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Introduction by the Organisers

Toric geometry is a subfield of algebraic geometry with deep intersections with
combinatorics. A toric variety X is a partial compactification of the algebraic
torus T ∼= (C∗)n with an action of T that extends the action of T on itself.
Behind this simple definition, however, is a striking combinatorial dictionary that
relates algebro-geometric invariants of the variety X to geometric-combinatorial
invariants of an associated lattice polytope or polyhedral fan. This bridge between
the two fields has made toric geometry to an important source of examples and
counterexamples in algebraic geometry.

Toric techniques also have applications in other areas, both inside algebraic
geometry, in other areas of mathematics, and outside mathematics. Examples
inside algebraic geometry include the study of Mori Dream Spaces, varieties with
torus actions, Newton-Okounkov bodies, tropical geometry, and degenerations to
toric varieties. There are also strong connections to string theory and symplectic
geometry, and increasing ties to arithmetic geometry and commutative algebra.
Finally, toric varieties also have applications outside mathematics, in areas as
diverse as statistics, coding theory, computer modelling, and chemistry.
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This workshop brought together researchers working in all aspects of the sub-
ject. The talks presented current developments and recent results in “classical”
toric geometry, toric-inspired topics, and the use of toric tools in other fields rang-
ing from algebraic geometry via commutative algebra, topology and arithmetic
geometry to applications.

Some of the broad themes covered were:

(1) Applications to combinatorics (Huh, Katz, Lasoń)
(2) Connections to number theory and topology (Gubler, De Cataldo)
(3) Applications outside mathematics: Dickenstein (biochemistry), He (phy-

sics), Michalek (statistics)
(4) Toric inspired algebraic geometry (Brion, Karu, Laface, Satriano)
(5) Algebraic aspects (Hering, Kaveh, Smith)
(6) Classical toric questions (Altmann, Arzhantsev, Brown, Di Rocco, Grassi,

Ilten, Mustaţǎ, Teissier)

One aspect that we would like to highlight was an evening session on Tuesday of
five minute talks by largely junior participants. The session was lively, and began
with a five minute talk by Sturmfels, and finished with one by Batyrev. As with
most Oberwolfach workshops, the informal conversations that followed the talks,
over meals, during coffee breaks, and in the evening, also contributed to a rich
scientific week, and we are grateful to Oberwolfach for facilitating that.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Toric MESSI biochemical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988

Eric Katz (joint with Karim Adiprasito, June Huh)
Hodge theory in combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989

Matthew Satriano (joint with Anton Geraschenko)
When is a variety the quotient of a smooth variety by a finite group? . . 992

Ivan Arzhantsev (joint with Elena Romaskevich)
Additive actions on toric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996

June Huh (joint with Farhad Babaee)
Tropical currents and the Hodge conjecture . . . . . . . . . . . . . . . . . . . . . . . . . 998

Mateusz Micha lek (joint with Luke Oeding, Piotr Zwiernik)
Toric structures in nontoric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999



966 Oberwolfach Report 19/2016

Sandra Di Rocco (joint with Kelly Jabbusch, Gregory G. Smith)
Toric vector bundles and polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002

Morgan Brown (joint with James McKernan, Roberto Svaldi, Runpu Zong)
A geometric characterization of toric varieties . . . . . . . . . . . . . . . . . . . . . . 1004
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Abstracts

The F -splitting ratio of a seminormal affine toric variety

Milena Hering

(joint work with Kevin Tucker)

The F -signature, or its more refined cousin, the F -splitting ratio, are measures
of the singularities of a ring of characteristic p defined using the Frobenius endo-
morphism. We review the computation of the F -signature of a normal semigroup
ring, and compute the F -splitting ratio of a seminormal semigroup ring.

Let R be a reduced Noetherian local or graded ring of prime characteristic p
with perfect residue field. The powers of Frobenius act on such a ring, and we let
F e
∗R be the R-module whose underlying set is R with module structure given by
r ⋆ s = rp

e

s. We assume that R is F -finite, i.e., that F e
∗R is module finite over R.

Then R = Rae ⊕Me, where Me has no free direct summands.
Tucker proved in [6] that the limit

s(R) := lime→∞
ae
ped

exists. It is called the F -signature of R and was originally defined by Huneke and
Leuschke. It is a measure of the singularities of R. For example s(R) = 1 if and
only if R is regular. And if s(R) > 0, then R is normal and Cohen-Macaulay.
Moreover, if R is the invariant ring of a finite group G acting on a regular local
ring, then s(R) = 1

|G| .

The F -signature of an affine toric ring was computed by Bruns, Singh, and
v. Korff [3, 5, 4]. To see how it works, we need to introduce a bit of notation.
Let M ∼= Zn be a lattice and let C ⊂ MR be a rational polyhedral cone. Then
S = M ∩ C is a finitely generated normal semigroup. We denote by k[S] the
associated semigroup ring. It is a normal ring. Let σ ⊂ NR be the dual cone to C.
Then σ = 〈v1, . . . , vr〉, where vi are the primitive generators of the rays of σ. To
S we associate a polytope PS := {u ∈ M | 0 ≤ 〈u, vi〉 ≤ 1 for 1 ≤ i ≤ r}. Then
s(k[S]) is the lattice volume of PS .

When s(R) = 0, we can define a refined version of the F -signature, called the
F -splitting ratio. Indeed, Tucker, based on work of Aberbach and Enescu [1],
shows that for R as above with R F -split, (i.e., a1 ≥ 1), there exists a positive
integer δ, called the splitting dimension, such that the limit

r(R) := lime→∞
ae
peδ

exists. Moreover, this limit is positive [2].
We now consider a semigroup ring that is not necessarily normal. If k[S] is

F -split, then k[S] must be a seminormal ring. So for our purposes it suffices to
consider seminormal rings. There is a combinatorial condition on S that deter-
mines whether k[S] is seminormal. Let C = R≥0S, be the cone generated by S.
Then S is seminormal if for every face D of C, there is a sublattice MD of M such
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that S ∩ int(D) = MD ∩ int(D). One can then show that k[S] is seminormal if and
only if S is seminormal. Moreover, k[S] is F -split if and only if, for every face D of
C, p does not divide the index [M : MD]. We call a face D relatively unsaturated
(RUF) if

MD (
⋂

D�D′

MD′ .

We show that for a F -split seminormal affine semigroup ring k[S], the splitting
dimension is given by δ = dim ∩DRUF D and the F -splitting ratio by

r(k[S]) = Vol

(
PS ∩

(
⋂

DRUF

D

))
,

where the volume is taken with respect to the lattice
⋂

DRUFMD.
We also compute Hom(R,F e

∗R), even in the case when k[S] is not F -split, and
we use this to compute the test ideal.
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Toric degenerations and symplectic geometry of projective varieties

Kiumars Kaveh

We talked about some general results on symplectic geometry of smooth projective
varieties from the recent preprint [5]. This approach relies on a construction of
toric degenerations motivated by commutative algebra and the theory of Newton-
Okounkov bodies ([9, 7, 6, 10]). At the end we briefly discussed some applications
to symplectic topology, in particular obtaining lower bounds for the Gromov width
and symplectic ball packings of smooth projective varieties.

Let us start with the toric degeneration result. Let X be a smooth complex
projective variety of dimension n embedded in a projective space CPN . We con-
struct a smooth family π : X → C together with an embedding into CPN × C
such that the general fiber of the family is X and the special fiber is the algebraic
torus (C∗)n embedded in CPN via a monomial embedding (throughout C∗ denotes
C \ {0}, the multiplicative group of nonzero complex numbers). Notice that the
general fiber of the family is X and hence a projective variety, while the special
fiber is (C∗)n and not projective. In fact if we take the closure X of the family in
CPN × C, the general fiber is still X but the special fiber may become reducible
while at least one of its irreducible components is an n-dimensional toric variety.
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The construction of the family X is a generalization of the deformation to the
normal cone in algebraic geometry. The construction of the embedding of X in
CPN ×C depends on the choice of a Zn-valued valuation v on the field of rational
functions on X .

Our construction of a degeneration in this general setting is motivated by the
works of D. Anderson [1] and B. Teissier [10], as well as [3]. Interestingly the author
learned about the latter work from Bernard Teissier in a previous Oberwolfach
workshop.

We use the family X and its embedding in CPN ×C to obtain results about the
symplectic geometry of X . Specifically we prove the following: let ω be a Kähler
form on X which is integral (i.e. its cohomology class lies in H2(X,Z)). Then
for any ǫ > 0 there exists an open subset U ⊂ X (in the usual classical topology)
such that vol(X \ U) < ǫ and (U, ω) is symplectomorphic to (C∗)n equipped with
a toric Kähler form (Theorem 2 below).

Let us explain the above more precisely. Fix a finite set A = {β1, . . . , βr} ⊂ Zn

and a point c = (c1, . . . , cr) ∈ (C∗)r. We assume that the set of differences of
elements in A generates the lattice Zn and hence the orbit map:

(1) ψA,c : u 7→ (uβ1c1 : · · · : uβrcr),

is an isomorphism of varieties from (C∗)n to its image OA,c ⊂ CPr−1. Here u =
(u1, . . . , un) ∈ (C∗)n and uα is shorthand for ua1

1 · · ·u
an
n , where α = (a1, . . . , an).

The closure of OA,c is a (not necessarily normal) projective toric variety. The
map ψA,c also induces a Kähler form on (C∗)n as follows: Consider the standard
Hermitian product on Cr. Let Ω be the associated Fubini-Study Kähler form on
CPr−1 and let ωA,c be the pull-back of Ω to (C∗)n under the map ψA,c. The sym-
plectic manifold ((C∗)n, ωA,c) is a Hamiltonian space with respect to the natural
action of the compact torus (S1)n on (C∗)n by multiplication. The image of its
moment map is the interior of the convex hull of A.

Now let X ⊂ CPr−1 be a smooth projective variety embedded in some projective
space CPr−1. We construct a complex manifold X together with a holomorphic
function π : X → C, as well as a an embedding X →֒ CPr−1 × C such that:

(a) The family X is trivial over C∗ i.e. π−1(C∗) ∼= X × C∗. In particular
for each t 6= 0 we have Xt := π−1(t) is biholomorphic to X . Moreover,
X1 →֒ CPr−1 × {1} coincides with the original embedding X →֒ CPr−1.

(b) The fiber X0 = π−1(0) is the algebraic torus (C∗)n embedded in CPr−1×
{0} via a monomial map ψA,c for some finite set A ⊂ Zn and c ∈ (C∗)r as
above.

(c) The map π : X → C has no critical points, i.e. dπ is nonzero at every
point in X .

Next consider a smooth projective variety X equipped with a very ample
line bundle L. The line bundle L gives rise to the Kodaira embedding X →֒
P(H0(X,L)∗). Let ω be a Kähler form in the class c1(L). We note that by
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Moser’s trick any two Kähler forms in c1(L) are symplectomorphic. In particu-
lar ω is symplectomorphic to the pull-back of a Fubini-Study Kähler form on the
projective space P(H0(X,L)∗) to X .

Using the family X above we prove the following:

Theorem 1. There exists an open subset U ⊂ X (in the usual classical topology)
such that (U, ω) is symplectomorphic to ((C∗)n, ωA,c), for some A ⊂ Zn and c ∈
(C∗)r as above (i.e. A is a finite subset such that the differences of elements in A
generate the lattice Zn).

Consider a Kähler form on (C∗)n of the form 1
mωA,c, where m is a positive

integer. We call such a form a rational toric Kähler form. The following is our
main result about the symplectic geometry of smooth projective varieties. It states
that we can enlarge the open subset U in Theorem 1 as much as we wish provided
that we consider rational toric Kähler forms on (C∗)n.

Let X be a smooth projective variety and let ω be a Kähler form on X which
is integral (i.e. its cohomology class lies in H2(X,Z)). We recall that by the
Lefschetz theorem on (1, 1)-classes any integral Kähler form is in c1(L) for an
ample line bundle L.

Theorem 2. For any ǫ > 0 we can find an open subset U ⊂ X such that vol(X \
U) < ǫ and (U, ω) is symplectomorphic to (C∗)n equipped with a rational toric
Kähler form.

Roughly speaking, this result claims that in symplectic category and over arbi-
trarily large open subsets, any smooth projective variety looks like a toric variety
equipped with a toric Kähler form.

Finally we apply the above to problems in symplectic geometry i.e. Gromov
width and symplectic packing problems ([8, 2]). We get the following:

• We give lower bounds for the Gromov width of (X,ω) in terms of associ-
ated convex bodies ∆ ⊂ Rn, namely its Newton-Okounkov bodies. More
precisely the Gromov width is at least the supremum of the sizes of sim-
plices that lie in the interior of a Newton-Okounkov body of (X,L) (this is
related to the results in [4]). In particular, this readily implies that when
L is very ample the Gromov width of (X,ω) is at least 1.
• Moreover, we show that when L is very ample the symplectic manifold

(X,ω) has a full symplectic packing by d equal balls, where d is the degree
of the line bundle L (i.e. the self-intersection number of its divisor class).
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Quivers, dessins and toric Calabi-Yau

Yang-Hui He

In this talk we give an overview of the joint work with many collaborators over the
last decade or so, notably Amihay Hanany, Bo Feng, Sebastian Franco, Sanjaye
Ramgoolam, Vishnu Jejjala, Diego Rodriguez-Gomez and Cumrun Vafa et al.,
from whose friendship I have much benefited. The audience is referred to the brief
reviews in [1] and citations therein.

Let Q be a quiver, i.e., a labeled directed multigraph allowing for cycles and
loops, with NG nodes and NF arrows. For simplicity let the dimension vector be
(1, 1, . . . , 1) so that all arrows Xi correspond to complex numbers (as elements in
Hom(C,C)). We will also impose relations coming from the Jacobian of a poly-
nomial W (Xi), i.e., ∂Xi

W (Xi) = 0. In physics, this corresponds to a U(1)NG

supersymmetric gauge theory in 3 + 1-dimensions with NF fields Xi and superpo-
tential W .

The representation variety M of Q is the GIT quotient of this Jacobian by
appropriate group action. Computationally, let GIOi=1,...,k be the generating set,
in the sense of arrow composition, of directed minimal cycles in Q (each of which
in physics is called a gauge invariant operator) and consider the polynomial rings
C[Xi] and C[z1, . . . , zk]. Then M is the affine variety corresponding to the image
of the map GIOj : C[Xi]/ 〈∂Xi

W (Xi)〉 → C[zj ].
In general, M could be any affine variety of arbitrary dimension. However,

when it is an affine Calabi-Yau threefold, the theory is of particular interest in
that there is a natural embedding into string theory and the above setup can be
thought of as the algebro-geometric realization of the so-called AdS/CFT Corre-
spondence which had since Maldacena become part of the canon of modern physics.
Consider the simplest example: a clover-like Q with a single node and 3 arrows
Xi=1,2,3 thereon forming 3 loops. In general, take the label to be N for the node,
rendering each of Xi to be an element of U(N). The standard superpotential
one imposes is W = Tr(X1X2X3 −X1X3X2) and this quiver theory is known as
N = 4 super-Yang-Mills theory. As aforementioned, take N = 1 for convenience



972 Oberwolfach Report 19/2016

so that W = 0 and no relations are placed on the Xi. Clearly, the minimal cycles
here are simply the three Xi each of which is a complex number. Therefore,M is
here Im (zj = Xj : C[X1, X2, X3]→ C[z1, z2, z3]) ≃ C3, the simplest (trivial) affine
Calabi-Yau threefold.

Of special note should be the fact that in the above W , with a total of NW =
2 monomial terms, is of a specific form: each field appears exactly twice with
opposite sign. Moreover, we have that NG − NF + NW = 1 − 3 + 2 = 0. That
these two conditions are highly suggestive (the first, due to the its making 〈∂W 〉 a
binomial ideal, should evoke toric varieties, and the second, the Euler relation for
a torus) has inspired much research and has by now become a captivating story
(cf. [2]): when M is a toric Calabi-Yau threefold, (Q,W ) can be recast into a
bipartite graph (variously called a dimer-model or a brane-tiling) drawn on a T 2.

To see this, one associates a, say, black node to each term in W with a plus sign,
and a white node, that with a minus sign, so that around a black (respectively
white) node we write one monomial contribution to W by writing the variables
Xi clockwise (respectively counter-clockwise); thus in our C3 example, X1X2X3

is assigned a black node and −X1X3X2, a white node. One readily concludes
that the subsequent graph G is bipartite (no links exist between nodes of the
same colour) and there is no further need of arrows since our choice of (counter-
)clockwise orientation encodes the directed arrows in Q. Indeed, G is precisely the
graph dual of Q in that each node/cycle of Q is now a face/node in G. Moreover,
G is a bipartite tiling of the doubly-periodic plane (i.e., T 2), which for our running
example is the hexagonal tiling with alternating black-white nodes so that in the
fundamental region there is exactly one pair of black/white nodes, each of valency
3, as well as exactly three edges.

As we enter the realm of bipartite graphs on Riemann surfaces, we are inevitably
lead to the subject of dessin d’enfant [3]. Briefly, we recall Belyi’s theorem, which
states that a compact smooth Riemann surface Σ has a model over Q iff there
exists a sujective map β : Σ → P1 ramified at only three points, which can be
taken to be (0, 1,∞) by SL(2;C). Calling each preimage of 0 “white” and each
preimage of 1 “black”, the preimage of any continuous path from 0 to 1 on P1 is
thus a bipartite graph on Σ with each face corresponding to a preimage of∞: this
graph reminded Grothendieck of children’s drawings, hence the name.

It is thus expedient to think of our bipartite graph G on T 2 as a dessin d’enfant.
For our example, one can check that the algebraic model for the T 2 is the elliptic
curve E : y2 = x3 + 1 on which the rational map β(x, y) = 1

2 (y + 1) is ramified

only at 3 points with β−1(0) = (0,−1) ∈ E and β(1) = (0, 1) ∈ E, each with
ramification index 3, and β−1(∞) = (∞,∞) ∈ E, also of ramification index 3,
producing for us the trivalent hexagonal bipartite graph G on E.

The foregoing discussions in our running example can be diagrammatically
summarized as follows (we have renamed, for convenience, the arrows Xi=1,2,3
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as (X,Y, Z)):

Quiver Toric Diagram Bely̌ı Pair Dessin (dimer)

W = Tr(X [Y, Z])
M≃ C3

y2 = x3 + 1

β(x, y) = y+1
2

On this tapestry of quivers, gauge theories, dessins and Calabi-Yau varieties one
can weave an intricate web of mathematics and physics. For example, to enu-
merate perfect matchings in the dimer, one traditionally computes, as dictated
by statistical mechanics, the Kasteleyn matrix K which is a weighted adjacency
matrix. It turns out that det(K) is the bi-variate Newton polynomial P (z, w) of
the toric diagram (note that for affine toric Calabi-Yau varieties, the end points of
the extremal vector of the toric cone is actually co-hyperplanar by the vanishing
of the first Chern class, hence all toric Calabi-Yau threefolds can be represented
by a planar convex lattice polygon D). For the case where there is a single or no
interior point in D, the tropicalization of P (z, w) in the sense of taking the spine
of the amœba-projection of P (z, w) is the dual diagram to D.

Furthermore, the local-mirror toM, by Strominger-Yau-Zaslow and Hori-Vafa,
is given explicitly as the double-hypersuface ζ = uv = P (z, w) in C[u, v, z, w, ζ]
which is another (not necessarily toric) affine Calabi-Yau threefold W . One can
retrieve the quiver Q by associating its adjacency matrix as the intersection ma-
trix of 3-cycles in W : this is an archetypal consequence of (homological) mirror
symmetry that there is a categorical equivalence between D♭(M), the bounded
derived category of coherent sheaves on M and the Fukaya category Fuk(W) of
special-Lagrangian 3-cycles in the mirror W .

As another enticing example, let us consider the most important quantum field
theoretic duality for these gauge theories, viz., Seiberg’s strong-weak duality. It
turns out [4] that this is none other than cluster mutation of the quiver [5]. It
is curious that mathematicians and physicists, completely unbeknownst to each
other, arrived at same quiver transformation around the same time. From the
mirror perspective, the cluster mutation is Picard-Lefschetz monodromy in the
3-cycles and from the dessin point of view, it is a different choice of Belyi maps
on the same elliptic curve.
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Splendid complexes on products of projective space

Gregory G. Smith

(joint work with Christine Berkesch Zamaere, Daniel Erman)

There are two distinct constructions for locally-free resolutions of a coherent sheaf
on a smooth complete toric variety X . The geometric procedure, which appears
in Section 4 of [1] and recursively expresses a coherent sheaf as the quotient of
locally-free sheaf of finite rank, terminates with a vector bundle after at most
dim(X) steps. The algebraic approach, which is described in Section 7 in [3] and
sheafifies the minimal free resolution of the corresponding saturated module over
the Cox ring S, has length at most dim(S)− 1. In both cases, the finite length of
the resolution is derived from Hilbert’s Syzygy Theorem; the geometric procedure
uses a local version and the algebraic approach uses a global version for polynomial
rings. Nevertheless, the geometric resolution is shorter than the algebraic one
whenever X 6= Pn. On the other hand, all of the vector bundles appearing in the
algebraic resolution are simply direct sums of line bundles, unlike the geometric
resolution. The goal of this presentation is to indicate how to effectively construct
locally-free resolutions that are simultaneously short and simple.

To be more precise, fix r ∈ N and n ∈ Nr. Consider the smooth projective toric
variety X := Pn1 × Pn2 × · · · × Pnr and let S := C[xj,k : 1 ≤ j ≤ r, 0 ≤ k ≤ nj ]
be its Cox ring. Since r = dim(S) − dim(X), we see that the difference in length
between the algebraic and geometric resolutions can be arbitrarily large. The
polynomial ring S has the Zr-grading induced by setting deg(xj,k) := ej ∈ Zr and
the irrelevant ideal for X is B :=

⋂r
j=1〈xj,0, xj,1, . . . , xj,nj

〉. As better homological
objects and replacements for minimal free resolutions over S, we focus on a special
collection of complexes. A Zr-graded free complex F of S-modules is called a

splendid complex of a Zr-graded S-module M (or the sheaf M̃) if the complex F̃

of OX -modules is a resolution of M̃ . Corollary 3.6 in [2] shows that a Zr-graded
free complex F is splendid if and only if, for all i 6= 0, the homology Hi(F ) is a
B-torsion module. As a proof of concept, we demostrate that every OX -module
has a splendid complex of length at most dim(X), by exploit a resolution of the
diagonal X →֒ X ×X .

Punctual subschemes in X provide more compelling examples of splendid com-
plexes. For instance, the minimal free resolution of the quotient S/IZ , where IZ
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is the B-saturated ideal defining two generic points in P1 × P1, has the form

S1 ←−

S(−2, 0)1

⊕
S(−1,−1)2

⊕
S(0,−2)1

←−
S(−2,−1)2

⊕
S(−1,−2)2

←− S(−2,−2)1 ,

but there is a splendid complex of the form S1 ←− S(−1,−1)2 ←− S(−2,−2)1.
For v ∈ Nr, we set Bv :=

⋂r
j=1〈xj,0, xj,1, . . . , xj,nj

〉vj . If Z ⊂ X with dim(Z) = 0
and B-saturated S-ideal IZ , then we show that there exists v ∈ Nr with vr = 0
such that the minimal free resolution of IZ ∩ Bv is a splendid complex of OZ

with length dim(X). In particular, every punctual subscheme of P1 × P1 has a
Cohen–Macaulay representation of the form S/(IZ ∩ B

v) and the Hilbert–Burch
Theorem describes the corresponding splendid complex.

More generally, intriguing splendid complexes can be extracted from mini-
mal free resolutions. Given m ∈ Zr, a B-saturated Zr-graded S-module M is
m-regular if, for all i > 0 and for all u ∈ Nr with u1 + u2 + · · ·+ ur = i − 1, we
have Hi

B(M)m−u = 0; compare with Definition 1.1 in [3]. If M is an m-regular
Zr-graded B-saturated S-module, then we prove that the subcomplex of its mini-
mal free resolution consisting of all summands of degree at most m+n gives a splen-
did complex of M . For example, the minimal free resolution of six generic points in
P1×P1×P2 has the form S1 ←− S37 ←− S120 ←− S116 ←− S120 ←− S45 ←− S7.
However, the module S/IZ is (0, 0, 2)-regular and the associated splendid complex
has the form S1 ←− S22 ←− S51 ←− S42 ←− S12. Although splendid complexes
are not unique, these results suggest that they are the right algebraic mechanism
for capturing the underlying intrinsic geometry.
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Local heights of toric varieties over non-archimedean fields

Walter Gubler

(joint work with Julius Hertel)

The main reference for the talk is [5].

1. Introduction

Let XΣ be a proper toric variety of dimension n over the field K corresponding to
the fan Σ in NR. A base-point-free toric Cartier divisor D is given by a concave
piecewise linear function Ψ on Σ. Let ∆Ψ be the associated polytope in the dual
space MR of NR. Then we have the following famous formula in toric geometry:

degL(XΣ) = n! · volM (∆Ψ).

We will give an arithmetic version of this formula, where the height replaces the
degree, generalizing results of Burgos, Philippon and Sombra in [1].

2. Metrized line bundles

From now on, K is endowed with a non-trivial non-archimedean complete absolute
value | | (e.g. Qp). We also assume that K is algebraically closed which may always
be achieved by passing to the completion of the algebraic closure. Let K◦ be the
valuation ring of K.

Let X be a variety of dimension n and let Xan be the associated Berkovich
analytic space. This analytification has similar properties as its complex analytic
analogue. We will always assume that X is proper over K which means that Xan

is compact. A metric ‖ ‖ on a line bundle L over X means a continuously varying
family of norms on the fibres of Lan over Xan.

Let (X ,L) be a K◦-model of (X,L) which means that X is a proper variety
over K◦ with X ⊗K◦K = X and L is a line bundle on X with L|X = L. Zhang has
noticed that such a model induces a metric ‖ ‖L on L which we call the algebraic
metric associated to L. This metric is called semipositive if the restriction of L to
the special fibre of X is nef.

More generally, Zhang calls a metric ‖ ‖ on L semipositive if there is a sequence
mk ≥ 1 and models Lmk

of L⊗mk with semipositive algebraic metrics ‖ ‖Lmk
such

that ‖ ‖ is the uniform limit of the metrics ‖ ‖
1/mk

Lmk
on Lan. Such metrics are

important in the study of arithmetic dynamical systems.
Chambert–Loir has introduced a positive Radon measure c1(L1, ‖ ‖1) ∧ · · · ∧

c1(Ln, ‖ ‖n) on Xan for line bundles (L1, ‖ ‖1), . . . , (Ln, ‖ ‖n) on X endowed with
semipositive metrics. This is a non-archimedean analogue of the Monge–Ampère
measure in complex analysis. We refer to [5] for more details and references.
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3. Local heights

Let D̂ = (D, ‖ ‖) be a metrized Cartier divisor on X which means a metric ‖ ‖
on the underlying line bundle O(D) of the Cartier divisor D on X . Following Weil
and Néron, we consider the local height function

λD̂ : Xan \Dan −→ R, x 7→ − log ‖sD(x)‖,

where sD is the canonical meromorphic section of O(D).
We have the following generalization to higher dimensions. Recall that n is the

dimension of the proper variety X . Let D̂0, . . . , D̂n be semipositively metrized
Cartier divisors on X satisfying

(1) supp(D0) ∩ · · · ∩ supp(Dn) = ∅.

Then the local height λD̂0,...,D̂n
(X) of X with respect to D̂0, . . . , D̂n is characterized

by the following properties:
(i) If the metrics of D̂0, . . . , D̂n are algebraic metrics induced by line bundles

L0, . . . ,Ln on a common K◦-model X of X , then

λD̂0,...,D̂n
(X) = deg(div(s0) . . . div(sn).X )

where si is the canonical meromorphic section of Li induced by Di. Note that this
intersection number on X makes sense by (1) using [3].

(ii) The local height λD̂0,...,D̂n
(X) is continuous with respect to uniform con-

vergence of the metrics.

Theorem 1. Under the hypothesis (1), we have the following induction formula:

λD̂0,...,D̂n
(X) = λD̂0,...,D̂n−1

(div(sDn
))−

∫

Xan

log ‖sDn
‖n µ

where µ = c1(O(D0), ‖ ‖0) ∧ · · · ∧ c1(O(Dn−1), ‖ ‖n−1).

The induction formula follows easily from the definitions if all metrics are
algebraic. For arbitrary semipositive metrics, the induction formula is due to
Chambert-Loir and Thuillier [2] in case of a discrete absolute value on K. The
general case is done in [5].

4. Toric local heights

Now we come back to the toric setting of the introduction, but assuming that K
is a non-archimedean field as above. Then the base-point-free toric Cartier divisor
D on the toric variety XΣ with associated concave piecewise linear function Ψ on
the fan Σ leads to a toric line bundle L = O(D) over XΣ together with a toric
section sD of L.

Theorem 2. There are bijective correspondences between the sets of

(i) semipositive toric metrics on L;
(ii) concave functions ψ on NR such that the function |ψ −Ψ| is bounded;

(iii) continuous concave functions ϑ on ∆Ψ.
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For the bijection (i)↔ (ii), one associates to the toric metric ‖ ‖ the function
ψ on NR given by ψ(u) = log ‖sD ◦ trop−1(u)‖, where trop is the tropicalization
map from the dense torus to NR. For the bijection (ii)↔ (iii), ϑ is the Legendre-
Fenchel transform of ψ.

Theorem 2 is due to Burgos, Philippon and Sombra [1] in case of a discrete
absolute value on K. The general case is done in [5] based on the study of toric
schemes over the valuation ring K◦ from [4].

Note that if we choose ψ := Ψ, then we get a canonical semipositive toric metric
on L which we denote by ‖ ‖can.

For any semipositive toric metric ‖ ‖ on L, we define the toric local height of
XΣ by choosing Cartier divisors D0, . . . , Dn on XΣ with O(Di) = L satisfying (1)
and then we set

λtor(L,‖ ‖)(XΣ) = λD̂0,...,D̂n
(XΣ)− λD̂can

0 ,...,D̂can
n

(XΣ),

where we always use the given metric ‖ ‖ on L = O(Di) for all metrized Cartier

divisors D̂i and where D̂can
i = (Di, ‖ ‖can). It is easy to see that the toric local

height is independent of the choice of D0, . . . , Dn.
We have the following analogue of the degree formula from toric geometry:

Theorem 3. Let ‖ ‖ be a semipositive toric metric on L. Then we have

λtor(L,‖ ‖)(XΣ) = (n+ 1)!

∫

∆Ψ

ϑ dvolM ,

where ϑ is corresponding to ‖ ‖ as in Theorem 2.

This result is due to Burgos, Philippon and Sombra [1] in case of a discrete
absolute value on K and is generalized in [5]. The proof uses Theorem 1 and
Theorem 2.

In case of a global field, this leads to a similar formula for global heights. In [5],
an application is presented where non-discrete non-archimedean absolute values
really matter to compute natural global heights for fibrations of projective varieties
over Q which are generically toric.
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The Noether-Lefschetz locus of surfaces in toric threefolds

Antonella Grassi

(joint work with Ugo Bruzzo)

The classical Noether-Lefschetz theorem states that any curve in a very general
surface X in P3 of degree d ≥ 4 is a restriction of a surface in the ambient space,
namely the Picard number of X is 1 (a point is very general if it lies outside
a countable union of closed subschemes of positive codimension). The Noether-
Lefschetz locus is the locus where the Picard number is greater than 1.

Consider a projective toric variety PΣ with orbifold singularities; PΣ is asso-
ciated with a 3-dimensional complete simplicial fan Σ and is Q-factorial . Let β
be a nef (numerically effective) class in the class group Cl(PΣ) of Weil divisors
modulo rational equivalence and consider a surface X in PΣ whose class (degree)
in Cl(PΣ) is β. If X is general, it is quasi-smooth, that is, its only singularities are
those inherited from PΣ.

Let Mβ be the moduli space of surfaces in PΣ of degree β modulo automor-
phisms of PΣ. In [1], we proved that for β ample and −β0 the canonical class of
PΣ, if the multiplication morphism

(1) R(f)β ⊗R(f)β−β0 → R(f)2β−β0

is surjective, very general points ofMβ correspond to surfaces whose Picard num-
ber equals the Picard number of PΣ; here R(f) is the Jacobian ring. If PΣ = P3

and β = d ≥ 4, or equivalently β − β0 is nef, the morphism in (1) is always sur-
jective. Also, the morphism is surjective whenever β− β0 is trivial, that is, X is a
K3 surface in a Fano threefold PΣ. If the sum of two polytopes associated with a
nef and an ample divisor is equal to their Minkowski sum, the multiplication map
in (1) is always surjective. We refer to these varieties as “Oda varieties”.

If we write β − β0 = nη for an ample Cartier primitive class η, the condition
n ≥ 0 generalizes the classical condition d ≥ 4. We define the Noether-Lefschetz
locus with respect to β to be the closed subscheme Uη(n) of Mβ correspond-
ing to quasi smooth surfaces whose Picard number is strictly larger than that of
PΣ. In particular we have an upper bound on the codimension of any irreducible
component on the Noether-Lefschetz locus:

Proposition 1.

(2) codimUη(n) ≤ h2,0(S) = h0(PΣ,OPΣ(nη)),

where S is a quasi-smooth surface in the linear system β.

The classical proof of the codimension of the Noether-Lefschetz locus for PΣ =
P3 relies implicitly on the fact that η = OP3(1) is (−1)-regular and any line bundle
of degree d ≥ 4 is 0-regular. However, we show that Pn is the only simplicial toric
n-fold with an ample (−1)-regular line bundle. So we consider toric varieties with
a 0-regular ample line bundle. Our proof generalizes the arguments of Green in
[4, 3] and relies on vanishing theorems and dualities for toric varieties, as well as
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the Castelnuovo-Mumford regularity of certain bundles. Recall that a coherent
OX -module F is m-regular with respect to the very ample line bundle η if

Hq(X,F ⊗ ηm−q) = 0

for all q > 0.) Then we bound the codimension of the Noether-Leschetz locus. We
prove

Theorem 2. Let PΣ be a simplicial toric variety, η an ample primitive Cartier
class, β0 = −KPΣ, β ∈ Pic(PΣ) an ample Cartier class that satisfies β − β0 = nη
for some n ≥ 0. Assume that β is 0-regular with respect to η. If η is (-1)-regular,
then

(3) codimUη(n) ≥ n+ 1.

If η is 0-regular, then

(4) codimUη(n) ≥ n.

Corollary 3. Let PΣ be a simplicial Fano toric variety, η a primitive nef divisor,
β0 = −KPΣ, β ∈ Pic(PΣ) an ample Cartier class that satisfies β − β0 = nη for
some n ≥ 3.
If η is (−1)-regular then

(5) codimUη(n) ≥ n+ 1.

If η is 0-regular, then

(6) codimUη(n) ≥ n.

We prove a similar result for Oda varieties. We consider various examples and
study the components of the loci Uη(n) which contain a line, defined as a rational
curve that is “minimal” in a suitable sense (i.e., its intersection with the ample
class η is 1). We show that the codimension of these components is n + 1, as in
the classical case.
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Infinitesimal qG-deformations of cyclic quotient singularities

Klaus Altmann

(joint work with János Kollár)

The deformation theory of a two-dimensional toric singularity, i.e. a quotient sin-
gularity Sn,q = C2/(Z/nZ) (acting via (ξ, ξq), q ∈ (Z/nZ)∗, q 6= −1), was studied
a lot. Nowadays, there is a clear understanding of its infinitesimal deformations,
obstructions, and of the component structure of the versal deformation and its
relations to so-called P-resolutions.

However, not every flat deformation should be allowed in moduli theory. There,

it becomes important that several (or all) reflexive powers ω
[g]
S fit into the defor-

mation as well, i.e. for a deformation f : X → B of S not only X , but also the

reflexive powers ω
[g]
X|B should become flat over the base space B. We will denote

this property by (∗)g and study it in dependence on g ∈ Z. Three variants of this
compatibility have been established in the past – they differ by the set of expo-
nents g one asks the compatibility for. Note that g = 0 just encodes the flatness
of the family itself.

Definition 1. The deformation f is called a V-, W-, or a qG-deformation if (∗)g
is satisfied for g = index(ωS) (implying it for all multiples, too), for g = −1, or
for all g ∈ Z, respectively. Deformations being both V- and W-deformations are
called VW-deformations.

While in characteristic zero and over reduced base spaces B the concepts V,
VW and qG coincide, cf. [2], we will now focus on the infinitesimal theory, that
is B = Spec C[ε]/ε2. We will use the standard toric language, i.e. M ∼= Z2 and
N ∼= Z2 denote the mutually dual lattices, and S is given by a two-dimensional,
rational polyhedral cone σ = 〈α, β〉 ⊆ NR with det(α, β) = n and n|αq + β.
Then, the vector space T 1

S of infinitesimal deformations becomes a subquotient of
C[M ]⊗ZN , i.e. its homogeneous elements of degree −R can essentially be written
as ξ = x−R∂a with ∂a : xr 7→ 〈a, r〉 · xr for a ∈ N .

It is well-known, cf. [3], that T 1
S(−R) vanishes unless in a few cases. To name

them, we denote by E = {w1, . . . , we} ⊂ σ∨ ∩M the Hilbert basis (with w1 ∈ α⊥

and we ∈ β⊥ being the rays of σ∨). Then

(i) R = w2 or R = we−1: dimC T
1
S(−R) = 1, namely NC/C ·α and NC/C ·β,

respectively,
(ii) R = wi for i = 3, . . . , e− 2: T 1

S(−R) = NC is two-dimensional, and
(iii) R = k ·wi for i = 2, . . . , e− 1 with 2 ≤ k ≤ ai− 1: T 1

S(−R) = (wi)⊥ ⊆ NC

is again one-dimensional.

Here we have denoted by ai ∈ Z≥2 the numbers defined by wi−1 + wi+1 =
ai ·w

i. They appear also in the continued fraction expansion n
n−q = [a2, . . . , ae−1].

To describe the V-deformations, we denote b := gcd(n, q + 1), m := n/b, and
R = (w1 + we)/b ∈M . Note that m = index(ωS).
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Theorem 2. The homogeneous ξ = x−R ∂a ∈ T 1
S(−R) is a V-deformation iff

a ∈ (R −mR)⊥.

This implies that the multidegrees of (i) do not provide V-deformations at
all. From the list in (ii) we obtain e − 4 dimensions (one dimension within each
T 1
S(−wi)), and the degrees R = k · wi of (iii) ask for (wi, R−mwi)⊥ = (wi, w1 +
we)⊥ within the 2-dimensional NC. This leads to

Definition 3. The singularity S (or the cone σ) is called grounded if R belongs
to the Hilbert basis E, i.e. if it is one of the wi of the list in (ii); we call it wν then.

Using this terminology, we can identify the remaining V-deformations as exactly
those of the list in (iii) with i = ν; it is the only index making wi and w1 + we

linearly dependent. In particular, this requires that S is grounded.
We may use the primitive R ∈ M also to introduce an alternative way of

describing cyclic quotient singularities. Associating σ 7→ I := σ ∩ [R = 1] and
interpreting the affine line [R = 1] ⊆ NR as an ordinary line R1 with a well-defined
lattice structure, we obtain a one-one correspondence between the following sets:

{
cones σ

}/
Sl(2,Z)

{
rational intervals I ⊆ R with uniform denominators

}/
{Z-shifts}

where we call I to have “uniform denominators” (at the end points) if both become
equal in the reduced forms.

Under this correspondence, the groundedness of cones translates into the prop-
erty that I contains interior integers. When this is the case, then we may, w.l.o.g.,
suppose that 0 ∈ intI, i.e. that

I = [−A,B] ⊆ R with A,B ∈ Q>0

having the same denominator m in their reduced form. This language allows to
express the ν-th element aν of the continued fraction [a2, . . . , ae−1] as

aν − 2 = ⌊A⌋+ ⌊B⌋ ≤ ⌊A+B⌋ ≤ A+B = |I|.

Theorem 4. S has neither qG- or VW-deformations unless it is grounded. If this
is the case, and if S is given by I = [−A,B] with R = wν , then the homogeneous

qG-deformations are formed by the one-dimensional subspaces R
⊥
⊆ T 1(−k·wν) ⊆

NC with k = 1, . . . , ⌊A+B⌋.

Note that the left and right inclusions become equalities if k ≥ 2 or k = 1,
respectively. Since aν − 2 ≤ ⌊A + B⌋ ≤ aν − 1, it follows that we have the qG-
(and hence the VW-) property for at least k = 1, . . . , aν − 2. Thus, to compare
the qG- and the VW-notion, it remains to analyze the “last deformation”, i.e. the

one-dimensional R
⊥
⊆ T 1

S

(
− (aν − 1) · wν

)
.

Theorem 5. Assume that S is grounded and given by I = [−A,B]; denote by m
the denominator of the end points. Then,

(a) the last deformation is qG ⇐⇒ {A}+ {B} ≥ 1.
(b) If {A}, {B} 6= 1

m , then the last deformation is VW.
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(c) Otherwise, if either {A} = 1
m or {B} = 1

m , then the last deformation is
VW iff it is qG.

Thus, while the spaces of infinitesimal V- and qG-deformations differ a lot (the
difference of their respecive dimensions is e−4 or e−5), the spaces of infinitesimal
VW- and qG-deformations do differ by at most one dimension. Nevertheless, we
have the following

Example 6. If I = [− 2
5 ,

2
5 ], i.e. n = 20, q = 11, e = 7, 20

9 = [a2, . . . , a6] =

[3, 2, 2, 2, 3], and R = w4 with a4 = 2, then there is no qG-deformation, but
the spaces of infinitesimal V- and VW-deformations are 3- and 1-dimensional,
respectively.

The main step in the proof of these theorems is the translation of the property
(∗)g into combinatorics. This is done by the characterization

x−R ∂a satisfies (∗)g ⇐⇒
(

g
m R+ ZR

)
∩M ⊆ a⊥ + g ·R

where ZR denotes the bounded region ZR := σ∨ ∩ (R− intσ∨) ⊂MR.
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Blowups of toric varieties with non-finitely generated Cox rings

Kalle Karu

(joint work with José Luis González)

Cox rings of a normal projective variety X were defined by Hu and Keel [4] as

Cox(X) =
∑

(a1,...,an)∈Zn

OX(a1D1 + a2D2 + · · ·anDn),

where d1, . . . , dn are Weil divisors that span the class group Cl(X)Q. Cox rings
generalize the homogeneous coordinate rings of toric varieties studied by Cox [1].
Varieties with finitely generated Cox rings are called Mori Dream Spaces (MDS).
All toric varieties are MDS.

This talk describes joint work with José Luis González in which we construct
examples of toric varieties blown up at a point e in the torus that are not MDS.
The motivation for this comes from the theorem by Castravet and Tevelev [2] that
the moduli spaces M0,n are not MDS for n large. They reduced the problem to
an earlier result by Goto, Nishida and Watanabe [3] who gave an infinite family
of weighted projective planes blown up at a point that are not MDS.
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Our examples of toric varieties are defined by rational convex polytopes ∆ that
satisfy a combinatorial condition. The normal fan of the polytope then defines the
toric variety whose blowup at a point is not a MDS.

In the two-dimensional case the polytope is a 4-gon with vertices

(0, 0), (0, 1), (x1, y1), (x2, y2),

where x1 < 0 and x2 > 0. The polytopes ∆ must satisfy the conditions:

(1) x2 − x1 ≤ 1.
(2) If m∆ has integral vertices for some m > 0, then there can be at most one

lattice point in m∆ with first coordinate mx1 + 1.

Then the blowup of the toric variety corresponding to ∆ is not a MDS. The second
condition on the number of lattice points can be relaxed further.

An analogous construction in dimension 3 gives a rational polytope ∆ with
vertices

(0, 0, 0), (0, 1, 0), (0, 0, 1), (x1, y1, z1), (x2, y2, z2),

where x1 < 0, x2 > 0. The same combinatorial condition as above applied to
∆ ensures that the blowup of the toric variety defined by ∆ is not a MDS. This
construction can be generalized to arbitrary dimension.

When the polytope ∆ degenerates to a simplex then the toric variety will have
Picard number 1. The corresponding toric varieties blown up at a point are again
not MDS if one adds another combinatorial condition. In the examples described
above it amounts to the condition that the single lattice point in m∆ with first
coordinate x1 + 1 should not lie on the edge of m∆ connecting the two vertices
with nonzero x-coordinates.

Among the toric varieties defined by simplices are the weighted projective spaces
P(a, b, c, . . .). We have done a computer search to find weighted projective spaces
that satisfy the combinatorial conditions and hence are not MDS when blown up at
a point. In an earlier article [5] we reported a long list of such weighted projective
planes, for example

P(7, 15, 26), P(7, 17, 22), P(12, 13, 17).

We can now add to this a list of weighted projective 3-spaces, such as

P(7, 18, 27, 47), P(7, 17, 22, 51), P(15, 19, 20, 41), P(17, 18, 20, 27).

The numbers (a, b, c, d) appearing in the 3-dimensional case tend to be larger than
in dimension 2.
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Linear subspaces of projective toric varieties

Nathan Ilten

(joint work with Sasha Zotine)

Given an embedded projective variety X ⊂ Pn over an algebraically closed field K,
its kth Fano scheme Fk(X) is the fine moduli space parametrizing k-dimensional
projective linear subspaces of X . In this report we describe work in progress
studying the Fano scheme of an embedded projective toric variety. To fix notation,
let A ⊂ Zn be a finite set of lattice points, and SA the semigroup generated by
elements of the form (u, 1) ∈ A×Z. By XA we denote the projective toric variety
whose homogeneous coordinate ring is the semigroup algebra of SA, that is,

XA = Proj K[SA]

with Z-grading given by projection to the final Z-factor.
The most important concept for understanding the Fano scheme Fk(XA) is that

of a Cayley structure. Consider a face τ of A, that is, the intersection of A with a
face of its convex hull. A Cayley structure on τ is a map π : τ → ∆l whose image
consists of the vertices of ∆l and which preserves affine relations. Here, ∆l denotes
the standard l-simplex. We will be interested in the set of all Cayley structures
where τ ranges over faces of A, and l ≥ k. This set comes with a natural partial
order: for Cayley structures π : τ → ∆l and π′ : τ ′ → ∆l′ , π ≤ π

′ if τ is contained
in τ ′, and there is a map φ : ∆l′ → ∆l such that φ ◦ π′ restricts to π on τ . Note
that we do not differentiate between two Cayley structures if they differ by an
automorphism of the standard simplex.

Our main result is the following theorem.

Theorem 1. There is a bijection between irreducible components of Fk(XA) and
maximal Cayley structures π : τ → ∆l where τ is a face of A and l ≥ k.

A similar result has recently been obtained independently in work in progress by
K. Furukawa and A. Ito.

The bijection in the above theorem can be described quite explicitly. The
action of the dense torus T of XA preserves linear subspaces, and thus induces
an action on Fk(XA). Given a maximal Cayley structure π : τ → ∆l for τ a
face of A and l ≥ k, we may consider the l-plane Lπ of XA corresponding to the
unique semigroup homomorphism SA → Nl+1 sending (u, 1) to π(u) for u ∈ A.
Here we have identified the vertices of ∆l with the standard basis vectors of Zl+1.
The irreducible component of Zπ,k of Fk(XA) corresponding to A is obtained by
taking the closure in Fk(XA) of all T -orbits of points corresponding to k-planes
L ⊂ Lπ. These components have a natural affine cover for which each chart is
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itself isomorphic to a toric variety. In fact, if l = k, then Zπ,k is globally a toric
variety.

The key step in proving the above theorem is to show that each k-plane L ⊂ XA

corresponds to a point of Zπ,k for some Cayley structure π. Suppose that L is the
rowspan of a (k+ 1)×#A matrix (αiu) with columns indexed by u ∈ A. For each
u ∈ A, let yu be the linear form

yu =
∑

i

αiuyi ∈ K[y0, . . . yk].

We set τ = {u ∈ A | yu 6= 0}; this turns out to be a face of A. Taking V to
be the vector space of linear forms in the variables yi, we have a natural map
π : τ → P(V ). The image of π contains at least k + 1 elements, since (αiu) has
rank k+1. Identifying the elements of π(A) with the vertices of ∆l for some l ≥ k
leads to a Cayley structure π : τ → ∆l. Using the local description of Zπ,k, one
can show that L is contained in a translate of Lπ under the torus action.

Theorem 1 has a number of applications. For example, we recover the following
result of Casagrande and Di Rocco [1] (for k = 1) and Ito [3] (for k arbitrary):

Corollary 2. The toric variety XA is covered by k-planes if and only if there is
a Cayley structure π : A → ∆k.

We also obtain the following statement concerning smoothness of the components
of Fk(XA):

Corollary 3. Suppose that the dimension of the singular locus of XA is less than
k. Than every irreducible component of Fk(XA) is smooth when considered in its
reduced structure.

It is not difficult to see that components Zπ1,k and Zπ2,k have non-trivial inter-
section if and only if there is a Cayley structure π′ : τ ′ → ∆k such that π′ ≤ πi for
i = 1, 2. This leads to a combinatorial description of the connected components
of Fk(XA). Finally, we also study the non-reduced structure of Fk(XA) in some
special cases, generalizing the results of [2] for toric surfaces. In particular, we
provide combinatorial formulas describing the non-reduced structure of Fk(XA)
whenever XA is projectively normal and k = dimXA − 1.
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Frobenius semisimplicity and proper toric morphisms

Mark Andrea de Cataldo

This talk is a discussion of ideas, definition and results contained in three ArXiv
papers: [1] Proper toric maps over finite fields (de Cataldo), [2] The combinatorics
and topology of proper toric maps (de Cataldo, Mustata, Migliorini), [3] Frobenius
semisimplicity for convolution morphisms (de Cataldo, Haines, Li).

I will first discuss the standard semisimplicity conjecture (of Tate type) for
cohomology and how it relates to the same conjecture for intersection cohomology
via the following theorem:

Theorem 1 ([3]). Let f0 : X0 → Y0 be a proper map over a finite field F0. Then
the intersection complex ICf0(X0) is a direct summand of Rf0,∗ICX0 .

I will define the notions of semisimple and of Frobenius semisimple complex
over a variety defined over a finite field and discuss the following:

Theorem 2 ([3]). Let f0 : X0 → Y0 be a proper map over a finite field F0 and
let K0 be a mixed complex on X0. If Rf0,∗K0 is Frobenius semisimple, then it is
semisimple.

The above is thus a criterion for the semisimplicity of the direct image over F0,
not just over F (as it is usual in the literature). I will then state and sketch the
proof of the following:

Theorem 3. Let f0 : X0 → Y0 be a proper toric of toric varieties over a finite
field F0. Then Rf0,∗ICX0 is Frobenius semisimple and thus semisimple.

The key point is the following result, which is of independent interest.

Theorem 4. Let f0 : X0 → Y0 be a proper toric fibration (i.e. the corresponding
maps of lattices is surjective) of toric varieties over a finite field F0. Let y1 ∈ Y
be a closed point (possibly defined over a finite extension F1 of F0). Let U0 be
any Zariski dense open subvariety of a toric completion X ′

0 that contains f−1(y0).
Then the natural map IH∗(U)→ H∗(f−1(y), ICX) is surjective.
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Toric MESSI biochemical systems

Alicia Dickenstein

(joint work with Mercedes Pérez Millán)

Many processes within cells involve some kind of post-translational modification
of proteins. A subclass of these mechanisms which present modifications of type
Enzyme-Substrate or Swap with Intermediates, has attracted considerable theo-
retical attention due to its abundance in nature and the special characteristics in
the topologies. In my talk, I introduced a general framework for these biological
systems, developed in joint work with Mercedes Pérez Millán [9], which we call
MESSI networks.

MESSI biochemical systems are MESSI chemical reaction networks endowed
with mass-action kinetics. The set of species can be partitioned into a subset S(0)

of intermediate species and different subsets S(1), . . . , S(m) of core species, in such
a way that the associated autonomous polynomial dynamical system is linear in

the variables of each S(i) union some subset S
(0)
i of the intermediate variables. The

union of these subsets S
(0)
i equals S(0), but they are in general not disjoint, which

accounts for several important properties of the systems. We characterize with
algebro-geometric and combinatorial tools general properties of MESSI systems
(as compactness of invariant subspaces and permanence) and we concentrate on
the important question of multistationarity, that is, on the ocurrence of more than
one positive steady state with the same conserved quantities.

Many post-translational modification networks are MESSI networks. For exam-
ple: the motifs in [2], sequential distributive multisite phosphorylation networks
[10], sequential processive multisite phosphorylation networks [1], phosphorylation
cascades or the bacterial EnvZ/OmpR network in [12]. Our work is inspired by
and extends some results in several previous articles [3, 4, 5, 6, 7, 8, 10, 11, 13].

We show that the steady states of most popular MESSI systems (including
all those recalled above) present a toric structure, and we give in this case a
characterization of the capacity for multistationarity, which leads to an algorithmic
approach that we implemented with tools from oriented matroid theory. The
statement of our precise results would need a long glossary together with clarifying
examples, that we omit in this account.
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Hodge theory in combinatorics

Eric Katz

(joint work with Karim Adiprasito, June Huh)

This abstract describes recent work [1] resolving Rota’s conjecture on the log-
concavity of the characteristic polynomial of a matroid.

1. The Characteristic Polynomial

We begin by considering the case of realizable matroids. Let k be a field. Let
V ⊂ kn+1 be an (r + 1)-dim linear subspace not contained in any coordinate
hyperplane. We would like to use inclusion/exclusion to express [V ∩ (k∗)n+1] as
a linear combination of [V ∩ LI ] where LI is the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}. You may interpret the brackets as sets of
geometric points.

To identify the intersections, we have to discuss flats. A subset I ⊂ {0, . . . , n}
is said to be a flat if for any J ⊃ I, we have V ∩ LJ 6= V ∩ LI . The rank of a flat
is ρ(I) = codim(V ∩ LI ⊂ V ). The flats uniquely label the intersections V ∩ LI .
We can now write for unique choices νI ∈ Z,

[V ∩ (k∗)n+1] =
∑

flats I

νI [V ∩ LI ].
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The characteristic polynomial of V is

χV (q) =

r+1∑

i=0



∑

flats I
ρ(I)=i

νI


 qr+1−i ≡ µ0q

r+1 − µ1q
r + · · ·+ (−1)r+1µr+1.

2. Matroids

We may abstract the linear space to a matroid which we define as a rank function
ρ : 2{0,...,n} → Z satisfying

(1) 0 ≤ ρ(I) ≤ |I|
(2) I ⊂ J implies ρ(I) ≤ ρ(J)
(3) ρ({0, . . . , n}) = r + 1.
(4) ρ(I ∪ J) + ρ(I ∩ J) ≤ ρ(I) + ρ(J)

The first three properties are obvious ones that a notion of codimension must
satisfy while item (4) abstracts subadditivity of codimension under intersection.
We set r + 1 = ρ({0, . . . , n}) to be the rank of the matroid. For matroids, νI and
hence χ(q) can be defined combinatorially by Möbius inversion without reference
to any linear space. This leads us to a conjecture made by Rota in his 1970 ICM
address:

Theorem 1 (Adiprasito-Huh-K ’15). For any matroid, χ(q) is log-concave.

Here, a polynomial with coefficients µ0, . . . , µr+1 is said to be log-concave if for
all i, we have |µi−1µi+1| ≤ µ2

i . The logarithms of the coefficients form a concave
sequence. This implies unimodality if the sequence is internally zero-free. A
polynomial with coefficients µ0, . . . , µr+1 is said to be unimodal if the coefficients
are unimodal in absolute value, i.e. there is a j such that

|µ0| ≤ |µ1| ≤ · · · ≤ |µj | ≥ |µj+1| ≥ · · · ≥ |µr+1|.

Note that the characteristic polynomial has no symmetry properties. We do not
know where the mode is! This makes the unimodality in the Rota conjecture
different from that of the g-theorem.

3. The Matroidal Chow Ring

We define a Stanley-Reisnerish ring, the matroidal Chow ring:

Definition 2. Let xF be indeterminates indexed by proper flats. Let IM be the
ideal in R[xF ] generated by

(1) For each i, j ∈ {0, 1, . . . , n},
∑

F∋i

xF −
∑

F∋j

xF ,

(2) For incomparable flats F, F ′,

xFxF ′ .

Let A∗(M) = R[xF ]/IM .
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This ring is an abstract stand-in for the cohomology ring of the algebraic vari-
ety Ṽ that is obtained from P(V ) by blowing up (the proper transforms of) the
intersections P(V )∩P(LI). This ring behaves like the cohomology ring of a smooth
compact variety:

Theorem 3. The ring A∗(M) has a fundamental class: there is an isomorphism:

deg : Ar(M)→ R.

The ring A∗(M) obeys Poincaré duality: the following pairing is perfect

Ap(M)×Ar−p(M) → R

(x, y) 7→ deg(xy).

4. Outline of the proof

Now, let us outline the proof of log-concavity. First, we use the reduced charac-
teristic polynomial. From the fact χ(1) = 0, we can set

χ(q) =
χ(q)

q − 1
= µ0qr − µ1qr−1 + · · ·+ (−1)rµrq0.

The log-concavity of χ implies the log-concavity of χ.
There are two important elements of A∗(M): for arbitrary j ∈ {0, 1, . . . , n}, set

α =
∑

F∋j

xF , β =
∑

F 6∋j

xF .

By a short combinatorial argument, we show that the coefficients of the reduced
characteristic polynomial are the mixed degrees of α and β: µi = deg(αiβr−i).

To prove log-concavity, we must establish the Khovanskii-Teissier inequality for
α, β: for all 1 ≤ i ≤ r − 1,

deg(αr−i+1βi−1) deg(αr−i−1βi+1) ≤ deg(αr−iβi)2.

We do this by developing the Kahler package for A∗(M). This involves defining an
ample cone K ⊂ A1(M) with α and β ∈ K. The ring will obey the Hard Lefschetz
theorem and the Hodge-Riemann relations with respect to K.

Let R∗ be a graded commutative ring in degrees 0, . . . , r satisfying Poincaré
duality with respect to deg : Rr → R. We say that R∗ satisfies the Hard Lefschetz
property with respect to a convex cone K ⊂ R1 if for all ℓ ∈ K and all p ≤ r

2 ,

the map Lp : Rp → Rr−p given by c 7→ ℓr−2p · c is an isomorphism. One defines
primitive subspace P p ⊂ Rp by P p = ker(ℓr−2p+1· : Rp → Rr−p+1).

For ℓ ∈ R1, we define the quadratic form Qp
ℓ on Rp for p ≤ r

2 by

Qp
ℓ (c1, c2) = (−1)p deg(ℓr−2pc1c2).

We say that the ring R∗ obeys the Hodge-Riemann relations with respect to K if
for all ℓ ∈ K and p ≤ r

2 , Qp
ℓ restricted to the primitive subspace P p is positive

definite. The Hodge-Riemann relations imply a form of the Khovanskii-Teissier
inequality that is sufficient for our purposes.
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We establish the Kahler package for A∗(M) with respect to a particular cone
K ⊂ A1(M). Our strategy is to interpolate between the polynomial ring
R[x]/(xr+1) and A∗(M). We modify the rings by adding one flat at a time.
This corresponds to blowing-up subvarieties in algebraic geometry. We have to
leave the world of matroids and work with intermediate Chow rings. The proof
makes use of an inductive argument introduced by McMullen [3] in his work on
the g-theorem.
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When is a variety the quotient of a smooth variety by a finite group?

Matthew Satriano

(joint work with Anton Geraschenko)

We discuss a local-to-global question concerning quotient singularities posed by
William Fulton. A variety X over a field k has (tame) quotient singularities if
there is an étale cover {Xi → X}i with each Xi = Ui/Gi where Ui is smooth and
Gi is a finite group (whose order is relatively prime to the characteristic of k).1

We say X has abelian quotient singularities if we can take the Gi to be abelian.
It is clear from the definition that every global quotient U/G with U smooth and
G finite, has quotient singularities. It is therefore natural to ask if the converse
holds:

Question 1 (Fulton). If X is a variety with quotient singularities over an alge-
braically closed field, then can we write X = U/G with U smooth and G finite?

We answer a special case of Question 1 as a consequence of the following result,
characterizing when a variety is a global quotient by a finite abelian group.

Theorem 2 ([1, Theorem 1.2]). Let X be a quasi-projective variety with tame
abelian quotient singularities over an algebraically closed field k. Then the follow-
ing are equivalent:

(1) X is a quotient of a smooth quasi-projective variety by a finite abelian
group.

(2) X is the geometric quotient (in the sense of [3]) of a smooth quasi-projective
variety by a torus acting with finite stabilizers.

1There are several equivalent definitions of (tame) quotient singularities. One can instead
take the {Xi → X}i to be a Zariski cover, or alternatively require that each complete local ring

ÔX,x be isomorphic to the invariant ring k(x)[[t1, . . . , tn]]G with G a finite group (with order

prime to the characteristic).
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(3) X has Weil divisors D1, . . . , Dr whose images generate Cl(ÔX,x) for all
closed points x of X.

(4) The canonical smooth tame Deligne-Mumford stack Xcan as constructed
in [5, 2.9] is a stack quotient of a quasi-projective variety by a torus.

Remark 3. Theorem 2 follows from a more technical result [1, Theorem 5.2],
which applies to algebraic spaces over infinite fields (in contrast to quasi-projective
varieties over algebraically closed fields).

Remark 4. Those readers familiar with stacks should not confuse Question 1
with the question “is every smooth Deligne-Mumford stack of the form [U/G]
with U smooth and G a finite group?” The answer to this latter question is “no”
as demonstrated by the square root stack of P1 at a point. However, our proof
of Theorem 2 shows that if X is a global quotient by a split torus and has quasi-
projective coarse space, there is a relative coarse space map [U/G] → X with U
smooth and G finite.

We emphasize that even for toric varieties, the answer to Question 1 is not
obvious, although an immediate corollary of our result settles Question 1 for all
quasi-projective toric varieties. To better understand why the case of toric varieties
is not immediate, consider the blow-up of P(1, 1, 2) at a smooth torus-fixed point.
Its fan is given by

1

23

4

If one wishes to write this variety as a toric quotient U/G with U smooth and
G finite, this amounts to refining the above lattice in such a way that all cones
become smooth. However, it is an easy exercise to show that every refinement
makes the cone generated by rays 1 and 2 singular or keeps the cone generated by
rays 3 and 4 singular. Thus, in order to answer Question 1 for toric varieties, one
is forced to use non-toric techniques.

Although Question 1 and Theorem 2 (1)–(3) are inherently about varieties, our
proof uses stack-theoretic techniques. In the case of toric varieties, however, we are
able to unravel our proof and obtain a combinatorial procedure for constructing
the U and G of Question 1. We demonstrate this algorithm on the blow-up of
P(1, 1, 2) at a smooth torus-fixed point at the end of this article.

Before demonstrating the algorithm, we note that there are several natural
variants of Question 1 that one can pose. For example, one can ask:

Question 5. If X is a variety over an algebraically closed field with tame abelian
quotient singularities, then is it of the form U/G with U a smooth variety and G
a finite abelian group?
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It follows from the theorem below that Question 5 has a negative answer.

Theorem 6. Let k be an algebraically closed field with char(k) ∤ 60, and let V
be an irreducible 3-dimensional representation of the alternating group A5. Then
X = (V \0)/A5 has abelian quotient singularities, but is not a quotient of a smooth
variety by a finite abelian group.

Other natural variants of Question 1 are to drop the requirement that G be
finite, or to replace a group quotient by a finite surjection. Both of these are
known to have positive answers. The first is given by [2, Corollary 2.20], which
states that if X is a quasi-projective variety with quotient singularities over a field
of characteristic 0, then X = U/G where U is a smooth scheme and G is a linear
algebraic group. The second is given by [4, Theorem 1] and [2, Theorem 2.18]: for
an irreducible quasi-projective variety X with quotient singularities over a field
k, there is a finite surjection from a smooth variety to X . From this perspective,
Question 1 therefore asks if there is a common refinement of these two results.

Lastly, as promised, we give an explicit description of the U and G of Question
1 when X is the blow-up of P(1, 1, 2) at a torus fixed point. For the explicit
procedure in the case of an arbitrary quasi-projective toric variety, see Theorem 7
below.

Step 1: Choosing very ample divisors and sections. Our first step is to
choose a collection of very ample divisors satisfying condition (3) of Theorem 2.
In this particular case, we need only choose one divisor D. Letting Dρi

denote the
divisor corresponding to the i-th ray of the fan pictured above, we choose D =
Dρ1 +Dρ2 +Dρ3 . We must next choose a section s of OX(2D) with the property
that its vanishing locus V (s) misses the singular locus of X . More generally, we
seek sections of OX(NDi) with a slightly more complicated intersection property,

where N is the lcm of the orders of all complete local class groups Cl(ÔX,x). In
our case, we choose s = sa + sb + sc, where sp denotes the section corresponding
to the lattice point p of the polytope pictured below.

a

b

c



Toric Geometry 995

Step 2: Computing U and G. Consider the projective toric variety in P18

defined by the following polytope, which is a height 2 cone over the polytope shown
above.

a
b

c

0

Let U be the hyperplane slice of this toric variety defined by x0 − (xa + xb + xc)
and let G = Z/2. We obtain a G-action on P18 as follows: if χ is the non-trivial
character of G and x is a lattice point of the above polytope with height h, then
G acts the coordinate corresponding to x through the character χh. Then U
is smooth, is invariant under the G-action, and X = U/G. Note that this is a
completely toric procedure except for taking the hyperplane slice.

For an arbitrary quasi-projective toric variety, the presentation X = U/G is
obtained explicitly using the following result.

Theorem 7 ([1, Theorem 3.1]). Let X be a quasi-projective toric variety with
tame quotient singularities over an infinite field k. Let Σ be the fan of X, let
Z ⊆ X be the singular locus, and let X = V/H be the Cox construction.

1. There exist Weil divisors D1, . . . , Dr which generate the class groups of
all torus-invariant open affine subvarieties of X. Letting ni be integers so
that niDi is Cartier for each i, the Di can be chosen so that niDi is very
ample.

2. There are sections {si,j}1≤j≤ci of OX(niDi) so that the preimages of the
vanishing loci {V (si,j)}i,j in V are smooth with simple normal crossings,
and

⋂
j V (si,j) is disjoint from Z for each i.

3. Let W be the toric variety with fan Σ̂, as described in [1, §3.2], and let
Ui,j ⊆ W be the si,j-cut together with its µni

-action [1, Definition 3.12].
Then the scheme-theoretic intersection U =

⋂
i,j Ui,j in W is a smooth

variety with an action of G =
∏

i µ
ci
ni
, such that X ∼= U/G.
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Additive actions on toric varieties

Ivan Arzhantsev

(joint work with Elena Romaskevich)

Let X be an irreducible algebraic variety of dimension n over an algebraically
closed field K of characteristic zero and Ga = (K,+) be the additive group of the
field. Consider the commutative unipotent group Gn

a = Ga × . . . × Ga (n times).
By an additive action on X we mean a regular action Gn

a ×X → X with an open
orbit. Equivalently, one may consider algebraic varieties with an additive action
as equivariant embeddings of the vector group (Kn,+).

A systematic study of additive actions was initiated by Hassett and Tschinkel
[12]. They established a remarkable correspondence between additive actions on
the projective space Pn and local (n+ 1)-dimensional commutative associative al-
gebras with unit. This correspondence has allowed to classify additive actions on
Pn for small n. The same technique was used by Sharoiko [13] to prove that an
additive action on a non-degenerate projective quadric is unique. Further mod-
ification of Hassett-Tschinkel correspondence led to characterization of additive
actions on arbitrary projective hypersurfaces, in particular, on degenerate projec-
tive quadrics [3], [2].

The study of additive actions was originally motivated by problems of arith-
metic geometry. Chambert-Loir and Tschinkel [4] gave asymptotic formulas for
the number of rational points of bounded height on smooth projective equivariant
compactifications of the vector group. More generally, asymptotic formulas for
the number of rational points of bounded height on quasi-projective equivariant
embeddings of the vector group are obtained in [5].

In [1] all generalized flag varieties G/P admitting an additive action are found.
Here G is a semisimple linear algebraic group and P is a parabolic subgroup. It
turns out that if G/P admits an additive action then the parabolic subgroup P is
maximal.

Feigin [10] proposed a construction based on the PBW-filtration to degenerate
an arbitrary generalized flag variety G/P to a variety with an additive action.
Recently Fu-Hwang [11] and Devyatov [9] have proved that if G/P is not isomor-
phic to the projective space, then up to isomorphism there is at most one additive
action on G/P . Classification of additive actions on singular del Pezzo surfaces is
obtained by Derenthal and Loughran [8].

The problem of classification of additive actions on toric varieties is raised in [3,
Section 6]. Some instructive examples of such actions are given in [12, Proposi-
tion 5.5]. It is natural to divide the problem into two parts. The first one deals
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with additive actions on a toric variety X of dimension n normalized by the act-
ing torus T . In this case an additive action splits into n pairwise commuting
Ga-actions on X normalized by T . It is proved in [7] that Ga-actions on a toric
variety X normalized by T are in bijection with some vectors defined in terms of
the fan ΣX associated with X . Such vectors are called the Demazure roots of a
fan. Cox [6] observed that normalized Ga-actions on a toric variety can be inter-
preted as certain Ga-subgroups of automorphisms of the Cox ring R(X) of the
variety X . In turn, such subgroups correspond to homogeneous locally nilpotent
derivations of the Cox ring. In these terms the Demazure root is nothing but the
degree of the derivation.

We prove that additive actions on a toric variety X normalized by the acting
torus T are in bijection with complete collections of Demazure roots of the fan ΣX .
Also we show that any two normalized additive actions on X are isomorphic.

The second part of the problem concerns non-normalized additive actions. Our
result states that if a complete toric variety admits an additive action, then it
admits an additive action normalized by the acting torus.

It is well known that a toric variety is projective if and only if its fan is a normal
fan of a convex polytope. We characterize polytopes corresponding to projective
toric varieties with an additive action.

Also we give explicit examples of additive actions on toric varieties in terms of
their Cox rings and formulate several open problems.
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Tropical currents and the Hodge conjecture

June Huh

(joint work with Farhad Babaee)

Let X be a smooth compact toric variety over the complex numbers. We introduce
some results from [2, 3]. From toric perspective, the most important assertion
is that every cohomology class C of X has a canonical representative TC in the
space of closed currents on X . The representative TC is called the tropical current
associated to C. We summarize here two main properties of the connection between
the cohomology class C and its tropical current TC :

(1) The representatives TC are geometric, and can be intersected in a geo-
metric way. This should be compared with the harmonic representatives
of cohomology classes, which are neither geometric nor closed under the
wedge product.

(2) The representatives TC reflect the positivity of the class C in an interesting
way. More precisely, C is nef if and only if TC is positive, and C is extremal
in the nef cone of X if and only if TC is extremal in the cone of positive
closed currents on X .

One can show the above connection between C and TC to produce examples of
positive closed currents on smooth projective varieties with unexpected proper-
ties. For example, one can construct a 4-dimensional smooth projective complex
variety X and a (2, 2)-dimensional positive closed current T on X with integral
cohomology class that is not a weak limit of effective algebraic cycles, see [3]. The
variety X can be chosen to be toric, and the current T can be chosen to be a
tropical current which is extremal in the cone of positive closed currents on X .

Particularly interesting examples of extremal positive closed currents arise when
we take X to be the toric variety of the permutohedron and TC to be the tropical
current associated to a loopless matroid C, see [4]. Is it true that such a tropical
current TC is a weak limit of effective algebraic cycles on X? The answer is “yes” if
the matroid C is representable over the complex numbers, but unknown in general.
Several numerical consequences of the affirmative answer to the question is recently
proved in [1] by other methods, so there is no obvious numerical reason indicating
otherwise.
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Toric structures in nontoric varieties

Mateusz Micha lek

(joint work with Luke Oeding, Piotr Zwiernik)

For a projective variety X ⊂ PN we define the k-th secant variety by:

σk(X) =
⋃

x1,...,xk∈X

< x1, . . . , xk >,

where < · > denotes the smallest projective space containing the given set. Even
when X is a well-understood variety, the secant variety can be very complicated
from the point of view of algebra and geometry. One of the most important
examples is the Segre product of projective spaces that parameterizes tensors of
rank one. In this case, the k-th secant variety is the locus of tensors of border rank
at most k (the closure of the locus of tensors of rank k). Determining equations of
secant varieties is crucial e.g. in computational complexity [6]. Further information
about the secant and tangential variety can be found in [16].

When X is the Segre product, from the toric point of view it corresponds to
a polytope P that is the product of simplices. The torus action distinguishes
coordinates on PN corresponding to lattice points of P . Let us fix a vertex v ∈ P .
This distinguishes a hyperplane Hv ⊂ PN and an affine open set Av = PN \Hv.

Theorem 1. [8] When X is the Segre product then σ2(X)∩Av is a product of an
affine space and an affine toric variety T (that is an affine cone over a projectively
normal projective toric variety).

The polytope P̃ representing the toric variety from the theorem, under the
assumption that v = 0, is defined by {(xi) ∈ P :

∑
i xi ≥ 2}. The ’classical’

parametrisation of σ2(X) does not indicate that σ2(X) ∩ Av could be toric. The
result is obtained using a special automorphism of the affine space, inspired by
calculation of cumulants in statistics - cf. [13, 17]. It relies on the fact that by
choosing v ∈ P we induce a partial order on the lattice points of P \ {v}. The
change of coordinates is (a composition of two) triangular (automorphisms), of the
form:

yw = xw + polynomials in x’s strictly smaller than xw.

In forthcoming joint work with Hendrik Suess and Alexander Perepechko we ex-
tend these results to Segre-Veronese varieties. This allows to conclude that cones
of such secant varieties are flexible.

Similar results were also obtained in a joint work with Laurent Manivel [7]
for Grassmannians (resp. spinor varieties). Here however, instead of a mono-
mial parametrization we get a parametrization by minors (resp. subpfaffians) of a
generic (resp. skew symmetric) matrix. The case of Grassmannians is more com-
plicated than the Segre-Veronese case. In particular, we do not know the defining
equations of σ2(G(k, n)), contrary to the Segre-Verones case [3, 11]. Also the rela-
tions among minors are far more complicated than the equations defining the toric
variety. For more information about relations among minors of a generic matrix
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we refer the reader to [1] (note however, that from the point of view of secant
varieties we are more interested in relations among all minors of size at least 2 of
a generic matrix, as opposed to relations among minors of a fixed size).

The polytopes obtained for secants of Segre varieties have nice properties. They
are normal, possess a quadratic Groebner basis and are related to other families
previously studied - cf. [12, Section 14A]. Christian Haase related the obtained
quadratic Groebner basis to known unimodular triangulations.

Our results allow also for a full classification of (locally) Gorenstein secants.

Theorem 2. [8] The variety σ2(Pa1×· · ·×Pan) is (locally) Gorenstein if and only
if it fills the ambient space or:

(1) n = 2 and a1 = a2,
(2) n = 3 and (ai) equals (1, 1, 3), (1, 3, 3) or (3, 3, 3),
(3) n = 5 and (ai) = (1, 1, 1, 1, 1).

The first family a1 = a2 is classical. Recently, affine cones in the second family
were confirmed to be Gorenstein [10].

Conjecture 3. Is the affine cone over σ2(P1 × P1 × P1 × P1 × P1) Gorenstein?

All of the mentioned results apply also for tangential varieties, i.e. unions of
tangent spaces. For the toric case, after the ’cumulant’ change of coordinates,
the tangential varieties are parameterized by the same monomials as the secant
varieties. Recall, that the secant variety is given as an affine cone, hence the usual
containment of a tangential variety in the secant as a divisor. Moreover, we see
that the tangential variety equals the secant if the parameterizing monomials (in
the cumulant coordinates) are all of the same degree. This is specially useful,
when we consider the following generalization from the forthcoming work with
Piotr Zwiernik:

Theorem 4. Consider a simplicial complex C with variables associated to vertices
(possibly noninjectively). Consider the embedding of the n dimensional affine space
given by all the monomials corresponding to faces in C (including vertices). The
secant variety is isomorphic to a product of an n dimensional affine space with a
(possibly nonnormal) toric variety parametrized by all monomials corresponding
to faces in C of positive dimension.

In particular, taking a product with the affine space, all toric varieties associated
to graphs in the sense of Hibi and Ohsugi [4] are secant (and tangential) varieties
of reembeddings of affine spaces.

During the lecture two conjectures were also presented:

Conjecture 5.

(1) Is the convex hull of all lattice points in any ball a normal polytope? [2,
Question 7.2 b)]

(2) Let f be a homogeneous polynomial in n+ 1 variables. Let L be a generic

subspace of Pn. Do we always have L⊥ ∩ ∇f(L) = ∅? [9, Conjecture 5.5]
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In Oberwolfach, Bernard Teissier observed that the answer to the second ques-
tion is positive. Indeed, it is a special case of his results obtained in [14, 15], which
strengthen the classical Bertini theorem. For recent application of the same results
and a new proof we refer to [5]. The first point of Conjecture 5 still awaits the
answer.
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Toric vector bundles and polytopes

Sandra Di Rocco

(joint work with Kelly Jabbusch, Gregory G. Smith)

Exact criteria for positivity of line bundles L on a toric variety X are well un-
derstood, mainly due to the combinatorial underline structure and the convex
geometry of the associated lattice polytope PL. Let XΣ be a smooth toric variety
of dimension n. It is well known that:

• L is nef if and only if L · C ≥ 0 for all invariant curves C, which is
equivalent to L being globally generated.
• L is ample if and only if L · C > 0 for all invariant curves C, which is

equivalent to L being very ample.

It is natural to ask to which extent such a characterization holds for higher rank
vector bundles. This question has been posed and investigated in [2]. In this paper
the authors characterize intersection positivity of toric vector bundles generalizing
the criteria for rank one. In particular they prove that given a toric vector bundle
E of rank r :

• E is nef if and only if E|C = ⊕r
1OP1(ai) with ai ≥ 0 for i = 1 . . . r and for

all the invariant curves C.
• E is ample if and only if E|C = ⊕r

1OP1(ai) with ai > 0 for i = 1 . . . r and
for all the invariant curves C.

Toric vector bundles carry a nice combinatorial structure, as described in [3].
They are in one-to-one correspondence to decreasing fibrations of vector subspaces
of the fiber E = Ex0 at the generic point x0 in the torus: {E ⊇ · · · ⊇ Evi(j) · · · ⊇
Evi(j + 1) ⊇ · · · }, for each primitive vector vi on a ray in Σ and satisfying certain
compatibility conditions.

In order to further investigate the implications of nefness and ampleness on
properties for global sections, i.e. global generation and very ampleness, we intro-
duced associated lattice polytopes, see [1].

We show that a toric vector bundle E defines a canonical minimal matroidME

whose lattice of flats is given by intersections of the filtration subspaces ordered by
inclusion. The ground set of this matroid, G(E), consists of a finite set of vectors of
E, G(E) = {e1, . . . , es} with s ≥ r, containing all the basis vectors of the subspaces
in the filtration. Moreover the compatibility conditions imply that every fixed
fiber is spanned by a distinguished r-tuple of vectors in G(E). This means that for
each n-dimensional cone σ ∈ ∆ there is a basis (e1σ, . . . , e

r
σ), of vectors in G(E), for

the fiber Ex(σ) over the fixed point x(σ).
We define a polytope for each element e ∈ G(E) :

Pe = {m ∈ Rns. t. < m, vi >≤ max{j s.t. e ∈ Evi(j)}}.

and the parliament of polytopes: PE = {Pe}e∈G(E).
First we prove that:

Theorem 1 ([1]). The lattice points in the parliament of polytopes PE form a
generating set for the global sections H0(X, E).



Toric Geometry 1003

We then use this characterization to give a criterion of global generation, very
ampleness and generation of higher jets in terms of the polytopes, generalizing
the corresponding criteria for line bundles. We report here the global generation
theorem.

For each σ we denote by m(σ) = (m1
σ, . . . ,m

r
σ) the distinguished characters

coming from the given filtration and corresponding to a local trivialization of E
at the open orbit Uσ. After fixing a local basis around the fixed point x(σ) one
can define a bijection between the r-tuple m(σ) = (m1

σ, . . . ,m
r
σ) and the basis

vectors (e1σ, . . . , e
r
σ). In particular every mi

σ has a corresponding eiσ under this
correspondence.

Theorem 2 ([1]). The toric vector bundle E is globally generated if for each n-
dimensional cone σ ∈ Σ the character mi

σ is a vertex of the polytope Peiσ
for all

i = 1, . . . , r.

The three polytopes below form the parliament of polytopes of TP2 . The char-
acters of each shape (circle, rectangle and diamond) are associated to one of the
three two-dimensional cones. One sees that the tangent bundle is indeed globally
generated.

Using this visual criterion we were able to construct examples of ample toric
vector bundles which are not very ample and not even globally generated, demon-
strating that the nice equivalences (nefness and global generation, ample and very
ampleness) in rank one do not extend to higher rank.

Pe3

Pe2

Pe1

Figure 1. The parliament of polytopes for TP2
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A geometric characterization of toric varieties

Morgan Brown

(joint work with James McKernan, Roberto Svaldi, Runpu Zong)

Let X be a projective variety and let ∆ be an effective Q-divisor on X . We say
that the pair (X,∆) is a log Calabi-Yau pair if (X,∆) is log canonical and KX +∆
is numerically trivial.

For example, if X is a normal projective toric variety and ∆ is the sum of the
invariant divisors, then (X,∆) is a log Calabi-Yau pair.

The goal of the present work is to give a simple characterization of toric pairs
among log Calabi-Yau pairs. For simplicity, assume X is Q-factorial. We consider
an invariant called the complexity: Let ρ be the rank of the subvector space of
NSQ(X) spanned by components of ∆, and let n be the dimension of X . Finally
set |∆| to be the sum of the coefficients of the components. Then the complexity
is γ(X,∆) = ρ+ n− |∆|.

When X is a simplicial projective toric variety, the number of torus invariant
divisors is the sum of the Picard rank of X and the dimension of X . Thus if ∆
is the sum of the torus invariant divisors, the complexity is γ(X,∆) = 0. The
following theorem shows that this property characterizes toric pairs. In this way
we give a precise sense in which toric varieties are the simplest log Calabi-Yau
varieties.

Theorem 1. Let X be a projective variety over a field of characteristic 0, and
suppose (X,∆) is a log canonical pair such that −(KX + ∆) is nef. Then the
complexity γ is nonnegative, and if γ < 1, then X is a split toric variety, and we
may choose the torus action such that all but at most one of the torus invariant
divisors is a component of ∆.

As an example, consider a quadric in projective space Q ⊂ Pn+1. The canonical
divisor the quadric is −n times the hyperplane class. If we let ∆ be the sum of n
generic hyperplanes then KQ + ∆ = 0, (Q,∆) is log canonical, and γ(X,∆) = 1.
Thus the theorem is sharp. Likewise, consider a quadric cone Y in P3. If Γ
is the union of 4 lines through the cone point, we have that KY + Γ = 0, and
γ(Y,Γ) = −1. This example does not violate the theorem because (Y,Γ) is not log
canonical. So in fact the singularity condition is necessary.

Theorem 1 partially answers a conjecture of Shokurov [7, 6], which was originally
stated in the relative setting. Yao [8] proved the case where (X,∆) is a simple
normal crossing pair.

Our techniques involve reducing to the local case by studying the Cox ring.
Suppose (X,∆) is a log Calabi-Yau pair, and X is a Mori dream space. Let S be
Spec(Cox(X)), and let Γ be the divisor on S corresponding to ∆. Then (S,∆) is
a log canonical pair [2, 4]. Now a local version of the theorem lets us deduce that
if the complexity is small, then S is smooth.

We then apply the results of Cox [3] and Hu-Keel [5], that a projective variety
is toric if and only if its Cox ring is a polynomial ring. The main technical hurdle
in our work is reducing to the case where X is a Mori dream space. To do this
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we need a version of Fano varieties for pairs. A pair (Y,Γ) is a log Fano pair if
it satisfies the singularity condition Kawamata log terminal (klt) and −(KY + Γ)
is an ample divisor. Log Fano pairs are very important in the minimal model
program, and provide a large class of examples of Mori dream spaces [1].

In a reduction step, we are able to show that a log Calabi-Yau pair (X,∆) of
low complexity is very close to being a log Fano pair; when γ(X,∆) < 1 we are
able to find X ′ birational to X and ∆′ close to the strict transform of ∆ such that
(X ′,∆′) is log Fano.

Our techniques are also able to produce some results when the complexity is
larger:

Theorem 2. Let (X,∆) be a projective log canonical pair over C. Suppose KX+∆
is numerically trivial, the components of ∆ generate NSQ(X), and γ < 3

2 . Then
if Cl(X) has no 2-torsion, X is rational.

To prove Theorem 2, we again reduce to a statement on the Cox ring. In this
case we show that the condition on γ implies that the Cox ring has a single quadric
relation of the form x20 + x21 + . . . = 0. The condition on 2-torsion is needed to
deduce that x0 and x1 have the degree in the Cox ring, and from there we construct
a birational map from X to a toric variety.

The condition on the class group of X is in fact necessary, as we are able
to produce an irrational 3-fold example satisfying all of the other conditions of
Theorem 2. A stronger version of Theorem 2 was conjectured by McKernan [6].
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The Decomposition Theorem for toric morphisms

Mircea Mustaţă

(joint work with M. de Cataldo, Luca Migliorini)

We describe, following [2], the Decomposition Theorem of Beilinson, Bernstein,
Deligne, and Gabber in the context of toric morphisms. The goal is to give a
purely combinatorial description of the invariants that come up in this context.
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As a consequence of this study, we obtain some invariants of toric morphisms that
turn out to be nonnegative and satisfy subtle properties that come from relative
Poincaré Duality and Hard Lefschetz theorems. Related results have been obtained
independently in a more combinatorial setting by Katz and Stapledon in [3].

Suppose that f : X → Y is a proper, equivariant morphism of complex toric
varieties. We denote by NX and NY the lattices of X and Y , respectively, and
by ΣX and ΣY the respective fans. The morphism f corresponds to a lattice map
φ : NX → NY such that for every cone α ∈ ΣX there is a cone σ ∈ ΣY such
that φ(α) ⊆ σ. The smallest such σ will be denoted by φ∗(α). We assume that
f is a fibration, that is, f is surjective and has connected fibers. This translates
in the surjectivity of φ. With our notation, if O(σ) and V (σ) denote the orbit,
respectively, orbit closure corresponding to a cone σ, then we have

f(O(α)) = O(φ∗(α)) and f(V (α)) = V (φ∗(α)).

The Decomposition Theorem takes the following form in the toric setting.

Theorem 1. There is an isomorphism

Rf∗ICX ≃
⊕

τ∈ΣY

⊕

b∈Z

ICV (τ)[−b]
sτ,b ,

such that the nonnegative integers sτ,b satisfy restrictions coming from relative
Poincaré Duality and, when f is projective, Hard Lefschetz.

In the above statement, we write ICZ for the intersection cohomology com-
plex of a variety Z. Note that by comparison with the general statement of the
Decomposition Theorem in [1], in Theorem 1 we have the following two special
features:

1) All varieties that appear in the decomposition (the support varieties) are
torus-invariant subvarieties, and

2) The local systems that usually appear in the Decomposition Theorem are
trivial in our case (here is where we use the fact that f is a fibration).

Our goal is to give a description of the invariants sτ,b in terms of combinatorics.
We here focus on the case when both X and Y are simplicial varieties. This implies
that X , Y , and all invariant subvarieties of Y have quotient singularities. As a
result, the decomposition in Theorem 1 takes the following form:

(1) Rf∗QX [dim(X)] ≃
⊕

τ∈ΣY

⊕

b∈Z

QV (τ)[codim(τ) − b]sτ,b .

We explain how to obtain the description of the integers sτ,b in this case, but for
simplicity, only write down explicit formulas for

δτ :=
∑

b∈Z

sτ,b.

Note that the positivity of δτ is equivalent to the fact that V (τ) is a support
variety for the Decomposition Theorem.
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Suppose now that y = xσ , the origin of the torus O(σ), for some σ ∈ ΣY . Note
that y ∈ V (τ) if and only if τ ⊆ σ. Consider now the equality (1), take the ith

cohomology of the complexes on each side, and compute the stalks at y to get

(2) Hi+dim(X)(f−1(xσ),Q) ≃
⊕

τ⊆σ

Qsi+codim(τ) .

In order to use this, we need to compute the cohomology of the fibers of f .
The first step consists in computing the Hodge-Deligne polynomial of f−1(xσ).
This fiber has a partition by locally closed subsets Zα, with α varying over the
cones in ΣX such that φ∗(α) = σ. Moreover, Zα is isomorphic to the kernel of
O(α)→ O(σ), hence it is a torus of dimension equal to codim(α)− codim(σ). We
thus obtain the following:

Theorem 2. For every toric fibration f : X → Y and for every σ ∈ ΣY , the
Hodge-Deligne polynomial of f−1(xσ) is equal to

E(f−1(xσ);u, v) =
∑

α,φ∗(α)=σ

(uv − 1)codim(α)−codim(σ).

In order to apply this, we also make use of the following result.

Theorem 3. For every toric fibration f : X → Y , with X and Y simplicial, and
for every y ∈ Y , the mixed Hodge structure on Hi(f−1(y),Q) is pure of weight i.
In particular, we have

E(f−1(y); t, t) =
∑

i≥0

(−1)idimQH
i(f−1(y),Q)ti.

It is clear that by combining Theorems 2 and 3 we obtain explicit formulas for
the Betti numbers of the fibers of f . For simplicity, we only state the following
Corollary.

Corollary 4. For every toric fibration f : X → Y , with X and Y simplicial, the
following hold for every σ ∈ ΣY :

i) For every odd i, we have Hi(f−1(xσ),Q) = 0.
ii) The Euler-Poincaré characteristic of f−1(xσ) is given by

χ(f−1(xσ)) = d0(σ),

where d0(σ) is the number of cones α ∈ ΣX such that φ∗(α) = σ and
codim(α) = codim(σ).

By combining the assertions in Corollary 4 with the equality (2) we obtain
d0(σ) =

∑
τ⊆σ δτ . An application of Möbius Inversion then gives

Theorem 5. For every toric fibration f : X → Y , with X and Y simplicial, and
for every τ ∈ ∆Y , we have

δτ =
∑

σ⊆τ

(−1)codim(τ)−codim(σ)d0(σ).
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In particular, it follows that the alternating sum in Theorem 5 is always nonneg-
ative. Similar expressions with the one in Theorem 5 can be obtained for each of
the numbers sτ,b. Finally, when X and Y are not simplicial, one can describe these
numbers building on the existing combinatorial descriptions for the intersection
cohomology, see [2].

Example 6. Consider the Losev-Manin space f : X = P̃n → Pn = Y , that is, f is
the blow-up of all (strict transforms) of the torus-fixed subvarieties of Y , beginning
with dimension 0 and ending with dimension n− 2. Let e0, . . . , en denote the rays
of ΣY , hence

∑
i ei = 0. The cones in ΣX are in bijection with sequences of strict

inclusions
F : ∅ ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fk ⊂ [n] = {0, 1, . . . , n}.

The cone σF corresponding to F as above is generated by eF1 , . . . , eFk
, where for

I ⊆ [n] we put eI :=
∑

i∈I ei. It is clear that in this case φ∗(σF ) is the convex
cone generated by {ei | i ∈ Fk}.

It follows from definition that if σJ ∈ ΣY is the convex cone generated by
{ei | i ∈ J}, for some proper subset J of [n], then d0(σJ ) = (#J)!. We thus
conclude using Theorem 5 that

δσI
=
∑

J⊆I

(−1)#I−#J(#J)! = (#I)! ·

#I∑

p=0

(−1)p

p!
,

which is the number of derangements (permutations without fixed points) on the
set I.
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On the toric ideal of a matroid

Micha l Lasoń

(joint work with Mateusz Micha lek)

Let M be a matroid on a ground set E with the set of bases B and the rank
function r : P(E)→ N. The rank of M , that is r(E), we denote simply by r.

For a fixed field K consider a K-homomorphism ϕM between polynomial rings:

ϕM : K[yB : B ∈ B] ∋ yB →
∏

e∈B

xe ∈ K[xe : e ∈ E].

The toric ideal of a matroid M , denoted by IM , is the kernel of the map ϕM . For
a realizable matroid M the toric variety associated with the ideal IM has a very
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nice embedding as a subvariety of a Grassmannian [5]. It is the closure of the torus
orbit of the point of the Grassmannian corresponding to the matroid M .

Neil White in 1980 made three conjectures of growing difficulty that describe
generators of the ideal IM .

Conjecture 1 ([15]). The toric ideal of a matroid is generated in degree 2.

The family B of bases of M satisfies symmetric exchange property (for more
exchange properties see [10]). That is, for every bases B1, B2 and e ∈ B1\B2 there
exists f ∈ B2 \B1, such that both sets B′

1 = (B1 \ e)∪ f and B′
2 = (B2 \ f)∪ e are

bases. In this case we say that the quadratic binomial yB1yB2−yB′

1
yB′

2
corresponds

to symmetric exchange. It is clear that such binomials belong to the ideal IM .

Conjecture 2 ([15]). The toric ideal of a matroid is generated by quadratic bino-
mials corresponding to symmetric exchanges.

The strongest among White’s conjectures describing generators of the ideal IM ,
turned out to be equivalent to Conjecture 2 (see the discussion in Section 4 of [9]).

Since every toric ideal is generated by binomials, it is not hard to rephrase the
above conjectures in the combinatorial language. Conjecture 1 asserts that if two
multisets of bases of a matroid have equal union (as a multiset), then one can pass
between them by a sequence of steps, in each step exchanging two bases for another
two bases of the same union (as a multiset). In Conjecture 2 additionally each step
corresponds to a symmetric exchange. Actually, this is the original formulation
due to White. We immediately see that the conjectures do not depend on the field
K.

Conjectures 1 and 2 are known to be true for many special classes of matroids:
graphic matroids [1], strongly base orderable matroids [9] (so also for transversal
matroids), sparse paving matroids [3], and for matroids of rank at most 3 [8] (see
also other related papers [2, 4, 6, 12]). We give first results valid for arbitrary
matroids.

We prove White’s conjectures ‘up to saturation’. Let m be the ideal generated
by all variables in the polynomial ring K[yB : B ∈ B] (so-called irrelevant ideal).
Recall that I : m∞ = {a ∈ SM : amn ⊂ I for some n ∈ N} is called the saturation
of an ideal I with respect to the ideal m. Notice that the ideal IM , as a prime ideal,
is saturated. Let JM be the ideal generated by quadratic binomials corresponding
to symmetric exchanges. Clearly, JM ⊂ IM and Conjecture 2 asserts that the
ideals JM and IM are equal. We prove that their saturations are equal.

Theorem 3 ([9]). For every matroid M , its toric ideal IM and the ideal JM gen-
erated by quadratic binomials corresponding to symmetric exchanges, have equal
saturations with respect to irrelevant ideal m. This means exactly that the homo-
geneous parts of IM and JM are equal starting from some degree.

As a corollary we get that both ideals have equal radicals and the same affine
set of zeros (since both IM and JM are contained in m). Moreover, it follows that
in order to prove Conjecture 2 it is enough to show that the ideal JM is saturated,
radical or prime.
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Ideals are one of the central objects of commutative algebra. From the point
of view of algebraic geometry one is interested in schemes defined by them. A
homogeneous ideal (both IM and JM are homogeneous) defines two schemes –
affine and projective. Ideals define the same affine scheme if and only if they
are equal. Thus Conjecture 2 asserts equality of affine schemes defined by IM
and JM . Homogeneous ideals define the same projective scheme if and only if
their saturations with respect to the irrelevant ideal are equal. Thus we prove
equality of projective schemes defined by them, Proj(SM/IM ) = Proj(SM/JM ).
The projective toric variety Proj(SM/IM ) has been already studied (see [5, 7]).
White proved that it is projectively normal [14].

We bound the degree in which the toric ideal of a matroid is generated. By
Hilbert’s basis theorem the ideal IM is finitely generated. However, it is not easy
to give any explicit bound. A bound follows from a more general theorem about
toric ideals. If a graded set A ⊂ Zd generates a normal semigroup, then the
corresponding toric ideal IA is generated in degree at most d (see Theorem 13.14
in [13]). For the matroid M we consider the set A = {χB : B ∈ B} ⊂ Z|E|,
where χB is a characteristic function of B in E. By [14] it generates a normal
semigroup (it is also an easy consequence of matroid union theorem). The toric
ideal corresponding to A is the ideal IM . Hence, the toric ideal of a matroid is
generated in degree at most the size of its ground set.

If we fix the size of the ground set, then there are only finitely many matroids
on it. So a common bound is not surprising. But, when we fix only the rank, then
the number of matroids of that rank is infinite. We prove that in this case there
is also a common bound on degree.

Theorem 4 ([11]). The toric ideal of a matroid of rank r is generated in degree
at most (r + 3)!.

As a corollary we get that checking if Conjecture 2 is true for matroids of a
fixed rank is a decidable problem (it is enough to check connectivity of a finite
number of graphs).
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[13] B. Sturmfels, Gröbner Bases and Convex Polytopes, Univ. Lecture Series 8, American Math-

ematical Society, Providence, 1995.
[14] N. White, The basis monomial ring of a matroid, Adv. Math. 24 (1977), 292–297.
[15] N. White, A unique exchange property for bases, Linear Algebra and its App. 31 (1980),

81–91.

Toric degenerations of complete local domains equipped with a

rational valuation

Bernard Teissier

In this note we work with algebraic varieties over an algebraically closed field
k. An approach to embedded resolution of singularities of an affine variety X ⊂
AN (k) by a single toric map after a suitable re-embedding AN (k) ⊂ AM (k)
was proposed in [5]. It received serious encouragement after a 2009 Oberwolfach
workshop when Jenia Tevelev proved in [7] a theorem for projective embeddings.
It states that any embedded resolution of an irreducible X ⊂ PN (k) is obtained
by base change from an embedded resolution of X ⊂ PM (k) by a single toric
birational map Z(Σ) → PM (k) of non singular toric varieties through a suitable
embedding PN (k) ⊂ PM (k). Here suitable means in particular that the toric
structure on PM (k) is such that X meets the torus, and of course the embedding
PN (k) ⊂ PM (k) depends on the given embedded resolution.

Tevelev’s result means in particular that embedded resolution by a suitable
toric birational map is not only possible whenever embedded resolution is, and in
particular in characteristic zero, but that it is also in some sense ”universal”.

How can one find suitable re-embeddings when no embedded resolution is known
to exist? One possibility, going back to the local case X ⊂ AN (k), is to try to
find local re-embeddings AN (k) ⊂ AM (k) and toric maps which will uniformize
a given valuation centered at a point x of X . This means that we can find, after
re-embedding, a birational toric map such that the strict transform X ′ ⊂ Z(Σ) of
X will be non singular and transversal to the toric boundary but only at the point
x′ ∈ X ′ picked by the valuation. According to [4] the valuations which are rational
concentrate the difficulty from this viewpoint. Rational valuations are those which
are such that the inclusion OX,x = R ⊂ Rν which determines the valuation, where
Rν is the valuation ring, satisfies mν ∩ R = m and R/m ≃ Rν/mν. Here we
assume that OX,x = R is an integral domain, which for the problems at hand is
permissible.

What suggests to look at valuations is that if X is a germ of analytically irre-
ducible curve X in AN (k) and x its singular point, its local ring R has a unique
valuation with value group Z and the semigroup of values Γ = ν(R \ {0}) is there-
fore finitely generated, say that it is minimally generated by γ1, . . . , γs. If we
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choose a system of generators ξ1, . . . , ξs of the maximal ideal of R having those
valuations, they determine a re-embedding X ⊂ As(k) which has an embedded
resolution by a single toric map. The reason is that in As(k) the curve X can
degenerate (or specialize) in an overweight manner (see [6]) to the monomial curve
Speck[tΓ] ⊂ As(k) which is an affine toric variety and as such has toric embedded
resolutions in any characteristic, some of which also resolve X (see [2]). The ring
k[tΓ] is the associated graded ring of R with respect to the valuation.

When one tries to generalize this to higher dimension things begin well: given
a rational valuation ν on R one defines a filtration of R by the valuation ideals

Pφ(R) = {x ∈ R \ {0}|ν(x) ≥ φ} ∪ {0}, P+
φ (R) = {x ∈ R \ {0}|ν(x) > φ} ∪ {0},

and the associated graded ring grνR =
∑

φ∈Γ Pφ(R)/P+
φ (R).

Because of the properties of rational valuations, all components of this graded
algebra are 1-dimensional vector spaces over k. This implies that if we take any
system of homogeneous generators (ξj)j∈J of the k-algebra grνR, the surjective
map of k-algebras

k[(Uj)j∈J ]→ grνR, Uj 7→ ξj

has a kernel generated by binomials; in fact it is isomorphic to the semigroup alge-
bra k[tΓ]. So we have our toric variety to which we want to degenerate, although
it may be of infinite embedding dimension as we are going to see.

Here, one meets the difficulty that the semigroup Γ = ν(R \ {0}) is not finitely
generated in general. Since R is noetherian, Γ has nevertheless some important
properties:

(1) It is well ordered, which implies that it has a minimal system of generators
Γ = 〈γ1, γ2, . . . , γi, . . .〉 where the generators (γi)i∈I are indexed by an
ordinal I which is ≤ ωdimR by results of Krull and Zariski.

(2) By a result of Campillo-Galindo (see [1]), it is combinatorially finite, which
means that the number of distinct ways of writing an element of Γ as a
sum of other elements is finite.

(3) By a result of Piltant (see [4]), even though grνR may not be noetherian, its
Krull dimension is the rational rank of the value group Φ of the valuation.

(4) In view of this, Abhyankar’s inequality reads, for rational valuations:
dimgrνR ≤ dimR.

The lack of noetherianity makes it difficult to use the valuation algebra of [4]:

Aν(R) =
∑

φ∈Φ

Pφ(R)v−φ ⊂ R[vΦ]

which describes the ”natural” specialization of R to its associated graded ring;
in fact in the absence of noetherianity we cannot get equations to describe this
specialization.

We are going to describe this specialization in another way, assuming that the
ring R is complete. The reduction to the complete case is a separate issue which is
treated separately and involves an assumption of excellence on the ring R, which
is satisfied in our case; see [3] and [6].
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Assume now that the equicharacteristic noetherian local domain R is complete
and endowed with a rational valuation with semigroup of values Γ = 〈(γi)i∈I〉.
Choose a field of representatives k ⊂ R.

Let (ui)i∈I be variables indexed by the elements of the minimal system of
generators (γi)i∈I of the semigroup Γ. Give each ui the weight w(ui) = γi and let
us consider the k-vector space of power series

∑
e∈E deu

e where (ue)e∈E is any set
of monomials in the variables ui and de ∈ k. Since Γ is combinatorially finite, for
any given series the map w : E → Γ, e 7→ w(ue) has finite fibers. Each of these
fibers is a finite set of monomials in variables indexed by a totally ordered set,
and so can be given the lexicographical order and order-embedded into an interval
1 ≤ i ≤ n of N. This defines an injection of the set E into Γ ×N equipped with
the lexicographical order and thus induces a total order on E, for which it is well
ordered. When E is the set of all monomials, this gives a total monomial order.

The combinatorial finiteness also implies that this vector space of series is a

k-algebra, which we denote by ̂k[(ui)i∈I ].
The weight of a series is defined to be the lowest weight of its terms. The

filtration by weight determines a topology on our ring. It has many nice properties,
in particular of completeness with respect to this topology. We can think of it as
a generalized power series ring with weights on the variables.

Theorem 1 (The valuative Cohen theorem). 1) There exist choices of represen-

tatives ξi ∈ R of the ξi minimally generating the k-algebra grνR such that the
application ui 7→ ξi determines a surjective map of k-algebras

π : ̂k[(ui)i∈I ] −→ R

which is continuous with respect to the topologies associated to the filtrations by
weight and by valuation respectively. The associated graded map with respect to
these filtrations is the surjective map

grwπ : k[(Ui)i∈I ] −→ grνR ≃ k[tΓ], Ui 7→ ξi = inνξi

whose kernel is a prime ideal generated by binomials (Umℓ

− λℓUnℓ

)ℓ∈L, λℓ ∈ k∗.

2) There exist elements Fℓ = um
ℓ

− λℓun
ℓ

+
∑

w(p)>w(mℓ) c
(ℓ)
p up which, as the

binomials run through a set of generators of the kernel of grwπ, topologically gen-
erate the kernel F of π.

Now we have equations for our degeneration! If the valuation is of rank one or
if Γ is finitely generated, any choice of the representatives ξi is allowed.
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On Cox rings of elliptic del Pezzo varieties

Antonio Laface

(joint work with Jürgen Hausen, Simon Keicher, Andrea L. Tironi, Luca Ugaglia)

1. Cox rings

In what follows a variety X will be always a normal projective variety, defined
over an algebraically closed field K of characteristic zero, such that the divisor
class group Cl(X) is finitely generated. The Cox sheaf and the Cox ring of a
variety X are respectively [5, 1]:

R :=
⊕

[D]∈Cl(X)

OX(D) R(X) := Γ(X,R).

A variety is a Mori dream space if its Cox ring is a finitely generated K-algebra.
Let f : X → Y be a birational morphism of varieties. If f is a small modification,
that is an isomorphism in codimension one, then f induces an isomorphism of
Cox rings. Moreover all the small modifications of X can be read off from its Cox
ring R(X). So one can assume f to be a divisorial contraction, whose exceptional
divisor E is prime. The Riemann-Roch space Γ(X,OX(E)) is one dimensional
since E is contractible. Let σ be a generator of this space.

Proposition 1 ([3]). With the above notation the pushforward map induces an
isomorphism of Cl(Y )-graded algebras R(X)/〈σE − 1〉 → R(Y ).

Assume now that f is a blowing-up of an irreducible and reduced subvariety C ⊆
Y which is contained in the smooth locus of Y . The second condition guarantees
the existence of the pullback of any Weil divisor of Y . Assume R = R(Y ) to be

finitely generated, let Ŷ = SpecY (R) be the relative spectrum of the Cox sheaf
of Y and let Y = Spec(R(Y )). Denote by J ⊆ R the irrelevant ideal, that is the
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ideal of Y \ Ŷ . Both Ŷ and Y are acted by the quasitorus H = SpecK[Cl(Y )] and

there is a good quotient map p : Ŷ → Y . Denote by I ⊆ R the ideal of p−1(C).
The extended saturated Rees algebra of I is:

R[I]sat :=
⊕

d∈Z

(Id : J∞)t−d,

where Id = R if d < 0. The second result is the following.

Proposition 2 ([3]). With the above notation there is an isomorphism of Cl(X)-
graded algebras: R[I]sat →R(X) defined by g · td 7→ f∗g · σd

E .

The above isomorphism can be used to provide an algorithm for computing
the Cox ring of X which terminates if and only if the latter is finitely generated.
First of all one constructs a subalgebra S of R[I]sat in the following way. We
want S to contain R and the variable t, so that the containment R[I] ⊆ S holds,
where the left hand side is the extended Rees algebra, without taking saturation.
Let gi ∈ Imi : J∞ with 1 ≤ i ≤ k be a finite set of homogeneous elements in
the saturated powers of I. The exponent mi is the Rees degree of gi and is the
multiplicity of V (gi) at the generic point of p−1(C). The subalgebra S is

S := R[g1t
−m1 , . . . , gkt

−mk , t] ≃
R[z1, . . . , zk, t]

〈z1tm1 − g1, . . . , zktmk − gk〉 : 〈t〉∞
.

Now, observe that the inclusion S ⊆ R[I]sat is strict if and only if there exists
a homogeneous element g ∈ R such that gt−d ∈ R[I]sat \ S and gt−d+1 ∈ S.
Equivalently the following holds:

gt−d+1 ∈ S ∩ 〈t〉R[I]sat \ 〈t〉S .

The ideals S ∩ 〈t〉R[I]sat and 〈t〉S have the same dimension, the first is prime and
the second is principal. The key observation now is that if h ∈ J \ I is any
homogeneous element then the localizations of R[I] and R[I]sat at h are equal and
thus both are equal to Sh. In particular the prime components of 〈t〉S , which are
all hypersurfaces being the ideal principal, are contained in V (h). We deduce that
the equality S = R[I]sat holds if and only if

dim〈t〉S > dim〈t, h〉S .

We use the above characterisation to provide an algorithm for computing Cox rings
of blowing-ups. Such algorithm thus consists of a saturation step, for computing
S, and a dimension test. The geometric meaning of the saturation step is the
following. A homogeneous presentation for the Cox ring R = R(Y ) defines a
closed embedding Y → Ar, where the codomain is the spectrum of the Cox ring
of a, not unique, toric variety Z where Y embeds. The map

Ar → Ar+k (x1, . . . , xr) 7→ (x1, . . . , xr, g1, . . . , gk)

embeds Y into another toric variety such that C is cut out by the torus orbit
where the last k coordinates vanish. The blowing-up map in Cox coordinates is
the following:

Ar+k+1 → Ar+k (x1, . . . , xr+k, t) 7→ (x1, . . . , xr, xr+1t
m1 , . . . , xr+kt

mk).
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Hence saturating with respect to 〈t〉∞ means to compute the strict transform of
Y . This operation is called a toric ambient modification.

Example 3. Let Y be the weighted projective plane P(7, 13, 18) and let π : X → Y
be the blowing-up at p = (1, 1, 1). The divisor class group Cl(X) is generated by
the class of H = π∗OY (1) and the exceptional divisor E. It is not difficult to show
that H2 = (7 · 13 · 18)−1. By applying the above algorithm one finds the following
elements in Rees degrees 1, 1, 1, 2, 3 respectively:

f1 = −x3z + y3, f2 = x7 − yz2, f3 = x4y2 − z3 f4 = x11y − 3x4y2z2 + xy5z + z5

f5 = x18 − 3x11yz2 − x8y4z + x5y7 + 5x4y2z4 − 2xy5z3 − z7.

The polynomial f1 defines a negative curve C of X which is linearly equivalent to
39H − E. Since −KX ∼ 38H − E the anticanonical class is not pseudoeffective.
The Cox ringR(X) is isomorphic to K[T1, . . . , T9]/I, where I is the ideal generated
by the following elements:

T1T
2

4
T6 − T2T8 + T5T7, T1T3T

2

4
− T2T7 + T5T6, T 2

1
T 3

4
T5 − T6T8 + T 2

7

T 4

1
T4 − T2T6 + T3T5, T1T4T

2

5
+ T3T8 − T6T7, T1T2T4T5 + T3T7 − T 2

6

−T 3

1
T8 + T4T

2

6
+ T 3

5
, −T 3

1
T7 + T2T

2

5
+ T3T4T6, −T 3

1
T6 + T 2

2
T5 + T 2

3
T4

−T 3

1
T3 + T 3

2
− T4T9, T 7

1
− T2T

2

3
− T5T9, T 4

1
T 2

2
− T 3

3
− T6T9

T 4

1
T 2

5
+ T1T

2

2
T4T6 − T 2

3
T7 − T8T9,

T 4

1
T2T5 + T1T

2

2
T3T4 − T 2

3
T6 − T7T9

and the degree matrix is the following:
[

7 13 18 39 49 54 90 126 0
0 0 0 −1 −1 −1 −2 −3 1

]

2. Del Pezzo elliptic varieties

A del Pezzo variety Y is a smooth n-dimensional projective variety such that
−KY ≃ (n − 1)H , with H ample. These varieties are classified [2, §12.1]. The
degree of a del Pezzo variety Y is d = deg(Y ) = Hn and lies in between 1 and 7.
These varieties exist in any dimension only for degree at most 4. Basic examples
are cubic hypersurfaces and complete intersection of two quadrics. Given such a
Y ⊆ Pn+d−2 one defines an elliptic fibration by resolving the indeterminacy of the
linear projection from a linear space L ⊆ Pn+d−2 of dimension d−2. The situation
is summarised in the following commutative diagram

X
π //

σ

��

Pn−1

Y

πL

<<

where σ : X → Y is the resolution of indeterminacy of πL and it consists of blowing
up d points, possibly infinitely near. The elliptic fibration is given by the complete
linear system of the divisor F := H − E1 − · · · − Ed, where H is the pull-back
σ∗OY (1) of a hyperplane section of Y . It is easy to show that

−KX = (n− 1)F.
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The variety X is a del Pezzo elliptic variety and its degree is the degree of Y .
The Mordell-Weil group Mw(π) of π is the group of C(Pn−1)-rational points of the
generic fiber of π. It can be determined by means of the Shioda-Tate-Wazir exact
sequence [4]:

0 //T //Pic(X) //Mw(π) //0,

where T is the subgroup generated by the classes of prime vertical divisors, i.e.
prime divisors D such that π(D) is a divisor, and the image of a rational section
of π. By exploiting the geometry of Y one can describe the prime vertical divisors
of Y for any such variety when d ≤ 4. The first result is given in the following
table (for the notation see [6]).

Deg Type Mw(π) Deg Type Mw(π)

1 X1 〈0〉 4 X40 Z3

2 X11 Z X41, X30 Z2

XSS Z/2Z X42 Z⊕ Z/2Z

X2 〈0〉 X31, X20, X21 Z

3 X111 Z2 X43 (Z/2Z)2

XS11, X12 (Z/2Z)2 X21, X22 Z/2Z

XSSS Z/3Z X10, X11 〈0〉

XS2 Z/2Z

X3, XS 〈0〉

Theorem 4 ([4, 6]). Let X be a del Pezzo elliptic variety of degree at most four
with elliptic fibration π : X → Pn−1. The Cox ring R(X) is finitely generated if
and only if the Mordell-Weil group of π is a finite group.

To prove the theorem when d ≤ 3 we explicitly compute the Cox rings by means
of the above algorithm. When d = 4 the above computations can be performed
only for some examples and thus we use Hu and Keel theorem [5]: we show that
the moving cone Mov(X) is union of polyhedral semiample cones of finitely many
flop images of X . The idea for determining Mov(X) in each case is the following.
The bilinear form on Pic(X)

〈A,B〉 =
(
−

1

n− 1
KX

)n−2

· A ·B

has the following property: if A is effective, B is irreducible and 〈A,B〉 < 0 then
B is contained in the stable base locus of A. Thus it immediately follows that the
following containment holds

Mov(X) ⊆ Eff(X) ∩ Eff(X)∨,

where the dual is with respect to the above bilinear form. We compute the cone
C ⊆ Eff generated by the classes of prime vertical divisors and the classes of the
elements of the Mordell-Weil group of π. The inclusion C ⊆ Eff(X) implies the
inclusion Eff(X)∨ ⊆ C∨. We then show, with a case by case analysis, that any
class in C∨ is movable proving the equalities C = Eff(X) and C∨ = Mov(X).
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Minimal rational curves on group compactifications

Michel Brion

(joint work with Baohua Fu)

Rational curves play an important role in the birational geometry of algebraic
varieties. In this talk, we present some questions and results on minimal rational
curves; these are intrinsically defined, and include lines in a projective embedding.
We begin with some basic definitions, referring to [10] for a detailed exposition of
rational curves on algebraic varieties, and to [6] for a survey of recent developments
about minimal rational curves.

Let X be a projective algebraic variety over the field C of complex numbers.
A rational curve on X is the image of a non-constant morphism f : P1 → X ;
we may assume that f is birational over its image (an irreducible curve, possibly
singular). A parameter space for all rational curves on X may be constructed as
follows. Start with the space of morphisms Hom(P1, X), an infinite disjoint union
of quasi-projective schemes. The morphisms that are birational over their image
are parameterized by an open subscheme Hombir(P1, X). The algebraic group
PGL(2) = Aut(P1) acts on Hom(P1, X) and stabilizes Hombir(P

1, X); moreover,
there exists a quotient morphism Hombir(P1, X) → RatCurves(X), which is a
principal PGL(2)-bundle. The normalization RatCurvesn(X) is an infinite disjoint
union of normal quasiprojective varieties, called families of rational curves. A
family V is called covering if the subvariety Vx consisting of curves through x is
non-empty for any general point x ∈ X . If in addition Vx is proper (or equivalently,
projective), then V is called minimal. Minimal families exist wheneverX is covered
by rational curves, as seen by considering rational curves through a general point,
which are of minimal degree relative to a fixed projective embedding of X , or
equivalently, to a fixed ample line bundle.

For example, when X is the projective space Pn, the rational curves of any
prescribed degree form a family in the above sense. Each such family is covering;
also, there is a unique minimal family V , consisting of all lines on Pn. Thus, V is
the grassmannian of 2-planes in Cn+1, and Vx ∼= Pn−1 for any x ∈ Pn.
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More generally, the families of minimal rational curves on an arbitrary (smooth,
projective) toric variety X have been described by Chen, Fu and Hwang in [4].
Part of their results can be summarized as follows.

Theorem 1. Let X be a smooth projective toric variety with torus T ∼= (C∗)n,
fan Σ and base point x.

(i) For any family V of minimal rational curves on X, there exists a T -stable
open subset U ⊂ X such that U ∼= (C∗)n−m × Pm equivariantly, and Vx
consists of all lines in Pm through x (in particular, Vx ∼= Pm−1).

(ii) There is a bijection between the families of minimal rational curves on X
and the primitive collections of Σ with zero sum.

We recall from [2] that a primitive collection of Σ is a finite set P = {v0, . . . , vm}
of primitive elements in the lattice N ∼= Zn of one-parameter subgroups of T , such
that P \ {vi} generates a cone of Σ for i = 0, . . . ,m, and P does not generate a
cone of Σ. The latter condition is fulfilled whenever v0 + · · · + vm = 0; we then
say that P has zero sum.

The proof of assertion (i) in the above Theorem uses an algebro-geometric result
of Araujo (see [1]); assertion (ii) is a direct consequence. It would be interesting to
obtain a direct proof of the Theorem by methods of toric geometry, and to extend
it to possibly singular toric varieties.

In another direction, an open question is to describe minimal families of rational
curves on any (smooth, projective) almost homogeneous variety X , that is, X is
equipped with an action of a connected linear algebraic group G with an open
orbit, say G ·x. Then G is generated by copies of additive or multiplicative groups;
thus, the orbit closures of the corresponding one-parameter subgroups and their
translates yield rational curves which cover X . Also, G acts on every family V
of rational curves on X ; the isotropy group H := StabG(x) acts on Vx, and V is
covering if and only if Vx is non-empty.

Baohua Fu and I treated the case where X is the wonderful compactification
of a semisimple algebraic group G with trivial center, introduced by De Concini
and Procesi in [5]. This is a smooth projective variety equipped with an action
of G×G and containing G as an open orbit, where G ×G acts on G by left and
right multiplication. Moreover, the boundary X \ G is a union of ℓ irreducible
divisors D1, . . . , Dℓ with smooth normal crossings, where ℓ is the rank of G, and
the G×G-orbit closures in X are exactly the partial intersections Di1 ∩ · · · ∩Dis .
Note that X comes with a base point x (the identity element of G), with isotropy
group G embedded diagonally in G×G.

Every algebraic group as above satisfies G ∼= G1 × · · · ×Gm, where G1, . . . , Gm

are simple; we have accordingly X ∼= X1 × · · · ×Xm, and each family of minimal
rational curves on X lives on some factor Xi. Thus, we may assume that G is
simple; then our main result may be stated as follows (see [3]):

Theorem 2. Let X be the wonderful compactification of a simple algebraic group
G with trivial center.

(i) There exists a unique family of minimal rational curves V on X.
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(ii) If G = PGLℓ+1, where ℓ ≥ 3, then Vx is equivariantly isomorphic to
Pℓ × (Pℓ)∗, where G acts diagonally.

(iii) If G 6= PGLℓ+1 for ℓ ≥ 3, then Vx is equivariantly isomorphic to the closed
G-orbit in the projectivization of the Lie algebra of G.

(iv) L · C ≥ ℓ for any ample line bundle L on X and for any curve C on X.

By (ii) and (iii), Vx is smooth and consists of 1 or 2 orbits of G. Also, in view
of (iv), X contains no line in any projective embedding, if ℓ ≥ 2. On the other
hand, if ℓ = 1 then G ∼= PGL2 and hence X is equivariantly isomorphic to the
projectivization of the space M2 of 2 × 2 matrices, on which G × G acts via the
action of GL2 × GL2 on M2 by left and right multiplication. Thus, X ∼= P3 and
the family of minimal rational curves consists of all lines.

More generally, the projectivization of the space Mℓ+1 of square matrices of
size ℓ + 1 yields a G × G-equivariant compactification Y of G := PGLℓ+1. The
G×G-orbit closures in Y are exactly the projectivizations Y1, . . . , Yℓ+1 = Y of the
determinantal varieties (consisting of matrices of rank at most 1, . . . , ℓ+ 1). Since
the singular locus of Yi is Yi−1 for i = 1, . . . , ℓ, we see that Y is not wonderful for
ℓ ≥ 2. The wonderful compactification X is obtained from Y by blowing up first
Y1, then the strict transform of Y2, and so on until Yℓ−1 (see [12]). The secant lines
to Y1 through x form a subvariety of the grassmannian, equivariantly isomorphic
to Y1 (the image of the Segre embedding Pℓ× (Pℓ)∗ → P(Cℓ⊗ (Cℓ)∗) ∼= P(Mℓ+1)).
The strict transforms of these lines in X yield the minimal family.

The structure of minimal families of rational curves on any projective rational
homogeneous variety X is also known, by work of Hwang and Mok (see [7, 8, 9]).
We then have X = G · x ∼= G/P , where G is semisimple and P = StabG(x) is a
parabolic subgroup of G. When P is maximal, there is a unique family of minimal
rational curves V on X ; moreover, Vx is smooth and consists of 1 or 2 orbits of P .
Also, V consists of the lines in the minimal projective embedding of X ; the linear
subspaces of X in that embedding have been studied by Landsberg and Manivel
(see [11]).

The general case of almost homogeneous varieties is much less understood,
already for the complete symmetric varieties of [5].
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Auf der Morgenstelle 10
72076 Tübingen
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