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Abstract. The aim of the highly successful workshop Computationally and
statistically efficient inference for large-scale and heterogeneous data was to
foster dissemination and collaboration between researchers in the area of high-
dimensional and large-scale data analysis. The field has grown tremendously
over the last decade. Faced with ever larger data sets, many algorithms have
emerged in computer science, machine learning and statistics that allow com-
putationally efficient manipulation and model fitting on large datasets. Yet
the mathematical and statistical properties of these algorithms are only just
beginning to be understood. Advancing the field is important to avoid many
misleading scientific discoveries based on pure data manipulation without the
accompanying mathematical insights. The talks and discussions at the work-
shop covered the latest advances from optimization to statistical error control
for large-scale data analysis.
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Introduction by the Organisers

The workshop Computationally and statistically efficient inference for large-scale
and heterogeneous data, organised by Gilles Blanchard (Potsdam), Nicolai Mein-
shausen (ETH Zurich), Richard Samworth (Cambridge) and Ming Yuan (Madison)
was well attended with 52 participants from a broad geographical background.

The background to the workshop is the data-driven revolution that most scien-
tific fields are experiencing at the moment. Data are collected at an unprecented
rate in most natural sciences. There was and still is early enthusiasm that the
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flood of data will lead to a stream of new and interesting discoveries. However,
one also expects (and observes in practice) many flawed results emerging from
analyses that do not deal carefully enough with the statistical complexities inher-
ent in the data. At the same time, many people are overwhelmed by the sheer
amount of data and need procedures that combine computational efficiency with
sound statistical inference.

Three broad themes and challenges associated with large-scale analysis of com-
plex datasets were discussed at the workshop.

(1) Tradeoffs and synergies between computational constraints, sta-

tistical efficiency, and optimization efficiency. Datasets with mil-
lions or more of observations and variables imply that the computational
efficiency of a statistical estimator is very important and many traditional
approaches to inference are ruled out due to their inefficiency. An in-
teresting question that is beginning to emerge is then whether one can
characterize the statistically most efficient procedures under constraints
on computational complexity. Another aspect of this theme is that one is
naturally led to choose objective functions that leads to good statistical
properties but can also be optimized reasonably fast. In such a context,
the precise nature of the optimization can determine the number of sam-
ples that can be used in a specific analysis and efficient optimization can
thus lead to more accurate estimates. Talks covering this topic included
those of F. Bach, M. Drton, C. Heinze, C. Scott, G. Thanei, and T. Zhang.

(2) Statistical error control for large-scale data. Statistical inference is
challenging in high-dimensional settings, for example if we are after causal
effects of if the number of variables exceeds the number of variables. Re-
garding the latter problem: while a large body of results now exists on
point estimators, it is only recently that the possibility of inference and
confidence statements in these problems has emerged. In the context of
linear models, most work has focused on confidence statements for regres-
sion parameters for high-dimensional linear models. Talks covering this
topic included those of K. Balasubramanian, R. Foygel-Barber, T. Cai,
J. Lei, A. Munk, J. Peters, and R. Tibshirani.

(3) Statistics of complex structures for high-dimensional data. The
objects considered in traditional statistics are typically linear structures,
classical parametric or nonparametric regression, density estimation in
low-dimensional spaces. But with the explosion of the amount of avail-
able data comes a flurry of new scientific questions concerning statisti-
cal estimation and inference on increasingly complex structures (such as
large-dimensional matrices, manifolds, trees, graphs or networks). While
the fundamental statistical questions such as identifiability, consistency,
limit behavior and convergence rates remain the same, the interaction
with other areas of mathematics is developing at a fast rate and raises
many new mathematical challenges. Talks covering this area included
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those of R. Castro, C. Giraud, J. Lafferty, P-L. Loh, P. Rigollet, A. Ro-
hde, D. Rothenhäusler, R. Willett, and Y. Yu.

These topics are of course strongly related. The second topic can for example be
seen as a special case of the first topic: inference for high-dimensional linear models
(part of the third theme) is a good example for the tradeoffs between statistical
and computational efficiencies. For high-dimensional linear models, one typically
uses convex penalties, as non-convex penalties such as constraints on the quasi-
ℓ0-norm of the regression vector are computationally infeasible for datasets with
many variables. There is a statistical price to pay for the convexity of the objective
function. While convex penalized estimation in high-dimensional problems allows
for fast computation, it also incurs a bias in all estimates. Being able to quantify
the bias and thus construct confidence-intervals for high-dimensional challenges
has been an active focus of the workshop and will have many applications in
scientific applications. Similarly, the second and the third topic are closely related,
in particular concerning the fundational aspects of statistical error control for
estimation of complex structures of various nature.

The workshop brought together a range of experts on the timely topic of how
reliable statistical estimation and inference can be achieved in a computationally
efficient manner, and how statistical methodology can be developed to handle
complex structures arising in large-scale/large-dimensional data. We believe the
talks and discussions held at the workshop will help to shape the field in the coming
years.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

“Harder, Better, Faster, Stronger” Convergence Rates for

Least-Squares Regression

Francis Bach

(joint work with Aymeric Dieuleveut, Nicolas Flammarion)

Many supervised machine learning problems are naturally cast as the minimiza-
tion of a smooth function defined on a Euclidean space. This includes least-squares
regression, logistic regression (see, e.g., [1]) or generalized linear models [2]. While
small problems with few or low-dimensional input features may be solved precisely
by many potential optimization algorithms (e.g., Newton method), large-scale
problems with many high-dimensional features are typically solved with simple
gradient-based iterative techniques whose per-iteration cost is small.

In this paper, we consider a quadratic objective function f whose gradients
are only accessible through a stochastic oracle that returns the gradient at any
given point plus a zero-mean finite variance random error. In this stochastic
approximation framework [3], it is known that two quantities dictate the behavior
of various algorithms, namely the covariance matrix V of the noise in the gradients,
and the deviation θ0 − θ∗ between the initial point of the algorithm θ0 and any of
the global minimizer θ∗ of f . This leads to a “bias/variance” decomposition [4, 5]
of the performance of most algorithms as the sum of two terms: (a) the bias term
characterizes how fast initial conditions are forgotten and thus is increasing in a
well-chosen norm of θ0 − θ∗; while (b) the variance term characterizes the effect
of the noise in the gradients, independently of the starting point, and with a term
that is increasing in the covariance of the noise.

For quadratic functions with (a) a noise covariance matrix V which is pro-
portional (with constant σ2) to the Hessian of f (a situation which corresponds
to least-squares regression) and (b) an initial point characterized by the norm
‖θ0 − θ∗‖2, the optimal bias and variance terms are known separately. On the one

hand, the optimal bias term after n iterations is proportional to L‖θ0−θ∗‖2

n2 , where
L is the largest eigenvalue of the Hessian of f . This rate is achieved by accelerated
gradient descent [6, 7], and is known to be optimal if the number of iterations n
is less than the dimension d of the underlying predictors, but the algorithm is not
robust to random or deterministic noise in the gradients [8, 9]. On the other hand,

the optimal variance term is proportional to σ2d
n [10]; it is known to be achieved

by averaged gradient descent [4], which for the bias term only achieves L‖θ0−θ∗‖2

n

instead of L‖θ0−θ∗‖2

n2 .
Our first contribution in this paper is to present a novel algorithm which at-

tains optimal rates for both the variance and the bias terms. This algorithm is
averaged accelerated gradient descent; beyond obtaining jointly optimal rates, our
result shows that averaging is beneficial for accelerated techniques and provides a
provable robustness to noise.
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While optimal when measuring performance in terms of the dimension d and
the initial distance to optimum ‖θ0 − θ∗‖2, these rates are not adapted in many
situations where either d is larger than the number of iterations n (i.e., the num-
ber of observations for regular stochastic gradient descent) or L‖θ0− θ∗‖2 is much
larger than n2. Our second contribution is to provide an analysis of a new al-
gorithm (based on some additional regularization) that can adapt our bounds to
finer assumptions on θ0 − θ∗ and the Hessian of the problem, leading in particular
to dimension-free quantities that can thus be extended to the Hilbert space set-
ting [11] (in particular for non-parametric estimation). For more details, see [12].
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Optimal and Adaptive Goodness-of-fit Testing via Kernel Methods

Krishna Balasubramanian

(joint work with Ming Yuan)

Whenever a statistical model is posed, it is crucial to check its validity. More
specifically, let X1, . . . , Xn be independent observations sampled from an unknown
distribution P on a measurable space on (X ,B). We wish to test a null hypothesis
H0 : P = P0, where P0 is some fixed distribution on (X ,B). This problem,
often referred to as testing for goodness-of-fit, has a long and illustrious history in
statistics and is often associated with household names such as Kolmogrov-Smirnov
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tests, Pearson’s Chi-square test or Neyman’s smooth test. A plethora of other
techniques have also been proposed over the years, both in the parametric setting
and the non-parametric setting. Most of the existing techniques are developed
with the domain X = R or [0, 1] in mind and work the best in these cases. Modern
applications, however, oftentimes involve domains different from these traditional
ones.

A particularly attractive approach to goodness-of-fit testing problems in general
domains is through the reproducing kernel Hilbert space (RKHS) embedding of dis-
tributions, which has attracted a lot of attention in recent years. Like other kernel
methods, RKHS embedding based tests present a general and unifying framework
for goodness-of-fit testing problems in arbitrary domains by using appropriate
kernels defined on those domains. More specifically, let K : X × X → R be a
Mercer kernel that is symmetric, positive (semi-)definite and square integrable.
The RKHS embedding of a probability measure P on (X ,B), with respect to K,
is given by

µP (·) :=
∫

X
K(x, ·)P (dx).

The Moore-Aronszajn Theorem indicates that there is a RKHS, denoted by
(H(K), 〈·, ·〉K), uniquely identified with the kernel. It is clear that µP ∈ H(K),
and hence the notion of RKHS embedding. Based on this, the so called maximum
mean discrepancy (MMD) between two probability measures P and Q is defined
as

γK(P,Q) = ‖µP − µQ‖K .

The goodness-of-fit test can be carried out conveniently through RKHS embed-
dings of P and P0 by first constructing an estimate of γK(P, P0).

Despite its popularity, little is known about the performance of the aforemen-
tioned RKHS embedding based goodness-of-fit test. Our goal is to fill in this void.
In this work, we investigate the power of the above discussed testing strategy under
a general composite alternative. We are particularly interested in the detection
boundary, namely how close P and P0 can be (with respect to χ2 distance), under
the alternative, so that a test can still consistently distinguish between the null
hypothesis and the alternative. Our first result suggests that the detection bound-
ary for γ̂n(P, P0) is of the order n−1/2. It is of interests to compare this rate with
those typically achieved in a parametric setting where it is known that, in general,
consistent tests are available whenever the detection boundary is of the order n−1.
A natural question is to what extent such a gap can be attributed to the fundamen-
tal difference between parametric and nonparametric testing problems. It turns
out that much of it is actually due to the suboptimality of MMD, and the rates
attained by a test using MMD can be significantly improved through a slight mod-
ification of the MMD. For concreteness, we further assume that the eigenvalues of
K with respect to L2(P0) decays polynomially in that λk ≍ k−2s. We show that

the critical radius for testing H0 against H1 for any θ ≥ 0 is n− 4s
4s+θ+1 . The rate

of detection can be achieved, in particular, by a moderated version of the MMD
based approach. A practical challenge to the approach, however, is its reliance
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on the knowledge of θ. Unlike s which is determined by K and P0 and therefore
known apriori, θ depends on u and is not known in advance. This naturally brings
about the issue of adaptation – is there a single test that can adaptively attain
the optimal detection boundary without the knowledge of θ. We show that the
answer is affirmative although a small price in the form of log logn is required to
achieve such adaptation.

High dimensional inference and sign errors with knockoffs

Rina Foygel Barber

(joint work with Emmanuel J. Candès)

We develop a framework for testing for associations in a possibly high-dimensional
linear model where the number of features p may far exceed the sample size n.
We consider the model y = Xβ + ǫ, where y ∈ Rn is the real-valued response,
X ∈ R

n×p is the design matrix consisting of p features (the p columns of X), and
ǫ ∼ N(0, σ2In) is the noise, assumed to be i.i.d. Gaussian. Our goal is to select a

model, that is, a set of features Ŝ ⊂ {1, . . . , p}, while controlling the proportion
of false discoveries in the model: defining H0 = {j : βj = 0}, the set of “null”
features whose true coefficient is zero, we would like to bound the false discovery
rate (FDR), i.e. the expected false discovery proportion (FDP), defined as

FDR = E[FDP] = E

[
|Ŝ ∩H0|
|Ŝ| ∨ 1

]
.

We may also consider sign error rates, known as the directional FDR [3], where
we also count as an error, any feature whose true effect βj is nonzero but was
selected with the wrong sign—these errors are known as “Type S” [4]. Formally,

we partition our selected set of features as Ŝ = Ŝ+ ∪ Ŝ−, where Ŝ+ is the set of

features in the selected model that we estimate to have a positive effect, and Ŝ−
is the same for negative effects. We then have the directional FDR:

FDRdir = E[FDPdir] = E

[
|{j ∈ Ŝ+, βj ≤ 0}|+ |{j ∈ Ŝ−, βj ≥ 0}|

|Ŝ| ∨ 1

]
.

The directional FDR is always at least as large as the FDR, since we now are
penalized for Type S errors in addition to Type I errors.

Our method, the knockoff filter, controls the FDR and the directional FDR, and
can be applied in either a low dimensional (n ≥ p) or high dimensional (n < p)
setting, although for high dimensions we work with inference within a reduced
model, described below. First, we discuss the low dimensional setting. Consider a
model selection method such as the Lasso [5], which solves

β̂(λ) = arg min
b∈Rp

{
1

2
‖y −Xb‖22 + λ‖b‖1

}
,

where λ > 0 is a penalty parameter with large values ensuring a sparse fitted
model. As λ moves from +∞ to 0, this produces a sequence of features entering
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the path at different times. We could also consider a forward stepwise method,
or other methods producing a path of nested models. At any point in the path,
a feature Xj which is a null (i.e. βj = 0) may be selected for one of two reasons:
either (1) it is correlated with the noise ǫ, or (2) it is correlated with some true
signal Xk which has been missed by the model path (or, relatedly, the coefficient
βk has been underestimated, perhaps due to shrinkage). In order to estimate the
number of false positives along the model path, then, we need to account for both
of these sources of error.

To do so, our method creates a knockoff copy—a fake variable serving as a

control—for each of the p features; the knockoff copy for Xj is denoted by X̃j . By
requiring the knockoffs to satisfy certain correlation conditions mimicking the orig-
inal features’ correlation structure, these knockoffs then act as a “control group”
for any path of nested models produced by the chosen model selection method,
and are equally likely as their corresponding null features to be falsely selected in
the model path, for either of the two reasons mentioned above.

We then apply the model selection method to the augmented data set consisting

of the response y and the 2p features X1, . . . , Xp, X̃1, . . . , X̃p. At each point in
the model path, we estimate the current number of false positives by examining
the number of knockoff features that have been selected so far. The knockoff filter
then stops at the last time when the resulting estimated false discovery proportion
is still below some chosen threshold. Specifically, at each time λ in the model path
(moving from the empty model at λ = +∞ to the full model at λ = 0), define

S(λ) = {j : feature Xj entered the path by time λ, and before its knockoff X̃j}
and the corresponding “mirror image”

S̃(λ) = {j : knockoff X̃j entered the path by time λ, and before its original Xj}.
Since the knockoff copy X̃j and its corresponding original null feature Xj are
equally likely to be (falsely) selected, and equally likely to enter the path in either

order, the number of selected null knockoffs, |S̃(λ) ∩ H0|, is an estimate of the
number of selected null original features, |S(λ) ∩ H0|. Therefore we can estimate

the FDP at the current point in the path as FDP(S(λ)) ≈ |S̃(λ)|/|S(λ)|. We
then choose the smallest λ (i.e. the largest model) such that this estimated FDP
is bounded by some desired level q, e.g. q = 0.1; the final output is the selected
model S(λ). Our theoretical results for low dimensions prove that the modified
directed FDR is bounded,

mFDRdir = E

[
|{j ∈ Ŝ+, βj ≤ 0}|+ |{j ∈ Ŝ−, βj ≥ 0}|

|Ŝ|+ q−1

]
≤ q.

The knockoff filter can be applied also in high dimensions (n < p): the obser-
vations are split into two groups, where the first group is used to screen for a set
S ⊂ {1, . . . , p} of potentially relevant variables, whereas the second is used for
inference over this reduced set of variables; we also develop strategies for lever-
aging information from the first part of the data at the inference step for greater
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accuracy. After the screened model is chosen, the inferential step is carried out
with the low-dimensional knockoff filter.

The simplest form of this approach is to use data splitting, where we partition
our n observations into n0 observations (X(0), y(0)) used for screening, and n1 =
n − n0 observations (X(1), y(1)) used for inference. However, at the inference
step, restricting ourselves to the reduced data (X(1), y(1)) lowers the power of our
method to detect true signals; ideally we would want to reuse the first part of the
data, (X(0), y(0)), again for the inference step even though it was already used at

the screening step. To do so, we first create knockoff features for X
(1)
S , denoted as

X̃
(1)
S . We then apply the knockoff filter using the data

XS =

(
X

(0)
S

X
(1)
S

)
, X̃S =

(
X

(0)
S

X̃
(1)
S

)
, y =

(
y(0)

y(1)

)
.

Note that the knockoff features, i.e. the columns of X̃S , are exactly equal to their
corresponding original features on the first n0 observations; they only differ on the
last n1 observations. This means that, when we compare for instance X⊤

j y against

X̃⊤
j y for some screened feature j ∈ S, the difference depends on y only through

y(1), the part of the response which has not been observed yet as it was not used
for the screening step. This “data recycling” trick allows the inference properties
of the knockoff filter, i.e. the results on FDR and directional FDR control, to be
maintained even though we are reusing the first part of the data.

In high dimensions, since the screening step may potentially miss some true sig-
nals, the directional FDR control results apply to the partial regression coefficients
in the reduced model consisting of only those features selected by the screening
step; that is, if S ⊆ {1, . . . , p} is the screened set of features, then we are perform-
ing inference on βS ∈ RS , the partial regression coefficients when the response y
is regressed on the set of features {Xj : j ∈ S}.

Finally, we demonstrate the performance of our approach through numerical
studies showing more power than existing alternatives, and we also apply our
method to a genome-wide association study to find locations on the genome that
are possibly associated with continuous phenotypes (LDL and HDL levels).

Our work on this method appears in [1] for low dimensions proving FDR con-
trol; subsequent work in [2] proves directional FDR control in low dimensions and
extends to the high dimensional setting.
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Distribution-Free Detection of Structured Anomalies: Permutation

and Rank-Based Scans

Rui M. Castro

(joint work with Ery Arias-Castro, Ervin Tánczos and Meng Wang)

The scan statistic is by far the most popular method for anomaly detection, and
is used often for syndromic surveillance, signal and image processing, and target
detection based on sensor networks. Tests based on the scan statistics are easily
calibrated with the knowledge the null distribution, corresponding to the absence
of abnormal behavior. When this distribution is unknown it is less clear how to
proceed. We investigate two possible approaches: (i) calibration by permutation
and; (ii) a rank-scan test, which is distribution-free and less sensitive to outliers.
Furthermore, knowledge of the sample size suffices to calibrate the rank-scan test,
so computationally it has the same cost as the oracle scan test. In both cases,
we quantify the performance loss with respect to an oracle scan test (with full
knowledge of the null distribution) and show there is only a small loss of power
in the context of a natural exponential family. This includes the classical normal
location model, popular in signal processing, and the Poisson model, popular in
syndromic surveillance. An extended version of this report can be found in [2].

Specifically, we observe a realization x of a set independent random variables
X ≡ (Xi : i ∈ [N ]), where N is the dataset size and [N ] ≡ {1, . . . , N}. We
take a binary hypothesis testing point of view. Under the null hypothesis these
random variables are identically distributed with some unknown null distribution
F0. Under the alternative, a subset of these variables has a different distribution.
Let S ⊂ 2[N ] denote a class of possibly anomalous subsets. Under the alternative
hypothesis there is a subset S ∈ S such that, for each i ∈ S, Xi ∼ Fi for some
distribution Fi 6= F0, while (Xi : i ∈ [N ] \ S) still have distribution F0. In a
number of important applications the variables are real-valued and the anomalous
observations take larger-than-usual values, formalized by assuming that each Fi

stochastically dominates F0. Without loss of generality and to simplify the pre-
sentation below we assume F0 has zero mean and variance one for the results in
Theorem 1.1 and Corollary 2.2.

When the distributions are known a test based on the generalized likelihood
ratio is a very natural approach. An asymptotic equivalent alternative is to use
the scan statistic,

SCAN(x) = max
S∈S̃

1√
|S|



∑

i∈S
xi −

1

N

∑

i∈[N ]

xi


 ,
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where S̃ is surrogate for S (typically an approximating net). The use of a surro-
gate for S is both motivated by computational and analytical considerations. A
test based on this statistic rejects the null hypothesis if SCAN(x) is larger than
some threshold. If the null distribution is known the corresponding test can be
calibrated by Monte-Carlo simulation. If the distribution is not known two pos-
sible alternatives come to mind, namely to calibrate the test by permutation, or
replace the observations by the corresponding ranks and use a scan statistic over
the ranks instead.

1. Calibration by Permutation

The p-value of the scan test calibrated by permutation is defined as

(1) P(x) =
1

N !

∣∣∣
{
π ∈ [N ]! : SCAN(xπ) ≥ SCAN(x)

}∣∣∣ ,

where [N ]! denotes the set of all permutations of [N ]. A test of level α ∈ (0, 1)
rejects the null hypothesis if P(x) ≤ α. The statistical properties of such a test
depend obviously on the class S and the unknown underlying distributions. For
concreteness we consider in this report the class of intervals

S = {{a, . . . , b} : 1 ≤ a ≤ b ≤ N} .

Theorem 1.1. The permutation scan test defined above has level at most α. As-
sume further that Fi belongs to a one-parameter exponential family in natural
form, so that the Radon-Nikodym derivative of Fi with respect to F0 is given
by fi(x) ∝ exp(θix), where θi ∈ [0, θ∗). Under the alternative, and provided

|S| = o(N) and |S|/ log3 N → ∞ the permutation scan test has power converging
to one1 as N → ∞ when

min
i∈S

θi ≥ τ

√
2 logN

|S|
with τ > 1.

Furthermore, the (oracle) scan test calibrated with the full knowledge of the
distribution has precisely the same characterization, while when τ < 1 there is no
powerful test even with the full knowledge of the distributions [1]. The conclusion
is that calibration by permutation has the same asymptotic power as the optimal
test (to first-order accuracy). This type of result and our analysis methodology
extends naturally to other classes S as well.

2. The Rank-Scan Test

Let Ri denote the rank (in increasing order) of Xi among X. Ties are broken
randomly to ensure the distribution of R = {Ri, i ∈ [N ]} under the null is the
permutation distribution. The rank-scan test statistic is simply SCAN(r), leading

1A rather technical assumption is also required, namely either F0 has compact support or
maxi θi ≤ θ̄ < θ∗ for some fixed θ̄ > 0. It is possible to drop this assumption by censoring the
observations before computing the scan statistic.
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to a distribution-free test. Recalling equation (1) the p-value of the rank-scan test
is given by P(r) and we reject the null hypothesis at level α if P(r) ≤ α. Define

pi = P(Y > X) +
1

2
P(Y = X) ,

where X and Y are independent random variables with distributions F0 and Fi

respectively.

Theorem 2.1. The rank-scan test defined above has level at most α. Furthermore
it has power converging to one as N → ∞ if:

(1) |S|/ logN → ∞, |S| = o(N) and

min
i∈S

pi ≥
1

2
+ τ

√
2 logN

|S| with τ >
1

2
√
3

(2) |S| = c logN for some c > 0 and

min
i∈S

pi ≥ 1− 1

2
exp

(
−c+ 1

c

)

(3) 2 < |S| = o(logN) and

min
i∈S

pi = 1− o
(
(N logN)−2/|S|

)
,

This result holds for arbitrary distributions. For the distributions in the one-
parameter exponential family as in Theorem 1.1 we have the following result.

Corollary 2.2. In the setting of Theorem 1.1 the rank-scan test is asymptotically
powerful provided

min
i∈S

θi ≥ τ

√
2 logN

|S|

with τ > 1√
3Υ0

and Υ0 = E[max(X,Y )], where X,Y are independent random

variables with distribution F0.

The parameter Υ0 characterizes the loss of power of the rank-scan test as a
function of the null distribution. If F0 is uniform then 1/(

√
3Υ0) = 1 so there

is asymptotically no loss of power with respect to the oracle scan test. For the
emblematic case of the normal location model where F0 is the standard normal
distribution 1/(

√
3Υ0) =

√
π/3 ≈ 1.023, meaning the rank-scan test has almost

no loss of power in comparison with the oracle scan test. In addition, numerical
experiments with synthetic and real data further confirm these theoretical findings
and demonstrate the very good performance of the rank-scan test in finite sample
scenarios [2].
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Confidence Intervals for High-Dimensional Linear Regression:

Minimax Rates and Adaptivity

Tony Cai

(joint work with Zijian Guo)

Consider the high-dimensional linear regression model

(1) y = Xβ + ǫ, ǫ ∼ N(0, σ2I),

where y ∈ Rn, X ∈ Rn×p and β ∈ Rp. Several penalized/constrained ℓ1 minimiza-
tion methods, including the Lasso, Dantzig Selector, square-root Lasso, and scaled
Lasso have been proposed and studied. Under regularity conditions on the design
matrix X , these methods with a suitable choice of the tuning parameter have been
shown to achieve the optimal rate of convergence k log p

n under the squared error
loss over the set of k-sparse regression coefficient vectors with k ≤ c n

log p where

c > 0 is a constant. See, for example, [5, 1]. A key feature of the estimation
problem is that the optimal rate can be achieved adaptively with respect to the
sparsity parameter k.

Confidence sets play a fundamental role in statistical inference and confidence
intervals for high-dimensional linear regression have been actively studied recently
with a focus on inference for individual coordinates. Zhang and Zhang [6] was
the first to use de-biasing for constructing a confidence interval for βi. [2, 3, 4]
also used de-biasing for the construction of confidence intervals and [4] established
asymptotic efficiency for the proposed estimator. All the aforementioned papers

[6, 2, 3, 4] have focused on the ultra-sparse case where the sparsity k ≪
√
n

log p is

assumed. Under such a sparsity condition, the expected length of the confidence
intervals constructed in [6, 3, 4] is at the parametric rate 1√

n
and the procedures

do not depend on the specific value of k.
Compared to point estimation where the sparsity condition k ≪ n

log p is sufficient

for estimation consistency, the condition k ≪
√
n

log p for valid confidence intervals is

much stronger. There are several natural questions: What happens in the region

where
√
n

log p . k . n
log p? Is it still possible to construct a valid confidence interval

for βi? Can one construct an adaptive honest confidence interval not depending
on k? Our goal is to address these and other related questions. Specifically, we
consider confidence intervals for a linear functional T (β) = ξ⊺β, where the loading

vector ξ ∈ R
p is given and

maxi∈supp(ξ) |ξi|
mini∈supp(ξ) |ξi| ≤ c̄ with c̄ ≥ 1 being a constant. Based

on the sparsity of ξ, we focus on two specific regimes: the sparse loading regime
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where ‖ξ‖0 ≤ Ck, with C > 0 being a constant; the dense loading regime where
‖ξ‖0 ≫ k2. For confidence intervals, T (β) = βi is a prototypical case for the
general functional T (β) = ξ⊺β with a sparse loading ξ, and T (β) =

∑p
i=1 βi is a

representative case for T (β) = ξ⊺β with a dense loading ξ.
We first focus on the two specific functionals T (β) = βi and T (β) =

∑p
i=1 βi.

We establish the convergence rate of the minimax expected length for confidence
intervals in the oracle setting where the sparsity parameter k is given. It is shown
that in this case the minimax expected length is of order 1√

n
+k log p

n for confidence

intervals of βi. An honest confidence interval, which depends on the sparsity k,
is constructed and is shown to be minimax rate optimal. To the best of our
knowledge, this is the first construction of confidence intervals in the moderate-

sparse region
√
n

log p ≪ k . n
log p . If the sparsity k falls into the ultra-sparse region

k .
√
n

log p , the constructed confidence interval is similar to the ones constructed in

[6, 3, 4]. On the other hand, the convergence rate of the minimax expected length

of confidence intervals for
∑p

i=1 βi in the oracle setting is shown to be k
√

log p
n . A

rate-optimal confidence interval that also depends on k is constructed. It should
be noted that this confidence interval is not based on the de-biased estimator.

One drawback of the confidence intervals mentioned above is that they require
knowing the sparsity k. Such knowledge of sparsity is usually unavailable in ap-
plications. A natural question is: Without knowing the sparsity k, is it possible to
construct a confidence interval as good as when the sparsity k is known? This is a
question about adaptive inference, which has been a major goal in nonparametric
and high-dimensional statistics. Ideally, an adaptive confidence interval should
have its length automatically adjusted to the true sparsity of the unknown regres-
sion vector, while maintaining a prespecified coverage probability. We show that,
in marked contrast to point estimation, such a goal is in general not attainable
for confidence intervals. In the case of confidence intervals for βi, it is impossible
to adapt between different sparsity levels, except when the sparsity k is restricted

to the ultra-sparse region k .
√
n

log p , over which the confidence intervals have the

optimal length of the parametric rate 1√
n
, which does not depend on k. In the

case of confidence intervals for
∑p

i=1 βi, it is shown that adaptation to the sparsity

is not possible at all, even in the ultra-sparse region k .
√
n

log p .

Minimax theory is often criticized as being too conservative as it focuses on
the worst case performance. For confidence intervals for high dimensional linear
regression, we establish strong non-adaptivity results which demonstrate that the
lack of adaptivity is not due to the conservativeness of the minimax framework.
It shows that for any confidence interval with guaranteed coverage probability
over the set of k sparse vectors, its expected length at any given point in a large
subset of the parameter space must be at least of the same order as the minimax
expected length. So the confidence interval must be long at a large subset of
points in the parameter space, not just at a small number of “unlucky” points.
This leads directly to the impossibility of adaptation over different sparsity levels.
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Fundamentally, the lack of adaptivity is caused by the difficulty in accurately
learning the bias of any estimator for high-dimensional linear regression.

We now turn to confidence intervals for general linear functionals. For a linear
functional ξ⊺β in the sparse loading regime, the rate of the minimax expected

length is ‖ξ‖2
(

1√
n
+ k log p

n

)
, where ‖ξ‖2 is the vector ℓ2 norm of ξ. For a linear

functional ξ⊺β in the dense loading regime, the rate of the minimax expected length

is ‖ξ‖∞k
√

log p
n , where ‖ξ‖∞ is the vector ℓ∞ norm of ξ. Regarding adaptivity, the

phenomena observed in confidence intervals for the two special linear functionals
T (β) = βi and T (β) =

∑p
i=1 βi extend to the general linear functionals. The case

of confidence intervals for T (β) =
∑p

i=1 ξiβi with a sparse loading ξ is similar
to that of confidence intervals for βi in the sense that rate-optimal adaptation
is impossible except when the sparsity k is restricted to the ultra-sparse region

k .
√
n

log p . On the other hand, the case for a dense loading ξ is similar to that of

confidence intervals for
∑p

i=1 βi: adaptation to the sparsity k is not possible at

all, even in the ultra-sparse region k .
√
n

log p .

In addition to the more typical setting in practice where the covariance matrix
Σ of random design and the noise level σ of the linear model are unknown, we also
consider the case with the prior knowledge of Σ = I and σ = σ0. It turns out that
this case is strikingly different. The minimax rate for the expected length in the

sparse loading regime is reduced from ‖ξ‖2
(

1√
n
+ k log p

n

)
to ‖ξ‖2√

n
, and in particular

it does not depend on the sparsity k. Furthermore, in marked contrast to the case
of unknown Σ and σ, adaptation to sparsity is possible over the full range k . n

log p .

On the other hand, for linear functionals ξ⊺β with a dense loading ξ, the minimax
rates and impossibility for adaptive confidence intervals do not change even with
the prior knowledge of Σ = I and σ = σ0. However, the cost of adaptation is
reduced with the prior knowledge.
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Estimation of High-Dimensional Graphical Models Using Regularized

Score Matching

Mathias Drton

(joint work with Lina Lin, Ali Shojaie)

We discuss estimation of undirected conditional independence graphs for high-
dimensional continuous random vectors. In such a graph, nodes correspond to
random variables, and an edge is present if two variables are conditionally depen-
dent given all other variables. For the estimation, we consider the application of
the score matching approach, introduced and subsequently extended by Hyvärinen
[1, 2]. The regularized score matching method we propose allows for computa-
tionally efficient treatment of possibly non-Gaussian exponential family models.
Indeed, the score matching loss is a convex quadratic function for any exponential
family of continuous distributions, which offers great flexibility in model specifi-
cation while keeping computation as well as theoretical analysis tractable. One
particular consequence of the quadratic nature of the loss is that score matching
admits piecewise linear solution paths under ℓ1 regularization.

In the well-explored Gaussian setting, regularized score matching yields sym-
metric estimates of a sparse precision matrix. As we demonstrate, the method is
state-of-the-art in this case. The true potential of the method, however, lies in its
application to non-Gaussian models. Particular instances we treat are models of
distributions with Gaussian conditionals and Gaussian distribution truncated to
the nonnegative orthant. In the latter case, we apply the extension from [2]. Under
suitable irrepresentability conditions, we show that ℓ1-regularized score matching
is consistent for graph estimation in sparse high-dimensional settings. Through
simulation experiments, we demonstrate good performance of regularized score
matching also for non-Gaussian settings. In an application to RNAseq data, we
show that exploratory analysis based on truncated Gaussian models can extract
information in a way that is very complementary to what is obtained from existing
methods.
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Variable clustering with G-models

Christophe Giraud

(joint work with Florentina Bunea, Xi Luo, Martin Royer and Nicolas Verzelen)

While widely used in applied statistics, the problem of variable clustering has
attracted little attention from a theoretical point of view. In the papers [1, 2], we
propose some new probabilistic modelings and some new algorithms for variable
clustering and we prove some optimality under various settings.

The purpose of variable clustering is to cluster the entries of a p-dimensional
vector X = (X1, . . . , Xp) into groups (Xa)a∈G1 , . . . , (Xa)a∈GK

, such that within
group variables are similar. The implicit notion of similarity underlying classical
clustering algorithm likeK-means or ℓ2 Hierarchical clustering is that within-group
variables are more correlated than between group variables. Instead, we propose
a family of probabilistic models, called G-models, formalizing the principle that
within group variables behave similarly with respect to all the other variables.

InG-models, the random vectorX is assumed to have a mean 0 and a covariance
matrix Σ. A simple and natural notion to encode the above principle, is that
switching two variables of a same group does not change the distribution of the
vector X . This notion of partial exchangeability has the nice property to lead to
a non-ambiguous definition of the groups. Actually, there exists a unique minimal
partition such that within group variables can be permuted without altering the
distribution ofX . Yet, this clustering criterion is not easily amenable to estimation
from a n-sample of X . An idea is then to relax this modeling, by merely looking
at the consequence of partial exchangeability on the covariance matrix Σ.

Let G = {G1, . . . , GK} be a partition of {1, . . . , p} such that within group
variables can be permuted without altering the distribution of X . Let us write
k(a) for the index k of the group such that Xa ∈ Gk. Then, the covariance Σ
fulfills that

• the off-diagonal entries Σab depend only on the indices k(a) and k(b);
• the diagonal entries Σaa depend only on the indices k(a).

Hence, the covariance matrix can be decomposed into

(1) Σ = ACAT + Γ,

where the p × K matrix Aak = 1{a∈Gk} assigns the index of a variable Xa to a
group Gk, the matrix C is symmetric, and Γ is a diagonal matrix with Γaa = γk for
all a ∈ Gk. A matrix Σ fulfilling such a decomposition with respect to a partition
G is said to be G-block structured. Again, we have an identifiable target partition
for clustering with respect to this property, since there exists a unique partition
G∗ according to which Σ fulfills the decomposition (1). We emphasize that the
matrix C may not be positive semi-definite and that the within-group correlations
may be smaller than the between group correlations, as illustrated in the following



Computationally and Efficient Inference for Complex Large-scale Data 761

example

(2) Σ =




1 −1/2 0 0
−1/2 1 0 0
0 0 1 −1/2
0 0 −1/2 1


 .

For simplicity, we assume from now on that X is a Gaussian random variable.
All results can be readily extended to Gaussian copulas or sub-gaussian random
variables.

The partition G∗ can be retrieve from n i.i.d. observations of X , only if the
dissimilarity between the groups is strong enough. In G-models, this dissimilarity
is caught via the CORD metric

CORD(a, b) = max
c 6=a,b

|Σac − Σbc|

which compares the covariance of a and b with respect to all the other variables.
Bunea et al. [1] propose a computationally efficient algorithm retrieving G∗ with
high-probability when the block separation condition

MCORD(Σ) := min
a
G∗

≁ b

CORD(a, b) ≥ c

√
log(p)

n

is met. The rate
√
log(p)/n in the above block separation condition is minimax

optimal for perfect recovery, in the sense that there exists a constant c∗ such that

inf
Ĝ

sup

{
PΣ(Ĝ 6= G∗) : Σ such that MCORD(Σ) ≤ c∗

√
log(p)

n

}
≥ 1

7
,

for all n and p, where the infimum is taken over all possible clustering algorithms.
Multiples examples show that this

√
log(p)/n rate is attained in many different

settings, including settings where

• the number K of clusters is K = 2 or K = p/2;
• the size m of the smallest cluster is m = 2 or m = p/K.

In particular, the minimax rate
√
log(p)/n still holds when we restrict to the

partitions having a minimal block size m growing linearly with p.
This last result is quite surprising, since having large blocks is known to be help-

ful for clustering in some other contexts, as in graph clustering with Stochastic
Block Model (SBM). So, can a large m help in some cases of variable clustering?
While the clustering hardness looks quite insensitive to m when we look at the
hardness in terms of the metric MCORD(Σ), Bunea et al. [2] shows that a de-
pendence in m appears when we measure the hardness in terms of the covariance
gap

(3) ∆(C) = min
k 6=j

(Ckk ∨ Cjj − Cjk).
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We emphasize that requiring ∆(C) ≥ η > 0 is, in general, much more stringent
than, requiring MCORD(Σ) ≥ η > 0 since, when m ≥ 2, we have

∆(C) ≤ MCORD(Σ).

For example, in (2), we have ∆(C) = −1/2, while MCORD(Σ) = 1/2. In particu-
lar, the covariance gap is only suited for some specific G-block covariance matrices.

For simplicity, let us illustrate the dependence in m on the simple but central
case where C = αJ + τI, with α, τ ≥ 0; J the K ×K-matrix made of ones; Γ = I;
and all clusters have a size m = p/K. A simple SDP algorithm gives a perfect
recovery of G∗ with high probability, as soon as log(p)/n is small enough and

∆(C) = τ &

√
log(p) ∨K

nm

∨ log(p) ∨K

n
.

Furthermore, no algorithm can perfectly recover the partition with high probability
when

∆(C) = τ .

√
log(p)

nm

∨ log(p)

n
.

So, in this case, increasing m helps for clustering, at least as long as

m .
n

K ∨ log(p)
.
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Distributed Statistical Estimation with Random Projections

Christina Heinze

(joint work with Brian McWilliams and Nicolai Meinshausen)

We present Loco, a communication-efficient algorithm for distributed statistical
estimation. Given a matrix of features X ∈ Rn×p and a corresponding vector of
responses, Y ∈ Rn where the dimensionality p and sample size n are very large
and p > n, we are interested in solving the following estimation task

(1) min
β∈Rp

J(β) :=

n∑

i=1

fi(β
⊤xi) +

λ

2
‖β‖2

where λ > 0 is the regularization parameter1. The loss functions fi(β
⊤xi) depend

on labels yi ∈ R and linearly on the coefficients, β through a vector of covariates,

1Throughout, ‖·‖ refers to the Euclidean norm for vectors and the spectral norm for matrices,
i.e. ‖A‖ = sup

x
‖Ax‖/‖x‖.
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xi ∈ R
p. Furthermore, we assume all fi to be convex and smooth with Lips-

chitz continuous gradients. Concretely, when fi(β
⊤xi) = (yi − β⊤xi)

2, Eq. (1)
corresponds to ridge regression.

Loco assumes that the data is distributed acrossK different machines (workers)
(e.g. on a computing cluster) according to the features rather than the samples.
This is a more challenging task for both estimation and optimization since the
columns are typically assumed to have arbitrary dependencies and most commonly
used loss functions are not separable over the features.

Formally, let P = {1, . . . , p} be the set of indices. We partition this set into K

non-overlapping subsets P1, . . . ,PK of equal size, τ = p/K so P =
⋃K

k=1 Pk and
|P1| = |P2|, . . . ,= |PK | = τ .2 A naive attempt at parallelizing (1) would simply
be solving the minimization problem on each subset of features Pk independently.
However, important dependencies between features on different workers would not
in general be preserved.

We can rewrite (1) making explicit the contribution from worker k. Letting
Xk ∈ Rn×τ be the sub-matrix whose columns correspond to the coordinates in Pk

(the “raw” features of worker k) and X(−k) ∈ Rn×(p−τ) be the remaining columns
of X, we have

(2) J(β) =

n∑

i=1

fi

(
x⊤
i,kβraw + x⊤

i,(−k)β(−k)

)
+ λ
(
‖βraw‖2 + ‖β(−k)‖2

)

where xi,k and xi,(−k) are the rows of Xk and X(−k) respectively. The idea behind
our approach is to provide each worker with a low-dimensional approximation
to X(−k) which captures the contribution of these non-local features to the loss
function.

We construct such an approximation using Johnson-Lindenstrauss random pro-
jections. Each worker computes a random projection of its respective block of

features which we denote by X̂k = XkΠk ∈ Rn×τsubs . Specifically, we use the
Subsampled Randomized Hadamard Transform as it allows for a computation of
the matrix-vector product in O(τ log τ). Subsequently, each worker k constructs
the matrix

X̄k ∈ R
n×(τ+(K−1)τsubs) =

[
Xk, X̃k

]
, X̃k =

[
X̂k′

]
k′ 6=k

which is the column-wise concatenation of the raw feature matrix Xk and the
random approximations from all other workers, X̃k. So X̃k ∈ Rn×(K−1)τsubs is the
matrix whose columns are a low-dimensional approximation to X(−k), i.e. to the

columns of X not in Xk, and τsubs ≪ τ . We shall call the columns in X̃k the
“random” features of worker k. This procedure is described in Figure 1.

After having constructed these local design matrices consisting of raw and ran-
dom features, for a single worker the local, approximate primal problem is then

(3) min
β̄∈Rτ+(K−1)τsubs

Jk(β̄) :=

n∑

i=1

fi(β̄
⊤
x̄i) +

λ

2
‖β̄‖2

2This is for simplicity of notation only, in general the partitions can be of different sizes.
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Figure 1. Schematic for the approximation of a large data set
in a distributed fashion using random projections.

where x̄i ∈ Rτ+(K−1)τsubs is the ith row of X̄k. Due to computational reasons it is
beneficial to solve the corresponding local dual problem:

(4) max
α∈Rn

−
n∑

i=1

f∗
i (αi)−

1

2nλ
α⊤K̃kα, K̃k = X̄kX̄

⊤
k .

Finally, each worker maps its local dual solution α̃k to the primal solution cor-

responding only to the coordinates in Pk: β̂k = − 1
nλX

⊤
k α̃k. In this way, each

worker returns coefficients corresponding only to its own raw features. The final
primal solution vector is obtained by concatenating the K local solutions.

In summary, Loco requires only a single round of communication where low-
dimensional, structured random projections are used to approximate the depen-
dencies between features available to different workers. The structured random
projections are cheap to compute and must only be communicated once.

In [1, 2], we show that Loco has bounded approximation error with respect
to the solution of Eq. (1) which only depends weakly on the number of workers.
We compare Loco against a state-of-the-art distributed optimization method on
a variety of real world datasets and show that it obtains better speedups while
retaining good accuracy. In particular, Loco allows for fast cross validation as
only part of the algorithm depends on the regularization parameter.
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Shape constrained estimation in low and high dimensions

John Lafferty

(joint work with Min Xu, Sabyasachi Chatterjee)

Shape constrained inference is concerned with the properties of estimators that
impose geometric or structural constraints such as convexity, monotonicity, or
log-concavity. Shape constraints arise naturally in certain applications such as
imaging, or in economics where utility functions may be concave or monotonic.
While shape constrained estimation is a classical topic, going back at least to
Grenander in the 1950s, it has been gaining interest in recent years, with new
problems arising under the perspective of high dimensional data analysis. In this
talk we report on some recent results for shape constrained estimation in both low
and high dimensions.

Nonparametric statistical theory is dominated by smoothness assumptions. But
smoothness is sometimes best considered to be “wishful thinking”—this is why
adaptivity properties of estimators are so important. On the other hand, shape
constraints may be reasonable given knowledge of the problem. Shape constraints
can also be imposed for computational reasons, as the estimators are often free of
tuning parameters, and naturally lead to procedures based on convex optimization.
In spite of the fundamental and classical nature of shape constrained estimation,
the topic is not well understood theoretically, even in low dimensions.

In this talk we presented three recent results concerning shape constrained es-
timation. The first result, which appears as part of Min Xu’s Ph.D. dissertation,
shows that variable selection for nonparametric regression in high dimensions is
qualitatively different under convexity assumptions than under smoothness as-
sumptions, in spite of the fact that convexity and second-order smoothness have
similar minimax and metric entropy properties. The second result, with Sabyasachi
Chatterjee, introduces a graph-structured generalization of isotonic regression,
based on the notion of a “flow.” The third result, also with Sabyasachi Chat-
terjee, concerns adaptivity of the least squares estimator for unimodal regression.

In more detail, our results for high dimensional sparse convex regression show
that variable selection using a potentially misspecified convex additive model is
faithful, in the sense that there are no false negatives in the population setting.
Additionally, we show that “sparsistent” variable selection is achievable using an
additive model, with sample complexity scaling as n4/5 ≥ Cs5σ2 log2 p where s is
the number of relevant variables, and p is the ambient dimension. This is inter-
esting and perhaps surprising because under traditional smoothness assumptions,
consistent variable selection in high dimensions is only possible if the sample size
grows exponentially in the intrinsic dimension, n ≥ exp(s) [4]. However, in the
smooth setting no efficient algorithms are known, and additive models don’t work
in general, under model misspecification. Examples where false negatives occur
are easy to construct. Thus, the geometry and shape restrictions play an essential
role in high dimensional variable selection.
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The second part of the talk described graph structured forms of isotonic regres-
sion. We defined the notion of a tree flow, and presented results on the statistical
properties of the least squares estimator. Consider a rooted tree, and imagine a
fluid flowing into the root node and dividing among the children—possibly with
some leakage. The fluid is recursively divided as it flows down the tree. Thus,
the flow µj at a node satisfies µj ≥ ∑

k∈C(j) µk where C(j) is the set of children

nodes. We observe a noisy flow Y = µ + ǫ where the number of nodes is n, and
ǫ denotes independent Gaussian noise. This generalizes isotonic regression, since
every path from the root to a leaf is monotonic decreasing. As a motivating exam-
ple, we described how profilers of computer programs measure the time or storage
used in different parts of the execution tree of the program. The compiled code
is instrumented to monitor the performance, but this introduces side effects that
can mask the true behavior of the program. Thus, statistical profilers sample to
allow the program to perform closer to its true execution behavior. Having a good
handle on flow denoising could potentially allow for minimal intervention while
still obtaining good estimates of the performance.

Our main result on flow denoising is primarily of interest when the depth hn of
a family of trees Tn grows at most logarithmically. The result says that that the
risk of the least squares estimator µ̂n—which is the projection onto the convex
cone of flows—satisfies the upper bound

(1)
1

n
E‖µ̂n − µ‖2 = Õ

(
hn

n
+

µ1

√
hn

n

)

where µ1 is the flow at the root, with the notation Õ suppressing logarithmic
factors in n. The proof is based on estimation of covering numbers for flows using
a version of “Maurey’s argument,” together with bounds on a Gaussian supremum
function in terms of Dudley’s metric entropy integrals [1].

The result raises a natural question. It is well known that the risk of the
least squares estimator for isotonic regression scales as O(n−2/3), which is mini-
max optimal. But for logarithmic depth, the risk of the LSE for flows scales as
O(log3 n/n). Is the path the “hardest” flow estimation problem, and the star the
“easiest” problem? We provide a partial answer to this question by studying a
family of trees Tn,α where the root has nα children, each of which starts a single
path of length n1−α, for 0 ≤ α ≤ 1. We give upper bounds on the least squares
estimator that indicate the path and star are not, in fact, extremal. In particular,

the risk of µ̂n scales as Õ(n−1/2) for 1
4 ≤ α ≤ 1

2 , and our simulations suggest
that these bounds may be tight. However, a gap exists between our current best
minimax lower bounds and our upper bounds for the LSE. This gap and other
aspects of tree flows are interesting topics for future research.
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On centrality in random growing trees: Confidence for source

estimators and persistence

Po-Ling Loh

We discuss recent work regarding random growing trees. A common theme is the
evolution of the most central node(s) in such trees and how they behave prob-
abilistically as the tree grows. Our first result concerns source estimation in a
diffusion spreading over a regular tree. We show that it is possible to construct
confidence sets for the diffusion source with size independent of the number of in-
fected nodes. Our estimators are motivated by analogous results in the literature
concerning identification of the root node in preferential attachment and uniform
attachment trees; at the core of our proofs is a probabilistic analysis of Pólya urns
corresponding to the number of uninfected neighbors in specific subtrees of the
infection tree. We then turn to the problem of persistence, and demonstrate that
the aforementioned confidence sets have the property of persistence (i.e., settling
down after finitely many steps), with probability 1. Our theory holds for regular
diffusion trees, as well uniform attachment and linear and sublinear preferential
attachment trees.
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A Framework for Assumption-Free Predictive Regression Inference

Jing Lei

(joint work with Max G’Sell, Alessandro Rinaldo, Ryan Tibshirani, Larry
Wasserman)

Consider regression data

(1) Z1, . . . , Zn ∼ P

where Zi = (Xi, Yi), Yi ∈ R, Xi = (Xi(1), . . . , Xi(d)) ∈ Rd and d ≡ dn is allowed
to increase as n increases. Let

(2) µ(x) = E[Y |X = x]
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denote the regression function. We are interested in predicting a new Y from a
new X with no assumptions on µ(x), P or the design matrix. The main goal of this
paper is to construct a prediction set C ⊂ Rd×R, such that P(Y ∈ C(X)) ≥ 1−α,
where C(x) = {y : (x, y) ∈ C}. A secondary goal is to construct model-free
inferential statements about the importance of each covariate.

Our leading example is high-dimensional regression where d ≫ n and a linear
function is used to approximate µ(·) but is not assumed to be correct. Com-
mon approaches to high-dimensional linear regression include the lasso, forward
stepwise selection and the elastic net. But there is very little work on prediction
sets.

We construct coverages sets for the response Yn+1 at a future predictor Xn+1.
The resulting prediction set inherits the good theoretical properties of the original
estimator under standard assumptions, while maintaining finite sample validity
under essentially no assumptions. The basis of our approach is conformal predic-
tion, a method invented by [1]. The conformal approach was further developed in
[2, 4, 3].

Conformal prediction intervals naturally avoids overfitting, and, somewhat re-
markably, are guaranteed to deliver proper coverage in finite sample without any
assumptions on P or on µ̂. The main feature of the conformal prediction pro-
cedure is the symmetry between the n data points Z1, . . . , Zn and the new data
point Xn+1 at which prediction is wanted for Yn+1.

Consider the following strategy: for each value y ∈ R, we construct an
augmented regression estimate µ̂y, which is trained on the augmented data set
Z1, . . . , Zn, (Xn+1, y). Now we define

(3) Ry,i = |Yi − µ̂y(Xi)|, i = 1, . . . , n and Ry,n+1 = |y − µ̂y(Xn+1)|,

and we rank Ry,n+1 among the remaining fitted residuals Ry,1, . . . , Ry,n, comput-
ing

(4) π(y) =
1

n+ 1

n+1∑

i=1

I(Ry,i ≤ Ry,n+1) =
1

n+ 1
+

1

n+ 1

n∑

i=1

I(Ry,i ≤ Ry,n+1),

the proportion of points in the augmented sample whose fitted residual is smaller
than the last one, Ry,n+1. By symmetry, when evaluated at y = Yn+1, we see that
the constructed statistic π(Yn+1) is uniformly distributed over the set {1/(n +
1), 2/(n+ 1), . . . , 1}, which implies

(5) P

(
(n+ 1)π(Yn+1) ≤ ⌈(1− α)(n+ 1)⌉

)
≥ 1− α.

We may interpret the above property as saying that π(Yn+1) provides a valid
(conservative) p-value for the test H0 : Yn+1 = y. Furthermore, the property (5)
immediately leads to our conformal prediction interval at Xn+1, namely

(6) C(Xn+1) =
{
y ∈ R : (n+ 1)π(y) ≤ ⌈(1 − α)(n+ 1)⌉

}
.
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The steps in (3), (4), (6) must be repeated each time we want to produce a
prediction interval (at a new feature value). Also, in practice, we must restrict our
attention in (6) to a discrete grid of trial values y.

Theorem 0.3. If (Xi, Yi), i = 1, . . . , n are i.i.d., then for an new i.i.d. pair
(Xn+1, Yn+1),

P

(
Yn+1 ∈ C(Xn+1)

)
≥ 1− α,

for the conformal prediction band Cconf
1−α. If we assume additionally that for all y ∈

R, the fitted absolute residuals Ry,i = |Yi − µ̂y(Xi)|, i = 1, . . . , n have a continuous
joint distribution, then it also holds that

P

(
Yn+1 ∈ C(Xn+1)

)
≤ 1− α+

1

n+ 1
.

No assumptions are needed in this theorem about the the regression estimator
µ̂. The validity and accuracy of the conformal interval holds over all P and all
µ̂. This is a somewhat remarkable and unique property of conformal inference.
Generally speaking, as we improve our estimate µ̂ of the underlying regression
function µ, the resulting conformal prediction interval decreases in length. Intu-
itively, this happens because a more accurate µ̂ leads to a more accurate estimate
of the residual distribution, and conformal intervals are essentially defined by the
quantiles of the (augmented) residual distribution.

There is an alternative approach, called “split conformal prediction” — called
inductive conformal inference in [5, 1] — that significantly reduces the computa-
tional cost of conformal inference. Split conformal prediction separates the fitting
and ranking steps in conformal prediction using sample splitting. This method
eliminates the need to do the fitting over all (x, y). To be specific, the input data
set is split into two subsets. The first subsample is used to fit the regression func-
tion µ̂. For a new data Xn+1, the conformal prediction interval includes all y such
that |y − µ̂(Xn+1)| ranks no higher than (n/2 + 1)(1 − α) among all residuals in
the second sample.

Theorem 0.4. The split conformal algorithm satisfies, for any P ,

(7) P(Y ∈ Csplit(X)) ≥ 1− α.

If the residuals have continuous joint distribution then

1− α ≤ P(Y ∈ Csplit(X)) ≤ 1− α+
2

n+ 2
.

The full conformal and split conformal methods both tend to produce prediction
bands C(x) whose width (i.e., length, we will use these two terms interchangeably)
is roughly constant over x ∈ R

d. In some scenarios this will not be true, i.e., the
residual variance will vary nontrivially with X , and we will want the conformal
band to adapt correspondingly.

We now introduce an extension to the conformal method that can account for
non-constant residual variance. Our idea is based estimating the mean absolute
deviation (MAD) of the fitted residual rather than the standard deviation, since
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the former exists in some cases in which the latter does not. Recall that, in order
for the conformal inference method to have valid coverage, we can actually use
any conformity score function to generalize the definition of (absolute) residuals.
Then, for the present extension, we simply modify the definition of residuals to
use locally-weighted residuals

(8) Ry,i =
|Yi − µ̂y(Xi)|

ρ̂y(Xi)
, i = 1, . . . , n, and Ry,n+1 =

|y − µ̂y(x)|
ρ̂y(x)

,

where now ρ̂y(x) denotes an estimate of the conditional MAD of (Y −µ(X))|X = x,
as a function of x ∈ Rd. With the locally-weighted residuals in (8), the validity
and accuracy properties of the full conformal inference method carry over.
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Statistical Blind Source Separation - with Applications in Cancer

Genetics

Axel Munk

(joint work with Merle Behr (Göttingen), Chris Holmes (Oxford))

The SBSSR model.
We are studying a particular kind of blind source separation problem embedded in
a change-point regression setting. In blind source separation problems one observes
a mixture of source functions, and aims to recover the original sources from the
available observations. The blindness refers to the fact that neither the sources
nor the mixing is known. We consider single linear mixtures of step functions
with a known finite alphabet in a Statistical Blind Source Separation Regression
(SBSSR) model.

More precisely, for a given finite alphabet A ⊂ R, a given number of source
components m ≥ 2, unknown step functions f = (f1, . . . , fm)⊤ each taking values
in the known alphabet, imag(f i) ⊂ A, and unknown probability mixing weights
ω = (ω1, . . . , ωm)⊤ ∈ Rm

+ with
∑m

i=1 ωi = 1, one observes from the mixture

Yj = ω⊤f(xj) + ǫj =
m∑

i=1

ωif
i(xj) + ǫj , j = 1, . . . , n,(1)
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where ǫ is normal noise with mean zero. We assume that ω⊤f in (1) is sampled
equidistantly at xj := (j − 1)/n, j = 1, . . . , n and that all step functions f i

are defined on the domain [0, 1). Extensions to more general domains ⊂ R and
sampling designs are straightforward under suitable assumptions. The aim in
model (1) is to estimate ω and f from the observations Y = (Y1, . . . , Yn) and to
construct honest confidence statements for all quantities.
Identifiability.
We stress that already in the noiseless case, i.e., ǫ ≡ 0 in (1), it is far from ob-
vious under which criteria the weights ω and the sources f are identifiable. We
characterize the identifiability issue as a combinatorial problem and derive simple
sufficient and necessary identifiability criteria which, to the best of our knowledge,
has been elusive. On the one hand, these conditions ensure discriminability of
different mixture values, which is a necessary conditions on ω to guarantee iden-
tifiabilty of f , and, on the other hand, they ensure a sufficient variability of f ,
which is necessary to guarantee identifiabilty of ω.

Moreover, we discuss how likely it is for the derived identifiability criteria to
be satisfied when the mixing weights are drawn from the uniform distribution
and when the underlying sources are discrete Markov processes. We show that
the mixture becomes identifiable exponentially fast, which reveals identifiability
not to be an issue in most practical situations. See [1] for more details on the
identifiability issue in model (1).
The SESAME estimation methodology.
In the regression setting we propose a new methodology, called SESAME (SEpa-
rateS finite Alphabet MixturEs), which yields uniform confidence sets and optimal
estimation rates (up to log-factors) for all parameters in model (1) under very weak
identifiability conditions [2].

First, SESAME provides honest confidence regions C1−α(Y ) for the mixing
weights ω which are characterized by the acceptance region of a certain multi-
scale test [3] with level α. Then, it estimates ω̂ ∈ C1−α(Y ), where now the level α
can be seen as a tuning parameter for which we propose data driven selection meth-
ods. For ω̂ and C1−α(Y ) we obtain almost optimal estimation rates and diameter
ln(n)/

√
n, respectively. Second, SESAME estimates the sources f as a constrained

maximum likelihood estimator, where the constraint comes from the same mul-
tiscale statistic as for C1−α(Y ) but with a possibly different level β. This yields
asymptotically honest multivariate confidence bands H(β) for the sources f . For

the resulting estimate f̂ we derive exact recovery, i.e., the number of change-points
of f and its function values are estimated exactly and its change-point locations
with the minimax rate 1/n up to a log square term with probability converging to
one at a superpolynomial rate.

SESAME’s estimates and confidence statements can be computed efficiently
using dynamic programming and certain pruning steps.
Applications.
Model (1) arises in many different applications, for instance in digital communi-
cation with mixtures of multi-level PAM signals [4]. Our motivation, however,
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comes from an application in cancer genetics. We use SESAME to analyze ge-
netic sequencing data in order to estimate clonal proportions in a tumor, and the
corresponding copy number variations [5].
Acknowledgement.
This work has been initiated through intensive discussions at the MFO workshop
’Frontiers in Nonparametric Statistics’ in 2012.
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Invariances and Causality

Jonas Peters

(joint work with Peter Bühlmann, Nicolai Meinshausen)

The detection of statistical dependences is a core problem of statistics. In many
situations, however, we prefer a causal model over a purely predictive one since
the former can also predict what happens under interventions. For example, there
might be a correlation between a certain disease and drinking wine but only a
causal model tells whether changing one’s drinking behaviour prevents us from
getting ill.

In order to formulate and tackle those causal problems, we use the language of
structural equation models (SEMs) [9]. In SEMs, each variableXj, j = 1, . . . , p
is modeled as a deterministic function of its direct causes Xpa(j) and some noise
variable Nj, that is

Xj = fj(XPAj
, Nj), j = 1, . . . , p,

where all noise variables are assumed to be jointly independent. SEMs do not
only allow us to model observational distributions; at the same time we can also
use them in order to model what happens under interventions, i.e., when some of
the variables are actively set to specific values (e.g. gene knockouts or randomized
studies).

In causal discovery (or structure learning), we try to learn the causal struc-
ture from observational and/or interventional data. Using the concept of SEMs,
it becomes apparent that without further assumptions, this goal is impossible to
achieve: any observational distribution can be modeled by several SEMs with
different graphs. Under further assumptions, however, this problem becomes solv-
able. Under faithfulness [e.g. 15], for example, the Markov equivalence class of the
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underlying graph becomes identifiable [17, 1, 16]. Spirtes et al. [15], Chickering
[3], Castelo and Kocka [2], Kalisch and Bühlmann [8], He and Geng. [5], Hauser
and Bühlmann [4], (and others) provide methods that infer the identifiable struc-
ture from data. More recently, work has been done for fully identifiable structures
exploiting additional restrictions such as non-Gaussianity [14], nonlinearity [6, 11]
or equal error variances [10]. Janzing et al. [7] exploit an independence between
causal mechanisms.

In this talk, we discuss an approach to causal discovery that is called invariant

causal prediction [12]. In many situations, we are interested in the system’s
behavior under a change of environment. Here, causal models become important
because they are usually considered invariant under those changes. A causal pre-
diction (which uses only direct causes of the target variable as predictors) remains
valid even if we intervene on predictor variables or change the whole experimen-
tal setting. In this approach, we exploit invariant prediction for causal inference:
given data from different experimental settings, we use invariant models to esti-
mate the set of causal predictors for a given target variable. More formally, we
consider a target variable Y and make the following assumption: There exists a
set S∗ ⊆ {1, . . . , d} and γ∗ = (γ∗

1 , . . . , γ
∗
d)

t with support S∗ that satisfies

for all e ∈ E : Xe has an arbitrary distribution and

Y e = Xeγ∗ + εe, εe ∼ Fε and εe ⊥⊥ Xe
S∗ .(1)

In the case of structural equation models [9] or potential outcomes [13], where
the environments e ∈ E correspond to interventions that do not act on Y , the set
S∗ := PAY satisfies this assumption [12].

Our goal is to estimate S∗, which is not possible in many situations. Instead, we
now construct a surrogate S(E) and discuss its relation to S∗ below. We therefore
introduce the following null hypothesis:

H0,S(E) :
{

for all e ∈ E : Xe has an arbitrary distribution and
Y e = Xeβpred,e(S) + εe, εe ∼ Fε and εe ⊥⊥ Xe

S∗

,

where
βpred,e(S) := argminβ∈Rp:βk=0 if k/∈S E(Y e −Xeβ)2

are the least-squares population regression coefficients. We are now able to define

S(E) :=
⋂

S :H0,S(E) is true

S,

which can be estimated by

Ŝ(E) :=
⋂

S :H0,S(E) not rejected

S

where ideas for statistical tests can be found in [12]. Given that (1) is satisfied
for S∗, we have the following statements:

i) S(E) ⊆ S∗,
ii) E = 1 ⇒ S(E) = ∅,
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iii) E1 ⊇ E2 ⇒ S(E1) ⊇ S(E2) and
iv) P(Ŝ(E) ⊆ S∗) ≥ 1− α.

Robustness properties, ideas for extending the framework to hidden variables,
results for artificial and real data sets are discussed in [12].
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[8] M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with
the PC-algorithm. Journal of Machine Learning Research, 8:613–636, 2007.

[9] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New
York, USA, 2nd edition, 2009.
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Fast rates for TV denoising

Philippe Rigollet

(joint work with Jan-Christian Hütter)

Motivated by its practical success, we show that the two-dimensional total varia-
tion denoiser [ROF92] satisfies a sharp oracle inequality that leads to near optimal
rates of estimation for a large class of image models such as bi-isotonic, Hölder
smooth and cartoons.

Consider a noisy image y ∈ RN×N , which we will identify with a vector y ∈ Rn,
n = N2, and the N ×N grid graph defined on the vertex set [N ]2 which contains
edge e =

(
[i, j], [k, l]

)
in its edge set E if and only if [k, l] − [i, j] ∈ {[1, 0], [0, 1]}.

The total variation (TV) denoiser is defined as

(1) θ̂ ∈ argmin
θ∈Rn

1

n
‖θ − y‖22 + λ‖Dθ‖1 ,

where D denotes the incidence matrix of the 2D grid graph and λ > 0 is a tun-
ing parameter. The TV denoiser is often used to restore blurry images due to
its reported properties of smoothing out grainy regions while allowing for sharp
boundaries between regions of different signal intensity. Being a convex program,
it can be solved efficiently, see [AT16] and the references therein.

Consider the Gaussian sequence model

(2) y = θ∗ + ε ,

where θ∗ ∈ Rn is the unknown parameter of interest and ε ∼ N (0, σ2In) is an
isotropic Gaussian random vector. Most of the previous analysis of the perfor-
mance of the TV denoiser has been focused on sparsistency results, i.e. recovering
the places where θ∗ has a jump, see [QJ12, SSR12, OV15, VLLHP16]. Here how-
ever, we are interested in the averaged performance described the mean squared

error ‖θ̂ − θ∗‖22/n. Previous works investigating this are [DHL14, NW13] and
[WSST15], which already contains a n−4/5 rate for mean squared error in the 2D
case. The main theorem below improves these results to a fast n−1 rate, up to
logarithmic factors, and allows for model misspecification.

Theorem 1.5. Fix δ ∈ (0, 1). Then there exist constants C, c > 0 such that the

TV denoiser θ̂ defined in (1) with λ = cσ
√

(logn) log(en/δ)/n satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈R
n

T⊆E

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(Dθ̄)T c‖1

}

+
Cσ2

n
(|T |(logn) log(en/δ) + log(e/δ)) ,(3)

with probability 1 − δ, where (Dθ̄)T c denotes the restriction of Dθ̄ to the subset
T c ⊂ E. In particular, it yields

1

n
‖θ̂ − θ∗‖22 .

σ‖Dθ∗‖1 ∧ σ2‖Dθ∗‖0
n

log2(en/δ)
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with ‖Dθ∗‖0 being the number of nonzero components of Dθ∗.

The key novelty of our proof is a sharp control of the maximum column norm of
the pseudo-inverse D†. Specifically, we use the representation D† = (D⊤D)†D⊤

together with the spectral decomposition of the graph Laplacian D⊤D. While
these results mostly pertain to the 2D grid, they can be extended to other graphs,
such as the complete graph or random graphs.

Having established Theorem 1.5, we can use the trade-off in (3) to get almost
minimax rates for certain function classes on the 2D grid by setting θ̄ to a linear ap-

proximation of θ̂. For α-Hölder functions, we have (up to log factors) n−2α/(2α+1),
and n−1/2 for piecewise constant functions as well as for the class of bi-isotonic
matrices, which recently has been studied in [CGS15, Bel15].

Acknowledgments. This work was supported in part by the National Science
Foundation (DMS-1317308, CAREER-DMS-1053987).
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Spectral analysis of high-dimensional sample covariance matrices in

the missing-at-random scenario

Angelika Rohde

(joint work with Kamil Jurczak)

We study asymptotic spectral properties of high-dimensional sample covariance
matrices with missing observations. Let

Y = (Y1, ..., Yn) ∈ R
d×n, Yk = (Y1k, ..., Ydk)

∗ ∈ R
d, k = 1, ..., n,

be a sample of independent identically distributed (iid) random vectors with co-
variance matrix

T = E
(
(Y1 − EY1)⊗ (Y1 − EY1)

)
.

In examples as described above, we do not observe the whole random vector Yk

but some of its components. This missingness is represented by a random matrix
ε ∈ Rd×n with entries

εik =

{
1 if Yik is observed

0 if Yik is missing.

Under the assumption that the matrices Y and ε are independent, the estimator

T̂ij =
1

Nij

∑

k∈Nij

(
Yik − Ȳi

) (
Yjk − Ȳj

)

is the analogue of the sample covariance and hence the natural estimator for Tij ,
where

Nij =
{
k ∈ {1, . . . , n} : εikεjk = 1

}
, Nij = 1 ∨#Nij(1)

and

Ȳi =
1

Nii

∑

k∈Nii

Yik.

Subsequently, T̂ = (T̂ij) ∈ Rd×d is referred to as sample covariance matrix with
missing observations. If EYk = 0 is known in advance one typically uses the
estimator

Σ̂ =
(
Σ̂ij

)
∈ R

d×d, Σ̂ij =
1

Nij

∑

k∈Nij

YikYjk.

In what follows we write Ξ̂ for T̂ and Σ̂ if a statement holds for both estimators.

1. Assumptions

Let (X(i, k))i,k∈N be a double array of iid centered random variables with unit
variance. The left upper d × n submatrix is denoted by Xd,n. Then the random
vectors Y1,d,n, . . . , Yn,d,n ∈ Rd are the columns of the matrix

Yd,n − EYd,n = T
1/2
d,n Xd,n.

with
Td,n = diag(T11,d,n, . . . , Tdd,d,n) ∈ R

d×d.
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This structure on the population covariance matrix is the simplest one which al-
lows to visualize the effects of missing observations on the spectrum of the sample
covariance matrix. In this article we investigate asymptotic spectral properties of
Ξ̂ under the classical missing (completely) at random (MAR) setting. (εd,n)d,n is
a triangular array of random matrices εd,n ∈ Rd×n independent of (X(i, k))i,k∈N,
where the entries εik,d,n are independent Bernoulli variables with observation prob-
abilities

P(εik,d,n = 1) = pi,d,n, i = 1, . . . , d, k = 1, . . . n.

The dependence of the set Nij and the number Nij in (1) on the sequence (εd,n)
is indicated by an additional subscript d, n. Throughout this report we impose
that the family of spectral measures of the population covariance matrices (Td,n)
as well as the family of empirical distributions

(µwd,n)d,n , with µwd,n =
1

d

d∑

i=1

δwi,d,n
and wd,n =

(
p−1
1,d,n, ..., p

−1
d,d,n

)
,

are tight. Asymptotic statements refer to d → ∞ while n = n(d) satisfies
lim supd→∞ (d/n) < ∞. The sequence of sample covariance matrices with miss-

ing observations is denoted by (Ξ̂d,n)d,n, the corresponding sequence of spectral
measures by (µd,n)d,n and their Stieltjes transforms by (md,n)d,n.

2. Results

Define

Sd,n = diag

(
1− p1,d,n
p1,d,n

T11,d,n, . . . ,
1− pd,d,n
pd,d,n

Tdd,d,n

)

and Rd,n = diag

(
1

p1,d,n
T11,d,n, . . . ,

1

pd,d,n
Tdd,d,n

)
.

Theorem 2.1. Suppose that the assumptions stated in Section 1 hold, and

sup
d

‖Rd,n‖S∞
< ∞.

Then for any z ∈ C+, we have |md,n(z)−m◦
d,n(z)| → 0 a.s., where m◦

d,n(z) satisfies

m◦
d,n(z) =

1

d
tr





(
1

1 + d
ne

◦
d,n(z)

Rd,n − Sd,n − zId×d

)−1




and e◦d,n is the (unique) solution of the fixed point equation

e◦d,n(z) =
1

d
tr



Rd,n

(
1

1 + d
ne

◦
d,n(z)

Rd,n − Sd,n − zId×d

)−1


 .

Moreover, m◦
d,n is the Stieltjes transform of a probability measure µ◦

d,n on R and

µ◦
d,n − µd,n =⇒ 0 a.s.
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It is well-known that the Stieltjes transform of the Marčenko-Pastur law with
parameters

(
y, σ2/p0

)
is the unique solution to

s(z) =

(
σ2

p0
· 1

1 + σ2

p0
ys(z)

− z

)−1

from C+ → C+. In the special case Td,n = σ2Id×d and pd,n = (p0, . . . , p0) ∈ (0, 1)d,
we have

m◦
d,n

(
z − σ2 1− p0

p0

)
=


σ2

p0

1

1 + d
n

σ2

p0
m◦

d,n

(
z − σ2 1−p0

p0

) − z




−1

.

Hence, µ◦
d,n is the Marčenko-Pastur law µMP

d
n
,σ

2

p0

shifted by σ2 1−p0

p0
to the left.

Corollary 2.2. Grant the conditions of Theorem 2.1. If pi,d,n = p0 > 0 for
i = 1, . . . , d and d, n ∈ N and Td,n = σ2Id×d, σ

2 > 0, we obtain

µd,n =⇒ µMP

y, σ
2

p0

⋆ δ− 1−p0
p0

σ2 a.s.

as d → ∞ and d/n → y > 0.

For Σ̂d,n we even determine the a.s. limit of the extremal eigenvalues.

Theorem 2.3. Grant the conditions of Corollary 2.2 let additionally EX4
11 < ∞

and εd,n ∈ Rd×n be the upper left corner of a double array (ε(i, k))i,k∈N of iid
Bernoulli variables with parameter p0. Assume that EYd,n = 0.Then, if 0 < y < 1,

lim
d→∞

λmin

(
Σ̂d,n

)
=

σ2

p0
(1−√

y)
2 − 1− p0

p0
σ2 a.s., and

lim
d→∞

λmax

(
Σ̂d,n

)
=

σ2

p0
(1 +

√
y)

2 − 1− p0
p0

σ2 a.s.

The characterization of positive definiteness in the null case under the missing
at random scenario is an immediate corollary of Theorem 2.3.

Corollary 2.4. Under the condition of Theorem 2.3,

lim
d→∞

λmin

(
Σ̂d,n

)
< 0 a.s. if p0 < 1− (1 −√

y)2, and

lim
d→∞

λmin

(
Σ̂d,n

)
> 0 a.s. if p0 > 1− (1 −√

y)2.
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Causal inference in partially linear structural equation models –

identifiability and estimation

Dominik Rothenhäusler

(joint work with Jan Ernest, Peter Bühlmann)

The talk was concerned with causal inference in partially linear additive structural
equation models (SEMs) with Gaussian noise. Current research covers two special
cases: Recently, it has been shown that under causal minimality and if all functions
in the structural equation model are nonlinear, the SEM is identifiable given only
observational data [2]. On the other hand, under faithfulness and if all functions in
the structural equation model are linear, the distribution equivalence class is equal
to the Markov equivalence class. Consequently, there exist well-known graphical
and transformational characterizations of the distribution equivalence class, see
e.g. [1] and references therein. However, the intermediate case is only poorly
understood.

We provide comprehensive characterizations of the distribution equivalence
class in the case where some functions in the SEM may be linear and some may
be not. These characterizations can be formulated from the perspective of causal
orders and from a functional viewpoint. Under faithfulness, they give rise to
a graphical representation of the distribution equivalence class and a transfor-
mational characterization based on covered linear edge reversals. These results
comprise the aforementioned known results for solely linear and solely nonlinear
SEMs.

These characterizations are leveraged in an algorithm that, given one member
of the distribution equivalence class, computes a graphical representation of all
DAGs in the distribution equivalence class. We prove its (high-dimensional) con-
sistency and demonstrate its performance in simulations.

References
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Increasing-domain asymptotics for inversion-free estimator of the

Gaussian random fields

Clayton Scott

(joint work with Hossein Keshavarz, XuanLong Nguyen)

Abstract

Gaussian random fields are a powerful tool for modeling environmental processes.
For high dimensional samples, classical approaches for estimating the covariance
parameters require highly challenging and massive computations, such as the eval-
uation of the Cholesky factorization or solving linear systems. Recently, Anitescu,
Chen and Stein [1] proposed a fast and scalable algorithm which does not need
such burdensome computations. The main focus of this article is to study the
asymptotic behavior of the algorithm of Anitescu et al. (ACS) for regular and ir-
regular grids in the increasing domain setting. Despite the fact that ACS’s method
entails a non-concave maximization, our results hold for any stationary point of
the objective function .

1. Introduction

Gaussian process (GP) models gained widespread popularity in spatial statistics
and machine learning due to the versatility of their mean and covariance structure.
In spatial statistics, the unknown covariance function of GP is commonly assumed
to belong to a finite dimensional parametric family and its parameters must be
estimated from available data. The traditional algorithms of estimating covariance
parameters such as maximum likelihood estimation (MLE) and Bayesian inference
can be prohibitive for large and irregularly spaced data. The main computational
burden of such algorithms is directly related to solving large system of linear equa-
tions (SLE) which is inevitable for evaluating the log-likelihood function and its
derivatives. Despite the recent advances toward scalable solution of SLEs such as
iterative Krylov subspace, computing the MLE is still a challenging task, especially
for processes sampled at numerous and irregularly spaced sites.

The computational barriers of optimizing likelihood based loss functions (e.g.
full or tapered MLE) accentuate using losses whose evaluation does not require
extensive computations such as inverting the covariance matrix. The first attempt
toward such a goal has been done by Anitescu, Chen and Stein [1]. Their proposed
loss function which is independent of the precision matrix will be referred as ACS’s
algorithm. Simulation studies verify the efficiency of ACS’s method in the case
that the covariance matrix has a bounded condition number. The main purpose
of this paper is to study the asymptotic properties of the ACS’s algorithm such

This research is partially supported by NSF grant ACI-1047871. Additionally, CS
is partially supported by NSF grants 1422157, 1217880, and 0953135, and LN by NSF
CAREER award DMS-1351362, NSF CNS-1409303, and NSF CCF-1115769. Email:
{hksh,clayscot,xuanlong}@umich.edu
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as consistency and asymptotic normality. Our developed theory shows that ACS’s
algorithm has the same asymptotic rate of convergence as the MLE.

There are two common asymptotic regimes in geostatistics: increasing-domain
and fixed-domain. In the former setting which is suitable for assessing the impacts
of the spatial geometry of samples on estimating the covariance parameters, the
smallest distance among the sampling points is bounded away from zero and more
samples are collected by increasing the diameter of the spatial domain. In the
latter regime, which carries more informative about interpolation procedure, the
data are sampled in a fixed, bounded domain and the observations get denser as
the sample size increases. This paper studies the increasing-domain asymptotics
of ACS’s algorithm

2. Problem formulation and ACS’s algorithm

Let G : Rd 7→ R be a real valued, zero mean and stationary GP whose covariance
function is given by

(2.1) EG (s)G (s′) = φ0K (s− s′, θ0) , ∀ s, s′ ∈ R
d.

The scalar φ0 ∈ I represents the variance of G and the m−tuple θ0 ∈ Θ stands for
the unknown correlation parameters such as the range or smoothness parameters.
It is assumed throughout this paper that Θ ⊂ Rm and I ∈ (0,∞) are compact
with respect to the Euclidean topology. Estimating (φ0, θ0) given n samples of
one realization of G is an objective of numerous applications in geostatistics and
machine learning. Specifically, G is observed at the locations Dn = {s1, · · · , sn}
and the collected samples form a column vector Y = [G (s1) , · · · ,G (sn)]

T
of

length n. We now rigorously present the geometric structure of Dn.

Assumption 2.1. Suppose that there is N ∈ N such that n = Nd. There exists
δ ∈

[
0, 12
)
for which Dn is a d−dimensional δ−perturbed regular lattice (with unit

grid size). Namely,

Dn =
{
vi + δpi : vi ∈ VN,d, pi ∈ [−1, 1]

d
}n

i=1
,

in which VN,d := {v1, · · · , vn} = {1, . . . , N}d denotes the d−dimensional regular
lattice.

The discrepancy of Dn from the d−dimensional regular lattice is controlled by δ.
Dn forms a regular lattice for δ = 0 and the irregularity becomes more discernible
as it increases. Let us introduce ACS’s estimation algorithm proposed in [1].

(2.2)
(
φ̂n, θ̂n

)
= argmax

(φ,θ)∈I×Θ

Fn (Y, φ, θ) ,

Fn (Y, φ, θ) :=
1

n

(
φY TKn (θ)Y − φ2

2
‖Kn (θ)‖2ℓ2

)
.

Unlike the log-likelihood loss function, Fn (Y, φ, θ) has no dependence to the Cho-
lesky factorization of the correlation matrix Kn (θ) and can be computed in O

(
n2
)

operations, even for the irregularly spaced lattices. Another remarkable advantage
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of using Fn (Y, φ, θ) over the log-likelihood function is that it can be evaluated
without storing the n by n correlation matrix.

3. Main results

This section is devoted to establish the asymptotic characteristics of the opti-

mization problem (2.2). We first introduce an alternative formulation for (φ̂n, θ̂n)
giving a new perspective on the numerical difficulties of solving (2.2). The qua-
dratic and concave form of Fn (Y, φ, θ) in terms of φ yields a closed form solution

for φ̂n in terms of Y and θ̂n. That is,

φ̂n =
∥∥∥Kn(θ̂n)

∥∥∥
−2

ℓ2

(
Y TKn(θ̂n)Y

)
.

In which θ̂n is given by

(3.1) θ̂n = argmax
θ∈Θ

Gn (Y, θ) , where Gn (Y, θ) = ‖Kn (θ)‖−1
ℓ2

(
Y TKn (θ) Y

)
.

As it is apparent from (3.1), θ̂n is the global maximizer of a nonconcave objective
function Gn (Y, θ) even for the simplest scenarios of the isotropic Matern covari-
ances. However the main result of this section shows that all the stationary points
of Gn (Y, θ) concentrated around a small neighborhood of θ0 with high probability.
Namely, despite the non-concavity of Gn, it still retains the crucial properties of

concave function. So, a highly accurate approximation of θ̂n can be obtained using
the common optimization techniques.

Assumption 3.1. The following conditions are satisfied by Ω and K.

(A1) Θ and I are compact connected subsets of Rm and (0,∞), respectively.
(A2) There are bounded scalars M > 0 and r1 > 1 such that for any s ∈ Dn,

max
s′∈Dn(s,r1)

|K (s′ − s, θ2)−K (s′ − s, θ1)| ≥ M ‖θ2 − θ1‖ℓ2 , ∀ θ1, θ2 ∈ Θ.

(A3) For some q ∈ {2, 3}, there exists a positive scalar CK,Θ such that

max
θ∈Θ

[
|K (s, θ)| ∨

∣∣∣∣
∂

∂θj1
· · · ∂

∂θjq
K (s, θ)

∣∣∣∣
]
≤ CK,Θ

1 + ‖s‖d+1
ℓ2

,

∀ s ∈ R
m, q j1, . . . , jq ∈ {1, . . . ,m} .

Based upon Propositions 3.1−3.3, Assumption 3.1 holds for the popular classes
of geometric anisotropic covariance functions such as Matern, powered exponential
and rational quadratic.

Theorem 3.1. Suppose that Dn admits Assumption 2.1 and Assumption 3.1 with
q = 2 in (A3) holds for Ω and K. Then for some appropriately chosen constant
C > 0, any stationary point of (2.2) satisfies

lim
n→∞

P

(∥∥∥θ̂n − θ0

∥∥∥
ℓ2
∨
∣∣∣∣∣
φ̂n

φ0
− 1

∣∣∣∣∣ ≥ C

√
log n

n

)
= 0,
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The other asymptotic properties of ACS’s algorithm are omitted due to the
space constraints. We refer the reader to [2] for a thorough analysis.

4. Numerical studies

We conduct a simulation study to assess the statistical performance of the opti-
mization problem 2.2. For each experiment we generate a zero mean stationary
GP on R2 with the covariance function

cov (G (s) ,G (s′)) = σ2
0K
(
‖B0 (s− s′)‖ℓ2

)
, s, s′ ∈ R

2 ; B0 =

(
θ−1
0 0
0 ρ−1

0

)
.

We choose the correlation function K (·) to be either rational quadratic or Matern,
whose exact forms are respectively given from left to right as

K (u) =
(
1 + u2

)−(1+ν0)
, K (u) =

21−ν0uν0

Γ (ν0)
Kν0 (u) .

Here the smoothness parameter ν0 is assumed to be known and Kν0 (·) denotes the
modified Bessel function of the second kind associated with ν0. We observe G on
a randomly perturbed regular lattice of size 1002 with δ ∈ {0.1, 0.3}. The goal is
to construct a confidence interval for the estimated parameters (σ0, ρ0, θ0). The
root mean squared error (RMSE) in Table 1 is computed using 100 independent
experiments. As it is apparent from Table 1, σ0 has a considerably narrower
confidence interval than that of ρ0 and θ0.

δ = 0.1 δ = 0.3

Matern covariance (ν0 = 0.5)

(σ0, ρ0, θ0) = (1, 6, 4) (σ0, ρ0, θ0) = (1, 6, 4)
σ̂ ± RSME = 0.988± 0.096 σ̂ ± RSME = 0.993± 0.097
ρ̂± RSME = 6.042± 1.885 ρ̂± RSME = 6.478± 1.908

θ̂ ± RSME = 4.091± 1.110 θ̂ ± RSME = 4.038± 1.272

Matern covariance (ν0 = 1.5)

(σ0, ρ0, θ0) = (1, 6, 4) (σ0, ρ0, θ0) = (1, 6, 4)
σ̂ ± RSME = 0.993± 0.108 σ̂ ± RSME = 0.984± 0.104
ρ̂± RSME = 05.965± 1.981 ρ̂± RSME = 6.160± 1.890

θ̂ ± RSME = 3.740± 1.146 θ̂ ± RSME = 3.970± 1.243

Rational quadratic covariance (ν0 = 0.5)

(σ0, ρ0, θ0) = (1, 6, 4) (σ0, ρ0, θ0) = (1, 6′4)
σ̂ ± RSME = 0.992± 0.071 σ̂ ± RSME = 0.989± 0.076
ρ̂± RSME = 5.978± 1.241 ρ̂± RSME = 5.921± 1.208

θ̂ ± RSME = 4.092± 0.843 θ̂ ± RSME = 4.037± 1.064

Rational quadratic covariance (ν0 = 1.5)

(σ0, ρ0, θ0) = (1, 6, 4) (σ0, ρ0, θ0) = (1, 6, 4)
σ̂ ± RSME = 0.996± 0.036 σ̂ ± RSME = 0.998± 0.036
ρ̂± RSME = 6.116± 0.821 ρ̂± RSME = 6.158± 0.766

θ̂ ± RSME = 4.045± 0.543 θ̂ ± RSME = 4.150± 0.524

Table 1. Mean and RMSE of estimated parameters over 100 in-
dependent experiments for the geometric anisotropic covariance
functions, where Dn is a perturbed lattice of size 1002 with asso-
ciated δ ∈ {0.1, 0.3}.
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5. Conclusion

This paper summarizes the comprehensive increasing-domain asymptotic study of
ACS’s inversion-free algorithm in [2]. To our knowledge, [2] is among the first
asymptotic analysis of the inversion-free optimization-based techniques for esti-
mating the covariance parameters.
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Efficient High Dimensional Interaction Search

Gian-Andrea Thanei

(joint work with Rajen Shah, Nicolai Meinshausen)

We study the interaction search problem from a computational point of view.
We assume we are given p feature vectors X1, ..., Xp that have binary entries in
{−1, 1}. We want to find product interactions of the form XlXk, we do so by
studying the interaction frequency of each pair (l, k)

Flk =
1

n

n∑

i=1

1{Yi=XilXik}.

The goal is to find the pair (l∗, k∗) for which Fl∗k∗ is maximal.
Exhaustively scanning through all pairs (l, k) has a complexity of O(np2). For

large p this is unfeasible.
We translate the interaction search problem to a nearest neighbor problem by

writing

Flk =
1

n

n∑

i=1

1{Yi=XilXik} = 1− 1

4n

n∑

i=1

(YiXil −Xik)
2 = 1−Dlk

Instead of maximizing the interaction frequency Flk we minimize the distance Dlk.
In practice this is done by building a matrix Z, as Zil = XilYi. The minimum
distanceDlk is then found by looking for the closest columns amongX and Z. This
still has a complexity of O(np2). We reduce the complexity by projecting both
X and Z down to a p-dimensional vector using a random projection R ∈ Rn,(for
example R ∼ N (0, In×n)). We then perform nearest neighbor search on RTX and
RTZ, by first sorting both vectors and then stepping through them exploiting the
spatial structure of sorted vectors and thereby finding the p closest pairs in the
vectors RTX and RTZ. This has complexity O(p log(p)).
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To demonstrate that in fact this can offer a significant speed up we consider
the case of a perfect interaction, i.e. Fl∗k∗ = 1. This implies Yi = Xil∗Xik∗

∀i ∈ {1, ..., n}, therefore Dl∗k∗ = 0. Even the projected pair still has a distance 0:

|RTZ·l∗ −RTX·k∗ | = |RT (Z·l∗ −X·k∗)| = 0,

whereas all the other pairs will be further apart. This means we can recover the
closest pair using only one projection. Thus we can find the pair with the perfect
interaction frequency Fl∗k∗ = 1 in O(np) operations.

For weaker interactions one repeats the projection step multiple times, thereby
boosting the probability of discovering a true interaction in the projected data.

Some recent Developments in Post-Selection inference

Robert Tibshirani

We describe the problem of “selective inference”. This addresses the following
challenge: having mined a set of data to find potential associations, how do we
properly assess the strength of these associations? The fact that we have “cherry
picked” – searched for the strongest associations – means that we must set a higher
bar for declaring significant the associations that we see. This challenge becomes
more important in the era of big data and complex statistical modeling: the cherry
tree (dataset) can very large and the tools for cherry picking (statistical learning
methods) are now very sophisticated. We describe some recent new developments
in selective inference and illustrate their use in forward stepwise regression, the
lasso, and principal components analysis.

This is joint work with many people including Jonathan Taylor, Richard Lock-
hart, Ryan Tibshirani, Will Fithian, Jason Lee, Yuekai Sun, Dennis Sun, Yun Jun
Choi, Max G’Sell, Stefan Wager, and Alex Chouldechova.

Inferring High-Dimensional Poisson Autoregressive Models

Rebecca Willett

(joint work with Eric Hall, Garvesh Raskutti)

Time series count data arise in a variety of applications (cf. [1, 2, 3]), one of the
most notable being biological neural networks [4, 5, 6, 7, 8]. In this application, we
record the times at which each neuron in the network fires or “spikes” and wish to
infer the structure of the underlying network. Action potentials or neuron spikes
can trigger or inhibit spikes in connected neurons, so understanding excitation and
inhibition among neurons provides key insight into the structure and operation of
the neural network. A central question in the design of this experiment is “for
how long must I collect data before I can be confident that my inference of the
neural network is accurate?” Clearly the answer to this question will depend not
only on the number of neurons being recorded, but also on what we may assume a
priori about the network. Unfortunately, existing statistical and machine learning
theory does not address this problem, which is the focus of this work.
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This example of a biological neural network can be modeled as an auto-regressive
point process. That is, at each time t, we observe a high-dimensional vector of
counts, and the distribution of those counts depends on previous observations.
Inferring these dependencies is a key challenge in many settings because a pre-
cise understanding of these dependencies facilitates more accurate predictions and
interpretable models of the forces that determine the distribution of each new
observation.

This work focuses on multivariate settings, particularly where the vector ob-
served at each time is high-dimensional relative to the duration of the time se-
ries. We conduct a detailed investigation of a particular time series count data
model: the vector log-linear Poisson autoregressive (PAR) model. The PAR model
has been explicitly studied in [9, 10, 11], is closely related to the discrete-time
INGARCH model [12, 13], and can be considered a discretized version of the
continuous-time Hawkes point process model [14, 15]. We focus specifically on
estimating the parameters of a vector PAR model from a time series of count data
by using a regularized maximum likelihood estimation approach that generalizes
past work on Poisson inverse problems (cf. [16, 17, 18]). While similar algorithms
have been proposed in the above-mentioned PAR literature, little is known about
their sample complexity or how inference accuracy scales with the key parameters
such as the size of the network, the time spent collecting observations, and the
density of edges within the network or dependencies among entities. The temporal
dependence among events can make such analyses particularly challenging and be-
yond the scope of much current research in high-dimensional statistical inference
(see [19] for an overview).

That said, there has been a large body of work providing theoretical results
for certain high-dimensional models under low-dimensional structural constraints
(see e.g. [18, 20, 21, 22, 23, 24, 25]). The majority of prior work has focussed
on the setting where samples are independent and/or follow a Gaussian distribu-
tion; this work exploits many properties of linear systems and Gaussian random
variables that can not be applied to non-Gaussian and non-linear auto-regressive
models. In the Poisson auto-regressive model, we have dependent count data
samples and signal-dependent Poisson noise. [20, 18, 26] provide results for non-
Gaussian noise but still rely on independent observations. Another method [27]
studies a general framework for point process (including the Hawkes process) and
provides estimation bounds for a LASSO-type estimator. Our work emphasizes
the high-dimensional setting and bounds for short-duration time series.

In this work, we develop performance guarantees for the vector PAR model
that provide sample complexity guarantees in the high-dimensional setting under
low-dimensional structural assumptions such as sparsity of the underlying auto-
regressive parameter matrix. In particular, our main contribution is the derivation
of mean-squared-error bounds on the proposed estimator as a function of the
problem dimension, sparsity, and the number of observations in time.

We consider the log-linear vector Poisson autoregressive model:

(1.1) Xt+1|Xt ∼ Poisson(eν−A∗Xt),
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where (Xt)
T
t=0 are M -variate observation vectors, A∗ ∈ [0, Amax]

M×M is some
unknown parameter matrix, and ν ∈ [νmin, νmax]

M is a known rate parameter1. A
similar model appears in [11], but that work focuses on maximum likelihood and
weighted least squares estimators in univariate settings that are known to perform
poorly in high-dimensional settings (as is our focus).

Under this model, the conditional likelihood can be expressed explicitly as:

P(Xt+1 = y|Xt = x,A) =

M∏

m=1

exp(−eνm−A⊤

mx)e(νm−A⊤

mx)ym

ym!
,

where x and y are M -variate vectors and A⊤
m is the mth row of a candidate pa-

rameter matrix A.
In general, we observe T samples (Xt)

T
t=0 and our goal is to infer the matrix

A∗. In the setting where M is large, we need to impose additional assumptions on
A∗ in order to have strong performance guarantees. In particular we assume that
the matrix A∗ is s-sparse, meaning that A∗ belongs to the following class:

MS = {A ∈ [0, Amax]
M×M |

M∑

ℓ=1

M∑

m=1

1(|Aℓ,m| 6= 0) ≤ s}.

Finding an optimal estimator within this parameter class would use an ℓ0 penalty
to ensure that the estimator has at most s non-zero entries. However, this is a dif-
ficult optimization problem due to the non-convexity of the ℓ0 function. Therefore,
we instead find an estimator using the element-wise ℓ1 decomposable regularizer,
the convex relaxation of the ℓ0 function, along with the negative log likelihood
(using the known, constant vector ν):

Â =arg min
A∈[0,Amax]M×M

1

T

T−1∑

t=0

M∑

m=1

(
eνm−A⊤

mXt +A⊤
mXtXm,t+1

)
+ λ‖A‖1,1(1.2)

where ‖ · ‖1,1 is the element-wise ℓ1 norm:

‖A‖1,1 =
M∑

ℓ=1

M∑

m=1

|Aℓ,m|.

The above is the regularized maximum likelihood estimator (RMLE), which at-
tempts to find an estimate of A which both fits the data and has many zero valued

elements. The goal is to derive bounds for ‖Â−A∗‖2F , the difference between the

regularized maximum likelihood estimator, Â, and the true generating network,
A∗, under the assumption that the true network is sparse, which is our main the-
orem. As we will see in the main theorem, a crucial quantity in the regret bounds
is the value ρ which is the maximum number of non-zeros in any row of A∗. If ρ
is considered a constant independent of M and s, then good error bounds can be
determined, but if ρ is on the order of s, meaning there’s a single, dense row of
non-zeros, poor error rates will be observed.

1Our framework easily extends to unknown ν but the notation is cumbersome; we focus on
known ν for simplicity of presentation.
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Theorem: Let Â be the RMLE as in Equation 1.2, and assume λ ≥
|| 2T
∑T−1

t=0 (Xt+1 − eA
∗Xt)X⊤

t ‖∞,∞ where ‖.‖∞,∞ is the element-wise ∞-norm
then,

‖Â−A∗‖2F ≤ O(eρsλ2)

with probability at least 1 − 2 exp(−min
(
c3T/ρ

2 − c4s log(2M), c2MT
)
) where

c2, c3 and c4 are independent of M,T, ρ and s. Further,

‖ 2
T

T−1∑

t=0

(Xt+1 − eA
∗Xt)X⊤

t ‖∞ ≤ 8C2
1e

νmax log3(MT )√
T

with high probability yielding the overall error rate of

‖Â−A∗‖2F ≤ O

(
eρs

T
log6(MT )

)

with probability at least 1− exp(−c6 min
(
T/ρ2 − s log(M), log(MT )

)
) for some c6

independent of M,T, ρ and s.
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Estimating whole brain dynamics using spectral clustering

Yi Yu

(joint work with Ivor Cribben)

The estimation of time-varying networks for functional Magnetic Resonance Imag-
ing (fMRI) data sets is of increasing importance and interest. In this work, we
formulate the problem in a high-dimensional time series framework, and introduce
a data-driven method, namely Network Change Points Detection (NCPD), which
detects change points in the network structure of a multivariate time series, with
each component of the time series represented by a node in the network. NCPD
is applied to various simulated data and a resting-state fMRI data set. The new
methodology also allows us to identify common functional states within and across
subjects. Finally, NCPD promises to offer a deep insight into the large-scale char-
acterisations and dynamics of the brain.
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Statistics in Big Data Optimization

Tong Zhang

(joint work with Shai Shalev-Schwartz, Rie Johnson, et al)

Due to the explosion of data in our society, it is necessary to design computational
algorithms that can solve big data optimization problems. One example is the click
through rate (CTR) prediction problem in computational advertizing, which is at
the heart of efficient automatic advertizing systems used in the modern internet
industry. When a user views some online content, internet companies will display
ads to match the user’s need, so that the user’s chance of clicking the displayed
ads will be maximized. The CTR estimation problem can be solved using the
following linear logistic regression (or its nonlinear variant):

min
w

1

n

n∑

i=1

[
ln(1 + e−w⊤xiyi)

]
+

λ

2
‖w‖22,

where the data are represented as (xi, yi) with yi ∈ {±1} indicating whether a
user clicks on an ad, and w is a model parameter.

Due to the automated data gathering mechanism on the internet, the training
data for this optimization problem can be as many as 100 billion, and the dimen-
sionality can also reach as high as 100 billion. These modern big-data machine
learning problems encountered in the industry involve optimization problems so
large that traditional methods are difficult to handle. More generally, we are
interested in solving the following abstract problem:

min
w

f(w), f(w) =
1

n

n∑

i=1

fi(w),

where or logistic problem, fi(w) = ln(1 + e−w⊤xiyi). Here big data means that n
can be extremely large.

The complex issues in solving these large scale applications have stimulated fast
development of novel optimization techniques in recent years. In particular, I will
demonstrate how novel applications of statistical thinking can be used to efficiently
solve these large scale optimization problems. In particular, I discuss several sta-
tistical ideas to alleviate the computational challenge via sampling methods that
can be used to select a small number of the most important data points for the
problem, including modern stochastic optimization such as those in [1, 2], and
some other statistical techniques that are used in practice, but not published.
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Seminar für Statistik
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ETH Zürich
Rämistrasse 101
8092 Zürich
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