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Introduction by the Organisers

The subject of this workshop was numerical methods that preserve geometric prop-
erties of the flow of an ordinary or partial differential equation: symplectic and
multisymplectic integrators for Hamiltonian systems, symmetric integrators for
reversible systems, methods preserving first integrals and numerical methods on
manifolds, including Lie group methods and integrators for constrained Hamilton-
ian mechanics, and methods for problems with highly oscillatory solutions. The
unifying theme is structure preservation: not just the “how?” but also “why?”,
“where?” and “what for?”.

The motivation for developing structure-preserving algorithms for special classes
of problems arises independently in such diverse areas of research as astronomy,
molecular dynamics, mechanics, theoretical physics, control theory, and numerical
analysis with important contributions from other areas of both applied and pure
mathematics. Moreover, it turns out that the preservation of geometric properties
of the flow not only produces an improved qualitative behaviour, but also allows
for a significantly more accurate long-time integration than with general-purpose
methods.
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Geometric numerical integration has developed into an active and interdisci-
plinary research area in the last two decades. While the core of the subject, for
ordinary differential equations, is presented in the monographs

E. Hairer, Ch. Lubich, G. Wanner, Geometric Numerical Integration. Structure-
Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin, 2002,

and
B. Leimkuhler, S. Reich, Geometric Integrators in Hamiltonian Mechanics.

Cambridge Univ. Press, 2004,
recent progress in the development and long-time theory of geometric integra-

tors for classes of partial differential equations is documented in the book
E. Faou, Geometric numerical integration and Schrödinger equations. Zurich

Lectures in Advanced Mathematics 15, European Math. Soc., Zürich, 2012.
In addition to the construction of geometric integrators, an important aspect

of geometric integration is the explanation of the relationship between geometric
properties of a numerical method and favourable error propagation in long-time
integration. A very successful organising principle is backward error analysis,
where the numerical one-step map is interpreted as (almost) the flow of a modified
differential equation. In this way, geometric properties of the numerical integra-
tor seamlessly translate into structure preservation on the level of the modified
equation. Much insight and rigorous error estimates over long time intervals can
then be obtained by combining backward error analysis with the KAM theory and
related perturbation theories for Hamiltonian and reversible systems.

While backward error analysis has been very successful for ordinary differential
equations, it does not extend directly to highly oscillatory systems and geometric
integrators for partial differential equations. Only fairly recently, versions of back-
ward error analysis based on Birkhoff normal form theory or on modulated Fourier
expansions have allowed to explain favourable long-time energy behaviour for geo-
metric integrators for some Hamiltonian partial differential equations. Highly os-
cillatory systems is another area with substantial recent progress where yet much
remains to be understood and explored.

The workshop addressed the recent developments in theory and applications of
geometric numerical integration and reflected the multidisciplinary nature of the
topic.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.



Geometric Numerical Integration 871

Workshop: Geometric Numerical Integration

Table of Contents

Assyr Abdulle
Numerical methods for wave equation in heterogenous media . . . . . . . . . . 875

Philipp Bader (joint with A. Iserles, P. Singh, K. Kropielnicka)
Zassenhaus splitting and semi-classical Schrödinger equations . . . . . . . . . 878

Dario Bambusi (joint with S. Pasquali)
Nonrelativistic limit of the nonlinear Klein-Gordon equation: dynamics
over long times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881

Weizhu Bao (joint with Yongyong Cai, Xuanchun Dong, Xiaofei Zhao)
Multiscale Methods and Analysis for Highly Oscillatory Nonlinear
Dispersive Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

Sergio Blanes (joint with Fernando Casas, Ander Murua, Mechthild
Thalhammer)
Exponential integrators for the Schrödinger equation with time-dependent
Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

Simone Buchholz (joint with L. Gauckler, V. Grimm, M. Hochbruck,
T. Jahnke)
Two different approaches to highly oscillatory problems . . . . . . . . . . . . . . . 887

Begoña Cano (joint with Nuria Reguera)
Avoiding order reduction when integrating nonlinear Schrödinger equation
with Strang method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889

Fernando Casas (joint with S. Blanes, A. Farrés, J. Laskar, A. Murua, J.
Makazaga)
Splitting methods (with processing) for near-integrable problems . . . . . . . 890

Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding
Shape Analysis on Lie Groups with Applications in Computer Animation 893

Chuchu Chen (joint with Jialin Hong, Xu Wang)
Approximation of Invariant Measure for Damped Stochastic Nonlinear
Schrödinger Equation via an Ergodic Numerical Scheme . . . . . . . . . . . . . . 894

David Cohen (joint with Rikard Anton, Stig Larsson, LLúıs Quer-
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Abstracts

Numerical methods for wave equation in heterogenous media

Assyr Abdulle

In this report we discuss recent developments of numerical methods for the wave
equation in a bounded polygonal domain Ω

∂ttuε −∇ · (aε(x)∇uε) = F in Ω×]0, T [(1)

uε(x, 0) = g1(x), ∂tuε(x, 0) = g2(x), uε = 0 on ]0, T [×∂Ω,(2)

where g1 ∈ H1(Ω), g2 ∈ L2(Ω), F ∈ L2(0, T ;L2(Ω). The family of symmetric
tensors satisfy aε ∈ (L∞(Ω))d×d and is assumed to be uniformly elliptic and
bounded. Here we think of ε as an abstract parameter 0 < ε << 1. Furthermore,
the derivative of aε is assumed to be large and unbounded as ε→ 0 (e.g., ‖a′ε‖ =
O(ε−1)). We consider two situations that require different numerical modelling.

Heterogenenous media without scale separation. For the discrete ap-
proximation, we pick a piecewise linear finite element space Vh and consider the
following problem: find uh : [0, T ] → Vh such that ∀vh ∈ Vh and a.e. t > 0

〈∂ttuh, vh〉+ (aε(x)∇uh(·, t),∇vh)L2(Ω) = (F (·, t), vh)L2(Ω),

with appropriate discrete initial value. Following the best approximation result of
Baker [7] we have (uε ∈ C0(0, T ;H1(Ω)) is the solution to the weak form of (1))

‖uε − uh‖L∞(L2) ≤ C(T )(‖uε −Πh(uε)‖L∞(L2) + ‖∂tuε − ∂tΠh(uε)‖L1(L2)),

where Πh : H1
0 (Ω) → Vh is the Ritz-projection on Vh, i.e., the (aε∇·,∇·))-

orthogonal projection. An a priori error estimate of the projection error involves
the norm of the derivative of aε and leads to a rate of convergence that cannot
scale better than C(T )(h/ε) leading to a computational complexity ofO(h−d) with
h < ε. In what follows, we construct a multiscale space following [11]. We consider
a coarse grid VH and assume that the fine space Vh is obtained by refinement of
VH with h < ε << H . We then consider the decomposition

Vh = V ms
H ⊕Wh,

where Wh = Ker(IH) and IH : Vh −→ VH is the L2 projection. The multiscale
space is defined by

V ms
H,k = {Φz +Qh,k(Φz),Φz nodal macro basis fct},

where Φz ∈ VH is a macroscopic basis function and for each K ∈ supp(Φz),
Qh,k(Φz) ∈Wh(Uk(K)) is the solution the solution of a localized fine scale elliptic
problem in an environment U(K) around K. We can then show [4]

Theorem 1. Under the regularity assumptions for the wave equation stated above,
we have

‖uε − ums
H,k‖L∞(L2) ≤ C(T )(‖uε −Πms

H,k(u
ε)‖L∞(L2) + ‖∂tuε − ∂tΠ

ms
H,k(u

ε)‖L1(L2)).
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Assuming in addition ∂tuε ∈ L1(H1) then

‖uε −Πms
H,k(uε)‖L∞(L2) ≤ C(T )H‖uε‖L∞(H1)

‖∂tuε − ∂tΠ
ms
H,k(uε)‖L1(L2) ≤ C(T )H‖∂tuε‖L1(H1).

One issue in the above estimate that also appears in other multiscale methods
developed so far (see the references in [4]) is the boundedness of ‖∂tuε‖L1(H1). A

standard a priori error estimates yields ‖∂tuε‖L1(H1) = O(ε−1). Using a perturba-
tion argument together with G−convergence we show in [4] that this term can be
bounded and we obtain ‖uε−ums

H,k‖L∞(L2) ≤ C(T )(H+r(ε)), with C independent

of ε and limε→0 r(ε) = 0.

Heterogenenous media with scale separation. Using G−convergence, one
can show there exists a subsequence of solution of (1) that converges weakly* in
L∞(H1

0 ) to a homogenized function u0 solution of

∂ttu0 −∇ · (a0(x)∇u0) = F in Ω×]0, T [

u0(x, 0) = g1(x), ∂tu0(x, 0) = g2(x), u0 = 0 on ]0, T [×∂Ω,
where a0 is again uniformly elliptic and bounded but independent of the small
scale ε [8]. For periodic (or locally periodic) coefficients, a0 is obtained from d
solutions χ1, . . . , χd of so-called cell problems (localized elliptic problems).

Finite element heterogeneous multiscale method. We pick a standard
macroscopic finite element space VH and define a sampling domain Kδ (of size δ
comparable to ε) within each macro element K. We consider then the following
problem: find uH : [0, T ] → VH such that

(∂ttuH , vH) +BH(uH , vH) = (F, vH) ∀vH ∈ VH ,(3)

with appropriate projection of the true initial conditions, where BH(uH , vH) =∑
K∈TH

|K|
|Kδ|

∫
Kδ
aε(x)∇uhK · ∇vhKdx and uhK (respectively vhK) are solutions of a

micro problem in a localized sampling domain Kδ ⊂ K with δ ≃ ε. A generalized
version of the above method is shown to converge in [1] towards the homogenized
solution u0. However, with increasing time, due to dispersive effects, the true
solution, uε, deviates from the classical homogenized limit u0 [13, 10]. In [5] the
solutions of the following family of effective equations

(4) ∂ttũ = a0∂xxũ− ε2
(
ã2∂xxxxũ− b̃0∂xx∂ttũ

)
in (0, T ε]× Ω,

is shown to capture the dispersive effects over time O(ε−2). This generalizes results
in [10, 9]. In the above equation, we assume x 7→ ũ(t, x) is Ω periodic.

Theorem 2. Under appropriate regularity assumptions of the data, for any
µ = 〈χ〉 and any real numbers b̃0, ã2 such that b̃0 = b0 + 〈χ〉2, b0 = 〈(χ − 〈χ〉)2〉,
ã2 = a0〈χ〉2 the solution of the effective equation

∂ttũ− a0∂xxũ+ ε2(ã2∂xxxxũ− b̃0∂ttxxũ) = F,
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is an effective equation that satisfies ‖uε− ũ‖L∞(0,ε−2T ;L2(Ω)) ≤ Cε, over longtime

ε−2T, where C is independent of ε.

Next following [3], we consider the FE-HMM-L method obtained from (3) by
replacing (∂ttu

H , vH) with (∂ttu
H , vH)Q where

(uH , vH)Q = (uH , vH) +
∑

K∈TH

|K|
|Kδ|

∫

Kδ

(uhK − uH)(vhK − vH)dx,

where uhK (respectively vhK) are the micro functions already in (3). A fully discrete
a prior error analysis over long-time has been obtained for the FE-HMM-L in [5].

Theorem 3. Under suitable regularity assumptions we have

‖uε − uH‖L∞(0,ε−2T ;L2(Ω)) ≤ C
(
ε+

(
h/ε2

)2
+H/ε

)
,

where C is independent of ε. Generalization to higher order macro elements and
higher order estimates are also derived (the term H/ε can be replaced by Hℓ/ε).
As error estimates for classical resolved FEM yields a bound of the type C(h/ε3),
the FE-HMM-L achieves significant reduction in the computational complexity
(the size of the linear system of ODEs scale as O((tol · ε3)−1) for a resolved FEM
while it only scale as O((tol · ε)−ℓ) for the FE-HMM-L). A seneralization to multi-
dimensional wave problems has been obtained in [6].

Acknowledgements. This research has been partially supported by the Swiss
National Foundation.
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Zassenhaus splitting and semi-classical Schrödinger equations

Philipp Bader

(joint work with A. Iserles, P. Singh, K. Kropielnicka)

We consider the efficiency of Yoshida’s composition method versus a Zassen-
haus decomposition to construct high-order integrators for the (semi-classical)
Schrödinger equation,

∂tu(x, t) = − i

ε
Hu(x, t) = i

(
ε∆− ε−1V (x)

)
u(x, t), x ∈ [−1, 1], t ≥ 0,

equipped with an initial condition u(x, t) = u0(x), and periodic boundary condi-
tions and potential V . Several numerical methods exist in the literature, mostly
based on splitting (reviewed in [2]), Hagedorn wavepackets [3] and the Zassenhaus
expansion [1]. Splitting methods are efficient since the Laplacian can be solved
with Fast Fourier Transforms (FFTs). Similarly, the related Zassenhaus decom-
position relies on the fast computation of spatial derivatives using FFTs and the
two methods complement each other: Splitting methods are particularly efficient
for low orders of accuracy since very few FFTs are involved, however, for higher
orders, the quadratic growth in cost for the Zassenhaus approach soon becomes
superior to the exponential growth in cost for the splitting methods.

We introduce a hybrid method that combines the benefits of the two families
showcasing the versatility of the Zassenhaus decomposition versus the standard
composition technique due to Yoshida [7], Suzuki [6] and others. Since higher
order methods permit the use of larger time-steps which can compensate the higher
computational effort per step, we elaborate on the optimal choice thereof.

For low orders of accuracy, the order conditions can be solved directly and
splitting methods are highly efficient. They approximate the flow of an IVP

u′ = A(u) + B(u), u(t0) = u0, by composing the individual flow maps, ϕ
[A]
t ,

ϕ
[B]
t and furthermore, if both flows preserve certain geometric properties, such

as symplecticity, unitarity, energy, etc., so will their composition. An m-stage

method of order p takes the form Φ
[p]
h = ϕ

[A]
amh ◦ ϕ[B]

bmh ◦ · · · ◦ ϕ[A]
a1h

◦ ϕ[B]
b1h

for some
coefficients ai, bj ∈ R which can be obtained from the Baker–Campbell–Haussdorf
(BCH) formula (for sufficiently small h)

(1) ehAehB = eBCH(hA,hB) = eh(A+B)+ 1
2h

2[A,B]+···

As the order increases, the number of equations to satisfy grows exponentially
together with the dimension of the graded Lie algebra generated by A,B and
different approaches are needed.
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Before we go into further details, a few words on the peculiarities of the semi-
classical Schrödinger equation and its discretisation are in place: The semi-classical
SE involves three small parameters, the step-size h, the grid-size 2/N where N is
the number of grid points and the external parameter ε. From WKB analysis, it
is clear that oscillations of size 1/ε will occur and require N = O(1/ε). We also
express the step-size and the desired error in the same parameter h = εσ and εκ,
respectively.

Yoshida’s device. Let Φh be a symmetric method of order 2p for a time-step
h. Then, the order can be risen by 2k in k steps in by the sequence S0(h) =
Φh, {Sk}k=1,...,m, where Sk is of order 2(p+ k) using

Sk+1(h) = Sk((1 + αk)h) ◦ Sk((−1− 2αk)h) ◦ Sk((1 + αk)h),

tripling the computational effort per step. In order to establish the overall error,
we need to look at the size of the leading error constants using the symmetric
BCH formula. Because of Theorem 1 below and (1), we have a leading local
error of O(ε(p+1)σ−1) for a 2pth order splitting with cost cp per step and after m

repetitions of the Yoshida process starting from Φh = Φ
[2p]
h , we get Sm(h)−e−

τ
ε
H =

O(ε(2m+2p+1)σ−1). Expressing σ as a function of κ and m, the total cost per unit
interval cp × 3m/εσ is minimised with respect to the number of steps at σopt. =√
− κ+1

2 log ε log 3, and the total cost is cost(Sσopt
(Φh)) =

cp
3p e

√
log 9

√
(1+κ)(− log ε). The

optimal time-step size is independent of the order of the underlying method and
the cost grows exponentially with the precision

√
κ.

Hybrid Zassenhaus. We propose a hybridised Zassenhaus expansion based on
the Zassenhaus method [1] in a way that incorporates both optimised splittings and
cheap order increase using commutators. We start from some efficient (symmetric)

splitting method Φ
[2p]
h of order 2p and write it as a single exponential using the

sBCH formula as follows: Φ
[2p]
h = e−

τ
ε
H̃ = eA+B+

∑
k=p W [k]

0 where H̃ is a modified

Hamiltonian and W [k]
0 = O(ε(2k+1)σ−1). The idea is to cancel the largest error

term W [p]
0 by extracting it,

e−
τ
ε
H+

∑
k=p+1 W [k]

1 = esBCH(−W [p]
0 ,− τ

ε
H) = e−W [p]

0 /2Φhe
−W [p]

0 /2,

and proceeding in the same way, the order is increased gradually

e−
τ
ε
H+

∑
k=p+2 W [k]

2 = esBCH(−W [p+1]
1 ,sBCH(−W [p]

0 ,− τ
ε
H̃))

= e−
1
2W

[p+1]
1 e−

1
2W

[p]
0 Φ

[p]
h e−

1
2W

[p]
0 e−

1
2W

[p+1]
1 .

since we can ensure that W [k]
l = O

(
ε(2k+1)σ−1

)
.

An important feature of the Zassenhaus split is to defer the spatial discretisa-
tion to the latest possible step and derive the method in the Lie algebra. This
means that we compute commutators symbolically and group the result by size in

powers of ε yielding the W [k]
l and at the same time ensuring stability. For efficient
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computation and analysis, we need to work in the appropriate algebra of angle
brackets, introduced in [5]. For some functions f, g : R → C and n ∈ N, define
the operator 〈f〉n = 1

2 (f∂
n
x + ∂nx f) . This bracket hence forms an anti-commutator

with the nth spatial derivative. Furthermore, angle-brackets are closed under com-
mutation and changes parity, i.e., if the sum of indices k + l in [〈f〉k, 〈g〉l] is even
(odd), all resulting angle brackets will have odd (even) indices which will yield a
unitary integration scheme and the maximal degree of the derivatives is lowered
to k + l − 1.

Theorem 1. Let g be in the Lie algebra generated by {ε∂2x, ε−1V } ⇒ g = O
(
ε−1
)
.

Therefore, any commutator of length 2k + 1 with elements {τε∂2x, τε−1V } is

of size O
(
ε(2k+1)σ−1

)
and the terms W [k]

0 contain all commutators of this length
in the sBCH formula. Since a commutator is smaller than the product of its
constituents, we only need to examine the number of angle brackets than can
appear at a given order in ε in order to find the optimal combination of time-

step and order. From W [k]
0 = O

(
ε(2k+1)σ−1

)
, we already know that W [p+l]

l

includes commutators of length 2(p + l) + 1. The proof of Theorem 1 lets us
conclude that commuting the largest angle-brackets of a given degree in the de-
rivative will not change the size and since the construction begins with brackets
applied to 〈τV 〉0 , 〈τ〉2, it follows that the largest derivative of degree 2k is con-
structed when using 2k Laplacians and only one potential, this implies that the

exponent generated in the kth step, W [p+k]
k contains p + k angle brackets. To

reach global error O (εκ) using m Zassenhaus steps (computing up to W [m−1+p]
m−1 ),

O (εκ) = O
(
W [m+p]

m /εσ
)
=⇒ κ = (2(m+ p) + 1)σ − 1− σ = 2(m+ p)σ − 1 we

need a time step σ of σ = κ+1
2(m+p) . In each step, we evaluate the underlying method

once and 2m exponentials e
1
2W

[p+k]
k , k = 0, . . . ,m − 1. Since the latter decrease

rapidly in size with k, we employ the Arnoldi method which preserves unitarity of
the exponential and requires only a small number of Krylov iterations. In order to

approximate e
1
2W

[p+k]
k = O

(
exp(ε(2(p+k)+1)σ−1)

)
up to the local error O (εκ+σ),

we require rk Krylov iterations [4, 1], where rk has to satisfy rk ≥
⌈

κ+σ
(2(k+p)+1)σ−1

⌉
.

Recalling that W [p+k]
k contains p+k angle brackets which have to be evaluated,

each Krylov iteration comes with a price tag of (3(k+p)+1) FFTs . With this re-

sult, we can establish the cost of an exponential to cost(eW
[p+k]
k ) = rk(3(k+p)+1).

Summing up terms, we can show that using a high-order optimised splitting
method as building block, the Zassenhaus splitting is superior to Yoshida’s com-
position technique in computational efficiency.
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Nonrelativistic limit of the nonlinear Klein-Gordon equation:
dynamics over long times

Dario Bambusi

(joint work with S. Pasquali)

We study the nonrelativistic limit of the nonlinear Klein Gordon equation

(1)
1

c2
utt −∆u+ c2u = −λu3 , x ∈M , c→ ∞ ,

M compact manifold or Rd with the goal of obtaining an effective equation de-
scribing the dynamics for times which are as long as possible. It is well known that
at first order in 1/c2 the solutions are, at least formally, described by solutions of
the nonlinear Schrödinger equation

(2) iφ̇ = −1

2
∆φ+ λ|φ|3 ,

in the sense that, up to higher order corrections, u = ℜ(e−ic2tφ(t)). For the case
M = Rd, rigorous results showing that this is actually true for times of order 1
have been obtained in a series of papers (see in particular [4]). A similar result
(with loss of smoothness) has been obtained in the case of M = Td in [3].

In this talk I have discussed the problem in the case of more general manifolds
and the possibility of getting estimates valid over longer times, namely times of
order cr with an arbitrary r.

In order to get the result for general manifolds, the idea is to use a Hamilton-
ian approach. Indeed the system is Hamiltonian, and, in suitable variables, its
Hamiltonian takes the form

H =

∫

M

c
∣∣∣〈∇〉1/2c ψ

∣∣∣
2

+
λ

4

[(
c

〈∇〉c

)1/2
ψ + ψ̄√

2

]4
dx(3)

where

〈∇〉c := (c2 −∆)1/2 ,

which after expansion and time rescaling becomes

H =

∫

M

|ψ|2dx+
1

c2

∫

M

(
1

2
|∇ψ|2 + λ

2

(
ψ + ψ̄

)4
)
dx+ h.o.t.(4)
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For c = ∞ the Hamiltonian reduces to the generator of the Gauge group ψ 7→
e−itψ which has always period 1 in time. Thus one can see (4) as a (singular)
perturbation of a completely resonant system and apply the standard methods
of canonical perturbation theory (for example see [1]). More precisely, for any r
one can construct a canonical transformation ψ = T (r)(φ) which conjugates the
Hamiltonian (3) to a new Hamiltonian which is in normal form (namely has a form
which is as simple as possible) plus a remainder of order c−r. The equation of the
normal form turns out to be a perturbation of (2).

Then, following the ideas of [1], one can show that the solution of the normal
form equation (in which the remainder is neglected) are c−r close to the solutions
of the true equations for times of order 1. This is the first result presented in the
talk.

In general it is not possible to improve the time scale. The reason is strictly
related to the fact that the distance between two solutions of the original problem
can increases exponentially in time with a rate of order 1.

One can get a result valid over longer time scales in the case of Rd. Indeed, in this
case one can exploit dispersion and in particular Strichartz estimates in order to
show that in this case there is no exponential divergence of the solutions of the
original equation. This was already exploited in [2].

In order to state a Theorem denote by φ the solution of the normal form equa-
tions (described above).

Theorem 2. Fix k ≥ 0 and a large r, then there exists large k∗ and c∗, with the
following property: assume c > c∗, take an initial datum such that the solution φ
of the normalized equation exists for all times and has the structure

(5) φ(x, t) = φrad(x, t) +

N∑

l=1

ηl(x− vlt)

with some ηl ∈ S, vl ∈ R3 and φrad ∈ Lp
tW

k∗,q
x with (p, q) any Schrödinger

admissible pair; denote ψa(t) := T (r)(eic
2tφ(t)). Let ψ(t) be the solution of the

Hamilton equation of (3) with the corresponding initial datum, then one has

‖ψa(t)− ψ(t)‖Hk � 1

c
, |t| � cr .
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Multiscale Methods and Analysis for Highly Oscillatory Nonlinear
Dispersive Partial Differential Equations

Weizhu Bao

(joint work with Yongyong Cai, Xuanchun Dong, Xiaofei Zhao)

Nonlinear dispersive partial differential equations (PDEs) have become fundamen-
tal and the most significant and important mathematical models for problems
arising from quantum physics without/with Einstein’s general relativity, plasma
physics, nonlinear optics, molecular dynamics, degenerate quantum gas, etc. Typ-
ical examples are such as the nonlinear Schrodinger equation for many-body dy-
namics with quantum effect, the Klein-Gordon equation for spinless relativistic
particles or superfluid universe, the Zakharov system and Klein-Gordon-Zakharov
system for plasma physics, the Dirac equation for spin particles and/or graphene,
etc. These equations are nonlinear and dispersive, and their solutions are usually
highly oscillatory in space and/or time. From a numerical and mathematical point
of view, the appearance of nonlinear terms and highly oscillatory solutions bring
up fundamental and significant new difficulties in efficient numerical computation
and mathematical analysis.

Multiscale methods and analysis have been become the most efficient and power-
ful numerical and mathematical tools for solving problems with multiscale phenom-
ena, such as highly oscillatory solutions in nonlinear dispersive PDEs. Recently,
tremendous progress have been advocated for a good mathematical understanding
for some highly oscillatory nonlinear and dispersive PDEs, such as the Klein-
Gordon equation in the nonrelativisitc limit regime, the nonlinear Schrodinger
equation with wave operator, the Klein-Gordon-Zakharov system in the high-
plasma-frequency and subsonic limit regime, the Dirac equation in the nonrel-
ativisitc limit regime, etc.

Recently, we have proposed and analyzed several multiscale methods for highly
oscillatory nonlinear dispersive PDEs. For the Gross-Pitaevskii/nonlinear Schrö-
dinger with nonlocal dipole-dipole interaction and anisotropic confinement, we
obtained new mathematical models in lower dimensions via multiscale analysis
[1, 2, 11]. For the nonlinear Schrödinger equation with wave operator involving
a small parameter, we obtained uniform error estimates for the finite difference
time domain (FDTD) methods regarding the small parameter [3], and proposed
an exponential wave integrator spectral (EWI-SP) method and established opti-
mal and uniform error bounds for the problem [4]. For the Klein-Gordon equa-
tion in the nonrelativistic limit regime, we analyzed FDTD methods and EWI-SP
method and obtained error bounds which depends explicitly on the small parame-
ter [8, 9]; in addition, by adapting the fast-slow wave decomposition, we proposed
and analyzed a uniformly accurate mutliscale time integrator spectral (MTI-SP)
method [7]. Furthermore, we extended these multiscale methods and analysis to
the mathematical and numerical study of the Dirac equation in the nonrelativistic
limit regime [5, 6], the Klein-Gordon-Schrödinger equations in the nonrelativistic
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limit regime [12], the Klein-Gordon-Zakharov system in the high-plasma-frequency
limit regime [9].
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Exponential integrators for the Schrödinger equation with
time-dependent Hamiltonian

Sergio Blanes

(joint work with Fernando Casas, Ander Murua, Mechthild Thalhammer)

We consider the numerical integration of the linear non-autonomous problem

(1) i
du

dt
= H(t)u, t ∈ (t0, T ] , u(t0) = u0 ∈ C

d,

associated to the Schrödinger equation with time-dependent Hamiltonian where
d ≫ 1 and H(t) stands for the Hermitian Hamiltonian operator. Except for
simple academic examples, it is not possible to find analytical solutions of (1)
and so one has to call on numerical procedures. Among them, exponential time
integration methods have shown to be particularly useful in approximating the
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exact solution, since the exponential function captures some of the most relevant
properties of the solution, such as oscillations or damping, whereas preserving
qualitative properties of the system. One of the simplest exponential integrators
is the so-called exponential midpoint rule,

(2) un+1 = e−iτH(tn+τ/2) un, t0 ≤ tn < tn+1 = tn + τ ≤ T

and un ≈ u(tn). Exponential integrators must be implemented with efficient
algorithms to approximate the action of the exponential on a vector instead of
computing the exponential itself (see [10, 11] and references therein) i.e. proce-
dures that involve only vector-matrix products to approximate the action of the
exponential on a vector (e.g., Chebyshev or Krylov algorithms).

The solution provided by scheme (2) is at most of second order in the time step
τ and we look for higher order approximations. There exist high order methods
in the literature as for example the referred (t, t′) method that considers the time
as an independent variable and transforms the system into a linear autonomous
problem, but of higher dimension and the computational cost is exceedingly high.
One of the most efficient methods correspond to composition methods (products of
exponentials) where the time is considered as a dependent variable. Alternatively,
one can use a Magnus integrator where the time-dependency is averaged, but a
naive application turns very expensive.

We consider new exponential methods based on composition of exponentials
that use similar averages as in the Magnus integrators and the simplicity in the
implementation of composition methods. We first consider the general case in
which H(t) is a complex matrix and next we consider the particular case in which
H(t) is a real symmetric matrix. We also assume that the computational cost to
compute the product H(t1)u is similar to the cost of the product (H(t1)+H(t2))u.

Case I: H(t) is a complex matrix. We consider the class of commutator-free
methods defined by a composition of several exponentials of linear combinations
of H at certain nodes. Specifically, a method of order r is formulated as

(3) un+1 = S
[r]
J (τ)un = eBJ · · · eB1un, Bj = −iτ

K∑

k=1

ajkH(tn + ckτ) ,

1 ≤ j ≤ J , with real ck ∈ [0, 1]. Different integrators of this type have been
constructed and analyzed in [1, 7, 13]. In particular, in [1] optimized methods
of orders 4, 6 and 8 have been proposed and tested. In the limit in which H is
constant, the composition (3) simplifies to

(4) S[r](τ) = e−iaJH · · · e−ia1H , with aj =

K∑

k=1

ajk , 1 ≤ j ≤ J .

In this way, the algorithm is suitable to be used for parabolic problems or dissipa-
tive quantum systems as long as

(5) Re(aj) > 0, for all j.
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It has been noticed that all previous methods from the literature of order 6 and
higher have real coefficients and involve at least one negative aj coefficient and
thus present a poor stability when applied to driven open quantum systems [2].
In [9] we propose new 5th- and 6th-order CF methods with complex coefficients
that only require J = 3 and J = 4 respectively and such that condition (5) is
satisfied. Since H is a complex matrix, the computational cost does not increases
when considering complex coefficients. In addition, the schemes show higher accu-
racy and better stability properties when applied to non-reversible problems. We
have also considered schemes that involve one commutator as follows (with similar
computational cost as a 5-exponential CF method)

un+1 = eB5 eB4 e[B3,1,B3,2] eB2 eB1 un

where condition (5) is satisfied. The new methods have shown to be superior to
previous optimised CF methods on several numerical examples in [9].

The coefficients aij proposed for all methods in [9] (as well as in [3] for the case in
which H is real) are given for the nodes c1, c2, c3 of the 6th-order Gauss-Legendre

quadrature nodes, K = 3. If a different quadrature rule is used, say {b̂i, ĉi}Ki=1,
the same algorithms can be used by replacing in (8) the nodes ci, i = 1, 2, 3 by
ĉi, i = 1, . . . ,K, and the corresponding coefficients âi,j , i = 1, 2, 3, j = 1, . . . ,K
are easily obtained from the coefficients ai,j .

Case II: H(t) is a real symmetric matrix. If we consider the split u = q+ ip,
the d-dimensional linear complex system (1) with A = −iH and H(t) real and
symmetric can be written as the 2d-dimensional real system

(6) q′ = H(t)p, p′ = −H(t)q,

which can be considered as the classical Hamiltonian equations associated to the
classical Hamiltonian

(7) H(q, p, t) =
1

2
pTH(t)p+

1

2
qTH(t)q = T (p, t) + V (q, t)

that is separable into two solvable parts [12]. We propose new splitting methods
that take, on each internal stage, an appropriate average (over the whole time
step) of the time-dependent part of T (p, t) and V (q, t), respectively. For one time
step, from th to tn+1 = tn + h, the method is given by the following algorithm

(8)

do i = 1,m
qi = qi−1 + h (ai,1H1 + ai,2H2 + ai,3H3) pi−1

pi = pi−1 − h (bi,1H1 + bi,2H2 + bi,3H3) qi
enddo

where q0 = Re(un), p0 = Im(un), Hi = H(tn + cih), i = 1, 2, 3 and un+1 =
qm + ipm. In [4] it is analysed how to build splitting symplectic methods in the
autonomous case (H independent of t) and in [6] an algorithm with a sufficiently
large number of methods is built such that for all accuracies and problems shows
better performance than the Chebyshev method under the same conditions (the
same input data). In [5] this technique is extended to the non-autonomous case and
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in [3] the study is completed and a set of methods tailored for different accuracies
is presented. Different 4th- and 6th-order schemes are considered with up to
m = 15 so, the computational cost for one time step is similar to the computational
cost of the action of one or two exponentials on a vector and have shown better
performance for this problem than previous schemes.
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Two different approaches to highly oscillatory problems

Simone Buchholz

(joint work with L. Gauckler, V. Grimm, M. Hochbruck, T. Jahnke)

We consider the second order linear differential equation

(1) q′′ = −Ω2q +Gq

for a matrix Ω being symmetric and positive definite with large norm ‖Ω‖ ≫ 1.
The norm of the matrix G is assumed to be moderate, i.e., ‖G‖ ≪ ‖Ω‖, and inde-
pendent of Ω. In the literature, e.g., [1, 2, 4] and also [3], trigonometric integrators
have been proposed and analyzed to solve such problems. The analysis shows that
using appropriate filter functions, one can design methods which can be used with

step sizes τ being much larger than ‖Ω‖−1
. However, using these integrators

without filter functions leads to resonances in the global error as illustrated in
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the following Figure 1. In the worst case, this means that we do not even have
convergence for certain step sizes.
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Figure 1. Global error of the trigonometric integrator over time
step size. The different colors illustrate different matrices Ω
(blue: ‖Ω‖ = 5000, green: ‖Ω‖ = 12500, yellow: ‖Ω‖ = 20000,
lilac: τ2 reference line).

A different point of view is to interpret trigonometric integrators applied to
the linear second order problem (1) as splitting methods applied to the first order
equation

(2) ũ′ = (A+ B̃)ũ,

where

A =

[
0 I

−Ω2 0

]
, B̃ =

[
0 0

G̃ 0

]
, G̃ = ΨGΦ,

and Ψ = ψ(τΩ) and Φ = φ(τΩ). ψ and φ are suitably chosen filter functions. The

symmetric Strang splitting eτB̃/2eτAeτB̃/2 applied to (2) results in a scheme being
equivalent to a trigonometric integrator mentioned above.

Standard Lie and Strang splitting methods were analyzed before in [5] in a
different framework without filter functions. However, the analysis does not carry
over to highly oscillatory problems. Our project aims at generalizing the splitting
analysis such that it applies to problems of that kind. In order to do so, a first
step is to prove that the distance between the solution of the filtered equation (2)
and the solution of (1) is in O(τ2) with a constant being independent of ‖Ω‖. We
then use a new representation of the local error, for which the main part can be
handled using Lady Windermere’s fan, and we show that the remaining terms can
be bounded with the help of a modified version of Lady Windermere’s fan. In
the end, we show convergence of order two independent of ‖Ω‖ for the splitting
method applied to the linear problem (1). Interestingly, the new proof yields
different conditions on the filter functions than in [2].
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Avoiding order reduction when integrating nonlinear Schrödinger
equation with Strang method

Begoña Cano

(joint work with Nuria Reguera)

In the talk, a technique is suggested in order to integrate nonlinear Schrödinger
equation with non-homogeneous Dirichlet boundary conditions in such a way that
no order reduction is shown [2]. The technique consists of applying firstly the
discretization in time of the problem and then the discretization in space. In
such a way, suitable boundary functions must be suggested for the linear partial
differential equation which arises when applying Strang method. The key is to
consider an asymptotic Taylor expansion of first order for the boundary of the
function which is to be approximated when solving that linear part. We have
justified that this boundary can be calculated in terms of the data of the original
problem. Moreover, we have seen that an asymptotic Taylor expansion of second
order cannot be calculated directly in terms of data.

Theoretical results have been given which show that local order 2 is obtained in
time under suitable assumptions of regularity. After full discrezation in space, some
results have also been shown for that local error. Finally, using a summation-by-
parts argument and some more regularity assumptions which allow to use bounds
already established in [1] for nonlinear Schrödinger equation, a result on the global
error is given. This one proves that no order reduction is observed with the
suggested technique.

As this technique does not conserve the symmetry of the method, a slight
modification of it has also been suggested in order to conserve the symmetry while
order reduction is still avoided. We have seen that the symmetry is also conserved
under any diagonallizable discretization of the Laplacian.

Finally, we have posed the following problem for possible future research: From
a qualitative point of view, it is good to conserve the symmetry of the method
because, in such a way, the reversibility of the equation is also conserved. However,
from a quantitative point of view, the advantages of symmetry are not so clear
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as when integrating Hamiltonian ordinary differential equations or partial differ-
ential equations with periodic or homogeneous boundary conditions. In the latter
case, the good approximation of certain invariants of the problem with symmetric
methods leads to advantageous results on error growth with time. However, when
the boundary conditions are not homogeneous, the continuous problem lose those
invariants and it is not so easy to deduce advantageous quantitative results.
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Splitting methods (with processing) for near-integrable problems

Fernando Casas

(joint work with S. Blanes, A. Farrés, J. Laskar, A. Murua, J. Makazaga)

In the previous “Geometric Numerical Integration” workshop held in Oberwolfach
in 2011, Jacques Laskar proposed to construct more accurate and efficient numer-
ical integrators for the integration of the Solar System over long time spans. The
specific goals were to achieve round off error (in extended arithmetic) with the new
schemes with the minimum computational cost. In addition, the methods should
be symplectic and specially adapted to the particular structure of the Hamiltonian
problem. This was the the starting point for a collaboration that has materialized
(until now) in the papers [2, 3].

A very simplified model for the Solar System consists in considering it as a
non-relativistic gravitational N-body problem. In this setting one is concerned
with the motion of n + 1 particles (the Sun, with mass m0, and N planets with
masses mi, i = 1, . . . , N) only affected by their mutual gravitational interaction.
The system is then described by the Hamiltonian

(1) H =
1

2

N∑

i=0

‖pi‖2
mi

−G
∑

0≤i<j≤n

mimj

‖qi − qj‖

where qi and pi = mi q̇i are, respectively, the positions and momenta of the N+1
bodies in a barycentric reference frame. Moreover, the planets evolve around the
central mass following almost Keplerian orbits, so that, by an appropriate change
of coordinates one can rewrite (1) as

H = K + VI , where |VI | ≪ |K|.
Here K stands for a sum of independent unperturbed Kepler (2-body) problems,
whereas VI are perturbations depending on the interactions of the planets and
their structure is dictated by the specific coordinate system chosen (either Jacobi
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or Heliocentric coordinate systems). In any case, this constitutes a particular
example of a near-integrable Hamiltonian system:

(2) H(q, p; ε) = H [a](q, p) + εH [b](q, p),

where ε ≪ 1 and H [a] is exactly integrable. It makes sense then to take into
account this special structure when designing integration methods to approximate
its dynamics. Splitting methods are particularly well suited for dealing with this
class of systems: the idea is to construct the integrator as a composition of the flows
corresponding to H [a] and H [b] with appropriately chosen weights. Specifically, if

ϕ
[a]
τ and ϕ

[b]
τ denote the flows corresponding to H [a] and H [b], respectively, then

we seek integrators of the form

(3) ψτ = ϕ[a]
as+1τ ◦ ϕ[b]

bsτ
◦ ϕ[a]

asτ ◦ · · · ◦ ϕ[b]
b1τ

◦ ϕ[a]
a1τ

where, in particular,

(4)

s+1∑

i=1

ai = 1,

s∑

i=1

bi = 1.

Typically, one also requires time-symmetry, so that the composition (3) is left-
right palindromic: as+2−i = ai, bs+1−i = bi. Then, if the consistency condition
(4) is satisfied, the method is of order two in the step size τ .

In the analysis, one has two parameters: τ (the step size) and ε (the size of the
perturbation), and one is interested in how the local error ψτ − ϕτ decreases as
ε→ 0 (here ϕτ represents the exact flow of the system). Thus, for any consistent
symmetric method one has ψτ (x) = ϕτ (x)+O(ε τ3), where x = (q, p). By following
McLachlan’s notation [4], method (3) is of generalized order (r1, r2, . . . , rm) if

ψτ (x) = ϕτ (x) +O(ετr1+1 + ε2τr2+1 + · · ·+ εmτrm+1),

with r1 ≥ r2 ≥ · · · ≥ rm. Thus, in particular, one has a method of (generalized)
order

• (8, 2): if ψτ (x)− ϕτ (x) = O(ετ9 + ε2τ3 + · · · )
• (8, 4): if ψτ (x)− ϕτ (x) = O(ετ9 + ε2τ5 + ε3τ5 + · · · )
• (8, 6, 4): if ψτ (x) − ϕτ (x) = O(ετ9 + ε2τ7 + ε3τ5 + · · · )
• (10, 6, 4): if ψτ (x)− ϕτ (x) = O(ετ11 + ε2τ7 + ε3τ5 + · · · )

In [2], a systematic study is carried out to get the independent generalized order
conditions of this class of methods. This is done by considering a particular subset
of multi-indices called Lyndon multi-indices. Essentially, one associates one order
condition to each Lyndon multi-index, and the analytic expression of each order
condition is also obtained. By solving these order conditions, methods of order
(8, 6, 4) and (10, 6, 4) are obtained involving seven and eight stages, respectively.
The same strategy can also be applied to get methods valid in Heliocentric coor-
dinates, where VI depends not only on coordinates, but also on their conjugate
momenta.

Although the schemes thus constructed show an excellent behavior on long time
integrations of the Solar System, one might ask if it is possible to construct even
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more efficient integrators for this problem. A possibility consists in using the
processing technique. The idea is consider methods of the form

ψ̂τ = π−1
τ ◦ ψτ ◦ πτ ,

so that we enhance, correct or process the numerical scheme ψτ (the kernel) with a
(near-identity) map πτ (the processor or corrector), so that the resulting method

ψ̂τ is ‘better’ than ψτ . After n steps one has

ψ̂n
τ = π−1

τ ◦ ψn
τ ◦ πτ .

When considering processed methods, it happens that many order conditions can
be satisfied by πτ , and thus ψτ must verify a much reduced set of conditions. Since
the bulk of the computation corresponds to the kernel, one expects to reduce
the computational cost by constructing kernels with less stages than standard
schemes. This strategy is particularly appealing for very long time integrations
when intermediate outputs are not required.

In a typical procedure, both the kernel and (an approximation to) the processor
are both constructed as compositions of the form (3). There are already several
processed splitting methods that involve less stages for near-integrable problems,
showing an excellent behavior for simple problems [1]. In the integration of the
Solar System, however, they present some drawbacks (instabilities, etc.) that can
be traced back to the fact that, in the corresponding composition (3) for the
processor the sum of the coefficients has to be zero. This, in turn, can produce
large coefficients and error terms.

One possibility to avoid these drawbacks is the use of a starter. Basically, the
idea is to form a new processor as a composition of the old processor with the
kernel. In that way, the new scheme is also symmetric and the coefficients of this
starter have to add up to 1, exactly as in the kernel. With this procedure one is
able to construct methods of the form (s, 6, 4) with kernels involving a minimum of
three stages (instead of seven). The same strategy as in the standard case can be
applied to construct schemes for Heliocentric coordinates involving one additional
stages. This constitutes an ongoing research project.
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Shape Analysis on Lie Groups with Applications in Computer
Animation

Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding

Shape analysis methods have in the past few years become very popular, both for
theoretical exploration as well as from an application point of view. Originally
developed for planar curves, these methods have been expanded to higher dimen-
sional curves, surfaces, activities, character motions and many other objects. In
this talk, we present a framework for shape analysis of curves in Lie groups for
problems of computer animations. In particular, we use these methods to find
cyclic approximations of non-cyclic character animations and interpolate between
existing animations to generate new ones, see Figure 1 for an example.

Our starting point is the generalisation of the Square Root Velocity Transform
(SRVT), [3], to curves on Lie groups.

We discuss the Riemannian geometry of the SRV transform. Let G be a (pos-
sibly infinite-dimensional) Lie group modelled on a Hilbert space and g be its
corresponding Lie algebra. We prove that the pull back of the L2 inner product
on the Lie algebra of curves on g is a Sobolev-type metric on the infinite dimen-
sional Lie group of curves on G, the elastic metric, see [1] for details. Since this

Figure 1. Application of the closing gradient flow algorithm
to a cartwheel animation. Note the large difference between start
and end poses, on the right and the left respectively. The motion
is repeated once and suffers from a strong jerk when it repeats,
especially in the left hand. In the second row, the curve closing
method has been used to alleviate this discontinuity.
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metric is convenient to work with, we use it in our applications. In fact, through
the SRVT we transform curves on G to curves on g to manipulate them (interpo-
late two curves, compute distances between curves using the L2 metric) and when
appropriate map the results back to the Lie group via the inverse SRVT.

We prove that the subset of closed curves onG starting at the identity is mapped
through the SRVT to a split submanifold of the infinite dimensional Lie algebra
of curves on g. We then construct a gradient flow which, given a non-closed curve
as initial condition, it converges towards a nearby closed curve, see Figure 1 for
results. Further information and results can be found in [1].
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Approximation of Invariant Measure for Damped Stochastic Nonlinear
Schrödinger Equation via an Ergodic Numerical Scheme

Chuchu Chen

(joint work with Jialin Hong, Xu Wang)

In this paper, we consider an initial-boundary problem of an ergodic one-dimension-
al damped stochastic NLSE

(1)





du =
(
i∆u− αu + iλ|u|2u

)
dt+Q

1
2 dW

u(t, 0) = u(t, 1) = 0, t ≥ 0

u(0, x) = u0(x), x ∈ [0, 1],

where α > 0, λ = ±1 and the solution u is a complex valued (C-valued) random
field on a probability space (Ω,F , P ). The noise term involves a cylindrical Wiener
processW and a symmetric, positive, trace class operator Q such that the noise is
colored in space and white in time. The operator Q is supposed to commute with
Laplacian operator ∆, and the noise is in the form

Q
1
2 dW =

∞∑

m=1

√
ηmem(x)dβm(t), ηm ∈ R

+ and η :=

∞∑

m=1

ηm <∞,

where {βm(t)}m≥1, associated to a filtration {Ft}t≥0, are independent and iden-
tically distributed C-valued Wiener processes and {em}m≥1 is the orthonormal
basis of L2(0, 1) with homogenous Dirichlet boundary condition. The ergodicity
for problem (1) has been studied in [7] by a coupling method, where the damped
term (α > 0) may be caused by the Gordon-Haus effect and is necessary for
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both linear and nonlinear Schrödinger equation to be ergodic. [7] showed that the
solution u of (1) possesses a unique invariant measure µ.

Our work mainly focuses on the construction of a fully discrete and uniquely
ergodic numerical scheme (i.e., whose numerical solution possesses a unique in-
variant measure). Moreover, the estimation of error between the original invariant
measure and the numerical one is also considered based on the weak error of solu-
tions.

As the lack of compactness of the bounded and closed sets in infinite-dimensional
Hilbert spaces, the Lyapunov function may be hardly chosen for SPDEs. We apply
spectral Galerkin method in spatial direction to obtain a finite-dimensional SDE

(2) duN =
(
i∆uN − αuN + iλπN

(
|uN |2uN

) )
dt+ πNQ

1
2 dW.

We find a Lyapunov function by proving the uniform boundedness of uN in L2-
norm. It ensures the existence of the invariant measure of (2). We show that the
solution uN (t) is a strong Feller and irreducible process via the non-degeneracy
of the noise term in (2). Hence, uN(t) possesses a unique invariant measure µN ,
which implies the ergodicity of uN (t).

Theorem 3. Let uN(t, x) be the solution of equation (2), then uN possesses a
unique invariant measure, denoted by µN . Thus, uN is ergodic.

We would like to emphasize that the noise in the original equation do not need to
be non-degenerate. This method is available when the covariance operator Q has
enough nonzero eigenvalues. The error between the invariant measures µN and µ is
transferred into the weak error of the solutions, which is required to be independent
of time t. Different from conservative equations, the damped term in (1) and
(2) contributes to an exponential estimate on the difference between semigroup
operators S(t) and S(t)πN , where S(t) is generated by the linear operator i∆ −
α. Therefore, we achieve the time-independent weak error of solutions directly,
avoiding proving the exponential decay of the solution of Kolmogorov equation.

Theorem 4. Assume that u0 ∈ Ḣ1 and ‖Q 1
2 ‖HS(L2,Ḣ1) < ∞. For any φ ∈

C2
b (L

2), there exists a constant C = C(u0, φ,Q) independent of T, such that for
any T > 0, ∣∣∣∣E

[
φ
(
uN(T )

)]
− E

[
φ
(
u(T )

)]∣∣∣∣ ≤ CN−1.

This theorem implies the convergence order between invariant measures µ and
µN :

(3)

∣∣∣∣
∫

L2

φ(y)dµ(y)−
∫

VN

φ(y)dµN (y)

∣∣∣∣ ≤ CN−1.

Based on a combination of splitting-up method and finite difference method in
temporal direction of (2), we propose a fully discrete scheme
(4)

ukN − e−ατuk−1
N =

(
i∆ukN + iλπN

(
|ukN |2 + |e−ατuk−1

N |2
2

ukN

))
τ + πNQ

1
2 δWk.
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This scheme is implicit as is required for local Lipschitz SDE to be ergodic, and
is proved to be solvable by denoting the discrete semigroup operator Sτ := (I −
iτ∆)−1e−ατ . In order to analyze the effect of the time discretization, we give the
proof of its ergodicity. The fully discrete scheme (4) is specially constructed to
make sure the uniform boundedness of ukN in L2-norm. Together with the Brouwer
fixed point theorem and properties of homogeneous Markov chains, we prove that
ukN is uniquely ergodic.

Theorem 5. For all τ sufficiently small, the solution (ukN )k∈N of scheme (4) has
a unique invariant measure µτ

N . Thus, it is ergodic.

Since the weak error of the solutions is required to be independent of time and
the coefficients are nonlinear for cases λ = ±1, existing theories establishing the
weak error of numerical solutions (see e.g. [8]) do not apply. We prove the expo-
nential decay of the difference between operators S(t) and Sτ , which is a crucial
condition for the solutions to have a time-independent weak error. Moreover, when
considering the weak error of the solutions in temporal direction, an exponential
estimation of the difference between the unbounded and nonlinear terms in spatial
semi-discretization and full discretization is also required. Thus, some technical
estimates are given to obtain the exponential decay of the difference between these
nonlinear terms. We obtain the following result.

Theorem 6. Assume that u0 ∈ Ḣ2, u0N = uN(0) = πNu0 and ‖Q 1
2 ‖2HS(L2,Ḣ2)

<

∞. For the cases λ = −1, the weak errors are independent of time and of order
1
2 . That is, for any φ ∈ C2

b (L
2), there exists a constant C = C(u0, φ) independent

of N, T and M , such that for any T =Mτ ,

∣∣∣E[φ(uN (T ))]− E[φ(uMN )]
∣∣∣ ≤ Cτ

1
2 .

Based on the time-independency of the weak error of the solutions, we show
that the error of invariant measure has at least the same order as the weak error
of the solutions, i.e.,

(5)

∣∣∣∣
∫

VN

φ(y)dµN (y)−
∫

VN

φ(y)dµτ
N (y)

∣∣∣∣ ≤ Cτ
1
2
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Numerical discretisations of stochastic wave equations

David Cohen

(joint work with Rikard Anton, Stig Larsson, LLúıs Quer-Sardanyons,
Magdalena Sigg, Xiaojie Wang)

We begin the presentation with a very concise crash course on stochastic partial
differential equations (SPDEs), where we introduce, amongst other things, the
main two approaches for a proper definition of SPDEs: the functional setting
approach (SPDEs are seen as stochastic differential equations in a Hilbert space)
and the random-field approach (the noise appearing in the problem is a multi-
parameter version of a Brownian motion).

We next introduce a semilinear stochastic wave equation driven by a multiplica-
tive noise

du̇−∆u dt = f(u) dt+ g(u) dW in D × (0, T ),(1)

u = 0 in ∂D × (0, T ),

u(·, 0) = u0, u̇(·, 0) = v0 in D,
where u = u(x, t, ω), with t ∈ [0, T ], D ⊂ Rd, d = 1, 2, 3, is a bounded con-
vex domain with polygonal boundary ∂D. The stochastic process {W (t)}t≥0 is
an L2(D)-valued (possibly cylindrical) Q-Wiener process on a probability space
(Ω,F ,P). The maps f and g, as well as the initial values u0 and v0 are given.

Various applications of the above stochastic wave equation and related equations
can be found, for example, in [5].

An analytic solution to the stochastic wave equation (1) is, in general, not
available: we thus must resort to numerical simulations in order to understand
such problems!

Inspired by the construction of trigonometric schemes for highly oscillatory
deterministic problems and deterministic wave equations, see [2, Chapter XIII],
[1, 4] and references therein, we propose a new numerical method for the time
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discretisation of (1). This explicit time integrator allows for mean-square error
bounds independent of the space discretisation and thus do not suffer from a step
size restriction as in the often used Störmer-Verlet leapfrog scheme. Furthermore,
our stochastic trigonometric integrator satisfies an almost trace formula (i. e., a
linear drift of the expected value of the energy of the problem, see below).

We now shortly describe our results.

(1) In a first step, we consider the numerical discretisation of the linear sto-
chastic wave equation with additive noise [7]

du̇ −∆u dt = dW.

We discretise this problem first in space, using a standard linear finite
element method [6], and then in time using our stochastic trigonometric
method. We prove mean-square order of convergence for the full discreti-
sation. Observe that the speed of convergence depends on the regularity
of the noise. Finally, we show that the expected value of the energy of
the numerical solution grows linearly with time as does the exact solution
to the above problem. This is one of the first long-time result for the
numerical solution of SPDEs.

(2) We next generalise the above results to the full discretisation of the semi-
linear stochastic wave equation driven by multiplicative noise [9]

du̇−∆u dt = f(u) dt+ g(u) dW.

(3) Finally, we prove mean-square error estimates in Lp(Ω), for any p ≥ 1, of
the full discretisation of the 1d semilinear wave equation [8]

∂2u

∂t2
(t, x) =

∂2u

∂x2
(t, x) + f(u(t, x)) + σ(u(t, x))

∂2W

∂x∂t
(t, x).

A standard finite difference approximation is used in space [3] and our
stochastic trigonometric method is used in time. Observe, that the above
problem is based on the second definition of an SPDE, i. e. the random-
field approach.

Finally, we present numerical experiments in order to support the above theo-
retical results. Figure 1 displays one realisation of the solution given by one of the
above numerical discretisation of a semilinear stochastic wave equation.
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Figure 1. Space-time evolution of one realisation of the numer-
ical solution of a stochastic wave equation.
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Structure preserving numerical methods for the Vlasov equation

Lukas Einkemmer

In astro- and plasma physics the behavior of a collisionless plasma is modeled by
the Vlasov equation

∂tf(t, x, v) + v · ∇xf(t, x, v) + F · ∇vf(t, x, v) = 0.

The force F is given by the Lorentz force law and the electric E and magnetic
B fields are self-consistently determined from the particle-density f . Thus, in the
most general setting we have to solve the Vlasov equation coupled with Maxwell’s
equations (the so-called Vlasov–Maxwell system). In many applications, however,
it is sufficient to consider the electrostatic case. That is, the Vlasov equation is
only coupled to a Poisson problem

∆φ(t, x) =

∫
f(t, x, v) dv − 1.

The potential φ is then used to determine the electric field by using the relation
E = ∇xφ. This is the model that we will consider in the present report.
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Solving the Vlasov–Poisson system numerically is a challenging task as

• the problem is posed in an up to six-dimensional phase space;
• the system is nonlinear;
• the characteristic time scale in many applications is on the order of pi-
coseconds (the plasma frequency) while interesting physical phenomena
can happen on much larger timescales.

Here we will focus mostly on the last point. The discrepancy in timescales implies
that in order to obtain meaningful results we have to perform a large number
of time steps. Therefore, it is not possible to use the numerical scheme in the
asymptotic regime. Nevertheless, numerical simulations can still prove useful if
they are able to capture the plasma dynamics qualitatively. Thus, in the present
context the goal is to construct a numerical integrator that can capture as much
of the structure of the analytic solution as possible.

In the case of the Vlasov equation it is well known that an infinite number
of conserved quantities exist (for example, all Lp norms are conserved by the
analytic solution). Certainly, it is unrealistic to expect that all those invariants
are conserved by a numerical approximation. Thus, we focus on the physically
important invariants: mass, momentum, energy, and positivity. In addition, we
will include entropy and the L2 norm as a measure of how much dissipation is
introduced by the numerical scheme.

Since an explicit time stepping scheme needs to obey the CFL constraint given
by vτ < h (τ is the time step size and h is the grid spacing), the splitting approach
introduced by Strang & Knorr [1] has been almost universally employed. This
approach conserves mass, momentum, all Lp norms, and entropy. Furthermore,
an extension to the full Vlasov–Maxwell system has been proposed recently (see
[2]).

In addition to the good conservation properties, the splitting approach has
another decisive advantage; namely, it reduces the problem of solving the up to six-
dimensional Vlasov equation to a sequence of one-dimensional advection equations
of the form

∂tu(t, ξ, η) = a(η)∂ξu(t, ξ, η).

For this problem it is straightforward to obtain the characteristics analytically and
thus semi-Lagrangian methods have become the standard approach. Note, how-
ever, that since the feet of the characteristics not necessarily coincide with the grid
used, an interpolation procedure has to be employed. Cubic spline interpolation
is the most commonly used approach.

More recently, the semi-Lagrangian discontinuous Galerkin (sLdG) scheme has
been introduced [7, 8, 3]. The main advantage of this approach, compared to spline
interpolation (or Fourier based methods), is that the resulting numerical scheme
only needs data from at most two adjacent cells in order to compute the advection.
This is a particularly important feature if the numerical scheme is implemented
on a parallel computer system. A convergence analysis of this method has been
conduced in [6, 5].
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Figure 1. This figure shows f for t = 100 and the time evolution
in the error of the conserved quantities energy, entropy, L1 norm
(positivity), and L2 norm. For all numerical schemes 64 degrees
of freedom are employed per space dimension. The order of the
discontinuous Galerkin (dG) method is indicated and the number
of cells are given in parenthesis.

Some interesting properties of the semi-Lagrangian discontinuous Galerkin ap-
proach (sLdG) should be noted.

• The error in energy includes additional error terms for the methods of order
one and two. Thus, it is prudent to at least use a third order approximation
in space.

• In all our simulations positivity preservation is less of an issue for the
sLdG scheme compared to cubic spline interpolation. In any case, due to
the local nature of the numerical method positivity limiters can be easily
added (at the cost of some additional diffusion; see [8, 7])

• Numerical simulations indicate that while cubic spline interpolation vi-
olates the second law of thermodynamics (i.e. it decreases entropy), the
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semi-Lagrangian discontinuous Galerkin scheme does not suffer from this
deficiency. However, a proof of this statement is still missing (see [4]).

• Both for the conserved quantities and for the qualitative features of the
solution there is a significant advantage in using higher order approxima-
tions (see [4]). This, however, is unexpected based on the regularity of the
solution.

To illustrate some of these properties the results for the two-stream instability are
shown in Figure 1.
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Multisymplectic variational integrators for nonsmooth Lagrangian
continuum mechanics

François Gay-Balmaz

(joint work with F. Demoures, T. S. Ratiu)

Numerical methods addressing contact problems are in high demand in a multitude
of multibody dynamics applications. As opposed to formulations of models in
smooth mechanics, contact problems must deal with the singularities separating
two regions of a continuous medium, such as the contact set of colliding elastic
bodies. Modeling these singularities and numerically handling them, in a way that
respects the crucial inequality conditions and conserved quantities expected from
the dynamics, has been an important scientific challenge. No complete satisfactory
solutions meeting both physical and computational constraints exist to this day.
The results presented at the workshop contribute to the solution of this long-
standing problem. Our approach combines methods from nonsmooth optimization
and multisymplectic field theory.
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A classical point of view in physics consists in deriving the equations of mo-
tion from variational principles, i.e., by computing the critical points of an action
functional. In the presence of constraints, such as impenetrability, propagation of
singularities in an elastic body, solid-fluid boundaries, the critical point condition
is not sufficient to derive the dynamics. One needs to consider an optimization
problem for the action functional, subject to conditions appropriately derived from
such type of constraints. This leads to the setting of variational analysis which
provides powerful tools such as the Generalized Lagrange Multiplier Theorem,
normal cone analysis, Kuhn-Tucker conditions, and, more generally, nonsmooth
analysis. Developing the discrete analogue of these methods allows us to start the
development of structure preserving numerical schemes for nonsmooth continuum
mechanics with constraints.

The main steps underlying our approach in [2] are the following.

Step I: We formulate the smooth unconstrained problem as a multisymplectic
Lagrangian field theory, by identifying the space of fields, the Lagrangian density,
the spacetime Hamilton principle, and the associated Cartan forms.

Step II: We extend this multisymplectic Lagrangian formulation to a nonsmooth
unconstrained setting, following [4] and identifying the types of singularities arising
in the problem. This is done by using an extension of the spacetime Hamilton
principle that allows for the treatment of certain types of singularities in the fields
and automatically produces the needed jump conditions at the singularities. Both
vertical and horizontal field variations have to be considered in the variational
principle.

Step III: We include constraints in this formulation by using the generalized
Lagrange multiplier approach for nonsmooth optimization [8]. This approach pro-
duces a necessary condition on the critical points of a functional restricted to a
constrained subset, and is based on the concept of the normal cone. In our con-
text, we formally apply this theory to the Lagrangian action functional relative to
both vertical and horizontal variations. We show that the critical fields still verify
a generalized multisymplectic form formula, as in the smooth unconstrained case,
which is the spacetime extension of the symplectic property of the solution flow in
classical mechanics. In addition, in presence of symmetries, a Noether theorem is
still available, exactly as in the smooth unconstrained case.

Step VI: We discretize in spacetime this nonsmooth constrained variational the-
ory. For simplicity, this is done on a 1+1 dimensional spacetime, with a dis-
cretization based on a rectangular mesh. As in the continuous case, the constraint
is introduced directly at the level of the variational formulation for the discrete
action functional, using the generalized Lagrange multiplier approach. Both verti-
cal and horizontal variations are considered. The choice of the allowed horizontal
variations becomes crucial in the discrete case, since it requires a spacetime grid
adaptation, and the enforcement of stationarity under these horizontal variations
yields discrete energy balance or discrete balance of configurational forces. In
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our case, the horizontal variations are chosen to be associated to the time of im-
pact, and therefore result in the conservation of the discrete global energy during
the impact. Applying the generalized Lagrange multiplier approach with respect
to the constraint in the discrete setting, relative to both vertical and horizon-
tal variations, yields the desired numerical scheme. We show that this scheme is
multisymplectic in the sense that it verifies a generalized discrete multisymplectic
formula with constraints. In the presence of symmetry, we show that a discrete
version of the Noether theorem is verified. Both these properties are inherited
from the discrete spacetime variational character of the integrator. In absence of
constraints, our schemes recover the multisymplectic integrators derived in [7]. In
the particular case of classical mechanics, i.e., when spacetime reduces to time,
our integrator recovers the collision variational integrators of [5].

The resulting multisymplectic scheme has been tested on two examples: the impact
of an elastic beam on a rigid plate and the longitudinal impact of two elastic
bars. We shall report only on the second example which is a standard benchmark
example that has been widely studied in the literature (e.g., [9], [1], [6]). We
tested our algorithm for identical and non-identical bars with various values for
the lengths, densities, and initial velocities. In each case, we observed that the
energy is conserved during and after the impact within 10−5 (relative energy error).
Consistently with the theoretical prediction, the momentum map, associated with
the invariance relative to translations, is perfectly conserved. During the persistent
contact phase, we observed rapid velocity oscillations as the masses bounce rapidly
against each other, especially for two identical bars. While the averaged velocity
is correct, these fine-scale oscillations can be interpreted as spurious, as they do
not properly capture the physical behavior. This problem has been solved by
considering a slight modification of the discrete Lagrangian at the extremities of
the bar that completely eliminates these spurious oscillations. Further numerical
tests can be found in [3].

Figure 1. Illustration of the displacement of the nodes of the two bars
(up=bar A; down=bar B). From left to right: 1) two identical bars; 2) mass
A < mass B; 3) stiffness A < stiffness B; 4) length A > length B. In each
cases, energy is conserved during and after the impact within 10−5.
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Growth of Sobolev norms in Hamiltonian PDEs

Benôıt Grébert

(joint work with Eric Paturel, Laurent Thomann)

In the last years, much effort has been done to understand the weak turbulence
phenomenon in Hamiltonian nonlinear dispersive PDEs. The central question
is the following: once we have proved the global well posedness of a PDE in a
Sobolev space Hs0 , we want to know whether

(i) the solutions remain bounded for all time and in all Sobolev norms, i.e.

‖u(t)‖s ≤ Cs‖u(0)‖s, ∀s ≥ s0

at least for small initial conditions (a strong stability results for the origin),
(ii) there exist initial conditions leading to unbounded solutions, i.e.

∃u(0) such that lim sup
t→+∞

‖u(t)‖s = +∞ for some s ≥ s0.

The first significant result in direction (ii) is due to Bourgain [6, Section 4] who
showed a polynomial growth of Sobolev norms for a nonlinear wave equation in 1d
with periodic boundary conditions. Later on, Colliander-Keel-Staffilani-Takaoka-
Tao (see [8]), considered the cubic nonlinear Schrödinger equation, on the two

dimensional torus T 2 =
(
R/(2πZ)

)2

(1) i∂tu+∆u = |u|2u, (t, x) ∈ R× T 2

and proved that for any K ≥ 1 there exists a solution u and a time T such that
‖u(T )‖s ≥ K‖u(0)‖s. Of course, this result is weaker than the assertion (ii) but it
suggests a possible unbounded behavior for some solutions. After that, Guardia-
Kaloshin (see [16]), improving the dynamical step, proved that the time T satisfies
a polynomial bound 0 < T < eK

c

for some absolute constant c > 0. A maybe less
intuitive extension is then obtained by M. Guardia (see [15]): he proves that this
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”almost unbounded” behavior is not a consequence of the exact resonances in (1),
since it persists when one adds a small convolution potential V :

(2) i∂tu+∆u+ V ⋆ u = |u|2u, (t, x) ∈ R× T 2.

In fact, in [8] (resp. in [16, 15]) the authors proved that the solutions of (1)
(resp. (2)) remain close to the solution of a finite dimensional (depending onK) res-
onant system and they constructed an explicit solution vK of this finite dimensional
dynamical system (which also depends on K) satisfying ‖vK(T )‖s ≥ K‖vK(0)‖s.
However we could expect that, since the potential V generically kills the exact res-
onances, the solutions of (2) would not follow the resonant dynamics. Actually in
a series of paper initiated by [1, 5], Bambusi-Grébert developed a Birkhoff normal
form technic that shows that, in the context of (2), assertion (i) is almost satisfied
for a generic choice of V . Precisely they proved a stability result of kind (i) for
t ≤ Cε−M where ε = ‖u0‖s ≪ 1 and M is an arbitrary constant fixed from the
beginning (see also [4, 3, 13] for developments or [2, 12] for a simple presentation).
Notice that this stability result is even stronger in analytic regularity as conjec-
tured in [7] and proved in [9]: if the initial datum is analytic in a strip then the

solution is bounded in a strip of half width during a time of order ε−σ| ln ε|β where
ε > 0 is the initial size of the solution and 0 < β < 1. Surprisingly, the result
in [15] shows that the resonant behavior in (2) may coexist with these almost
stability results.

Let us also mention some interesting phenomena concerning the periodic Szegö
equation introduced by Gérard and Grellier [11]. Recently, in [10] they showed
the alternative (ii) for generic initial conditions, despite of an infinite number of
conservation laws. Concerning the Szegö equation on the real line, Pocovnicu [18]
proved (ii) by giving an explicit example.

More recently Hani-Pausader-Tzvetkov-Visciglia considered in [17] the cubic non-
linear Schrödinger equation on the wave-guide manifolds R× T d

(3) i∂tu+∆R×Tdu = |u|2u, (t, x, y) ∈ R× R× T d,

so they added a direction of diffusion in the PDE. Due to the dispersion along one
variable, we expect that this equation is less ”turbulent” than (1). Actually they
proved that in the case d = 1 the equation (3) satisfies the assertion (i) in the
alternative above, and when 2 ≤ d ≤ 4 it satisfies the assertion (ii).

In a recent work ([14]) we add a convolution potential V to (3), i.e. we consider

(4) i∂tu+∆R×Tdu+ V ⋆ u = |u|2u, (t, x, y) ∈ R× R× T d

and we prove that for generic choice of the potential V assertion (i) holds true. So
in that ”less turbulent” case, the exact resonances are determinant to decide the
limit dynamics: when we kill the exact resonances we turn off the weak turbulence
phenomenon.
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A tale of two matrices: the Master Equations and Lie-group methods

Arieh Iserles

(joint work with Shev MacNamara)

The equation y′ = [A[0](t) + f(t)A[1](t)]y, where y(0) = y0 ≻ 0 ∈ RN+1, 1⊤y0 = 1
and

A[0] =




−N 1 0 · · · · · · 0
N −N 2 0 · · · 0

0 N − 1 −N . . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 2 −N N
0 · · · · · · 0 1 −N




,

A[1] =




N 1 0 · · · · · · 0
−N N − 2 2 0 · · · 0

0 −N + 1 N − 4
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 −2 −N + 2 N
0 · · · · · · 0 −1 −N




,

is a model of isomerization in a monomolecular setting. Our point of departure is
the observation is that, once the ODE is solved by the Magnus method, the radius
of convergence is well in excess of standard estimates [4]. We identify the eigen-
values corresponding to A[k] – specifically, σ(A[0]) = {0,−2,−4, . . . ,−2N} (with
eigenvectors explicitly known), while A[1] is nilpotent. Moreover, [A[0], A[1]] =
−2A[1], and this implies at once that the free Lie algebra generated by A[0] and
A[1] is solvable. This explains why Magnus is so good, but also why we do not
need to use it: the solution is available explicitly and we present it.

This ODE is a special case of Master Equations, which describe the time evo-
lution of a probability function in a chemical system,

y′ = A(t)y, t ≥ 0, y(0) = y0 ≻ 0 ∈ R
N+1, 1⊤y0 = 1,

where 1⊤A(t) ≡ 0⊤ – it is easy to prove that y(t) ≻ 0, 1⊤y(t), hence y(t) is
a probability distribution [3]. Often A is a graph Laplacian [2]. In numerical
solution of Master Equations we need to conserve the sum 1⊤y(t) (easy, this being
a linear invariant) and the positivity of y(t). The latter is very difficult because of
severe limitations on preservation of positivity by ODE methods [1].

We approach the problem of conserving positivity constructing a flag of methods
{Mr}r

⋆

r=1 such that each Mr is of order pr, pr+1 > pr, and Mr+1 can be derived
from Mr at marginal cost. The idea is that for sufficiently high order the solution
is bound to be positive because of convergence, but at a great majority of steps it
is sufficient to use a low-order, hence cheaper, method.
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Specifically, we generate and analyse in detail a flag of Magnus methods and
describe how to implement them efficiently.
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Adiabatic integrators for dispersion-managed nonlinear Schrödinger
equations

Tobias Jahnke

(joint work with Marcel Mikl)

Data transfer through a dispersion-managed optical fiber is modelled by the semi-
linear Schrödinger equation

∂tu =
i

ε
γ
(
t
ε

)
∂2xu+ i|u|2u, x ∈ T, t > 0(1)

with 0 < ε≪ 1 on the one-dimensional torus T = R/2πZ. The coefficient γ(t) :=
χ(t) + εα is the sum of a piecewise constant function

χ(t) =

{
−δ if t ∈ [m,m+ 1) with m ∈ N even,

δ if t ∈ [m,m+ 1) with m ∈ N odd
(2)

and a small constant part εα with parameters α, δ > 0; cf. [3, 4].
Typical solutions oscillate rapidly in time due to the small parameter ε. This

imposes severe step-size restrictions if classical time-integrators such as splitting
methods, Runge-Kutta or multistep methods are applied. The discontinuous,
rapidly changing coefficient γ(t/ε) and the nonlinearity pose additional challenges
for any numerical method.

In this talk, we propose and analyze adiabatic integrators (cf. [1, 2]) which do
not suffer from such a step size restriction. These integrators are based on the
transformation

u(t, x) 7→
(
yk(t)

)
k∈Z

, yk(t) := exp
(
ik2φ

(
t
ε

))
ûk(t)

where (ûk)k∈Z are the Fourier coefficients of u(t, ·) and

φ(t) =

t∫

0

γ(s) ds =

t∫

0

χ(s) ds+ εαt.
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Substituting this transform into (1) yields

ẏm(t) = i
∑

j−k+ℓ=m

yj(t)ȳk(t)yℓ(t) exp
(
−iω[jkℓm]φ

(
t
ε

))
, m ∈ Z.(3)

with ω[jkℓm] := j2 − k2 + ℓ2 − m2. The advantage of (3) over (1) is threefold.
First, (1) involves the discontinuous function γ whereas (3) involves the continuous
function φ. Second, the right-hand side of (1) tends to infinity as ε → 0 due to
the factor 1/ε. In (3), such a factor appears only in the argument of φ, and since
| exp(−iω[jkℓm]φ(t/ε))| = 1 independently of ε, the right-hand side of (3) remains
bounded as long as the sequence (yk(t))k∈Z decays sufficiently fast. Third, it can
be shown that the solution of (3) converges to a well-defined limit (cf. [3, 4]) which
cannot be expected for (1).

The idea for the construction of adiabatic integrators is, roughly speaking, to
freeze slowly varying variables over a time-step and to make use of the fact that
oscillatory integrals of the form

∫ b

a

exp
(
−iω[jkℓm]φ

(
t
ε

))
dt

can be computed explicitly. We show that the accuracy of these integrators is not
affected by ε in the sense that the time-step size is not restricted by ε, and that
the constant in the error bound is independent of ε. These results are illustrated
by numerical examples.
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Time-stepping of low-rank approximations with small singular values

Emil Kieri

(joint work with Christian Lubich, Hanna Walach)

We consider low-rank approximations to matrix differential equations of the form

Ȧ(t) = F (t, A(t)), A(0) ∈ C
m×n.

Such problems appear, e.g., after spatial discretisation of time-dependent partial
differential equations (PDEs) in two spatial dimensions. Higher-dimensional PDEs
give rise to higher order tensor differential equations of similar form. Tensor differ-
ential equations in tensor-train format [5] are also covered by the present analysis,
but for the sake of simplicity we will restrict this presentation to the matrix case.
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Low-rank approximations have been used with success for high-dimensional PDEs,
most predominantly in the multi-configurational time-dependent Hartree method
[4]. There are, however, several open questions regarding the convergence of low-
rank approximations. In this work, we answer one of these questions positively.
We prove that if F has a modest Lipschitz constant and maps almost onto the
tangent space of the low-rank manifold, then a recently proposed time-stepping
scheme for low-rank approximations [2, 3] will give an accurate result, also in the
presence of small singular values [1]. The scheme was first proposed for matrices
in [2], and then extended to tensors in tensor-train format in [3].

In the vicinity of small nonzero singular values, the manifold Mr ⊂ Cm×n of
rank-r matrices has strong curvature. That is, if σr is the rth singular value of
X ∈ Mr, then the Lipschitz constant of the projection P (X) onto the tangent
space TXMr of Mr at X is proportional to σ−1

r . This means that standard
time-stepping schemes for the dynamical low-rank approximation

Ẏ (t) = P (Y )F (t, Y (t)), Y (0) = Y0 ≈ A(0)

will break down in the presence of small singular values. The scheme of [2, 3], on
the other hand, is robust in this case.

With the decomposition Y = USV ∗, where S ∈ C
r×r and U, V have orthonor-

mal columns, the projection onto the tangent space has the representation

P (Y )Z = ZV V ∗ − UU∗ZV V ∗ + UU∗Z for Z ∈ C
m×n.

The method of [2, 3] uses this decomposition of the projection to construct a
splitting scheme. For matrices, given Y0 = U0S0V

∗
0 , the scheme reads:

• Solve K̇(t) = F (t,K(t)V ∗
0 ), K0 = U0S0.

• Make a QR-decomposition [U1, Ŝ1] = qr (K(h)).

• Solve Ṡ(t) = −U∗
1F (t, U1S(t)V

∗
0 )V0, S(0) = Ŝ1, and let S̃0 = S(h).

• Solve L̇(t) = F (t, UL(t)∗)∗U1, L(0) = V0S̃
∗
0 .

• Make a QR-decomposition [V1, S
∗
1 ] = qr (L(h)).

Then, Y1 = U1S1V
∗
1 is a consistent approximation of Y (h). For many problems F

can be evaluated without forming the full m×n matrix. In such cases the scheme
is very efficient, as it only works with much smaller matrices.

In [1] we prove that if F (t, Y ) is Lipschitz continuous in its second argument,
and if it up to an ε-perturbation maps onto TY Mr, then the error of the splitting
scheme can be bounded in terms of ε and the time step h, independently of the
singular values. The proof is based on two important properties of the scheme:

• If F (t, A) = F (t), i.e., the right-hand side does not explicitly depend on
A, and if A(t) ∈ Mr for all t, then the splitting scheme is exact for any
time step h. This result was proven in [2].

• The matrices U and V stay constant during some of the substeps. Further-
more, the perturbation from the exact flow of FV V ∗ arising in the first
substep is invariant to projection with V V ∗, and similarly in substeps two
and three with the relevant projections.
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To prove the result, we construct a path X(t) on Mr close to A(t). By the
assumptions on F , such a path exists. By the exactness result, the splitting
schemed applied to Ȧ(t) = Ẋ(t) would give A(h) = X(h). Using the Gröbner–
Alekseev lemma we estimate how much we, in each substep, deviate from the
scheme applied to Ẋ(t). As X(t) and Y (t) are different paths on the manifold,
the Lipschitz constant of F will here enter in the estimate. Using the preservation
of U and V in the relevant substeps we can bound the effect of these deviations
independently of the singular values. For the details we refer to [1].

As the error estimate depends on the Lipschitz constant of F , it is not valid for
(spatial discretisations of) PDEs. Extending the error analysis to cover also this
case remains an open problem. Numerically we get much better results for PDEs
than what is explained by the present analysis.
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Dedicated Symplectic integrators for the rigid body motion.

Jacques Laskar

(joint work with Timothé Vaillant)

The free rotation of a rigid body is an integrable problem but its exact integration
is costly. This is not a problem if the output is only needed over long time, but
most often, the rotation is coupled with a perturbing potential, and in this case,
the output is needed at each step.

It is then useful to devised splitting methods that are approximate, but of very
low cost. The new integrators that are presented here are based on two ideas

• Use the algebra of the angular momentum to reduce the number of con-
dition equations that are needed to be satisfied.

• Obtain dedicated symplectic spitting methods that are spitting methods
for which the splitting coefficients depend on the problem. Here the coef-
ficients will depend on the momenta of inertia of the rigid body.

Examples are given for the extreme cases of the spherical top and for the H2O
molecule.
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A two-point boundary value problem for DAEs with advances and
delays arising in the differential geometry of touching tubes

John Maddocks

Filaments, or long slender tubular structures, arise in many applications in me-
chanics, physics and biology. Intertwined filaments in which two flexible tubes
wrap around each other also frequently arise, with the most commonly encoun-
tered example probably being the X-like structure that you form in the first step of
tying your shoelaces. I will show some solutions to the differential algebraic system
that describes the differential geometry of such balanced intertwined structures.
The system is nonstandard because it is a two-point boundary value problem for
DAEs with an unknown functional deviation f(s), which can correspond to both
advances and delays in the independent variable. Surprisingly the computations
suggest that two slender intertwined tubes with circular cross-sections do not touch
each other along a single contact curve, but rather along a double contact curve
with singularities. The numerical solutions are found by an iterative procedure
which appears trustworthy, but a faster and more reliable numerical solution tech-
nique would certainly be of interest, as would existence and local uniqueness results
for the system of governing equations.

Differential invariant signatures (after Olver) for images

Robert I McLachlan

(joint work with Richard G Brown, Stephen R Marsland)

Lie group methods play a fundamental role in many aspects of computer vision and
image processing. We consider the setting in which a Lie group G acts on a space
M of objects such as points, curves, or images, and convenient methods of working
in M/G are sought. One such method is based on the theory of invariants, i.e., on
the theory of G-invariant functions on M , which has been extensively developed
from mathematical, computer science, and engineering points of view.

We work in the school of invariant signatures, developed by (amongst others)
Olver and Shakiban [5], and used for Euclidean object recognition (see, e.g., [1]).
These references principally concern invariants of plane curves φ : S1 → R2 under
planar transformations g : R2 → R2; the group action is g ·φ := g ◦φ. In constrast,
in the present work [4] the objects are k-color images f : R2 → Rk on which
the transformations act by g · f := f ◦ g−1. This is an instance of the Cartan
classification problem in which the graph (x, f(x)) ⊂ Rk+2 of the image is mapped
to (g(x), f(x)); the problem is to to determine when two such graphs are related
by a group transformation. Note that the action here is intransitive.

There are many methods of constructing differential invariants. The moving
frame method provides an algorithm to generate them. For some actions a “first
fundamental theorem” is known which provides a complete set of polynomial in-
variants. Other cases are related to instance studied in classical invariant theory.
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Each approach has advantages and disadvantages. In practice we use a combina-
tion of each of the methods. Also note that even if all invariants are found, they
may not separate group orbits as is desired in the classification problem.

Example 1. Let f : R2 → R be a 1-colour image and let G = E(2). The set
{(
f, ‖∇f‖2, ∇2f

)
(x, y) : (x, y) ∈ R

2
}

is a differential invariant of f . At generic points it is a locally embedded 2-
dimensional submanifold of R3. A sample image and its signature are shown in
the figure. This invariant comes from the invariant tensor theorem for O(n), which
says that all polynomial invariants for O(n) acting on f : Rn → R are given by the
contractions

f, fifi, fii, fijfifj , fijfij , fijkfijk, . . .

of the partial derivatives of f . Clearly, at least 3 invariants (one of which is the
image f itself) are needed. But is this enough to distinguish generic images? The
answer is no. If the invariant signature is given as the surface

∇2f = H(f, ‖∇f‖2)
this does not determine f up to E(2), because the solution to this nonlinear
Poisson equation depends on the boundary conditions. However, it can be shown
that the 4-dimensional signature (f, fifi, fii, fijfifj) does locally determine f up
to Euclidean motions.

Example 2. Let f be a 1-colour image and let G = SA(2). The transformations
are x 7→ Ax + b, detA = 1. The prolonged action is f 7→ f , fi 7→ Aijfj, fij 7→
AikAilfkl, . . . . This is the same as the simultaneous action of SL(2) on linear
forms, binary forms, ternary forms, etc., studied in classical invariant theory. A
generating set of polynomial invariants was found by Alexander Bessel in 1869
[2]: There are no invariants depending on first derivatives of f . There are two
invariants depending on 2nd derivatives, det fij and fyyf

2
x + fxxf

2
y − 2fxyfxfy.

There are 15 independent polynomial invariants depending on 3rd derivatives; the
cubic ones are fyfyyfxxx − 2fyfxyfxxy − fxfyyfxxy + fyfxxfxyy + 2fxfxyfxyy −
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fxfxxfyyy and fyyf
2
xxy + fxxf

2
xyy + fxyfxxxfyyy − fyyfxxxfxyy − fxyfxxyfxyy −

fxxfxxyfyyy.
The strength of the method is that it is algorithmic; it works for any transfor-

mation group, including infinite-dimensional groups; it yields local invariants, so it
can be applied to occluded images. The weakness is that it unavoidably depends
on derivatives of the image. (For some groups (e.g. E(2)), but probably not for all,
there are global invariants defined using Fourier transforms.) Thus, the number
of derivatives required for a signature becomes an important invariant in its own
right. For the two examples above, 2 derivatives are needed.

We study this problem for SE(2), E(2), Sim(2), SA(2), A(2), PSL(2,C) (the
Möbius group), PSL(3,R) (the projective group), Diffvol (the volume preserving
group), Diffcon (the conformal maps), and Diff (all diffeomorphisms).

As the number of colours increases, one expects to need fewer derivatives. How-
ever, in some cases obstructions appear.

Example 3. For SA(2) on k-colour images f1, . . . , fk, the Poisson brackets

{f i, f j} := f i
xf

j
y − f i

yf
j
x, 1 ≤ i, j ≤ k

are all invariant. There seems to be an ample supply (k(k − 1)/2) of invariants
that use only 1 derivative. However, these are also invariant under the bigger
group Diffvol(R

2), so they can never be a complete invariant for SA(2) – a hidden
symmetry. In fact, for SA(2), 2 derivatives are needed for all k ≥ 1.

The most extreme case we have covered is the Möbius group. Because it is a
subgroup of the conformal maps, it needs 3 derivatives for all k ≥ 1.

Having constructed a complete or partial invariant signature, to solve the classi-
fication problem requires being able to robustly compare two signatures. These are
(locally) unparameterised submanifolds of some fixed manifold, usually Euclidean
space. In work in progress with James Benn, Klas Modin, and Olivier Verdier [3],
we compare signatures using a finite element discretization of currents, the inte-
grals of differential forms over the submanifold. Crucially, such integrals do not
depend on the parameterisation of the submanifold. A finite element space (e.g.
piecewise linear) of forms is chosen and the operator norm restricted to this space
provides a reliable and extremely cheap way to compare submanifolds without
requiring any registration or optimisation.
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The construction of parallel energy-preserving methods for
Hamiltonian systems

Yuto Miyatake

(joint work with John C. Butcher)

We consider the numerical integration of Hamiltonian systems of the form

d

dt
y = f(y), y(t0) = y0 ∈ R

N ,

where f(y) = S∇H(y) with a non-singular skew-symmetric constant matrix S
and sufficiently differentiable Hamiltonian H : RN → R. Focusing on the energy-
preservation property, i.e. d

dtH(y) = 0, we consider the construction of energy-
preserving methods. Among existing energy-preserving methods, the average
vector field (AVF) method [4] and its extensions, such as the AVF collocation
method [3] (see also, the Hamiltonian boundary value method [1]), are prominent
in terms of the long-time behaviour. However, they are implicit methods: roughly
speaking, the computational cost of the AVF collocation method is almost the
same as the same order Gauss Runge–Kutta method. In this talk, we construct
a more efficient energy-preserving method than exists at present. Our method is
constructed based on so called continuous stage Runge–Kutta (CSRK) methods.

Definition. Let Aτ,ζ be a polynomial in τ and ζ. Assume that A0,ζ = 0. We
denote by s the polynomial degree of Aτ,ζ in τ . Let Bζ be defined by Bζ = A1,ζ .
We search for an s-degree polynomial Yτ (τ ∈ [0, 1]) and y1 such that they satisfy

Yτ = y0 + h

∫ 1

0

Aτ,ζf(Yζ) dζ,

y1 = y0 + h

∫ 1

0

Bτf(Yτ ) dτ.

A one-step method y0 7→ y1 is called an s-degree continuous stage Runge–Kutta
(CSRK) method.

To construct intended integrators, we need to characterize (i) an energy pre-
serving condition, (ii) order conditions and (iii) criteria for parallel implementation
using real arithmetic, in terms of Aτ,ζ . To simplify the notation, we denote Aτ,ζ

by using a matrix M ∈ Rs×s: Aτ,ζ = [τ, τ
2

2 , . . . ,
τs

s ]M [1, ζ, . . . , ζs−1]⊤.
Then, one can prove the following properties.

Theorem 1. A CSRK method is energy-preserving, if the matrix M is symmet-
ric.

A straightforward calculation proves this theorem. The necessity can also be
proved under a certain assumption by using a technique used in [2].
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Theorem 2. A CSRK method is energy-preserving and of order at least p = 2η,
if the symmetric matrix M satisfies

[
1

k
,

1

k + 1
, . . . ,

1

k + s− 1

]
M = i⊤k , k = 1, . . . , η,

where all components of ik ∈ Rs are zero except for the k-th component which is
1.

The proof is based on the simplifying assumptions.
It is known that the computational cost of solving implicit RK methods can be

reduced in a parallel computer, if a RK matrix A has only real, distinct eigenvalues.
A similar discussion can also be done for CSRK methods. One can show that if




1
1
2

. . .

1
s



M




1
2

1
3 · · · 1

s+1
1
3

1
4 · · · 1

s+2
...

...
. . .

...
1

s+1
1

s+2 · · · 1
2s




(1)

has only real, distinct eigenvalues, the corresponding CSRK method can be com-
puted efficiently.

By using the above properties, one can construct efficient high order integrators.
As an example, we derive fourth order integrators below. We set s = 3 and assume
that M is given, with a parameter α, by




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4 α


M =




1

1

1


 .

The energy-preserving and order conditions are already satisfied. For the param-
eter α, one can show that (1) has only real, distinct eigenvalues, if

− α1

300
>

1

6
22/3 +

5

24
21/3 +

1

4
≈ 0.7770503941, α1 =

1

36α− 7
.

If α satisfies this inequality, the corresponding integrators can be implemented
with almost the same computational cost as the second order AVF method in
parallel architecture.

In addition to the above integrators, sixth order integrators have been derived.
However, the evaluation of eigenvalues becomes difficult when we consider higher
order integrators. We are currently trying to give a more systematic approach to
deriving higher order efficient energy-preserving integrators.
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Diffeomorphic density transport – a numerical challenge

Klas Modin

(joint work with Martin Bauer and Sarang Joshi)

On a manifold M with reference volume form µ, let ρ0 and ρ1 be smooth densities
(everywhere positive functions) of the same total mass

(1)

∫

M

ρ0µ =

∫

M

ρ1µ = 1.

The density transport problem (in the smooth category) is to find a diffeomorphism
η ∈ Diff(M) such that

(2) |Dη−1|ρ0 ◦ η−1 = ρ1.

The left hand side is the density action of η on ρ0 (geometrically, the pushforward
by η of the volume form ρ0µ). Our theme here is: how can one solve the density
transport problem numerically in an efficient way? For simplicity, we takeM = Tn

(the flat n-torus).
First, notice that there is no unique solution to (2). Indeed, if η is a solution,

then η ◦ ψ for any diffeomorphism ψ that preserves the volume form ρ0µ is also
a solution. The standard regularization, originating from the work of Monge [1],
consists in optimal mass transport (OMT)1

(3) minimize M(η) =

∫

Tn

|η(x) − x|2 ρ0(x)dx under the constraint (2).

There are two main threads of numerical methods for OMT:

• To use the dynamic reformulation2 of Benamou and Brenier [3], where one
seeks a time-dependent density ρ(t, x) and vector field v(t, x) minimizing

∫ 1

0

∫

Tn

|v(t, x)|2ρ(t, x)dxdt

under the constraints

∂tρ+∇ · (ρv) = 0 and ρ(0, ·) = ρ0, ρ(1, ·) = ρ1.

Based on this reformulation and a convexity result, the first approach is
to construct gradient descent type methods on a space-time grid.

1We use here the L2 setting. Monge originally considered L1.
2The dynamic formulation of OMT is directly related to the infinite-dimensional Riemannian

point-of-view advocated by Otto [2].
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• To use the polar factorization of maps by Brenier [4], which states that
a diffeomorphism η that fulfills (2) can be factorized as η = ∇φ ◦ ψ,
where ψ preserves ρ0dx and φ is a strictly convex function such that ∇φ
solves the OMT problem (3). The requirement that ∇φ should fulfill the
constraints (2) implies the Monge–Ampere equation

|∇2φ(x)|ρ1(∇φ(x)) = ρ0(x).

The second approach is to construct numerical methods for this equation.

In the first approach, the computational complexity is a problem (iteration on
a full space-time grid is required). In the second approach, the severe nonlinearity
of the Monge–Ampere equation is a problem.

It seems to us that in many applications where OMT is used the particular choice
of regularization (3) is not essential. For example, in medical image registration
and moving mesh adaptivity – two fields where OMT is used – there is no intrinsic
reason to choose the OMT regularization. Thus, one may consider other optimality
conditions that simplify the numerical discretization problem.

One possibility, that also have an appealing infinite-dimensional geometric in-
terpretation, is the framework of optimal information transport (OIT) [5]. This
is another dynamical formulation, where we seek a time dependent vector field
v(t, x) that minimize

I(v) =

∫ 1

0

∫

Tn

v(∆v) dxdt

under the conditions

∂tγ(t, x) = v(t, γ(t, x)), γ(0, x) = x, γ(1, ·)∗(ρ1dx) = ρ0.

This formulation might look arbitrary, but it has a straightforward geometric
interpretation: of all possible solutions to the transport problem, find the solution
that minimizes the distance to the identity with respect to the right-invariant
Riemannian metric G on Diff(Tn) defined by

(4) Gη(u ◦ η, v ◦ η) =
∫

Tn

u(∆v)dx.

Well-posedness of the geodesic equation for this metric, as well as existence and
uniqueness of the OIT problem, is given in [5].

The key to obtain efficient numerical methods for OIT is that the metric (4) has
some special geometric properties, namely it induces the Fisher–Rao metric on the
space of probability densities, principal in the field of information geometry [6].3

Explicitly, the map
η 7→ |Dη|

is a Riemannian submersion (in a strict sense) between the space of diffeomor-
phisms Diff(Tn) equipped with the metric (4) and the space of smooth probability
densities

Dens(Tn) =

{
ρ ∈ C∞(Tn)

∣∣∣ρ > 0,

∫

Tn

ρ dx = 1

}
,

3Thereby the name optimal ‘information’ transport.
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equipped with the Fisher–Rao metric

Fρ(ρ̇, ρ̇) =
1

4

∫

Tn

ρ̇2

ρ
dx.

From standard results in Riemannian geometry, it therefore follows that the min-
imizing path v(t, x) for the OIT problem with either ρ0 = 1 or ρ1 = 1 must
correspond to a horizontal geodesic: if γ(t, ·) is the curve of diffeomorphisms gen-
erated by v(t, ·), then γ(t, ·)∗dx is a Fisher–Rao geodesic connecting ρ0 and ρ1.

The same type of geometric interpretation exists for OMT, but with Fisher–
Rao replaced by the Wasserstein metric. However, there is a major difference: the
Fisher–Rao geodesics are explicitly computable. Indeed, by a change of variables
they correspond to great circles on a convex portion of an infinite-dimensional
sphere. Thus, we can solve the OIT problem as follows:

(1) Compute the Fisher–Rao geodesic ρ(t) between ρ0 and ρ1; this is just an
explicit expression.

(2) Lift the curve ρ(t) to its corresponding horizontal geodesic curve on
Diff(Tn); this amounts to solving the lifting equations

∆f(t) =
∂tρ(t)

ρ(t)
◦ γ(t)−1

∂tγ(t) = ∇f(t) ◦ γ(t).

A numerical algorithm for the lifting equations is obtained by equidistant time-
stepping in the interval [0, 1], where in each time-step we need to solve a Poisson
equation on a regular mesh and update the diffeomorphism γ(tk), which is numer-
ically represented as a deformation of the regular mesh. By a modification, the
same approach can be used also when both ρ0 and ρ1 are different from one and
allowed to be zero. Such numerical methods are developed in [7], mainly for the
purpose of medical image registration, although other applications are indicated.

Open questions: (i) Convergence analysis of the methods in [7]. (ii) Applica-
tions to r-adaptivity [8], replacing OMT by OIT. (iii) Are there other applications
where OMT readily can be replaced by OIT?
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Lie-Butcher series and differential geometry. The case of symmetric
spaces.

Hans Munthe-Kaas

Symmetric spaces are central objects in differential geometry, characterised by
having a constant Riemannian curvature. Examples are spheres, grassman man-
ifolds ans more generally quotients of Lie groups. Symmetric spaces appear in
many applications in computational mechanics, control theory and differential ge-
ometry. In this talk we present new results on B-series type expansions for flows
evolving on symmetric spaces and the algebraic structures behind such series. We
also discuss new classes of numerical integration algorithms on symmetric spaces.

Structure preserving model reduction on Lie groups

Brynjulf Owren

(joint work with Elena Celledoni, Helen Parks)

The starting point for this work was an idea by Helen Parks to extend the work
of Lall et al. [1] to time integrators for mechanical systems on manifolds. In large
systems of ODEs one may have the situation that the flow evolves approxmately
on a subspace of very small dimension. If such a subspace can be identified,
one may project the full model onto this reduced space, integrate the smaller
system and reconstruct the approxmate solution in large space. A common way to
implement this procedure is by using the snapshot method. This means that the
full system y′ = f(y) is integrated over a few steps from a given initial value. The
solution vectors are collected to form the columns of a matrix Y = [y1, y2, . . .],
and an approximate singular value decomposition, Y = UΣV T in reduced form
(U ∈ RN×n), then yields a basis contained in the columns of U for the subspace
to be used. The projected system in Rn is

(1) ż = UT f(Uz)

For mechanical systems of dimension n = 2m, one may start with a Lagrangian
L(q, q̇) and in this case it suffices to carry out the reduction on the q-part only of
the snapshots, i.e. Q = [q1, q2, . . .] = Ū Σ̄V̄ ⊤. Now, setting q = Ū z̄, one obtains
q̇ = Ū ˙̄z. For mechanical Lagrangians of the form L(q, q̇) = 1

2 〈Mq̇, q̇〉 − V (q), the
Euler–Lagrange equations and Legendre transformation take the form

Mq̈ = −∂V
∂Q

, p =Mq̇
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We can now define a reduced Lagrangian Lr by setting

Lr(z̄, ˙̄z) =
1

2
〈MŪ ˙̄z, Ū ˙̄z〉 − V (Ū z̄)

with corresponding reduced Euler-Lagrange equations

ŪTMŪ ¨̄z = −ŪTDV (Ū z̄)

The Legendre transformation is π = ŪTMŪ ˙̄z =:Mr ˙̄z and we obtained the reduced
Hamiltonian

Hr(z, π) =
1

2
〈π,M−1

r π〉+ V (Ūz)

Not surprisingly, numerical experiments show that the latter approach has better
long time behaviour than what is obtained by using (1).

The next step is to generalise the approach to Lie groups. This is challenging
because many of the ingredients in this snapshot method are based on operations in
linear spaces, such as the singular value decomposition. Looking at the literature
for Lie group integrators, one can see that they are predominantly based on either
of the two principles

(1) Local coordinates on the group, or
(2) a global embedding of the group into a Euclidean model space

Both of these approaches have difficulties. The idea of model reduction is to create
a low dimensional subspace by sampling (large) portions of the phase space. In
the first approach, this requires a way to switch between charts. For example, if
the phase space is formed from N copies of a Lie group, and each Lie group needs
K charts, one needs in principle to keep track of representations of the solution
in KN charts. In a presented case of water molecules given in [2], we had such a
situation with K = 4 and N in the range 50–100.

On the other hand, global embeddings are also challenging since the reduction
procedure will not respect the constraints. This approach was however suggested
in [1], where the following algorithm was devised

- Given a configuration manifold Q, embed it into some linear space V .
- Apply reduction to a problem in V and obtain a reduced linear space
Vr ⊂ V

- Construct the reduced manifold Qr := Vr ∩Q
By considering the dimensions of these spaces, one has dimVr = dimQr+(dim V −
dimQ). For scalable problems, one may have the situation that the difference in
parentheses grows rapidly as the dimension of Q grows, so that the size of the
reduced linear space Vr must be chosen too large to be a viable alternative.

So far we have therefore used the first alternative above and derived locally
valid representations of the full and reduced system, but with the disadvantage
that the reduction can only be achieved in one chart at a time, when the solution
leaves a chart, the algorithm must be restarted. Yet, the numerical experiments
we have carried out are promising.
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Kahan’s method and its generalization

G R W Quispel

(joint work with E Celledoni, R I McLachlan, D I McLaren, B Owren)

In 1993 Kahan introduced a novel discretization of quadratic vector fields [1], and
wrote:

“I have used these methods for 24 years without quite understanding why they
work so well as they do, when they work.”

In recent years, various authors (see below) have proved a large number of results,
which are starting to give us an understanding of some of the miraculous properties
of Kahan’s method.

Kahan’s (bilinear) discretization of the arbitrary quadratic ODE in Rn:

dxi
dt

= aijkxjxk + bijxj + ci

(with summation over repeated indices implied), is defined by:

xi(n+ 1)− xi(n)

h
= aijk

xj(n+ 1)xk(n) + xj(n)xk(n+ 1)

2
+bij

xj(n) + xj(n+ 1)

2
+ci,

where h denotes the timestep, and xi(n) is short for xi(nh).

Note that this method (which Kahan called an “unconventional method”) is lin-
early implicit.

After early works by Sanz-Serna [3] and by Hirota and Kimura [2], in a series of
papers Suris and collaborators showed that Kahan’s method preserves integrability
for a large number of integrable quadratic vector fields (see e.g. refs [4] and [5]
and references therein).

In reference [6] our team showed that Kahan’s method is the restriction of the
Runge-Kutta method

xn+1 − xn
h

= 2f

(
xn + xn+1

2

)
− 1

2
f(xn)−

1

2
f(xn+1)

to quadratic vector fields. (Here xn := x(n), etc).

In the same paper we also showed that Kahan’s method exactly preserves a modi-
fied Hamiltonian and a modified measure for Hamiltonian systems in Rn (whether
integrable or not).
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Generalizing Kahan’s method, in reference [7] we introduced new (multilinear)
k-step discretization methods using polarization. These methods exactly preserve
a modified measure as well as k independent “modified Hamiltonian” k-integrals
[8], when applied to homogeneous degree k + 1 Hamiltonian vector fields in Rn.
(The case k = 2 corresponds to Kahan’s method).

Finally, in refs [6], [9], [10], [11], resp. [7], we showed how Kahan’s method resp.
more general polarization methods, preserve integrability for several integrable
vector fields of degree 2 resp. 3.
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Landau damping for the Vlasov HMF equation: analysis and time
discretization

Frédéric Rousset

(joint work with E. Faou, R. Horsin)

The Vlasov HMF model is the simplest Vlasov type equation. This model has
received much interest in the physics literature for many reasons: It is a simple
ideal toy model that keeps several features of the long range interactions, it is a
simplification of physical systems like charged or gravitational sheet models and
it is rather easy to make numerical simulations on it. We refer for example to [1],
[11], [2], [5], [6] for more details.

The Vlasov-HMF model reads

(1) ∂tf(t, x, v) + v∂xf(t, x, v) = ∂x

( ∫

R×T

P (x− y)f(t, y, u)dudy
)
∂vf(t, x, v),
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where (x, v) ∈ T × R and the kernel P (x) is given by P (x) = cos(x). Note
that the main difference with other nonlinear Vlasov equations like the Vlasov-
Poisson equation is the regularity of the kernel: in this latter case, P (x) =∑

k≥0 k
−2 cos(kx) is the kernel associated with the inverse of the Laplace op-

erator. The HMF model is thus the simplest nonlinear model with the structure
(1). We consider initial data under the form f0(x, v) = εr0(x, v) where ε is a small
parameter and r0 is of size one (in a suitable functional space).

f(t, x, v) = εr(t, x, v).

Our aim is to describe the large time behavior of f (or r) for ε sufficiently small.
To achieve that, it is convenient to first filter out the effect of the free transport
and to study ”the profile” of the solution as it also widely done in the study of
dispersive equations. We thus set g(t, x, v) = r(t, x + tv, v), so that g solves

∂tg = ε{φ(t, g), g}.
where

φ(t, g)(x, v) =

∫

R×T

(cos(x− y + t(v − u)))g(t, y, u)dudy

and {f, g} = ∂xf∂vg − ∂vf∂xg is the usual microcanonical Poisson bracket. We
shall usually write φ(t) when the dependence in g is clear.

Let us also define the weighted Sobolev norm

‖f‖2

Hn =
∑

|p|+|q|6n

∫

T ×R

(1 + |v|2)m0 |∂px∂qvf |2dxdv,

and denote by Hn the corresponding function space. Let us finally define for every
s ≥ 4 and T ≥ 0 the weighted norm

QT,s(g) = sup
t∈[0,T ]

‖g(t)‖Hs

〈t〉3 + sup
t∈[0,T ]

sup
k∈{±1}

〈t〉s−1|ζk(t)| + sup
t∈[0,T ]

‖g(t)‖Hs−4

where
ζk(t) = ĝk(t, kt), k ∈ {±1}.

The result obtained in [8] is that

Theorem 7. Let us fix s ≥ 7 and R0 > 0 such that Q0,s(g) ≤ R0. Then there
exists R > 0 and ε0 > 0 such that for every ε ∈ (0, ε0] and for every T ≥ 0, we
have the estimate

QT,s(g) ≤ R.

As a consequence of this result, we easily obtain that there exists g∞(x, v) ∈
Hs−4 such that for all r ≤ s− 4 and r ≥ 1,

∀ t ≥ 0, ‖g(t, x, v)− g∞(x, v)‖Hr ≤ C

〈t〉s−r−3
.

Going back to the original coordinates, we also easily deduce that f converges
weakly when t tends to +∞ to

η∞(v) :=
ε

2π

∫

T
g∞(x, v)dx.
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It is actually shown in [8] that the same result actually holds true in the vicinity of
any homogeneous stationary solution η(v) that satisfies a stability condition (the
well-known Penrose stability condition in plasmas physics).

Analogous results for the Vlasov Poisson system were previously obtained by
Mouhot and Villani [10] and by Bedrossian-Masmoudi-Mouhot [4]. Nevertheless,
for the Vlasov Poisson system, the results require analytic or Gevrey regularity of
the data. It was shown by Lin and Zeng [9] that Landau damping cannot hold
with too rough regularity (Hs for s < 3/2 for example). Their construction is valid
for both Vlasov-Poisson and Vlasov-HMF. It is still not known if Landau damping
would hold for Vlasov-Poisson at higher Sobolev regularity (though some formal
computations in [10] suggests that the Gevrey-3 regularity could be optimal). The
main feature of the Vlasov-HMF model in this analysis is that the nonlinearity
turns out to be non resonant.

In order to design numerical schemes that captures the long time behavior of
the Vlasov equation, it is then natural to ask that the solution of the scheme
also satisfies some kind of Landau damping. In [7], we have studied the time
discretization of (1) by splitting methods. We split the equation between the free
part

∂tf(t, x, v) + v∂xf(t, x, v) = 0, f(0, x, v) = f0(x, v),

whose solution is given explicitely by ϕt
T (f

0)(x, v) := f0(x− tv, v), and the poten-
tial part

∂tf(t, x, v) = ∂x

(∫

R×T

P (x− y)f(t, y, u)dudy
)
∂vf(t, x, v), f(0, x, v) = f0(x, v),

whose solution is explicitely given by

ϕt
P (f

0) = f0(x, v + tE(f0, x)),

where E(f, x) = ∂x

( ∫
R×T

P (x− y)f(y, u)dudy
)
is indeed constant in time.

The Lie splittings is for example given by the formula

fn+1 = ϕh
P ◦ ϕh

T (f
n),

and the Strang splitting by the formula

fn+1 = ϕ
h/2
T ◦ ϕh

P ◦ ϕh/2
T (fn)

where h > 0 is the time step. The same results hold for the symmetric splittings
where the roles of T and P are swapped.

We can then define the sequence of function rn(x, v) by the formula

fn(x, v) = εrn(x, v), gn(x, v) = rn(x+ nhv, v).

In [7], we have proven the Landau damping for these splitting schemes, in the
sense that there exists g∞h (x, v) such that if ε and h are sufficiently small, there
exists C > 0 such that

∀n ≥ 0, ‖gn(x, v) − g∞h (x, v)‖Hr
≤ C

〈nh〉s−r−3
.
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This allows to prove that for example for the Strang splitting, the scheme is of
order two globally in time: we have that for h and ε sufficiently small, there exists
C > 0 such that

‖gn(x, v) − g(nh, x, v)‖Hr ≤ Ch2 ∀n ∈ N.
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Word-series analysis of splitting stochastic integrators

J.M. Sanz-Serna

(joint work with A. Álamo)

The importance of splitting integrators has been increasing steadily in the recent
decades. Their flexibility in treating the different terms (diffusion, reaction, advec-
tion, . . . ) that may be present in a partial differential equation and their capability
of keeping geometric properties are among the reasons for their popularity. Typ-
ically splitting algorithms are analysed in a way that is different from that used
for standard integrators like Runge-Kutta schemes. In fact, the common approach
starts by writing each flow being composed as the exponential of an operator; then
the various exponentials are combined into a single one by means of the Baker-
Campbell-Hausdorff (BCH) formula. In this way one really obtains the expansion
in powers of the step-size ∆t of the modified equation, which is different from the
situation for standard integrators, where one expands the map ψ∆t that sends the
approximation xn at the current step into the next: xn+1 = ψ∆t(xn). In (1999),
A. Murua and myself [1] suggested a B-series technique to expand the map ψ∆t;
that approach does not invoke the BCH formula, whose combinatorial intricacies
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are known to be very high. Recently word series [2] have been put forward as an
alternative to B-series. The scope of applicability of word series is much narrower
than that of B-series [3]; however, when applicable, word series are more easily
handled than B-series. Word series, as B-series, have an application range that
exceeds numerical mathematics; they may be used to perform averaging, to re-
duce discrete or dynamical systems to normal form, etc. The interested reader is
referred to my web page http://www.sanzserna.org/ for relevant publications.

In the talk I reported work in progress by Alfonso Álamo (Ph.D. student at
Valladolid) and myself on the use of word series to analyse splitting integrators
for stochastic differential equations. While both the Ito and Stratonovich inter-
pretation have been treated by us, my oral presentation focused on the simpler
Stratonovich case and considered strong and weak local errors. I showed the power
of the new approach by analysing in detail two integrators for the Langevin dynam-
ics that, while possessing very similar formulations, show widely different practical
performances. The new technique may also be applied advantageously to derive
modified equations, to find invariant densities, etc.
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Derivation of a low regularity exponential-type integrator for
semilinear Schrödinger equations with polynomial nonlinearities

Katharina Schratz

(joint work with Alexander Ostermann)

Splitting methods as well as classical exponential integration schemes for semilinear
Schrödinger equations of type

i∂tu(t,x) = −∆u(t,x) + µ |u(t,x)|2p u(t,x), (t,x) ∈ R× T
d, p ∈ N, µ ∈ R

are extensively studied in the literature. As part of the construction of these
numerical methods the stiff part (i.e., the terms involving the differential operator
i∆) is differently approximated. However, for both method classes first-order
convergence in Hs requires solutions in Hs+2, see for instance [1, 2]. Recently, the
low regularity exponential-type integrator

(1) un+1 = eiτ∆
[
un − iµτ

(
un
)p+1

ϕ1(−2iτ∆)
((
un
)p)]
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was introduced in [3]. Here un is an approximation to the exact solution u at time
tn = nτ , and ϕ1 denotes the entire function

ϕ1(z) =
ez − 1

z
.

Compared to classical splitting and exponential integration schemes this exponen-
tial-type integrator allows less regular solutions. More precisely, its first-order
convergence holds in Hs for solutions in Hs+1 for s > d/2.

In [3] the exponential-type integrator (1) was only explicitly derived for cubic
nonlinearities (p = 1). Here we give a detailed derivation for general nonlinearities
p ∈ N. Henceforth, we will use the notation

K = (k1, . . . ,kp+1), kj = (kj1, . . . , kjd) ∈ Z
d,

L = (ℓ1, . . . , ℓp), ℓj = (ℓj1, . . . , ℓjd) ∈ Z
d,

k · x = k1x1 + . . .+ kdxd, k2 = k · k for k,x ∈ R
d.

The construction of (1) is based on iterating Duhamel’s formula in the twisted
variable v(t) = e−it∆u(t). Note that the twisted variable satisfies

(2)

v(tn + τ) = v(tn)

− iµ

∫ τ

0

e−i(tn+s)∆
[∣∣ei(tn+s)∆v(tn + s)

∣∣2pei(tn+s)∆v(tn + s)
]
ds.

Thus, for r > d/2 the following bound holds in the Hr norm:

‖v(tn + s)− v(tn)‖r ≤ |µ|
∫ s

0

‖v(tn + ξ)‖2p+1
r dξ

≤ s|µ| sup
0≤ξ≤s

‖v(tn + ξ)‖2p+1
r .

In this sense we have for |s| ≤ τ

(3) v(tn + s) ≈ v(tn)

for a small time step τ . Inserting (3) into (2) yields the approximation

(4) v(tn + τ) ≈ v(tn)− iµ

∫ τ

0

e−i(tn+s)∆
[∣∣ei(tn+s)∆v(tn)

∣∣2pei(tn+s)∆v(tn)
]
ds

which is the basis of our numerical scheme. We are left with deriving a numerical
approximation to

Iτp (w, tn) =

∫ τ

0

e−i(tn+s)∆
[∣∣ei(tn+s)∆w

∣∣2pei(tn+s)∆w
]
ds.

With the aid of the Fourier expansion we obtain the representation

(5)

Iτp (w, tn) =
∑

k1,...,kp+1∈Z
d

ℓ1,...,ℓp∈Z
d

ŵk1 . . . ŵkp+1ŵℓ1
. . . ŵℓp

× e−i
(∑p+1

j=1 kj+
∑p

j=1 ℓj

)
·x
∫ τ

0

ei(tn+s)Ωp(K,L)ds,
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where we have set

Ωp(K,L) =
(∑p+1

j=1 kj −
∑p

j=1 ℓj

)2
−
∑p+1

j=1 k
2
j +

∑p
j=1 ℓ

2
j .

Next we split Ωp into pure and mixed quadratic terms. Note that

Ωp(K,L) = 2
∑p

j=1 ℓ
2
j +

∑p+1
α=1 kα

(∑
ν 6=α kν

)

− 2
(∑p+1

α=1 kα

)(∑p
β=1 ℓβ

)
+
∑p

β=1 ℓβ

(∑
ν 6=β ℓν

)
.

Furthermore,

∑p
j=1 ℓ

2
j =

(∑p
j=1 ℓj

)2
−∑p

β=1 ℓβ

(∑
ν 6=β ℓν

)
.

This yields that

Ωp(K,L) = 2
(∑p

j=1 ℓj

)2
+Rp(K,L)

with the remainder term

Rp(K,L) =
∑p+1

α=1 kα

(∑
ν 6=α kν

)
− 2
(∑p+1

α=1 kα

)(∑p
β=1 ℓβ

)

−∑p
β=1 ℓβ

(∑
ν 6=β ℓν

)

consisting of mixed quadratic terms only. In order to obtain an efficient and
practical low regularity implementation we only

treat the dominant quadratic term 2
(∑p

j=1 ℓj

)2
in Ωp exactly.

This yields for 0 ≤ γ ≤ 1 the approximation

(6)

∫ τ

0

ei(tn+s)Ωp(K,L)ds

= eitnΩp(K,L)

∫ τ

0

e2is(
∑p

j=1 ℓj)
2
(
1 +O(sγRp(K,L)

γ)
)
ds

= eitnΩp(K,L) ϕ1

(
2iτ
(∑p

j=1 ℓj

)2)
+O(τ1+γRp(K,L)

γ).

Plugging (6) into (5) shows that

Iτp (w, tn) = Ψτ
p(w, tn) +Rτ

p(w, tn),

where

Ψτ
p(w, tn) = τe−itn∆

[(
eitn∆w

)p+1
ϕ1(−2τi∆)

(
(e−itn∆w)p

)]

is the sought-after approximation. The remainder Rτ
p satisfies the bound

‖Rτ
p(w, tn)‖r ≤ cτ1+γ‖w‖2p+1

r+γ for 0 ≤ γ ≤ 1, r > d/2.

Inserting the approximation Ψτ
p(v

n, tn) into (4) with v(tn) replaced by vn, and
twisting the solution back again, i.e., setting

un = eitn∆vn

finally yields the scheme (1). For a rigorous error analysis of that scheme in
dimensions d ≥ 1 we refer to [3].
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Geometric asymptotic reduction: the gyrokinetic model for magnetic
fusion plasmas

Eric Sonnendrücker

Magnetic confinement thermonuclear fusion research investigates the possibility of
gaining energy by confining a Deuterium and Tritium plasma (i.e. gas of charged
particles) at a high temperature and density for a long enough time, such that
energy produced by fusion reactions positively balances the initial energy input.
One of the major obstacles is the turbulent transport of particles and energy out
of the plasma that needs to be reduced. The adequate model for studying this
process would be the Vlasov-Maxwell system. However due to the large confining
magnetic field this model can be further reduced into the so-called gyrokinetic
model.

The gyrokinetic reduction of the Vlasov-Maxwell equations consists in a se-
quence of changes of variables aiming at removing the fast angular variable repre-
senting the rotation of the particles around the magnetic field lines. This has the
advantage for numerical simulations of reducing the phase space dimension by one
variable and also of removing the fast gyration time scale. There are two natural
formulations: one called the symplectic formulation is based on the parallel velocity
and the other is based on the canonical parallel momentum and called hamilton-
ian [1]. Both have major drawbacks for a numerical Particle In Cell simulations,
which are enhanced for MHD modes. The symplectic formulation contains ∂tA
terms in the equations of motion of the gyrocenters, which necessitates an implicit
discretisation for stability and the hamiltonian formulation introduces a large skin
term in the parallel Ampere equation, which cancels with the large adiabatic part
of the current computed as a Monte Carlo estimate, which is noisy. This needs
a very well tuned control variate for a sufficiently accurate computation [2]. An
alternative approach, based on a new variable intermediate between the canonical
parallel momentum and velocity has been introduced recently in [3, 4]. This can
be interpreted as a integrating factor method, for the integration of the gyrocenter
equations of motion of either the symplectic or the hamiltonian formulation and
enables to get rid of the numerical issues of either of the original formulations.
This simple algorithm enables to take a much larger time step in all cases and
larger by more than an order of magnitude for MHD modes [5]. The so-called
mixed formulation can be directly derived from the original electromagnetic parti-
cle Lagrangian using Lie transforms as the original gyrokinetic equations and cast
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in a field theoretic Lagrangian of the same form as the one obtained in [6]. This en-
ables in particular to derive an exact conserved energy and total canonical angular
momentum using a Noether theorem. Moreover by directly discretising the field
theoretic Lagrangian using a Monte-Carlo approach for the Vlasov term and a Fi-
nite Element approach for the field terms, we get a discrete Lagrangian, be it with
a large number of degrees of freedom, which itself generates exact conserved quan-
tities at the semi-discrete level. The corresponding Euler-Lagrangian equations
have a Poisson structure, which can be used for the following time discretisation.
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What is integrability of (discrete) variational systems?

Yuri B. Suris

We propose a notion of a pluri-Lagrangian problem [3, 2, 7], which should be un-
derstood as an analog of multi-dimensional consistency [1] for variational systems.
This is a development along the line of research of discrete integrable Lagrangian
systems initiated Lobb and Nijhoff [5], however having its more remote roots in
the theory of pluriharmonic functions, in the Z-invariant models of statistical me-
chanics and their quasiclassical limit, as well as in the theory of variational sym-
metries going back to Noether. A d-dimensional pluri-Lagrangian problem can be
described as follows:

Given a d-form L on an m-dimensional space Rm or Zm (called multi-time,
with m > d), whose coefficients depend on a function x of m independent vari-
ables (called field), find those fields x which deliver critical points to the action
functionals SΣ =

∫
Σ L for any d-dimensional manifold Σ in the multi-time.

Let us illustrate this definition by the case of discrete-time Lagrangian me-
chanics, d = 1 (cf. [6]). Consider a 1-parameter family of pairwise commuting
symplectic maps Fλ : T ∗M → T ∗M , Fλ(q, p) = (q̃, p̃), possessing generating (La-
grange) functions L(q, q̃;λ), so that

Fλ : p = −∂L (q, q̃;λ)

∂q
, p̃ =

∂L (q, q̃;λ)

∂q̃
.
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The commutativity of the corresponding m maps allows us to define, for any
(q0, p0) ∈ T ∗M , the function (q, p) : Zm → T ∗M by setting

(q(n+ ei), p(n+ ei)) = Fλi

(
q(n), p(n)

)
, n ∈ Z

m, 1 ≤ i ≤ m.

We will abbreviate (q, p) = (q(n), p(n)), (qi, pi) = (q(n + ei), p(n + ei)), and
(q−i, p−i) = (q(n − ei), p(n − ei)) for a general n ∈ Zm and for any 1 ≤ i ≤ m.
The following 2D corner equations hold true everywhere on Z

m:

∂L(q, qi;λi)

∂q
− ∂L(q, qj;λj)

∂q
= 0,

∂L(q−i, q;λi)

∂q
+
∂L(q, qj ;λj)

∂q
= 0,

∂L(q−i, q;λi)

∂q
− ∂L(q−j, q;λj)

∂q
= 0.

Introduce a discrete 1-form L on Zm by setting L(n, n + ei) = L(q, qi;λi). Then
the 2D corner equations tell us that any solution q : Zm → M delivers a critical
point to the action functional

SΓ =
∑

e∈Γ

L(e)

for any directed path Γ in Zm (concatenation of directed edges e) under variations
that fix the fields at the endpoints of the path Γ. In other words, the field q :
Zm →M solves the pluri-Lagrangian problem for the Lagrangian 1-form L.
Theorem. The value of the exterior derivative dL on any elementary square
σij := (n, n+ ei, n + ei + ej, n+ ej) is constant on solutions of the system of 2D
corner equations:

dL(σij) := L(q, qi;λi) + L(qi, qij ;λj)− L(qj , qij ;λi)− L(q, qj ;λj) = c(λi, λj).

Theorem. The pluri-Lagrangian 1-form L is closed on solutions, dL = c(λ, µ) =
0, if and only if ∂L(q, q̃;λ)/∂λ is a common integral of motion for all Fµ.

The latter theorem clarifies the meaning of the mysterious “spectrality prop-
erty” discovered by Kuznetsov and Sklyanin [4] for Bäcklund transformations.

Similarly, in the case d = 2, one starts with a discrete 2-form, that is, a real-
valued function L of oriented elementary squares σij = (n, n+ei, n+ei+ej, n+ej)
of Zm, such that L(σij) = −L(σji). We will assume that L depends on some field
x : Zm → X (X being some vector space), more precisely, L(σij) = L(x, xi, xj , xij)
depends on the values of x at the four vertices of σij . To an arbitrary oriented
quad-surface Σ in Zm, there corresponds the action functional

SΣ =
∑

σ∈Σ

L(σ).

We derive the main building blocks of the multi-time Euler-Lagrange equations for
a discrete pluri-Lagrangian problem with d = 2, the so called 3D corner equations.
These are discrete Euler-Lagrange equations for all possible 3D corners in Zm,
which are quad-surfaces consisting of three elementary squares adjacent to a vertex
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of valence 3. Denote the discrete exterior derivative dL evaluated on an oriented
elementary cube σijk of the coordinate directions i, j, k by

Sijk = dL(σijk) = ∆kL(σij) + ∆iL(σjk) + ∆jL(σki).
The system of 3D corner equations consists of the equations

∂Sijk

∂x
= 0,

∂Sijk

∂xi
= 0,

∂Sijk

∂xj
= 0,

∂Sijk

∂xk
= 0,

∂Sijk

∂xij
= 0,

∂Sijk

∂xjk
= 0,

∂Sijk

∂xik
= 0,

∂Sijk

∂xijk
= 0,

for each triple i, j, k. Symbolically, δ(dL) = 0, where δ stands for the “vertical”
differential (differential with respect to the dependent field variables x).

The system of 3D corner equations encompasses all possible discrete Euler-
Lagrange equations for all possible quad-surfaces. This is a direct consequence of
the following fundamental geometric fact: the vertex star of any interior vertex of
an oriented quad-surface in Z

m can be represented as a sum of (oriented) 3D cor-
ners in Zm+1. Observe that the “almost closedness” of the 2-form L on solutions
of the system of 3D corner equations is built-in from the outset.

Theorem. For any triple of the coordinate directions i, j, k, the exterior derivative
of L over an elementary cube of these coordinate directions is constant on solutions
of the system of 3D corner equations:

dL(σijk) = cijk = const (mod ∂Sijk/∂x = 0, . . . , ∂Sijk/∂xijk = 0).

We analyze the system of 3D corner equations for a special class of three-point
2-forms, corresponding to integrable quad-equations of the ABS list [1]:

L(σij) = L(x, xi;αi)− L(x, xj ;αj)− Λ(xi, xj ;αi, αj).

Of course, the function Λ should satisfy Λ(x, y;α, β) = −Λ(y, x;β, α) to ensure the
skew-symmetry property L(σji) = −L(σij). The system of 3D corner equations
for such a 2-form L consists of six equations for each elementary cube: for the
vertices x and xijk there are no equations, while for the vertices xi, resp. xij we
have the following four-leg, five-point equations:

ψ(xi, xij ;αj)− ψ(xi, xik;αk)− φ(xi, xk;αi, αk) + φ(xi, xj ;αi, αj) = 0,

ψ(xij , xi;αj)− ψ(xij , xj ;αi)− φ(xij , xik;αj , αk) + φ(xij , xjk;αi, αk) = 0.

Here, we introduced the notation

ψ(x, y;α) = ∂L(x, y;α)/∂x, φ(x, y;α, β) = ∂Λ(x, y;α, β)/∂x.

Theorem. For the discrete 2-forms L for quad-equations of the ABS list, the
corresponding systems of 3D corner equations are consistent, as well. Moreover,
the 2-form L is closed on solutions of the 3D corner equations.
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This closes a conceptual gap left in the work [5] by showing that the correspond-
ing 2-forms are closed not only on solutions of (non-variational) quad-equations,
but also on general solutions of the corresponding Euler-Lagrange equations.

Theorem. If the three-point discrete 2-form L is closed on solutions of the system
of 3D corner equations, then the latter system admits the parameter dependent
family of conservation laws

∆jPik = ∆kPij ,

with the densities

Pij =
∂L(x, xi;αi)

∂αi
− ∂Λ(xi, xij ;αi, αj)

∂αi
.
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[4] V.B. Kuznetsov, E.K. Sklyanin, On Bäcklund transformations for many-body systems, J.
Phys. A: Math. Gen. 31 (1998), 2241–2251.

[5] S. Lobb, F.W. Nijhoff, Lagrangian multiforms and multidimensional consistency, J. Phys.
A: Math. Theor., 42 (2009), no. 454013.

[6] Yu.B. Suris. Variational formulation of commuting Hamiltonian flows: multi-time La-
grangian 1-forms, J. Geom. Mechanics, 5 (2013) 365–379.

[7] Yu.B. Suris, M. Vermeeren. On the Lagrangian structure of integrable hierarchies,
arXiv:1510.03724 [math-ph].

Parareal-like multiscale coupling schemes

Richard Tsai

In multiscale computations, one typically is interested in computing efficiently an
effective system that can be derived from the given full system whose solutions
have a wide range of length scales. The need for doing so comes from the daunt-
ing computational complexity for resolving the length scales that are very small
compared to the required size of computational domain. For systems that have
sufficiently wide separation of scales, the effective systems may be computed by
appropriately averaging the operators and the solutions of the full systems. This
is the typical setup for numerical homogenizations.

As multiscale computations for more classical settings have reached a mature
stage, it is now necessary to develop new strategies addressing some of the core
problems of scientific computing for the coming era that require leaving the con-
texts considered previously. We would like to tackle problems in which (i) wide
range of scales are present in the entire time domain of interest; or
(ii) intermittencies occur in the system at times which cannot be de-
termined a priori.
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While an effective macroscopic solution for situation (i) may exist globally,
the macroscopic model for (ii) may fail to be valid at localized regions (in space
and in time), depending on the states being computed. Both situations require
more extensive microscopic simulations in order to compute the effective solutions
accurately. The need to deal with intermittency shows up in many challenging
problems, ranging from more simple dynamical systems having some oscillatory
modes going through resonances, to fluid flows transitioning in and out of turbu-
lence in localized regions. The intermittent features could take place in longer time
scales than those typically considered in the more classical setups. In order to com-
pute the non-trivial effective behavior of such systems, it is necessary to consider
more extensive and systematic sampling of the dynamical system’s phase space.
However, computing microscopic simulation in larger domains calls for further re-
duction of the resulting computational complexity. Without further reduction,
the resulting multiscale scheme may not be competitive with even a conventional
solver. Parallelization-in-time may offer the needed reduction of computational
complexity.

On the other hand, the increase in computing power in recent (and future)
computer infrastructures have been relying on increasing the number of parallel
processors rather than the clock speed. Computations of the class of highly oscil-
latory dynamical systems will not benefit from the available exa-scale computing
power unless parallelization-in-time can be performed. However, due to causality,
parallel-in-time computations have not been as successful as parallel computations
in space. Adding to the difficulty, the presence of fast oscillations in the solutions
increases the sensitivity of the solvers and makes the approaches involving shooting
and Newton’s solvers virtually unusable. Even though there have also been active
research in developing numerical algorithms that allow massive parallel-in-time
computations for solving initial value problems, it is widely recognized that robust
and convergent numerical computation using such parallel-in-time algorithms still
remains a main challenge.

In this talk, we discuss a fixed point iteration scheme of the form

vk+1
n+1 = θCHv

k+1
n +

(
FHv

k
n − θCHv

k
n

)
,

vk0 = v0,(1)

for k = 0, 1, 2, · · · , n = 0, 1, 2, · · · , N. Here CH is the solution operator of step
size H for the “coarse” scale initial value problem

(2)
d

dt
u = L(u, ux,uxx), u(x, t = 0) = u0(x),

and FH for

(3)
d

dt
uǫ = Lǫ(u

ǫ, uǫx,u
ǫ
xx), u

ǫ(x, t = 0) = uǫ0(x).

FHv
k
n can be computed in parallel in smaller time intervals and will sample all the

scales in the full system. The scheme in (1) is derived from:

vk+1
n+1 = θCHv

k+1
n + (1− θ)CHv

k
n +

(
FHv

k
n − CHv

k
n

)
.
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The size of the “corrector” term FHv−CHv has great influence to the stability of
the scheme.

By studying such type of model problems, we would like to find out: (a) whether
the microscopic features in uǫ can be re-introduced into the macroscopic solutions
and thus making up the deficiencies in the macroscopic model; (b) the stability
and convergence properties of such coupling; (c) acceleration and improvement
through the design of θ.

The focus of this talk is on the role of θ, which can be a real number, a complex
number, or an operator which is called a “phase alignment operator” in [1]. We
show that for dissipative systems, taking θ ∈ (0, 1) may improves the stability of
the classical parareal scheme (corresponding to taking θ ≡ 1). We show further
that for systems on the complex plane that have imaginary eigenvalues, it may
be necessary to take complex valued θ in order to “match” the phases of FHv
and CHv. We demonstrate our theory by a “de-homogenization” example. In the
example, we use (1) to couple a standard equation found in parabolic homogeniza-
tion to its homogenized equation. We show that fine scale details are correctly
“put” back to the solutions of (1) after very few iterations in k. We discuss a few
challenging highly oscillatory systems, and show that θ has to be further gener-
alized to non-trivial operators in order to be able to match the phases of FHv
and CHv. These examples may be considered a warm up excercises towards the
directions that we outline above.
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Long term rotation of Ceres and Vesta

Timothée Vaillant

(joint work with Jacques Laskar)

The mission of the spacecraft Dawn is to study Ceres and Vesta, the largest as-
teroids of the main belt. This space probe, which is at present in orbit around
Ceres, should allow to test different models of ice distribution on the surface, which
depend on the orbit and the rotation.

However, the orbital motion of the two asteroids is chaotic [1]. To study the
phenomena, which affect them, we then develop a secular model, which consists to
average the general orbital motion on the orbit and describes only the evolution
of the orbit. This model allows to identify the different secular frequencies of their
orbital motions

To obtain the long term rotation, we can average on the fast rotation motion
of these two bodies and obtain a secular rotation model, which only describes
the evolution of the angular momentum. Two secular rotation models exist: a
scalar model and a vectorial model. The hamiltonian of the scalar model [2, 3, 4]
allows to obtain the secular evolution of the Andoyer canonical variables, which
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locates the body in the space. The long term rotation is then forced by the secular
orbital motion. The hamiltonian of the vectorial model [5, 6] describes the secular
evolution of the angular momentum whether or not it is forced by the general
or secular orbital motion. This model can then allow to observe the interaction
between the orbital and secular motions.

We observe that these two models give identical results for the long term evo-
lution of the angular momenta of Ceres and Vesta. They also allow to observe
secular resonances, which occur when the secular frequency of precession of the
angular momentum is close to a secular frequency of the orbital motion. Secular
resonances can then be responsible for a stronger variation of the inclination of
the angular momemtum with respect to the plane of the orbital motion.
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[5] G. Boué, J. Laskar, Precession of a planet with a satellite, Astronomy and Astrophysics

185 (2006), 312–330.
[6] J. Laskar, A. Fienga, M. Gastineau, H. Manche, La2010: a new orbital solution for the

long-term motion of the Earth, Astronomy and Astrophysics 532 (2011), A89.

Modified equations for variational integrators

Mats Vermeeren

It is well-known that if a symplectic integrator is applied to a Hamiltonian system,
then the modified equation, whose solutions interpolate the numerical solutions,
is again Hamiltonian. We investigate this property from the variational side. We
present a technique to construct a Lagrangian for the modified equation from the
discrete Lagrangian Ldisc(xj−1, xj) of a variational integrator.

The first step of the construction consist solely of elementary analysis. Using
Taylor expansion and the Euler-MacLaurin formula we find the meshed modified
Lagrangian Lmesh[x(t)], a formal power series in the step size h which satisfies

∫ b

a

Lmesh[x(t)] dt =
∑

j

Ldisc(x(jh), x(jh + h)).

The meshed Lagrangian borrows its name from the unconventional variational
principle that it satisfies:

Definition 1. A meshed variational problem with mesh size h consist in finding

smooth critical curves of some action
∫ b

a L[x(t)] dt in the set of piecewise smooth
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curves CM,h whose nonsmooth points occur at times that are an integer multiple
of h apart form each other,

CM,h = {x ∈ C0([a, b]) | ∃t0 ∈ [a, b] : ∀t ∈ [a, b] : x not smooth at t⇒ t− t0 ∈ hN}.

A consequence of this definition is that the Euler-Lagrange equations

δL
δx

:=
∑

j

(−1)j
dj

dtj
∂L
∂x(j)

= 0

are not sufficient for criticality. In addition, one has the necessary conditions

∂L
∂x(j)

= 0 ∀j ≥ 2,

which can be seen as a generalization of natural boundary conditions, or a version
of the Weierstrass-Erdmann corner conditions where every point is a corner. We
refer to them as natural interior conditions.

Since we are dealing with formal power series, we need to truncate them before
we can do any analysis. It will be useful to consider families of curves, parameter-
ized by the step size h, that are critical up to a truncation error:

Definition 2. A family of curves xh : [a, b] → R is (meshed) k-critical for some

family of actions Sh =
∫ b

a
Lh dt if for any piecewise smooth variation δxh of xh,

with nonsmooth points in a mesh of size h, there holds δSh = O
(
hk+1 ‖δxh‖1

)
.

A family of curves xh : [a, b] → R is k-critical if and only if

δLh

δx
= O(hk+1) and

∂Lh

∂x(j)
= O(hj+k+1) ∀j ≥ 2.

By construction variations within one mesh interval do no affect the action for
the meshed modified Lagrangian Lmesh. This implies that any curve that satisfies
the Euler-Lagrange equations also satisfies the natural interior conditions. In
particular this means that the modified equation can be obtained as the Euler-
Lagrange equation of Lmesh. These observations allow us to define a classical
modified Lagrangian, depending only on x and ẋ:

t

x

•

•

t

x

•

• •

• •
•

Figure 1. A smooth curve and a few variations for the classical
(left) and meshed (right) variational problem.
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Definition 3. The modified Lagrangian is defined by replacing all second and
higher derivatives in the meshed modified Lagrangian according to the modified
equation,

Lmod(x, ẋ) := Lmesh[x]
∣∣∣
ẍ = fh(x, ẋ), x

(3) = d
dtfh(x, ẋ), . . .

where ẍ = fh(x, ẋ) is the modified equation.

For general Lagrangians, these replacements will affect the Euler-Lagrange
equations. However, due to the property that the Euler-Lagrange equations for
Lmesh imply the natural interior conditions, this is not the case here. It follows
that the Euler-Lagrange equations for the modified Lagrangian are equivalent to
the modified equation.

This construction is described in detail in [4]. Background on modified equa-
tions, especially from the Hamiltonian point of view, can be found in [1, Chapter
IX] and the references therein. More on the theory of variational integrators can
be found in [2] and a different approach to modified equations for variational in-
tegrators is presented in [3].

The extension of the method outlined here to some classes of degenerate La-
grangians is a work in progress. Open questions are whether it is of any use for
nonholonomic systems or for PDEs.
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Postprocessed integrators for the high order sampling of the invariant
distribution of stiff SDEs and SPDEs

Gilles Vilmart

(joint work with Charles-Edouard Bréhier)

Note: papers available at http://www.unige.ch/~vilmart/publications.html

J.C. Butcher’s effective order is a popular methodology in the deterministic
literature for the construction of efficient and accurate integrators over long times
for differential equations. The idea is to introduce a kernel Φh of low order but
cheap to compute, and a suitable processor χh, such that the composition yn+1 =
χh ◦ Φh ◦ χ−1

h (yn) has a high order of accuracy for a given system of differential
equation. Using a constant timestep size h, one can compute simply

yn = χh ◦ Φn
h ◦ χ−1

h (y0)
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and achieve a high order of accuracy, where the preprocessor χ−1
h and the post-

processor χh can be computed only once, respectively at the beginning and the
end of the integration (or when the solution is needed).

Inspired by recent contributions on high order integrators based on modified
equations for stochastic differential equations (SDEs), see [1, 2, 3] and references
therein, we show in [5] (finite dimensional case) and in [4] (SPDE case) that this
technique can be extended to the stochastic context for the construction of efficient
high order integrators for the sampling of the invariant measure of ergodic stiff
problems. In this context, note that only the postprocessor χh is needed, and the
preprocessor χ−1

h becomes useless, because the ergodic averages over long times
are independent of the choice of the initial condition.

The approach is illustrated in [4] with a high-order modification with negligible
overhead of the standard implicit Euler-Maruyama method for an abstract class of
semi-linear parabolic SPDEs with additive space-time noise in a Hilbert space H,

(1) du(t) = (Au(t) + F (u(t))) dt+ dWQ(t), u(0) = u0.

Here, −A : H → H is a positive unbounded self-adjoint linear operator with com-
pact resolvent, F = −DV is a Lipchitz continuous nonlinearity deriving from a
continuously differentiable potential function V : H → R, and the initial con-
dition u0 ∈ H is assumed deterministic for simplicity. We further assume that(
WQ(t)

)
t≥0

is a Q-Wiener process on H defined on a probability space fulfilling

the usual conditions, and the covariance operator Q : H → H is a bounded, non-
negative self-adjoint linear operator, assumed to commute with A. We use the
following trace condition on the operators A,Q,

s = sup
{
s ∈ (0, 1) , Trace

(
(−A)−1+sQ

)
< +∞

}
> 0,

which guaranties the existence and uniqueness of a mild solution to (1) defined
for all t ≥ 0. Under standard assumptions, we obtain that (1) admits a unique
invariant distribution µ∞. This means that for all (smooth and Lipschitz) test
functions φ : H → R, and for all initial conditions u0, we have with probability 1,

lim
T→∞

1

T

∫ T

0

φ(u(t))dt =

∫

H
φ(y)dµ∞(y).

It is a standard approach to take advantage of the above ergodicity property
to approximate ergodic integrals of the form

∫
H φ(y)dµ∞(y), by introducing dis-

cretization schemes for (1).
Standard implicit Euler. Considering the simplest implicit Euler-Maruyama
method defined by vn+1 = vn + hAvn+1 + hF (vn) +

√
hξQn , equivalently

(2) vn+1 = J1

(
vn + hF (vn) +

√
hξQn

)
,

where v0 = u(0), J1 = (I−hA)−1 and ξQn = h−1/2
(
WQ((n+1)h)−WQ(nh)

)
, yields

an ergodic scheme with order s of accuracy for sampling the invariant measure,
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i.e. for all r ∈ (0, s) the following estimate holds for all time tn = nh,

(3)

∣∣∣∣E(φ(vn))−
∫

H
φ(y)dµ∞(y)

∣∣∣∣ ≤ K(u(0), φ)e−λtn + C(φ)hr ,

where the constants λ,K,C > 0 are independent of h, n. The low order s of the
standard implicit Euler method, instead of 1 in finite dimension, is a consequence
of the low regularity assumed on the space-time noise.
New postprocessed integrator. Without any additional smoothness assump-
tion on the space-time noise, we introduce in [4] the following modification of (2)
with negligible overhead,

un+1 = J1

(
un + hF

(
un +

1

2

√
hJ2ξ

Q
n

)
+

√
2− 1

2

√
hJ2ξ

Q
n

)
+

3−
√
2

2

√
hJ2ξ

Q
n ,

un = un +
1

2

√
hJ3ξ

Q
n ,(4)

where the operators J2, J3 satisfy

J2 = (I − 3−
√
2

2
hA)−1, J3QJ

T
3 = (I − h

2
A)−1Q,

and un = χh(un) corresponds to the postprocessor. We prove that the scheme (4)
is again ergodic, and show in a simplified linear case (F bounded linear operator
commuting with A,Q) that it achieves the improved order s + 1 of accuracy,
precisely (3) holds for all r ∈ (0, s+ 1) with vn replaced by un. In addition, there
is no discretization error is the absence of nonlinearity (F = 0). We also show
that (4) has order 2 of accuracy for the invariant measure for nonlinear problems
in finite dimension (instead of order 1 for (2)).

Numerical experiments, including the stochastic semilinear heat equation with
Dirichlet boundary conditions on (0,1) with space-time white noise (s = 1/2),

(5)
∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + f(u(x, t)) +

∂W

∂t
(x, t),

confirm the theoretical findings and suggest that the high order estimates persist
in the semilinear case (f nonlinear), as shown in Figure 1.
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Figure 1. Figure from [4]. Comparison of the new method (4) (solid
lines) with the standard linearized implicit Euler method (2) (dashed
lines) and the trapezoidal method (dashed-dotted lines) for the stochas-
tic heat equation (5) with nonlinearity f(u) discretized in space with
N = 100 grid points (using a standard finite difference). Errors for
E(exp(−‖u(T )‖2)) at final time T = 1 versus the stepsize h. The ex-
pectations are approximated computing the averages over 109 samples.

Reporter: Erwan Faou
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Département de Mathématiques
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