there is no smooth and invertible transformation to a Hilbert space available. For
this case, we consider a regression scenario where the predictors are scalars or
vectors and the responses are random objects. This will address the increasing
need for statistical tools to analyze complex data that are non-Euclidean and
specifically do not lie in a vector space.

To address the need for statistical methods for this regression scenario, we in-
troduce the concept of Fréchet regression. This is a general approach to regression
when responses are complex random objects in a metric space and predictors are
in Rp. We develop generalized versions of both global least squares regression and
local weighted least squares smoothing.

The target quantities are appropriately defined population versions of global
and local regression for the case of metric-space valued responses. We derive
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asymptotic rates of convergence for the corresponding sample based fitted regres-
sions to the population targets under suitable regularity conditions by applying
empirical process methods.

For the special case of random objects that reside in a Hilbert space, for exam-
ple regression models with vector predictors and functional data or more general
Hilbert space valued data as responses, we obtain a limit distribution. The pro-
posed methods have broad applicability. Illustrative examples include responses
that consist of probability distributions and correlation matrices, and we demon-
strate the proposed Fréchet regression for demographic and brain imaging data.

References

[1] A. Kneip and K.J. Utikal, Inference for density families using functional principal compo-
nent analysis, Journal of the American Statistical Association 96 (2001), 519–542.

[2] A. Petersen and H.G. Müller, Functional data analysis for density functions by transforma-
tion to a Hilbert space, Annals of Statistics 44 (2016), 183–218.

Nonparametric Registration to Low-Dimensional Functionspaces

Alois Kneip

(joint work with Heiko Wagner)

This report provides some resume of the paper of Wagner and Kneip (2016). The
data that we consider are a sample of i.i.d. smooth random functions x1, . . . , xn
defined over a closed interval on the real line. Registration literature focuses on the
situation that all functions share a common set of shape features, such as peaks and
valleys. The sizes of the features vary, and we refer to this as amplitude variation.
The locations of the features also vary from curve to curve, which indicates the
existence of phase variation. Generally speaking, registration deals with separating
amplitude and phase variation in a statistically meaningful way. The aim is to
search for a set of smooth strictly monotonic functions hi, called warping function,
which eliminate phase variation such that the registered functions yi(t) of the form
yi(t) = xi[hi(t)] = (xi ◦ hi)(t) represent amplitude variation. Since monotone
transformations do not destroy shape features the registered functions will possess
the same sequences of peaks and valleys as the original functions xi.

It is well-known that phase variation is present in many important applications,
and it poses severe problems for the application of functional versions of commonly
used multivariate data analyses such as computing pointwise means, variances and
correlations; principal components analysis and canonical correlation analyses.

Traditional literature on the registration problem aims to define warping func-
tions in such a way that registered functions yi have all shape features aligned.
A common property of the most important methods proposed in this context
is to determine warping functions hi by minimizing a distance d(xi ◦ hi, γ) be-
tween registered functions yi(t) = xi(hi(t)) and a template γ(t). There is a
considerable literature proposing algorithms which aim to minimize the distance
d2(xi ◦ hi, γ) = ‖xi ◦ hi − γ‖2, where ‖ · ‖2 denotes the L2-distance. Well-known
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problems with these techniques have lead to the development of more sophisticated
techniques based on alternative distance measures. For example, [3], [5, 6, 4], or
[2] propose to minimize semi-metrics with the property that d(xi(hi), γ) = 0 if
xi ◦ hi = aiγ for some ai ∈ R.

All these methods share a common point of view. The success of a registra-
tion method is assessed in terms of how well it is able to align visible features.
Templates are often determined iteratively from the sample and their construction
aims to establish a “structural mean” which possess all common shape features at
mean locations and with mean amplitude. Hence, traditionally registration tends
to concentrate on establishing a most informative mean curve summarizing the
sample functions.

In our paper we consider registration from a more general point of view. Regis-
tration may be used as a tool for statistical analysis whenever the random functions
xi possess “bounded shape variation”, i.e. there exists a fixed value q < ∞ such
that with probability 1 the number of shape features to be found within each
possible realization does not exceed q. Our approach is based on an observation
already made by [1] that for random functions with bounded shape variation there
exists a finite K and warping functions hi such that with probability 1 have

xi(hi(t)) =
K∑

j=1

aijγj(t)(1)

for some basis functions γ1, ..., γK and individually different coefficients ai1, ..., aiK .
For random functions with bounded shape variation there exists a minimal

dimension K0 <∞ such that (1) holds for all K ≥ K0. Conventional registration
procedures based on minimizing semi-metrics with respect to a template function
are implicitly based on assuming K0 = 1.

In our paper we are going beyond [1] by studying decomposition (1) from a
theory-guided, conceptional point of view and by deriving some basic inference
results for situations, where the true functions have to be reconstructed from
discrete, noisy observations. Appropriate values of K depend on the structure of
xi, and possible non-uniqueness of solutions to (1) are resolved by selecting the
registration procedure with the least complex warping functions. Furthermore, we
present a new algorithm which estimates the components of (1) for all possible
values of K and seems to work well for many applications.

The generality of our approach is illustrated by simulated random functions
in Figure 1. These functions do not possess a clearly visible “common shape”.
But a closer look at the unregistered curves shows that there exist structurally
similar curves which quite obviously exhibit some phase variation. Nevertheless,
these are not the type of data that may be registered by any conventional method.
Indeed, fitting a K = 1 dimensional model leads to unreasonable results with
extreme warping functions. On the other hand, the number of local extrema
of these functions varies between 1 and 3, and these random functions are of
bounded shape variation. Indeed the true minimal dimension is K = 2, and
the K = 2 dimensional registration presented in the figure rests upon structurally
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Figure 1. Random functions with bounded shape variation

simple warping functions (which can themselves be described by a one dimensional
model).

Assuming that functional shapes are of bounded complexity does not seem to be
restrictive in important applications biomedicine, technics, chemometrics, etc., and
often the presence of phase variation is already imposed from a substantial point
of view (different reactions times, etc.). Our approach then generalizes the rather
limited range of applicability of traditional registration techniques. Together with
a suitable analysis of warping functions, the method allows to decompose func-
tional data in a way that might be more informative than standard functional
principal component analysis (FPCA). In our paper the approach is illustrated by
applications to human growth curves and gene expression data.
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Optimal classification and nonparametric regression for functional data

Alexander Meister

We establish minimax convergence rates for classification of functional data and for
nonparametric regression with functional design variables. The optimal rates are
of logarithmic type under smoothness constraints on the functional density and the
regression mapping, respectively. These asymptotic properties are attainable by
conventional kernel procedures. The bandwidth selector is automatically adaptive.
In this work the functional data are considered as realisations of random variables
which take their values in a general Polish metric space. We impose certain metric
entropy constraints on this space; but no algebraic properties are required.

References

[1] A. Meister, Optimal classification and nonparametric regression for functional data,
Bernoulli, to appear.

High Dimensional M-estimation and Inference for Left-Censored
Models

Jelena Bradic

(joint work with Jiaqi Guo)

Left-censored data is characteristic of many datasets, due to the inherent limit
of detection and the limit of quantitation in the measurements. Estimation in
the left-censored models has been studied since the 1950’s (e.g., [14]). The most
common approach is to consider a data transformation model and then impose a
class of distributions for the resulting model errors. However, as Zellner noted in
[16], knowledge of the underlying data generating mechanism is seldom available,
and thus models with parametric distributions may be subject to distributional
misspecifications, which in turn lead to inconsistent or inefficient estimates.

[9, 10, 6] pioneered development of robust inference procedures for the left-
censored data. A series of work proceeded [8], [3], [4], [19], [12], [18], and developed
rank based and estimating equations estimators with the number of parameters,
p, smaller than the number of observations, n. However, in the past decade, in
order to build better models of high-dimensional datasets, the trend has been to
use models with p ≫ n. [5] offered a penalized version of the Powell’s estimator
and its oracle estimation bounds. However, substantially smaller efforts have been
made toward high-dimensional inference, namely confidence interval construction
and statistical testing in the high-dimensional setting. Recently, [15], [1] and [17],
[13], [11] have corrected the bias of high-dimensional regularized estimators by a
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two-step of a three-step bias correction technique. However, the fundamental limit
of the precision of estimation in the Tobit-I models is largely unknown, let alone
an adaptive procedure to achieve that limit.

In the case of simple linear models [2] use generalized M-estimators to circum-
vent the problem of misspecifications of the error distribution, but the idea of
censored, robust one-step estimators has never been formally developed. We for-
mally develop the methodology for robust Mallow’s, Schweppe’s and Hill-Ryan’s
estimators that adapts to the unknown censoring. Censored robust one-step esti-
mators significantly expand the methodology of one-step estimators and censored
estimators. While it is generally understood that under certain conditions the use
of debiasing will lead to consistent estimators, deriving the form of the correspond-
ing debiasing step for non-differentiable losses is not apparent; nor is the method
of obtaining its asymptotic covariance matrix, as required by the inference.

Without loss of generality, we focus on the zero-censored model

(1) yi = max {0, xiβ∗ + εi} .
We assume that the following function is uniquely defined,

argmin
a

E
[
|yi − a| − |yi|

∣∣xi
]
,

and the unique minimizer is a median of the response vector Y . We assume that
this median takes on a form max{0, xiβ∗}. As initial estimator we consider the
penalized censored least absolute deviation (P-CLAD) estimator

(2) β̂ := β̂(λ) = argmin
β∈B

{
n−1

n∑

i=1

|yi −max{0, xiβ}|+ λ‖β‖1
}
,

In the theory of M-estimation, a one-step improvement typically takes the form

(3) β̃ = β̂ −HS,

where a vector S ∈ Rp is the direction of the projection, a matrix H ∈ Rp×p

is the projection length and β̂ = β̂(λ) is an initial estimator. The projection
direction should be chosen as close as possible to the efficient score vector. As
our loss takes the form n−1

∑n
i=1 |yi − max{0, xiβ}|, we consider a sample plug-

in approximation of the form −n−1
∑n

i=1 sign
(
yi −max{0, xiβ̂}

)
w⊤

i (β̂). where

wi(β) = xi1{xiβ > 0}. Estimation of the precision matrix in the presence of
missing data is particularly difficult. Typical approaches consisting of careful sub-
stitution or imputation are not suitable for the high-dimensional data. We develop
new methodology that directly explores the zero pattern in the covariance matrix
by establishing new connections to the double censored regression framework. In-
stead of smoothing out the observed zeros, we propose to model them directly and
therefore obtain an adaptive inference that is more stable when censoring gets high.
This approach leads to the efficient estimation of the uncertainty of the one-step
estimates. It is well known that assessing the accuracy of the estimation process
in the censored regression is extremely challenging, even for the low-dimensional
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problems. Nevertheless, we obtain

√
n
(
β̃ − β∗

)
= Leading Term

+OP

(
s
3/4

β∗ (log(p∨n))3/4

n1/4 +
(sβ∗+sj)

2sjsβ∗

√
log(p∨n)

n1/2 +
s
7/4

β∗ (log(p∨n))5/4

n3/4

)
.

Moreover, the right hand side stays the same for the case of vi = qi = 1 and the
Mallow’s and the Hill –Ryan’s weights. For the Schweppe’s weight schemes we
obtain

√
n
(
β̆ − β∗

)
= Leading Term

+OP

(
s
7/4

β∗ (log(p∨n))3/4

n1/4 +
(sβ∗+sj)

2sjs
3
β∗

√
log(p∨n)

n1/2 +
s
11/4

β∗ (log(p∨n))5/4

n3/4

)
.
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Stringing high-dimensional data into functional data: Application to
functional Cox model

Jane-Ling Wang

(joint work with Kun Chen, Kehui Chen, Hans-Georg Müller, Qimeng Qu and
Xiao Wang)

There is a close relation between high-dimensional data and functional data. For
instance, densely observed functional data can be viewed as high-dimensional data
endowed with a natural ordering. In this talk, we explore the opposite question
whether one can find a proper ordering of high-dimensional data so they can be
reordered and viewed as functional data. In [1], Chen et al. proposed stringing, a
method that takes advantage of the high dimension by representing such data as
discretized and noisy observations that originate from a hidden smooth stochastic
process.

Assuming that the p-dimensional features, X1, . . . , Xp, result from scrambling
the original ordering of the observations of the process X(t) at time grid 0 = t1 <
. . . < tp = 1, such that X(tj) = Xπ(j), where π(j) is a permutation function of j
and j = 1, . . . , p. That is, {π(1), . . . , π(p)} is a permutation of {1, . . . , p}. Stringing
reorders the components of the high-dimensional vectors (X1, . . . , Xp) in such a
way that (X(t1), . . . , X(tp)) is recovered followed by a reconstruction (e.g. through
linear or quadratic interpolation) of the process X(t), for t ∈ [0, 1]. Stringing
thus transforms the high-dimensional vectors of observations (X1, . . . , Xp) into
functional data X(t), for t ∈ [0, 1]. Established methods from functional data
analysis can then be applied for further statistical analysis once an underlying
stochastic process and the corresponding random trajectory X(t) for each subject
have been identified.

The reconstruction of the process X from high-dimensional data is imple-
mented with distance-based metric multidimensional scaling (MDS), mapping
high-dimensional data to locations on a real interval, e.g. [0, 1], such that fea-
tures that are close in a suitable sample metric also are located close to each other
on the interval. Specifically, MDS ([4, 3] ) aims at mapping p objects to points
s1, . . . , sp, situated in a low-dimensional space Rm, given distances (or proximities)
Djk between any pair of objects j and k, 1 ≤ j, k ≤ p. The configuration of the low-
dimensional points is determined by minimizing a cost function, which measures
how well a particular configuration in the low-dimensional space approximates the
original distances. In our implementation of stringing, we choose m = 1, the stress
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function by Kruskal [5] as our cost function. For the distance-based metric d, we
use both the Euclidean distance and a transformed Pearson correlation to estimate
Djk.

We provide some theoretical support, showing that under certain assumptions,
an underlying stochastic process can be constructed asymptotically, as the dimen-
sion p of the data tends to infinity. The advantages of the stringing methodology is
illustrated through two data sets: 1) the analysis of tree ring data, and 2) the pre-
diction of survival time from high-dimensional gene expression data. In regression
applications involving high-dimensional predictors, stringing compares favorably
with existing methods. A byproduct of the survival data analysis in 2) is a new
Cox model that accommodates functional covariates and takes the form:

(1) h(t|Xi) = h0(t) exp

[∫
β(s)Xi(s) ds

]
,

where for a baseline hazard function h0(t), the conditional hazard rate for a given
functional covariate Zi is h(t|Zi).

In model (1), the entire covariate trajectory relates to the hazard function
through the coefficient function β. This is very different from the Cox model with
time-varying covariates which takes the form:

(2) h(t|Xi) = h0(t) exp [β(t)Xi(t)] .

This model is concurrent in the sense that only the current covariate value Xi(t)
at time t relates to the hazard function at time t. Statistical inference is much
more challenging for the functional Cox model in (1), as it presents an ill-posed
problem.

A penalized likelihood approach using reproducing kernel Hilbert space is pro-
posed in Qu.et al. [2] to estimate the regression parameter. This involves a more
general model that accommodates baseline covariates Z as well as functional co-
variates X(t). Specifically, let Z be a p-dimensional vector and X be a functional
covariate, the model considered in Qu et al. (2016) takes the form:

(3) h(t|Zi, Xi(t)) = h0(t) exp

[
θZi +

∫
β(s)Xi(s) ds

]
.

Penalized partial likelihood was employed to estimate the regression vector pa-
rameter θ and the coefficient function β. The resulted estimates for θ, which
maximizes the penalized partial likelihood is shown to be

√
n-consistent and semi-

parametrically efficient, and the estimate for β is shown to attain the optimal rate
of convergence.
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Nonparametric first-order analysis of spatial and spatio-temporal
point processes. Application to wildfire patterns

Wenceslao González-Manteiga

(joint work with Maŕıa Isabel Borrajo, Isabel Fuentes-Santos and Jorge Mateu)

1. Introduction

Data irregularly distributed in the spatial or spatio-temporal domain arise in a
wide variety of scientific contexts, including seismology, forestry, geography and
epidemiology. Wildfire is the most ubiquitous natural disturbance in the world and
represents a problem of considerable social and environmental importance; partic-
ularly, in Galicia (NW Spain) arson fires are the main cause of forest destruction.
Knowing the spatial distribution of forest fires and whether this distribution varies
over time would be a key factor for future development of fire prevention and fire
fighting plans. A point process is a stochastic process that generates a random col-
lection of events in some metric space. Spatial point processes generate events in a
planar bounded region W, and spatio-temporal point processes generate events in
a three dimensional volumeW ×T defined by a by a planar region and a temporal
interval. The first-order intensity function of spatial and spatio-temporal point
processes, which can be interpreted as the expected number of events per unit
area or volume, characterizes the distribution of events in the observation domain.
For this reason, estimating this function is one of the main issues in the analy-
sis of any observed point pattern. Taking into account that parametric inference
can provide unreliable estimates when the assumed models deviates form the true
intensity, [1] introduced the kernel estimator of the density of event locations for
point processes in R, which extension to the spatial and spatio-temporal frame-
works is trivial. However the lack of consistence of this estimator has reduced its
use to the exploratory analysis, in contrast with the wide number of inference tech-
niques based on kernel smoothing developed in other areas of Statistics. In order
to overcome this problem [2] defined the density of event locations and proved the
consistency of its kernel estimator. In addition [3] and [4] introduced consistent
kernel intensity estimators based on covariates. Estimating the joint distribution
of spatial locations and times of occurrence of a spatio-temporal point process is
challenging, and testing whether the spatio-temporal intensity function is separa-
ble a main issue. This report provide some advances on nonparametric inferences
for the spatial and spatio-temporal first-order intensity function, addressing the
two issues introduced above.
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2. Inference for spatial point processes

2.1. Consistent nonparametric estimators of the first-order intensity
function. Bandwidth selection, which is crucial in kernel smoothing has received
little attention in the point process framework. In fact, although spatial point
processes arise in the plane, scalar bandwidths have been used to estimate the
first-order intensity function. Following the ideas of bivariate kernel density esti-
mation [5] analyzed the consistency of the kernel estimator of the density of event
locations with full matrix bandwidths. This work extended the smooth bootstrap
proposed by [6] to estimate the MISE of the kernel density of event locations and
developed a plug-in bandwidth selector based on the minimization of the boot-
strap AMISE. We have also analyzed the performance of the kernel intensity es-
timators pro- posed by [3] and [4], which assume that the first-order intensity
depends on some continuous covariates.

2.2. Nonparametric comparison of first-order intensity functions. Tak-
ing advantage of the relationship between the density of event locations of spatial
point processes and the density of bivariate distributions, we extended to the point
process framework the nonparametric test for comparison of multivariate data
introduced by [7]. This test compares the density of event locations of two spatial
point processes in order to test whether they have the same spatial distribution.
We proposed a bootstrap algorithm to calibrate the null distribution of the test
statistic and discussed the bandwidth selectors need to implement the test.

3. Inference for spatio-temporal point processes

The kernel estimator of the first-order-intensity and the nonparametric test allow
us to characterize the spatial distribution of the wildfires registered in Galicia in
the decade 1999-2008, compare the spatial distributions between causes, sizes or
testing whether the spatial distribution of wildfire risk varies over years. However,
as we also know the time of occurrence of each ignition point, we should use spatio-
temporal point process analysis to a better understanding of wildfire behavior.

3.1. Separability test for spatio-temporal point processes. Modeling the
joint distribution of spatial locations and times of occurrence in spatio-temporal
point processes can be a difficult task, which complexity increases when the point
process is marked or depends on covariates. For this reason, most of the current
models assume that the spatio-temporal intensity function is separable, i.e. it can
be expressed as the product of its spatial and temporal components. However, this
assumption can be very restrictive and unrealistic in practice. This situation has
motivated the development of nonparametric separability tests based on Monte
Carlo simulations of the separable model [8, 9, 10, 11]. In a separable spatio-
temporal point process the risk of observing an event at time t is spatially invariant,
i.e. the ratio between the spatio-temporal and spatial intensity functions does not
depend on the spatial locations. Taking into account this property we propose
using a no effect test that checks whether the log-ratio function depends on the
spatial locations in order to provide a new separability test. To implement the
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test, we have developed a kernel estimator of the log-ratio function, using the
similarity between spatio-temporal relative risk function and the ratio between
the spatio-temporal and the spatial intensity functions, and a least-squares cross-
validation bandwidth selection procedure for this kernel estimator.
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Testing the heteroscedastic error structure in quantile varying
coefficient models

Anneleen Verhasselt

(joint work with Irène Gijbels and Mohammed Ibrahim)

We consider quantile regression in varying coefficient models.
Regression quantiles generalize naturally mean regression for Gaussian linear

models, while substantially out-performing the least-squares estimator over a wide
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class of non-Gaussian error distributions. They allow a wide range of applications,
where several conditional quantiles are of interest instead of just the conditional
mean. Quantile regression as a generalization of median regression was introduced
by [4] in a linear regression setting.

Studying a fully nonparametric relationship between a response variable Y and
several covariates (T,X1, . . . , Xp) is very difficult. Therefore, (to avoid the curse
of dimensionality) varying coefficient models, introduced by [2], are considered.
Varying coefficient models are an extension of classical linear regression models
that allow the coefficients to depend on other variables. Assuming longitudinal
data, the regression coefficients are allowed to vary with time.

In particular, we consider varying coefficient models with various structures
for the variance of the errors (the variability function) in order to allow for het-
eroscedasticity:

Y (T ) = β0(T ) + β1(T )X
(1)(T ) + ...+ βp(T )X

(p)(T ) + V (X(T ), T )ǫ(T )

where X(T ) = (X(1)(T ), . . . , X(p)(T )). We call V (X(T ), T ) the variability func-
tion. The longitudinal observations are (Y (tij), X

(1)(tij), . . . , X
(p)(tij), tij) of

(Y (T ), X(1)(T ), . . . , X(p)(T ), T ) and errors ǫ(tij) of ǫ(T ) for i = 1, . . . , n, j = 1,
. . . , Ni, where tij is the jth measurement time for the ith subject, Ni is the number

of repeated measurements for the ith subject, Y (tij) and (X(1)(tij), . . . , X
(p)(tij))

are the observed outcome and covariates of the ith subject at time point tij .
The coefficient functions and the variability function are estimated with P-

splines (as in [1]). The considered structures for the variability functions in [1] were
linear in the parameters/covariates. However, we consider more general structures
of the variability function, like power and exponential functions. Inspired by [3],
we also provide a likelihood-ratio-type testing procedure to choose between two
variability functions.
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A High-dimensional Focused Information Criterion

Thomas Gueuning

(joint work with Gerda Claeskens)

In multivariate statistics, most of the variable selection methods (such as the AIC,
the BIC and Mallow’s Cp) aim at selecting one best model that is used to estimate
all the quantities of interest related to the data. For instance, the same model is
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often used for performing prediction on a number of new data points, for estimat-
ing the variance parameter and for estimating a quantile. Conversely, the focused
information criterion (FIC) introduced by [1] selects the model that best esti-
mates a particular quantity of interest (the focus) in terms of mean squared error
(MSE). The FIC can select different models for different focuses and can produce
estimators with small MSE. However, the current FIC literature is restricted to
the low-dimensional case p < n. A first step towards a high-dimensional FIC has
been made by [2] who developed a FIC for penalized estimators by smoothing the
penalty function near zero, with the major restriction that the dimension of the
parameter vector has to be fixed, so that the small n - large p case is asymptoti-
cally not covered. In the present work, we extend the focused information criterion
to a diverging dimension of the parameter vector, covering the important p > n
case. This new FIC can thus be used for high-dimensional data. One condition is
that we need the size of the true active set sn = o(n1/4). We now give some more
details.

Let Y1, . . . , Yn be independent response variables with Yi having a density
f(y|Xi, θ0, γn), for i = 1, . . . , n. The covariate vector Xi is assumed to be of
length larger than n. The parameter vector θ0 contains the protected variables,
those we want to include in every possible model, and its dimension p is not al-
lowed to grow with n. The parameter vector γn = γ0,n + δn/

√
n is of dimension

qn growing with n and contains parameters on which we want to perform vari-
able selection. A simple example is the linear model Yi = β0 + Xiβ + σǫi with
ǫi ∼ N(0, 1) for which a natural choice is to take θ0 = (σ, β0) and γn = β. Variable
selection is performed on γn only.

Following the FIC philosophy, we are interested in estimating a particular quan-
tity of interest µtrue = µ(θ0, γn) called the focus. For a subset S of {1, . . . , qn}, we
consider an estimator (θ̂S , γ̂S) of the parameters (θ0, γn,S) and its corresponding

estimator µ̂S = µ(θ̂S , γ̂S , γ0,n,Sc) of the focus. The idea is to estimate the limiting
distribution ΛS of

√
n(µ̂S − µtrue) and to define the focused information criterion

as FIC(S) = Ê[ΛS ]2 + V̂ar[ΛS ].
We distinguish two cases: (i) the case where the considered submodel is of low-

dimension and (ii) the case where it is of high-dimension. In the former case, we
use a maximum likelihood estimator in the submodel and we obtain an alternative
low-dimensional FIC formula that can directly be applied. In the latter case we use
a desparsified estimator that allows us to derive the MSE of the focus estimator.

Let us first consider the former case for which the maximum likelihood estimator
(MLE) is available. We consider

(1) (θ̂S , γ̂S) = argmax(θ,γS)∈Rp+|S|

n∑

i=1

log f(Yi|Xi, θ, γS , γ0,n,Sc)

and

(2) µ̂S = µ(θ̂S , γ̂S , γ0,n,Sc).

Then under mild regularity conditions, we have the following results
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Theorem 1. Assume that sn = o(n1/4) with sn = | {j : δn,j 6= 0} |. Consider
S ⊂ {1, . . . , qn} with p + |S| 6 n. For the maximum likelihood estimator (1) and
the estimator (2) of the focus in model S, it holds that

√
n(µ̂S − µtrue)

.
=d ΛS

with

ΛS =

(
∂µ
∂θ
∂µ
∂γ

)t(
BSδ + π∗t

S J
−1
S

(
U
VS

))

where the partial derivatives are evaluated at the null point (θ0, γ0) and where JS is

the Fisher matrix in the submodel S,

(
U
VS

)
∼ Np+|S|(0, JS), BS = π∗t

S J
−1
S

(
J01
πSJ11

)

−
(
0p×qn

Iqn

)
and where π∗

S is the (p+ |S|)×(p+qn) projection matrix corresponding

to the submodel S.

This leads to the following expression for the limiting mean squared error of√
n(µ̂S − µtrue):

(3) MSE(S) =

(
∂µ
∂θ
∂µ
∂γ

)t (
BSδδ

TBt
S + π∗t

S J
−1
S π∗

S

)
(

∂µ
∂θ
∂µ
∂γ

)

and we define FIC(S) = M̂SE(S) as the FIC in the high-dimensional setting for a
low-dimensional submodel. Note that if p+qn < n, the formula (3) is equivalent to
the one introduced in [1]. The equivalence can be shown using (with the notations
of [3]) Q−1 = J11 − J10J

−1
00 J01 and GSQSG

t
S = πt

SQSπS .

Let us now consider a high-dimensional submodel S such that p + |S| > n. In
that case the maximum likelihood estimator is not available and we propose to use
the desparsified estimator studied by [4]. From now, we restrict the developments
to the linear model Yi = Xt

β,iβ0+X
t
γ,iγn+σǫi but extensions to generalized linear

models are possible.
We consider the desparsified estimator

(4)

(
β̂desp
S

γ̂despS

)
=

(
β̂Lasso
S

γ̂LassoS

)
+ MS

1

nσ2
X∗t

S

(
Y −X∗

S

(
β̂Lasso
S

γ̂LassoS

))

where (β̂Lasso
S , γ̂LassoS ) is the Lasso estimator in the submodel S and MS is a re-

laxed inverse of JS obtained by the nodewise regression technique, and we obtain

the corresponding estimator µ̂S = µ(β̂desp
S , γ̂despS , γ0,n,Sc) of the focus. Algebraic

manipulations give

(5)

(√
n(β̂desp

S − β0)√
nγ̂despS

)
=

(
0p
δS

)
+ MS

1

nσ2
X∗t

S Xγ,ScδSc + MS
1√
nσ2

X∗t
S ǫ

− √
n
(
Ip+|S| −MSJS

)
(
β̂Lasso
S − β0

γ̂LassoS − δS√
n

)
.
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It can be shown that the last term of (5) is negligible if S contains the true
active set. For a general submodel S, we propose to use the approximations

E

[√
n(β̂desp

S − β0)√
nγ̂despS

]
≈
(
0p
δS

)
+MS

1
nσ2X

∗t
S Xγ,ScδSc and Var

[√
n(β̂desp

S − β0)√
nγ̂despS

]
≈

MSJSM
t
S which lead to the following definition of a high-dimensional FIC:

FIC(S) = M̂SE(S)

with

MSE(S) =

(
∂µ
∂θ
∂µ
∂γ

)t (
B′

Sδδ
TB′t

S + π∗t
S MSJSM

t
Sπ

∗
S

)
(

∂µ
∂θ
∂µ
∂γ

)

and

B′
S =

(
π∗t
S MS

(
J01
πSJ11

)
−
(
0p×qn

Iqn

))(
Iq − πt

SπS
)
.

This formula corresponds to (3) ifMS = J−1
S . Numerical studies show satisfactory

results.
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When are principal component scores a good tool for visualizing
high-dimensional data?

Kristoffer H. Hellton

(joint work with Magne Thoresen)

Principal component analysis (PCA) is a popular method for visualizing and reduc-
ing the dimension of high-dimensional data. In particular in genetic applications,
the initial data exploration is often done by visually investigating the first principal
component (PC) scores.

Let X = [x1, . . . ,xn] be a p × n data matrix, where xi = [xi1, . . . , xip]
T are

independent and identically distributed with Exi = 0 and varxi = Σ. Then
the eigenvectors, v1, . . . ,vp, of the population covariance matrix Σ define the
population PCs as

sTj = vT
j X = [vT

j x1, . . . ,v
T
j xn],

such that the PCs are linear and orthogonal combinations of variables expressing
maximal variability. As the variance of each PC is given by the corresponding
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eigenvalue, λ1 ≥ · · · ≥ λp, the standardized PC is defined as zTj = vT
j X/

√
λj . The

sample PCs are based on the eigenvalues and -vectors of the sample covariance
matrix Σ̂, denoted by d1, . . . , dp and v̂1, . . . , v̂p, such that the sample scores and
standardized sample scores are given

ŝTj = v̂T
j X, ẑTj =

v̂T
j X√
dj
.

In the classical asymptotic setting (p is fixed and n→ ∞) the sample eigenvalues
and eigenvectors will be consistent estimators for the population eigenvalues and
eigenvectors. In the high-dimensional case, however, Paul [1] established within
the random matrix framework where p/n → γ > 0 as p, n → ∞, that the sample
eigenvalues and eigenvectors are in fact inconsistent. The same holds within the
High Dimension Low Sample Size (HDLSS) framework ([2, 3]), where n is fixed and
them first eigenvalues scale with the dimension, λi = σ2

i p
α as p→ ∞. Then for the

special case of α = 1, it is possible to show that relative positions of the PC scores,
and thereby the visual information, can be consistent even if the eigenvectors are
not [4]. This offers an explanation for the paradoxical situation where classical
PCA works successfully in practice, despite being theoretically inconsistent. The
key assumption of α = 1 can be interpreted in terms of the generating mechanism
behind the data.

Let xi ∼ N(0,Σ) be i.i.d. and let the m first eigenvalues scale with p

λ1 = σ2
1p, . . . , λm = σ2

mp,

while the remaining eigenvalues are constant λm = · · · = λp = τ2. Then the
vector of the m first sample scores of the ith observation converges in distribution,
as p→ ∞, to




ẑi1
...

ẑim




d→




√
n/d1 0

. . .

0
√
n/dm




︸ ︷︷ ︸
Scaling




| |
u1 · · · um

| |




T

︸ ︷︷ ︸
Rotation



σ1zi1
...

σmzim


 ,

for i = 1, . . . , n, where dj and uj are the jth eigenvalue and -vector of an m×m
Wishart distributed matrix, W ∼ Wishart

(
n, diag(σ2

1 , . . . , σ
2
m)
)
. The conse-

quence is that the vector of the first m sample scores will be a rotated and scaled
version of the population scores in m dimensions, and the relative positions of the
scores will remain the same.

For the purpose of visualizing data one would plot pairs of the m first sample
scores in two dimensions. Simulations based on normally distributed data show
that for moderate sample sizes, a two-dimensional representation of the sample
scores will also be a scaled and approximately rotated version of the population
scores. Thus the visual information of the population scores is preserved by the
sample scores. The behavior is demonstrated in Figure 1 showing two realizations
of the sample scores compared to the population scores.
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Figure 1. Plots of sample PC scores (black dots) compared to

population PC scores (circles) showing scaling and rotation.

The assumption of linearly increasing eigenvalues can be motivated by viewing
the principal components as latent factors. If a factor is pervasive, affecting most
or a significant proportion of the observed variables, the corresponding population
eigenvalue will scale linearly with the dimension asymptotically. Some applications
where pervasive effects are reasonable include genetics markers (SNPs), where
different populations and ethnicity act as latent factors, and stock returns with
supply and demand shocks.
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High-dimensional mixture regression models, application to functional
data

Emilie Devijver

Owing to the increasing availability of high-dimensional datasets, regression mod-
els for multivariate response and high-dimensional predictors have become impor-
tant tools.

In this extended abstract, we describe two procedures where a random target
variable Y ∈ Rq depends on explanatory variables within a cluster-specific regres-
sion model. Each cluster is represented by a parametric distribution, the entire
dataset being modeled by a mixture of these distributions. The model assumes
that each observation i ∈ {1, . . . , n} originates from one of K disjoint classes and
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that the data (Yi,xi) ∈ Rq ×Rp are independent and identically distributed such
that if i belongs to class k ∈ {1, . . . ,K}, the target variable Yi results from a
regression model

(1) Yi = Bkxi + εi

with an unknown matrix of coefficients Bk ∈ Rq×p and independent errors εi ∼
Nq(0,Σk) with an unknown diagonal covariance matrix Σk of size q×q. Each obser-
vation i ∈ {1, . . . , n} has a probability πk to belong to the cluster k ∈ {1, . . . ,K}.

We work with high-dimensional data, in other words the number of parameters
to estimate K(qp+ q + 1)− 1 is larger than the number of observed target values
q × n. Two ways are considered in this paper, coefficients sparsity and ranks
sparsity. The first approach consists in estimating the matrix Bk by a matrix with
few nonzero coefficients. The well-known Lasso estimator, introduced by [7] for
linear models, is the solution chosen here. In the second approach, we consider the
rank sparsity in Bk. This idea dates back to the 1950’s and was initiated by [1]
for the linear model. [6] introduced the term of reduced-rank regression for this
class of models. For more recent works, we refer to [5] and to [3]. Nevertheless,
the linear model is appropriate for homogeneous observations, which is a strong
assumption. We extend here those methods to mixture regression models.

We propose here two procedures for clustering high-dimensional or functional
data, where the high-dimensional or functional random target variable Y ∈ Rq

depends on high-dimensional or functional predictors x ∈ Rp with a cluster-specific
regression model.

We consider a finite mixture of Gaussian regression models. The two procedures
we propose follow the same steps. Firstly, a penalized likelihood approach is con-
sidered to determine potential sets of relevant indices. Varying the regularization
parameter, a data-driven collection of models is constructed where each model has
a reasonable complexity. The second step of the procedures consists in refitting
parameters by a less biased estimator, restricting the model on selected indices.
Then, we select a model among the collection using the slope heuristic, which was
introduced by [2]. The difference between the two procedures is in the refitting
step. In the first procedure, later called Lasso-MLE procedure, the maximum
likelihood estimator is used. The second procedure, called Lasso-Rank procedure,
deals with low rank estimation. For each model in the collection, a subcollection
of models with means estimated by various low rank matrices is constructed. It
leads to sparsity for the coefficients and for the rank, and it considers the mean
within its matrix structure.
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Functional Data Depth

Stanislav Nagy

(joint work with Irène Gijbels, Daniel Hlubinka and Marek Omelka)

Data depth is a concept proposed in nonparametric statistics as a generalization of
quantiles for multivariate data. Formally, for an arbitrary sample space S, depth
is a mapping which to an object s ∈ S and P ∈ P (S), P (S) standing for the set
of all probability distributions on S, assigns a number

D : S × P (S) → [0, 1] : (s, P ) 7→ D (s;P )

characterizing how “central” s is with respect to P . Higher values of D indicate
centrality, values close to zero can be interpreted as potential outlyingness of s.
Using depth we obtain an ordering of the sample points relative to P in the centre-
outward sense. It allows construction of multivariate L-estimators, nonparametric
testing procedures, or simple visualisation tools for high-dimensional observations.

The first depth in S = Rd, d ≥ 1 was considered by Tukey [8] who defined the
halfspace depth of x ∈ Rd with respect to P ∈ P

(
Rd
)
as

(1) DH (x;P ) = inf
H∈H(x)

P (H),

forH(x) the set of all closed halfspaces in Rd containing x. For a general treatment
of depth functions in Rd see Zuo and Serfling [9].

The potential of the introduction of depth to functional (and general infinite-
dimensional) data was first explored by Fraiman and Muniz [2]. In that contribu-
tion, the authors consider C — the space of continuous functions over [0, 1], and
propose a simple depth of x ∈ C with respect to P ∈ P (C) taking the form

(2) DFM (x;P ) =

∫ 1

0

DH (x(t);Pt) .

Here, Pt ∈ P (R) is the marginal distribution of P corresponding to t ∈ [0, 1], and
DH is the depth (1) for d = 1. The resulting integrated depth for functions is later
elaborated further by, among others, Cuevas and Fraiman [1].

Another major approach towards the computation of depth in C arises when
one replaces the integral in (2) by an infimum. This way we obtain the infimal
depth described by Mosler [5]

(3) DM (x;P ) = inf
t∈[0,1]

DH (x(t);Pt) .
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Many other depths for functional data can be found in the literature. Never-
theless, the vast majority of them can be represented either as an integral, or an
infimum, of a set of finite-dimensional depths of certain low-dimensional projec-
tions of x and P , just as in (2) and (3). For instance, the important band depth
[4] follows the general idea of depths of infimal type (3), whereas its modified
counterpart is of integrated type (2).

In the present contribution we deal with theoretical properties of both integrated
and infimal depths for functions, with the main emphasis placed on their sample
version consistency. In particular, we are interested in conditions under which the
uniform consistency

(4) lim
n→∞

sup
x∈C

|D(x;Pn)−D(x;P )| = 0 almost surely

holds true for a depth D, where Pn ∈ P (C) is the empirical measure of a random
sample of n functions from P .

For the depth DM from (3) and, by extension, for all infimal depths we demon-
strate that (4) cannot be true for these for all P . Such observations allow us to
identify the difficulties with the family of infimal depths for random curves, and
eventually also to derive sufficient conditions on P for (4) to hold for them. For a
detailed exposition, counterexamples, and extensions see Gijbels and Nagy [3].

For integrated depths we first resolve the crucial technical problem of the ex-
istence of the integral in the expression (2), and some related quantities. This is
achieved by rigorous verification of the measurability of the corresponding inte-
grand functions — a nontrivial task that has been widely ignored in the literature
on the topic. These basic results enable the formulation of an elementary proof
of universal weak, and later also universal strong consistency (meaning that (4) is
true for any P ∈ P (C)) of all integrated depths for functions. For this we require
only mild conditions to be imposed on the finite-dimensional depth used in the
definition of integrated depths (known to be satisfied for DH). For the proofs, and
a comprehensive study of all integrated depths see Nagy et al. [7].

Having resolved the consistency issues connected with many depths for func-
tions, we focus on the case when the random sample curves X1, . . . , Xn from P are
not observed continuously over their domain [0, 1], but rather only discretely. This
means that for the function Xi, i = 1, . . . , n, the experimenter cannot observe all
its functional values {Xi(t) : t ∈ [0, 1]}, but knows only a finite number mi ∈ N of
these {Xi (Tj,i) : Tj,i ∈ [0, 1], j = 1, . . . ,mi}. The observation points Tj,i and their
number mi may be fixed, or random. In this setup, we propose to reconstruct
the unobservable curves based on the points that one can observe using a simple
interpolation technique. The interpolated curves are then plugged into the depth
computation. This approach is followed in Nagy et al. [6], where under suitable
conditions it is shown that the consistency results described above remain in order
also for such discretely observed functional data.
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Factorisable Sparse Tail Event Curves with Expectiles

Wolfgang K. Härdle

(joint work with Chen Huang and Shih-Kang Chao)

Data are observed more and more in form of curves, thus prompting a joint mod-
elling to find out common patterns and also individual variations. Real data
curve modelling occurs e.g. in neuroeconomics, wind speed analysis, demograph-
ics among many other disciplines.

Functional data analysis studies variation of random objects in a high dimen-
sional contact and provides insight into main factors, typically extracted as prin-
cipal components via a Karhunen-Loève decomposition. However, in a variety of
applications one is more interested in the tail behavior rather than the variations
around the mean. Thus the analysis of curve variation is around a tail event
curve (TEC) rather than around a mean curve as in functional PCA. TECs may
be identified through tail probabilities or more general through functions based
on conditional tail events. Modeling such Tail Event Curves (TEC) requires to
deviate from Hubert ℓ2 geometry and to introduce asymmetric norms or check
functions. For example, quantile regression is a widely used method can be ex-
ploited to grasp the whole information on the conditional distribution and espe-
cially the tail structure, which plays crucial roles in risk management. Concerning
multivariate quantile regression, many previous works study in this direction un-
der different frameworks. But none of them worked in high-dimensional case. [2]
introduced factorisable sparse tail event curves (FASTEC) method to implement
high-dimensional multivariate quantile regression.

fMRI risk perception analysis requires to study the shape (e.g., amplitude, delay,
and duration) of the estimated hemodynamic response function (HRF) to partic-
ular tasks answered by every individual. More noteworthily, extreme behaviors
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of the response function may reveal unobserved neuronal activation information.
Therefore, we need a global measure which can capture the tail moments and be
more sensitive to the outliers. Expectiles can be a better choice than quantiles
in consideration of extremes although it is not robust. This fact motivates us to
build an expectile based FASTEC model.

Denote Y = (Yij) ∈ Rn×m as the multivariate curves we want to jointly model,
where n is the length of observations andm is the number of curves. {Xi}ni=1 ∈ Rp

are the covariates with dimension p, e.g., B-spline basis. Both p and m are allowed
to tend to infinity with the sample size n (but no quicker than n).

Let ej(τ |Xi) be the conditional expectile function of Yij given Xi, for i =
1, . . . , n and j = 1, . . . ,m with τ ∈ (0, 1], and approximate it by a linear factor
model,

Yij = ej(τ |Xi) + uij

(1) ej(τ |Xi) =

r∑

k=1

ψj,k(τ)f
τ
k (Xi),

where f τ
k (Xi) is the kth factor, r is the number of factors (much less than p),

ψj,k(τ) are the factor loadings. Furthermore, factors are constructed by linear
combination of covariates Xi

(2) f τ
k (Xi) = X⊤

i ϕk(τ).

Substituting (2) into (1) yields

(3) ej(τ |Xi) = X⊤
i γj(τ),

with γj(τ) = (
∑r

k=1 ψj,k(τ)ϕk,1(τ), . . . ,
∑r

k=1 ψj,k(τ)ϕk,p(τ))
⊤

as the unknown
coefficient vector. In multivariate case, what needs to be estimated becomes a
p×m coefficient matrix Γ, where γj(τ) in (3) is the jth column of Γ.

With increasing dimension of both explanatory and response variables one faces
the difficulty of estimating a very high dimensional coefficient matrix. A natural
way to reduce the burden of this estimation task is to introduce a penalty term.
[4] proposed a penalization approach with nuclear norm, the sum of the singular
values of the coefficient matrix as the penalty. Numerically the estimator can
be easily obtained since it involves a convex optimization. Moreover, compare
with previous traditional works such as reduced rank approach, the number of
factors does not need to be predetermined. Dimension reduction and coefficient
estimation can be done simultaneously.

To be more precise it is proposed to estimate the coefficient matrix Γ by solving:

(4) Γ̂λ(τ) = arg min
Γ∈Rp×m

F (Γ) ,

(5) F (Γ) = (mn)−1
n∑

i=1

m∑

j=1

ρτ
(
Yij −X⊤

i Γ·j
)
+ λ‖Γ‖∗,

(6) ρτ (u) = |τ − 1 {u < 0}| |u|2 .
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Nuclear norm ‖Γ‖∗ is defined by
∑min(p,m)

l=1 σl (Γ) given the singular values of
Γ: σ1 (Γ) ≥ σ2 (Γ) ≥ . . . ≥ σmin(p,m) (Γ). The convexity of the nuclear norm
results in a convex optimization problem that can be solved via various of efficient
methods. The number of nonzero singular values of Γ is identified as r. A high
dimension p×m is reduced to r ×max(p,m) by regularization, when Γ is sparse.

After obtaining the Γ̂λ(τ) from (4), singular value decomposition (SVD) can be
employed to estimate the factors and normalized factor loadings respectively.

Moreover, the loss function for expectile regression has a smooth convex func-
tion form. Combining with the nuclear norm penalty, we can use Fast Iterative
Shrinkage-Thresholding Algorithm proposed by [1] to solve the optimization di-
rectly. Without smoothing the asymmetric absolute check function, the conver-
gence rate in the iterative procedure is quicker than in quantile regression case.
Based on the unified framework for high-dimensional M -estimators with decom-
posable regularizers provided by [3], the finite sample oracle properties of the esti-
mator associated expectile loss and nuclear norm regularizer are studied formally
in this paper.

As an empirical illustration, our model is applied on fMRI data to see if indi-
vidual’s risk perception can be recovered by brain activities. Results show that
main factors can reflect the common patterns of curves. Factor loadings over dif-
ferent tail levels can help to find out the most risk-seeking and averse behaviours.
Taking tail risks into consideration, individual’s risk attitudes can be predicted
more precisely, especially the extremes.

Figure 1. Horizontal axis denotes the fitted risk attitudes by the first

factor loadings estimated from the brain data when τ = 0.1, vertical

axis denotes the risk attitudes parameters based on their choices. #1

and #19 are the most risk-averse and risk-seeking people respectively.

FASTEC with Expectiles

https://github.com/QuantLet/FASTEC-with-Expectiles/tree/master/FASTEC_with_Expectiles
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Statistical Blind Source Separation - with Applications in Cancer
Genetics

Axel Munk

(joint work with Merle Behr and Chris Holmes)

The SBSSR model.
We are studying a particular kind of blind source separation problem embedded in
a change-point regression setting. In blind source separation problems one observes
a mixture of source functions, and aims to recover the original sources from the
available observations. The blindness refers to the fact that neither the sources
nor the mixing is known. We consider single linear mixtures of step functions
with a known finite alphabet in a Statistical Blind Source Separation Regression
(SBSSR) model.

More precisely, for a given finite alphabet A ⊂ R, a given number of source
components m ≥ 2, unknown step functions f = (f1, . . . , fm)⊤ each taking values
in the known alphabet, imag(f i) ⊂ A, and unknown probability mixing weights
ω = (ω1, . . . , ωm)⊤ ∈ Rm

+ with
∑m

i=1 ωi = 1, one observes from the mixture

Yj = ω⊤f(xj) + ǫj =

m∑

i=1

ωif
i(xj) + ǫj , j = 1, . . . , n,(1)

where ǫ is normal noise with mean zero. We assume that ω⊤f in (1) is sampled
equidistantly at xj := (j − 1)/n, j = 1, . . . , n and that all step functions f i

are defined on the domain [0, 1). Extensions to more general domains ⊂ R and
sampling designs are straightforward under suitable assumptions. The aim in
model (1) is to estimate ω and f from the observations Y = (Y1, . . . , Yn) and to
construct honest confidence statements for all quantities.

Identifiability.
We stress that already in the noiseless case, i.e., ǫ ≡ 0 in (1), it is far from ob-
vious under which criteria the weights ω and the sources f are identifiable. We
characterize the identifiability issue as a combinatorial problem and derive simple
sufficient and necessary identifiability criteria which, to the best of our knowledge,
has been elusive. On the one hand, these conditions ensure discriminability of
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different mixture values, which is a necessary conditions on ω to guarantee iden-
tifiability of f , and, on the other hand, they ensure a sufficient variability of f ,
which is necessary to guarantee identifiability of ω.

Moreover, we discuss how likely it is for the derived identifiability criteria to
be satisfied when the mixing weights are drawn from the uniform distribution
and when the underlying sources are discrete Markov processes. We show that
the mixture becomes identifiable exponentially fast, which reveals identifiability
not to be an issue in most practical situations. See [1] for more details on the
identifiability issue in model (1).

The SESAME estimation methodology.
In the regression setting we propose a new methodology, called SESAME (SEpa-
rateS finite Alphabet MixturEs), which yields uniform confidence sets and optimal
estimation rates (up to log-factors) for all parameters in model (1) under very weak
identifiability conditions [2].

First, SESAME provides honest confidence regions C1−α(Y ) for the mixing
weights ω which are characterized by the acceptance region of a certain multi-
scale test [3] with level α. Then, it estimates ω̂ ∈ C1−α(Y ), where now the level α
can be seen as a tuning parameter for which we propose data driven selection meth-
ods. For ω̂ and C1−α(Y ) we obtain almost optimal estimation rates and diameter
ln(n)/

√
n, respectively. Second, SESAME estimates the sources f as a constrained

maximum likelihood estimator, where the constraint comes from the same mul-
tiscale statistic as for C1−α(Y ) but with a possibly different level β. This yields
asymptotically honest multivariate confidence bands H(β) for the sources f . For

the resulting estimate f̂ we derive exact recovery, i.e., the number of change-points
of f and its function values are estimated exactly and its change-point locations
with the minimax rate 1/n up to a log square term with probability converging to
one at a superpolynomial rate.

SESAME’s estimates and confidence statements can be computed efficiently
using dynamic programming and certain pruning steps.

Applications.
Model (1) arises in many different applications, for instance in digital communi-
cation with mixtures of multi-level PAM signals [4]. Our motivation, however,
comes from an application in cancer genetics. We use SESAME to analyze ge-
netic sequencing data in order to estimate clonal proportions in a tumor, and the
corresponding copy number variations [5].
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Statistical inverse problems: Motivations and data-driven Bayesian
estimation

Jan Johannes

(joint work with Anna Simoni and Ruldolf Schenk)

Statistical ill-posed inverse problems are becoming increasingly important in a di-
verse range of disciplines, including geophysics, astronomy, medicine and econom-
ics. Roughly speaking, in all of these applications the observable signal g = Tf
is a transformation of the functional parameter of interest f under a linear op-
erator T . Statistical inference on f based on an estimation of g which usually
necessitates an inversion of T is thus called an inverse problem. Moreover, by
ill-posed we mean that the transformation T is not stable, i.e., T has not a con-
tinuous inverse. In this presentation special attention is given to three models and
their extensions, namely non-parametric instrumental regression under endogene-
ity, functional linear regression and density deconvolution, each of them leading
naturally to a statistical ill-posed inverse problem. In those applications, however,
both the signal g and the inherent transformation T are not known in practise,
although they can be estimated from the data. Consequently, a statistical infer-
ence has to take into account that a random noise is present in both the estimated
signal and the estimated operator.

Typical questions in this context are the non-parametric estimation of the func-
tional parameter f . It is well-known that in terms of its risk the attainable accu-
racy of an estimation procedure is essentially determined by the conditions imposed
on f and the operator T which are, for example, expressed in the form f ∈ F and
T ∈ T for suitable chosen classes F and T . Minimax-optimality of an estimator
is then usually shown by establishing both an upper and a lower bound of the
maximal risk over given classes F and T .

In many cases the proposed estimation procedures rely on the choice of at least
one tuning parameter, which in turn, crucially influences the attainable accuracy
of the constructed estimator. Its optimal choice, however, follows often from a
classical squared-bias-variance trade-off and relies on an a-priori knowledge about
the classes F and G, which is usually inaccessible in practise. This motivates
its data-driven choice in the context of non-parametric statistics since its very
beginning in the fifties of the last century. Among the most prominent approaches
stand without doubts model selection, Stein’s unbiased risk estimation, Lepski’s
method or combinations of the aforementioned strategies.
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On the other hand side, it seems natural to adopt a Bayesian point of view where
the dimension parameter can be endowed with a prior. As the theory for a general
inverse problem – with a possibly unknown or noisy operator – is technically highly
involved, the focus of this presentation is on an indirect Gaussian sequence space
model which is well known to be equivalent to an indirect Gaussian regression.

Let ℓ2 be the Hilbert space of square summable real valued sequences endowed
with the usual inner product 〈·, ·〉ℓ2 and associated norm ‖·‖ℓ2 . In an indirect
Gaussian sequence space model (iGSSM) the aim is to recover a parameter se-
quence θ =

(
θj
)
j≥1

∈ ℓ2 from a transformed version (λjθj)j≥1 that is blurred

by a Gaussian white noise. Precisely, an observable sequence of random variables
(Y)j≥1, Y for short, obeys an indirect Gaussian sequence space model, if

(1) Yj = λjθj +
√
ǫξj , j ∈ N,

where {ξj}j≥1 are unobservable error terms, which are independent and standard
normally distributed, and 0 < ǫ < 1 is a noise level known in advance. The
sequence λ =

(
λj
)
j≥1

represents the operator that transforms the signal θ. In the

particular case of a constant sequence λ the sequence space model is called direct
while it is called an indirect sequence space model if the sequence λ tends to zero.

Adopting a Bayesian approach the parameter sequence of interest θ = (θj)j≥1

itself is a realisation of a random variable ϑ = (ϑj)j≥1 and the observable random
variable Y = (Yj)j≥1 satisfies

(2) Yj = λj ϑj +
√
ǫξj , j ∈ N

with independent and standard normally distributed error terms {ξj}j≥1 and
known noise level 0 < ǫ < 1. Moreover, we assume that random parameters
{ϑj}j≥1 and the error terms {ξj}j≥1 are independent. Consequently, (2) and
a specification of the prior distribution Pϑ of ϑ determine completely the joint
distribution of Y and ϑ.

In this presentation we consider a sieve prior family {Pϑm}m where the prior
distribution Pϑm of the random parameter sequence ϑm = (ϑm

j )j≥1 is Gaussian
and degenerated for all j > m. More precisely, the first m coordinates {ϑm

j }mj=1

are independent and normally distributed random variables while the remaining
coordinates {ϑm

j }j>m are degenerated at a point. Assuming an observation Y =

(Yj)j≥1 satisfying Yj = λj ϑ
m
j +

√
ǫξj , we denote by Pϑm |Y the corresponding

posterior distribution of ϑm given Y. Note that the dimension parameter m plays
the role of a tuning parameter. As usual, its choice depends on the noise level ǫ
so that we write mǫ and, in general, mǫ → ∞ as ǫ→ 0. Given a choice mǫ of the
dimension parameter, which in turn determines a prior sub-family {Pϑmǫ }mǫ in
dependence of the noise level ǫ, our objective is the study of frequentist properties
of the associated posterior sub-family {Pϑmǫ |Y}mǫ . To be more precise, let θ◦

be the realization of the random parameter ϑ associated with the data-generating
distribution and denote by Eθ◦ the corresponding expectation. A quantity Φǫ

which is up to a constant a lower and an upper bound of the concentration of the
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posterior sub-family {Pϑmǫ |Y}mǫ , i.e.,

(3) lim
ǫ→0

Eθ◦Pϑmǫ |Y((K)−1 Φǫ 6 ‖ϑmǫ −θ◦‖2ℓ2 6 K Φǫ) = 1 with 1 6 K <∞,

is called exact posterior concentration (see, e.g., [3] or [2] for a broader discussion
of the concept of posterior concentration). We shall emphasise that the derivation
of the posterior concentration relies strongly on tail bounds for non-central χ2

distributions established in [1]. Moreover, if Φǫ → 0 as ǫ → 0 then the lower and
upper bound given in (3) establish posterior consistency and Φǫ is called exact
posterior concentration rate. Obviously, the exact rate depends on the prior sub-
family {Pϑmǫ }mǫ , the choice of the dimension parameter mǫ and on the unknown
parameter θ◦.

In the spirit of a frequentist oracle approach, given a parameter θ◦, by charac-
terising an oracle-choice m◦

ǫ of the dimension parameter, we derive in this paper
a prior sub-family {P

ϑ
m◦

ǫ }m◦
ǫ
with smallest possible exact posterior concentration

rate Φ◦
ǫ which we call, respectively, an oracle prior sub-family and an oracle pos-

terior concentration rate. On the other hand side, following a minimax approach,
[4], for example, derive the minimax rate of convergence Φ⋆

ǫ of the maximal mean
integrated squared error (MISE) over a given class Θa of parameters (introduced
below). By determining first a minimax-choice m⋆

ǫ of the dimension parameter we
construct a sub-family {P

ϑ
m⋆

ǫ }m⋆
ǫ
of prior distributions with exact posterior con-

centration rate Φ⋆
ǫ uniformly over Θa which does not depend on the true parameter

θ◦ but only on the set of possible parameters Θa. We shall emphasize, that the
prior specifications we propose in [5] lead to exact posterior concentration rates
that are optimal in an oracle or minimax sense over certain classes of parameters
not only in the direct model but also in the more general indirect model. However,
both oracle and minimax sieve prior are unfeasible in practise since they rely on
the knowledge of either θ◦ itself or its smoothness.

Our main contribution in [5] is the construction of a hierarchical prior PϑM

that is adaptive. Meaning that, given a parameter θ◦ ∈ ℓ2 or a classes Θa ⊂ ℓ2 of
parameters, the posterior distribution PϑM |Y contracts, respectively, at the oracle
rate or the minimax rate over Θa while the hierarchical prior PϑM does not rely
neither on the knowledge of θ◦ nor on the class Θa. Let us briefly elaborate on the
hierarchical structure of the prior which induces an additional prior on the tuning
parameter m, i.e., m itself is a realisation of a random variable M. We construct a
prior for M such that the marginal posterior for ϑM (obtained by integrating out
M with respect to its posterior) contracts exactly at the oracle concentration rate.
This is possible for every θ◦ whose components differ from the components of the
prior mean infinitely many times. In addition, for every θ◦ in the class Θa we
show that the posterior distribution PϑM |Y contracts at least at the minimax rate
Φ⋆

ǫ and that the corresponding Bayes estimate is minimax-optimal. Thereby, the
proposed Bayesian procedure is minimax adaptive over the class Θa. Interestingly,
in the particular case of a diffuse prior each component of the data-driven Bayes
estimator is shrunk proportional to the associated values of a penalised contrast
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criterion which motivates a data-driven estimator, for example, in a deconvolution
model.
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Dating structural breaks in functional data without dimension
reduction

Alexander Aue

(joint work with Gregory Rice and Ozan Sonmez)

This talk is on functional data analysis and structural breaks analysis for de-
pendent observations. Functional data analysis (FDA) has seen an upsurge in
research contributions in the past decade. These are documented, for example,
in the comprehensive books by Ramsay and Silverman [15] and Ferraty and Vieu
[12]. Research concerned with structural breaks has a longstanding tradition in
both the statistics and econometrics communities. Two recent reviews by Aue and
Horváth [8] and Horváth and Rice [14] highlight newer developments, the first with
a particular focus on time series.

Early work in functional structural break analysis dealt primarily with random
samples of independent curves, the question of interest being whether all curves
have a common mean function or whether there are two or more segments of
the data that are homogeneous within but heterogeneous without. For example,
Berkes et al. [10] developed statistical methodology to test the null hypothesis
of no structural break against the alternative of a (single) mean function change
assuming that the error terms are independent and identically distributed curves.
Aue et al. [6] quantified the large-sample behavior of a break date estimator
under a similar set of assumptions. The work in these two papers was generalized
by Aston and Kirch ([3, 4]) to include functional time series into the modeling
framework. The methods developed in these papers were applied to temperature
curves [10] and functional magnetic resonance imaging [4]. Other papers dealing
with functional time series include Antoniadis and Sapatinas [2] and Antoniadis
et al. [1], who predicted daily electricity demand curves, Aue et al. ([5, 7]), who
studied daily particulate matter curves, and Besse et al. (2000), who dealt with
functional climate variations.
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Most of the procedures in the aforementioned papers are based on dimension
reduction techniques, for example, using the widely popular functional principal
components analysis (fPCA), by which the functional variation in the data is pro-
jected onto the directions of a small number of principal curves, and multivariate
techniques are then applied on the resulting sequence of score vectors. This is also
the case in functional structural break detection, in which after an initial fPCA
step multivariate structural break theory is utilized. Despite the fact that func-
tional data are, at least in principle, infinite dimensional, the state of the art in
FDA remains to start the analysis with an initial dimension reduction procedure.

Dimension reduction approaches, however, automatically incur a loss of infor-
mation, namely all information about the functional data that is orthogonal to the
basis onto which it is projected. This weakness is easily illustrated in the context
of detecting and dating structural breaks in the mean function: if the function rep-
resenting the mean break is orthogonal to the basis used for dimension reduction,
there cannot be a consistent test or estimator for the break date in that basis.

The main purpose of this talk it to introduce methodology for the dating of
structural breaks in functional data without the application of dimension reduction
techniques, an idea that was touched upon in Horváth et al. [13] in the context of
stationarity tests for functional time series. Here, a fully functional estimator for
the break date is proposed.

The theory developed for this case illuminates a number of potential advantages
of the fully functional estimator. When the direction of the break is orthogonal to
the leading principal components of the data, the estimation of the mean break is
asymptotically improved over fPCA based techniques. In addition, the assump-
tions required for the fully functional theory are weaker than the ones used in
Aue et al. [6] and Aston and Kirch [3, 4], as convergence of the eigenvalues of the
empirical covariance operator to the eigenvalues of the population covariance oper-
ator do not have to be accounted for. These assumptions are typically formulated
as finiteness of fourth moment conditions. The relaxation obtained here may be
particularly useful for applications to intra-day financial data such as one-minute
log-returns on Microsoft stock. The talk is based on the manuscript Aue et al. [9].
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[10] I. Berkes, R. Gabrys, L. Horváth & P. Kokoszka. Detecting changes in the mean of functional
observations, Journal of the Royal Statistical Society, Series B 71 (2009), 927–946.

[11] P. Besse, H. Cardot & D. Stephenson. Autoregressive forecasting of some functional climatic
variations, Scandinavian Journal of Statistics 27 (2000), 673–687.

[12] F. Ferraty & P. Vieu (2010). Nonparametric Functional Data Analysis. Springer-Verlag,
New York.
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The functional discrete Fourier transform

Siegfried Hörmann

(joint work with Clément Cerovecki)

Functional data often arise by segmenting a continuous time process into natural
units, such as days. Then a certain degree of dependence between the observations
is well expected and, consequently, a thorough statistical investigation requires
time series methodology. More precisely, we consider a time series (Xt : t ∈ Z)
with realizations in some function space. Then every observation Xt is a random
curve (Xt(τ) : τ ∈ U) with some continuous domain U and we call the discrete time
process (Xt : t ∈ Z) a functional time series (FTS). During recent years functional
time series (FTS) analysis has seen an upsurge in the scientific community and
diverse related practical and theoretical problems have been addressed.

Some of the latest publications are related to frequency domain topics for FTS.
We refer to [3], [4], [1] and [2]. In their seminal article on frequency domain
methodology for FTS, [3] have studied, among others, the limiting behavior of the
discrete Fourier transform of some FTS:

Sn(θ) =
n∑

t=1

Xte
−itθ, θ ∈ (−π, π].

This object is of interest to statisticians since it is closely related to the periodogram
which can, for example, be used to detect some underlying periodic behavior of
the time series. Applying such a test for periodicity requires knowledge of the
distribution of Sn(θ). But unless (Xt : t ∈ Z) is a Gaussian process, the exact
distribution is infeasible and then we need to rely on asymptotics. Moreover we
notice that with θ = 0 this framework also contains the regular partial sums
process, which is without any doubt a crucial building block in many statistical
procedures.
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For real valued processes asymptotic normality for Sn(θ) has been obtained
under several dependence conditions. A recent contribution is [5], which covers a
variety of special cases, including strong mixing sequences. The latter article also
contains a more detailed literature survey. For functional data the afore mentioned
paper of [3] shows that under higher order moment and cumulant assumptions
1√
n
Sn(θ) converges to a (complex) Gaussian random element whose covariance

operator is given by

2πFθ :=
∑

h∈Z

Che
−ihθ,

where Ch is the lag h covariance operator of the stationary functional time series.
The operator Fθ, which can be shown to be self-adjoint and non-negative definite,
is called the spectral density operator.

The first main results of this article shows the weak convergence of Sn(θ)/
√
n for

purely non-deterministic processes. More precisely, letting Gt = σ(Xt, Xt−1, . . .)
the σ-algebra generated by (Xs : s 6 t) and G−∞ =

⋂
t≥0 G−t we impose the

following assumption.

Assumption 1. The process (Xt : t ∈ Z) is stationary and ergodic with values in
a separable Hilbert space H and satisfies E[X0|G−∞] = 0 a.s.

Below CNH (µ,Γ) denotes a complex Gaussian element in H with mean µ,
covariance Γ and with a relation operator which is zero. We use ‖ · ‖ for the norm
of H . We write X ∈ L2

H(Ω) if E‖X‖2 <∞.

Theorem 2. Let (Xt : t ∈ Z) is process with values in L2
H(Ω) which satisfies

Assumption 1. Then for almost every θ ∈ (−π, π] there exists a linear operator
Fθ, which is self-adjoint and non-negative definite such that

1√
n
Sn(θ)

d−→ CNH (0, πFθ) .

Moreover we have that

(I) : 1
nVar

(
Sn(θ)

)
converges in weak operator topology to 2πFθ;

(II) : 1
nE‖Sn(θ)‖2 = 1

n tr
(
Var
(
Sn(θ)

))
→ 2π tr

(
Fθ

)
<∞;

(III): Ch =
∫ π

−π Fθ e
ihθdθ, ∀h ∈ Z;

(IV): for almost all θ, θ′ the components of 1√
n
(Sn(θ), Sn(θ

′)) are asymptot-

ically jointly Gaussian and independent.

For practical reasons it is useful to know for which frequencies Theorem 2 holds.
For example, θ = 0 is an important special case, but we cannot say if this frequency
is part of the exceptional null set or not. Requiring Assumption 2 below allows
us to establish the same result for some fixed frequency θ0. To formulate this
assumption we introduce the projection operator Pk := E[ · |Gk]−E[ · |Gk−1], k ∈ Z.

Assumption 2. The process (Xt : t ∈ Z) is stationary and ergodic and for some
θ0 ∈ (−π, π] the following properties hold:
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(A1):
∑n

t=0 P0(Xt)e
−itθ0 is a Cauchy sequence in L2

H(Ω);

(A2): E
∥∥E[Sn(θ0)|G0]

∥∥2 = o(n).

This is our second main result.

Theorem 3. Let (Xt : t ∈ Z) be a sequence in L2
H(Ω) which satisfies Assumption 2

for some given θ0 ∈ (−π, π]. Then the CLT and the conclusions (I)–(III) of
Theorem 2 hold for frequency θ0. If Assumption 2 holds in addition for some
θ′0 6= θ0, then conclusion (IV) of Theorem 2 holds with (θ, θ′) = (θ0, θ

′
0).

Although Assumption 2 looks technical it is relatively easy to verify in a variety
of models, including functional ARMA, linear processes and L2-m-approximable
processes.
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Principal Components Analysis for Time Series

Qiwei Yao

(joint work with Jinyuan Chang and Bin Guo)

Let yt be observable p × 1 weakly stationary time series. We seek for a linear
transformation

xt = Ayt

such that the transformed series xt consists of q (> 1) both contemporaneously
and serially uncorrelated subseries. Hence all the autocovariance matrices of xt

are of the same block-diagonal structure with q blocks. Denote the segmentation
of xt by

(1) xt =




x
(1)
t
...

x
(q)
t


 , where Cov(x

(i)
t ,x

(j)
s ) = 0 for all t, s and i 6= j.

Therefore x
(1)
t , . . . ,x

(q)
t can be modelled or forecasted separately as far as their

linear dynamic structure is concerned.
The proposed method can be viewed as an extension of the standard PCA for

multiple time series, therefore, is abbreviated as TS-PCA. However the segmented
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subseries are not guaranteed to exist as those subseries must not correlate with
each other across all times. This is a marked difference from the standard PCA.
The real data examples indicate that it is often reasonable to assume that the
segmentation exists. Furthermore, when the assumption is invalid, the proposed
method provides some approximate segmentations which ignore some weak though
significant correlations, and those weak correlations are of little practical use for
modelling and forecasting. Thus the proposed method can be used as an initial step
in analysing multiple time series, which often transforms a multi-dimensional prob-
lem into several lower-dimensional problems. Furthermore the results obtained for
the transformed subseries can be easily transformed back to the original multiple
time series. Illustration with real data examples indicates clearly the advantages in
post-sample forecasting from using the proposed TS-PCA. The R-package PCA4TS,
available from CRAN project, implements the proposed methodology.

Wilks’ Phenomenon in Two-Step Semiparametric Empirical
Likelihood Inference

Ingrid Van Keilegom

(joint work with Francesco Bravo and Juan Carlos Escanciano)

In both parametric and certain nonparametric statistical models, the empirical
likelihood ratio satisfies a nonparametric version of Wilks’ theorem. For many
semiparametric models, however, the commonly used two-step (plug-in) empirical
likelihood ratio (see [2]) is not asymptotically distribution free, that is, Wilks’
phenomenon breaks down. In this paper we suggest a general approach to restore
Wilks’ phenomenon in two-step semiparametric empirical likelihood inferences.
The main insight consists in using as the moment function in the estimating equa-
tion the influence function of the plug-in sample moment. The proposed method
is general, and leads to distribution-free inference, namely to a χ2-limit. Hence,
Wilks’ phenomenon is valid. Moreover, the proposed procedure is less sensitive
to the first step estimator than alternative bootstrap methods. Several examples
are studied in more detail, and the high level conditions under which the general
theory is valid, are verified for these examples. They include empirical likelihood
based inference for : (1) the mean of interval censored data; (2) the average treat-
ment effect in observational studies; (3) estimating equations with missing data;
and (4) censored quantile regression. A simulation study illustrates the generality
of the procedure and demonstrates its good finite sample performance compared
to competing procedures based on asymptotic normality, bootstrap or two-step
(plug-in) empirical likelihood. In a second step the proposed procedure can be
generalized to empirical likelihood based goodness-of-fit tests for semiparametric
models that are distribution free.



606 Oberwolfach Report 12/2016

References

[1] F. Bravo, J.C. Escanciano and I. Van Keilegom, Wilks’ phenomenon in two-step semipara-
metric empirical likelihood inference, (2015) (submitted).

[2] N.L. Hjort, I.W. McKeague and I. Van Keilegom, Extending the scope of empirical likelihood,
The Annals of Statistics, 37 (2009), 568–603.

Spectral analysis of high-dimensional sample covariance matrices in
the missing-at-random scenario

Angelika Rohde

(joint work with Kamil Jurczak)

We study asymptotic spectral properties of high-dimensional sample covariance
matrices with missing observations. Let

Y = (Y1, ..., Yn) ∈ R
d×n, Yk = (Y1k, ..., Ydk)

∗ ∈ R
d, k = 1, ..., n,

be a sample of independent identically distributed (iid) random vectors with co-
variance matrix

T = E
(
(Y1 − EY1)⊗ (Y1 − EY1)

)
.

In examples as described above, we do not observe the whole random vector Yk
but some of its components. This missingness is represented by a random matrix
ε ∈ Rd×n with entries

εik =

{
1 if Yik is observed

0 if Yik is missing.

Under the assumption that the matrices Y and ε are independent, the estimator

T̂ij =
1

Nij

∑

k∈Nij

(
Yik − Ȳi

) (
Yjk − Ȳj

)

is the analogue of the sample covariance and hence the natural estimator for Tij ,
where

Nij =
{
k ∈ {1, . . . , n} : εikεjk = 1

}
, Nij = 1 ∨#Nij(1)

and

Ȳi =
1

Nii

∑

k∈Nii

Yik.

Subsequently, T̂ = (T̂ij) ∈ Rd×d is referred to as sample covariance matrix with
missing observations. If EYk = 0 is known in advance one typically uses the
estimator

Σ̂ =
(
Σ̂ij

)
∈ R

d×d, Σ̂ij =
1

Nij

∑

k∈Nij

YikYjk.

In what follows we write Ξ̂ for T̂ and Σ̂ if a statement holds for both estimators.
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1. Assumptions

Let (X(i, k))i,k∈N be a double array of iid centered random variables with unit
variance. The left upper d × n submatrix is denoted by Xd,n. Then the random
vectors Y1,d,n, . . . , Yn,d,n ∈ Rd are the columns of the matrix

Yd,n − EYd,n = T
1/2
d,nXd,n.

with
Td,n = diag(T11,d,n, . . . , Tdd,d,n) ∈ R

d×d.

This structure on the population covariance matrix is the simplest one which al-
lows to visualize the effects of missing observations on the spectrum of the sample
covariance matrix. In this article we investigate asymptotic spectral properties of
Ξ̂ under the classical missing (completely) at random (MAR) setting. (εd,n)d,n is
a triangular array of random matrices εd,n ∈ Rd×n independent of (X(i, k))i,k∈N,
where the entries εik,d,n are independent Bernoulli variables with observation prob-
abilities

P(εik,d,n = 1) = pi,d,n, i = 1, . . . , d, k = 1, . . . n.

The dependence of the set Nij and the number Nij in (1) on the sequence (εd,n)
is indicated by an additional subscript d, n. Throughout this report we impose
that the family of spectral measures of the population covariance matrices (Td,n)
as well as the family of empirical distributions

(µwd,n)d,n , with µwd,n =
1

d

d∑

i=1

δwi,d,n
and wd,n =

(
p−1
1,d,n, ..., p

−1
d,d,n

)
,

are tight. Asymptotic statements refer to d → ∞ while n = n(d) satisfies
lim supd→∞ (d/n) < ∞. The sequence of sample covariance matrices with miss-

ing observations is denoted by (Ξ̂d,n)d,n, the corresponding sequence of spectral
measures by (µd,n)d,n and their Stieltjes transforms by (md,n)d,n.

2. Results

Define

Sd,n = diag

(
1− p1,d,n
p1,d,n

T11,d,n, . . . ,
1− pd,d,n
pd,d,n

Tdd,d,n

)

and Rd,n = diag

(
1

p1,d,n
T11,d,n, . . . ,

1

pd,d,n
Tdd,d,n

)
.

Theorem 2.1. Suppose that the assumptions stated in Section 1 hold, and

sup
d

‖Rd,n‖S∞ <∞.

Then for any z ∈ C+, we have |md,n(z)−m◦
d,n(z)| → 0 a.s., where m◦

d,n(z) satisfies

m◦
d,n(z) =

1

d
tr





(
1

1 + d
ne

◦
d,n(z)

Rd,n − Sd,n − zId×d

)−1
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and e◦d,n is the (unique) solution of the fixed point equation

e◦d,n(z) =
1

d
tr



Rd,n

(
1

1 + d
ne

◦
d,n(z)

Rd,n − Sd,n − zId×d

)−1


 .

Moreover, m◦
d,n is the Stieltjes transform of a probability measure µ◦

d,n on R and

µ◦
d,n − µd,n =⇒ 0 a.s.

It is well-known that the Stieltjes transform of the Marčenko-Pastur law with
parameters

(
y, σ2/p0

)
is the unique solution to

s(z) =

(
σ2

p0
· 1

1 + σ2

p0
ys(z)

− z

)−1

from C+ → C+. In the special case Td,n = σ2Id×d and pd,n = (p0, . . . , p0) ∈ (0, 1)d,
we have

m◦
d,n

(
z − σ2 1− p0

p0

)
=


σ

2

p0

1

1 + d
n

σ2

p0
m◦

d,n

(
z − σ2 1−p0

p0

) − z




−1

.

Hence, µ◦
d,n is the Marčenko-Pastur law µMP

d
n ,σ

2

p0

shifted by σ2 1−p0

p0
to the left.

Corollary 2.2. Grant the conditions of Theorem 2.1. If pi,d,n = p0 > 0 for
i = 1, . . . , d and d, n ∈ N and Td,n = σ2Id×d, σ

2 > 0, we obtain

µd,n =⇒ µMP

y, σ
2

p0

⋆ δ− 1−p0
p0

σ2 a.s.

as d→ ∞ and d/n→ y > 0.

For Σ̂d,n we even determine the a.s. limit of the extremal eigenvalues.

Theorem 2.3. Grant the conditions of Corollary 2.2 let additionally EX4
11 < ∞

and εd,n ∈ Rd×n be the upper left corner of a double array (ε(i, k))i,k∈N of iid
Bernoulli variables with parameter p0. Assume that EYd,n = 0.Then, if 0 < y < 1,

lim
d→∞

λmin

(
Σ̂d,n

)
=
σ2

p0
(1−√

y)
2 − 1− p0

p0
σ2 a.s., and

lim
d→∞

λmax

(
Σ̂d,n

)
=
σ2

p0
(1 +

√
y)

2 − 1− p0
p0

σ2 a.s.

The characterization of positive definiteness in the null case under the missing
at random scenario is an immediate corollary of Theorem 2.3.

Corollary 2.4. Under the condition of Theorem 2.3,

lim
d→∞

λmin

(
Σ̂d,n

)
< 0 a.s. if p0 < 1− (1 −√

y)2, and

lim
d→∞

λmin

(
Σ̂d,n

)
> 0 a.s. if p0 > 1− (1 −√

y)2.
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Methodology for nonparametric deconvolution when the error
distribution is unknown

Aurore Delaigle

(joint work with Peter Hall)

In the nonparametric deconvolution problem we seek to estimate the distribution
FX of a random variable X , but only observe independent and identically dis-
tributed (i.i.d.) dataW1, . . . ,Wn on W = X+U , where U denotes a measurement
error independent of X . This classical error problem has received considerable at-
tention since the late 80s. For several decades, research in the area was performed
under the assumption that the distribution FU of the error U was known. See for
example Carroll and Hall [4], Stefanski and Carroll [14] and Fan [7].

The case of unknown FU has also been considered in the literature, where a
common approach is to assume the availability of additional data that make it
feasible to estimate FU , for example a sample of replicated contaminated data
(Li and Vuong [10], Lin and Carroll [11], Hall and Ma [8], Delaigle et al. [5]
and Stefanski and McIntyre [15]), or a direct sample from the error distribution
(Diggle and Hall, [6], and Neumann [13]). There is also interest in estimating FX

when FU is unknown and no additional data are available, although work in this
case consists largely of theoretical results in settings where a particular parametric
model for FU is available, not general methods that can be applied broadly and
enjoy particularly good performance. See Butucea and Matias [2], Meister [12],
Butucea et al. [3] and Kneip et al. [9].

Taking a completely new viewpoint, in this work we argue that FX can in many
cases be estimated consistently without knowing even the shape of FU , and without
extra data. All we require of FU is that it have basic properties of symmetry. This
level of generality is unusual in errors-in-variables problems. To achieve it we
use mathematical models for FX that are different from those that conventionally
are assumed when techniques are devised, or theory is developed, or simulation
studies are designed, in deconvolution problems. In particular, we suppose that
FX is drawn from a “random universe,” and for example is not symmetric.

We propose a new approach to inference in deconvolution problems, having two
novel, distinct components. First, we use a minimum variance method to pinpoint
the basic distribution that has been sampled, with noise, from a random universe.
Secondly, we use discrete rather than continuous distributions as the basis for
our methodology. In particular, our initial estimator of FX is discrete, and we
suggest running a smoother through it to make it continuous. The performance
of the resulting method is remarkably good, often equalling, or even exceeding,
techniques that use additional data to estimate the distribution of measurement
error.

This is a long abstract of the paper by [1], which was presented at the Ober-
wolfach workshop.
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Functional Canonical Correlations

Tailen Hsing

We introduce a general notion of canonical correlation that extends the classical
multivariate concept to include functional variables. The approach is based on the
singular value decomposition of a particular linear operator defined on reproduc-
ing kernel Hilbert spaces corresponding to the functional variables X and Y . In
this context, canonical correlations and variables are limits of finite-dimensional
subproblems thereby providing a seamless transition between Hotellings original
development and infinite dimensional settings. As a proof of concept, we present
some preliminary asymptotic theory for the inference problem. We first show that
it is possible to estimate the canonical correlations and the corresponding variables
consistently using a data-driven approach in a general setting. We also derive the
rate of convergence for the special case where the eigenvalues of the marginal
covariance operators decay in polynomial rates.
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Département de Mathématiques
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