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Abstract. Emphasis in modern day efforts in mechanics of materials is in-
creasingly directed towards integration with computational materials science,
which itself rests on solid physical and mathematical foundations in thermo-
dynamics and kinetics of processes. Practical applications demand attention
to length and time scales which are sufficiently large to preclude direct ap-
plication of quantum mechanics approaches; accordingly, there are numerous
pathways to mathematical modelling of the complexity of material structure
during processing and in service. The conventional mathematical machinery
of energy minimization provides guidance but has limited direct applicability
to material systems evolving away from equilibrium. Material response de-
pends on driving forces, whether arising from mechanical, electromagnetic, or
thermal fields. When microstructures evolve, as during plastic deformation,
progressive damage and fracture, corrosion, stress-assisted diffusion, migra-

tion or chemical/thermal aging, the associated classical mathematical frame-
works are often ad hoc and heuristic. Advancing new and improved methods
is a major focus of 21st century mechanics of materials of interfaces and
evolving microstructure.

Mathematics Subject Classification (2010): 74xx.

Introduction by the Organisers

The workshop Mechanics of Materials: Mechanics of Interfaces and Evolving Mi-
crostructure attracted about 50 participants with broad geographic representation
from Europe and the United States. This workshop was a well balanced blend of
researchers with backgrounds in mathematics, mechanics and materials science.
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The organizers successfully recruited a significant number of younger representa-
tives of the mentioned research communities.

One of the most pressing current trends in materials discovery, design and devel-
opment involves the intersection of applied mathematics and computational/data
sciences with mechanics of materials and computational materials science to en-
hance understanding and to produce improved next generation computational
methods and materials modelling tools. This places increased emphasis on the pre-
dictive nature of computational mechanics pertaining to realistic material nanos-
tructures and microstructures. Material complexity is high - today’s leading mate-
rials are hierarchical, having characteristics of structure at multiple length scales
to satisfy a complex set of performance requirements and constraints. This is
true for materials in electronic devices, in automotive and aerospace applications,
multilayers for electronics and MEMS applications, interfaces for catalysis and
chemical separations, and numerous application domains.

This state of affairs motivated the central theme of this workshop, namely to
explore new and emerging mathematical approaches to describe interface proper-
ties and to quantify evolving microstructures. Owing to the mutual dependence
of properties on various scales, improved methods (both physically and mathe-
matically based) must be developed to describe correctly equilibrium and non-
equilibrium microstructure evolution at multiple length scales and time scales.
There are serious unresolved physical and mathematical issues in applying phase
field theory to realistic microstructures, up-scaling atomistic simulations to rel-
evant time and length scales, how to address the complexity of potential en-
ergy landscapes that govern interface structure and microstructure rearrangements
in materials undergoing deformation, damage, and phase/structure transitions,
mathematical methods to manage complexity of many body structure and de-
fect fields in real materials (big data and inverse modelling/data analytics), and
mathematical approaches to representing grain boundary and phase interfaces in
materials with an eye towards field theories that facilitate up-scaling.

Based on the above outline of current and highly relevant topics and the ex-
perience gained in organizing preceding workshops on mechanics of materials, the
following main topics were suggested:

• Phase field modeling and relations to realistic microstructures at multiple
scales, as well as other approaches to similar field equations.

• Coarse graining atomistic simulations to longer length and time scales to
support materials development.

• Mathematical methods for convergence in homogenization of materials
with microstructure (e.g., Γ-convergence).

• Thermodynamics and kinetics of evolving microstructure, including novel
mathematical approaches to explore complex energy landscapes of inter-
faces and heterostructures.

• Methods for reducing the order of continuum descriptions and mathemat-
ical techniques and data sciences approaches to address the ”big data”
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aspect of complex hierarchy of material structure and its relation to prop-
erties.

• Mathematical representation of evolving interfaces to facilitate field theory
approaches that bridge with atomistic and continuum levels of treatment.

The sequence and duration of the sessions were defined on Monday morning. They
were moderated by session chairs and each consisted of 1-2 overview lectures (30-
40 minutes each, including discussion), along with several short “thought piece”
contributions (2-3 presentations, each 15 minutes). Ample time was devoted to dis-
cussion, both during and following presentations. The format of sessions (subject
to hard stops for lunch and dinner), including coffee breaks, gave the flexibility to
maximize productive discussion. Reports from the session chairs were summarized
and discussed extensively on Friday.

The organizers regard this particular workshop as among the most successful in
the topical area of Mechanics of Materials in recent memory, for several reasons.
First, a number of young participants were involved and highly active in presenta-
tions and discussions, representing the next generation of blending applied math-
ematics with mechanics of materials. Second, the discussions were detailed and
animated from the outset, with many useful points and counterpoints discussed.
We believe that this workshop has launched many potentially fruitful couplings of
researchers in Europe and the USA, and has defined some specific target areas as
goals for mathematics, including extended methods that can consider convergence
characteristic of homogenization methods for evolving microstructure, include vis-
coplastic, dissipative cases, extreme value properties/responses in addition to mean
responses, methods for constrained optimization of nonconvex energy potentials
with relevance to shear banding and formation of laminate microstructures, and
enhancement of mathematical approaches for modelling the role interfaces.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Rainer Glüge (joint with Jan Kalisch, Albrecht Bertram)
The spectral decomposition of the stiffness hexadic in gradient elasticity 821

Thomas Hochrainer (joint with Alireza Ebrahimi, Stefan Sandfeld, Michael
Zaiser)
Continuum dislocation dynamics: current state and open topics . . . . . . . 824

Jörn Ihlemann (joint with Hans Wulf)
Self-organizing processes in rubbers microstructure . . . . . . . . . . . . . . . . . . . 827

Dennis M. Kochmann (joint with Jeff Amelang, Gabriela Venturini, Ishan
Tembhekar)
From atomistics to the continuum: bridging across scales and the
quasicontinuum method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829



802 Oberwolfach Report 17/2016

Carolin Kreisbeck (joint with Fabian Christowiak)
On the effective material response of bilayered composites in
finite crystal plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830

Khanh Chau Le (joint with Christina Günther, Michael Koster, Binh
Duong Nguyen)
Dislocation mechanism of microstructural changes in ductile single
crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

Robert Lipton
Propagation of Complex Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

Felix Meier (joint with Ewald Werner)
Application of crystal plasticity in the field of microelectronics . . . . . . . . . 835

Sinisa Mesarovic
Meso-scale continua for moving interfaces in fluids and solids: open
problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838

Sinisa Mesarovic
Size-dependent energy in mesoscale dislocation-based continua . . . . . . . . . 839

Alexander Mielke
Relaxation of a rate-independent phase transformation model
for the evolution of microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

Stefan Neukamm
Mathematical multiscale analysis in continuum mechanics . . . . . . . . . . . . 842
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Abstracts

Numerical solution of generalized mechanics based on a variational
formulation

B. Emek Abali

(joint work with Wolfgang H. Müller)

A beam of a length in micrometer range shows a phenomenon called size effect
that is well-observed in experiments. Classical mechanics fails to describe this
phenomenon accurately. Various proposals in the literature are called with differ-
ent names, viz., strain gradient theory, micropolar theory, micromorphic theory.
They all have higher gradients in space, which play a role in the formulation of
the theory. For the case of elasticity we present the variational formulation includ-
ing second gradients in space and obtain the weak form necessary for performing
numerical simulations.

1. Principle of least action in generalized mechanics

In order to obtain the weak form there are different possible approaches used in the
literature. A usual way is to start with balance equations and determine the field
equations describing the system. In case of classical mechanics, where we ignore
electric charge and any deviation from the reference temperature, we employ the
balance of linear momentum in order to calculate displacements. In this approach
the balance of linear momentum is the axiom; we just start with it.

Another approach is to start axiomatically with a Lagrangean density, L. For
example, in case of classical mechanics,

(1) L = L
(
xµ, φA, φA,µ

)
,

states that there is a function capable of describing the system. This Lagrangean
density depends on any number of coordinates, xµ, on some primitive variables,
φA, and on its first gradients, φA,µ. The generalization is now obvious: In case
of generalized mechanics we include at least one more gradient of the primitive
variables such that Lagrangean density in generalized mechanics becomes

(2) L = L
(
xµ, φA, φA,µ, φA,µν

)
.

For orthonormal coordinates we can introduce an action functional:

(3) A =

∫

Ω

LdΣ , dΣ = dx1 dx2 . . . dxm .

The principle of least action asserts that this action is an invariant under a transfor-
mation of primitive variables and its derivatives. In other words, the value of action
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remains the same if we apply an arbitrary transformation in {φA, φA,µ, φA,µν} as
{φ′

A, φ
′
A,µ, φ

′
A,µν} such that

(4)

δA = 0 ,

δA =

∫

Ω

L′ dΣ−
∫

Ω

LdΣ .

The prime of Lagrangean density has the following meaning:

(5)
L′ = L

(
xµ, φ

′
A, φ

′
A,µ, φ

′
A,µν

)
,

φ′
A = φA + εδφA , φ′

A,µ = φA,µ + εδφA,µ , φ′
A,µν = φA,µν + εδφA,µν ,

with a small number ε the so-called test functions, δφA, are arbitrary. We can
now expand L′,

(6) L′ = L+
∂L
∂φA

εδφA +
∂L

∂φA,µ
εδφA,µ +

∂L
∂φA,µν

εδφA,µν ,

and obtain out of the principle of least action by dividing by the constant ε,

(7)

∫

Ω

(
∂L
∂φA

δφA +
∂L

∂φA,µ
δφA,µ +

∂L
∂φA,µν

δφA,µν

)
dΣ = 0 .

The coordinates are space, Xi ∈ B0, denoting to particles; and time, t ∈ τ , such
that the latter variational form reads

(8)

∫

τ

∫

B0

(
∂L
∂φA

δφA +
∂L
∂φ•

A

δφ•
A +

∂L
∂φA,i

δφA,i+

+
∂L
∂φ••

A

δφ••
A +

∂L
∂φ•

A,i

δφ•
A,i +

∂L
∂φA,ij

δφA,ij

)
dV dt = 0 .

Furthermore, for addressing boundary terms we need the redefine the action func-
tional:

(9) A =

∫

τ

∫

B0

LdV dt+

∫

τ

∫

∂B0

Ws dAdt+

∫

τ

∫

∂∂B0

We dℓ dt,

since we have second gradients in primitive variables, ∂∂B0 is admissible, where
dℓ denotes a line element. We assume that Ws and We depend only on primitive
variables in order to have a physical interpretation of the boundary terms.

2. Generating the weak form

For a numerical calculation such as by using finite element method, we necessitate
the weak form following naturally from Eq. (8) after integrating by parts all the
terms with a time rate in the test functions,

(10)

∫

B0

(
∂L
∂φA

δφA −
( ∂L
∂φ•

A

)•

δφA +
∂L

∂φA,i
δφA,i+

+
( ∂L
∂φ••

A

)••

δφA −
( ∂L
∂φA,i

)••

δφA,i +
∂L

∂φA,ij
δφA,ij

)
dV+

+

∫

∂B0

∂Ws

∂φA
δφA dA+

∫

∂∂B0

∂We

∂φA
δφA dℓ ,
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where the boundary (in time) terms vanish. This fact can be seen as prescribing
φA and φ•

A in the initial time, we know the values in the last two time steps
by considering in a discrete in time fashion. Since we know the values the test
function vanishes on the (time) boundaries. The latter integral form in Eq. (10) is
called the weak form.

In mechanics the only primitive variable is the displacement:

(11) φA = ui , ui = xi −Xi ,

which indicates the difference between the current position, xi, and the reference
position, Xi, denoting the particles. For the Lagrangean energy density we can
employ the following function:

(12) L =
1

2
ρ0u

•
iu

•
i − w + ρ0(fiui + lijuj,i) ,

where the first term addresses the kinetic energy density, w is the stored energy
density, the last term creates volumetric change in the displacement and its gradi-
ent. For the energy densities on the boundaries we may choose a simple approach:
The energy density on the surface, Ws = t̂iui, gets use of a traction vector, t̂i, as
the force per area; since a physical interpretation is difficult we may set the energy
on the line as being zero, We = 0. Now by inserting the energies on the boundary
and lines into the weak form and after using Euler backwards time discretization
with a finite element method in space, the weak form for generalized mechanics
reads
(13)

Form =

ele.∑

n=1

∫

En

(
ρ0fiδui − ρ0

ui − 2u0
i + u00

i

∆t∆t
δui −

∂w

∂ui,j
δui,j + ρ0ljiδui,j−

− 1

∆t∆t

( ∂w

∂ui,j
− 2

∂w0

∂u0
i,j

+
∂w00

∂u00
i,j

)
δui,j −

∂w

∂ui,jk
δui,jk

)
dV +

∫

∂B0

t̂iδui dA ,

with

(14)
w0 = w(E0

ij , E
0
ij,k) , w00 = w(E00

ij , E
00
ij,k) ,

E0
ij =

1

2
u0
k,iu

0
k,j + u0

(i,j) , E00
ij =

1

2
u00
k,iu

00
k,j + u00

(i,j) .

For a successful implementation we only need an adequate definition of the stored
energy density. Depending on this energy definition one can construct different
theories existing in the literature. The simplest choice is quadratic in strain and
strain gradients:

(15) w = w(Eij , Eij,k) = EijCijklEkl + Eij,kDijklmnElm,n + EijGijklmEkl,m ,

for a homogeneous material, where the strain can be a nonlinear measure:

(16) Eij =
1

2
uk,iuk,j + u(i,j) .

We refer to [1] or [2] for a concrete representation of the coefficients, Cijkl, Dijklmn ,
Gijklm , for isotropic materials.
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By using the weak form in Eq. (13) we can implement and solve any particular
problem with strain gradient elasticity. We recall that the weak form has been
taken out from a variational formulation. This formulation seems to be more
beneficial for a generalization since the only way to generalize the Lagrangean
density relies on adding one more gradients of primitive variables.

References

[1] F. dell’Isola, G. Sciarra, S. Vidoli, Generalized Hooke’s law for isotropic second gradient
materials, Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Science, 465 (2009), 2177–2196.
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Calculation of stress field of a disconnection

Amit Acharya

(joint work with Chiqun Zhang)

We demonstrate a method for mathematically representing a disconnection defect
in a grain boundary

(1) as a composite of a disclination dipole and a slip dislocation and
(2) by a dislocation whose Burgers vector is the sum of the effective Burgers

vector of the disclination dipole and the slip dislocation.

We then compute the stress and energy density fields of these two configurations
and compare them. The calculations are done by a finite element implementation
of a novel theory of combined dislocations and generalized disclination defects [1].

References

[1] A. Acharya, C. Fressengeas, Continuum mechanics of the interaction of phase boundaries
and dislocations in solids, G.-Q.G. Chen et al. (eds.), Differential Geometry and Continuum
Mechanics, Springer Proceedings in Mathematics and Statistics, 137 (2015), 123–164.

Line defect dynamics and solid mechanics

Amit Acharya

(joint work with Chiqun Zhang, Xiaohan Zhang)

We describe a model of dislocation dynamics in a Pde-setting capable of rep-
resenting motion of individual dislocations in the presence of inertia and finite
deformation effects. We compare our results with molecular dynamic simulations
showing supersonic dislocation motion. Our careful computations show an appar-
ent Peierls stress effect in a translationally-invariant Pde-model that demands ana-
lytical substantiation or falsification. We also demonstrate calculations of coupled
dislocation and disclination fields representing penta-twin configurations observed
in nano-crystalline materials (wires).
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Balance laws for gradient materials

Albrecht Bertram

Since certain material effects cannot be described within the scope of simple ma-
terials - in principle, there has been some interest during recent years in the de-
velopment of generalized continuum theories like polar-media, micromorphic, and
non-local ones. Particularly, gradient materials have been studied, which offer
interesting possibilities for modeling and simulation. In these cases, the set of
the classical kinematical and dynamic variables that appear in the constitutive
equations, is enlarged by higher strain gradients and work-conjugate higher stress
tensors. In doing so, a set of interesting questions arises immediately like, e.g.

• How do the balance laws look like?
• What additional boundary conditions are needed?
• What are the properties of the higher-order stress tensors?

Nowadays the usual way to investigate these problems is based on the Princi-
ple of Virtual Power (Germain (1972), Bertram (1983), Trostel (1985), Del Piero
(2009), and many others). In the present context, the starting point is the power
functional. As a Principle of Determinism the existence of a power functional is
assumed, which gives the value of the current total power depending on the motion
of the body with respect to an observer. Secondly, it is assumed that the power is
an objective quantity for admissible motions. As a second step, the power func-
tional is extended on the set of virtual velocity fields in a continuous and linear
way, which gives the Principle of Virtual Power (PVP). With this at hand, we can
define forces and torques and derive the two balance laws for the linear momentum
and moment of momentum. A field formulation of the PVP and the dynamical
variables can then be obtained by applying the Riesz representation theorem for
linear and continuous functionals. This way, higher-order stress fields are intro-
duced. Their properties can then be studied. By repeatedly applying integration
by parts, we obtain the surface terms for the dynamical quantities, from which
we can derive the Neumann boundary conditions. However, these become rather
lengthy and complicated for higher orders gradient materials. It turns out that
all higher-order stress tensors are objective under change of observers. However,
only the classical second-order stress tensor is symmetric due to the balance of
moment of momentum, while the higher-order ones can only be submitted under
the same subsymmetries as the work conjugate kinematical quantities. The order
of such gradient theories depends on the Sobolev norm which we introduce on the
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set of virtual velocity fields. If the order of it is two, we obtain the classical simple
material after Cauchy. The orders higher than two stand for gradient materials.
It is interesting that also the order of one gives a reasonable theory. It can be in-
terpreted as a Newton theory for remote masses interacting exclusively by central
forces. Here the balance of torques becomes trivial, while the balance of forces
remains non-trivial.

A summary of the results and further material modeling of gradient materials
can be found under http://www.ifme.ovgu.de/ifme media/CompendiumGradient-
MaterialsJan2016.pdf.

Slip Transfer Geometry and Deformation Anisotropy

Thomas R. Bieler

(joint work with Scott C. Sutton, Bret E. Dunlap, M.A. Crimp, B.L. Boyce)

Heterogeneous deformation is commonly understood as the origin of plastic insta-
bilities that precede damage, so modeling how grain boundaries influence deforma-
tion presents an ongoing challenge for mesoscale models. An example is provided
(based upon a more extensive discussion in [1, 2]) to illustrate how a simple de-
scription of the geometry of slip transfer may or may not be able to provide a
means to introduce an appropriate barrier for slip across grain boundaries into a
model. A geometric description of slip transfer is illustrated in Fig. 1, showing slip
planes and slip directions within grains on either side of a grain boundary. Three
angles define the geometry, the angle between the two plane normal directions, the
angle between the two slip directions, and the angle that the two planes make in
the grain boundary plane. Two commonly used measures of slip transmissibility
are the m′ parameter introduced by Luster and Morris [3], and a similar parameter
identified by Lee, Robertson and Birnbaum [4]. As the angles become smaller, the
ease of slip transfer increases. The number of values for these parameters for a
given boundary is the number of slip systems squared, but only the values related
to active slip systems are relevant. This parameter carries no information about
grain boundary energy or its evolution due absorption of dislocations or other
defects.

The role of grain boundaries on heterogeneous deformation in an initially pol-
ished polycrystalline tantalum polycrystal was examined using EBSP maps ob-
tained after incremental deformation in bending of pure Ta to identify regions of
heterogeneous deformation. Figure 2 illustrates an example of slip transfer across
a boundary in the center the image after deformation to a strain of ∼8%. The
boundaries above and below do not show slip transfer, and instead, topographic
ledges along the boundary suggest that sliding occurred.

Figure 3 gives an example of a slip transfer computation. First, the Schmid
factors are computed for all slip systems in grains 86 and 97; <111> slip directions
on {110} planes are numbered 1:12, and 13:24 are on {112} planes. The slip
systems are sorted in decreasing order of the Schmid factor. For grain 97, {112}
slip on system 16 has the highest Schmid factor of 0.47, and the next highest
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Figure 1. Geometry of slip transfer at a grain boundary

Figure 2. Example of grain boundaries in a pre-polished pure Ta
sample with observed slip transfer in the middle grain boundary,
and lack of slip transfer in boundaries at the top and bottom of
the figure. The color overlay indicates grain orientations based
upon a normal direction inverse pole figure map.

systems go across the top of the table. Similarly, slip systems in grain 86 are
listed downward. The m′ parameter is shown within the table for each pair of slip
systems. Most of the m′ values are rather small in this example, but five in bold
font have values above 0.7. Slip systems with higherm′ values are illustrated within
the unit cells, and the m′ values are indicated between the illustrated slip systems.
The highest value of m′ is 0.93 between the 4th highest slip system in grain 97
with a Schmid factor of 0.45, and the 2nd highest slip system in grain 86 with a
Schmid factor of 0.47. Because the actual local stress state is not known at the
boundary, and because the local grain orientation along the boundary varies due
to orientation gradients resulting from the accumulated deformation, the values
are estimates. As a meaningful value of m′ for a given boundary is desirable, the
highest three values of m′ among the most favored four slip systems in each grain
are averaged (there are certainly other ways to obtain a meaningful value).

Two rolled and recrystallized specimens are compared, one bent transverse to
the original rolling direction, and the other parallel to the rolling direction. Local
average misorientation maps are shown in Fig. 4, indicating that some boundaries
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Figure 3. Slip transfer calculation between grains 86 and 97
based upon uniaxial tension and average grain orientations in
BCC Ta with <111> slip on {110} and {112} planes.

exhibit large orientation gradients close to 2◦, while other boundaries show no
misorientation different from that of the grains on either side. The overall pattern
of misorientation shows a fairly homogeneous value in the TD sample of about 0.5◦

(light green), while the sample deformed in the rolling direction has much lower
orientation gradients within grains, and fewer boundaries with high local average
misorientation.

The hypothesis that boundaries with higher orientation gradients may be the
result of low m′ values was assessed, i.e. a higher density of geometrically nec-
essary dislocations may indicate a dislocation pileup arrangement resulting from
the inability to accomplish slip transfer. A reconstructed boundary file (providing
segments of grain boundaries with the average grain orientations on either side)
was used to compute m′, and the value is used to color the boundary according
to a color scale illustrated on the horizontal m′ axis of the plots in the center of
the figure. Then, along each boundary, an estimated value for the misorientation
was assigned to the corresponding m′ value, and a cumulative distribution was
was generated (black dotted lines). Sub populations based upon misorientation
bins are indicated by colored lines correlated to the LAM plots. At a cumulative
probability of 0.75, the spread between boundaries with low misorientation and
high misorientation is the largest in the TD sample (Fig. 4a), indicating that low
m′ values are correlated with high LAM values, and high m′ values with low LAM
values for the specimen deformed in the transverse direction (note examples in
solid ellipses, and one of many exceptions to the trend noted by the dashed el-
lipse). However, there is no such correlation for the sample deformed in the rolling
direction (Fig. 4b).

This result clearly indicates that the nature of slip as well as slip transfer is
distinctly different in the same material deformed in the transverse vs. rolling
directions, for reasons that are not clear. The lesser amount of local average mis-
orientation in the sample deformed in the rolling direction may reflect stability
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Figure 4. Local average misorientation (a measure of geometri-
cally necessary dislocation density) is plotted spatially and com-
pared with average m′ values on each boundary in a cumulative
distribution plot that indicates a meaningful correlation for the
sample deformed in the transverse direction, but not in the rolling
direction (Boundaries with m′ values less than 0.6 were lumped
into a single bin, and are not plotted).

in the grain orientations resulting from the rolling deformation texture and sub-
sequent recrystallization. Such stability may account for fewer grain orientation
pairs that deform heterogeneously, which is supported by the different changes in
textures shown in Fig. 5, where strengthening of texture occurred in both samples.
The strengthening was less in the transverse deformation, leading to a four-fold
symmetric set of orientations, suggesting that many grain orientations were less
stable, and rotated, leading to a more varied range of dislocation activity.

There are clearly improvements that can be made in such an analysis. First,
comparison of observed slip bands with favored slip systems will indicate which
slip systems are most active, and lead to better guidance on choosing what values
of m′ are most meaningful for the boundary. Second, evaluation of m′ along the
boundary using local orientations will lead to varying measures of m′ with posi-
tion, which can be more directly compared to observable features related to ledge
formation and slip transfer. This may lead to identification of a m′ threshold value



814 Oberwolfach Report 17/2016

Figure 5. The texture changes in the transverse and rolling di-
rections are illustrated in (011) pole figures. In both cases the
texture sharpened, but there was more reorientation in the trans-
verse direction.

below which slip transfer is not likely. Ideally, comparison with a geometrically
accurate computational model of the same microstructure would enable the local
stress tensor as well as the amount of shear to be identified, and this could be used
as a way to identify which slip systems are most favored, and to examine whether
m′ or similar parameters can account for observed heterogeneous features. Such
an approach is illustrated in [1] for a titanium alloy microstructural patch where
such ideas are examined in greater detail. However, it is not clear if any of these
refinements could result in a meaningful predictor of slip transmission in the rolling
direction deformation.
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The Method of CAC: A Concurrent Atomistic-Continuum
Methodology

Youping Chen

(joint work with David L. McDowell)

This talk starts with an overview of coarse grained atomistic methods and major
challenges in the developments of general static and dynamic concurrent multi-
scale methods, i.e., the existence of ghost force, the spurious wave reflection and
the defect reflection by numerical interfaces that link regions governed by different
materials descriptions. We assert that the origin of the problems is the mismatch
of the materials descriptions, which gives rise to the mismatch of phonon rep-
resentation and defect representation. We argue that, to develop a concurrent
atomistic-continuum method for dynamic simulation, we must unify the formu-
lations of their governing laws; for this unified formulation, we must go beyond
the existing statistical mechanics methods to develop a new formalism; this new
formulism should lead to reformulation of continuum mechanics to include the
information of molecular structure and interaction and to recast of the governing
equation to facilitate simulation of discontinuous phenomena.

We then introduce a new formalism, with which a crystalline material is de-
scribed as a continuous collection of material points (or lattice cells), while em-
bedded within each material point is a group of discrete atoms. Following the
nonequilibrium statistical mechanical theory of transport processes developed by
Irving-Kirkwood, this concurrent two-level description leads to a new multiscale
mathematical representation of the balance law, as exact consequences of New-
ton’s second law. The new balance equations, supplemented by the underlying
interatomic potential, solve for both the continuous lattice deformation and the
rearrangement of atoms within the lattice cells, naturally resulting in a concurrent
atomistic-continuum methodology (CAC); the two limiting cases, i.e., the atomic
and the macroscopic scales, recover the atomistic and continuum descriptions of
transport processes, respectively. The resulted single set of balance equations gov-
ern both static and dynamic problems, thermo-mechanical and thermal transport
problems, and monatomic and polyatomic materials. Numerical examples of the
CAC simulation are briefly presented, including CA simulation of the fast moving
dislocations and the comparison between CAC and MD results, the propagation
of heat pulse in single crystalline materials, and the dynamic interaction between
phonons and dislocations and that between phonons and grain boundaries.

Dislocation models of semicoherent interfaces

Michael Demkowicz

Semicoherent interfaces between crystalline solids are interfaces whose internal, in-
plane structure may be described as a network of dislocations. The regions between
the dislocations are coherent, i.e. they are characterized by perfect, atom-to-atom
matching of the neighboring crystals. The dislocations that separate these regions
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accommodate differences in lattice parameter, crystal structure, or orientation be-
tween the neighboring crystals. Much work has recently been devoted to modeling
semicoherent interfaces and their properties [1].

The structure of semicoherent interfaces is generally well represented by atom-
istic models based on classical potentials. However, the atomistic approach to
investigating semicoherent interfaces is not well suited to high-throughput stud-
ies. For example, given that it takes at best several hours to construct, relax, and
analyze a single atomistic interface model, investigations of the full, five-parameter
space of interface crystallographic character would take several decades. To make
high-throughput investigations feasible, we have undertaken to develop a much
faster model of semicoherent interface structure: one that does not track atomic
positions, but rather only the dislocations that compose the interface. The goal of
this model is to enable rapid scanning over the space of interface crystallographic
characters while retaining a level of precision suitable to the application of interest.

Our model is based on the quantized Frank-Bilby equation (qFBE) and anisotro-
pic linear elasticity theory [2]–[4]. The qFBE relates the crystallographic character
of an interface to its Burgers vector content. For any interface, it provides a set of
candidate dislocation network structures that are consistent with the prescribed
crystallography. The linear elasticity component of our model computes the elastic
strain energy of each of these solutions. We select the solution with lowest elastic
strain energy as the structure most likely to be encountered in a full atomistic
model of the interface of interest.

We have compared our predictions with atomistic simulations of fcc/bcc in-
terfaces formed along the closest-packed planes of the neighboring crystals. We
obtained excellent agreement in the interface structures found by these models [2].
More surprisingly, the elastic energies predicted by the dislocation-based model
were often in quantitative agreement with the relative interface energies computed
from the full atomistic models. Such agreement was not initially expected, as the
dislocation-based model is a “minimal” description of the interface that ignores
many important factors, such as dislocation core energies, dislocation network re-
laxations, and elastic nonlinearities. The success of this model gives hope that fast,
semi-quantitative predictions of the structure, energy, and physical properties of
general interfaces may be achieved without resorting to full atomistic models.
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Topology and hysteretic domain-wall transitions in ferromagnets

Lukas Döring

(joint work with Radu Ignat, Felix Otto)

Let x = (x1, x3) ∈ Ω := R × (−1, 1) and consider m ∈ Ḣ1(Ω, S2) such that for
m′ = (m1,m3), we have

∇ ·m′ = ∂1m1 + ∂3m3 = 0 in Ω, m3 = 0 on ∂Ω.

Moreover, for m±
θ := (cos θ,± sin θ, 0), θ ∈ [0, π2 ], we introduce the notation

m(±∞, ·) = m±
θ

Def.⇐⇒
∫

{x1>0}

|m−m+
θ |2dx+

∫

{x1<0}

|m+m−
θ |2dx < ∞

and let

Mθ :=
{
m ∈ Ḣ1(Ω; S2)

∣∣∣ ∇ ·m′ = 0 in Ω, m3 = 0 on ∂Ω, m(±∞, ·) = m±
θ

}
.

To any m ∈ Mθ, we can associate both a “degree”

D(m) := 1
2π

∫

Ω

m · ∂1m× ∂3mdx ∈ Z

and a “winding number”

W (m) := 1
π

∫

Ω

∇m1 ×∇m2 dx ∈ Z.

We may now ask the following question (see also [1, 2]) that will be addressed in
a forthcoming paper:

Question: Is

inf

{∫

Ω

|∇m|2dx
∣∣∣∣ m ∈ Mθ, Q(m) = q

}

attained for all θ ∈ (0, π2 ] and q ∈ {−1, 0, 1}, where Q denotes either the degree D
or the winding number W? What about a general q ∈ Z?

The above problem arises in the analysis of the internal structure of domain walls in
soft ferromagnetic films. Domain walls are transition layers that separate regions
(“domains”) of constant magnetization directions m±

θ . By Ω, we denote the cross-
section in the x1x3-plane of a ferromagnetic film that is infinitely extended in the
x1x2-plane.

A version of the aforementioned minimization problem without topological con-
straint appears in [1] as the Γ-limit of the micromagnetic energy functional

Eη(m) :=

∫

Ω

|∇m|2 + λ ln( 1η )

∫

R2

|h|2dx+ η

∫

Ω

(m1 −H)2 +m2
3 dx,

for η ↓ 0. Here, the stray field h = −∇u : R2 → R2 solves Maxwell’s equation

∇ · (h+m′1Ω) = 0 in D′(R2).

Up to a logarithm, the parameter η ≪ 1 denotes the quality factor of the anisotropy
of the material, while λ > 0 may be interpreted as (non-dimensionalized) film
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thickness. Finally, H ∈ [0, 1] is the reduced strength of an external magnetic field
along the x1 direction.

In particular (see [1, Corollary 1]), we have for H = cosα, α ∈ (0, π
2 ], that

min
{
Eη(m)

∣∣ m : Ω → S
2, m(±∞, ·) = m±

α

}

η↓0→ min
θ∈[0,π

2
]

(
min

m∈Mθ

∫

Ω

|∇m|2dx+ 2πλ (cos θ −H)2
)
.

On the level of the wall energy and in a certain regime of film thicknesses, the
result confirms the prediction [4] that the favored domain walls are an optimal
combination of a stray-field free wall core (corresponding to the first term of the
limit energy) and logarithmic wall tails (corresponding to the second term of the
limit energy).

Numerically, one can identify two critical points of the “exchange energy inte-
gral”

∫
Ω
|∇m|2dx in Mθ that correspond to transition layers that are called asym-

metric Néel and asymmetric Bloch wall, respectively. Both are known in physics
since the late 1960s. [3, 4]

Since these numerical solutions clearly have different degrees and winding num-
bers, it is natural to ask whether both wall types are local minimizers in their
respective topological classes.

A related question concerns the stability of those wall types: In numerical
simulations [5] and experiments [6], hysteretic transitions between asymmetric
Néel and Bloch walls are observed under a varying external field H . From a
theoretical point of view, this hysteresis has not yet been explained. In particular,
the transition fields HBN and HNB that mark the transition from Bloch to Néel
wall and vice versa, are not known.

If both asymmetric wall types are global minimizers of the exchange energy in
their topological class, i.e., local minimizers of the exchange energy in Mθ without
topological constraint, one cannot expect a continuous transition between these
wall types in the leading-order Γ-limit of the Landau-Lifshitz energy Eη. Hence,
either a higher-order expansion that allows for non-zero normal component m3 on
∂Ω or some other mechanism of instability has to be considered.
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A phase-field model of dislocations on several slip planes

Peter Gladbach

(joint work with Sergio Conti)

We extend the Peierls-Nabarro model of crystallographic slip developed in [1] to
multiple parallel slip planes ωhm = ω × {hm} in an elastic medium Ω = ω × R,
where ω ⊂ R2 and M ∈ N, h1 < . . . < hM ∈ R. The normal to the slip planes in
this case is e3 but can be any unit vector by rotation. We allow crystallographic
slips bm : ωhm → R2 in tangential direction on each slip plane, where we penalize
deviations from the Burgers lattice B ≈ Z2 ⊂ R2 with a Peierls potential

(1) EPeierls
ε [b1, . . . , bM ] =

1

ε

M∑

m=1

∫

ωhm

dist2(bm,Z2) dH2.

Additionally there is a nonlocal elastic interaction term due to nonconstant slip
fields. More precisely, the boundaries between regions of different slips are dislo-
cations, which induce long-range elastic stress in the bulk Ω. We characterize the

interaction in terms of an optimal displacement field u : Ω \⋃M
m=1 ωhm → R3 as

(2) Eelastic
h1,...,hM [b1, . . . , bm] = inf

{∫

Ω\
⋃

M
m=1 ωhm

CEu ·Eudx : [u] = bm on ωhm

}
,

where [u] = T+u− T−u denotes the jump of u in the sense of the difference of its
two traces. The total energy in terms of the slip vector field b = (b1, . . . , bM ) : ω →
R2M is then Eε,h1,...,hM [b] = EPeierls

ε [b] + Eelastic
h1,...,hM [b]. Note that this constitutes

a 2-dimensional model, as
∑M

m=1 dist
2(bm,Z2) = dist2(b,Z2M ), and the elastic

interaction can be written as

(3) Eelastic
h1,...,hM [b] =

∫

ω

∫

ω

(b(x)−b(y))Jh1,...,hM (x−y)(b(x)−b(y)) dH2(x) dH2(y),

with Jh1,...,hM : R2 → RnM×nM .
We investigate the asymptotic behavior of Eε,h1,...,hM [b]/| log ε| to develop a

line-tension limit. The limit energy for a single plane, in the sense of Γ-convergence,
was shown in [2] to be the functional defined on the space BV (ω,Z2) given by

(4) ILT [b] =

∫

Sb

ϕrel([b], ν) dH1,

where Sb ⊂ ω denotes the jump set of b, [b] ∈ Z2 the magnitude of its jump, and
ν ∈ S1 its in-plane normal. The energy density ϕrel : Z2 × S1 → [0∞) is the
BV -elliptic envelope of the self-energy of a straight dislocation line ϕ : Z2 ×S1 →
[0,∞). The relaxation operation accounts for dislocation microstructure. For
multiple planes, the limit energy as ε → 0 and hm+1 − hm → 0 varies with their
scaling relation. For ease of notation we assume hm = mh, where h → 0 denotes
the spacing between adjacent planes. We obtain the compactness result

Theorem 1 ([3]). Assume εk ↓ 0, hk ≥ 0. Assume that bk is a sequence of slip
vector fields with lim infk→∞ Eεk,hk,...,Mhk

[bk]/| log ε| < ∞. Then
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i) If lim infk→∞
log hk

log εk
< 1, there is a subsequence such that up to a constant

bkj
converges in L1(ω,R2M ) to a slip vector field b ∈ BV (ω,Z2M .

ii) If lim infk→∞
log hk

log εk
≥ 1 there is a subsequence such that up to a constant

the sum of slips
∑M

m=1 b
m
kj

converges in L1(ω,R2) to some b ∈ BV (ω,Z2).

Here the first case corresponds to a well-separatedness between the planes, e.g.
h ≈ εβ for some β < 1. In the second case, corresponding roughly to h = O(ε), we
can only recover the sum of all slips. The limit energy features interactions between
jumps of different slip fields as long as they are very close, with the strength of
the interaction varying with β = limk→∞

log hk

log εk
:

Theorem 2 ([3]). Assume εk ↓ 0, h ≥ 0, β ∈ [−∞,∞] exists. Then Eεk,hk,...,Mhk
/

| log εk| Γ-converges to a line-tension functional defined on the space BV (ω,Z2M )
given by

(5) ILT [b] =

∫

Sb

ϕrel
β ([b], ν) dH1,

where

i) For β ≤ 0, ϕrel
β is the BV -elliptic envelope ϕrel

short, where ϕshort : Z2M ×
S1 → [0,∞) is the short-range self-energy

ϕshort(B, ν) =

M∑

m=1

ϕ(Bm, ν),(6)

ϕrel
short(B, ν) =

M∑

m=1

ϕrel(Bm, ν).(7)

ii) For β ≥ 1, ϕrel
β is the BV -elliptic envelope ϕrel

long, where ϕlong : Z2M×S1 →
[0,∞) is the long-range self-energy

ϕlong(B, ν) =ϕ

(
M∑

m=1

Bm, ν

)
,(8)

ϕrel
long(B, ν) =ϕrel

(
M∑

m=1

Bm, ν

)
.(9)

iii) For β ∈ (0, 1), ϕrel
β is the double relaxation

(10) ϕrel
β =

[
(1− β)ϕrel

short + βϕlong

]rel
.

The double relaxation for the intermediate scalings β ∈ (0, 1) is realized by a
two-scale microstructure. For examples where complex microstructures arise, see
[4].
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h

Figure 1. The limit energy is concentrated on the dislocation
lines. Dislocations in different planes will interact whenever they
run in parallel.

References

[1] M. Koslowski, A. M. Cuitiño, M. Ortiz, A phase-field theory of dislocation dynamics, strain
hardening and hysteresis in ductile single crystal, J. Mech. Phys. Solids 50 (2002), 2597–
2635.

[2] S. Conti, A. Garroni, S. Müller, Singular kernels, multiscale decomposition of microstruc-
ture, and dislocation models, Arch. Ration. Mech. Anal. 199 (2011), 779–819.

[3] P. Gladbach, Line-tension models for dislocations in crystals, Ph.D. thesis, Universität Bonn
(in preparation).

[4] S. Conti and P. Gladbach, A line-tension model of dislocation networks on several slip
planes, Mechanics of Materials 90 (2015), 140–147.

The spectral decomposition of the stiffness hexadic in gradient
elasticity

Rainer Glüge

(joint work with Jan Kalisch, Albrecht Bertram)

1. Introduction

It is well known that classical elasticity cannot account for size effects that are
observed in very small structures [1, 2]. Mostly, the specific stiffness of fine struc-
tures is increased. It is also well known that one can overcome this shortcoming
by including a strain gradient dependence in the elastic energy. The isotropic ex-
tension of linear elasticity has been given by [3]. It involves a sixth-order stiffness
tensor with five independent parameters,

〈6〉

C =
[
c1(δjkδimδnl + δjkδinδml + δjiδklδmn + δjlδikδmn)+

c2(δjiδkmδnl + δjmδkiδnl + δjiδknδml + δjnδikδml)+

c3(δjmδklδin + δjlδinδkm + δjnδimδkl + δjlδimδnk)+

c4(δjnδilδkm + δjmδknδil)+

c5δjkδilδmn

]
ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en
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which relates the second displacement gradient u ⊗ ∇ ⊗ ∇ to the corresponding
hyperstress tensor. It has the index symmetries Cijklmn = Clmnijk = Cijklnm =
Cikjlmn w.r.t. an orthonormal basis. The aim of the present work is to give the
spectral decomposition of this hexadic. Often, the strain gradient sym(u⊗∇)⊗∇
is used in place of the second displacement gradient. Both forms can be translated
into each other [3].

2. Spectral decomposition of C

We summarize the different combinations of Kronecker symbols that belong to
each parameter ci above with the basis {ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en} to five base
hexadics {Bi}, such that

〈6〉

C =

5∑

i=1

ciBi.

The metric of the basis {Bi} is

Bi · · · · · ·Bj =




168 96 96 24 36
96 192 72 48 12
96 72 192 48 12
24 48 48 72 18
36 12 12 18 27



.

For the spectral decomposition, a mote suitable basis is introduced,

B̃1 := − 1

15
(B1 + B2 + B5) +

1

6
(B3 + B4)

B̃2 :=
1

12
(2B1 − B2 − 2B3 + 4B4 − 4B5)

B̃3 :=
1

60
(6B1 − 9B2 + 16B5)

B̃4 :=
1

6
√
5
(3B1 − 4B5)

B̃5 :=
1

20
(−2B1 + 3B2 + 8B5).

The metric of this basis is diagonal with B̃i ······B̃i = (7, 5, 6, 6, 6). The components

of
〈6〉

C with respect to this basis are

c̃1 := 2 (c4 − c3) c̃2 := 4 c3 + 2 c4

c̃3 :=
1

6
(12 c1 − 16 c2 + 2 c3 + 9 c5)

c̃4 :=
2
√
5

3
(3 c1 + 2 c2 + 2 c3)

c̃5 :=
1

2
(4 c1 + 8 c2 + 2 c3 + 4 c4 + 3 c5).
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Eigenvalues and projectors: In terms of the latter basis {B̃i} and components

c̃i, the spectral decomposition of
〈6〉

C is given by

〈6〉

C =

4∑

i=1

λiPi

with the eigenvalues

λ1 = c̃1 λ2 = c̃2

λ3 = c̃5 + cr λ4 = c̃5 − cr

with

cr =
√
c̃23 + c̃24

and the eigenprojectors

P1 = B̃1

P2 = B̃2

P3(κ) =
1

2
(B̃5 +

c̃3
cr
B̃3 +

c̃4
c̃r
B̃4)

P4(κ) =
1

2
(B̃5 −

c̃3
cr
B̃3 −

c̃4
c̃r
B̃4)

with

cosκ =
c̃3
cr

⇔ sinκ =
c̃4
cr
.

For the spectral decomposition, the representation of
〈6〉

C with the dimensionless
parameter κ and the four eigenvalues is more convenient than with the parameters
{c1, c2, c3, c4, c5} or {c̃1, c̃2, c̃3, c̃4, cr}. One can check that

P3(κ) = P4(κ+ π)

λ3(κ) = λ4(κ+ π)

holds, i.e., it is reasonable to restrict κ to the interval [0, π). The metric of the
projectors is diagonal with Pi · · · · · ·Pi = (7, 5, 3, 3), thus the multiplicities of the
eigenvalues are 7, 5, 3 and 3. Further, we have the projector properties

Pi · · · Pj =

{
Pi if i = j

O if i 6= j

4∑

i=1

Pi = I,

where I is the sixth-order identity tensor on triads with the right subsymmetry.
These equations resemble those of the spectral decomposition of a transversely
isotropic stiffness tetradic (see Appendix A of [1]), which also has in general five
independent components and four distinct eigenvalues.
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The above formulae are convenient when one knows the parameters c1,2,3,4,5,
and seeks the eigenvalues and the third and fourth eigenprojector. The other way
around, the coefficients c1,2,3,4,5 are given by

c1 = (10λ1 − 4λ2 − 3(λ3 + λ4) + 3(λ3 − λ4)(cos(κ) +
√
5 sin(κ)))/60

c2 = (−10λ1 − 8λ2 + 9(λ3 + λ4) + 9(−λ3 + λ4) cos(κ))/120

c3 = (−λ1 + λ2)/6

c4 = (2λ1 + λ2)/6

c5 = (−5λ1 − λ2 + 3(λ3 + λ4) + (λ3 − λ4)(2 cos(κ)−
√
5 sin(κ)))/15

in terms of {λ1,2,3,4, κ}.
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Continuum dislocation dynamics: current state and open topics

Thomas Hochrainer

(joint work with Alireza Ebrahimi, Stefan Sandfeld, Michael Zaiser)

Crystal plasticity is mediated by the motion of line like crystal defects, the disloca-
tions. Although the behavior of individual dislocations and dislocation interactions
are reasonably well understood, no continuum plasticity has yet been established
which results from a controlled averaging procedure for dislocations. Continuum
dislocation dynamics (CDD) is a recently developed theory, which characterizes
the dislocation state of a crystal by a hierarchy of dislocation density alignment
tensors and curvature density tensors which evolve according to non-standard con-
servation laws [1].

In order to define from continuum dislocation dynamics a crystal plasticity ma-
terials law, constitutive equations for the average dislocation speed v are required.
For straight parallel edge dislocations such a constitutive law could be derived from
direct averaging of the dislocation dynamics [2] by closing a BBGKY hierarchy at
low order. As a result, two mesoscopic shear stresses were found to determine the
dislocation velocity besides the resolved shear stress τ : a Taylor type flow stress
(friction stress) τf = αGb

√
ρ and a back stress τb = DGb∂2

xγ/ρ. Here, ρ denotes
the total dislocation density, γ the accumulated plastic shear, α and D are dimen-
sionless constants, G denotes the shear modulus, b is the modulus of the Burgers
vector and the x-coordinate points in the direction of the Burgers vector. With
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the net-shear stress defined as τnet = τ − τb the average dislocation velocity is
taken to be of the form v = Mb sign (τnet) 〈|τnet| − τf〉, where M is a dislocation
mobility, sign returns the signature of its argument and 〈·〉 denote the Macaulay
brackets, which return their argument if its positive and zero else. The derivation
of these terms was possible because the pair correlations of the quasi 2D dislocation
positions, which were obtained from 2D discrete dislocation simulations, turned
out to be short ranged. For curved dislocations it seems unpractical to obtain
pair correlations because the amount of statistics which would be needed is hardly
accessible from 3D discrete dislocation simulations. An alternative to averaging
the dynamics is to obtain an energy density expression of a dislocation system in
terms of the dislocation density variables, i.e. via a local density approximation,
and to derive the constitutive law for the average dislocation velocity from the re-
quirement of thermodynamic consistency combined with thermodynamic extremal
principles.

Recently, Zaiser [3] presented a derivation of a local density approximation for
general dislocation systems using the lowest order dislocation alignment tensors
(up to order 2) as density variables. A crucial assumption in this derivation is
that also the pair correlations in systems of curved dislocations are short ranged.
Under this assumption the free energy density splits into an elastic and a defect
related part. In terms of the total dislocation density ρ, the dislocation density
vector ρρρ = n × ∇γ (n denotes the slip plane normal), and the scalar curvature
density q the energy density is of the form

Ψ (x) = ǫǫǫel (x) : C : ǫǫǫel (x)(1)

+
Gb2

8π

[
(2− ν)

(1− ν)
ρ (x) ln

(
ρ (x)

Aq (x) b

)
+

ρρρ (x) ·D · ρρρ (x)
ρ (x)

]
.

Herein ǫǫǫel denotes the elastic strain, C is the tensor of elastic moduli, ν is Poisson’s
ratio, A is a dimensionless constant, and D is a dimensionless tensor of second
order. The dimensionless constants result from correlations in the system. The
form of the energy in (1) is not unexpected and generalizes an expression suggested
by Groma for straight parallel edge dislocations from scaling arguments. We note
that the term containing the dislocation density vector strongly resembles energy
expressions suggested in phenomenological strain gradient theories, since ρρρ is a
first order strain gradient.

Though the energy (1) may not yet be the final word with regard to the de-
pendence on q, it is instructive to use the conservation laws for the dislocation
variables to obtain a thermodynamically consistent form of the dislocation veloc-
ity. This was done in [4], based on the evolution equations for the lowest order
density variables (including plastic shear) on a single slip system

γ̇ = ρvb

ρ̇ = ∇ · (−vn× ρρρ) + vq

ρ̇ρρ = ∇× (vρn)

q̇ = ∇ ·
(
vq− ρρρ(2) · ∇v

)
.
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In the evolution equation for q appear the curvature vector q and the second order
dislocation alignment tensor ρρρ(2), which both have to be determined by closure
assumptions from the other variables, compare [1, 5].

For an infinite body, partial integration yields the driving force for the disloca-
tions expressed through mesoscopic shear stresses as [4]

τnet = τ +
1

ρb

{
−∇γ · ∇∂Ψ

∂ρ
− q

∂Ψ

∂ρ
− ρ∇ ·

(
n× ∂Ψ

∂ρρρ

)
(2)

+q · ∂Ψ
∂q

+∇ ·
(
ρρρ(2) · ∇∂Ψ

∂q

)}
.

The mesoscopic shear stresses in the curly braces partially show an expected form.
The third term in the braces in (2) corresponds to the back stress in the theory
of Groma and would be viewed as the divergence of a microstress in the parlance
of phenomenological strain gradient theory. The second term may righteously be
interpreted as a line tension term yielding a tendency to reduce the curvature of
the dislocations. The first term is remarkable because this also appears in the
theory of straight dislocations, where it was not derived from averaging the forces.
The last two terms are related to the curvature density-dependence of the free
energy and are as of yet not well understood.

Through the provision of a local density approximation for continuum disloca-
tion dynamics, the above sketched theory provides the first statistical continuum
theory of curved dislocations. The theory has been implemented as a crystal plas-
ticity subroutine (UMAT) for Abaqus in conjunction with the crystal plasticity
framework DAMASK [6]. First results of micro-bending simulations have been
presented in [7]. These results show unique features of the CDD theory, most
notably in that the consideration of dislocation fluxes leads to effects which seem
unexpected when viewed from more traditional continuum plasticity. For example,
the dislocation density is usually found to be low where plastic slip is high – which
is consistent with discrete dislocation dynamics simulations but is opposed to the
usual assumption that plastic slip increases the dislocation density.

As already noted, continuum dislocation dynamics has become a statistical con-
tinuum theory for curved dislocations – at least for single slip situations on small
scales and for relative small deformations. However, CDD is not yet a general
theory of single crystal plasticity. A crucial point missing in the energetic ap-
proach is a derivation of the flow stress τf . Our current interpretation of this
friction-type stress is that it accounts for a microscopic roughness of the energy
landscape, which is lost in the local density approximation. Besides the ‘hight’ of
the roughness which determines the flow stress, a rugged energy landscape may
also show anisotropies which might lead to deviations from the thermodynamic
extremal principle which is used to determine the ‘flux direction’ in the space
of internal variables. With regard to the most prominent problem in plasticity,
i.e. work hardening, the essential feature missing in CDD is a convincing concept
for the evolution and activation of dislocation sources; be it through cross-slip,
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dislocation reactions or jogs from dislocation cutting through each other. More-
over, the physics of dislocations interacting with surfaces and interfaces is as yet
incompletely understood even on the microscopic level.

References

[1] T. Hochrainer, Multipole expansion of continuum dislocations dynamics in terms of align-
ment tensors, Philos. Mag. 95(12) (2015), 1321–1367.

[2] I. Groma, F. F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in
a continuum description of dislocation dynamics, Acta Mater. 51 (2003), 1271–1281.

[3] M. Zaiser, Local density approximation for the energy functional of three-dimensional dis-
location systems, Phys. Rev. B 92 (2015), 174120.

[4] T. Hochrainer, Thermodynamically consistent continuum dislocation dynamics, J. Mech.
Phys. Solids 88 (2016), 12–22.

[5] M. Monavari, S. Sandfeld, M. Zaiser, Continuum Representation of Systems of Dislocation
Lines: A General Method for Deriving Closed-Form Evolution Equations, ArXiv e-prints,
September 2015.

[6] F. Roters, P. Eisenlohr, C. Kords, D.D. Tjahjanto, M. Diehl, D. Raabe, DAMASK: the
Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE
based or a spectral numerical solver, Symposium on Linking Scales in Computations: From
Microstructure to Macro-scale Properties, Procedia IUTAM 3 (2012), 3–10.

[7] Alireza Ebrahimi and Thomas Hochrainer. Three-dimensional continuum dislocation dy-
namics simulations of dislocation structure evolution in bending of a micro-beam, MRS
Advances, FirstView 2 (2016), 1–6.

Self-organizing processes in rubbers microstructure

Jörn Ihlemann

(joint work with Hans Wulf)

In some cases of evolving microstructures of materials self-organization processes
play an important role. Sometimes this is more or less obvious like in the case of
semi-crystalline plastics. In other cases like rubber materials the self-organization
processes are only recognizable considering the macroscopic material behavior.

This works focusses on the self-organizing linkage patterns within rubber ma-
terials [1], which causes important macroscopic material characteristics. However,
there are also some first results to predict grain refinement processes within the
polycrystalline microstructure of metals. This is done with the help of the Con-
tinuum Dislocation Theory [2].

In the case of typical rubber materials the microstructure seems to evolve with
every change in the loading but also during relaxation and creep phases. Indus-
trially used filled rubber materials show large deformation capability, highly non-
linear material behavior as well as complicated inelastic effects, namely hysteresis
even in stationary cycles, and a distinct softening induced by the loading-history,
which is called Mullins effect. The induced softening is related to the direction
of the prestrain and therefore Mullins effect results in a strain induced material
anisotropy. Moreover, filled rubber exhibits viscous properties like relaxation and
creeping with characteristic scaling effects. However, none of the molecular scale
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components directly reproduces the macroscopic material behavior. Apparently,
the typical rubber behavior emerges from the complex interaction of a large num-
ber of the basic components and their interactions.

In this work, rubber material behavior is explained by the theory of Self-
Organizing Linkage Patterns (SOLP). It attributes the rubber behavior to the
emergence of a pattern based on the weak physical interactions. The theory im-
plies that, during an external deformation, a self-organization process of physical
linkages starts on the molecular level. This leads to a separation of comparatively
spacious, stiffened areas with to a great extend softened layers in between. Such a
distribution of physical linkages is called linkage pattern and is interpreted as the
origin of the influence of the loading history to the momentary material behavior.
Mullins effect is attributed to an adaption of the pattern to previous deformation
states. Relaxation is explained by a thermal decay of the pattern.

A very abstract model of rubbers microstructure has been coded (the so called
Trial Program) and is employed to validate the SOLP-theory. Therein, the model
elements represent abstract properties of the material components instead of single
molecular entities. The program is capable of tracking the selforganized emergence
of spatial structures which lead to anisotropic behavior. Moreover, the model is
extended to incorporate the evolution of structures over time.

The model is evaluated by comparing simulated stress-strain curves to corre-
sponding experimental results. Two-sided shear loading and multilevel relaxation
loading can be simulated. The comparison with experimental data reveals a good
qualitative reproduction of several typical filled rubber characteristics as nonlinear-
ity, hysteresis and permanent set. Also Mullins effect with the induced anisotropy
is successfully reproduced. In addition, the model exhibits the characteristic vis-
cous properties of rubber like a weak velocity denpendency within cyclic processes,
rounded cycles due to sinusoidal loadings and the typical scaling behavior within
relaxation phases after cyclic loading. Moreover, the emergence and relevance of
self-organized linkage patterns in the model can be clearly observed. These results
give strong evidence, that self-organization is essential for rubber behavior and is
a powerful approach for explaining how material properties emerge from molecular
component properties.
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From atomistics to the continuum: bridging across scales and the
quasicontinuum method

Dennis M. Kochmann

(joint work with Jeff Amelang, Gabriela Venturini, Ishan Tembhekar)

The limitations of available computational resources prevent the use of atomistic
methods at technologically relevant length and time scales. At the same time,
the continuum hypothesis, underlying all efficient continuum material models and
kinematic descriptions, breaks down when characteristic problem sizes approach
the nanoscale, such as in, e.g., nanocrystalline and nanoporous metals, nano-sized
truss networks, or micro-/nano-electromechanical systems (MEMS/NEMS, respec-
tively). Concurrent scale-bridging techniques are powerful tools to overcome those
limitations by exporting atomistic accuracy to significantly larger length and time
scales in an efficient manner and without assuming a separation of scales as in
hierarchical methods. Coarse-graining techniques form a special class, in which
the entire constitutive description (both in the discrete and the approximate con-
tinuum regions) is based on the lower-scale material model only (e.g., solely based
on interatomic potentials without the need for empirical constitutive relations at
the continuum scale).

One such technique, the quasicontinuum (QC) method [1] was introduced to
coarse-grain crystalline atomistic ensembles in order to bridge across scales from
individual atoms to the micro- and mesoscales. Various flavors of the QC method
have been reported which differ by their local vs. nonlocal thermodynamic formu-
lation, their approximation of the total Hamiltonian or of the interatomic forces,
their interpolation schemes, and their model adaptation techniques, to name but
a few. We recently introduced a new fully-nonlocal QC method [2, 3] which does
not conceptually differentiate between atomistic and coarse-grained domains so
as to enable a truly seamless scale-bridging from atomistics to the continuum.
To this end, we introduce new, optimal energy-based summation rules that are
based on a set of sampling atoms (different from the representative atoms) to ap-
proximate the total Hamiltonian. The resulting new QC approximation results
in minimal approximation errors and thus in marginal residual and spurious force
artifacts, as confirmed by benchmark examples in two and three dimensions. The
new summation rule, similar in spirit to quadrature rules, allows for automatic
model adaption and guarantees no force artifacts in the limits of full atomistic res-
olution as well as in large elements, and no residual forces in any affinely-strained
ground state. Force artifacts only occur in the intermediate regime right above full
atomistic resolution but are small compared to all previous schemes of compara-
ble efficiency and bounded. Furthermore, we use a new model adaptation scheme
which locally re-maps atomic neighborhoods so that the QC model can accurately
represent large atomistic motion [4]. Automatic model refinement (based on an
element-wise remeshing criterion) allows us to start with a considerably coarsened
representation with the simulation code subsequently applying model adaptation
wherever it is required (e.g., in the vicinity of defects). Thus, atomistic resolution
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is tied to evolving regions of interest, e.g., around moving dislocations, propa-
gating cracks, or expanding voids. The accuracy of the nonlocal QC method is
confirmed in direct comparison with MD simulation results, as well as by proving
the Γ-convergence of the energy-based QC formulation towards the same contin-
uum limit as the exact atomistic model under quasistatic conditions [5].

We present selected examples of small-scale plasticity investigated by the new
QC formulation. These include indentation tests as well as simulations of void
growth and coalescence. Extensions to finite temperature introduce a separation
of thermal fluctuations from the mean motions of repatoms, to be treated, e.g., by
methods of statistical mechanics to interpret thermal oscillations as heat [6].
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On the effective material response of bilayered composites in
finite crystal plasticity

Carolin Kreisbeck

(joint work with Fabian Christowiak)

Most elasto-plastic solids, such as metals, are polycrystalline, and therefore, on a
mesoscopic level, assemblies of grains of differently oriented single crystals. Inside
the grains, plastic deformation occurs by glide along selected slip systems, which
are distinct directions of the crystal lattice. It has been observed in experiments
that grain boundaries impose restrictions on still finer substructures, and highly
influence the macroscopic material response. These effects have also been simu-
lated and investigated in the literature, see e.g. [7, 6] and the references therein
for an overview.

In this project, we intend to develop analytical tools that help characterize
the effective material behavior of polycrystals in the context of finite-deformation
plasticity. Our particular focus lies on the question of how the arrangement and
geometry of the grains interact with the orientation of the active slip systems.

As a first step towards this complex problem, we make simplifying assumptions
and study a variational model in two dimensions for composites made of fine
parallel layers of two types. While one component is assumed to be completely
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Ω ⊂ R2

Y = (0, 1)2

ε

|s| = |m| = 1

s ⊥ m

Yrig

λ
s
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Figure 1. Bilayered composite material with stiff components.

rigid in the sense that it admits local rotations only, the other one is softer featuring
a single active slip system (s,m) with linear self-hardening, see Figure 1. Here, s ∈
R2 with |s| = 1 stands for the slip direction, m = s⊥ is the slip-plane normal, and
the small parameter ε > 0 describes the length scale of the oscillations between the
layers. For each ε, we consider the energy functional Eε defined on deformations
u ∈ W 1,2(Ω;R2) of the reference configuration Ω ⊂ R2 by

Eε(u) =

∫

Ω

W
(x
ε
,∇u

)
dx.

The density W : R2 × R2×2 → [0,∞] is given via periodic extension by

W (y, F ) = Wrig(F )χYrig
(y) +Wsoft(F )χYsoft

(y), y ∈ Y, F ∈ R
2×2,

where Wrig and Wsoft are the condensed energy densities modeling the rigid and
softer material components, respectively. For U ⊂ R2 the characteristic function
χU takes the values 0 and ∞ in and outside of U . Inspired by the model for
homogeneous single-slip materials without elasticity in [3, 2], one obtains

Eε(u) =

∫

Ω

|∇um|2 − 1 dx if u ∈ W 1,2(Ω;R2), ∇u ∈ Ms a.e. in Ω and

∇u ∈ SO(2) a.e. in εYrig ∩ Ω,

and we set Eε = ∞ otherwise in L2
0(Ω;R

2), the space of L2(Ω;R2)-functions with
zero mean value. Note that the set

Ms := {F ∈ R
2×2 : F = R(I+ γs⊗m), R ∈ SO(2), γ ∈ R}

reflects the multiplicative decomposition of the deformation gradient in finite plas-
ticity, with the rotations corresponding to the elastic part. In the plastic part
I+ γs⊗m, the quantity γ ∈ R represents the amount of slip along (s,m).
Our main result provides a characterization of the effective limit model as ε → 0,
i.e., when the layers become finer and finer. Precisely, we derive an explicit homog-
enization formula by means of Γ-convergence, see e.g. [4] for a general introduction.
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Owing to the anisotropic character of the problem, the findings depend decisively
on how the slip direction is oriented with respect to the layers. In fact, our asymp-
totic analysis reveals three qualitatively different regimes, showing macroscopic
shearing as well as blocking effects. For a detailed proof of the following theorem
we refer to [1].

Theorem. Let Ω ⊂ R2 be a bounded Lipschitz domain. The Γ-limit of the family
of functionals (Eε)ε as ε → 0 regarding the strong L2(Ω;R2)-topology is given by

E(u) =





s21
λ

∫

Ω

γ2 dx − 2s1s2

∫

Ω

γ dx if u ∈ W 1,2(Ω;R2) such that

∇u = R(I+ γe1 ⊗ e2) with R ∈ SO(2),
γ ∈ L2(Ω), γ ∈ Ks,λ a.e. in Ω,

∞ otherwise,

for u ∈ L2
0(Ω;R

2), where Ke2,λ = {0}, Ke1,λ = R, and

Ks,λ =

{
[−2 s1

s2
λ, 0] if s1s2 > 0,

[0,−2 s1
s2
λ] if s1s2 < 0.

Also, sequences of bounded energy for (Eε)ε are relatively compact in L2(Ω;R2).

The factor
s21
λ , with λ ∈ (0, 1) denoting the relative thickness of the softer layers,

constitutes an effective hardening modulus. Besides, it is interesting to observe
that in the case of an inclined slip system, i.e. s /∈ {e1, e2}, the limit functional E
features a linear term in γ, which can be interpreted as a dissipative contribution.

When proving the Γ-convergence of (Eε)ε, technical difficulties arise from the
differential inclusions that impose constraints on the energy functionals Eε. This
requires a careful analysis of the admissible microstructures, which entail a rather
restricted class of possible macroscopic deformations. One of the key ingredients
is an asymptotic rigidity result for deformations with gradients in Ms and SO(2)
on alternating strips, see [1] and below. It shows that, up to global rotation, the
body is forced by the stiff layers into horizontal shearing.

Lemma. If (uε)ε with Eε(uε) < C for all ε > 0 such that uε ⇀ u in W 1,2(Ω;R2),
then

∇u = R(I+ γe1 ⊗ e2)

where R ∈ SO(2) and γ ∈ L2(Ω) with ∂1γ = 0.

Finding optimal approximating deformations, or in other words recovery sequences,
relies on nested simple-laminate constructions based on ideas from [3], in particu-
lar, a convex integration argument in the spirit of [5].

Extensions of this model for layered bicomposites include a generalization to the
three-dimensional situation, adding more active slip systems in the softer phase,
and dropping the assumption of rigid elasticity by accounting for non-trivial elastic
energies. In the next steps, we plan to replace the rigid component in the model
by one with a rotated slip system, and to account for slip band-grain boundary
interaction by incorporating a regularization term in the form of a suitable grain
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boundary energy. Furthermore, by using methods from stochastic homogenization,
we seek to analyze polycrystalline materials with non-periodically arranged grains
and random texture.
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Dislocation mechanism of microstructural changes in ductile single
crystals

Khanh Chau Le

(joint work with Christina Günther, Michael Koster, Binh Duong Nguyen)

The present paper considers three problems: (i) martensitic phase transition in-
volving dislocations, (ii) formation of grain boundaries during severe plastic de-
formations, (iii) formation of shear bands in a single crystal plate under uniaxial
compression. All problems turn out to be non-convex variational problems of en-
ergy minimization that will be solved within the continuum dislocation theory
(CDT) proposed in [1]. In the first problem it will be shown that the co-existence
of phases having piecewise constant plastic slip in laminates is possible for the
two-well free energy density. The jumps of the plastic slip across the phase inter-
faces determine the surface dislocation densities at those incoherent boundaries.
The number of phase interfaces should be determined by comparing the energy of
dislocation arrays and the relaxed energy minimized among uniform plastic slips.
The stress-strain curve shows some load-drop at the onset of phase transition and
the elastic behavior of the second phase when the phase transition is finished fol-
lowed by perfectly plastic behavior afterwards. The work hardening behavior is
also possible if the side boundaries of the strip are clamped forcing the dislocations
to pile up near these boundaries. In the second problem we interpret the grain
boundary as surfaces of weak discontinuity in placement but strong discontinuity
in plastic slip. The set of governing equations and jump conditions are derived
for the energy minimizers admitting such surfaces of discontinuity from the vari-
ational principle. By constructing energy minimizing sequences having piecewise
constant plastic and elastic deformation for ductile single crystals deforming in
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plane strain simple shear, it is shown that the formation of lamellae structure
with grain boundaries is energetically preferable. The number of lamellae is esti-
mated by minimizing the energy of grain boundaries plus the energy of boundary
layers [3]. We compute also the thickness and the energy of grain boundary as
functions of the misorientation angle and show that the dislocations concentrated
in these grain boundaries do not produce long-range stress field [4]. In the third
problem of formation of shear bands in a single crystal plate under uniaxial com-
pression the uniform states are not rank-one connected, so dislocations and grain
boundaries should adapt to the elastic strains chosen from the homogeneous states
in a smart way to satisfy the compatibility condition and, at the same time, to
minimize the energy. It turns out that the whole set of jump conditions is needed
to determine the orientation of grains (which are misoriented with respect to the
slip direction), the plastic slips, and the elastic rotations [3].
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Propagation of Complex Fracture

Robert Lipton

Dynamic brittle fracture is a multiscale phenomenon operating across a wide range
of length and time scales. It presents a challenging problem for continuum model-
ing because of the extremes of strain and strain-rate experienced by the material
near a crack tip and because of the inherent instabilities such as branching that
characterize many applications. In this research a nonlocal and nonconvex model
is formulated for calculating the deformation inside a cracking body. Here the
nonconvex potential is useful for describing both elastic deformation and mate-
rial softening. We work within the small deformation nonlocal setting and the
strains are calculated as difference quotients. The constitutive relation is given by
a nonlocal cohesive law relating force to strain. We find that nonconvexity within
nonlocal mechanics provides a mechanism for crack nucleation and growth through
material instability. At each instant of the evolution a process zone is identified
where strains lie above a threshold value beyond which the force between points
begins to decrease. Perturbation analysis shows that jump discontinuities within
the process zone can become unstable and grow. We derive an explicit inequality
that shows that the size of the process zone is controlled by the ratio given by the
length scale of nonlocal interaction divided by the characteristic dimension of the
sample. The process zone is shown to concentrate on a set of zero volume in the



Mechanics of Materials 835

limit where the length scale of nonlocal interaction vanishes with respect to the
size of the domain. In this limit the dynamic evolution is seen to have bounded
linear elastic energy and Griffith surface energy. The limit dynamics corresponds
to the simultaneous evolution of linear elastic displacement and the fracture set
across which the displacement is discontinuous. We note that components of the
approach developed here can be applied to identify limits of dynamics associated
with other energies that Γ- converge to the Griffith fracture energy.
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Application of crystal plasticity in the field of microelectronics

Felix Meier

(joint work with Ewald Werner)

Growing demands on performance and durability of integrated circuits require an
understanding of typical failure mechanisms which are triggered by cyclic thermo-
mechanical loading. The schematic cross section in figure 1 illustrates the layered
structure of a section of an integrated circuit. The conductor paths are constituted
of polycrystalline single-phase aluminium and are surrounded by an interlayer di-
electric (ILD) of silicon oxide. The substrate consists of silicon and the metalliza-
tion plate again of aluminium. During operation the current flow in the conductor
paths leads to cyclic thermal loads on the device. As a result of the different
thermal expansion behaviour of the involved materials, the thermal loads lead to
mechanical loads which, in turn, cause plastic deformation. Typical types of dam-
age are surface roughening of the metallization plate and either lateral or vertical
crack initiation within the ILD. The crack is subsequently filled with aluminium
and causes an electrical short destroying the functionality of the device.

Via simulation we investigated the influence of the Al-microstructure on the
probability of crack initiation by utilizing a crystal plasticity material model which
bases on the code DAMASK (developed at the Max-Planck-Institut für Eisen-
forschung, Düsseldorf) and was enriched with respect to thermal expansion and
temperature and grain size dependency of the mechanical properties. In crystal
plasticity it is assumed that dislocation glide in slip systems facilitates plastic
flow. Therefore, the stress acting on a grain is projected into the slip systems
using Schmid’s law. After that, for each slip system the temperature dependent
shear rate and the temperature dependent critical shear stress rate (defines at
which stress level slipping starts to occur) are calculated thereby taking into ac-
count the mutual interactions of the slip systems’ activities. The critical shear
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Figure 1. Left: Schematic cross section of the simulation model
with its dimensions and boundary conditions. Right: Exemplary
simulation model with a specific predefined microstructure (each
grain is coloured differently).

stress is not only defined by the mechanical hardening but also by the thermal
hardening or softening depending on the evolution of temperature. Furthermore
we assume isotropic thermal expansion and decompose the overall deformation
gradient multiplicatively into thermal, elastic and plastic parts. Finally, the in-
fluence of the grain size is taken into account by means of the Hall-Petch-relation
whose parameters were determined in micropillar-compression tests [1]. A more
precise insight into the material model is presented in [2, 3] and concerning funda-
mental principles of crystal plasticity modelling the authors refer to the literature
[4, 5, 6, 7].

The remainder of the simulation model are treated as purely elastic. The bottom
surface is fixed in z-direction and a periodic boundary condition is applied to
the left and right faces in order to mimic an infinite model width. The thermal
boundary conditions, see fig 2, are applied thus that the same spatial and temporal
temperature distribution is achieved as observed by experiments [8, 9, 10]. The
simulation starts with a homogeneous temperature distribution at 498K, which is
the fabrication temperature of the conductor paths. After an one-time cool down
to 398K ten load cycles are applied with a logarithmic sawtooth temperature
evolution. The highest temperature fluctuation occurs within the conductor paths
at x < 50µm.

In the context of a parameter study the mean grain size of the metallization
plate grains was varied in a range of 2− 15µm. Furthermore, three different types
of grain orientations were distinguished for both the metallization plate and the
conductor paths: no texture (grain orientation is random), [111]-texture ([111] ||
z-axis) which is the predominant orientation in a real device [11] and [001]-texture
([001] || z-axis). Our results reveal that the maximum principal stress within the
ILD can be reduced by increasing the mean grain size of the metallization plate
grains and can be even halved by resolving the [111]-texture of the conductor
path grains. It became apparent that the [111]-texture subjects the ILD with
the highest possible stress level. As reported in [2], a multilayer construction of
the conductor paths enforces smaller grains and thereby conduces to a life time
extension by reducing the stress level within the ILD. The surface roughening of
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Figure 2. The right diagram shows the temperature history
within the conductor paths at x = 0. After an initial homogeneous
cooling from 498K to 398K, 10 inhomogeneous thermal load cycles
are applied reaching a maximum temperature of 653K. The left
image illustrates the temperature distribution after heating.

the metallization plate can also be reduced by resolving the [111]-texture and by
increasing the grain size in the domain of the highest temperature fluctuation [3].

Acknowledgment. This work has been conducted in the context of the research
project SCHW 1347/3-1, funded by the DFG (Deutsche Forschungsgemeinschaft).
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Meso-scale continua for moving interfaces in fluids and solids: open
problems

Sinisa Mesarovic

The following open questions are disussed on two example probems:

• Diffuse (mesoscale phase field) vs. sharp interface,
• Mathematical and physical arguments for diffuseness,
• Phase field parameter identification,
• Continua with mixing (ordered and disordered),
• Connection between 3D continuum 2D continuum (sharp interface),
• Uniqueness and stability of phase field solutions.

The example problems described are:
(a) Capillary flow (phase field), and, (b) diffusional creep of polycrystals (sharp
interface).

(a) We define the capillary flow as the flow of at least two fluid components
driven or controlled by capillary forces. These forces are exerted at the
triple line where the two fluids meet the solid boundary. Consequently, the
motion of the triple line is the key component in any capillary flow model.
In the phase-field model the triple line moves by surface diffusion mecha-
nism, thus allowing for the no-slip boundary condition without the stress
singularities. Moreover, the phase field framework is uniquely suited for
the modeling of topological discontinuities which often arise during capil-
lary flow. The numerical method of choice is the finite element method,
which: (i) allows simple implementation of the diffusive boundary condi-
tions, (ii) is suitable for modeling complex geometries, and, (iii) allows
variable mesh density needed for the phase field model.

We consider two types of phase-field models, the compositionally com-
pressible (CC) and the incompressible model (IC) with their corresponding
diffusive triple line conditions. We show that the latter represents the ap-
proximation to the former, with typically negligible error. We discover
that the CC model, applied to the fluids of dissimilar mass densities, ex-
hibits a computational instability at the triple line, as well as a very slow
convergence. We show that the IC model perfectly represents the analytic
equilibria. To benchmark the kinetics IC model against experiments, we
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develop the parameter identification procedure and show that the triple
line kinetics can be well represented by the IC models diffusive boundary
condition. Finally, we investigate the effects of the phase-field diffusional
mobility parameter on the kinetics of the wetting process.

(b) Diffusional creep is characterized by growth/disappearance of lattice planes
at the crystal boundaries which serve as sources/sinks of vacancies, and
by diffusion of vacancies. The lattice continuum theory developed here
represents the natural and intuitive framework for analysis of diffusion
in crystals and lattice growth/loss at the boundaries. The formulation
includes the definition of the Lagrangean reference configuration for the
newly created lattice, the transport theorem, and the definition of the
creep rate tensor as constant within a crystal and related the normal dif-
fusional flux at the boundaries.

The governing equations for Nabarro-Herring creep are developed with
coupled diffusion and elasticity. Both, the bulk diffusional dissipation and
the boundary dissipation accompanying vacancy nucleation and absorp-
tion, are considered, but the latter is found to be negligible. For periodic
arrangements of grains, diffusion formally decouples from elasticity but at
the cost of a complicated boundary condition. The equilibrium of devia-
torically stressed polycrystals is impossible without inclusion of interface
energies. The secondary creep rate estimates correspond to the standard
Nabarro-Herring model, and the volumetric creep is small. The main fea-
tures of primary creep are qualitatively understood and some avenues of
research are suggested for the transition from secondary to tertiary creep.

Size-dependent energy in mesoscale dislocation-based continua

Sinisa Mesarovic

In the light of recent progress in coarsening the discrete dislocation mechanics, we
consider two questions relevant for the development of a mesoscale, size-dependent
plasticity:

(i) Can the phenomenological expression for size-dependent energy, as qua-
dratic form of Nye’s dislocation density tensor, be justified from the point
of view of dislocation mechanics and under what conditions?

(ii) How can physical or phenomenological expressions for size-dependent en-
ergy be computed from dislocation mechanics in the general case of elas-
tically anisotropic crystal?

The analysis based on material and slip system symmetries implies the negative
answer to the first question. However, the coarsening method developed in re-
sponse to the second question, and based on the physical interpretation of the
size-dependent energy as the coarsening error in dislocation interaction energy,
introduces additional symmetries. The result is that the equivalence between the
phenomenological and the physical expressions is possible, but only if the multi-
plicity of characteristic lengths associated with different slip systems, is sacrificed.
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Finally, we discuss the consequences of the assumption that a single length scale
governs the plasticity of a crystal, and note that the plastic dissipation at interfaces
has a strong dependence on the length scale embedded in the energy expression.

Relaxation of a rate-independent phase transformation model
for the evolution of microstructure

Alexander Mielke

Microstructures in macroscopic and mesoscopic material models are often de-
scribed on the basis of the strain tensor and some internal variables such as phase
indicators, magnetization, plastic tensor, or hardening variables. In most cases,
the stored-energy density depends only on the point values of these variables and
thus defines a material model without any length scale. Thus, even steady states,
which occur as minimizers of the energy, may develop microstructures on arbi-
trary fine scales if the energy density lacks quasi- or polyconvexity. Despite of the
missing compactness, for these static problems a far-reaching theory for describing
microstructures was developed, starting from [1].

The modeling of the temporal behavior of such microstructures under chang-
ing mechanical or thermal loading is significantly more difficult. The variational
approach which is based on an energy functional and a dissipation potential or dis-
tance allows for special methods. General theory for evolutionary Γ-convergence
are available, see [4] for a survey. However, most of these methods need some some
type of compactness which is not available for material models without internal
length scale. For the special case of rate-independent systems, which do not have
an intrinsic time scale and hence are sufficiently close to static problems, a major
step forward was done using incremental minimization problems. The formation
of microstructure was detected and discussed in [9, 2].

The approach based on incremental minimization problems leads to the concept
of energetic solutions for rate-independent systems (Q, E ,D), see [5] for a compre-
hensive treatment. Here Q is the state space, E : [0, T ]×Q → R is the energy
functional, and D : Q×Q → [0,∞] is the dissipation distance. For initial states
q0 ∈ Q, we consider the

Approximate Incremental Minimization Problem

(AIMP)

{
for j = 1, ..., J find qj ∈ Q with

E(jτ, qj)+D(qj−1, qj) ≤ ετ + E(jτ, q̂)+D(qj−1, q̂) for all q ∈ Q,

where τ = T/J > 0 is the time step and ε ≥ 0 an accuracy level.

For ε > 0 approximate minimizers always exist, however the solutions qεj develop
microstructure for ε → 0. Defining the piecewise constant interpolants qτ,ε :
[0, T ] → Q via qτ,ε(t) = qεj−1 for t ∈ [(j−1)τ, jτ [ the major mathematical task in
evolutionary relaxation is
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• to establish convergence of a suitable subsequence for τn, εn → 0,
• to identify a limit q : [0, T ] → Q, and
• to determine an evolution equation for all such limits q.

The recent research in [3] is a continuation of previous work on a simple but non-
trivial two-phase model without without internal length scale, and hence without
compactness. The results are threefold: introduced in [6, 8] with the following
new results: (i) the existence theory for the separately relaxed two-phase model
introduced in [6, 8] is generalized, (ii) a numerical convergence result for space-
time discretizations is provided, and (iii) the evolutionary relaxation of the rate-
independent “pure-state model” is shown to lead exactly to the model studied in
(i).

The pure-state model (U×Zpure, E ,D) is characterized that the phase indicator
z : Ω → R only takes two values, viz.Zpure =

{
z ∈ L2(Ω)

∣∣ z(x) ∈ {1, 0} a.e.
}
,

whereas the relaxed model (U×Z, E ,D) is defined on the weak closure of Zpure,
namely Z =

{
z ∈ L2(Ω)

∣∣ z(x) ∈ [0, 1] a.e.
}
. The new observation in [3] is that

the method of mutual recovery sequences, which was introduced in [7] (cf. also
[5]), can be employed effectively also in cases without compactness. For a given
sequence qk = (uk, zk) ∈ U×Zpure with qk ⇀ q = (u, θ) in U×Z and a comparison

state q̂ = (û, θ̂) ∈ U×Z, a sequence (q̂k)k∈N is called a mutual recovery sequence,
if q̂k ⇀ q̂ and

lim sup
k→∞

(
E(t, q̂k) +D(qk, q̂k)− E(t, qk)

)
≤ E(t, q̂) +D(q, q̂)− E(t, q).

The point is that here that q̂k has to contain a suitable microstructure adapted to
qk such that in the above term the special sum of three terms behaves well. This
is typically realized by asking

(1) D(q, q̂) = lim
k→∞

D(qk, q̂k) and(1)

(2) E(t, q̂)−E(t, q) ≥ lim sup
k→∞

(
E(t, q̂k)−E(t, qk)

)
.(2)

Using such mutual recovery sequences, it is possible to show the full evolution-
ary relaxation result: for any approximate solutions qτ,ε for (U×Zpure, E ,D) ob-
tained via (AIMP) there exists a subsequence qτk,εk that converges to a limit
q = (u, z) : [0, T ] → U×Z which is an energetic solution of the separately relaxed
rate-independent system (U×Z, E ,D). The proof of (i) and (ii) relies on a specific
construction for the phase indicator, namely ẑk = ẑ + g(x)(zk−z). The choice of
g is crucial for obtaining (1) while keeping ẑk ∈ Z. Then (2) follows by using the
quadratic nature of E(t, ·, ·) and the theory of H-measures, see [10].

For the evolutionary relaxation result (iii) the construction of ẑk is more diffi-
cult, since we need ẑk ∈ Zpure. Here the construction is achieved by introducing
suitable laminates on a much finer spatial scale than the microstructure in zk.
Using this scale separation, it is possible to calculate the generates H-measure and
obtain (1) and (2) as well.
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Mathematical multiscale analysis in continuum mechanics

Stefan Neukamm

In my presentation I discussed a selection of mathematical methods for the analysis
of macroscopic properties in continuum systems with multiple scales; in particular,
homogenization methods for linearly elastic composites with periodic and random
microstructure, and aspects of the notion of Γ-convergence.

To motivate general ideas, imagine a model (Mε) that resolves properties on two
(or more) scales and which describes a “quantity of interest”, say a state variable
uε. The index ε stands for a small scaling parameter (or a collection of scaling
parameters) that has the meaning of a ratio between the micro- and macroscale in
the model. Models of that type often show an effective behavior, i.e. the quantity
of interest uε follows (up to small microscopic fluctuations) a “law” that can be
stated on the level of macroscopic quantities in a consistent way, while the law itself
depends (possibly in a complex way) on the microstructural details of the model.
The prospect of multiscale analysis is to gain a mathematical understanding of
this interesting phenomena. A natural approach in mathematics is to study the
limit ε ↓ 0, which corresponds to a separation of scales. Various questions on
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different levels can be posed. From the viewpoint of mathematical analysis the
most fundamental ones are:

• Can we prove convergence of uε towards some quantity u0?
• Can we identify an effective model (M0) that characterizes u0?
• Can we understand the relation between microstuctural properties and the
effective model (M0)?

I. A classical example is homogenization of partial differential equations. E.g.
consider the boundary value problem of linear elastostatics

(1)
−D · (C( ·

ε )Duε) = f in Ω ⊂ R
d

uε = g on ∂Ω,

where C = C(x), x ∈ Rd, denotes a tensor field describing a periodic linearly elastic
composite material. Obviously, this model has two length scales: A lengthscale L
given by the dimension of the domain Ω and another one, say ℓ ∼ εL, given by the
period of the composite. A classical result from homogenization theory (e.g. see
[1]) shows that the solution uε weakly converges in H1 towards a desplacement
field u0, which turns out to be the unique solution to the homogenized equation

(2)
−D · (ChomDu0) = f in Ω ⊂ R

d

u0 = g on ∂Ω.

Here, the homogenized tensor Chom is constant in space and thus describes a ho-
mogeneous material. It is characterized by the so called homogenization formula:
For all displacement gradients F we have

(3) ChomF =

∫

�

C(F +DφF ),

where � denotes the reference cell of periodicity (associated with the periodic com-
posite), and φF denotes a corrector, which is defined as the periodic displacement
field that solves the periodic corrector equation

−D · C(F +DφF ) in � with periodic boundary conditions.

The corrector φF encodes the spatial fluctuations in the displacement field that are
induced by the material’s heterogeneity. It allows to predict microscopic details of
uε by means of a two-scale expansion:

uε(x) ≈ ũε := u0(x) + εφα
j (

x

ε
)∂αu0,j(x) away from the boundary ∂Ω.

This can be easily justified by formal asymptotics. In [1] this expansion is made
rigorous and quantitative; we recall this result in form of the following estimate
(which only holds away from the boundary):

∫
|uε − ũε|2 + |Duε −Dũε|2 <∼ ε2

(∫
(|φ( ·

ε )|
2 + |σ( ·

ε )|
2)|D2u0|2

)
,

see e.g. [2] for details. Under additional regularity assumptions on the geometry
of the domain, boundary data and forcing, the right-hand side scales as ε2, which
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is optimal. The behavior close to the boundary is subtle, see [3] for a recent
contribution.

II. In stochastic homogenization one considers (1) with a tensor field C that is
random (more precisely a stationary and ergodic tensor field) and thus describes
material with random microstructure. An intuitive example for a random material
is the following: Tile space into square fields and in each field randomly pick
a material that occupies this field. Do that in an independent and identically
distributed way. The result, the “random checkerboard material”, is a stationary
random field with finite length of correlation. In [7] it is shown that homogenization
also occurs in the random (stationary & ergodic) case and that the limit is again
discribed by the deterministic and constant-coefficient equation (3). We also have
a homogenization formula, which takes the asymptotic form

(4) ChomF = lim
L→∞

1

|�L|

∫

�L

C(F +DφF ),

where �L denotes a box of side length L. Due to the limit L ↑ ∞, (4) requires
approximation by means of computable quantities. A natural approximation is the
following “periodic representative volume element”-type construction: For L ≫ 1
sample a material on the box �L and compute a periodic proxy CL by means of
the periodic homogenization formula. Note that CL is a random tensor, which
fluctuates around its average < CL >, where < · > denotes the ensemble average.
In order to decrease these fluctuations repeat the procedure N -times and take the

empirical average. This yields the (random) tensor CN,L := 1
N

∑N
i=1 C

i
N,L. In [4]

we prove in a simplified setting (discrete, scalar elliptic equation, i. i. d. statistics)
the estimate

〈
|Chom − Chom,L,N |2

〉 1
2 ≤ C

(
1√
N

L− d
2 + L−d lnd L

)
,

by combining a concentration inequality for the ensemble with elliptic regularity
theory. In [2] we extend substantial methods to continuum systems with corre-
lations and prove an optimal estimate for the two-scale expansion in the random
case. These results are examples for quantitative stochastic homogenization
- e.g. see [4, 2, 5, 6] and the references therein for recent developements.

III. The notion of Γ-convergence was introduced by De Giorgi in the 70s and
is taylor made for minimization problems. It has been applied to various prob-
lems e.g. homogenization [8, 9], atomistic-to-continuum modeling [10], singular
perturbation [11], derivation of plate theories and its combination with homoge-
nization [12, 13]. Although Γ-convergence is mostly applied to static problems,
some extensions to evolution problems have been achieved, see e.g. [14, 15, 16].
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Nonlinear Elasticity. Mathematical Models and Methods in Applied Sciences 23(14) (2013),
2701–2748.

[14] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applica-
tions, Discrete Contin. Dyn. Syst. 31(4), 1427–1451

[15] A. Mielke, T. Roub́ıcek, Rate-Independent Systems: Theory and Application, Applied Math-
ematical Sciences, Volume 193, Springer 2015.

[16] A. Mielke, On evolutionary Γ-convergence for gradient systems, Lecture Notes in Appl.
Math. Mech., 187–249, Springer 2016.

About an analytical approach to a quasicontinuum method and
continuum limits of discrete systems that allow for fracture

Anja Schlömerkemper

(joint work with Mathias Schäffner)

Quasicontinuum methods are computational schemes that are applied to efficiently
treat mechanical systems, of which a full atomistic computation is too expensive.
This is for instance useful in an elastic material that experiences a crack. One
then considers a non-local model close to the crack tip (atomistic region) and a
local model away from the crack (continuum region), see [6] and the abstract by
D. Kochmann given at this workshop. There are various analytical results on
quasicontinuum methods from the numerical point of view, see [2] for a recent
overview.

Here we follow a different approach. We aim for understanding the quasicontin-
uum method as a model that serves as an approximation of a continuum theory.
This perspective fits to a broader research topic, in which one wants to verify
continuum models as the asymptotic limit of underlying atomistic models and to
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understand how to approximate continuum models well by discrete models, cf.,
e.g., the list of references in [5].

More specifically we present a one-dimensional toy-model of n+1 atoms which
interact through Lennard-Jones type potentials Jj of finite order, j = 1, . . . ,K.
See [4] for the case K = 2 and [5] for arbitrary but finite K. The chain is fixed
at the two ends of the chain and obeys certain conditions on the atoms close to
the boundary. Depending on the overall length of the chain, the system behaves
elastically or shows cracks. The asymptotic behavior of the energy functional
Hn : L1(0, 1) → (−∞,∞],

Hn(u) =





K∑

j=1

n−j∑

i=0

1

n
Jj

(
ui+j − ui

j 1
n

)
if u ∈ An(0, 1),

+∞ else

of the fully atomistic model is studied by Γ-convergence methods as n → ∞. Here
An(0, 1) denotes the space of all piecewise affine interpolations of the deformation
map u defined on the reference configuration 1

nZ ∩ [0, 1]. The Γ-limit (of zeroth
order) is obtained by applying a result of Braides and Gelli [1] and a clever resum-
mation of the energy, which is the crucial new method in this proof. This allows
to replace the typical homogenization formula by a Cauchy-Born energy:

H0(u) =

∫ 1

0

J∗∗
CB(u

′(x))dx,

where J∗∗
CB denotes the lower semicontinuous and convex envelope of the Cauchy-

Born energy density JCB =
∑K

j=1 Jj .
In addition to the fully atomistic system we study the so-called quasinonlocal

quasicontinuummethod. This is mimicked by introducing an atomistic region A(j)
close to the two ends of the chain and a continuum region C(j) in between, where
j = 1, . . . ,K. In the continuum region one then (1) replaces all the potentials of
the j-interacting neighbors, 1 < j ≤ K, by an average of corresponding nearest
neighbor interactions and (2) introduces representative atoms in the continuum
region. The energy functional can then be written as

HQC
n (u) =

K∑

j=1

1

n

{
∑

i∈A(j)

Jj

(
ui+j − ui

j 1
n

)
+

1

j

∑

i∈C(j)

i+j−1∑

s=i

Jj

(
us+1 − us

j 1
n

)}

if u satisfies the required boundary conditions and is an affine function on the given
set Tn of representative atoms. It turns out that the Γ-limit of this functional is
equal to the Γ-limit H0 of the fully atomistic system Hn as n → ∞.

From the mechanical point-of view it is of interest to consider also a Γ-limit of
first order, which gives some information on the number and the location of cracks
through surface energy (boundary layer energy) contributions. In the case of the
fully atomistic chain as well as in the QC model, it turns out that the Γ-limit of
first order depends on the boundary condition, i.e., on the given overall length
of the chain. As already indicated above, if this length is smaller than a certain
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threshold, the system behaves elastically. Above this threshold cracks occur. This
is described by different compactness and Γ-convergence results.

In the elastic case, the Γ-limits of first order of the fully atomistic and the QC
model coincide. In the case of fracture, the two limits turn out to be different in
general, see [4] for K = 2 and [3] for arbitrary but finite K.

However, a detailed analysis shows that the minimizers and minimal energies
coincide if the chosen set of representative atoms is coarse enough at the interface
between the atomistic and the continuum region as well as within the continuum
region. More precisely, for K = 2 a necessary and sufficient condition is that the
minimal distance between two representative atoms is 2 up to the interface [4].
The same result holds for classical Lennard-Jones potentials and arbitrary but
finite K, see [3].

References

[1] A. Braides, M. S. Gelli, The passage from discrete to continuous variational problems: a
nonlinear homogenization process, In: Nonlinear Homogenization and its Applications to
Composites, Polycrystals and Smart Materials, NATO Sci. Ser. II Math. Phys. Chem. 170,
Kluwer Acad. Publ., Dordrecht, 2004.

[2] M. Luskin, C. Ortner, Atomistic-to-continuum coupling, Acta Numer. 22 (2013), 397–508.
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The mathematical justification of a consistent, refined beam theory

Patrick Schneider

(joint work with Reinhold Kienzler)

1. Introduction

Classical theories for thin structures like the Euler-Bernoulli beam and the Kirch-
hoff plate theory were developed by the use of disputable a-priori assumptions
already in the 18th and 19th century. They are still widely-used in engineering
practice since they provide reasonable accuracy, if the structure under considera-
tion is sufficiently thin. Rigorous mathematical justifications for these theories are
available which proof them to appear as a limit of the three-dimensional theory of
elasticity, if the thickness of the structure tends to zero. Recent results obtained
in the present century mostly use the method of Γ-convergence [1, 2], which does
not deliver quantitative error estimates directly.

Driven by practical needs of the engineering community, the development of
refined theories, i.e., theories for moderately thick structures, or higher precision,
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started already in the middle of the 20th century. Nowadays refined theories are
still an open topic which is under intensive development. Mathematical justifica-
tions for refined theories are missing - even for the most established theories like
the Reissner-Mindlin plate theory.

2. The uniform approximation approach

The uniform approximation approach for the a-priori assumption-free derivation
of theories for thin structures from the three-dimensional theory of linear elasticity
goes back to pioneer treaties of Naghdi [5] and Koiter [4]. Kienzler [3] interprets
the approach as a truncation of the elastic energy after a maximum power of a
characteristic parameter that describes the relative thickness of the structure. We
extend his ideas by truncating the associated dual energy as well, in order to pro-
vide a mathematical justification for refined theories by the proof of quantitative
error estimates.

By extending a standard result from duality theory (based on Korn’s inequal-
ity) towards general anisotropy, the square error of an arbitrary displacement field
v from the (weak) solution of three-dimensional elasticity can be estimated via
the difference Epot(v) − Edual(µ) of the elastic potential and the dual energy of
an admissible stress field µ. By using a dimensionless formulation and (abstract)
Fourier-series expansions in thickness direction for the displacement field, the po-
tential and dual energy appear as infinite power series in parameters describing
the relative thickness of the structure. When truncating both series after a cer-
tain power, a finite set of field equations and stress-boundary conditions can be
derived from the Euler-Lagrange equations of the potential energy, whereas the
dual energy’s Euler-Lagrange equations deliver matching displacement-boundary
conditions. This generates a hierarchy of theories with regard to the truncation
power. By virtue of the mentioned result from duality theory and by factoring
out the Euler-Lagrange equations in the difference of energies, the error of the
Nth-order approximation theory decreases like the (N + 1)th power of the char-
acteristic parameter. Therefore, any solution of an Nth-order theory converges
to the three-dimensional solution, if the thickness tends to zero. Furthermore, a
considerable gain of accuracy is achieved by increasing the approximation order,
which finally proofs the approximation property of the approach.

If smooth solutions are available, one is enabled to reduce the number of un-
known displacement coefficients in a certain theory by successive elimination, cf.
[7]. This leads to the classical theories for thin structures for first-order approxi-
mations and to new refined theories for higher-order approximations.

We already applied the approach for the derivation of a refined monoclinic plate
theory, cf. [11], which turns out to be equivalent to the Reissner-Mindlin theory
for the special case of an isotropic material. For a comparison to other established
higher-order theories we refer to [8].
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3. Refined beam theory

In the talk we illustrated the approach by deriving theories for an isotropic, linear
elastic quasi one-dimensional structure (length l) with constant rectangular cross-
section (width b ≪ l, height h ≪ l). The error of the Nth-order approximative
theory’s solution vN from the (exact) solution of three-dimensional elasticity u
decreases like

k ‖vN − u‖2X ≤ O

(
max

{
b√
12l

,
h√
12l

}2(N+1)
)
,

where k is a fixed constant.
We proof that the problem decouples into four independent subproblems (a

rod-, a shaft- and two beam-problems with orthogonal loading directions) for the
arbitrary three-dimensional load case of an one-dimensional isotropic structure.
Subproblems are identified by decomposing the prescribed boundary displacement,
traction and volume-force into even and odd parts with respect to the axis of the
cross-section that is assumed to be two-fold symmetric. Furthermore, we show
how the coupling of the subproblems can be derived directly from the sparsity
scheme of the stiffness tensor for an arbitrary anisotropic (linear elastic) material.
For details we refer to [9].

The first-order approximation of the beam problem (restricted to loads in one
thickness direction) results in the Euler-Bernoulli beam theory (with the known
boundary conditions) after pseudo reduction. This is not surprising with regard
to other results from literature derived by the use of Γ-convergence. However, the
classical a-priori assumptions of the theory drop out as a-posteriori results of the
pseudo-reduction procedure, so that an a-priori assumption-free derivation of the
theory (originated by the truncation of energies alone) is provided.

The second-order beam theory comprises three in general independent load
resultants after pseudo reduction. Only in the absence of volume loads, the load
resultants become linear independent and can be expressed solely by the classical
line load q. This means, the jointly treatment of volume load and traction via
one overall load resultant q (which is the common practice in the field of refined
theories) will result in a loss of accuracy in general, i.e., the rate of convergence
of the second-order consistent theories is not achieved. Only if the volume force
is set to zero, i.e., by negligence of dead-weight, the Timoshenko beam theory
is obtained as the second-order consistent approximation, if the shear correction
factor in this theory is chosen as

K =
3

20

5ν + 8

1 + ν︸ ︷︷ ︸
Olsson, [6]

−β2 ν

1 + ν

[
1

4
+

β2

β2 + 5

ν

1 + ν

]
,

where β = b
h denotes the cross-section aspect ratio and ν denotes Poisson’s ratio.

Indeed the limit value for β = 0 (disc-like beam) is a known shear-correction factor
attributed to Olsson, cf. [6]. The factor for β 6= 0 is not known from literature to
our best knowledge. It turns negative for usual values of ν and increasing β, i.e., for
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plate-like beams. (As a rule of thumb, a beam is considered plate-like, if β > 2.)
Note that by the classical theories one-dimensionally loaded plates are indeed
stiffer than beams with identical resulting overall load q. Therefore, the correction
factor covers weakening from shear deformations as well as stiffening effects for
plate-like beams, rendering the term “shear correction factor” misleading. It has
to be noted, again, that the uniform second-order approach does not introduce
any correction factors nor any others a-priori assumptions beside the truncation
of energies - the shear correction factor is derived by a vis-a-vis comparison of the
resulting ordinary differential field equation with Timoshenko’s equation.

Peer-reviewed papers with the presented results are in preparation. In the
meantime, we refer the interested reader to [10].
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Interfacial Phenomena in Materials: grain boundary kinematics and
mechanics

David J Srolovitz

(joint work with Jian Han, Vaclav Vitek, Siu Sin Quek, YongWei Zhang)

Grain boundaries (GBs) exhibit many phenomena that impact mechanical proper-
ties. They are barriers to dislocation motion, they slide, they migrate in response
to capillarity and applied stress, they absorb, emit, and transmit dislocations.
This work provides an integrated picture of many of these properties based upon
consideration of bicrystallography and the dislocations that it admits at inter-
faces. Some such dislocation are characterized by a Burgers vector and step and
can glide along the grain boundary, giving rise to shear coupling (e.g., see [1, 2].
Simple statistical mechanics considerations show how shear coupling can change to
GB sliding with increasing temperature. The same picture is applied to GB rough-
ening. We show how these considerations (dislocation and step motion) can be
used to describe GB migration driven by GB mean curvature. This same picture
is used to describe how lattice dislocations entering the GB can decompose (get
absorbed) and how such decomposition modifies and translates the GB structure
and its local misorientation and inclination. This approach is extended to discuss
the impact of GB migration on crystal lattice rotation and the plastic deformation
of the grains bounding the GB.

The starting point of the analysis is bicrystallography as described in terms of
the Coincident Site Lattice (CSL) and the Displacement Shift Complete (DSC)
lattice [3], which describes the symmetry of crystallography of the two lattices
that meet at the GB. The translation vectors of the DSC lattice describe all of
the possible dislocation Burgers vectors bdsc. The shortest such bdscs are small
compared with the Burgers vectors b associated with the crystal lattices. Choose
a GB plane that contains a periodic set of coincident lattice sites with normal
n. The DSC dislocation can only lie in the GB plane (the lattice Burgers vector,
which is also a DSC Burgers vector, can also lie in the GB plane). For the case of
bdsc ·n = 0, the DSC dislocation also creates a step in the GB that translates the
GB on one side of the DSC dislocation by a height h in the direction normal to the
GB plane. The combination of the step and bdsc is also known as a disconnection
(e.g., see [5]. The glide of this disconnection along the GB translates one crystal
with respect to the other (parallel to the GB plane) and translates the GB in
the direction normal to the GB plane. The ratio of the parallel to perpendicular
velocities is β = v||/vn = bdsc/h.

Each such bdsc, in fact, can have any one of a fixed set of step heights h = jλ,
where j is any integer and λ is related to the reciprocal of the density of coincident
sites, Σ [3]. Therefore, each GB does not have a unique value of β but in fact
admits a set of values of β corresponding to the set of bdscs parallel to the GB
(there are a periodic set of these bdsc = mα where m is any integer and α is the
shortest lattice spacing in the DSC lattice parallel to the GB plane) and the set
of step heights for each; hence, β = m/[m+ j(λ/α)] (N.B., this expression is not
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general) [6, 7]. The question then arises: “which of these sets of (bdsc, h) occur
for a given GB?” Of course, crystallography cannot answer this question. Short of
doing a full atomic scale simulation, we can assume a plausible form for the energy
to insert a disconnection dipole on a GB: ∆E = 2γ|h|+ 2Ecore + (µb2dsc)/[4π(1−
ν)] log(p/r0) − p(σn) · bdsc, where p is the spacing between steps, σ is the stress,
Ecore is the disconnection core energy, and γ is a constant that describes the
energy per unit area of the step [8]. As the misorientation of the grains, grain
boundary plane, magnitude and orientation of the applied stress changes, the set
of σ and h that minimizes the energy will change. Given an energy function, a
statistical mechanics approach was applied to predict the thermal average step
height < h(T ) > and the grain boundary thickness < h2(T ) >. This approach has
been shown to be consistent with the vast majority of atomistic simulation data
for β(T ), GB roughness, and selection of (σ, h) as a function of GB misorientation
and tilt axes [9].

bdscs perpendicular to the GB can only move in the GB plane by absorption
and emission of atoms (vacancies). For a general bdsc, any DSC dislocation can
be written in terms of a combination of others that have bdscs purely parallel or
perpendicular to the GB plane. However, if these have large magnitudes, such
decompositions may be too energetic to occur and hence the original bdsc will not
be able to glide without diffusion. This same approach can be used to understand
the effectiveness of different grain boundaries as sources and sinks of point defects.

The Burgers vector of a lattice dislocation gliding into a CSL GB can be decom-
posed into DSC dislocations in the GB plane. The bdsc · n = 0 DSC dislocations
can glide away with the normal component, however, cannot glide easily. Such
components can be relaxed by emission of dislocations into the adjoining grain,
yielding dislocation transmission. Such transmission events necessarily change the
structure of the GB.

An open challenge is the description of GB migration in the language of discon-
nections. A few comments are in order. First, the curvature of a GB is proportional
to the gradient in the step/disconnection density along the GB; this provides in-
sight into the motion of GBs by mean curvature flow (especially if we include
interactions between disconnections). Second, given the spatial distribution of
bdscs along a GB, ρbi(x), the boundary shape is h(x) =

∑
i(1/βi)

∫ x

−∞
ρbi(x

′)dx′.

This expression was confirmed by atomistic [10] and dislocation dynamics [11]
simulation of the shear coupled migration of a GB bounded by a pair of GB triple
junctions (lines along which the disconnections cannot glide).

While shear coupling can readily occur in the case of GBs in bicrystals, in
polycrystalline materials, it is not possible to infinitely shear a grain in a polycrys-
tal. As discussed above, GB (triple) junctions block the continued propagation of
disconnections through the microstructure. Consider first the ideal case of a cylin-
drical grain of radius R completely embedded in another grain [1]. GB migration
via mean curvature flow suggests vn = Mγκ = Mγ/R (M and γ are the GB mo-

bility and energy per unit area) and the shear velocity is v|| = Rθ̇ (where θ̇ is the
rotation rate of the cylindrical grain); the ratio of these two quantities is simply



Mechanics of Materials 853

the shear coupling β. Now, consider curvature-driven GB migration/rotation of a
grain in a polycrystal where each grain has sharp corners (is not a cylinder). In
this case, the rotation prescribed by β cannot continue because of these corners
- stress must build up at these corners. The grain can respond in one of several
ways: i) the growth in the elastic strain energy can compensate for the reduction
in GB energy such that GB migration stops, ii) long range diffusion can occur on
the length scale of the grain size (this is creep), iii) the GB migration can switch
to a sliding mode (if the temperature is sufficiently large), or iv) the stress can
lead to plasticity in the grain/emission and propagation of dislocations or twins
that propagate across the grain [12]. All of these possible mechanism provide cou-
pling between GB migration and other effects; elastic fields, diffusion, or crystal
plasticity.

The results discussed here imply that GB migration necessarily implies the
necessity of coupling of microstructure evolution and deformation in descriptions
of both, the description of microstructure evolution within a finite deformation
formalism, the importance of bicrystallography, and the possibility of describing
microstructure evolution within a dislocation dynamics framework.
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On Generalized Interfaces. Kinematics, Balances and Damage.
Coherent and Non-Coherent Cases

Paul Steinmann

(joint work with Ali Javeli, Ali Esmaeili)

The importance of interfaces is particularly appreciated at small length scales
where they play a dominant role in the overall response of a body due to the large
area to volume ratio [1]. Thereby, in general, coherent and non-coherent cases
may be distinguished [2]. In the coherent case size effects can be captured by
endowing the interface with its own kinematics, balances and constitutive behavior
as proposed, e.g., by the interface elasticity theory. Interface elasticity theory
proved already to be an extremely powerful tool to model size effects and the
behavior of materials at very small length scales. However, to date, interface
elasticity theory merely accounts for the elastic response of coherent interfaces
and obviously fails to account for inelastic behavior such as damage. One aim
of this contribution is thus to firstly extend interface elasticity theory to account
for damage along coherent interfaces, i.e. in tangential direction to the coherent
interface. The second objective of this contribution is then to further extend this
approach to the non-coherent case by allowing for additional damage across non-
coherent interfaces, i.e. in normal direction to the non-coherent interface. To this
end, a thermodynamically consistent theory of generalized interfaces embracing
both the coherent and the non-coherent case including damage along and across
generalized interfaces is proposed. The degradation of the interface’s mid-plane,
i.e. the damage along the interface, is captured by a non-local damage model of
integral-type. The out-of-plane de-cohesion, i.e. the damage across the interface,
is described by a classical cohesive zone model. These models are then coupled
through their corresponding damage variables. Based on the non-linear governing
equations and the weak forms thereof the numerical implementation is carried out
using the finite element method [3]. Finally, a series of numerical examples is
studied to provide further insight into the coherent and the non-coherent cases
and to carefully elucidate key features of the proposed theory.
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Atomistic & geometrically exact phase field modeling of nanoscopic
dislocation processes

Bob Svendsen

(joint work with Jaber Rezeai Mianroodi)

The purpose of the current work is the development of a geometrically exact phase
field model for dislocation dissociation, slip and stacking fault formation in single
crystals amenable to determination via atomistic or ab initio methods in the spirit
of computational material design. The current approach is based in particular
on periodic microelasticity [4] to model the strongly non-local elastic interaction
of dislocation lines via their (residual) strain fields. These strain fields depend in
turn on phase fields which are used to parameterize the energy stored in dislocation
lines and stacking faults. This energy storage is modeled here with the help of the
”interface” energy concept and model of [1, 2, 6]. In particular, the ”homogeneous”
part of this energy is related to the ”rigid” (i.e., purely translational) part of the
displacement of atoms across the slip plane, while the ”gradient” part accounts
for energy storage in those regions near the slip plane where atomic displacements
deviate from being rigid, e.g., in the dislocation core. Via the attendant global
energy scaling, the interface energy model facilitates an atomistic determination of
the entire phase field energy as an optimal approximation of the (exact) atomistic
energy; no adjustable parameters remain. For simplicity, an interatomic potential
and molecular statics are employed for this purpose here; alternatively, ab initio
(i.e., DFT-based) methods can be used.

The current model formulation is compared with related models such as (gen-
eralized) Peierls-Nabarro [3] and phase field dislocation dynamics [5] models in
the framework of classic density functional theory. The modeling of long-range
dislocations interactions is shown to be equivalent in all of these; in constrast,
that of the stacking fault and core energies differ. To investigate the consequences
of different modeling assumptions, predictions from the models of [5] and [6] are
compared with results from molecular statics (MS).
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Phase Field Method from a Physical Metallurgy Perspective

Yunzhi Wang

The phase field methods in modeling microstructural evolution during phase trans-
formations and plastic deformation in solids are reviewed. As a continuum field
theory of defects (i.e. microstructures) (similar to the density functional theory for
electrons), the methods can be applied at both the fundamental defect level (from
angstroms to nanometers) and coarse-grained level (from nanometers to microns)
[1]. The gradient term in the phase field free energy functional appears naturally
at the limit transitions of their counterpart discrete lattice models. When applied
at the individual defect level the microscopic phase field model (MPF) is a super-
set of the Cahn-Hilliard description of chemical inhomogeneities and the Peierls
(cohesive zone) description of displacive inhomogeneities and it has the ability to
predict fundamental properties of individual defects such as size, formation en-
ergy, saddle point configuration and activation energy of defect nuclei, and the
micromechanisms of their mutual interactions, directly using ab initio calculations
as model inputs. It is in particular good for the following applications:

• Using DFT calculations of generalized stacking fault (GSF) energy and
multi-plane GSF and Landau free energy as direct inputs and predict
defect structure, chemistry and energy.

• Probe the total energy landscape using nudged-elastic-band (NEB) method
for saddle point configuration and activation energy of defect nucleation.

• When combined with experimental characterization, it could serve as a
powerful tool to explore deformation/transformation mechanisms and pro-
vide critical inputs to coarse-grained phase field and crystal plasticity (CP)
- FEM simulations.

Examples presented include (a) shape and activation energy of a critical nucleus
during both homogeneous and heterogeneous transformations [1], [2], (b) struc-
ture and energy of a small angle twist grain boundary in Al and Cu [1], [3] and
(c) detailed mechanisms of dislocation shearing of ordered intermetallic phases and
formation of various stacking fault ribbons [4]–[7]. When applied at the mesoscopic
level the coarse grained phase field model (CGPFM) has the ability to predict the
evolution of microstructures consisting of a large assembly of both chemically and
mechanically interacting defects through coupled displacive and diffusional mecha-
nisms, with user-supplied linear response rate laws, defect energies and mobilities.
It is in particular good for the following applications:

• Parametric study of collective behaviors of large defect ensemble with spa-
tial correlation, interaction and co-evolution.

• Generate 3D synthetic microstructural datasets and repair experimental
datasets and quantify SEM/TEM images for data analytics.

• Confirmation and realization of new ideas.
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Examples presented include (a) dislocation-guided precipitation and formation of
mesocrystlas [8], [9] and (b) variant selection during beta to alpha transforma-
tion in polycrystalline Ti-6Al-4V under different stress states [9], [10]. Integra-
tion of phase field techniques at different length scales (MPF and CGPFM) and
integration of PFM with FFT-based crystal plasticity model to predict collec-
tive behavior of different population of defects including their mutual interactions
and co-evolution holds great promise in modeling phase transformation and de-
formation with complex microstructural and chemical interactions. This has been
demonstrated in modeling microstructural evolution during creep deformation of
Ni-base superalloys [11], where precipitate microstructure and dislocation sub-
structures co-evolve leading to rafting, and microstructure evolution during dy-
namic recrystallization of Cu [12], where grain structure and dislocation density
co-evolve leading to stress redistribution and macroscopic softening.
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25,000 Interface Simulations

Derek Warner

It is well known that grain boundaries can significantly influence the mechanical
behavior of polycrystalline materials. This point has motivated a long-standing
effort to better understand the behavior of grain boundaries, with a technologi-
cal aim of (1) better predicting the deformation and failure of materials and (2)
illuminating novel routes for creating improved materials via grain boundary en-
gineering.

An important task in the quest to achieve these two goals is to establish a re-
lationship between the geometry and mechanical properties of boundaries. Estab-
lishing such a relationship would enable qualitative assessment of the relative per-
formance of materials given microstructure crystallographic data, some of which
can be measured using electron backscatter diffraction technologies. Further, more
quantitative predictions of material behavior using polycrystal physics-based mi-
crostructural models will benefit from an ability to link grain boundary geometry
to properties, as there is currently no rational means of comprehensively assigning
grain boundary properties in microstructural models. Describing the relationship
between grain boundary geometry and mechanical properties is a longstanding
challenge due to the complexity of the relationship and the vast geometric space
in which grain boundaries reside. Previous efforts have examined the connection
between grain boundary properties and simplified descriptors of boundary geome-
try, such as coincident site lattice (CSL) density, boundary energy, and boundary
free volume. While these efforts have revealed that some rough trends do exist,
the trends are not inclusive.

Following this motivation, results of a computational survey of the shear
strength of a large set of grain boundaries are reported. The survey examined
the shear strength as a function of shear direction for 343 unique grain boundary
structures, making this study the most extensive of its kind to the author’s knowl-
edge. Results showed (1) no comprehensive relationships between grain boundary
shear strength and eight common grain boundary descriptors, (2) a significant and
simply describable dependence of shear strength on shear direction, and (3) that
the grain boundary shear strengths in an ordinary polycrystalline material can be
represented by a simple statistical distribution.

Shearband-based Computational Homogenization of Elastoplastic
Microstructures With Hard Inclusions

Stephan Wulfinghoff

(joint work with Stefanie Reese)

In this work, an efficient nonlinear homogenization method for geometrically sim-
ple microstructures is presented based on shear bands, that are activated in the
microstructure. The degrees of freedom are strongly limited in comparison with
full finite element method simulations.
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Materials with inclusions and elastoplastic matrix often have favorable mechan-
ical properties at a small density, which makes them attractive for a large range of
applications. For linear materials, analytical homogenization methods often pro-
vide sufficiently accurate predictions. However, the non-linear case usually requires
more advanced computational homogenization methods, like the FE2-method [1].
Size-effects make matters usually even more complex [2, 3, 4]. Computational
non-linear homogenization is usually associated with an increased computational
effort. Here, a model that has been proposed in a recent work [5], is discussed.
It represents an efficient homogenization method for physically non-linear elasto-
plastic microstructures with hard elastic inclusions and a soft inelastic, nearly in-
compressible matrix. An often seen mechanism in this kind of microstructure are
shear bands with preferred directions. A conventional Ritz-Galerkin discretization
is applied, i.e., the displacement is approximated by

(1) u(x, t) = ε0(t)x +

N∑

i=1

γs
i (t)φ

s
i(x).

Here, u(x, t) is the displacement field and the φs
i(x) represent N ansatz functions.

Moreover, γs
i are the degrees of freedom of the model. The shape functions φs

i(x)
represent shear modes, which are defined on N shear bands. The same approxi-
mation as in [5] is applied. As a result, the strain reads

(2) ε = sym∇u = ε0 +
∑

i

Ii(x)γ
s
iM

s
i.

Here, Ms
i = symdi ⊗ ni denote shear strain modes. The vectors di and ni are

unit vectors in the direction of the shear band and perpendicular, respectively.
In Eq. (2), the function Ii(x) represents the usual indicator function. The strain
tensor ε0 can be shown to be given by

(3) ε0 = ε0(ε̄, γ̂) = ε̄−
∑

i

ciγ
s
iM

s
i

with γ̂ = (γs
1, . . . , γ

s
N ) and the shear band volume fraction ci.

Assuming a quasi-static situation and neglecting body forces the equilibrium con-
ditions can be given in weak form by

(4)

∫

Ω

σ · δεdΩ = 0.

Insertion of the ansatz then allows for the identification of N scalar nonlinear
equations, which are solved via the standard Newton scheme.
In order to improve the accuracy of the method, [5] discussed several modifications
of the method, which are beyond the scope of this work.
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[2] S. Wulfinghoff, E. Bayerschen, T. Böhlke A gradient plasticity grain boundary yield theory,
International Journal of Plasticity 51 (2013), 33–46.



860 Oberwolfach Report 17/2016
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Design of Interfaces in Ceramic/Metallic Materials for High Energy
Environments

Hussein Zbib

(joint work with George Ayoub, Wei Yang, Iman Salehinia and Mohsen
Damadam)

Interfaces in metals, ceramics and alloys play a decisive role in determining the
thermo-mechanical behavior under extreme loading and environmental conditions.
To rationally design and accelerate discoveries of new material systems with novel
thermo-mechanical properties-be it high temperature strength, corrosion resis-
tance, fatigue life or any other mechanical property- the ability to predict the
macroscopic properties on the basis of microstructure and interface structure is
needed. The purpose of our work is to address this need by designing an engineered
type of metal/ceramic nanocomposites with engineered nanolaminate structures
that can exhibit very high strengths, fracture and fatigue resistance, thermal stabil-
ity and corrosion resistance under high environment. Although refractory ceramic
materials such as NbC and TiC, have high temperature strength and resistance to
thermal shock and damage from thermal cycling, they are relatively brittle ma-
terial with limited ductility and strength. However, laminate structures made of
nanolayers with high density of incoherent interfaces (e.g. Nb on NbC and TiN
on Ti), can have superior mechanical properties with strong resistance to thermal
and environmental damage.

The metal/ceramic composites can be created layer by layer by gas phase atomic
layer deposition which is useful for high aspect ratio and large area system in short
times. An electrochemistry deposition may be used as well for many combinations
of composites and layer thickness and morphology by changing the growth tem-
perature, with the aim of optimizing thermo-mechanical properties. In our work,
we employ a novel computational material-by-design approach that includes a
multiscale computational framework bridging molecular and dislocation dynam-
ics (microscale) with crystal plasticity (mesoscale) to (a) design composites with
nanolaminates that can serve as the fundamental basis for metal/ceramic systems,
and (b) study the thermo-mechanical properties, deformation, fracture and fatigue
and corrosion resistance of a number of possible combinations of these nanocom-
posites.

Particularly, the characteristics of the interface structure and the deformation
behavior of both nanoscale Ti-TiN and Nb-NbC multilayers with semi-coherent
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interfaces were studied using MD simulations. The effect of temperature was also
explored. Some key points are summarized as follows:

(1) The mechanisms of the formation of the interface misfit dislocation network
iare characterized using AIFB theory that is the combination of MD simulation
with the Frank-Bilby theory. Three sets of pure edge misfit dislocations and their
Burgers vector are identified. Upon relaxation, stable T1 regions occupy large
interface area. The higher energy stackings are transformed into misfit dislocations
or dislocation nodes upon relaxation.

(2) The MD simulations show that plastic deformation in Ti/TiN multilayers
commences first in the interface dislocation network. Shear stresses are generated
around misfit lines and push the dislocations in the coherent regions in the inter-
face, resulting in the 1st yield in the stress-strain curve. The material is strain
hardened upon further compression until the stress is enough to nucleate dislo-
cations on the pyramidal slip planes in Ti. The 2nd major yield point occurs
due to dislocation nucleation in the Ti layer. Strain hardening continues after the
2nd yield point due to the dislocations deposition in the interface and disloca-
tions interactions in the Ti layer. The 3rd major yield occurs when dislocations
nucleate/transfer into the TiN layer. At this point Ti and TiN layers co-deform
plastically and no visible crack is observed.

(3) The stress-strain curves show the same trends possessing three distinct yield
points at various temperatures. However, the stresses at the yield points drop at
higher temperatures.

(4) The bilayer structure of Nb/NbC was studied under different types of load-
ings: uniaxial tension, uniaxial compression and, biaxial loading. The results show
that dislocations nucleate in the Nb layer while there is no evidence of plastic de-
formation in the ceramic layer. By examining the resulting stress-strain curves, the
state of stress to initiate plastic deformation (yield stress in tension/compression)
is identified and the yield surface for Nb/NbC is determined under different com-
binations of biaxial tensile and compressive loadings. The result can be used to
establish plastic flow potential for use in continuum theory for large-scale applica-
tions.

Low volume-fraction microstructures in shape memory alloys

Barbara Zwicknagl

(joint work with Sergio Conti and Johannes Diermeier)

We discuss recent analytical results on microstructures near austenite-martensite
interfaces in shape memory alloys with almost compatible phases. Such materials
have gained growing attention in the last decade since compatibility appears to be
related to particularly low hysteresis and high reversibility of the phase transition
(see e.g. [4, 9]). To better understand the energy barrier leading to hysteresis
and the associated microstructures, we study a variational problem that has been
introduced to describe microstructures near austenite-martensite interfaces (see
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[7, 8]). Precisely, we minimize functionals of the form

Jθ(u) := µ

∫ ∞

0

∫ 1

0

|∇u|2 +
∫ 0

−L

∫ 1

0

dist2(∇u,Kθ) + ε

∫ 0

−L

∫ 1

0

|∂y∂yu|.

The first term stands for the elastic energy of austenite, the second term for
the elastic energy of martensite, where Kθ = {(0, θ)T , (0,−1 + θ)T } represents
two martensitic wells, and the last term, to be understood distributionally, is a
regularization term which can be interpreted as a surface energy. Here, θ ∈ (0, 1/2]
measures the compatibility of the phases, the parameter µ represents the ratio
between the elastic moduli of austenite and martensite, and ε stands for a typical
surface energy constant per unit length.

Rigid austenite. In the case of relatively rigid austenite, we find the following
scaling behavior of the minimal energy (see [10, Theorem 1], which is based on
[8, 1], see also [5]): There is a constant c > 0 such that for all µ ≥ 1, all ε > 0,
and all θ ∈ (0, 1/2], we have, with ε̂ := ε/θ2,

1

c
min{ε̂2/3L1/3, ε̂1/2, 1, L} ≤ min Jθ(u)/θ

2 ≤ cmin{ε̂2/3L1/3, ε̂1/2, 1, L}.

The first two scaling regimes correspond to branched patterns, the remaining two
ones to uniform structures, i.e., to constant, respectively affine functions in the
martensite bulk. To better understand the transition from uniform structures
to complex patterns we investigate in [2] (see also [6]) for µ = ∞ and L = 1 the
critical regime ε̂ = const in the limit of almost compatible phases θ → 0. Then the
minority phase concentrates on lines, and it turns out that the rescaled functionals
Eθ(v) := Jθ(θv)/θ

2 converge in the sense of Γ-convergence with respect to the
L1-topology to a functional of Mumford-Shah type where admissible functions
v ∈ SBVloc satisfy additional constraints on their jump sets. The main difficulty
lies in the proof of the upper bound, which requires a density result in the set of
admissible functions.

Soft austenite. In the case of relatively soft austenite, the phase diagram turns
out to be more complex. Restricting the class of admissible functions to A :=
{u ∈ W 1,2

loc ((−L, 0) × (0, 1)) : ∂yu ∈ {θ,−1 + θ} a.e. in {x < 0}}, we are led to
consider the model introduced in [7, 8], and we find the following scaling behavior
(see [3, Theorem 1]): There is a constant c > 0 such that for all µ, L, ε > 0, and
all θ ∈ (0, 1/2], setting again ε̂ := ε/θ2,

1

c
min
u∈A

Jθ(u)

θ2
≤ min

{
ε̂2/3L1/3, ε̂1/2, (ε̂Lµ)1/2 ln1/2

(
3 +

ε̂

µ3L

)
,

(ε̂Lµ)
1/2

ln1/2

(
1

θ

)
, µ

}
≤ cmin

u∈A

Jθ(u)

θ2
.

The case θ = 1/2 has been studied in [8, 1], and the main new result here is the

appearance of a new regime with scaling (ε̂Lµ)1/2 ln1/2
(
3 + ε̂

µ3L

)
which corre-

sponds to a two-scale branching construction that lies in between laminates with

scaling (ε̂Lµ)
1/2

ln1/2
(
1
θ

)
and branching with scaling ε̂2/3L1/3.
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