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Introduction by the Organisers

The workshop was organized by Shiri Artstein-Avidan (Tel Aviv), Hermann König
(Kiel) and Alexander Koldobsky (Columbia, MO) and was attended by 25 experts
in relevant fields. The aim was to bring together specialists in thriving areas related
to Asymptotic Geometric Analysis, discuss exciting new results, open problems
and the ramifications with other areas of mathematics.

The field is concerned with the asymptotic behavior of various quantitative pa-
rameters of geometric objects in high-dimensional spaces such as volume, isotropic
constants or complexity parameters as their respective dimensions tend to infinity.
The main results were often formulated as exact or asymptotically exact inequal-
ities.

We desribe a few of these new results and inequalities in the following. P. Pivo-
varov proved isoperimetric inequalities for convex sets defined by random points
in Rn, e. g. volume minimization in the euclidean case and maximization in the
polar setup. This also included Brunn-Minkowski type inequalities, which were
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also studied for more general measures by A. Zvavitch. Very useful in the Brunn-
Minkowski theory is the Prekopa-Leindler inequality. D. Cordero-Erausquin pre-
sented a far-reaching generalization of this inequality to the multi-function setting.

The question how well the volume of lower dimensional projections or sections
of convex bodies determine the volume of the body leads to many interesting
questions which were discussed intensively. The Shephard- and the Busemann-
Petty problem are solved for some time, but the slicing problem is still an open
and important question which is equivalent to the boundedness of the isotropic
constant of convex bodies. These questions were discussed by A. Giannopoulos
who showed that estimates for the volume of projections by sections between two
bodies enables inequalities for the volume of the two sets. E. Milman estimated
the MM∗-parameter of convex bodies, which is of importance in Dvoretzky-type
theorems on spherical sections, in the case when the bodies are in isotropic position;
usually this is dome for the l-position. Special positions, after transformation by
linear maps, are often required for quantitative volume estimates. B.-H. Vritsiou
studied the thin-shell conjecture for the operator norm and, more generally, for
Schatten classes. Possible counterexamples to the slicing question were discussed
in terms of perturbations of Schatten classes (V. Milman), but this remains a
difficult open problem. A. Giannopoulos proved a quantitative version of Helly’s
theorem by estimating the volume of the intersection of (n + 1) sets in Rn by
asymptotically optimal constants times the volume of the intersection of all sets
in a given family.

The question how well convex bodies can be approximated by polytopes (in volume
or in the Hausdorff metric), e. g. by random choices of N points, was considered by
several lecturers. S. Szarek talked on complexity issues related to this, E. Werner
studied surface area deviations and R. Schneider explained results for approxi-
mations of spherically convex sets in Sn−1 by random spherical polytopes. Here
curvature influences the estimates. Random approximations by polytopes often
require concentration inequalities for random variables. S. Bobkov explained new
concentration inequalities and showed how the spread constants and the subgaus-
sian constants for subset measures can be estimated by those for full measures.
This has applications to concentration properties for certain non-Lipschitz func-
tions.

Several new constructions or characterizations of known constructions for convex
bodies were another topic of the meeting. V. Milman introduced harmonic means
of two convex bodies via polarity and defined geometric means by an iteration
technique. He studied surprising properties of these constructions, e. g. solving
”quadratic” equations for convex bodies. L. Rotem characterized Minkowski ad-
ditions and radial additions by very simple and natural properties. Intersection
bodies of non-symmetric convex bodies are generally not convex. M. Meyer proved,
however, that they can be reasonably well approximated by convex sets. O. Mord-
horst presented the solution of a problem of Grünbaum on affine invariant points,
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points like the center of gravity or the center of the maximal volume ellipsoid as-
sociated to a convex body. B. Klartag initiated the study of affine hemispheres of
elliptic type.

Some lectures were concerned with the interplay of Asymptotic Geometric Anal-
ysis with graph theory. A. Litvak and N. Tomczak-Jaegermann estimated the
probability that adjacency matrices of random graphs are invertible, building on
extensive experience of studying singular numbers of random matrices. M. Rudel-
son presented estimates for perfect matchings in random graphs by estimating
probabilities for permanents of adjacency matrices of these graphs.

Non-linear phenomena were discussed by G. Schechtman and G. Paouris. G.
Schechtman considered bi-Lipschitz embeddings of l2-sums of Hamming spaces in
the lq-norm into L1, using combinatorial inequalities. G. Paouris gave quantitative
estimates for the condition numbers of random polynomial systems, introduced to
find the zeros of these systems by Newton’s algorithm.

The Gaussian correlation problem, namely whether the Gaussian measure of the
intersection of two symmetric convex sets in R

n dominates the product of the
Gaussian measures of both sets, had attracted the attention of many experts in
the field. Very recently only, the positive solution of this problem by Thomas
Royen has become known, having been published already 2014 in a not too well-
known journal. M. Rudelson gave a beautiful presentation of the proof of this
exciting result, which was also attended by various participants of the parallel
workshop ”New Developments in Functional and Highly Multivariate Statistical
Methodology”. The participants benefited from many discussions and the stimu-
lating atmosphere at the MFO.

Acknowledgement: The MFO and the workshop organizers would like to thank
the National Science Foundation for supporting the participation of two junior
researchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach
Fellows”. The organizers would like to thank the MFO for supporting two further
participants through the Leibniz Graduate Students programme.
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Abstracts

Inequalities for measures of sections and projections of convex bodies

Apostolos A. Giannopoulos

We discuss lower dimensional versions of the slicing problem and of the Busemann-
Petty problem, both in the classical setting and in the generalized setting of arbi-
trary measures in place of volume, which was put forward by Koldobsky for the
slicing problem and by Zvavitch for the Busemann-Petty problem. We introduce
an alternative approach which is based on the generalized Blaschke-Petkantschin
formula and on asymptotic estimates for the dual affine quermassintegrals.

The lower dimensional slicing problem can be posed for a general measure as
follows: let g be a locally integrable non-negative function on Rn. For every
Borel subset B ⊆ Rn we define µ(B) =

∫

B g(x)dx, where, if B ⊆ F for some
subspace F ∈ Gn,s, 1 6 s 6 n − 1, integration is understood with respect to the
s-dimensional Lebesgue measure on F . Then, for any 1 6 k 6 n − 1 one may
define αn,k(µ) as the smallest constant α > 0 with the following property: For
every centered convex body K in Rn one has

µ(K) 6 αk max
F∈Gn,n−k

µ(K ∩ F ) |K| kn .

Koldobsky proved in [7] and in [8] that if K is a symmetric convex body in Rn

and if g is even and continuous on K then

µ(K) 6 (c
√
n)k max

F∈Gn,n−k

µ(K ∩ F ) |K| kn

for every 1 6 k 6 n− 1. In other words, for the symmetric analogue α
(s)
n,k of αn,k

one has supµ α
(s)
n,k(µ) 6 c

√
n. We provide a different proof of this fact; our method

allows us to drop the symmetry and continuity assumptions.

Theorem 1 (Chasapis-Giannopoulos-Liakopoulos). Let K be a convex body in Rn

with 0 ∈ int(K). Let g be a bounded locally integrable non-negative function on Rn

and let µ be the measure on R
n with density g. For every 1 6 k 6 n− 1,

µ(K) 6
(

c
√
n− k

)k

max
F∈Gn,n−k

µ(K ∩ F ) · |K| kn ,

where c > 0 is an absolute constant. In particular, αn,k(µ) 6 c
√
n− k.

The lower dimensional Busemann-Petty problem can be also posed for a general
measure: for any 1 6 k 6 n−1 and any measure µ on R

n with a locally integrable
non-negative density g one may define βn,k(µ) as the smallest constant β > 0 with
the following property: For every pair of centered convex bodies K and D in Rn

that satisfy µ(K ∩ F ) 6 µ(D ∩ F ) for every F ∈ Gn,n−k, one has

µ(K) 6 βkµ(D).
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Similarly, one may define the “symmetric” constant β
(s)
n,k(µ). Koldobsky and Zvav-

itch [9] proved that β
(s)
n,1(µ) 6

√
n for every measure µ with an even continuous

non-negative density. In fact, the study of these questions in the setting of gen-
eral measures was initiated by Zvavitch in [10], where he proved that the classical
Busemann-Petty problem for general measures has an affirmative answer if n 6 4
and a negative one if n > 5. We study the lower dimensional question and provide
a general estimate in the case where µ has an even log-concave density.

Theorem 2 (Chasapis-Giannopoulos-Liakopoulos). Let µ be a measure on Rn

with an even log-concave density g and let 1 6 k 6 n− 1. Let K be a symmetric
convex body in Rn and let D be a compact subset of Rn such that µ(K ∩ F ) 6

µ(D ∩ F ) for all F ∈ Gn,n−k. Then,

µ(K) 6 (ckLn−k)
k
µ(D),

where c > 0 is an absolute constant and Ls is the maximal isotropic constant in
Rs.

We also discuss a variant of the classical Busemann-Petty and Shephard prob-
lems, proposed by V. Milman at the Oberwolfach meeting on Convex Geometry
and its Applications (December 2015): Assume that K andD are origin-symmetric
convex bodies in Rn and satisfy

|Pξ⊥(K)| 6 |D ∩ ξ⊥|
for all ξ ∈ Sn−1. Does it follow that |K| 6 |D|? We show that the answer to this
question is affirmative. In fact, the lower dimensional analogue of the problem has
an affirmative answer. Moreover, one can drop the symmetry assumptions and
even the assumption of convexity for D.

Theorem 3 (Giannopoulos-Koldobsky). Let K be a convex body in Rn and let D
be a compact subset of Rn such that, for some 1 6 k 6 n− 1,

|PF (K)| 6 |D ∩ F |
for all F ∈ Gn,n−k. Then,

|K| 6 |D|.
In the third part of the talk we provide general inequalities that compare the

surface area S(K) of a convex body K in Rn to the minimal, average or maximal
surface area of its hyperplane or lower dimensional projections. We discuss the
same questions for all the quermassintegrals of K. We examine separately the
dependence of the constants on the dimension in the case where K is in some of
the classical positions or K is a projection body. Our results are in the spirit of the
hyperplane problem, with sections replaced by projections and volume by surface
area.

The starting point are two inequalities of Koldobsky about the surface area of
hyperplane projections of projection bodies. We provide analogues for an arbitrary
convex body. For example, we have:
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Theorem 4 (Giannopoulos-Koldobsky-Valettas). There exists an absolute con-
stant c1 > 0 such that, for every convex body K in Rn,

|K| 1n min
ξ∈Sn−1

S(Pξ⊥(K)) 6
c1∂K√
n
S(K) 6 c

√
nS(K),

where ∂K is the minimal surface area parameter of K.

Conversely, assuming that K is in the minimal surface area position we have:

|K| 1
n min
ξ∈Sn−1

S(Pξ⊥(K)) >
c√
n
S(K).

This estimate is sharp: we provide an example in which the two quantities are of
the same order.

Replacing min S(Pξ⊥(K)) by the expectation of S(Pξ⊥(K)) on the sphere we
get:

|K|
∫

Sn−1

S(Pξ⊥(K)) dσ(ξ) 6
c√
n
S(K)2.

It follows that if K is in some of the classical positions (minimal surface area,
isotropic or John’s position, or it is symmetric and in Löwner’s position) then

|K| 1
n

∫

Sn−1

S(Pξ⊥(K)) dσ(ξ) 6 c
√
nS(K).

The reason is that, in all these cases, the surface area of K satisfies an inequality

of the form S(K) 6 cn|K|n−1

n . Passing to lower bounds, we have
∫

Sn−1

S(Pξ⊥(K)) dσ(ξ) > c S(K)
n−2

n−1 .

A consequence is that if K is in the minimal surface area, minimal mean width,
isotropic, John or Löwner position, then

|K| 1n
∫

Sn−1

S(Pξ⊥(K)) dσ(ξ) > c S(K).

Our main tools are a result from [3] stating that

(∗)
S(Pξ⊥(K))

|Pξ⊥(K)| 6
2(n− 1)

n

S(K)

|K|
for every convex body K in Rn and any ξ ∈ Sn−1, estimates from [4] for the volume
of the projection body of a convex body in terms of its minimal surface area pa-
rameter, and Aleksandrov’s inequalities. For the study of the surface area and the
quermassintegrals of lower dimensional projections, the main additional ingredient
is a generalization of (∗) to subspaces of arbitrary dimension and quermassinte-
grals of any order, proved in [2]: If K is a convex body in Rn and 0 6 p 6 k 6 n,
then, for every F ∈ Gn,k,

Vn−p(K)

|K| >
1

(
n−k+p
n−k

)
Vk−p(PF (K))

|PF (K)| ,

where Vn−k(K) denotes the mixed volume V ((K,n− k), (Bn2 , k)).
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A few solutions to many problems on convex bodies, mainly from the

volumetric point of view

Mathieu Meyer

(joint work with Matthieu Fradelizi and Vlad Yaskin)

Let K be a convex body in Rn. According to a result of Grünbaum, if the centroid
of K is at the origin, then for every u ∈ Sn−1 we have

|K ∩ u+| ≥ e−1|K|,
where u+ = {x ∈ Rn : 〈u, x〉 ≥ 0}. It is a natural question whether there is
a similar result for sections of K. In other words, does there exist an absolute
constant c > 0 such that

|K ∩ v⊥ ∩ u+| ≥ c|K ∩ v⊥|,
for every u, v ∈ Sn−1 such that u 6= ±v? Here, v⊥ = {x ∈ Rn : 〈v, x〉 = 0}. The
centroid of K∩v⊥ may not be at 0 and so we cannot apply Grünbaum’s result. We
show that the answer to the latter question is affirmative. More generally, there
is an absolute constant c > 0 such that for every convex body K ⊂ Rn, every
(n− k)-dimensional subspace V , and any u ∈ Sn−1 ∩ V we have

|K ∩ V ∩ u+|n−k ≥ c

k2

(

1 +
k

n− k

)−n+k+2

|K ∩ V |n−k.

The results are actually proved in a more general setting, than described above:
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Theorem 1. Let n, p, k ≥ 1 be integers such that p ≤ k ≤ n. Let F be an
(n − k)-dimensional subspace of Rn and C ⊂ F⊥ be a cone. Let G = span(C),
p = dim(G), and assume that |C ∩ Bn2 |p > 0. Let K be a convex body in Rn with
centroid at the origin.
(1) Then

|K ∩ (F − C)|n−k+p
|K ∩ (F + C)|n−k+p

≤ kp
(

1 +
k

n+ 1 − k

)n−k (
n+ p− k

p

)(
n+ 1

k + 1

)− p

k+1

.

(2) If, moreover, K is in isotropic position, then

b−1 |Bn2 ∩ (F + C)|n−k+p
|Bn2 ∩ (F +G)|n−k+p

≤ |K ∩ (F + C)|n−k+p
|K ∩ (F +G)|n−k+p

≤ b
|Bn2 ∩ (F + C)|n−k+p
|Bn2 ∩ (F +G)|n−k+p

,

where a is the absolute constant and

b = min

{

np, akp
(

1 +
k

n+ 1 − k

)n−k (
n+ p− k

p

)(
n+ 1

k + 1

)− p

k+1

}

,

Corollary 1. There is an absolute constant c > 0 such that for any integers
n ≥ k ≥ 1, any convex body K in Rn whose centroid is at the origin, any (n− k)-
dimensional subspace F of Rn, and any θ ∈ Sn−1 ∩ F⊥, we have

|K ∩ (F + R+θ)|n−k+1

|K ∩ (F + R−θ)|n−k+1
≤ ck2

(

1 +
k

n− k + 1

)n−k−1

.

Corollary 2. There exists a constant c > 0 such that for any convex body K in
R
n, n ≥ 2, with centroid at 0, and every u, v ∈ Sn−1 such that v 6= ±u, one has

1

c
≤
∣
∣{x ∈ K : 〈x, u〉 = 0, 〈x, v〉 ≥ 0}

∣
∣
n−1

∣
∣{x ∈ K : 〈x, u〉 = 0, 〈x, v〉 ≤ 0}

∣
∣
n−1

≤ c.

Corollary 3. Let K be an isotropic convex body in Rn. If u1, . . . , uk ∈ Sn−1 are
pairwise orthogonal, then, for some absolute constant c > 0, one has

1

min{nk, ck2}|K| ≤ |K ∩
k⋂

i=1

{x ∈ R
n : 〈x, ui〉 ≥ 0}| ≤ min{nk, ck2}|K|.

Our results also allow us to give a positive answer to a problem posed in [13] by
Meyer and Reisner. A star body K in Rn is a compact set such that [0, x] ⊂ K
for every x ∈ K, and whose radial function, defined by rK(u) = max{a ≥ 0 :
au ∈ K}, u ∈ Sn−1, is positive and continuous. The intersection body of K,
introduced by Lutwak [12], is a star body I(K) whose radial function is

rI(K)(u) = |K ∩ u⊥|, for all u ∈ Sn−1.

By Busemann’s theorem, if K is origin-symmetric and convex, I(K) is also convex.
Without symmetry, this statement is not true. To rectify the situation, Meyer and
Reisner [13] suggested a new construction, which allowed to extend Busemann’s
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theorem to non-symmetric bodies. Let K be a convex body whose centroid is at
0. Define the convex intersection body CI(K) of K by its radial function:

rCI(K)(u) = min
z∈u⊥

|(PuK∗)∗z |, u ∈ Sn−1,

where K∗ is the polar body of K with respect to 0, Pu is the orthogonal projection
onto the hyperplane u⊥, and for C ⊂ u⊥ and z ∈ u⊥, C∗z is the polar body of
C in u⊥ with respect of z: C∗z = {y ∈ u⊥ : 〈y − z, x − z〉 ≤ 1 for all x ∈ C}. It
was proved in [13] that CI(K) is always convex, whenever K is convex. Moreover,
CI(K) ⊂ I(K), with equality if and only if K is origin-symmetric.

Recall that K is said to be in isotropic position if the centroid of K is at 0,
|K| = 1 and

∫

K
〈x, u〉2 dx is independent of u ∈ Sn−1. It is a well-known result

(see Hensley [10], Ball [1], Schütt [15], Fradelizi [7]) that for a convex body K in
isotropic position, I(K) is “almost” a ball,: there is a universal constant c such
that

c−1 ≤ rI(K)(u1)

rI(K)(u2)
≤ c,

for any u1, u2 ∈ Sn−1. In [13] it was asked whether the same would be true
for CI(K). As an application of our results, we obtain a positive answer to this
conjecture:

Theorem 2. There exists an absolute constant c > 0 such that for every n ≥ 2
and every convex body K in Rn with centroid at the origin, one has

cI(K) ⊂ CI(K) ⊂ I(K).
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On adjacency matrices of d-regular graphs and almost constant vectors

Nicole Tomczak-Jaegermann

(joint work with Alexander Litvak, Anna Lytova, Konstantin Tikhomirov, Pierre
Youssef)

In this talk we describe structure of adjacency matrices of regular d-graphs which
is responsible for non-singularity of these matrices.

Our results depend in an essential way on (old and new) properties of regular
graphs, however in the talk we shall not develop this direction, and we rather
concentrate on properties of a corresponding set of matrices.

Let 1 ≤ d < n be integers. Let M be an n×n matrix with 0/1 entries such that
the sum over each column and each row is equal to d. By Mn,d we shall denote
the set of all such matrices.We also consider the uniform probability measure P on
Mn,d defined by

P(F) =
|F|

|Mn,d|
,

for any subset F ⊂ Mn,d.
Our main theorem states

(1.1) P{M ∈ Mn,d : M is nonsingular} > 0.

Moreover, the probability above is a function of n and d, with the limit equal to
1 whenever n→ ∞ and d→ ∞.

One of a general idea in proving (1.1) is to identify some special sets of vectors
which have empty intersections with kernels of matrices taken from a set of prob-
ability close to 1. We illustrate this method by introducing the concept of almost
constant vectors, which is of interest on its own.

We say that a non-zero vector is “almost constant” if for some 0 < p < 1/2 at
least (1− p)n of its coordinates are equal to each other. Formally, for 0 < p < 1/2
consider the following set of vectors

(1.2) AC(p) = {x ∈ R
n \ {0} : ∃λx ∈ R |{i : xi = λx}| ≥ (1 − p)n}.

In this section we estimate the probability of the event

(1.3) EAC(p) := {M ∈ Mn,d : ∀x ∈ AC(p) Mx 6= 0 and xTM 6= 0},
which relates almost constant vectors to null vectors of M . We show that that this
probability is close to one, in other words we show that with high probability a
matrix M ∈ Mn,d cannot have almost constant null vectors. This will be used in
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the proof of the main theorem allowing to restrict the proof to the event EAC(p).
More precisely, we prove the following theorem.

Theorem 1. There are absolute positive constants C, c such that for C ≤ d ≤ cn
and p ≤ c/ lnd one has

(1.4) P
(
EAC(p)

)
≥ 1 −

(
Cd

n

)cd

.

We will split AC(p) into four sets: the set of vectors having less than n/d non-
zero coordinates, the set of vectors having significant jump in absolute values of
the first largest n/d coordinates, the set of vectors having a part of coordinates
far enough from λx of the order n/d, and the rest of vectors. The most difficult
is the second case above and the rest is relatively easy and all them together are
leading to a proof of Theorem 1.
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Concentration properties of restricted measures with applications to

non-Lipschitz functions

Sergey G. Bobkov

(joint work with Piotr Nayar and Prasad Tetali)

Given a metric probability space (M,d, µ), we consider two characteristics quan-
tifying the concentration property: The spread constant

s2(µ) = sup Varµ(f) = sup

∫

(f −m)2 dµ,

where m =
∫
f dµ and the sup is running over all Lipschitz functions f on M with

‖f‖Lip ≤ 1, and the subgaussian constant, which is an optimal value σ2 = σ2(µ)
such that ∫

etf dµ ≤ eσ
2t2/2 (t ∈ R),

for any f on M with m = 0 and ‖f‖Lip ≤ 1. The latter is equivalent to the
maximal ψ2-norm over all Lipschitz mean zero functions on M .

These characteristics were explicitly introduced in [A-B-S] and [B-H-T], cf. also
[B-G], [L]. For example, s2 = σ2 = 1 for the standard Gaussian measure on
M = Rn with the Euclidean distance, and s2 = σ2 = 1

n−1 for the uniform measure

on the unit sphere M = Sn−1 equipped with the geodesic distance.
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Given an arbitrary Borel subset A ⊂ M with p = µ(A) > 0, we consider these
quantities for the normalized restricted measure

µA(B) =
µ(A ∩B)

µ(A)
, B ⊂M,

and prove the following:

Theorem 1. Up to a numerical constant c > 0,

σ2(µA) ≤ c log
(e

p

)

σ2(µ).

In addition, if the Poincaré constant λ1 = λ1(µ) is positive, we also have

s2(µA) ≤ c log2
(e

p

) 1

λ1
.

In case of the standard Gaussian measure on Rn and convex sets A, a result of
D. Bakry and M. Ledoux [B-L] yields a uniform bound σ2(µA) ≤ 1. However, in
general, the p-dependent factors in the above bounds are asymptotically optimal
for p → 0. The statement about the spread constant may further be sharpened
using exponential bounds going back to the work of M. Gromov and V. D. Milman
[G-M].

These bounds may be used to study large deviations of not necessarily Lipschitz
functions on M . Given a locally Lipschitz function f on M , consider the sublevel
sets

AL = {x ∈M : |∇f(x)| ≤ L}, L > 0.

Corollary 2. Suppose that f has Lipschitz semi-norms at most L on the sets AL.

If
∫
e|∇f |

2

dµ ≤ 2, then with some absolute constant c > 0,

µ
{
|f −m| ≥ r

}
≤ 2 e−r/cσ(µ) (r > 0).

Equivalently (up to an absolute factor), we have a Sobolev-type inequality

‖f −m‖ψ1
≤ cσ(µ) ‖∇f‖ψ2

for the Orlicz norms generated by the Young functions ψα(t) = e|t|
α −1 (α = 1, 2).

Theorem 1 may also be used to generalize a theorem due to M. Talagrand [T1-2]
about Gaussian deviations of Lipschitz convex functions on [−1, 1]n with respect
to arbitrary product measures µ = µ1 ⊗ · · · ⊗ µn on the cube. For such measures,
we have:

Corollary 3. If µ{|∇f | ≥ L0} ≤ 1
2 , then for all r > 0,

(µ⊗ µ)
{
|f(x) − f(y)| ≥ r

}
≤ 2 inf

L≥L0

[

e−r
2/cL2

+ µ
{
|∇f | > L

}]

.

In particular, for any convex f on Rn with µ-mean zero,

‖f‖ψ1
≤ c ‖∇f‖ψ2

.
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[B-G-H] Bobkov, S. G.; Houdré, C.; Tetali, P. The subgaussian constant and concentration
inequalities. Israel J. Math. 156 (2006), 255–283.

[G-M] Gromov, M.; Milman, V. D. A topological application of the isoperimetric inequality.
Amer. J. Math. 105 (1983), no. 4, 843–854.

[L] Ledoux, M. The Concentration of Measure Phenomenon. Mathematical Surveys and
Monographs 89 (2001), Amer. Math. Soc., Providence, RI.

[T1] Talagrand, M. An isoperimetric theorem on the cube and the Khinchine–Kahane in-
equalities. Proc. Amer. Math. Soc. 104 (1988), 905–909.

[T2] Talagrand, M. Concentration of measure and isoperimetric inequalities in product
spaces. Publ. Math. I.H.E.S. 81 (1995), 73–205.

Some extensions of the Prékopa-Leindler inequality using Borell’s

stochastic approach

Dario Cordero-Erausquin

(joint work with Bernard Maurey)

There is a long story of functional generalizations of the Brunn-Minkowski inequal-
ity. A somewhat definitive form is given by the following theorem (see also [2]).

Theorem 1 (Prékopa–Leindler inequality). Let t ∈ [0, 1] and let f0, f1, g : Rn →
R ∪ {+∞} be Borel functions such that, for every x0, x1 ∈ Rn,

g ((1 − t)x0 + tx1) ≤ (1 − t)f0(x0) + tf1(x1).

Then
∫

Rn

e−g(x) dx ≥
(∫

Rn

e−f0(x) dx

)1−t(∫

Rn

e−f1(x) dx

)t

.

Accepting the value +∞ enables us to reach directly indicator functions 1E =
e−fE , by letting fE be 0 on E and +∞, and thus to reproduce the Brunn-
Minkowski inequality |(1 − t)A+ tB| ≥ |A|1−t|B|t.

One can reasonably argue that the interest of the Prékopa–Leindler inequality
resides not only in its consequences but also in the emphasis it has put on log-
concavity, and in the related techniques of proof it has originated, such as mass
transportation or semi-group techniques, and more recently L2-methods (as in [4]).
Here, we will concentrate on Borell’s stochastic approach [3] to the inequality
above. It somehow reduces the inequalities under study to the convexity of | · |2,
the square of the Euclidean norm on Rn. It will allow us to obtain some unexpected
inequalities, for instance that of the following proposition.
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Proposition 2. Let f0, f1, g0, g1 be four Borel functions from R
n to R ∪ {+∞}

such that, for every x0, x1 ∈ Rn,

(1.1) g0(2x0/3 + x1/3) + g1(x0/3 + 2x1/3) ≤ f0(x0) + f1(x1).

Then
(∫

Rn

e−g0(x) dx

)(∫

Rn

e−g1(x) dx

)

≥
(∫

Rn

e−f0(x) dx

)(∫

Rn

e−f1(x) dx

)

.

We will see that it is rather natural to arrive to this type of inequality using
Borell’s stochastic approach, whereas it seems not to be the case with other meth-
ods, for instance those based on transportation methods. Note however that this
functional inequality is interesting only for functions (the game is to distribute the
values between the four functions): it does not give anything new when applied to
the case where the functions e−fi ’s are indicators of sets. The previous proposition
and its proof suggest actually more general inequalities.

Assume we are given two measure spaces X1 = (Ω1,Σ1, µ1) and X2 = (Ω2,Σ2,
µ2), where Σi is a σ-algebra of subsets of Ωi, i = 1, 2, and where µ1 and µ2 have
the same finite mass, µ1(Ω1) = µ2(Ω2) < +∞. We are also given an integer n ≥ 1
and a continuous linear operator

A : L2(X1,R
n) → L2(X2,R

n),

where the L2-norms of the Rn-valued functions are computed with respect to the
Euclidean norm | · | on Rn and the measures µ1 and µ2, respectively. We assume
that

(1) the operator A satisfies the norm condition ‖A‖ ≤ 1,
(2) the operator A acts as the identity on the constant vector valued functions,

i.e., for any v0 ∈ Rn, the constant function Ω1 ∋ s → v0 is sent by A to
the constant function Ω2 ∋ t→ v0.

Theorem 3. Let {fs}s∈Ω1
and {gt}t∈Ω2

be two families of Borel functions from
Rn to R ∪ {+∞} for which we make some appropriate integrability assumptions
(see our paper). Then, if for every α ∈ L2(X1,R

n) we have

(1.2)

∫

Ω2

gt((Aα)(t)) dµ2(t) ≤
∫

Ω1

fs(α(s)) dµ1(s),

it follows that

(1.3)

∫

Ω2

− log

(∫

Rn

e−gt(x) dx

)

dµ2(t) ≤
∫

Ω1

− log

(∫

Rn

e−fs(x) dx

)

dµ1(s).

With first establish this inequality when integration on Rn is with respect to an
(isotropic) Gaussian measure (that is, the law of of a standard Brownian motion
at some time T > 0), using Borell’s stochastic approach. The condition µ(X1) =
µ(X2) is then only used to pass to the Lebesgue measure using homogeneity and
letting the variance go to +∞. As a matter of fact, many of the functional Brunn-
Minkowski type inequalities are genuinely Gaussian inequalities: the Lebesgue
measure is here only a ”flat” Gaussian measure.
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In many applications, X1 and X2 are finite probability spaces, and we are then
working with finite families of objects parametrized by Ω1 and Ω2, or rather by
the supports supp(µ1) and supp(µ2); in particular, the mappings α : Ω1 → Rn are
families of |Ω1| vectors of Rn and the linear operator

A : (Rn)|Ω1| → (Rn)|Ω2|

is norm-one for the operator norm associated to the ℓ2-norms weighted by the
µi’s, with the property that the vector (x, . . . , x) ∈ (Rn)|Ω1| is sent to (x, . . . , x) ∈
(Rn)|Ω2|, for every x ∈ Rn. In this case, there is no further integrability assump-
tions in the Theorem above.

In the case |Ω1| = 1 and |Ω2| = 2, we find the Hölder inequality. In the case
|Ω1| = 2 and |Ω2| = 1 we get the Prékopa-Leindler inequality; indeed, for X1 =
({0}, δ0) and X2 = ({0, 1}, (1 − t)δ0 + tδ1), the assumptions are satisfied for the
map A(x0, x1) = (1− t)x0+ tx1. New situations appear when |Ω1| = |Ω2| = 2. For
instance if X1 = X2 = ({0, 1}, 12δ0+ 1

2δ1) with A(x0, x1) = (23x0+ 1
3x1,

1
3x0+ 2

3x1),

we get the Proposition above, since A(x, x) = (x, x) and |2x0/3 +x1/3|2 + |x0/3 +
2x1/3|2 ≤ |x0|2 + |x1|2.

We can also work with functions leaving in different dimensions, for instance on
R
n on one side and on R

m on the other side. The only difference is that we have to
adapt the ”preserving constant” assumption, using projections (or rather adjoints
of partial isometries). Then, we can reproduce and extend the Brascamp–Lieb
inequality (in geometric form) and its reverse form devised by Franck Barthe [1].
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M, M* and Concentration of Isotropic Convex Bodies

Emanuel Milman

Let K denote an origin-symmetric convex body (i.e. compact set with non-empty
interior) in R

n. The norm on R
n having unit-ball K is denoted by ‖·‖K , and the

dual norm by ‖·‖∗K . Let:

M(K) =

∫

Sn−1

‖θ‖K dσSn−1(θ) , M∗(K) =

∫

Sn−1

‖θ‖∗K dσSn−1(θ),
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denote the mean-norm and (half) mean-width of K (here σSn−1 denotes the Haar
probability measure on Sn−1). It is well-known by the Jensen and Urysohn in-
equalities that:

(1.1)
1

M(K)
≤ v.rad(K) :=

( |K|
|Bn2 |

)1/n

≤M∗(K),

where |·| denotes Lebesgue measure. In our talk, we describe new best-known
reverse inequalities when K is in isotropic position.

Recall that K is called isotropic if |K| = 1, its barycenter is at the origin and
its covariance matrix Cov(K) :=

(∫

K
xixjdx

)

i,j
is a multiple of the identity L2

KId.

The constant LK > 0 is called the isotropic constant of K. It is well-known that
any body K has an affine image which is isotropic (and which is unique modulo
orthogonal transformations). The Slicing Problem, posed by Bourgain in the 80’s,
asked whether it is possible to upper bound LK for all convex bodies by a universal
constant, independent of dimension. Note that v.rad(K) ≃ √

n when |K| = 1.
In the first part of the talk, based on our work [2], we obtain the bound:

M∗(K) ≤ C
√
n log(n)2LK ,

where C > 0 is a universal constant. This improves the previous best-known
estimate M∗(K) ≤ Cn3/4LK . Up to the power of the log(n) term and the LK
one, the improved bound is best possible, and implies that the isotropic position
is (up to the LK term) an almost 2-regular M -position. The bound extends to
any arbitrary position, depending on a certain weighted average of the eigenvalues
of the covariance matrix Cov(K). Furthermore, the bound applies to the mean-
width of Lp-centroid bodies, extending a sharp upper bound of Paouris [4] for
1 ≤ p ≤ √

n to an almost-sharp bound for an arbitrary p ≥ √
n. The question of

whether it is possible to remove the LK term from the new bound is essentially
equivalent to the Slicing Problem, to within logarithmic factors in n. The proof
is based on an application of a refinement of Dudley’s entropy bound due to V.
Milman and G. Pisier [3].

In the second part of the talk, based on a joint work with Apostolos Giannopou-
los [1], we show that if K ⊇ rBn2 then:

√
nM(K) 6 C

n∑

k=1

1√
k

min

(
1

r
,
n

k
log
(

e+
n

k

) 1

v−k (K)

)

,

where v−k (K) denotes the minimal volume-radius of a k-dimensional orthogonal
projection of K. We apply this result to the study of M(K) and its Lp-centroid
bodies when K is isotropic. In particular, we obtain the following best-known
estimate:

1

M(K)
≥

10
√
nLK

C log2/5(e + n)
.

Better estimates on M(K) and on the dual covering estimates on K are obtained
in the case that K’s marginals (of arbitrary dimension) have bounded isotropic
constant.
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Pythagorean powers of hypercubes

Gideon Schechtman

(joint work with Assaf Naor)

For 1 ≤ p, q ≤ 2, ℓp(ℓq) isomorphically embeds into L1 = L1(0, 1) if and only if
p ≤ q. The best proof of this with the right estimates for the distance of ℓnp (ℓmq )
from a subspace of L1 follows from an inequality of Kwapień and Schütt.

1

n

n∑

j=1

∑

ε∈{−1,1}n

∥
∥
∥

n∑

k=1

εkzjk

∥
∥
∥
1
.

1

n!

∑

π∈Sn

∑

ε∈{−1,1}n

∥
∥
∥

n∑

j=1

εjzjπ(j)

∥
∥
∥
1
,

for all n and all {zjk}nj,k=1 ⊆ L1, where Sn is the group of all permutations of

{1, . . . , n}.

If {zjk}nj,k is the natural basis of ℓnp (ℓnq ),

1

n

n∑

j=1

∥
∥
∥

n∑

k=1

εkzjk

∥
∥
∥ = n1/q

and
1

n!

∑

π∈Sn

∥
∥
∥

n∑

j=1

εjzjπ(j)

∥
∥
∥ = n1/p.

So n
1
p
− 1

q . d(ℓnp (ℓnq ), SL1).
Recall that a metric space (X, dX) is said to admit a bi-Lipschitz embedding

into a metric space (Y, dY ) if there exist s ∈ (0,∞), D ∈ [1,∞) and a mapping
f : X → Y such that

∀x, y ∈ X, sdX(x, y) ≤ dY (f(x), f(y)) ≤ DsdX(x, y).

When this happens we say that (X, dX) embeds into (Y, dY ) with distortion at
most D. We denote by cY (X) the infimum over such D ∈ [1,∞]. When Y = Lp
we use the shorter notation cLp

(X) = cp(X).
We will be interested in lower bounding the distortion of embedding the ℓnp sum

of the discrete cube Fn2 with the ℓq norm into L1. We shall restrict ourselves here
to the case p = 2 and q = 1. So we’re interested in c1(ℓn2 (Fn2 )) where Fn2 is the
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n-dimensional discrete hypercube, endowed with the metric inherited from ℓn1 via
the identification Fn2 = {0, 1}n ⊂ Rn.

By general principles (ultraproduct, w∗-Gâteaux differentiation), the above
stated result of Kwapień and Schütt formally implies that

lim
n→∞

c1(ℓn2 (Fn2 )) = ∞,

but such arguments don’t give quantitative results. Our main result is

Theorem 1. c1(ℓn2 (Fn2 )) ≍ √
n.

More generally

Theorem 2. For all 1 ≤ p < q

c1(ℓnq (Fn2 , ‖ · ‖p)) ≍ n
1
p
− 1

q .

To prove Theorem 1 it is tempting to try and prove the inequality

1

n

n∑

j=1

∑

x∈Mn(F2)

∣
∣
∣f
(

x+

n∑

k=1

ejk

)

− f(x)
∣
∣
∣

≤K
n!

∑

π∈Sn

∑

x∈Mn(F2)

∣
∣
∣f
(

x+

n∑

j=1

ejπ(j)

)

− f(x)
∣
∣
∣

for every n ∈ N and every f : Mn(F2) → R. This follows a paradigm set out
by Enflo in the 70-s. For f(x) =

∑n
i=1

∑n
k=1(−1)xikzik we recover the linear

inequality. However, it turns out that the inequality we propose never holds.
Instead, the inequality

(1.1)
1

n

n∑

j=1

∑

ε∈{−1,1}n

∥
∥
∥

n∑

k=1

εkzjk

∥
∥
∥
1
≤ C

nn

∑

k∈{1,...,n}n

∑

ε∈{−1,1}n

∥
∥
∥

n∑

j=1

εjzjkj

∥
∥
∥
1

for every n ∈ N and every {zjk}nj,k=1 ⊂ L1, is, provided it holds, as good to prove

that c1(ℓn2 (ℓn1 )) &
√
n.

It turns out that this inequality holds, generalizes to an appropriate metric
inequality, and the proof of the metric inequality is even simpler than that of the
original KS inequality.

Theorem 3. For all n ∈ 2N and every f : Mn(F2) → L1 we have

1

n

n∑

j=1

∑

x∈Mn(F2)

∥
∥
∥f
(

x+

n∑

k=1

ejk

)

− f(x)
∥
∥
∥
1

≤ 2e2

e2 − 1

1

nn

∑

k∈{1,...,n}n

∑

x∈Mn(F2)

∥
∥
∥f
(

x+

n∑

j=1

ejkj

)

− f(x)
∥
∥
∥
1
.

Theorem 1 as well as (1.1) follow easily.
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Affine hemispheres of elliptic type

Bo’az Klartag

Let M ⊆ Rn+1 be a smooth, connected hypersurface which is locally strongly-
convex, i.e., the second fundamental form is a definite symmetric bilinear form at
any point y ∈ M . For y ∈ M we write TyM for the tangent space to M at y,
viewed as an affine subspace of Rn+1. When the origin does not belong to this
affine subspace, we may define a vector νy ∈ R

n+1 via the requirements that

〈νy, y〉 = 1 and νy ⊥ TyM.

When νy is well-defined for any y ∈M , we refer to ν : M → Rn+1 as the polarity
map. In this case the polar hypersurface M∗ is defined as

M∗ := ν(M) = {νy ; y ∈M} .
It is well-known that M∗ is always a smooth, connected, locally strongly-convex
hypersurface, that the polarity map ν : M → M∗ is a diffeomorphism, and its
inverse is the polarity map associated with M∗. In particular, (M∗)∗ = M . We
define the cone measure µM on a smooth hypersurface M ⊆ Rn+1 via the require-
ment that for any Borel subset S ⊆ M that does not contain two distinct points
on the same ray from the origin,

µM (S) = Voln+1 ({tx ; 0 ≤ t ≤ 1, x ∈ S}) .

Definition 1. Let M ⊆ Rn+1 be a smooth, connected, locally strongly-convex
hypersurface. We say that M is “affinely-spherical with center at the origin” if the
polarity map ν : M →M∗ is well-defined, and it pushes forward the cone measure
µM to a measure proportional to the cone measure µM∗ .

An affine sphere is an affinely-spherical hypersurface which is complete, i.e., it
is a closed subset of Rn+1. This definition is clearly affinely-invariant, hence the
term “affine sphere”. Affine spheres were introduced by the Romanian geometer
Tzitzéica in 1909. All convex quadratic hypersurfaces in Rn+1 are affine spheres,
as well as the hypersurface

(1.1) M =

{

(x1, . . . , xn) ∈ R
n ; ∀i, xi > 0,

n∏

i=1

xi = 1

}

.

Any affinely spherical hypersurface M with center at the origin is either of elliptic
type or of hyperbolic type: We say that M is of elliptic type if for any y ∈ M ,
the ray from y to the origin passes through the convex side of M , while it is of
hyperbolic type if the ray goes through the concave side of M .
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Ellipsoids in R
n+1 are elliptic affine spheres. There are no other examples of

complete affine spheres of elliptic type. This non-trivial theorem is the culmination
of the works of Blaschke, Deicke, Calabi and Cheng-Yau. See the survey by Loftin
[3] for details. While affine spheres of elliptic or parabolic type are quite rare,
there are many hyperbolic affine spheres in Rn+1. From the works of Calabi
and Cheng-Yau we learn that for any non-empty, open, convex cone C ⊆ Rn+1

that does not contain a full line, there exists a hyperbolic affine sphere which
is asymptotic to the cone. This hyperbolic affine sphere is determined by the
cone C up to homothety, and all hyperbolic affine spheres in R

n+1 arise this way.
The hyperbolic affine sphere in (1.1), for example, is asymptotic to the positive
orthant. Why are there so few elliptic affine spheres, compared to the abundance
of hyperbolic affine spheres? Perhaps completeness is too strong a requirement in
the elliptic case. We propose the following:

Definition 2. Let M ⊆ Rn+1 be a smooth, connected, locally strongly-convex
hypersurface. We say that M is an “affine hemisphere” if

(1) There exist compact, convex sets K, K̃ ⊆ Rn+1, with dim(K) = n and

dim(K̃) = n + 1, such that M does not intersect the affine hyperplane
spanned by K and

K ∪M = ∂K̃.

(2) The hypersurface M is affinely-spherical with center at the relative interior
of K.

We say that K is the “anchor” of the affine hemisphere M .

In Definition 2, the dimension dim(K) is the maximal number N such that K
contains N + 1 affinely-independent vectors. Note that when M ⊆ Rn+1 is an
affine hemisphere, its anchor K is the compact, convex set enclosed by M \M ,
where M is the closure of M . In particular, K = Conv(M \ M) where Conv
denotes convex hull. It is clear that an affine hemisphere is always of elliptic type.
Our main result is the following:

Theorem 3. Let K ⊆ Rn+1 be an n-dimensional, compact, convex set. Then
there exists an affine hemisphere M ⊆ Rn+1 with anchor K, uniquely determined
up to affine transformations. The affine hemisphere M is centered at the Santaló
point of K.

Thus, with any n-dimensional, compact, convex set K ⊆ Rn+1 we associate an
(n + 1)-dimensional, compact, convex set K̃ ⊆ Rn+1 whose boundary consists of
two parts: the convex set K itself is a facet, and the rest of the boundary is an
affine hemisphere M centered at the Santaló point of K.

There is a rich geometric structure associated with an affine sphere M . One
may associate a natural Riemannian metric to M , which is simply the second
fundamental form divided by the Gauss curvature to the power of 1/(n+ 2). As
it turns out, the Ricci curvature is positive for affinely spherical hypersurfaces of
elliptic type and it is non-positive for affine spheres of hyperbolic type. The first
eigenvalue of the Dirichlet Laplacian on an affine hemisphere equals −n, with the
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K

M

Figure 1. Half of an ellipse, which is an affine one-dimensional
hemisphere in R2.

eigenfunction being a coordinate function. As for the proof of Theorem 3, it relies
upon analysis of the equation with the constraint

(1.2)

{
det∇2ϕ = C/ϕn+2 in Rn

∇ϕ(Rn) = K◦

where ϕ : Rn → (0,∞) is a smooth, convex function and K ⊆ Rn is a convex body
whose Santaló point is at the origin. In fact, the affine hemisphere with anchor K
is M = J(graph(ϕ)) where

graph(ϕ) = {(x, t) ; x ∈ R
n, t = ϕ(x)} and J(x, t) =

(
x

t
,

1

t

)

.

The equation (1.2) is similar to the moment measures of Berman and Berndtsson
[1] and Cordero-Erausquin and Klartag [2]. The existence and the uniqueness
of the solution are proven via a variational problem. Namely, we analyze the
subgradient of the functional

I(ψ) =

(∫

Rn

dx

(ψ∗(x))n+1

)−1

,

where ψ∗ is the Legendre transform of ψ. The convexity of the functional I, which
follows from the Borell-Brascamp-Lieb inequality, is the key for the proof.
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The Surface Area Deviation of the Euclidean Ball and a Polytope

Elisabeth Werner

(joint work with Steven Hoehner and Carsten Schütt)

How well can a convex body be approximated by a polytope? This is a fundamental
question not only in convex geometry, but also in view of applications in stochastic
geometry, complexity, geometric algorithms and many more (e.g., [6, 7, 8, 9, 10,
14, 15, 22, 24]).

Accuracy of approximation is often measured in the symmetric difference metric,
which reflects the volume deviation of the approximating and approximated ob-
jects. Approximation of a convex body K by inscribed or circumscribed polytopes
with respect to this metric has been studied extensively and many of the major
questions have been resolved. We refer to, e.g., the surveys and books by Gruber
[13, 16, 17] and the references there and to, e.g., [1, 2, 4, 11, 19, 23, 25, 27, 28].

Sometimes it is more advantageous to consider the surface area deviation ∆s

[3, 4, 12] instead of the volume deviation ∆v. It is especially desirable because if
best approximation of convex bodies is replaced by random approximation, then
we have essentially the same amount of information for volume, surface area, and
mean width ([4],[5]), which are three of the quermassintegrals of a convex body
(see, e.g., [26, 8]).

For convex bodies K and L in Rn with boundaries ∂K and ∂L, the symmetric
surface area deviation is defined as

(1.1) ∆s(K,L) = voln−1 (∂(K ∪ L)) − voln−1 (∂(K ∩ L)) .

Typically, approximation by polytopes often involves side conditions, like a pre-
scribed number of vertices, or, more generally, k-dimensional faces [2]. Most often
in the literature, it is required that the body contains the approximating polytope
or vice versa. This is too restrictive as a requirement and it needs to be dropped.
Here, we do exactly that and prove upper and lower bounds for approximation of
convex bodies by arbitrarily positioned polytopes in the symmetric surface area
deviation. This addresses questions asked by Gruber [17].

Theorem 1. There exists an absolute constant c > 0 such that for every integer
n ≥ 3, there is an Nn such that for every N ≥ Nn there is a polytope PN in Rn

with N vertices such that

∆s(B
n
2 , PN ) ≤ c

voln−1 (∂Bn2 )

N
2

n−1

.

Here, Bn2 is the n-dimensional Euclidean unit ball with boundary Sn−1 = ∂Bn2 .
Moreover, throughout the paper a, b, c, c1, c2 will denote positive absolute constants
that may change from line to line.

The proof of Theorem 1 is based on a random construction. A crucial step in its
proof is a result by J. Müller [21] on the surface deviation of a polytope contained
in the unit ball. It describes the asymptotic behavior of the surface deviation of a
random polytope PN , the convex hull of N randomly (with respect to the uniform
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measure) and independently chosen points on the boundary of the unit ball as the
number of vertices increases. It says that

lim
N→∞

voln−1(Sn−1) − E(∂PN )

N− 2
n−1

=
n− 1

n+ 1

Γ
(

n+ 2
n−1

)

2(n− 2)!

(voln−1 (∂Bn2 ))
n+1

n−1

(
voln−1(Bn−1

2 )
) 2

n−1

,(1.2)

where E(∂PN ) denotes the expected surface area of PN .
The right hand side of (1.2) is of order c nvoln−1(∂Bn2 ). Thus, dropping the

restriction that PN is contained in Bn2 improves the estimate by a factor of dimen-
sion. The same phenomenon was observed for the volume deviation in [20].

A lower bound can be formulated as follows.

Proposition 2. For all δ > 0 there is an N1(δ) such that for all polytopes PN
with N ≥ N1(δ) vertices, we have

∆s(B
n
2 , PN ) ≥ n(1 − δ)

ldeln−1

2

(voln−1 (∂Bn2 ))
n+1

n−1

N
2

n−1

.

Here, ldeln−1 is a constant that depends only on the dimension, c1n ≤ ldeln−1 ≤
c2 where c1 and c2 are absolute constants. The left estimate for ldeln−1 is due to

[2], the right to [20]. As (voln−1 (∂Bn2 ))
2

n−1 ≥ πe
n , we thus get that

∆s(B
n
2 , PN ) ≥ n(1 − δ)

πe

n

ldeln−1

2

voln−1 (∂Bn2 )

N
2

n−1

≥ c

n

voln−1 (∂Bn2 )

N
2

n−1

.

Thus, there is a gap of the order of dimension between upper and lower bounds.
A similar gap, in the vertex situation, also remains for the volume deviation com-
paring results in [2] and [20].

For all proofs and more details we refer to [18]
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[2] Böröczky, K. Jr. (2000). Polytopal approximation bounding the number of k-faces. Journal

of Approximation Theory 102, 263–285.
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Some new results on affine invariant points

Olaf Mordhorst

This talk is based on the preprint [8]. We denote by Kd the set of d-dimensional
convex bodies in R

d and we equip this set with the Hausdorff distance dH :

dH(C1, C2) = inf{λ > 0 : C1 ⊆ C2 + λBd2 ∧C2 ⊆ C1 + λBn2 } .

An affine invariant point is a map p : Kd → Rd which is continuous with respect
to the Hausdorff distance and the euclidean norm and such that for every C ∈ Kd
and every T invertible, affine map we have p(T (C)) = T (p(C)). This notion was
introduced by B. Grünbaum in his seminal paper on measures of symmetry of
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convex bodies [1]. Well-known examples of affine invariant points are the centroid,
the Santaló point, the John point and the Löwner point. Let us denote by Pd the
set of affine invariant points on Kd, by

Pd(C) = {p(C) : C ∈ Pd}
and by

Fd(C) = {x ∈ R
d : Tx = x for every T affine map with T (C) = C}

where C ∈ Kd. Note that the three sets Pd ⊆ C(Kd,Rd), Pd(C) ⊆ Rd and
Fd(C) ⊆ Rd are affine subspaces. The set Fd(C) provides symmetry information
for the convex body C in the sense that C is considered to be more symmetric the
smaller the affine dimension of Fd(C) is. Examples of convex bodies where Fd(C)
is only a singleton are centrally symmetric bodies and simplices. We present a
proof of the following theorem which was conjectured by Grünbaum in [1]:

Conjecture 1. For every K ∈ Kd we have Pd(K) = Fd(K).

The inclusion Pd(K) ⊆ Fd(K) follows from an elementary computation and
the hard part is therefore to show that there are enough affine invariant points to
ensure Pd(C) ⊇ Fd(C). Partial answers to this conjecture were obtained by P.
Kuchment (see [3] and also [4] for an English translation), by M.Meyer, C. Schütt
and E. Werner (see [6]) and by I. Iurchenko (see [2]). The proof of the conjecture
is based on ideas of [3] where the problem was solved for points which are invariant
under affine T where the linearity part is an element of a fixed compact subgroup
of GL(d). There is also a proof of the conjecture for similarity invariant points by
reducing the problem to the setting of compact groups. Our approach is somewhat
similar: Denote by KJd the set of convex bodies in John position then we have the
following lemma:

Lemma 2. Let p̃ : KJd → Rd be a continuous map such that for every L ∈ O(d)
and C ∈ KJd we have p̃(L(C)) = Lp̃(C). Then there is an affine invariant point p
with p|KJ

d
= p̃.

With this extension lemma one can reduce the conjecture to just considering
the compact group O(d). Thereafter, the proof of the conjectur can be carried by
an averaging argument over the group O(d).
We discuss two applications of Theorem 1:

1. Pd is an affine subspace of the vector space of continuous Rd-valued functions
on Kd. Grünbaum asked whether the affine dimension of Pd is finite. A negative
answer to this conjecture was given recently by M. Meyer, C. Schütt and E Werner
(see [6]). We will give an alternative proof of the infinite dimensionality of Pd

which turns out to be just a simple corollary of Theorem 1.

2. In [7] the notion of dual affine invariant points was introduced. An affine
invariant point p is proper if for every C ∈ Kd we have p(C) ∈ int(C). We define:

Definition 3. Let p, q ∈ Pd be proper. We say that q is dual to p if for every
C ∈ Kd we have q((C − p(C))o) = 0d.
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This notion generalizes two classical examples: We know that the Löwner point
is dual to the John point and that the Santaló point is dual to the centroid. We
have that q is dual to p if and only if p is dual to q (see [7]) and this explains
why this notions is called duality. In [7] an example of a proper affine invariant
point with no dual is given. The question arises naturally whether there are more
proper points with a dual or more proper points without a dual in some sense. We
present a topological answer to this question which tells us morally that there are
way more proper points without a dual. For this purpose we consider the following
metric on Pd which was first introduced in [6]:

dist(p1, p2) = sup
Bd

2
⊆C⊆dBd

2

‖p1(C) − p2(C)‖2

This metric is a natural choice because it generates the topology of uniform con-
vergence on compacta on Pd. The result we present is:

Theorem 4. There exists an open and dense set W ⊆ Pd of affine invariant
points with no dual.

A key to the proof is the following lemma of [7]:

Lemma 5. Let p ∈ Pd be proper then p has a dual if and only if for every C ∈ Kd
we have p((C − z)o) = 0d for at most one z ∈ int(C)

A slight extension of Theorem 1 allows us to produce plenty of examples of
affine invariant points where there is a C such that p((C − z)0) = 0d for at least
two z ∈ int(C), i.e. p with out a dual. This will turn out to be the major step to
prove that the set of affine invariant points with no dual is of second category.
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1. “Irrational” Convexity, 2. Solutions of some Basic Operator

Equations

Vitali D. Milman

The main goal of the talk is to show how some classical constructions in Geometry
and Analysis appear, in a unique way, from elementary and very simple properties.

For example, the polarity relation is a very important and well-known construction
in Convex Geometry. However, its properties to be an involution and to reverse
the partial order of inclusion essentially define it in a uniquely. Similar results are
true in the case of convex or log-concave functions, see [AM1], [AM2], [BS]. In the
talk we use these geometric results in two ways.

1. As an introduction to similar results in Analysis.
2. To develop a new theory of ” irrational ” constructions of convex bodies.

An example of such construction is Molchanov’s Theorem ([M]): Let K be an
arbitrary compact convex body containing the euclidean unit ball Dn. Then there
is a convex body Z which solves the equation

Z◦ = Z +K ,

and this solution Z is unique, an additional fact observed by L. Rotem. The idea
behind this result is the useful analogy, following the above ” ideology ” , that
Z◦ should in some sense be considered as ” 1

Z ” because r → 1
r is the involution

reversing order on R
+. And the solution of this equation follows the same basic line

as the quadratic equation 1
x = x+1, using continued fractions. Another remarkable

construction is the one of the ” geometric mean ” g(K,T ) of two compact convex
bodies K and T containing 0 in their interior. It starts by introducing the
” harmonic mean ” of K and T by

H(K,T ) =

(
K◦ + T ◦

2

)◦

,

which was already considered by Firey [F]. Then an iteration procedure is applied
by constructing

A1 := A1(K,T ) =
K + T

2
, H1 := H1(K,T ) = H(K,T ) ,

A2 := A2(K,T ) =
A1 +H1

2
, H2 := H2(K,T ) = H(A1, H1) ,

· · ·
An := An(K,T ) =

An−1 +Hn−1

2
, Hn := Hn(K,T ) = H(An−1, Hn−1) .

Note that limnAn = limnHn =: g(K,T ) exists. Applying the procedure to num-
bers x > 0 and y > 0 it is well-known that it converges to g(x, y) =

√
xy. See [MR]

for details and discussion. Since the role of 1 is played by Dn, the set g(Dn,K)

may be seen as ”
√
K ” .

We show a few more similar constructions and note that in almost all cases we
cannot visualize the new bodies which we recover from the classical ones, as we
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cannot visualize irrational numbers we usually create solving equations with ra-
tional coefficients.

We start the second part, the Analysis part, by characterizing the Fourier trans-
form (on the Schwartz class in Rn) as essentially the only bijective map which
transforms the product to the convolution, see [AAFM], [AFM]. Then we show
that the Chain Rule Operator Equation characterize the derivation operation in
a very strong sense, see [AKM]. A series of very surprising results on the rigidity
of the chain rule are found in [KM1], [KM2]. There are more results of a simi-
lar nature in the lecture which indicate further characterizations of operations in
Analysis in this line of research.

The results of the geometric part are mostly joint with Shiri Artstein-Avidan and
Liran Rotem. The ones in the analytic part are joint work with Shiri Artstein-
Avidan and Hermann König.

References

[AAFM] S. Alesker, S. Artstein-Avidan, D. Faifman, V. Milman; A characterization of product
preserving maps with applications to a characterization of the Fourier transform, Illinois
J. Math. 54 (2010), 1115–1132.

[AFM] S. Artstein-Avidan, D. Faifman, V. Milman; On multiplicative maps of continuous and
smooth functions, Geometric aspects of functional analysis, Lecture Notes in Math.
2050, 35-59, Springer, Heidelberg, 2012.

[AKM] S. Artstein-Avidan, H. König, V. Milman; The chain rule as a functional equation, J.
Funct. Anal. 259 (2010), 2999–3024.

[AM1] S. Artstein-Avidan, V. Milman; The concept of duality in convex analysis, and the
characterization of the Legendre transform, Annals of Math. 169 (2009), 661-674.

[AM2] S. Artstein-Avidan, V. Milman; The concept of duality for measure projections of
convex bodies, J. Funct. Anal. 254 (2008), 2648–2666.
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Approximation of convex bodies by polytopes and the complexity of

entanglement detection

Stanis law J. Szarek

(joint work with Guillaume Aubrun)

In this talk we present a link between Dvoretzky’s theorem [1] in its tangible
version due to Milman [7] and the problem of entanglement detection in quantum
information theory. Specifically, we use the inequality of Figiel-Lindenstrauss-
Milman (1977) giving bounds on the number of vertices/faces of polytopes, which
we interpret as a result on approximating of convex bodies by polytopes. We also
identify some peculiarities in so approximating various sets that appear naturally
in the non-commutative context.

This inequality, essentially contained in [2], asserts that, for any n-dimensional
convex body K,

(1.1) dimF (K) · dimV (K) · a(K)2 = Ω(n2)

where the parameters dimF (·), dimV (·) and a(·), defined below, are three different
ways to quantify the complexity of a convex body. If we know that two of these
parameters are small, the third has to be large: complexity must not entirely
disappear. Our main result, Theorem 1, is proved by applying this strategy to K
equal to the set of separable (⇔ unentangled) states.

Here are the precise definitions of the parameters appearing in (1.1). The first
two, dual to each other, are the verticial dimension and the facial dimension,
respectively defined as

dimV (K) = log inf{N : there is a translate K̃ of K and a polytope P

with N vertices such that K̃ ⊂ P ⊂ 4K̃}
and

dimF (K) = log inf{N : there is a polytope Q with N facets with K̃ ⊂ Q ⊂ 4K̃},
where by facets we mean faces of dimension n − 1. The third parameter is the
asphericity and measures how much the convex body differs from a Euclidean ball.
Since one may consider – as Plato did – the sphere to be the ideal of simplicity,
the asphericity is another way to quantify complexity. It is defined as

a(K) = inf

{
R

r
: there is a 0-symmetric ellipsoid E with rE ⊂ K̃ ⊂ RE

}

.

We use ellipsoids instead of spheres to obtain quantities invariant under linear
or affine transformations. As an illustration, Table 1 contains estimates of these
parameters for a selection of (families of) convex bodies. The first three examples
(the ball, the cube and the simplex) are well-known, easy to establish, and included
only to provide a perspective. The main technical part of our work are the bounds
from the last two rows of the table that concern the set of states (i.e., positive
operators of trace 1) and that of separable states (denoted Sep) two objects which
appear naturally in quantum theory. The arguments appeal to inequality (1.1)
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and use other fairly standard considerations. However, we do encounter some
surprises, primarily due to the lack of central symmetry of the sets

dimension a(K) dimV (K) dimF (K)

Euclidean ball Bn2 n 1 Θ(n) Θ(n)

Cube [−1, 1]n n
√
n Θ(n) Θ(logn)

Simplex in Rn n n Θ(logn) Θ(logn)

Set of states on Cm m2 − 1 m− 1 Θ(m) Θ(m)

Sep(Cd ⊗ Cd) d4 − 1 d2 − 1 Θ(d log d) Ω(d3/ log d)

Table 1. Parameters appearing in (1.1) for some families of
convex bodies. Simlar bounds hold if, in our definitions of dimF

and dimV , we use in place of 4 any other number greater than 1.

A fundamental problem in quantum theory is to decide whether a given state
ρ on C

d ⊗ C
d is entangled or not. It is known that this question is inherently

difficult, specifically NP-hard [4, 6, 3]. However, such complexity results usually
focused on “boundary effects,” i.e., on states located very close to the entangle-
ment/separability border. In order to ignore such effects, we restrict ourselves to
robustly entangled states, i.e., the states ρ with the property that the noisy mixture
1
2 (ρ + ρ∗) is still entangled, where ρ∗ denotes the maximally mixed state. In this
setting, the lower bound implicit in the last entry of the last row in Table 1 implies
that any family of linear functional that separate an arbitrary robustly entangled
state from Sep must be of cardinality at least exp(cd3/ log d), where c > 0 is a
universal constant.

Our main result gives an identical lower bound for a more sophisticated scheme
of detecting entanglement, based on the well-known Horodecki criterion [5]: a state
ρ on Cd ⊗ Cd is entangled if and only if there exists a positive map Φ : Md → Md

(a.k.a. entanglement witness) such that the operator (Φ ⊗ Id)(ρ) is not positive.
For d = 2 this approach leads to the elegant fact, the Peres-Horodecki partial
transposition criterion: the transposition is a universal witness, i.e., detects all
entangled states. However this statement has no higher-dimensional analogue and
fails dramatically for large d. We have

Theorem 1. There is a universal constant c > 0 such that the following holds.
Suppose that (Φi)1≤i≤N is a family of positive maps on Md which has the property
that for any robustly entangled state ρ on Cd⊗Cd there exists 1 ≤ i ≤ N such that
(Φi ⊗ Id)(ρ) is not positive. Then N ≥ exp(cd3/ log d).

Since implementations of the quantum information/computing protocols are
likely to involve substantial noise, the robust setting is arguably more to the point
than the one involving boundary effects.
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Once the entries from the last two rows of Table 1 are determined, the path
towards Theorem 1 is relatively straightforward. By the bound on the facial dimen-
sion of the set of states on Cd, each positive map Φ : Md → Md may introduce only
exp(O(d2)) facets; since exp(Ω(d3/ log d)) facets (linear functionals) are required
to approximate the set of separable states, many maps are needed.
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On the condition number of random polynomial systems

Grigoris Paouris

(joint work with A. Ergür and M. Rojas)

In a series of three papers ([1], [2], [3]) F. Cucker, T. Krick, G. Malajovich and
M. Wschebor, introduced an algorithm that counts the number of real solutions
of a system p := (p1, · · · , pn) of real polynomial equations. Their work builds
on the “alpha-theory” introduced by the work on Smale on Newton iteration. In
particular the complexity of the algorithm depends on the condition number of
the polynomial system a notion that has been introduced in [2] as the real-case
analogue of the condition number of complex polynomial systems introduced by
Shub and Smale in [6].

In [3] the authors proved an upper estimate for the expectation of the logarithm of
the condition number of a random homogeneous polynomial system, i.e. the coef-
ficients of the monomial xα of the polynomials are independent centered Gaussian
with variance

(
di
α

)
. (α is a multi-index and di is the the degree of the i-th polyno-

mial.

In this work we consider the problem of estimating the expectation of the loga-
rithm of the condition number of a random polynomial system under more general
assumptions on the randomness. Our methods are inspired by the recent work in
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non-asymptotic theory of random matrices and in particular of the work of Rudel-
son and Vershynin [5]. Let p := (p1, · · · , pn−1 be a random polynomial system of
n− 1 polynomials of degrees di in n variables, where

pi :=
∑

|α|=di

c(i)α

√
(
di
α

)

xα,

where Ci := (c
(i)
α )|α|=di is a random vector in RDi (Di :=

(
n+di−1

di

)
) that satisfies

the following

(1) Ci are “subgaussian” with constant K, i.e. P (|〈Ci, θ〉| ≥ t) ≤ 2e−
t2

K2 , t >
0,

(2) Ci satisfy a “small ball probability estimate” with constant c0, i.e.
P (|〈Ci, θ〉| ≤ ε) ≤ c0ε, ε > 0.

Under the above assumptions we have proved the following

Theorem 1. [4] Let p := (p1, · · · , pn−1) be a random polynomial system with

degrees d1, · · · , dn−1. Let Di :=
(
n+di−1

di

)
, N :=

∑n−1
i=1 Di and k(p) be the condition

number of p. Then

E(log k(p)) ≤ logM + c

where M :=
√
NM(c0Kd

2 log d)n−2 and c > 0 an absolute constant.

The above estimate is up to universal constant the same with the estimate that
it was proved in [3]. However the above result can be extended to the case of
overdetermined systems. More importantly the above theorem can be extended to
the case of “sparse” polynomial systems.
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Quantitative versions of Helly’s theorem and related questions

Apostolos A. Giannopoulos

We present new quantitative versions of Helly’s theorem, due to Silouanos Braz-
itikos. Recall that the classical result asserts that if F = {Fi : i ∈ I} is a finite
family of at least n + 1 convex sets in Rn and if any n + 1 members of F have
non-empty intersection then

⋂

i∈I Fi 6= ∅. Variants of this statement have found
important applications in discrete and computational geometry.

Quantitative Helly-type results were first obtained by Bárány, Katchalski and
Pach. In particular, they proved the following volumetric result:

Let {Pi : i ∈ I} be a family of closed convex sets in Rn such that
∣
∣
⋂

i∈I Pi
∣
∣ > 0.

There exist s 6 2n and i1, . . . , is ∈ I such that

|Pi1 ∩ · · · ∩ Pis | 6 n2n2

∣
∣
∣
∣
∣

⋂

i∈I

Pi

∣
∣
∣
∣
∣
.

The example of the cube [−1, 1]n in R
n, expressed as an intersection of exactly

2n closed half-spaces, shows that one cannot replace 2n by 2n−1 in the statement
above. Naszódi has recently proved a volume version of Helly’s theorem with a
constant 6 (cn)2n, where c > 0 is an absolute constant. In fact, a slight mod-
ification of Naszódi’s argument leads to the exponent 3n

2 instead of 2n. In [5],
relaxing the requirement that s 6 2n to the weaker one that s = O(n), Brazitikos
has improved the exponent to n:

Theorem 1 (Brazitikos). There exists an absolute constant α > 1 with the fol-
lowing property: for every family {Pi : i ∈ I} of closed convex sets in Rn, such
that P =

⋂

i∈I Pi has positive volume, there exist s 6 αn and i1, . . . , is ∈ I such
that

|Pi1 ∩ · · · ∩ Pis | 6 (cn)n |P |,
where c > 0 is an absolute constant.

The proof of Theorem 1 involves a theorem of Srivastava and the following ap-
proximate geometric Brascamp-Lieb inequality (we state below its reverse coun-
terpart too).

Theorem 2 (Brazitikos). Let γ > 1. Assume that u1, . . . , um ∈ Sn−1 and
c1, . . . , cm > 0 satisfy

In � A :=

s∑

j=1

cjuj ⊗ uj � γIn

and set κj = cj〈A−1uj, uj〉 > 0, 1 6 j 6 m. If f1, . . . , fm : R −→ [0,+∞) are
integrable functions then

∫

Rn

m∏

j=1

f
κj

j (〈x, uj〉)dx 6 γ
n
2

m∏

j=1

(∫

R

fj(t)dt

)κj

.
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Also, if w, h1, . . . , hm : R −→ [0,∞) are integrable functions and w(x) >
sup

{∏m
j=1 h

κj

j (θj) : θj ∈ R , x =
∑m

j=1 θjcjuj
}
, then

∫

Rn

w(x)dx > γ−
n
2

m∏

j=1

(∫

R

hj(t) dt

)κj

.

Note that a continuous version of Theorem 2 can be also obtained. We say that
a Borel measure ν on Sn−1 is a γ-approximation of an isotropic measure (for some
γ > 1) if

In � Tν =

∫

Sn−1

u⊗ u dν(u) � γIn.

Following Barthe’s argument for the isotropic case and a generalization of the
so-called Ball-Barthe lemma (proved by Lutwak, Yang and Zhang for isotropic
measures on the sphere) one can obtain a continuous Brascamp-Lieb inequality
and its reverse form for a γ-approximation of an isotropic measure.

Theorem 3 (Brazitikos-Giannopoulos). Let ν be a γ-approximation of an isotropic
Borel measure on Sn−1 and let (fu), u ∈ Sn−1 be a family of functions fu : R −→
[0,+∞) that satisfy natural continuity consitions. Then,

∫

Rn

exp

(∫

Sn−1

log fu(〈x, u〉)〈T−1
ν u, u〉dν(u)

)

dx 6

γ
n
2 exp

(∫

Sn−1

log

(∫

R

fu

)

〈T−1
ν u, u〉 dν(u)

)

.

Also, if h is a measurable function such that

h

(∫

Sn−1

θ(u)u dν(u)

)

> exp

(∫

Sn−1

log fu(θ(u))〈T−1
ν u, u〉 dν(u)

)

for every integrable function θ, then

γ
n
2

∫

Rn

h(y) dy > exp

(∫

Sn−1

log

(∫

R

fu

)

〈T−1
ν u, u〉 dν(u)

)

.

Bárány, Katchalski and Pach proved a quantitative Helly-type theorem for the
diameter in place of volume:

Let {Pi : i ∈ I} be a family of closed convex sets in Rn such that

diam
(⋂

i∈I Pi
)

= 1. There exist s 6 2n and i1, . . . , is ∈ I such that

diam (Pi1 ∩ · · · ∩ Pis) 6 (cn)n/2,

where c > 0 is an absolute constant.

In the same work the authors conjecture that the bound should be polynomial
in n; in fact they ask if (cn)n/2 can be replaced by c

√
n. Relaxing the requirement

that s 6 2n, and using a similar strategy as in [5], Brazitikos proved in [6] the
following:
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Theorem 4 (Brazitikos). There exists an absolute constant α > 1 with the fol-
lowing property: if {Pi : i ∈ I} is a finite family of convex bodies in Rn with
int
(⋂

i∈I Pi
)
6= ∅, then there exist z ∈ Rn, s 6 αn and i1, . . . is ∈ I such that

z + Pi1 ∩ · · · ∩ Pis ⊆ cn3/2

(

z +
⋂

i∈I

Pi

)

,

where c > 0 is an absolute constant.

It is clear that Theorem 4 implies polynomial estimates for the diameter:

Theorem 5 (Brazitikos). There exists an absolute constant α > 1 with the fol-
lowing property: if {Pi : i ∈ I} is a finite family of convex bodies in Rn with
diam

(⋂

i∈I Pi
)

= 1, then there exist s 6 αn and i1, . . . is ∈ I such that

diam(Pi1 ∩ · · · ∩ Pis) 6 cn3/2,

where c > 0 is an absolute constant.

The proof of Theorem 4 is based on the following non-symmetric version of a
lemma of Barvinok: There exists an absolute constant α > 1 with the following
property: if K is a convex body whose minimal volume ellipsoid is the Euclidean
unit ball, then there is a subset X ⊂ bd(K) ∩ Sn−1 of cardinality card(X) 6 αn
such that

Bn2 ⊆ cn3/2conv(X),

where c > 0 is an absolute constant. The fact that X is a set of contact points of
K and its Löwner ellipsoid is crucial for the application in Theorem 4. Note that
a random analogue can be obtained with a better dependence on the dimension
(see [8]).

Theorem 6 (Brazitikos-Chasapis-Hioni). There exists an absolute constant β > 1
with the following property: if K is a convex body in Rn whose center of mass is at
the origin, if N = ⌈βn⌉ and if x1, . . . , xN are independent random points uniformly
distributed in K then, with probability greater than 1 − e−n we have

K ⊆ c1n conv({x1, . . . , xN}),

where c1 > 0 is an absolute constant.
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Random points in halfspheres

Rolf Schneider

(joint work with Imre Bárány, Daniel Hug, Matthias Reitzner)

Let K be a d-dimensional convex body in Rd, let X1, . . . , Xn be stochastically
independent random points in K with uniform distribution, and let Pn be their
convex hull. The random polytope Pn has been thoroughly investigated (see, e.g.,
the surveys [2], [5], [6]). For basic functionals ϕ of polytopes, such as fj , the
number of j-faces, or Vj , the jth intrinsic volume, the expectations Eϕ(Pn) have
been studied, mainly for n → ∞. The asymptotic behaviour depends strongly on
the boundary structure of K. For example, if K is a polytope, then

Efj(Pn) ∼ c1(d, j,K) logd−1 n,

and if K is a body of class C2
+, then

Efj(Pn) ∼ c2(d, j,K)n
d−1

d+1 ,

as proved by Reitzner [4]. For K of class C2
+,

Vj(K) − EVj(Pn) ∼ c3(d, j,K)n− 2
d+1 ,

see Reitzner [3]. (The dependence of the constants on K has been made more
precise.) The crucial observation to be made here is that the asymptotic order
does not depend on j, but is very different for polytopes and for smooth bodies
(also for Vj , in the known cases).

This was the motivation to study in [1] the analogous question in d-dimensional
spherical space (with ‘convex’ replaced by ‘spherically convex’), for the special
convex body K given by a closed halfsphere. Since this body is at the same time
a (spherical) polytope and smooth, new phenomena were to be expected.

Indeed, the asymptotic behaviour is decidedly different. A first surprise is that
the expected face numbers remain bounded. For the number of facets we obtain
(with κd = volume of the d-dimensional unit ball, and ωd = dκd)

Efd−1(Pn) =
2ωd
ωd+1

(
n

d

)∫ π

0

(

1 − α

π

)n−d

sind−1 α dα
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and hence

lim
n→∞

Efd−1(Pn) = 2−dd!κ2d.

Similarly precise limit relations for Efj(Pn), j < d − 1, are not known, but we
were able to show the existence of the limit

lim
n→∞

Ef0(Pn)

and express it by some multiple integral (with explicit values in dimensions two
and three).

As counterparts to the Euclidean intrinsic volumes Vj we may consider the
spherical quermassintegrals. For a spherically convex body M lying in some open
hemisphere, they are defined by

Uj(M) =
1

2

∫

G(d+1,d+1−j)

1(L ∩M 6= ∅) νd+1−j(dL)

for j = 1, . . . , d. Here we consider the underlying sphere as the unit sphere of
Rd+1, the space G(d+1, k) is the Grassmannian of k-dimensional linear subspaces
of Rd+1, and νk is the Haar probability measure on G(d + 1, k). Then Ud is a
constant multiple of the spherical volume of M , which we denote by λ(M), and
Ud−1(M) is a constant multiple of the spherical surface area of M , denoted by
σ(M). The functional U1 is called the spherical mean width. These functionals
can be extended to more general sets, in particular, λ(K) = ωd+1/2, σ(K) = ωd,
U1(K) = 1/2 (where K is still the closed halfsphere). For these three functionals,
we have the following results.

For the spherical mean width:

U1(K) − EU1(Pn) =
ωd
ωd+1

∫ π

0

(

1 − α

π

)n

sind−1 α dα

and hence

U1(K) − EU1(Pn) ∼ ωd
ωd+1

(d− 1)!πdn−d.

For the surface area, there is a similar formula, yielding the asymptotic result

σ(K) − Eσ(Pn) ∼ ωd

(
d+ 1

3

)

π2n−2.

For the volume:

λ(K) − Eλ(Pn) ∼ C(d)πd+1

(
2

ωd+1

)d

ωdn
−1,

with C(d) expressed by a multiple integral.
The interesting fact in the preceding results is that, in contrast to the case of

convex bodies in Euclidean space, the asymptotic orders are different in each case.
This motivates the following conjecture.

Conjecture. For Uj with j ∈ {1, . . . , d}, the expectation E(Uj(K) − Uj(Pn))

is of order n−(d+1−j), as n→ ∞ .
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If one is interested in the approximation of K by Pn, consideration of the
Hausdorff metric is natural. Let δs denote the Hausdorff metric on nonempty
compact subsets of the sphere that is induced by the usual spherical distance.
From our result on the expected volume of Pn it is easy to deduce that there are
two constants c1, c2, depending only on the dimension, such that

c1n
−1 ≤ E δs(Pn,K) ≤ c2n

−1.

For slightly differently defined sequences of random polytopes, we can provide
information on the almost sure behaviour of the Hausdorff distance. First, we
assume that X1, X2, . . . is a sequence of i.i.d. uniform random points in K, and
we define Pn as the spherical convex hull of X1, . . . , Xn. Then we can show that
there is a constant c, depending only on the dimension, such that

P
(
δs(Pn,K) ≤ cn−1 logn for almost all n

)
= 1.

In the other direction, we can only show that, for any γ > 2,

P
(
δs(Pn,K) ≥ cn−γ for almost all n

)
= 1.

Second, we assume that for each n ∈ N, the points X
(n)
1 , . . . , X

(n)
n are i.i.d. uni-

form random in K, that Pn is their spherical convex hull, and that the sequence
P1, P2, . . . is independent. Under this assumption, there is a constant c, depending
only on the dimension, such that

P
(
δs(Pn,K) ≥ cn−1 logn for infinitely many n

)
= 1,

and there is a number 0 < ε < 1, depending only on the dimension, such that

P

(

δs(Pn,K) ≥ cn−(1+ε) for infinitely many n
)

= 1.

The fact that the orders do not match suggests some open questions.

References
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The number of perfect matchings in deterministic graphs via random

matrices

Mark Rudelson

(joint work with Alex Samorodnitsky and Ofer Zeitouni)

This is a report on papers [2, 3].
Let G = (V,E) be a graph with an even number of vertices. A perfect matching

in the graph G is a partition of the set of vertices into pairs such that the vertices
in each pair are connected by an edge. The existence of a perfect matching in a
given graph can be efficiently checked. However, the computation of the number
of perfect matchings is believed to be a hard problem. More precisely, Valiant
proved that this computation is #-P hard even for a bipartite graph.

Algebraically, the number of perfect matchings of a bipartite graph is repre-
sented by the permanent of its adjacency matrix. Let A be a {0, 1}-matrix with
Ai,j = 1 whenever the left vertex i is connected to the right vertex j. Then

#perfect matchings = per(A) =
∑

σ∈Sn

m∏

j=1

Aj, σ(j)

Since exact calculation of this quantity is hard, one considers an approximate
evaluation. There is an extensive literature on the approximate evaluation of
the permanent. The best deterministic result belongs to Linial, Samorodnitsky,
and Wigderson (LSW), who devised a completely polynomial algorithm allowing
to rescale the given matrix to a doubly stochastic form. Since the permanent
scales accordingly, it reduces the general problem to estimating permanents of
doubly stochastic matrices. The known combinatorial bounds in combination with
the LSW algorithm allow to estimate the number of perfect matchings with the
multiplicative error at most en. An alternative probabilistic method developed by
Jerrum, Sinclair, and Vigoda, estimates the permanent with a constant error with
high probability. However, its running time is O(n10) which is prohibitively long.

Based on the previous construction of Godsil and Gutman, Barvinok [1] sug-
gested an new estimator of the permanent (and so of the number of perfect match-
ings) relying on random matrices. Let V be an n × n matrix with independent
N(0, 1) entries Vi,j if the left vertex i is connected to the right vertex j and 0
otherwise. It is easy to see that

#perfect matchings = per(A) = Edet2(V ).

Therefore, sampling V and calculation of the determinant provides an unbiased
estimator for the number of perfect matchings. The later can be performed effi-
ciently making this estimator the fastest known algorithm. Barvinok proved that
with high probability, the multiplicative error of it does not exceed 3.6n for real
Gaussian matrices and 1.8n for complex ones. These bounds cannot be improved
in general. However, the error of Barvinok’s estimator is subpolynomial for the
complete bipartite graph. This suggests that for some “nice” graphs the error can
be subexponential. Proving it requires establishing measure concentration bounds
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for random determinants. In [2], the authors were able to describe the class of
graphs for which the error of Barvinok’s estimator is subexponential. Namely, if
for any fixed δ > 0, the minimal degree of the bipartite graph is at least δn and the
graph has a certain expansion property, then the error of the Barvinok estimator
does not exceed exp(C

√
n logn) with high probability.

In paper [3], the authors address a more difficult problem of estimating the
number of perfect matchings in a general graph with an even number of vertices.
For such graphs, many deterministic and probabilistic methods developed for bi-
partite graphs fail to provide an estimate for the number of perfect matchings.
This leaves the Barvinok estimator essentially the only tool capable of obtaining
such bounds. The difficulty of calculation of the number of perfect matchings
stems from the fact that it is no longer the permanent of the adjacency matrix,
but a more complicated quantity called hafnian:

haf(A) =
1

(n/2)! · 2n/2

∑

σ∈Sn

n/2
∏

j=1

Aσ(2j−1),σ(2j) .

Correspondingly, the random matrix in Barvinok’s estimator should be different
[1]. It is an n×n skew-symmetric matrix W with independent N(0, 1) entries Wi,j

above the main diagonal wherever the vertices i and j are connected by an edge
and 0 otherwise. Similarly to the previous case, it is easy to show that

#perfect matchings = haf(A) = Edet(W ).

Thus, providing a probabilistic guarantee for the Barvinok estimator in case of the
general graph boils down to establishing the concentration of a random determi-
nant as in the previous case. However, the approach to this problem is entirely
different as the spectral properties of a random skew-symmetric matrix differ sig-
nificantly from the case of independent entries.

We prove a subexponential error guarantee with high probability for graphs with
minimal degree at least δn possessing the strong expander property. This property
is a strengthening of the vertex expansion property |∂V A| ≥ κ|A|. Instead of this
property, we require that

|∂VA| − |Comp(A)| ≥ κ|A|,

where Comp(A) is the set of connected components of A. Intuitively, this condition
means that highly disconnected sets should expand faster. We also show that this
property is essentially optimal, in particular, it cannot be replaced by the standard
vertex expansion.
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On the Brunn-Minkowski inequality for general measures

Artem Zvavitch

(joint work with Galyna Livshyts, Arnaud Marsiglietti, Piotr Nayar)

In this talk we presented a joint work with Galyna Livshyts (Georgia Institute
of Technology), Arnaud Marsiglietti (University of Minnesota) and Piotr Nayar
(University of Pennsylvania)

The classical Brunn-Minkowski inequality states that for any two non-empty
compact sets A,B ⊂ R

n and any λ ∈ [0, 1] we have

(1.1) voln(λA + (1 − λ)B)1/n ≥ λvoln(A)1/n + (1 − λ)voln(B)1/n.

Here voln stands for the Lebesgue measure on Rn andA+B = {a+b : a ∈ A, b ∈ B}
is the Minkowski sum of A and B. The Brunn-Minkowski inequality turns out to
be a powerful tool. In particular, it implies the classical isoperimetric inequality,
Brunns theorem and many other useful facts. Using the inequality between means
one gets an a priori weaker dimension free form of (1.1), namely

(1.2) voln(λA+ (1 − λ)B) ≥ voln(A)λvoln(B)1−λ.

In fact (1.2) and (1.1) are equivalent! This amazing phenomenon is a consequence
of homogeneity of the Lebesgue measure.

A measure µ is called log-concave if for any compact sets A,B ⊂ Rn we have

(1.3) µ(λA + (1 − λ)B) ≥ µ(A)λµ(B)1−λ.

We say that the support of a measure µ is non-degenerate if it is not contained
in any affine subspace of Rn of dimension less than n. It was proved by Borell
that a measure µ, with non-degenerate support, is log-concave if and only if it
has a log-concave density, i.e. a density of the form ϕ = e−V , where V is convex
(and may attain value +∞). Inequality (1.2) says that the Lebesgue measure is
log-concave.

We say that the measure µ is 1/n concave if for any compact sets A,B ⊂ Rn

we have

(1.4) µ(λA+ (1 − λ)B)1/n ≥ λµ(A)1/n + (1 − λ)µ(B)1/n.

In general log-concavity does not imply 1/n-concavity. Indeed, consider the
standard Gaussian measure γn on Rn, i.e., the measure with density
(2π)−n/2 exp(−|x|2/2). This density is clearly log-concave and therefore γn satis-
fies (1.3). To see that γn does not satisfy (1.4) it suffices to take B = {x} and
send x→ ∞.
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One might therefore ask whether (1.4) holds true for γn if we restrict ourselves
to some special class of subsets of Rn. A few years ago Richard Gardner and the
speaker conjectured that

(1.5) γn(λA + (1 − λ)B)1/n ≥ λγn(A)1/n + (1 − λ)γn(B)1/n

holds true for any closed convex sets with 0 ∈ A ∩ B and λ ∈ [0, 1] and verified
this conjecture in the number of cases including when A and B are products of
intervals containing the origin; when A = [−a1, a2] × Rn−1, where a1, a2 > 0 and
B is arbitrary and when A = aK and B = bK where a, b > 0 and K is a convex
set, symmetric with respect to the origin.

It is interesting to note that the last case is related to the B-conjecture for
Gaussian measures proposed by Banaszczyk and solved by Cordero-Erausquin,
Fradelizi, and Maurey. It states that for any convex symmetric set K the function
t 7→ γn(etK) is log-concave. The B-conjecture is asking the same question for
the general class of the even log-concave measures. Cordero-Erausquin, Fradelizi,
and Maurey proved that the conjecture is true for the case of unconditional log-
concave measures and unconditional sets (see the definition below). Moreover, the
conjecture has an affirmative answer for n = 2 due to the works of Livne Bar-
on and of Saroglou. Saroglou’s proof is done by linking the problem to the new
log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang.

P. Nayar and T. Tkocz showed that in general (1.5) is false under the assumption
0 ∈ A ∩B, and conjectured that (1.5) should be true for origin-symmetric convex
bodies A,B.

One of the most important Brunn-Minkowski type inequalities for the Gaussian
measure is Ehrhard’s inequality, which states that for any two non-empty compact
sets A,B ⊂ Rn and any λ ∈ [0, 1] we have

(1.6) Φ−1(γn(λA + (1 − λ)B)) ≥ λΦ−1(γn(A)) + (1 − λ)Φ−1(γn(B)),

where Φ(t) = γ1((−∞, t]). This inequality has been considered for the first time
by Ehrhard, where the author proved it assuming that both A and B are convex.
Then Lata la generalized Ehrhard’s result to the case of arbitrary A and convex
B. In its full generality, the inequality (1.6) has been established by Borell. Note
that (1.5) is an inequality of the same type, with Φ(t) replaced with tn, but none
of them is a direct consequence of the other. The crucial property of Ehrhard’s
inequality is that it gives the Gaussian isoperimetry as a simple consequence.

In this talk we discussed inequality (1.4), for a different classes of measures. We
first presented the following theorem

Theorem 1. Let µ be an unconditional product measure with non-increasing
density. Then µ satisfies (1.4) inequality in the class of unconditional convex
bodies in Rn.

We remind that a function f : Rn → R is unconditional if for any choice of signs
ε1, . . . , εn ∈ {−1, 1} and any x = (x1, . . . , xn) ∈ Rn we have f(ε1x1, . . . , εnxn) =
f(x). We say that an unconditional function is non-increasing if for any 1 ≤
i ≤ n and any real numbers x1, . . . , xi−1, xi+1, . . . , xn ≥ 0 the function t 7→
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f(x1, . . . , xi−1, t, xi+1, . . . , xn) is non-increasing on [0,∞). Finally, a set A ⊆ R
n

is called unconditional if the characteristic function of A is unconditional.
Next we discussed a link between the Brunn-Minkowski inequality and the log-

Brunn-Minkowski inequality. To state our observation we need two remind the
definition of 0-sum (log -sum) of two convex symmetric bodies:

λA+0 (1 − λ)B = {x ∈ R
n : 〈x, u〉 ≤ hλA(u)h1−λB (u), ∀u ∈ Sn−1}.

Here hA is the support function of A, i.e., hA(u) = supx∈A〈x, u〉. We say that
a Borel measure µ on Rn satisfies the log-Brunn-Minkowski inequality if for any
convex, symmetric bodies A,B ⊂ R

n and for any λ ∈ [0, 1] we have µ(A+0 λB) ≥
µ(A)λµ(B)1−λ.

We also proved the following proposition.

Proposition 1. Suppose that a Borel measure µ with a radially non-increasing
density f satisfies the log-Brunn-Minkowski inequality for a certain class of convex
symmetric bodies, then µ satisfies the Brunn-Minkowski inequality in the same
class of bodies.

Böröczky, Lutwak, Yang and Zhang, proved the log-Brunn-Minkowski inequal-
ity for the Lebesgue measure and symmetric convex bodies on R2. Saroglou gen-
eralized the inequality to the case of measures with even log-concave densities on
R

2. Thus, as a consequence of Proposition 1 we get the following theorem.

Theorem 2. Let µ be a measure on R2 with an even log-concave density. Then µ
satisfies the Brunn-Minkowski inequality in the class of all symmetric convex sets
in R2.

Moreover, Cordero-Erausquin, Fradelizi, and Maurey proved an analog of log-
Brunn-Minkowski inequality for unconditional log-concave measures and uncondi-
tional convex bodies, this gives us

Theorem 3. Let µ be an unconditional log-concave measure on R
n. Then µ

satisfies the Brunn-Minkowski inequality in the class unconditional convex bodies
in Rn.

Characterizing the Minkowski and radial additions

Liran Rotem

(joint work with Vitali Milman)

The content of this report is based on two papers – [6] and [5].
Denote by Kn0 the class of closed convex sets in Rn. By an addition on Kn0 we

mean a map ⊕ : Kn0 ×Kn0 → Kn0 which:

• Is associative: (A⊕B) ⊕ C = A⊕ (B ⊕ C) for all A,B,C ∈ Kn0
• Has a two-sided identity element : There exists K0 ∈ Kn0 such that A ⊕
K0 = K0 ⊕A = A for all A ∈ Kn0 .
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We say that an addition ⊕ is monotone if A1 ⊆ B1 and A2 ⊆ B2 implies A1⊕A2 ⊆
B1⊕B2. A family of examples of monotone additions on Kn0 is given by the p-sums
(for 1 ≤ p ≤ ∞) which were introduced by Firey in [2]. They are defined by the
relation

hA+pB(θ)p = hA(θ)p + hB(θ)p

where hA denotes the support function of A. Of course, for p = 1 we have the
standard Minkowski addition. A second family of examples is given by the p-polar
sums, defined as A+−p B = (A◦ +p B

◦)◦, where A◦ denotes the polar body of A
(see [1]). Notice that these are indeed additions according to our definition, with
R
n being the identity element.
Let us also denote by Sn0 the class of “star sets”, which for us simply means sets

A ⊆ Rn such that 0 ∈ A and for every line ℓ through the origin the intersection
A∩ℓ is closed and connected. A monotone addition on Sn0 is defined in the obvious
way. A natural family of examples is given by the p-radial sums, defined by

rA+̃pB
(θ)p = rA(θ)p + rB(θ)p.

Here rA denotes the radial function of A, and the definition makes sense for every
p ∈ [−∞,∞] \ {0}.

The class Kn0 equipped with the Minkowski addition + behaves in many ways
like the class Sn0 equipped with the radial addition +̃. For example, the Alexandrov-
Fenchel inequality for mixed volumes is a deep result in convexity (see, e.g. [7]).
Its analogue for Sn0 is the dual Alexandrov-Fenchel inequality for dual mixed vol-
umes, proved by Lutwak in [4]. While the proofs of such dual statements are
usually much easier than the proofs of their convex counterparts, it is not clear
why such a dual theory exists in the first place. One of the goals of this project
was to express in a formal way the similarity between the class Kn0 equipped with
+ and the class Sn0 equipped with +̃.

The simplest formulation of our theorems involves the induced homothety op-
eration. Given an addition ⊕ on Kn0 or Sn0 , the induced homothety ⊙ is defined
by

m⊙A = A⊕A⊕ · · · ⊕A
︸ ︷︷ ︸

m times

.

Theorem. Let ⊕ be a monotone addition on Kn0 such that m ⊙ A = mA =
{ma : a ∈ A}. Then ⊕ = +.

Theorem. Let ⊕ be a monotone addition on Sn0 such that m ⊙ A = mA =
{ma : a ∈ A}. Then ⊕ = +̃.

In fact, these theorems are corollaries of more general theorems characterizing
all p-additions and p-radial additions. For brevity, we only state the theorem for
Kn0 :

Theorem. Let ⊕ : Kn0 × Kn0 → Kn0 be a monotone addition such that m ⊙ A =
f(m)A for some function f : N → R+. Then:
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• If f(2) > 1 then ⊕ = +p for some 1 ≤ p <∞.
• If f(2) < 1 then ⊕ = +−p for some 1 ≤ p <∞.
• If f(2) = 1 and the identity element of ⊕ is {0} then ⊕ = +∞.
• If f(2) = 1 and the identity element of ⊕ is Rn then ⊕ = +−∞.

Characterization theorems for the p-additions and p-radial additions appeared
also in the work of Gardner, Hug and Weil ([3]). However, in their theorems the
conditions in each case were essentially different – the p-additions were assumed
to be projection covariant, while the p-radial additions were assumed to be section
covariant (in addition to other assumptions such as continuity). In our theorem
exactly the same conditions characterize both cases.

The above theorems assume the homothety ⊙ has a specific form. One can also
state a more general theorems, where ⊙ is only assumed to satisfy several natural
properties. Specifically, we say that a monotone addition ⊕ is:

• Strongly monotone if m⊙A ⊆ m⊙B implies A ⊆ B.
• Divisible if for every A and every m ∈ N there exists a B such that
m⊙B = A.

• Subspace preserving if V ⊕ V = V for every linear subspace V of Rn.

Theorem. Let ⊕ : Kn0 ×Kn0 → Kn0 be a monotone addition with {0} as the identity
element. Assume that ⊕ is strongly monotone, divisible and subspace preserving.
Then ⊕ = +p for some 1 ≤ p ≤ ∞.

The same theorem cannot hold for Sn0 . For example, one may choose an arbitrary
function p : Sn−1 → (0,∞) and define

rA⊕B(θ)p(θ) = rA(θ)p(θ) + rB(θ)p(θ)

(this example appeared already in [3]). Therefore one needs an extra assumption
on ⊕, “relating the different directions”. For example:

Theorem. Let ⊕ : Sn0 ×Sn0 → Sn0 be a monotone addition with {0} as the identity
element. Assume that ⊕ is strongly monotone, divisible and subspace preserving.
Assume further that m ⊙ A is convex whenever A is convex. Then ⊕ = +̃p for
some 0 < p ≤ ∞.
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The thin-shell conjecture for the operator norm

Beatrice-Helen Vritsiou

(joint work with Jordan Radke)

We verify the thin-shell conjecture for the operator norm, or, more precisely, for
the unit balls of spaces of square matrices endowed with the operator norm of the
matrices. This amounts to showing that most of the volume of these unit balls, or
rather of their homothetic copies of volume 1, is found within an annulus of radius
the average distance of an element in them from the origin (this average distance
will be of the order of the square root of the dimension) and of almost constant
width (namely, which may depend on the dimension only logarithmically).

More generally, we can ask the same question for the unit balls of all Schatten
classes, which are defined as follows. Let Snp denote the space of n×n real, complex
or quaternionic matrices endowed with the norm that sends each matrix T to the
ℓp norm of its singular-values-vector, or in other words to the norm

‖s(T )‖p :=

(
n∑

i=1

|si(T )|p
)1/p

of the vector s(T ) = (s1(T ), . . . , sn(T )) of the eigenvalues of
√
T ∗T (ordered in

an non-increasing way). As usual, when p = ∞, ‖T ‖Sn
∞

= ‖s(T )‖∞ is just the
maximum singular value of T , which we call the spectral or operator norm of T .

The unit balls Kp of Snp , p ∈ [1,∞], have been studied in the past with respect
to other important conjectures or questions in Convex Geometry as well:

• in [4] König, Meyer and Pajor established the hyperplane conjecture for
them;

• in [3] Guédon and Paouris studied the behaviour of the Schatten classes
with respect to concentration of volume, and showed that all but an ex-
ponentially small (in the dimension) fraction of the unit balls Kp of Snp is
found in a Euclidean ball of radius twice the average distance of an element
in Kp from the origin.

Not long after [3], Paouris [5] resolved the latter question in the affirmative for all
convex bodies in isotropic position (as are the unit balls of the Schatten classes of
real, complex or quaternionic matrices); however, as should be expected perhaps,
the method he used was quite different from the methods of [3] and of [4], which
are very specific to the Schatten classes.

We use a refinement of the latter methods: one of the key ideas that we as
well employ is to reduce estimates about moments of the Euclidean norm with
respect to the uniform measure on the balls Kp, which are convex bodies of an n2,
2n2 or 4n2-dimensional real space, to estimates about moments of the Euclidean
norm with respect to a density fp on Rn now; the new density is no longer a
uniform, or even a log-concave, density, but it is invariant under permutations of
the coordinates of vectors in Rn. We then exploit fully the symmetry properties
of the new density fp to get precise recursive identities that involve the variance
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of the Euclidean norm, which is what, in the case of the thin-shell conjecture, one
has to bound.

We are able, through these identities, to get tight estimates for the variance of
the Euclidean norm when p is really large, that is, when p is at least as large as the
dimension of the balls Kp: more specifically, we show that this variance is of the
order of 1 when p & n2 logn, which establishes the thin-shell conjecture in these
ranges, and in particular in the case of the operator norm (p = ∞).

The same arguments also work, again for the same p, in the case of unit balls of
Hermitian matrices, of anti-symmetric Hermitian matrices, and of complex sym-
metric matrices, although now it may happen that these unit balls are not in
isotropic position.

It is a natural question of course to ask what happens for the remaining p. In
[6] we also give a necessary condition for the thin-shell conjecture to hold for any
of the Schatten classes Snp , p > 1, however most probably this condition will not
turn out to be a sufficient one as well (or rather, one would need quite precise
quantitative versions of it to deduce anything better than the currently known
bounds for the Snp when p . n logn, see [1] and [2]).

Acknowledgements. This is joint work with Jordan Radke [6], and it was carried
out as part of the REU programme of the University of Michigan in the Spring-
Summer term of 2015. Jordan Radke acknowledges support from the National
Science Foundation under grant number DMS 1265782.
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Invertibility of adjacency matrices of random digraphs

Alexander E. Litvak

(joint work with A. Lytova, K. Tikhomirov, N. Tomczak-Jaegermann, P.Youssef)

Consider the set Mn,d of adjacency matrices of random d-regular directed graphs,
that is n×n matrices with 0/1-entries such that every row and column has exactly
d ones. By probability we always mean normalized counting measure.
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Our work is motivated by related questions on singular probability. One con-
jecture on symmetric adjacency matrices was mentioned by Vu in his survey [10,
Problem 8.4] (see also 2014 ICM talks by Frieze and by Vu). The corresponding
question for non-symmetric adjacency matrices was formulated by Cook in [4]:

Is it true that for every 3 ≤ d ≤ n− 3, one has

(∗) pn,d := P {M ∈ Mn,d : M is singular} −→ 0 as n→ ∞?

Note that for d = 1, M is a permutation matrix, so pn,1 = 0; for d = 2, pn,2 → 1
([10, 4]); and that by interchanging zero and ones, pn,d = pn,n−d.

Singularity of random square matrices is a subject with a long history and many
results. A fundamental role is played by what is nowadays called the Littlewood-
Offord (LO) theory. In its classical form, established by Erdös, the LO inequality
states that for every z ∈ R, every a ∈ Rn with non-zero coordinates ak’s and for
independent random signs rk’s, the probability P {∑n

k=1 rkak = z} ≤ n−1/2. This
result has been substantially strengthened and generalized in subsequent years,
leading to a much better understanding of interrelationship between the law of the
sum

∑n
k=1 rkak and the arithmetic structure of the vector a.

The LO theory is used as follows: given an n×n matrix A with i.i.d. entries, A
is non-singular if and only if the inner product of a normal vector to the span of any
subset of n−1 columns of A with the remaining column is non-zero. Thus, knowing
the typical arithmetic structure of the random normal vectors and conditioning
on their realization, one can estimate the probability that A is singular. For more
details we refer to [9, Section 3], [8, Section 4], and references therein.

The main difficulty in singularity questions such as (∗) stems from the restric-
tions on row/column-sums, and from possible symmetry constraints for the entries.
Note that for a random matrix on Mn,d every two entries/rows/columns are de-
pendent; moreover, the first n− 1 columns uniquely define the last column. This
makes a straightforward application of the LO theory (as illustrated above) impos-
sible and an extension of the theory covering this probabilistic model is needed.

Below c, C, denote absolute positive constants, whose actual values can change
from line to line, and f ≥ ω(an) means f/an → ∞ as n→ ∞.

Main result. The question (∗) has been recently addressed in [4] by Cook who

obtained the bound pn,d ≤ d−1/18 for d satisfying ω(ln2 n) ≤ d ≤ n − ω(ln2 n).

Our main result shows that one can drop the condition d ≥ ω(ln2 n).

Theorem 1. For 3 ≤ d ≤ cn/((lnn) ln lnn) one has pn,d ≤ C ln3 d/
√
d.

Thus we proved that pn,d → 0 as d → ∞, which in particular verifies (∗)
whenever d = ω(1). Moreover, the probability bound is better than in [4].

It is natural to compare our model to the Erdös-Rényi model, when edges of
a random graph appear independently with probability p = d/n. Recently, the
invertibility of adjacency matrices in the Erdös-Rényi model for d = ω(lnn) was
shown in [1]. Note that in this model for d ≤ lnn a zero row appears with
probability at least 1/2, which is not the case for d-regular graphs.
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Strategy of proof. The proof is naturally split into two distinct parts. First we
establish certain (extension) properties of random d-regular directed graphs and
their adjacency matrices. Then we use these results to deal with the singularity.

We start with two properties of d-regular directed graphs, which can be called
“no large intersections” and “no large zero minors.” Such properties are known for
random undirected graphs (see e.g. [5]). A key ingredient in the proofs of these
results is the simple switching, introduced for general graphs by Senior, and applied
by McKay for d-regular graphs. The following lemma shows that the support of
the sum of any k ≤ cn/d rows has almost maximal possible cardinality.

Lemma 2. For every ε ∈ (
√

ln d/d, 1) and k ≤ cεn/d, the union of supports of
any k rows (or columns) of a random matrix on Mn,d has cardinality exceeding
(1 − ε)dk with probability at least 1 − exp (−cε2d ln(cεn/d)).

The next lemma deals with large zero minors.

Lemma 3. For Cn ln d/d ≤ ℓ ≤ r ≤ n/4 a random matrix on Mn,d has no ℓ× r
zero minors with probability at least 1 − exp (−crℓd/n).

Lemmas 2 and 3 show that a random graph has good “regularity” properties.
Analogous statements in the Erdös-Rényi model follow from standard Bernstein
type inequalities. For random d-regular directed graphs, in the paper [3], which
serves as a basis for the main theorem of [4], rather strong concentration properties
were established. However, the results there are valid only for d ≥ ω(lnn). The
proof in [4] is based on the method of exchangeable pairs introduced by Stein and
developed for concentration inequalities by Chatterjee ([2]). Contrary, our proof
is simpler, self-contained, and works for d ≥ C.

Now we turn to the proof of Theorem 1. We follow the scheme and expand on
some of the techniques developed in [4] adding new crucial ingredients to remove
logarithmic lower bound on d. In this scheme, at the first step, one shows that
a random matrix does not have any (left or right) null vectors with many (more

than Cnd−c) equal coordinates, provided that d ≥ ω(ln2 n). Then one shows that,
conditioned on this event, a random matrix is not singular.

Lemmas 2 and 3, applied on the second step, allow us to modify this scheme so
that at first step it is enough to consider a much smaller class of almost constant
vectors. Using that lemmas we obtain a new crucial anti-concentration property,
which in turn allows us to show that for every C ≤ d ≤ cn a random matrix does
not have null vectors having n − n/ lnd equal coordinates. This step essentially
uses a new delicate approximation argument dealing with tails of appropriately
rescaled vectors in Rn. Note that a logarithmic lower bound on d is not required.

Then, conditioning on the event that M does not have almost constant null
vectors, we show that a random matrix M is non-singular with high probability.
In [4], a sophisticated approach based on “shuffling” of two rows was developed to
treat this case. The shuffling consists in a random perturbation of two rows of a
fixed matrix M ∈ Mn,d in such a way that the sum of the rows remains unchanged.
Then one uses a variant of the classical Erdös anti-concentration inequality to show
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that the number of “bad” perturbations is small. To apply this we need that the
supports of these two rows have a small intersection, which is given by Lemma 2
with k = 2. As shuffling involves supports of only two rows, we get that probability
tends to zero with d and not with n (and this is the only such step – in all our other
statements the probability converges with n). We developed further the shuffling
technique to simplify the proof and to obtain better probability estimates.

Finally, we explain how to complete the proof. Using that there are no almost
constant vectors and that there are no large zero minors, we show that for singular
matrices with high probability the minor M1,2 obtained by removing the first two
rows has largest possible rank, that is, either rkM1,2 = rkM when rkM ≤ n− 2
or rkM1,2 = n − 2 when rkM = n − 1. We consider the equivalence classes of
matrices with the same minor M1,2. Noticing that fixing such a minor determines
the support of the first two rows, we use the shuffling procedure for the first two
rows and show that the set of matrices of rank ≤ n − 2 (resp. = n − 1) is small
inside the set of matrices of rank ≤ n− 1 (resp. = n). This implies the bound on
the probability that M is singular.
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Randomized isoperimetric inequalities

Peter Pivovarov

(joint work with Grigoris Paouris)

I discussed randomized versions of isoperimetric inequalities for convex sets. For
example, recall the Brunn-Minkowski inequality for the volume Vn of convex bodies
K,L ⊆ Rn,

(1.1) Vn(K + L)1/n > Vn(K)1/n + Vn(L)1/n.

Equality holds in (1.1) if K and L are homothetic so the latter can equivalently
be stated in isoperimetric form,

(1.2) Vn(K + L) > Vn(rKB + rLB),

where B is the Euclidean unit ball and rK , rL denote the radii of Euclidean balls
with the same volume as K,L, respectively, i.e., rK = (Vn(K)/Vn(B))1/n. In-
equality (1.2) admits a stronger empirical version associated with random convex
sets. Specifically, let x1, . . . , xN be independent random vectors distributed ac-
cording to the uniform density on a convex body K ⊆ Rn, say fK = 1

Vn(K)1K ,

i.e., P(xi ∈ A) =
∫

A fK(x)dx for Borel sets A ⊆ R
n. For each such K and N > n,

we associate a random polytope

KN = conv{x1, . . . , xN},
where conv denotes convex hull. Then the following stochastic dominance holds
for the random polytopes KN1

, LN2
and (rKB)N1

, (rLB)N2
associated with the

bodies in (1.2): for all α > 0,

(1.3) P (Vn(KN1
+ LN2

) > α) > P (Vn((rKB)N1
+ (rLB)N2

) > α) .

Integrating in α gives

(1.4) EVn(KN1
+ LN2

) > EVn((rKB)N1
+ (rLB)N2

),

where E denotes expecation. By the law of large numbers, when N1, N2 → ∞,
the latter convex hulls converge to their ambient bodies and this leads to (1.2).
Thus (1.1) is a global inequality which can be proved by a random approximation
procedure in which stochastic dominance holds at each stage.

Inequalities for the volume of random convex hulls in stochastic geometry
have a rich history starting with Blaschke’s resolution of Sylvester’s famous four-
point problem in the plane. I reviewed fundamental related inequalities of Buse-
mann, Groemer and Bourgain-Meyer-Milman-Pajor on random simplices, gen-
eral convex hulls and Minkowski sums, respectively. The stochastic form of the
Brunn-Minkowski inequality (1.3) intertwines two operations - convex hulls and
Minkowski sums. It turns out that (1.3) is a just a special case of a general result
due to the authors [2]. For vectors x1, . . . , xN in Rn, we form the n × N matrix
[x1, . . . , xN ] and view it as a linear operator from RN to Rn. If C ⊆ RN , then

(1.5) [x1, . . . , xN ]C =

{
N∑

i=1

cixi : c = (ci) ∈ C

}

.
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Let e1, . . . , eN denote the standard unit vector basis for R
N . If C = conv{e1, . . . ,

eN}, then

(1.6) [x1, . . . , xN ]conv{e1, . . . , eN} = conv{x1, . . . , xN}.
If C = [−1, 1]N , then one obtains Minkowski sums,

(1.7) [x1, . . . , xN ]BN∞ =

N∑

i=1

[−xi, xi].

Assume we have the following sequences of independent random vectors defined
on a common probability space (Ω,F ,P).

1. X1, X2, . . ., sampled according to densities f1, f2, . . ..
2. X∗

1 , X
∗
2 , . . ., sampled according to f∗

1 , f
∗
2 , . . ..

Write X = [X1 · · ·XN ] and X∗ = [X∗
1 · · ·X∗

N ]. With the above notation, the
theorem is formulated as follows.

Theorem 1.1. Let C be a compact convex set in RN and 1 6 j 6 n. Then for
each α > 0,

(1.8) P(Vj(XC) > α) > P(Vj(X
∗C) > α).

Assume that fi = 1
Vn(K)1K for i = 1, . . . , N1 and fN1+i = 1

Vn(L)
1L for i =

1, . . . , N2. Note that f∗
i = 1

Vn(K)1rKB, i = 1, . . . , N1 and f∗
N1+i

= 1
Vn(L)

1rLB for

i = 1, . . . , N2. To see that (1.3) holds, set

C1 = conv{e1, . . . , eN1
}, C2 = conv{eN1+1, . . . , eN1+N2

},
both considered as subsets of RN1+N2 . Then

KN1
+ LN2

= [X1, . . . , XN1
]C1 + [XN1+1, . . . , XN1+N2

]C2

= [X1, . . . , XN1
, XN1+1, . . . , XN1+N2

](C1 + C2).

More generally, one can replace usual Minkowski addition in the latter by M -
addition as introduced by Gardner, Hug, and Weil. Let M be an arbitrary subset
of Rm and define the M -combination K ⊕M L of sets K and L in Rn by

K ⊕M L = {a1x+ a2y : (a1, a2) ∈M,x ∈ K, y ∈ L} .
With this notion of addition, we have the following stochastic form when M is

contained in the positive orthant and K and L are convex bodies

(1.9) P (Vj(KN1
⊕M LN2

) > α) > P (Vj((rKB)N1
⊕M (rLB)N2

) > α) .

This follows from Theorem 1.1 and the identity

KN1
⊕M LN2

= [X1, . . . , XN1
]C1 ⊕M [XN1+1, . . . , XN1+N2

]C2

= [X1, . . . , XN1
, XN1+1, . . . , XN1+N2

](C1 ⊕M C2).

A dual version of Theorem 1.1 is due D. Cordero-Erausquin, M. Fradelizi and
the authors [1].
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Theorem 1.2. Let C be a symmetric convex body in R
N . Let ν be a radial measure

on Rn with a density ψ which is −1/(n+ 1)-concave on Rn. Then for each α > 0,

(1.10) P(ν((XC)◦) > α) 6 P(ν((X∗C)◦) > α).

I also discussed key ingredients in the proof, namely the rearrangement in-
equality of Rogers and Brascamp-Lieb-Luttinger. I recalled a result of Kanter
on stochastic dominance for products of unimodal densities. I explained how one
can interpret the Rogers/Brascamp-Lieb-Luttinger inequality as a result about
stochastic dominace. I also concluded with applications to small deviations for
operator norms of random matrices. The reader is invited to see [3] for further
information.

References

[1] D.Cordero-Erausquin, M. Fradelizi, G. Paouris, and P.Pivovarov, Volume of the polar of
random sets and shadow systems, Math. Ann. 362 (2015), no. 3–4, 1305–1325.

[2] G. Paouris and P. Pivovarov, A probabilistic take on isoperimetric-type inequalities, Adv.
Math., (230), 2012, 1402–1422.

[3] G. Paouris and P. Pivovarov, Randomized isoperimetric inequalities, in preparation.

Reporter: Olaf Mordhorst



Asymptotic Geometric Analysis 563

Participants

Prof. Dr. Shiri Artstein-Avidan

Department of Mathematics

School of Mathematical Sciences

Tel Aviv University

Ramat Aviv

Ramat Aviv, Tel Aviv 69978

ISRAEL

Prof. Dr. Sergey G. Bobkov

Department of Mathematics

University of Minnesota

127 Vincent Hall

206 Church Street S. E.

Minneapolis, MN 55455

UNITED STATES

Prof. Dr. Dario Cordero-Erausquin
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