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Introduction by the Organisers

The mini-workshop PBW Structures in Representation Theory, organised by
Evgeny Feigin (Moscow), Ghislain Fourier (Glasgow) and Martina Lanini (Ed-
inburgh) took place February 28th–March 5, 2016. It was attended by 17 partici-
pants, including a consistent number of young researchers, from France, Germany,
Italy, Russia, Spain, the UK and the US.

The first two days of the mini-workshop were dedicated to four two-hour in-
troductory lecture series, whose aim was to provide all participants with some
common background. They recalled the state of art, explained open and interest-
ing conjectures, and gave possible directions for future projects and interactions.
Within the week, we also had 7 research talks, most of them given by the younger
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participants. All presentations were quite informal, with a very active participa-
tion of the audience, strong interactions with the speaker, and several questions
and answers during the talks, which served as a starting point for the discussion
sessions. We have the evidence that the workshop was properly sized and quite
focused as in all talks, almost all participants were directly involved in the inter-
actions. We have had daily discussion sessions which played a central role in the
miniworkshop. These informal sessions were of two types: either a participant
was explaining a problem he/she is working on, or a group of participants were
working together on an existing or new project.

The topics discussed within the workshop were centred around the PBW (Poin-
caré-Birkhoff-Witt) theorem and its appearances and applications in different areas
of mathematics, such as representation theory, algebraic geometry, and combina-
torics. The central idea is to consider an algebraic object, e.g. a simple complex
Lie algebra, and apply the PBW Theorem to produce a filtration on it. This gives
a machinery to generate new mathematical objects starting from a given one by
applying certain algebra or group of operators, it provides a powerful link between
Lie theory and commutative algebra. Such a strategy has been successfully ap-
plied in (algebraic, geometric and combinatorial) Lie theory and proved to be very
powerful both in the theoretical questions and in applications.

The goal of the mini-workshop was to further study this sort of phenomena
and, in particular, investigate applications in new fields by bringing together re-
searchers with different backgrounds. Indeed, the range of topics discussed within
the workshop was broad: Newton-Okounkov bodies, toric degenerations, quiver
Grassmannians, affine and finite-dimensional Grassmannians and flag varieties,
representation theory of Kac-Moody Lie algebra, theory of Macdonald polynomi-
als (symmetric and nonsymmetric). The interdisciplinary of the event was further
fostered by interesting exchanges with several researchers working on toric de-
generations and Newton-Okounkov bodies, who were attending a parallel MFO
mini-workshop (“Arrangements of Subvarieties, and their Applications in Alge-
braic Geometry”).
Several new projects were initiated because of the workshop. The exchanges be-
tween experts in representation theory and experts of Newton-Okounkov bodies
led to very promising new collaborations. The concentration of researchers coming
from different areas (cluster algebras, Lie algebras, tropical geometry) but work-
ing on the common ground of toric degenerations has given a much needed impact
on the project of relating all these various points of view. Further, some of the
world leading researchers in the representation theory of current algebras were
part of the workshop, and helped to investigate further on the relation between
this representation theory, the PBW filtration and Macdonald polynomials.

These were just three of several discussed topics and initiated collaborations,
we are looking forward to seeing the results emerging from this workshop in the
near future.

Summarizing, the MFO mini-workshop PBW Structures in Representation The-
ory was very successful and succeeded all high expectations of the organisers.
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Abstracts

PBW filtration for quantum groups

Teodor Backhaus

(joint work with Xin Fang, Ghislain Fourier)

Let g be a simple finite dimensional complex Lie algebra with a triangular decom-
position g = n+ ⊕ h ⊕ n−. Let U(n−) be the corresponding universal enveloping
algebra. By setting the degree of each x ∈ n− \ {0} to 1 we obtain a N-filtration
on U(n−):

U(n−)s := span{x1x2 . . . xl | xi ∈ n−, l ≤ s}.

The PBW theorem implies that the associated graded algebra gr U(n−) is iso-
morphic to the symmetric algebra S(n−). Denote by V (λ), λ ∈ P+ a dominant
integral weight, the simple g-module of highest weight λ and let vλ be a highest
weight vector. Then the filtration above induces the PBW filtration on V (λ) by
V (λ)s := U(n−)s.vλ. We obtain that gr V (λ) is a cyclic S(n−)-module with cyclic
generator vλ. Denote by I(λ) the kernel of the surjection S(n−) → S(n−)vλ, note
that I(λ) is not a monomial ideal in general.

In the last years monomial bases of gr V (λ), for arbitrary λ ∈ P+, have been
provided in type An, Cn, B3, D4, G2, see [1] for type An.

Let Uq(g) be the quantum group over C(q) associated with g with triangular
decomposition Uq(g) ∼= Uq(n

+) ⊗ U0
q ⊗ Uq(n

−). We shall use the quantum PBW

bases of Uq(n
−) provided by Lusztig [3] which is constructed as follows.

Let w0 = si1 . . . siN be a reduced decomposition of the longest Weyl group
element. We associate a sequence of elements Fβ1 , . . . , FβN

∈ Uq(n
−), where

{β1, . . . , βN} is the set of positive roots and Fβi
is a quantum PBW root vector

of weight −βi. Then Lusztig has shown that ordered monomials in Fβ1 , . . . , FβN

form a basis of Uq(n
−).

The commutation relations of those vectors in Uq(n
−) are given by the following

Levendorskii-Soibelman (L-S for short) formula: for any i < j:

Fβj
Fβi

− q−(βi,βj)Fβi
Fβj

=
∑

ni+1,...,nj−1≥0

c(ni+1, . . . , nj−1)F
ni+1

βi+1
. . . F

nj−1

βj−1
.

These commutation relations depend heavily on the choice of reduced decomposi-
tion w0. For a given reduced decomposition w0, we seek for degree functions on
the set of positive roots

d : ∆+ −→ N

such that letting deg(Fβ) = d(β) for β ∈ ∆+ defines a filtered algebra structure
on Uq(n

−) by

Uq(n
−)ds := span{F c1

β1
· · ·F cN

βN
| c1d(β1) + · · ·+ cNd(βN ) ≤ s}
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and the associated graded algebra is a skew-polynomial algebra. Inspired by the
L-S formula, we define for any reduced decomposition w0 the quantum degree cone

Dq
w0

:= {(dβ) ∈ RN
+ | ∀ i < j : dβi

+ dβj
>

j−1∑

k=i+1

nkdβk
if c(ni+1, . . . , nj−1) 6= 0}.

Theorem A.
Let w0 be a reduced decomposition. Then

(1) the set Dq
w0

is a non-empty, open polyhedral cone;

(2) a degree function d : ∆+ −→ N satisfies grd Uq(n
−) ∼= Sq(n

−) if and only
if d ∈ Dq

w0
∩ ZN .

(3) for any simple finite dimensional Lie algebra g of rank 3 or greater we
have, here R(w0) is the set of all reduced decompositions of w0:

⋂

w0∈R(w0)

Dq
w0

= ∅.

We turn from the quantum situation to the classical one. Consider the classical
degree cone:

Dw0
:= {(dβ) ∈ RN

+ | ∀ α, β, γ ∈ ∆+ : α+ β = γ =⇒ dα + dβ > dγ}.

It is immediate that d ∈ D ∩ ZN induces a N-filtration on U(n−) such that
grdU(n−) ∼= S(n−). As before we obtain an induced filtration on V (λ) and grdV (λ)
is cyclic S(n−)-module, where we denote the defining ideal by Id(λ). We define

Sgm := {d ∈ D ∩ ZN | Id(λ) is a monomial ideal ∀ λ ∈ P+},

the set of all global monomial degrees.

As the other main result, all monomial bases appearing in the context of PBW
filtration in the literature can be actually obtained through a global monomial
degree.

Theorem B.
Let g be a simple Lie algebra of type An, Cn, B3, D4, G2. Then Sgm 6= ∅.

We provide a global monomial degree in each case (for the An-case this has
been done already in [2]). Based on the evidence of several further examples, we
conjecture:

Conjecture.

(1) Sgm 6= ∅ for any simple finite-dimensional Lie algebra g.
(2) For any simply-laced simple Lie algebra g, Sgm ∩ Dq

w0
is non-empty for

some w0 ∈ R(w0).



Mini-Workshop: PBW Structures in Representation Theory 623

References

[1] E. Feigin, G. Fourier and P. Littelmann, PBW filtration and bases for irreducible modules
in type An, Transform. Groups 16 (2011), no. 1, 71–89.

[2] X. Fang, G. Fourier, and M. Reineke, PBW-Filtration on quantum groups of type An,
Journal of Algebra 449 (2016) 321-345.

[3] G. Lusztig, Introduction to quantum groups. Reprint of the 1994 edition. Modern Birkhäuser
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Birational sequences and Demazure characters

Lara Bossinger

Birational sequences are defined by Fang, Fourier and Littelmann in [1] to obtain
toric degenerations of flag varieties using Newton–Okounkov bodies and essential
monoids. The aim of this project is to give a class of examples with particularly
nice properties that are well-adapted to computations.

For a complex semisimple simply connected algebraic group G we fix a Borel
subgroup B and a maximal torus T . Let U− denote the unipotent radical of the
opposite Borel subgroup and N the number of positive roots for G. A sequence
S = (βN , · · · , β1) of positive roots for G is called birational, if the multiplication
map U−βN

×· · ·×U−β1 → U− is birational. Here U−β := {exp(sfβ) | s ∈ C} where
fβ ∈ g−β − {0} is a root vector in the Lie algebra corresponding to G of weight
−β. A well-known example for a birational sequence is Sw0 = (αiN , · · · , αi1)
corresponding to w0 = siN · · · si1 a reduced expression of the longest element in
the Weyl group.

For every positive root β one defines the Demazure operator Dβ on the char-

acter lattice. For λ a dominant integral weight with 〈λ, β̌〉 ≥ 0 we have Dβ(e
λ) =

eλ + eλ−β · · ·+ esβ(λ). These operators give the characters of Demazure modules
Vw(λ), where w is an element of the Weyl group, as follows: Dαik

· · ·Dαi1
(eλ) =

charVsik ···si1
(λ) (see [2]). In particular, applying all Demazure operators corre-

sponding to Sw0 to eλ gives the character of the irreducible highest weight module
V (λ).

Starting with Sw0 as initial sequence, we explain the notion of subword se-
quences. These are sequences of positive roots of length N . They have nice prop-
erties and are conjectured to be birational. For example the classical Demazure
character formula generalizes to subword sequences. For any 1 ≤ k ≤ N there ex-
ists a Weyl group element w such that Dβk

· · ·Dβ1(e
λ) = w.charVsik ···si1

(λ). Here

S = (βN , · · · , β1) is a subword sequence obtained from Sw0 as initial sequence. We
call this equality the Demazure porperty. This result has an elegant proof using
Weyl group combinatorics, furthermore the word w is explicitly determined. In
particular, applying all Demazure operators corresponding to S to eλ gives the
character of V (λ) as in the classical case. No twist is needed. One important
Corollary is that subword sequences are dominant, i.e. the multiplication map
used to define birational sequences is at least dominant. Further, there exists
a generalization of subword sequences, called twisted Demazure sequences. It is
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conjectured that the set of twisted Demazure sequences is excatly the set of all
sequences with Demazure property in type An. It is known that twisted Demazure
sequnces have the Demazure property in all types.

For type An I present an idea on how to prove birationality of subword sequences.
We define three local moves on sequences of positive roots, called A2-move, braid
move and orthogonal move, that induce birational maps between the corresponding
products of root subgroups. They are expected to give a procedure of transforming
subword sequences to known birational sequences, which is explained using an
example in type A3 .

Subword sequences are easy to compute and (when proven to be birational)
give a large class of examples of birational sequences. For example, there are 3
subword sequnces corresponding to a fixed reduced expression of w0 in type A2, 4
in type B2, 12 in type A3, 54 in type A4 and 60 for the Grassmannian Gr(2, 6).
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Smooth quiver Grassmannians of minimal dimension

Giovanni Cerulli Irelli

Let Q be a Dynkin quiver with n vertices and let M be a complex, finite–dimen-
sional representation of Q. Given a dimension vector e ∈ Zn, one defines the quiver
Grassmannian Gre(M) set theorethically as the set of subrepresentations of M of
dimension vector e. The Euler characteristic of quiver Grassmannians plays an
important role in the study of cluster algebras associated with Q. Namely, to M
one attaches the Laurent polynomial

CCM (x1, · · · , xn) :=
∑

e∈Zn

χ(Gre(M))xBe+gM ∈ Z[x±1
1 , · · · , x±1

n ].

In this formula, B is the adjacency matrix of Q, gM ∈ Zn is the index of M, and
χ is the Euler–Poincaré characteristic. The main result of [1] states that the set
{CCM |M indecomposable such that Ext1(M,M) = 0}∪{x1, · · · , xn} is precisely
the set of cluster variables of the coefficient–free cluster algebra associated with
Q (the formula can be slightly modified in order to get coefficients and cluster
variables of an arbitrary cluster algebra associated with Q). This important result
was achieved by induction on the Auslander–Reiten quiver of Q. The heart of the
proof was the following: let

0 → τM → E → M → 0

be an almost split sequence ending in the non–projective indecomposable M. Then

(1) χ(Gre(E)) = χ(Gre(M ⊕ τM)) for all e 6= dimM
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(For e = dimM , GrdimM (E) is empty and GrdimM (M ⊕ τM) is a reduced
point.) Formula (1) was obtained by Caldero and Chapoton by dividing the two
quiver Grassmannians into pieces, and then comparing the Euler characteristic of
the corresponding pieces on each projective variety. Notice that the pieces did not
have much geometric structure.

In a series of articles [3], [4], [5], [6], [7], together with E. Feigin and M. Reineke
we developed techniques to study the geometry of quiver Grassmannians associated
with representations of Q. By using those techniques, it is quite easy to prove that
both Gre(E) and Gre(M⊕τM) are smooth and irreducible of the same dimension
〈e,d−e〉. Here 〈·, ·〉 denotes the Euler form of Q and d = dimE = dim (M⊕τM).
I hence wondered if Gre(E) and Gre(M ⊕ τM) share more than just their Euler
characteristic. The following surprising result was proved in [2]:

Theorem 1. The quiver Grassmannians Gre(E) and Gre(M ⊕ τM) are diffeo-
morphic if e 6= dimM . In particular they are the same topological space and hence
share the same topological invariants (e.g. Poincaré polynomials, Euler character-
istic...).

Notice that Theorem 1 implies (1) immediately. In principle, one could obtain
the proof of theorem 1 by inspection, since the indecomposable Q–representations
are well–known. Indeed, this was my first strategy. But then I realized that a much
more general result holds true, which follows from well-known facts from differen-
tial/algebraic geometry (namely Ehresmann localization theorem and Bialynicky–
Birula decomposition theorem). Let hence X be any Q–representation of dimen-
sion vector d. It is known (see e.g. [3]) that any non–empty quiver Grassmannian
Gre(X) associated with X has dimension at least 〈e,d− e〉. In case equality
holds, we say that the quiver Grassmannian has minimal dimension.

Theorem 2. Let X and Y be two Q–representations of the same dimension vec-
tor d. Given a dimension vector e, if the two quiver Grassmannians Gre(X) and
Gre(Y ) are smooth and of minimal dimension, then they are diffeomorphic. In
particular, they share the same Poincaré polynomial and the same Euler charac-
teristic.

As a corollary of Theorem 2 we obtain Theorem 1. Moreover, by induction of
the Auslander Reiten quiver of Q, we obatin the following result.

Theorem 3. Let M be a Q–representation such that Ext1Q(M,M) = 0 (M is not
necessarily indecomposable). Then a non–empty quiver Grassmannian Gre(M)
has positive Euler characteristic. Moreover the odd homology groups Hodd(Gre(M))
are zero and the even Heven(Gre(M)) are torsion–free.

The proof of Theorem 3 given in [2] is obtained by induction on the Auslander–
Reiten quiver of Q. It can be extended without changes to preprojective and prein-
jective representations of acyclic quivers.

Conjecture 1. Let M be as in Theorem 3. I conjecture that the cycle map ϕi :
Ai(Gre(M)) → H2i(Gre(M)) is an isomorphism for all i.
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I could prove conjecture 1 if Q is of type A. The proof follows from the fact
that in type A, the diffeomorphism of Theorem 1 is actually an isomorphism of
projective varieties. This is not the case in type D and E. Question: For any
representation M of a Dynkin quiver Q, is it true that any quiver Grassmannian
associated with M admits a cellular decomposition?

A positive answer to this open problem solves Conjecture 1.
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Polytopes arising from mirror plabic graphs

Xin Fang

(joint work with Ghislain Fourier)

For 1 ≤ k ≤ n, let Grk,n(K) be the Grassmannian variety over the field K = R or
C.

Plabic graphs (plane bicolored graphs) are introduced by Postnikov [Pos] with
the aim to parametrize cells in the totally non-negative (TNN) Grassmannians
(Grk,n(R))≥0. These graphs are drawn inside a disk with boundary vertices la-
belled by 1, 2, . . . , n in a fixed orientation and internal vertices colored by black
and white. For a reduced plabic graph G corresponding to the top cell in the TNN-
Grassmannian (Grn−k,n(R))≥0, Rietsch and Williams [RW] constructed a family
of polytopes NOr

G for positive integers r as Newton-Okounkov bodies [KK, LM09]
associated to the line bundle r ∈ Z ∼= Pic(Grn−k,n(C)).

When the plabic graph G = G0 is properly chosen, it is shown in [RW] that the
corresponding Newton-Okounkov body NOr

G0
is unimodularly equivalent to the

Gelfand-Tsetlin polytope GT(r̟n−k) of the finite dimensional irreducible repre-
sentation V (r̟n−k) of the Lie algebra sln.

The Newton-Okounkov body is by definition a convex hull of points; but to read
off its defining inequalities is a hard problem. In [RW], the authors used mirror
symmetry of Grassmannians to obtain these inequalities from the tropicalization
of the super-potential on an open set of the mirror Grassmannian arising from the
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Landau-Ginzburg model. By applying this symmetry, they give explicit defining
inequalities of NOr

G0
, which can be compared to those of Gelfand-Tsetlin polytopes.

Lattice points in Gelfand-Tsetlin polytopes parametrize bases of finite dimen-
sional irreducible representations of simple classical Lie algebras. When the Lie
algebra is sln, motivated by a conjecture of Vinberg, another family of polytopes
FFLV(λ) is found by Feigin, Fourier and Littelmann [FeFoL11] whose lattice points
parametrize a monomial basis of V (λ), where λ is a dominant integral weight of
sln.

For a plabic graph G, its mirror G∨ is defined by coloring all white (black)
vertices in G black (white), and reverse the boundary orientation. When the plabic
graph G corresponds to the top cell in (Grn−k,n(R))≥0, G∨ parametrizes the top
cell in (Grk,n(R))≥0. The following theorem answers a question in [FaFoL16]:

Theorem 4 (Fang-Fourier, 2016). The Newton-Okounkov body NO r
G∨
0
is unimod-

ularly equivalent to FFLV(r̟k).

Another conjectural way to relate Gelfand-Tsetlin polytopes to FFLV polytopes
is via a connection between the corresponding clusters in different cluster algebras.
Each reduced plabic graph G parametrizing the top cell of the TNN-Grassmannian
(Grn−k,n(R))≥0 gives a cluster C consisting of Plücker coordinates ∆I1 , . . . ,∆Im

where I1, . . . , Im are (n−k)-element subsets of [n] = {1, 2, . . . , n} and ∆Ir , . . . ,∆Im

are non-frozen variables in C.
For I ⊂ [n], let I = [n]\I be its complement. Then the set

C′ = {∆I1 , . . . ,∆Ir−1 ,∆Ir
, . . . ,∆Im

}

is a cluster for Grk,n(C), corresponding to a plabic graph G.

Conjecture 2. The Newton-Okounkov body NO r
G0

is unimodularly equivalent to

FFLV(r̟k).

This conjecture is verified in the case of Gr3,6(C).
Recently, in a joint work with G. Fourier and P. Littelmann [FaFoL15], we in-

troduced the notion of birational sequences, giving birational charts by root sub-
groups of the maximal unipotent subgroup U− of a reductive group G. Different
Newton-Okounkov bodies can be associated to a birational sequence by choosing
different total orders, yielding toric degenerations of the corresponding flag vari-
eties. By choosing different birational sequences and total orders, we can not only
recover the toric degenerations obtained in [GL, Cal, AB, FeFoL13], but provide
a new family of toric degenerations given by Lusztig polytopes, parametrizing the
canonical basis by its different leading PBW-term.

Question. Whether all Newton-Okounkov bodies arising from plabic graphs can
be obtained via birational sequences of Grassmannians and proper total orders?
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Geometry and combinatorics of Kostka-Shoji polynomials

Michael Finkelberg

(joint work with Andrei Ionov)

1.1. Kostka polynomials. Schur functions sλ, λ ∈ P , form a Z-basis of the
symmetric functions ring Λ. Hall-Littlewood functions Pλ, λ ∈ P , form a Z[t]-
basis of Λ[t]. We have Pλ|t=0 = sλ, Pλ|t=1 = mλ.

If the number of parts ℓ(λ) is at most N , then

Pλ(x1, . . . , xN , t) =
∑

σ∈SN/ Stabλ

σ


xλ1

1 · · ·xλN

N

∏

λi>λj

xi − txj

xi − xj


 .

The transition matrix consists of Kostka polynomials: sλ =
∑

µ≤λ Kλµ(t)Pµ

(dominance order). Kλµ(t) ∈ N[t] is a monic polynomial of degree n(µ) − n(λ)
where n(λ) =

∑
(i − 1)λi.

1.2. Theorem. (G. Lusztig [5]) (1) t− dimOµ/2Kλµ(t
−1) =

∑
i dim IC(Oλ)

−2i
µ t−i

where λ, µ ∈ P(n), Oµ ⊂ Oλ nilpotent orbits of GLn, and IC(Oλ) = j!∗COλ
[dim

Oλ]. Note dimOµ = n(n− 1)− 2n(µ).

(2) Assume the number of parts of λ, µ is at most N . Then t− dimGrµ/2Kλµ(t
−1)

=
∑

i dim IC(Grλ)−2i
µ t−i where Grµ ⊂ Grλ ⊂ GrGLN

are GLN [[z]]-orbits in the
affine Grassmannian GLN ((z))/GLN [[z]].
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1.3. Coherent interpretation. (R. Brylinski [2]) Γ(T ∗B,O(µ)) = Γ(B, Sym•TB
⊗ O(µ)) =

⊕
λ≥µ K

•
λµ ⊗ Vλ. Here B is the flag variety of GLN , O(µ) an ample

line bundle, and K•
λµ a graded vector space with Poincaré polynomial Kλµ.

It follows from (a) RΓ>0(T ∗B,O(µ)) = 0 that follows in turn from the Frobenius
splitting of T ∗B [8]. (b) A comparison of the Atiyah-Bott-Lefschetz formula for
χ(B, Sym•TB ⊗O(µ)) and a t-analogue of H. Weyl formula [6], [4]:

Let NN−1 be the cone of positive integral linear combinations of the simple
roots of GLN . For α = (a1, . . . , aN−1) set Lα(t) =

∑
pit

i where pi is the number
of decompositions of α into a sum of i positive roots in R+(GLN ). Then Kλµ(t) =∑

σ∈SN
(−1)σLσ(λ+ρ)−ρ−µ(t) Here ρ = (N,N − 1, . . . , 1), λ′ = σ(λ + ρ), µ′ =

µ+ ρ, a1 = λ′
1 − µ′

1, a2 = λ′
1 + λ′

2 − µ′
1 − µ′

2, . . .

1.4. Higher analogues. λ = (λ(1), . . . , λ(r)) ∈ Pr a multipartition. Schur func-
tions sλ(x

(1), . . . ,x(r)) = sλ(1)(x(1)) · · · sλ(r)(x(r)) ∈ Λ⊗r form a Z-basis.
Hall-Littlewood-Shoji functions P±

λ [9] form a Q(t)-basis of Λ⊗r(t).

The transition matrix consists of Kostka-Shoji functions: sλ =
∑

µK±
λµ(t)P

±
µ .

If r = 2 then K+
λµ = K−

λµ =: Kλµ ∈ N[t] vanishes unless λ ≥ µ in the sense

λ
(1)
1 ≥ µ

(1)
1 , λ

(1)
1 + λ

(2)
1 ≥ µ

(1)
1 + µ

(2)
1 , λ

(1)
1 + λ

(2)
1 + λ

(1)
2 ≥ µ

(1)
1 + µ

(2)
1 + µ

(1)
2 , . . .

For arbitrary r, if the number of parts of all λ(i), µ(i) is at most N , there are
rN such differences, but the last one must vanish: |λ| = |µ| if λ ≥ µ. So if λ ≥ µ,
then λ− µ ∈ NrN−1.

We define a “positive root system” R+
r ⊂ NrN−1 as the set of intervals of 1’s

(0, . . . , 0, 1, . . . , 1, 0, . . . , 0) of length l = 1 (mod r), and consider the corresponding

Lusztig-Kostant partition function L
(r)
α (t) =

∑
pit

i where pi is the number of
decompositions of α ∈ NrN−1 into a sum of i positive “roots” in R+

r .

1.5. Conjecture. K−
λµ(t) =

∑
σ∈Sr

N
(−1)σL

(r)
σ(λ+ρ)−ρ−µ

(t) where ρ = (ρ, . . . , ρ).

It was proved for r = 2 by T. Shoji [9] and checked by L. Yanushevich using
P. Achar’s computer program for |λ| = |µ| ≤ 7. It implies K−

λµ(t) ∈ Z[t].

1.6. Coherent geometric interpretation. We consider the following ordered

base e
(1)
1 , . . . , e

(r)
1 , e

(1)
2 , . . . , e

(r)
2 , . . . , e

(1)
N , . . . , e

(r)
N of CrN giving rise to an embed-

ding GLr
N →֒ GLrN and an embedding of their upper triangular Borel subgroups

Br
N →֒ BrN . In the strictly upper triangular subalgebra nrN ⊂ glrN consider

a vector subspace spanned by the elementary matrices eij , j − i = 1 (mod r).
This is a submodule of the adjoint representation of Br

N , and it gives rise to a
GLr

N -equivariant vector bundle T ∗
r on the flag variety Br

N = GLr
N/Br

N .
Note that T ∗

r B
r
N is a particular case of Lusztig’s iterated convolution diagram

F̃i,a for the cyclic quiver Ãr−1 [7]

1.7. Corollary of the Conjecture. Γ(T ∗
r B

r
N ,O(µ)) = Γ(Br

N , Sym•TrBr
N⊗O(µ))

=
⊕

λ≥µK
−,•
λµ ⊗ Vλ as a graded GLr

N -module.
It follows from the Atiyah-Bott-Lefschetz formula for the equivariant Euler

characteristic and the higher cohomology vanishing because of Frobenius splitting
of T ∗

r B
r
N (A. Ionov, a variation of [8]).
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1.8. Constructible geometric interpretation. From now on r = 2.
Let V = Cn. Then the orbits of the diagonal action of GLn on N ilpn × V are

naturally numbered by the bipartitions P2(n), and the adjacency order on orbits
corresponds to the above order on P2(n) [1], [10]. Moreover, codimN ilpn×V Oλ =

a(λ) = 2n(λ(1))+ 2n(λ(2))+ |λ(2)|, and t− dimOµKλµ(t
−1) =

∑
i dim IC(Oλ)

−i
µ t−i

[1]. Furthermore, degKλµ(t) = a(µ) − a(λ), and all the powers of t in Kλµ are
of the same parity.

1.9. Corollary. The orbits of the diagonal action ofGLN [[z]] on GrGLN
×(CN ((z))

\ 0) are naturally numbered by generalized bipartitions P ′
2 := {(λ

(1)
1 ≥ . . . ≥

λ
(1)
N , λ

(2)
1 ≥ . . . ≥ λ

(2)
N )} ⊂ Z2N with at most N parts. An orbit Oλ contains a

point (L = z−λ
(1)
1 −λ

(2)
1 C[[z]]e1 ⊕ . . .⊕ z−λ

(1)
N −λ

(2)
N C[[z]]eN , v =

∑
z−λ

(1)
i ei).

t− dimOµKλµ(t
−1) =

∑
i dim IC(Oλ)

−i
µ t−i (one can shift both λ and µ by

(M ≥ . . . ≥ M, M ≥ . . . ≥ M), M ≫ 0, to make sure both λ and µ are
real bipartitions) [3].
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Functions on Newton–Okounkov bodies

Alex Küronya

(joint work with Sébastien Boucksom, Victor Lozovanu, Catriona
Maclean,Tomasz Szemberg)

For the duration of the talk let X be a complex projective variety of dimension
n, D a Cartier divisor or line bundle on X , Y• an admissible flag on X giving rise
to a rank n valuation νY•

of C(X). No harm is done if one assumes that X is a
smooth surface and D an ample line bundle on X .



Mini-Workshop: PBW Structures in Representation Theory 631

The idea of Newton–Okounkov bodies is to associate a compact convex set
∆Y•

(D) ⊆ Rn, which has nonempty interior whenever D is big. The Newton–
Okounkov body ∆Y•

(D) can be regarded as a geometic version of ΓY•
(D), the

valuation semigroup associated toD and νY•
. Unlike the latter, Newton–Okounkov

bodies enjoy good formal properties: the scale well, respect numerical equivalence
of divisors, even descend continuously to the cone of big divisor classes in N1(X)R.

On the other hand, the convex body ∆Y•
(D) depends a lot on the choice of Y•,

in particular, there is no combinatorial invariance, and there is in general no way
to reconstruct X from the collection of its Newton–Okounkov bodies. An example
to keep in mind is the case of curves: if X is smooth of genus g, D an effective
divisor of degree d, then ∆Y•

(D) = [0, d] independently of X .
Our quest is to seek invariants of ∆Y•

(D) that remain unchanged under the
change of the flag Y•. It is classically known [4] that the volume of ∆Y•

(D) is
such:

volRn(∆Y•
(D)) = lim

m→∞

h0(OX(mD)

mn
= volX(D) ,

where the manifestly Y•-independent right-hand side is called the volume of D.
Note that the left-hand side is the integral of a constant function over ∆Y•

(D),
hence it seems like a good idea to try to find interesting functions on Newton–
Okounkov bodies that can potentially lead to new invariants via integration or
otherwise.

The important principle coming from complex analysis (first formalized in this
context by Boucksom–Chen [1]) is that multiplicative filtrations on the section ring
R(X,D) = H0(X,OX(mD)) give rise to concave functions on Newton–Okounkov
bodies. An important example of such a filtration is the one induced by the order
of vanishing of global sections of D along a smooth subvariety Z ⊆ X . Already the
case of a point is very interesting. Complex geometry hosts various other sources
of multiplicative filtrations: test configurations and certain families of multiplier
ideals also give rise to such.

With notation as above, we write φZ : ∆Y•
(D) → R for the function arising

from the order of vanishing filtration on R(X,D). These functions are extremely
difficult to compute in general, it was Donaldson who worked them out for toric
surfaces in the context of test configurations. The essential statement is that in
the toric setting, the subgraph of φZ is a rational polytope, or, equivalently, φ is a
piecewise affine linear function with rational coefficients with respect to a rational
polyhedral decomposition of ∆Y•

(D). The following result is a generalisation of
Donaldson’s observation.

Theorem 5 (Küronya, Lozovanu, Maclean (unpublished)). Let X be a smooth
projective variety, Y• an admissible flag on X, D a big divisor on X, Z ⊆ X a
smooth subvariety. Then the subgraph of the function φZ is the Newton–Okounkov
body of a big divisor on an n+ 1-dimensional variety.

For representation-theoretic varieties there is of course hope that one can de-
termine the function φZ explicitly.

A few words about the formal properties of the functions φZ .
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Theorem 6 ([2]). With notation as above,

(1) if ∆Y•
(D) is a polytope, then φZ is continuous on the whole of ∆Y•

(D),
otherwise there exist examples where φZ is not continous along the bound-
ary;

(2) φZ is homogeneous of degree one;
(3) if D ≡ D′, then φZ : ∆Y•

(D) → R equals φZ : ∆Y•
(D) → R.

Finally, here is a result concerning invariants of Newton–Okounkov bodies in
terms of the functions φZ .

Theorem 7. With notation as above,

(1) I(D;Z)
def
= 1

volX(D)

∫
∆Y• (D) φZ is independent of Y• (see [1]);

(2) max∆Y• (D) is independent of Y• (see [3]).
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Toric degenerations of flag varieties: from algebras with straightening

laws to Newton-Okounkov bodies and cluster varieties

Peter Littelmann

(joint work with Xin Fang, Ghislain Fourier)

One of the beautiful and astonishing properties of the theory of toric varieties is the
powerful dictionary translating algebraic geometry properties into combinatorial
properties in terms of lattices, cones and polytopes, and vice versa. It is hence
tempting to extend this powerful machinery to a larger class of varieties by using
flat degenerations of the given variety into a toric variety. The aim of the series
of talks was to give an overview starting with ideas of Hodge in the 1940’s up
to recent developments connecting methods from the theory of Newton-Okounkov
bodies with ideas coming from the theory of cluster varieties.

Algebras with straightening laws. It seems that the first flat degeneration of
a Graßmann variety into a union of toric varieties has been constructed by Hodge
[15]. The ideas of Hodge have been generalized by De Concini, Eisenbud and Pro-
cesi in the framework of Hodge algebras [6] (also called algebras with straightening
laws). For generalized flag varieties, similar results have been obtained by Chiriv̀ı
[5] via upgrading the Hodge algebra to Lakshmibai-Seshadri algebras.
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The precise description of an algebra with straightening laws is somewhat tech-
nical, we try to explain what happens in the special case of Graßmann varieties.
Let Id,n be the set of all strictly increasing sequences of length d between 1 and
n. Let “≥” be the usual partial order on Id,n: i ≥ j ⇔ it ≥ jt for all t = 1, . . . , d.

A monomial pi1 · · ·pir of Plücker coordinates is called standard in C[ΛdCn] iff

i1 ≥ . . . ≥ ir. The second fundamental theorem in invariant theory describes the
relations among the Plücker coordinates pi considered as functions on the affine

cone over the Graßmann variety Ĝrd(C
n). Refine the partial order “≥” to a total

order “≻” and denote with the same symbol the induced lexicographic order on
the polynomial ring C[ΛdCn], which is a monomial order. One can show: if i, j
are not comparable, then

(1) pipj =
∑

mk≻pipj

akmk mod I(Grd(C
n)),

where the mk are standard monomials of degree two. Such an algorithm express-
ing non standard monomials as a linear combination of standard monomials is
called a straightening law. An algebra with such properties: a basis consisting
of a special class of monomials, the standard monomials, together with relations
expressing non standard monomials as a linear combination of (larger) standard
monomials, this is roughly what is called an algebra with straightening laws. There
exists a flat degeneration of this algebra into a discrete algebra, i.e. the relation (1)
is turned into the relation pipj = 0 whenever i, j are not comparable. The corre-

sponding variety is hence a union of toric varieties, and many geometric properties
of the original variety (Graßmann variety, Schubert variety) can be read off the
combinatorics of the partially ordered set Id,n.

These ideas have been generalized by Chiriv̀ı [5]. In his setting the Graßmann
variety can be replaced by an arbitrary (partial) flag variety or a Schubert variety
therein, the partially ordered set Id,n is replaced by a quotient of the Weyl group
with the induced Bruhat order, and the standard monomial theory of Hodge is
replaced by the standard monomial theory for flag varieties, a program which was
initiated by Seshadri and his coauthors, see [20, 21] and completed in [22].

Caldero’s approach. A flat toric degeneration with an irreducible special fiber
has been given by Gonciulea and Lakshmibai [12] in the case SLn/B, where B
is a Borel subgroup, using standard monomial theory. This has been interpreted
geometrically by Kogan and Miller [19] using geometric invariant theory.

A uniform construction of flat toric degenerations (with an irreducible special
fiber) for arbitrary semisimple algebraic groups G has been given by Caldero [4].
Fix a maximal unipotent subgroup U of G. For every choice of a reduced decom-
position w0 of the longest word w0 in the Weyl group of G, Caldero constructs a
flat toric degeneration of the affine variety G//U .

Let N be the length of w0 and denote by Λ the weight lattice. The coordinate
ring of G//U has as a basis the so called dual canonical basis B∗. For a fixed
reduced decomposition w0, this basis can be naturally indexed by a semigroup

Γw0
⊂ Λ×NN , which by [3, 23] is the semigroup of integral points in a polyhedral
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cone. Caldero’s construction relies on the following multiplicative property of the
dual canonical basis (compare this also with (1)):

(2) bλ,mbµ,n = bλ+µ,m+n +
∑

k>m+n

ck(λ,m),(µ,n)bλ+µ,k,

where “≤” denotes the lexicographic ordering on NN . So the multiplication rule
for basis elements can be described as: up to elements which are larger with respect
to the lexicographic ordering, the product of basis elements is the same as in the
monoid Γw0

, which is the index system of B∗.
From this, Caldero deduces the existence of an increasing filtration of C[G//U ]

by T × T -submodules, such that the associated graded algebra, grC[G//U ], is
isomorphic to the algebra of the monoid C[Γw0

]. In geometric terms:

Theorem. [4] The affine variety G//U admits a flat degeneration to a normal
affine toric variety X0 = SpecC[Γw0

] for the torus T × T, where we put T :=

(C∗)N . Further, the degeneration is compatible with the actions of T ×T on G//U
(regarding T × T as a subgroup of G × T ), and on X0 via the homomorphism of
tori T × T → T × T, (t, t′) 7→ (t−1t′, αi1(t), ..., αiN (t)).

These results have been generalized to spherical varieties by Alexeev and Brion
[1], see also the papers of Kaveh and Kiritchenko [17, 18] for another approach via
the framework of Newton-Okounkov bodies [16].

Birational sequences and Newton-Okounkov bodies. Let G be a complex
semisimple algebraic group. Fix a Borel subgroup B = TU , where T is a maximal
torus und U is the unipotent radical of B. Denote by U− the unipotent radical of
the opposite Borel subgroup. Fix a sequence of positive roots S = (β1, . . . , βN).
We make no special assumption on this sequence, for example there may be repe-
titions. Let T be the torus (C∗)N , we write t = (t1, . . . , tN ) for an element of T.
The variety ZS is the affine space AN endowed with the following T × T-action:

∀(t, t) ∈ T × T : (t, t) · (z1, . . . , zN) := (t1β1(t)
−1z1, . . . , tNβN (t)−1zN).

We call S a birational sequence (see [7]) for U− if the product map π is birational:

(3) π : ZS → U−, (z1, . . . , zN) 7→ exp(z1fβ1) · · · exp(zNfβN
).

For each pair (S,>) consisting of a birational sequence and a monomial order on
C[ZS ] = C[x1, . . . , xN ], we attach to G//U a monoid Γ = Γ(S,>) ⊂ Λ×NN . As a
side effect we get a vector space basis BΓ of C[G//U ], the elements being indexed
by Γ. The basis BΓ has a multiplication rule very similar to that in (2):

(4) ξλ,pξµ,q = ξλ+µ,p+q +
∑

r>p+q

cλ+µ,r
λ,p;µ,qξλ+µ,r.

This makes it possible to transfer the methods of Caldero [4], Alexeev and Brion
[1] to this more general setting, once one knows that the monoid Γ is finitely
generated and saturated.

Theorem. [7] If the monoid Γ is finitely generated and saturated, then the affine
variety G//U admits a flat degeneration to a normal affine toric variety X0 =
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SpecC[Γ] for the torus T ×T, where we put T := (C∗)N . Further, the degeneration
is compatible with the actions of T × T on G//U (regarding T × T as a subgroup
of G × T ), and on X0 via the homomorphism of tori T × T → T × T, (t, t′) 7→
(t−1t′, β1(t), ..., βN (t)).

The construction can be extended to spherical varieties as in [1] and in [17].
There are quite a few examples where it is known, that Γ is finitely generated and
saturated [7]. In fact, we conjecture that Γ is always finitely generated:

The reduced decomposition case I : Let {α1, . . . , αn} be the set of simple roots,
fix a reduced decomposition w0 = si1 · · · siN and set S = (αi1 , . . . , αiN ). Using the
associated Bott-Samelson desingularization, one easily shows that S is a birational
sequence. In fact, one recovers the case considered by Caldero, Alexeev and Brion,
and Kaveh. One has Γ = Γw0

The reduced decomposition case II : Fix a reduced decomposition w0 = si1 · · · siN
as above, and let S = (β1, . . . , βN ) be an enumeration of the positive roots associ-
ated to the decomposition, i.e., βk = si1 · · · sik−1

(αk) for k = 1, . . . , N , then S is a
birational sequence. One can show that Γ corresponds in this case to the Lusztig
parameterization of the canonical basis. In particular, Γ is the monoid of integral
points of a polyhedral cone.

Some other PBW-type cases : Fix an enumeration Φ+ = {β1, . . . , βN} of the
positive roots such that βi > βj in the usual partial order on roots implies i < j.
Note that such an enumeration can not come from a reduced decomposition w0.
Set S = (β1, . . . , βN), then map π in (3) above induces an isomorphism of affine
varieties for any chosen enumeration. Motivated by a conjecture of Vinberg, a new
class of toric degenerations has been constructed in [8] for G = SLn and Sp2n (see
also [13, 14]), using monomial bases obtained through refining the PBW-filtration
on the corresponding universal enveloping algebras [9, 10]. It turns out that the
notation of a birational sequence puts the results in a unifying framework. In
particular, in the cases G = SLn and Sp2n, the corresponding monoid Γ is always
the monoid of integral points of a polyhedral cone. �

The monoid Γ depends on the choice of the birational sequence S and the choice
of a monomial order onC[ZS ], which suggests a connection with Newton-Okounkov
bodies. Indeed, the birational map in (3) induces an isomorphism between the
function fields C(ZS) and C(G/B), so one can use the fixed monomial order to
define an induced ZN -valued valuation ν on C(G/B). With the construction of Γ
one gets naturally for every dominant weight λ a subset es(λ) ⊂ Γ such that the
union Γ(λ) =

⋃
n∈N

es(nλ) is disjoint and inherits the structure of a monoid. Let
Qλ ⊇ B be the parabolic subgroup associated to the dominant weight λ. One can
show: the Newton-Okounkov body ∆ν(λ) associated to the valuation ν and the
ample line bundle Lλ on G/Qλ is the convex closure

(5) ∆ν(λ) = conv(
⋃

n∈N

{
m

n
| m ∈ es(nλ)}).

Using the same strategy as in [2] or [1] one can show:
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Theorem. [7] If the monoid Γ is finitely generated and saturated, then there
exists a family of T -varieties π : Y → A1, where Y is a normal variety, such that
π is projective and flat, π is trivial with fiber G/Qλ over the complement of 0 in
A1, the fiber of π at 0 is a toric variety Y0 isomorphic to ProjC[Γ(λ)], and the
moment polytope associated to Y0 is ∆ν(λ).

Toric degenerations, Cluster duality and mirror symmetry. An approach
towards toric degenerations via cluster varieties has been suggested by Gross,
Hacking, Keel and Kontsevich [11]. The authors believe that all the elementary
constructions of toric geometry extend to a larger class of varieties, and they prove
many such results in the cluster case. To go into all the technical details would
blow up the framework of this overview. We restrict ourself here to some special
aspects discovered by Rietsch and Williams [24].

The authors do not discuss degenerations, but this is implicitly contained in
their approach by the results of Anderson [2]. The most beautiful part of their
result is to see how cluster algebras and toric charts can help to understand the
connection between two very different ways of looking at polytopes. Rietsch and
Williams investigate the case of X = Grn−k(C

n), the Graßmann variety of (n−k)-
dimensional subspaces of Cn. They consider coordinate charts on X and the
“mirror dual” Graßmann variety X̌ := Grk

(
(Cn)

∗)
, respectively. The charts on

both sides are obtained from a choice of combinatorial objects, a reduced plabic
graph G. The coordinate system on X is given by an injective map

(6) ΦG : (C∗)
PG → Grn−k(C

n)

constructed in [26]. Here PG is an index set for a certain set of Plücker coordinates
read off from the graph G by a combinatorial rule. The image of the restriction of

ΦG to (R>0)
PG is the totally positive Graßmann variety in its Plücker embedding

and thus Rietsch and Williams refer to it as a positive chart.
To each positive chart ΦG and r > 0, the authors associate a Newton-Okounkov

polytope NOr(G). They define NOr(G) as the convex hull of certain integral
points which correspond to the vanishing behavior of sections of the line bundle
Lr, similar as in (5). Here L is the ample generator of PicX .

It is known [25] that the homogeneous coordinate ring of (the affine cone over)
X̌ admits a cluster algebra structure. Each cluster x = (x1, x2, . . . , xm) of this
cluster algebra gives rise to a toric chart on X̌

(7) X̌x := {y ∈ X̌ | xi(y) 6= 0, 1 ≤ i ≤ m}.

The index set PG labels a collection of Plücker coordinates that form an entire
cluster (recall that in general there will be many clusters where the variables do
not consist entirely of Plücker coordinates). Therefore, from (7), we get a map

(8) Φ∨
G : (C∗)

PG → X̌

called cluster chart which satisfies pν(ΦG
∨ ((tµ)µ)) = tν for ν ∈ PG and pν the

associated Plücker coordinate.
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In mirror symmetry themirror of the Graßmann varietyX is a Landau-Ginzburg
model, which can be described as the pair (X̌o,Wq), where X̌

o is the complement

of a particular anticanonical divisor in the Langlands dual Graßmann variety X̌ ,
and Wq is a regular map on X̌o, called superpotential. The condition of the tropi-
calized version of the superpotential Wtr ◦ΦG

∨ (i.e. the superpotential written in
a cluster expansion in terms of the cluster consisting of Plücker coordinates on X̌
labeled by PG and replacing the q-variable by tr) to have non-negative value gives
rise to a set of linear inequalities defining a polytope Qr

G .
This is the important difference between the two constructions of the polytopes.

In the second procedure the description of the polytope is given as the intersection
of half spaces while in the first procedure the description of the polytope is given
by taking a convex hull of a set of integral points. The main result in [24] is:

Theorem. [24] The two polytopes NOr(G) and Qr
G coincide for all reduced plabic

graphs G with trip permutation πk,n and all r > 0.
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Generalized Weyl modules

Ievgen Makedonskyi

(joint work with Evgeny Feigin)

The classical local Weyl modules for a simple Lie algebra are labeled by dominant
weights. We generalize the definition to the case of arbitrary weights and study the
properties of the generalized modules. We prove that the representation theory of
the generalizedWeyl modules can be described in terms of the alcove paths and the
quantum Bruhat graph. We make use of the Orr-Shimozono formula in order to
prove that the t = ∞ specializations of the nonsymmetric Macdonald polynomials
are equal to the characters of the generalized Weyl modules corresponding to
the antidominant weights. We also reprove the result of Chari and Ion that the
character of the classical Weyl module coincides the t = 0 specialization of the
nonsymmetric Macdonald polynomial.

We prove that there exists a decomposition of the generalized Weyl module to
subfactors of the same type corresponding to smaller weight. Using this procedure
we obtain a basis of a generalized Weyl module. This basis can be described in
terms of alcove paths. Also we prove that generalized Weyl module have some
fusion-product description.
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Specializations of Macdonald polynomials and the PBW filtration

Daniel Orr

(joint work with Mark Shimozono)

For an arbitrary affine root system, we consider the nonsymmetric Macdonald
polynomials Eλ(X ; q, t) with the parameter t specialized to infinity. In [8], we
prove a combinatorial formula for these polynomials involving alcove walks and the
quantum Bruhat graph (equivalently, Lusztig’s periodic order on alcoves [6]). We
arrive at this formula via a careful analysis of the Ram-Yip formula for Eλ(X ; q, t)
of [9] under the specialization t = ∞. As our formula is manifestly positive, it
follows that the Eλ(X ; q−1,∞) have coefficients in Z≥0[q], settling a conjecture
of [2] in the affirmative.

In this talk, we discuss the work [8] as well as several representation-theoretic
interpretations of the positivity. The different representation-theoretic interpre-
tations hold at various levels of generality, depending mainly on the affine root
system and the defining weight λ, and they involve:

(1) the PBW filtration on level-one affine Demazure modules [1, 2, 3, 4]
(2) a new degree function on quantum Lakshmibai-Seshadri paths [7]
(3) generalized Weyl modules [5]

By a representation-theoretic interpretation, we mean that Eλ(X ; q−1,∞) should
be realized as the graded character of some graded module for the underlying finite-
dimensional simple Lie algebra (or of related objects). Many interesting questions
remain. For instance, do there exist direct connections between (1-3) above? And,
are there geometric interpretations of the positivity of Eλ(X ; q−1,∞)?
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Quiver Grassmannians

Markus Reineke

1. Introduction

The objective of using quiver Grassmannians in the context of the mini workshop
is to model degenerate versions of flag varieties in terms of Grassmannians of
subrepresentations of representations of Dynkin quivers.

The main advantage of this point of view is that it yields an approach – in
terms of the representation theory of quivers – to the following properties of de-
genererations of flag varieties (see [1, 2, 3, 4, 5, 7, 8]):

• local properties: irreducibility or parametrization of irreducible compo-
nents; smoothness, normality and the determination of the singular locus;
the property of being locally a complete intersection; the construction of
desingularizations

• global properties: construction of cell decompositions, computation of
Betti numbers in cohomology, counting rational points over finite fields

• dynamic properties: construction of group actions on degenerations of flag
varieties, construction of flat families of degenerations.

However, there are also limitations of this quiver approach: first, it is restricted
to degenerations of SLn-flag varieties (see, however, [7]). Second, it is inherent to
the quiver approach that no toric degenerations can be constructed in general.

2. Quiver representations and quiver Grassmannians

The most general definition of quiver Grassmannians is the following:
Definition.Let A be a finite dimensional associative C-algebra, let M be a

finite-dimensional left A-modules, and let β be a class in the Grothendieck group
K0(A). Then

Grβ(M) = {U ⊂ M : U is a subrepresentation in class β}

is naturally endowed with a structure of a projective variety, since it is closed in
the ordinary Grassmannian of linear subspaces of M (viewed as a complex vector
space).
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More specifically, let Q be a finite quiver with set of vertices Q0 and arrows
written α : i → j. On the free abelian group ZQ0, we have the Euler form 〈 , 〉Q
given by

〈d, e〉Q =
∑

i∈Q0

diei −
∑

α:i→j

diej

for d = (di)i∈Q0 , e = (ei)i∈Q0 ∈ ZQ0.
A (complex) representation V of Q consists of C-vector spaces Vi for i ∈ Q0 and

C-linear maps (fα : Vi → Vj)α:i→j . A morphism between two such representations
V = ((Vi)i, (fα)α) and W = ((Wi)i, (gα)α) consists of C-linear maps ϕi : Vi → Wi

for i ∈ Q0, such that ϕjfα = gαϕi for all α : i → j.
The resulting category repCQ of C-representations of Q is equivalent to the

category of left modules over the so-called path algebra CQ of Q, thus it is an
abelian C-linear category.

Since CQ is a hereditary algebra, we have Ext≥2( , ) = 0 in repCQ, and

dimHom(V,W )− dimExt1(V,W ) = 〈dimV,dimW 〉Q,

where dimV = (dimVi)i ∈ NQ0.
The general definition of quiver Grassmannians above can now be reformulated

for the algebra A = CQ as follows:

Definition.Fixing a representation V = ((Vi)i, (fα)α) of Q and a dimension type
e ∈ NQ0, we define

Gre(V ) = {(Ui ⊂ Vi)i∈Q0 , fα(Ui) ⊂ Uj} ⊂
∏

i∈Q0

Grei(Vi).

In this generality, quiver Grassmannians are no specific object of study, since
the following holds [9]:

Theorem.Every projective variety X is isomorphic to a quiver Grassmannian
Gre(V ), for a quiver with three vertices, a representation V such that End(V ) ≃ C,
and dimension type e = (1, 1, 1).

Therefore, we restrict in the following to Q being of Dynkin type, that is, the un-
oriented graph underlyingQ is a disjoint union of Dynkin diagrams of type An, Dn,
E6, E7 or E8. By Gabriel’s theorem, it is then known that there are only finitely
many isomorphism classes of indecomposable representations, parametrized by the
positive roots of the corresponding root system via the map dim. Consequently,
there are only finitely many isomorphism classes of representations of fixed dimen-
sion type.

This result admits a geometric interpretation: for a dimension type d ∈ NQ0,
consider the affine space Rd =

⊕
α:i→j Hom(Cdi ,Cdj), on which the group Gd =∏

i∈Q0
GLdi

(C) acts on Rd via base change

(gi)i∈Q0 · (fα)α = (gjfαg
−1
i )α:i→j .



642 Oberwolfach Report 13/2016

By definition, the Gd-orbits in Rd correspond naturally to the isomorphism classes
of representations of Q of dimension type d. Thus, in case Q is Dynkin, Gd acts
on Rd with finitely many orbits for any d ∈ NQ0.

3. Some sample results

To give an idea of the type of results which can be obtained on quiver Grassman-
nians for Dynkin quivers, and to indicate the interplay of representation theoretic
and geometric notions, we list some results from [2, 8]:

Theorem.Let Q be a Dynkin quiver, V a representation of Q, and e ∈ NQ0 as
before.

(1) The quiver Grassmannian Gre(V ) is nonempty if and only if, for all in-
decomposable representations U , we have dimHom(U,M) ≥ 〈dimU, e〉Q.

(2) If Ext1(V, V ) = 0, then Gre(V ) is smooth of dimension 〈e,dimV − e〉Q.
(3) The following properties are equivalent:

(a) dimHom(U, V ) ≤ 〈dimU,dimV − e〉Q for all indecomposable repre-
sentations U ,

(b) There exists a short exact sequence 0 → P → V → I → 0, where P
is projective of dimension type e and I is injective.

In this case, Gre(V ) is an irreducible normal (typically singular) rational
locally complete intersection variety of dimension 〈e,dimV − e〉Q.

(4) Gre(V ) always carries an action of the algebraic group Aut(M).
(5) Gre(V ) is always polynomial count, that is, there exists a scheme G∇e(V )

over Spec(Z) whose base change to Spec(C) is isomorphic to Gre(V ),
and a polynomial P (x) ∈ Z[x] with P (|k|) = |(G∇e(V ))(k)| (the set of
k-rational points) for almost all finite fields k.

4. Flat degenerations

We explain a general method to construct flat degenerations between quiver Grass-
mannians, which is applied in [1, 2] to the construction of flat degenerations of
flag varieties.

Inside Rd ×
∏

i∈Q0
Grei(C

di), we consider the closed subvariety

GrQe (d) = {((fα)α, (Ui)i) : fα(Ui) ⊂ Uj for all α : i → j}.

Then GrQe (d) is a Gd-homogeneous vector bundle over
∏

i Gre(C
di) via projection

to the second factor, which allows to compute its dimension as

dimGrQe (d) = dimRd + 〈e,d− e〉Q.

On the other hand, the projection π : GrQe (d) → Rd to the first factor is projective,
and the fibre π−1(V ) (with its reduced scheme structure) is naturally isomorphic
to the variety Gre(V ).

Theorem.Let V0 be the unique (up to isomorphism) representation of Q of dimen-
sion type d such that Ext1(V0, V0) = 0, and assume that Gre(V0) is non-empty. If
dimGre(V ) = 〈e,d− e〉Q, then Gre(V ) is a flat degeneration of Gre(V0).
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The proof is easy: the orbit of V0 in Rd is open, thus π is surjective by as-
sumption. Its generic fibre Gre(V0) is thus of dimension dimGrQe (d) − dimRd =
〈e,d − e〉Q. The restriction of π to the inverse image of the open set U of all
points W ∈ Rd whose orbit closure contains V is thus an equidimensional map
between smooth varieties and hence flat. Thus π : π−1(U) → U is a flat family
with generic fibre Gre(V0) and special fibre Gre(V ).

5. Linear degenerations of SLn+1-flag varieties

We review the main results of [1].
We consider the special case Q = 1 → 2 → . . . → n, d = (n + 1, . . . , n + 1),

e = (1, 2, . . . , n) of the above. We thus consider the first projection π : Y → X
from

Y = {((fk), (Ui)) : fi(Ui) ⊂ Ui+1, i ≤ n− 1} ⊂ End(Cn+1)n−1 ×
n∏

i=1

Gri(C
n+1)

to X = End(Cn+1)n−1, which is equivariant for the base change action of G =
GLn+1(C

n−1.
For a subset I ⊂ {1, . . . , n + 1}, we denote by prI : Cn+1 → Cn+1 along the

basis vectors ei for i ∈ I, and we define the representations

V0 = (Cn+1 id
→ Cn+1 id

→ . . .
id
→ Cn+1),

V1 = (Cn+1 pr2→ Cn+1 pr3→ . . .
prn→ Cn+1),

V2 = (Cn+1 pr2,3
→ Cn+1 pr3,4

→ . . .
prn,n+1
→ Cn+1).

Theorem.

(1) The generic fibre of π, that is, the fibre of π over V0, is isomorphic to the
SLn+1-flag variety,

(2) π is flat precisely over the locus of points whose G-orbit closure contains
V2. All fibres over this locus are locally complete intersection varieties
admitting a cell decomposition.

(3) π is flat with irreducible fibres precisely over the locus of points whose G-
orbit closure contains V1. All fibres over this locus are normal varieties.

(4) The number of irreducible components of π−1(V2) equals the n-th Catalan
number.

(5) The fibre π−1(V1) is isomorphic to the degenerate flag variety of [6].
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der numbers, J. Algebraic Combin. 38 (2013), no. 1, 159–189.

[4] G. Cerulli Irelli, E. Feigin, M. Reineke, Desingularization of quiver Grassmannians for
Dynkin quivers, Adv. Math. 245 (2013), 182–207.



644 Oberwolfach Report 13/2016

[5] G. Cerulli Irelli, E. Feigin, M. Reineke, Schubert Quiver Grassmannians, Preprint 2015.
arxiv:1508.00264

[6] E. Feigin, GM
a degeneration of flag varieties, Selecta Math. (N.S.) 18 (2012), no. 3, 513–537.

[7] E. Feigin, M. Finkelberg, M. Reineke, Degenerate affine Grassmannians and loop quivers,
Preprint 2014. arxiv:1410.0777
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Introduction to Newton–Okounkov bodies

Joaquim Roé

Inspired by the work of A. Okounkov [13], R. Lazarsfeld and M. Mustaţă [10]
and independently K. Kaveh and A. Khovanskii [6] introduced Newton–Okounkov
bodies as a tool in the asymptotic theory of linear series on normal varieties, a tool
which proved to be very powerful and in recent developments of the theory has
gained a central role. An excellent introduction to the subject —not exhaustive
due to the rapid development of the theory— can be found in the review [3] by
S. Boucksom.

Newton–Okounkov bodies are defined as follows. Let X be a normal projective
variety of of dimension n. A flag of irreducible subvarieties

Y = {X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn = {p}}

is called full and admissible if Yi has codimension i in X and is smooth at the
point p. p is called the center of the flag. For every non-zero rational function
φ ∈ K(X), write φ0 = φ, and for i = 1, . . . , n

(1) νi(φ) = ordYi
(φi−1) , φi =

φi−1

g
νi(φ)
i

∣∣∣∣∣
Yi

,

where gi is a local equation of Yi in Yi−1 around p (this makes sense because
the flag is admissible). The sequence νY = (ν1, ν2, . . . , νn) determines a rank n
discrete valuation K(X)∗ −→ Zn

lex with center at p [15].

Definition 1. If X is a normal projective variety, D a big Cartier divisor on it,
and Y an admissible flag, the Newton–Okounkov body of D with respect to Y is

∆Y(D) =

{
νY(φ)

k

∣∣∣∣φ ∈ H0(X,OX(kD)), k ∈ N

}
⊂ Rn,

where {·} denotes the closure with respect to the usual topology of R2. Although
not obvious from this definition, ∆Y(D) is convex and compact, with nonempty
interior, i.e., a body (see [6], [10], [3]).

Note that a Newton–Okounkov body ∆ν can be associated to D with respect
to any rank n discrete valuation ν, regardless of whether there exists a flag Y such
that ν = νY (this point of view was taken in [3]). An application of this approach,
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useful in the case of toric varieties and Shubert varieties, is that it allows to relax
the admissibilty hypothesis on the flag: if Y is a full flag for which there exists a
birational morphism X̃ → X such that there is a unique admissible flag Ỹ lifting
Y, then Y also determines a rank n valuation and a Newton–Okounkov body for
every big divisor D.

A particularly well-known case of Newton–Okounkov bodies is provided by toric
varieties. Indeed, if X is a normal toric projective variety, and the flag Y is
composed by torus-invariant subvarieties, then ∆Y(D) is the convex polytope
associated to D by the usual correspondence of toric geometry. Several important
properties of this correspondence, in particular those describing the asymptotic
behavior of D in terms of the convex geometry of the polytope, carry over to the
new setting, and allow to connect the asymptotic behavior of D (on an arbitrary
normal projective variety X) to the convex geometry of its Newton–Okounkov
bodies. In particular, the starting point of the theory of Newton–Okounkov bodies
is Okounkov’s theorem relating their volume to the volume of the divisorD. Recall
that the volume of a Cartier divisor D on an irreducible normal projective variety
X of dimension r is defined as

vol(D) = lim sup
m→∞

dim
(
H0(X,OX(mD))

)

mr/r!
.

Theorem 8 (Okounkov). Let X be an irreducible normal projective variety of
dimension r, let D be a big divisor on X, and let ν be a valuation of the field
K(X) with value group Zr

lex. Then

vol(∆ν(D)) =
1

r!
vol(D),

where the volume on the left-hand side denotes the Lebesgue measure in Rr.

In order to understand Newton–Okounkov bodies, one faces the need to under-
stand the underlying valuations and the algebraic constructions stemming from
them. Every valuation ν : K(X)∗ −→ Rn

lex with value group G = ν(K(X)∗) de-
termines, for each x ∈ G, vector subspaces P≥x = {f ∈ K(X)∗ | ν(f) ≥ x} ∪ {0}
and P>x = {f ∈ K(X)∗ | ν(f) > x} ∪ {0}. Of these, Rν = P≥0 is a local ring
(usually non-noetherian) with maximal ideal Mν = P>0. The G-graded algebra
of ν is Grν =

⊕
x∈G P≥x/P>x.

Rank r valuations of the field of rational functions on an r-dimensional variety
(the ones used to define Newton–Okounkov bodies) are “rational” in the sense that
Rν/Mν

∼= C and (therefore) each graded piece P≥x/P>x of the graded algebra is a
1-dimensional vector space. There is a natural map Rν −→ Grν that sends every
nonzero f ∈ Rν with ν(f) = x to its (nonzero) image in P≥x/P>x.

Specializing to sections f in H0(X,OX(mD)), one concludes that

(2) dim
H0(X,OX(mD)) ∩ P≥x

H0(X,OX(mD)) ∩ P>x
≤ 1

for all x ∈ G, and the set of (x,m) such that the dimension in (2) equals 1 is a
subsemigroup Γ of Zn+1 of crucial importance.
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Proof of Theorem 8 (sketch). The main steps in Okounkov’s proof (also described
in detail in [10, Theorem 2.3]) are as follows.

(1) For each m ≥ 0, let Γm = {x ∈ Zn | (x,m) ∈ Γ}. Then #Γm =
dimH0(X,OX(mD)). This is an easy consequence of the inequality (2)
above.

(2) Let C be the convex cone in Rn+1 spanned by Γ. The intersection of C
with the hyperplane whose last coordinate is m = 1 is exactly ∆ν(D).
This follows from the definitions.

(3) Let Σ = C ∩ Zn+1. If Γ is finitely generated, then there exists (x0,m0)
such that (x0,m0)+Σ ⊂ Γ. This is a purely semigroup-theoretic statement
whose proof can be found, e.g, in [7, §3].

(4) Using the previous step, if Γ is finitely generated, then

x0 + (m−m0)∆ν(D) ⊂ Γm ⊂ m∆ν(D).

Since both left and right hand sides of these inclusions have ∼
md vol(∆ν(D)) elements, it follows that lim(#Γm)/md = vol(∆ν(D)), and
by step (1), the claim follows for finitely generated semigroup.

(5) Approximate Γ by finitely generated semigroups, Γ1 ⊂ Γ2 ⊂ . . . such that
Γ =

⋃
n Γn, and apply the previous step to each Γn. �

Next we list the most important results known to us on Newton–Okounkov bod-
ies at this point, with special attention to those useful in Representation Theory
and in the study of Shubert varieties. For simplicity of the statements, we assume
that the rational map X → PN induced by D embeds X as a projectively normal
variety, referring the reader to the original cited papers for precise statements in
the case of general big divisors.

Numerical nature: By [10, Proposition 4.1], ∆Y(D) only depends on the
numerical equivalence class ofD. Reciprocally, by [5] the set of all Newton–
Okounkov bodies works as a complete set of numerical invariants of D, in
the sense that, if D′ is another big Cartier divisor with ∆Y(D) = ∆Y(D′)
for all flags Y, then D and D′ are numerically equivalent. In the case of
surfaces, by [14], even fixing a point p ∈ X , if ∆Y(D) = ∆Y(D′) for all
flags Y centered at p, then the positive parts of the Zariski decomposition
of D and D′ agree.

Polyhedrality: It is easy to see that if the semigroup Γ above is finitely gen-
erated then the Newton–Okounkov body is a rational polytope. However,
such finite generation is quite rare, and in dimension r ≥ 3 bodies need
not be polytopes as illustrated in [9]; the key point to construct examples
of such behavior is the fact [12] that the volumes of the fibers of the pro-
jection to the first coordinate x1 are “restricted volumes”: then, choosing
an adequate divisorial part (e.g., equal or containing a suitable abelian
surface) one can obtain restricted volumes depending quadratically on x1.
It is worth noting that such behavior can occur even with strong finiteness
hypotheses, for instance if X is a Mori dream space. However, on surfaces
all Newton–Okounkov bodies are polyhedral, with all vertices but at most
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two having rational coordinates [9], and on every variety there are choices
of flags such that the Newton–Okounkov body is a rational simplex [2].

Toric degenerations: By [1], if the semigroup Γ is finitely generated (so
the Newton–Okounkov body is a rational polytope P ) then there exists a
flat degeneration of X to the toric variety ProjC[Γ], whose normalization
is the toric variety associated to the polytope P . The degeneration can
be explicitly described by a Gröbner basis, exploiting the fact that the
Γ-graded algebra

⊕

(x,m)∈Γ

H0(X,OX(mD)) ∩ P≥x

H0(X,OX(mD)) ∩ P>x

is in fact isomorphic to the semigroup algebra C[Γ] (by the inequality (2)
above) and hence finitely generated.

Integrable systems: By [4], if the semigroup Γ is finitely generated and X
is smooth, then there is a completely integrable Hamiltonian system on X
with moment map µ : X → Rn such that µ(X) = ∆ν . This is constructed
by degenerating to the toric variety and “pulling back” the toric moment
map.
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Dirac operators and Geometric Invariant Theory in the differentiable

setting

Michele Vergne

(joint work with Paul-Emile Paradan)

Let K be a compact Lie group, acting on a compact manifold M . If D is a K-
invariant elliptic operator on M , its space IndexK(M,D) of (virtual) solutions is
a virtual representation of K. We wish to understand the space of K-invariant
solutions of D as the space Index(M0, D0) of solutions of an elliptic operator D0

on a “smaller” space M0.
A familiar setting is when M is a projective manifold, and D the Dolbeaut

operator acting on sections of the corresponding line bundle. In this case M0 is
again a projective manifold: the geometric quotient of M defined by Mumford.

Here we consider any Dirac operator on an oriented even dimensional com-
pact K-manifold M . An important example is the case where M is a com-
pact complex manifold, L an holomorphic line bundle, not necessarily ample, and
D = ∂L is the Dolbeaut operator with coefficients in L. Then IndexK(M,∂L) =∑dimM

i=0 (−1)iHi(M,O(L)).
If M is a spin manifold (so not necessarily complex or even almost complex),

we consider the Dirac operator twisted by a line bundle L. More generally, when
M is a spinc manifold, we consider its determinant line bundle L2. If the manifold

is spin, then L = L
1/2
2 exists, and for simplicity we assume that we are in this case.

We use a K-invariant Hermitian connection on L. We then can construct a
moment map Φ : M → k∗ by Kostant formula L(X) = ∇X + i〈Φ, X〉. Here X ∈ k

is in the Lie algebra of K, L(X) is the infinitesimal action of X on sections of L.
We choose a Cartan subgroup T with Cartan subalgebra t, a positive root

system and let ρ ∈ t∗. The element ρ parameterizes the trivial representation of
K.

Assume first that the generic stabilizer of the action of K on M is finite. Then,
we prove

Theorem

• If ρ is not in the image Φ(M), [IndexK(M,DL)]
K = 0.

• If ρ is in the image Φ(M), we can define an orbifold M0 and a Dirac operator
D0 on M0 such that [IndexK(M,DL)]

K = Index(M0, D0).

The definition of M0 and D0 requires some care: if ρ is a regular value of Φ,
then M0 = Φ−1‘(ρ)/T .

When M is complex, and L a line bundle which is not ample, our reduced spaces
M0 are again complex orbifolds, but might be non connected.
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When M is a spinc manifold, with an action of S1, this theorem has been
obtained by Cannas da Silva-Karshon-Tolman. The case of toric manifolds and
non ample line bundles have been treated in Karshon-Tolman.

In the general case, we prove that the index IndexK(M,D) is equal to 0, when
the semi-simple part s of the generic stabilizer kM is not a Levi subalgebra.

Assume that [kM , kM ] is a Levi subalgebra s. In this case, we consider a collec-
tion of admissible elements ρa ∈ t∗ obtained by projection of ρ on certain walls
of the Weyl chamber, and we define M0 = ∪aΦ

−1(ρa)/Kρa
. Our theorem holds

[IndexK(M,DL)]
K = Index(M0, D0).

This theorem is inspired by the [Q,R] = 0 theorem conjectured by Guillemin-
Sternberg, and proved by Meinrenken-Sjamaar. However, we work in the spin
context and our manifold need not be complex, nor even almost complex.

Some interesting questions remains open. For example, the ”Duistermaat-
Heckman” measure can be defined independently of the choice of a connection.
Can we choose a connection ∇ such that the image of Φ is the support of the
Duistermaat-Heckman measure ?

References

[1] A. Cannas da Silva, Y. Karshon and S. Tolman, Quantization of presymplectic manifolds
and circle actions, Trans. A. M. S. 352 (2000), 525–552.

[2] Y. Karshon and S. Tolman, The moment map and line bundles over presymplectic toric
manifolds, J. Differential Geom 38 (1993), 465-484.

[3] E. Meinrenken and R. Sjamaar, Singular reduction and quantization, Topology 38 (1999),
699–762.

[4] P-E. Paradan and M. Vergne, Equivariant Dirac operators and differentiable geometric
invariant theory, arXiv:1411.7772.

[5] P-E. Paradan and M. Vergne, Admissible coadjoint orbits for compact Lie groups, preprint
arXiv:1512.02367 (2015). To appear in Annals of Mathematics.

Reporter: Ghislain Fourier



650 Oberwolfach Report 13/2016

Participants

Teodor Backhaus

Mathematisches Institut
Universität zu Köln
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Weyertal 86 - 90
50931 Köln
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