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Abstract. The Langlands program is a vast, loosely connected, collection
of theorems and conjectures. At quite different ends, there is the geometric
Langlands program, which deals with perverse sheaves on the stack of G-
bundles on a smooth projective curve, and the local Langlands program over
p-adic fields, which deals with the representation theory of p-adic groups. Re-
cently, inspired by applications to p-adic Hodge theory, Fargues and Fontaine
have associated with any p-adic field an object that behaves like a smooth
projective curve. Fargues then suggested that one can interpret the geometric
Langlands conjecture on this curve, to give a new approach towards the local
Langlands program over p-adic fields.
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Introduction by the Organisers

The Arbeitsgemeinschaft The Langlands program: From global unramified geomet-
ric to local ramified arithmetic, organised by Laurent Fargues, Dennis Gaitsgory,
Peter Scholze and Kari Vilonen, brought together over 50 students and experts
working in different aspects of the Langlands program, algebraic geometry, p-adic
Hodge theory and related areas, with a diverse geographic and mathematical back-
ground.

The goal of the workshop was to understand the statement of Fargues’ conjec-
ture, which builds a bridge between the geometric Langlands conjectures, usually
stated in the global and unramified setting, with the more classical ’arithmetic’
Langlands conjectures, specifically the (ramified) local Langlands conjecture over
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p-adic fields. Thus, the program was split (roughly) in half, with some of the
lectures giving an overview of the statement and proof (for GL2) of the geometric
Langlands conjecture, and the other half leading up to the formulation of Fargues’
conjecture, including various necessary background talks on perfectoid spaces and
the Fargues–Fontaine curve. Because the program was quite dense, various ex-
tra discussion sessions were scheduled in the afternoon. This led to an extremely
intense and fruitful exchange between researchers from these different areas.

Let us give a brief introduction to these questions. The Langlands program
emerged as an organizational principle in the theory of automorphic forms. Clas-
sically, automorphic forms are (roughly) functions on symmetric domains G/K
where G is a real Lie group and K ⊂ G a maximal compact subgroup, which are
required to be invariant under the action of an arithmetic subgroup Γ ⊂ G. The
prototypical example is the case of SL2(Z) acting on the upper half-space, giving
rise to modular forms and Maaßforms. On the space of automorphic forms, one
has a large space of symmetries, classically given by differential operators, and
Hecke operators. This big space of operators on automorphic forms allows one to
extract spectral data. One of the Langlands conjectures predicts that this same
spectral data is also seen in (apparently unrelated) arithmetic situations. The
prototypical example is the relation between rational modular forms of weight 2
and elliptic curves E over Q, which relates Hecke eigenvalues with the number of
Fp-rational points of E.

In the modern formulation, one starts with a reductive group G over Q, and
one regards Q as the function field of the “compact curve” SpecZ = SpecZ∪{∞}.
For each place v of this curve, i.e., v is either a prime number p or the archimedean
place∞, one has the completion Qv of Q at v, which are either the p-adic numbers,
or the reals R. One can also form the adèles A of Q, which is the subring of

∏
v Qv

given by the condition that almost all components are integral.
An automorphic representation of G is (roughly) an irreducible representation

of G(A) that occurs in the space of L2-functions on G(Q)\G(A). Any irreducible
representation π of G(A) decomposes as a (restricted) tensor product

π =
⊗

v

πv

of irreducible representations πv of G(Qv). The rough statement of the local
Langlands conjecture says that for each v, the datum of πv is equivalent to a
representation of the absolute Galois group of Qv, with values in the Langlands
dual group.1 The rough statement of the global Langlands conjecture is that if π is
automorphic with a suitable condition on π∞, then there is a representation of the
absolute Galois group of Q, inducing all these representations of the local absolute
Galois groups. Moreover, one should be able to go in the converse direction.

A completely parallel conjecture can be formulated for the function field F of
a projective smooth curve over a finite field, in place of Q. Several simplifications

1At least at v = ∞, one has to use the Weil group of R.
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occur in this case, the most important being that the space G(F )\G(AF ) is 0-
dimensional, so most analytic aspects of the problem are gone. Notably, many of
Langlands’ conjectures have been proved in this case by Drinfeld, L. Lafforgue and
V. Lafforgue.

The (global, unramified) geometric Langlands program
The geometric Langlands program emerged as a geometric way of looking at

Langlands’ conjectures in the case of a function field. It is most directly related
to the classical picture when looking at the global, everywhere unramified corre-
spondence.

Let C be a smooth projective curve over any field k, and let us continue to
denote by F its function field. For any closed point x of C, we write Ox for
the completion of the structure sheaf at x, and Fx for its quotient field. Let
AF = (

∏
xOx)⊗F be the adèles. If k is a finite field, then everywhere unramified

automorphic representations correspond to functions on the double quotient

G(F )\G(AF )/G(
∏

x

Ox) .

The basic observation is that if BunG denotes the stack of G-bundles on C, then
there is a bijection

BunG(k) = G(F )\G(AF )/G(
∏

x

Ox) .

If k is a finite field, then functions on BunG(k) can be geometrized by perverse
sheaves on BunG: Any perverse sheaf gives a function of k-points by looking at
traces of Frobenius on the stalks. The analogue of the Hecke action is given by
the action of Hecke correspondences on the stack of G-bundles.

Looking at the other side of the correspondence, everywhere unramified Galois
representations are precisely local systems on C (with values in the L-group LG
of G). Thus, the geometric Langlands conjecture predicts that for every LG-
local system E on C, there is a perverse sheaf AutE on BunG which satisfies a
suitable Hecke equivariance property. For G = GLn, it has been proved by Frenkel,
Gaitsgory and Vilonen, following earlier work of Drinfeld, and Laumon.

If k is a finite field, this conjecture implies the global unramified classical Lang-
lands conjecture by passing to the corresponding function on BunG(k).

However, when trying to generalize to ramified representations, it is very diffi-
cult to see the arithmetic of supercuspidal representations of G(Fp((t))), and its
relation with irreducible Galois representations of the absolute Galois group of
Fp((t)) in this picture. The basic reason is that the geometric picture is automati-
cally compatible with extensions of the base field k = Fp, whereas these arithmetic
phenomena are not.

Fargues’ conjecture
At his MSRI lecture in December 2014, Fargues stated a most striking conjec-

ture. In recent work with Fontaine, for any non-archimedean local field K (i.e.,
K is a finite extension of Fp((t)) or Qp), he had constructed a certain scheme XK
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over K, which behaves like a smooth projective curve over an algebraically closed
field, but is not of finite type. This construction was motivated by considerations
in p-adic Hodge theory.

Fargues’ observation was that if one interprets the global unramified geometric
Langlands conjecture on this curve, one ends up with a statement that encodes
most conjectural properties of the local ramified arithmetic Langlands conjecture
over K. One critical difference is that the automorphism group of the trivial
G-torsor is not the algebraic group G, but the locally profinite group G(K), so
(perverse) sheaves on the stack of G-bundles naturally give rise to representations
of G(K). One can hope that this makes it possible to adapt methods from the
geometric Langlands program to make progress on the local Langlands conjectures.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Adic Spaces

Torsten Wedhorn

The theory of adic spaces has been developed by Roland Huber ([Hu1], [Hu2],
[Hu3], [Hu4]). Important examples of adic spaces are perfectoid spaces, which
will also play a central role in this Arbeitsgemeinschaft. The talk was a very short
introduction to the theory of adic spaces. Further references are [Co], [Sch1], [SW],
[Wd], [CW].

Huber rings and Tate rings.

We will denote by A a Huber ring (called f -adic ring by Huber). By this we
mean that there exists an open subring A0 ⊆ A (called ring of definition) such
that the induced topology is the I-adic topology for some finitely generated ideal
I of A0 (called ideal of definition). An element a ∈ A is called power bounded
(resp. topological nilpotent) if { an ; n ≥ 1 } is bounded1 (resp. if limn→∞ a

n = 0).
Set

A◦ := { a ∈ A ; a power bounded},
A◦◦ := { a ∈ A ; a is topologically nilpotent}.

Then A◦ is an open subring in A and A◦◦ is a radical ideal of A◦.
A Huber ring A is called Tate ring if there exists a topological nipotent unit

π in A, which is then called pseudo uniformizer. In this case there exists a ring
of definition A0 ⊆ A with π ∈ A0. Moreover, πA0 is always an ideal of definition
and A = A0[

1
π ]. Every open ideal of A contains a pseudo uniformizer and hence

is equal to A.
For every continuous ring homomorphism of Huber rings ϕ : A → B, ϕ(π) is

again a topologically nilpotent unit. Hence B is again a Tate ring and there exists
a ring of definition B0 ⊆ B with ϕ(π) ∈ B0, and ϕ(π)B0 is an ideal of definition.

Example. Let k be a non-archimedean field (i.e., a complete topological field
whose topology is given by a non-trivial absolute value | · | : A → R≥0). Then
k is a Tate ring, k◦ = Ok is the ring of intgers, k◦◦ its maximal ideal, and any
0 6= π ∈ k with |π| < 1 is a pseudo uniformizer.

More generally,

A := k〈X1, . . . , Xn〉 := {
∑

aiX
i ∈ k[[X1, . . . , Xn]] ; lim ai = 0 for i→∞}

is a Tate ring, where we can take as ring of definition A◦ = Ok〈X1, . . . , Xn〉. The
image of π in A is a pseudo uniformizer.

1Recall that in a topological ring R a subset S ⊆ R is called bounded if for every neighborhood
U of 0 in R there exists a neighborhood V of 0 with {vs ; v ∈ V, s ∈ S} ⊆ U .
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The adic spectrum.

A Huber pair (A,A+) (called affinoid ring by Huber) consists of a Huber ring A
and an open, integrally closed subring A+ ⊆ A◦ which is called ring of integral
elements. Then the adic spectrum of (A,A+)

X := Spa(A,A+)

is the set of equivalence classes of multiplicatively written continuous valuations
| · | : A → Γ ∪ {0}, Γ a totally ordered abelian group, such that |f | ≤ 1 for all
f ∈ A+. Here we call | · | continuous if { a ∈ A ; |a| < γ } is open in A for all
γ ∈ Γ. For x ∈ X and f ∈ A we write |f(x)| instead of x(f).

We endow X with a topology as follows. Let T ⊂ A be a non-empty finite
set such that the ideal T · A generated by T is open in A and let s ∈ A. The
corresponding rational subset is defined as

X(
T

s
) := { x ∈ X ; ∀ t ∈ T : |t(x)| ≤ |s(x)| 6= 0 }.

Theorem. There exists a unique topology on X = Spa(A,A+) such that the sub-
sets of the form X(Ts ) are a basis of this topology consisting of quasi-compact open
subsets. This basis is stable under finite intersections. The topological space X is
spectral2.

We obtain a contravariant functor from the category of Huber pairs3 to the
category of spectral spaces.

Proposition. Let (A,A+) be a Huber pair. Then Spa(Â, Â+)→ Spa(A,A+) is a
homeomorphism preserving rational subsets.

The following result shows that “one has sufficiently many points”.

Proposition. Suppose that A is complete, X = Spa(A,A+), f ∈ A.
(1) X = ∅ ⇔ A = 0.
(2) |f(x)| 6= 0 for all x ∈ X if and only if f ∈ A×.
(3) |f(x)| ≤ 1 for all x ∈ X if and only if f ∈ A+.

The structure presheaf on an adic spectrum

We start by defining localization. Let A = (A,A+) be a Huber pair and let T and
s as above. Then there exists a homomorphism A → A〈Ts 〉 of Huber pairs that
is universal for homomorphisms ϕ : A → B of Huber pairs, where B is complete,
ϕ(s) ∈ B×, and ϕ(t)ϕ(s)−1 ∈ B+ for all t ∈ T . Then A〈Ts 〉 is complete.

Lemma. SpaA〈Ts 〉 → SpaA is an open embedding with image X(Ts ), preserving
rational subsets.

2A topological space X is called spectral if it is homeomorphic to SpecR for some commutative
ring R.

3A homomorphism of Huber pairs (A,A+) → (B,B+) is a continuous ring homomorphism
ϕ : A → B such that ϕ(A+) ⊆ B+.
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Now we define presheaves on the basis of rational subsets by

OX(X(
T

s
)) := A〈T

s
〉,

O
+
X(X(

T

s
)) := A〈T

s
〉+.

One checks that this is a well defined presheaf. In general OX is not a sheaf (see
[BV] for several instructive examples). We call the Huber pair A sheafy if OX is
a sheaf (in this case O

+
X is also a sheaf).

Theorem (Sheafiness). A complete Huber pair (A,A+) is sheafy in the following
cases.
(I) A has the discrete topology.
(II) A has a noetherian ring of definition.
(III) A is a Tate ring and A〈X1, . . . , Xn〉 is noetherian for all n ≥ 0.
(IV) A is a Tate ring and for every rational subset U ⊆ Spa(A,A+) the ring

OX(U)◦ is bounded in OX(U).

Adic Spaces

For x ∈ X , x : A → Γ ∪ {0} induces a valuation vx on OX,x
4 such that v−1x (0) is

the unique maximal ideal of OX,x. Hence we obtain from a sheafy Huber pair a
tuple (X,OX , (vx)x∈X) consisting of a topological spaceX , a sheaf OX of complete
topological rings on X such that OX,x is local for all x ∈ X , and a family (vx)x of
valuations vx on κ(x). Such triples form a category called V .
Proposition. The contravariant functor Spa from the category of complete Huber
pairs to the category V is fully faithful.

Definition. An adic space is an object of V that is locally isomorphic to SpaA
for some sheafy Huber pair A. It is called analytic if it is covered by adic spectra
of the form Spa(A), where A is a Tate ring.

Examples

(1) Criterion (I) of the sheafiness theorem allows to construct a fully faithful
embedding from the category of all schemes to the category of adic spaces
which is locally given by Spec(A) 7→ Spa(A,A), where we endow A with the
discrete topology.

(2) Criterion (II) allows to construct a fully faithful embedding ι2 from the cate-
gory of locally noetherian formal schemes to the category of adic spaces which
is locally given by Spf(A) 7→ Spa(A,A).

(3) Let k be a non-archimedean field. Criterion (III) allows to construct a fully
faithful embedding ι3 from the category of rigid analytic spaces over k to the
category of adic spaces which is locally given by Sp(A) 7→ Spa(A,A◦).

(4) Criterion (IV) shows that the structure presheaf attached to a perfectoid Hu-
ber pair is a sheaf.

4Here we form the stalk in the category of rings. It is not a topological ring.
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Now let (k, | · |) be a non-archimedean field, k◦ = Ok and π ∈ k◦◦ a pseudo
uniformizer. Then S := Spa(k◦, k◦) consists of two point: the class η of | · | and
the class s of the trivial valuation that sends units in Ok to 1 and elements in the
maximal ideal of Ok to zero. Then

S0 := Spa(k, k◦) = S(
{π}
π

) = {η}

is the open subspace consisting of the point η.
Now suppose that Ok is noetherian (hence a discrete valuation ring). Then

Raynaud (in a special case) and Berthelot (in general) have constructed a generic
fiber functor X →X rig from the category FOk

of formal schemes that are locally
of formally finite type over Ok

5 to the category Rk of rigid analytic spaces over k.
Here Spf(Ok[[T ]]) is sent to the open unit disc over k and Spf(Ok〈X〉) is sent to
the closed unit disc over k.

The following diagram of functors is 2-commutative

FOk

�

� ι2 //

( )rig

��

(Adic Spaces/S)

X 7→X×SS0

��
Rk

�

� ι3 // (Adic Spaces/S0).

In other words, in the world of adic spaces ( )rig corresponds to passing to the
naive generic fibre.
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Geometric class field theory

Bhargav Bhatt

The primary goal of this talk was to recall a geometric formulation of unramified
class field theory in the function field case due to Deligne. We also discussed an
extension of this story to the ramified case, and explained how it naturally led to
local geometric class field theory (following D. Gaitsgory, S. Raskin, J. Campbell).

1. Unramified class field theory

Let C be a smooth projective geometrically connected curve over k = Fq with func-

tion field K, and let |C| denote the set of closed points. Write O =
∏

c∈|C| ÔC,c

for the product of all the complete local rings of C and A :=
∏′

c∈|C| K̂c for the

adèle ring of C. The goal of unramified class field theory is to describe the struc-
ture of unramified abelian extensions of K; equivalently, we must understand the

unramified abelianized absolute Galois group Gunr,ab
K of K. The usual formulation

of unramified class field theory identifies this group in terms of A:

Theorem 1. There is an isomorphism of profinite groups
(
Gm(K)\Gm(A)/Gm(O)

)̂
≃ Gunr,ab

K ,

where ( )̂ denotes profinite completion, determined by (ac) 7→
∏

c∈|C| Frob
ordc(ac)
c .

To reformulate this result geometrically, we adopt the following notation:

Notation 2. Fix a coefficient ring Λ; the choice Λ = Zℓ, for varying primes ℓ,
suffices for our purposes. For any topological group H , write H∨ := Hom(H,Λ∗)
for the space of continuous characters of H .

Thus, our task is to first identify H∨, in geometric terms, for each of the two
groups H appearing in Theorem 1, and then reformulate the result as a geometric
statement.

The Galois side. Recall that Gunr,ab
K is canonically identified with the étale fun-

damental group π1(C). But then π1(C)
∨ is naturally identified with the set of

isomorphism classes of category Loc1(C) of rank 1 local systems on C with coef-
ficients in Λ.

The automorphic side. By Weil’s theorem (or the Beauville-Laszlo theorem), the
group Gm(K)\Gm(A)/Gm(O) is naturally identified with the Picard group of C;
equivalently, this is the set of k-points of the Picard variety Pic(C) of C. To
identify the characters of this group geometrically, we need the following notion:

Definition 3. Let G/k be a commutative algebraic group. A character local
system on G is given by pair (L,ψ) where L ∈ Loc1(G), and ψ : m∗L ≃ p∗1L⊗ p∗2L
is an isomorphism onG×G that satisfies the cocycle condition; herem : G×G→ G
is the multiplication map, while the pi’s are the projection maps; write CharLoc(G)
for the category of such data.
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Remark 4. One may equivalently describe CharLoc(G) as the groupoid of ho-
momorphisms G→ B(Λ∗) of commutative group stacks, where Λ∗ is viewed as a
pro-(finite group scheme) over k.

Any local system L ∈ Loc1(G) defines a function fL : G(k) → Λ∗ given by
the sheaf function correspondence, i.e., by the association

(
g : Spec(k) → G

)
7→

Trace(Frob|g∗L). If L lifts to a character local system, one checks that fL is a
homomorphism. Conversely, this process can be often reversed:

Theorem 5. Let G/k be a connected commutative algebraic group. Then G(k)∨

is naturally identified with isomorphism classes of objects in CharLoc(G).

Proof sketch. As explained above, there is a natural map a : π0(CharLoc(G)) →
G(k)∨ coming from the sheaf-to-function correspondence. For the inverse, consider
the Lang map LG : G→ G given by g 7→ Frob(g)−1 · g. Since G is connected, this
map is a finite étale Galois cover with Galois group G(k). Thus, given a character
f : G(k) → Λ∗, we can descend the trivial rank 1 Λ-local system on G along LG

using f to obtain an Lf ∈ Loc1(G); one then shows that this Lf naturally lifts to
CharLoc(G), providing a map b : G(k)∨ → π0(CharLoc(G)), which is then shown
to be an inverse to a. �

The preceding result is not valid for disconnected groups in general, but it is
valid for Z. Using this observation, one also checks that the same continues to
hold for Pic(C). Thus, we have described Pic(C)(k)∨ as the isomorphism classes
of objects in CharLoc(Pic(C)).

The geometric formulation. Using the two descriptions above, Theorem 1 follows
from:

Theorem 6. The Abel-Jacobi map AJ : C → Pic(C) induces an equivalence of
categories

AJ∗ : CharLoc(Pic(C)) ≃ Loc1(C).

Remark 7. The explicit description of the bijection in Theorem 1 is recovered
immediately from the fact that pullbacks commute with taking stalks, and using
the following observation: the Abel-Jacobi map AJ carries c ∈ C to the line bundle
OC([c]) ∈ Pic(C).

The advantage of the geometric formulation in Theorem 6 is twofold: (a) both

sides are of a local nature, so the statement can be checked over k = k, (b) both
sides make sense over any field, including k = C. We now sketch a proof of
Theorem 6, following Deligne:

Sketch of proof of Theorem 6. We focus on the key assertion: any L ∈ Loc1(C)
descends along AJ to some AutL ∈ CharLoc(Pic(C)). For this, fix an integer
d > 2g − 1, where g is the genus of C. We first construct the degree d component
AutL,d ∈ Loc1(Pic

d(C)) by contemplating the following composition:

Cd a→ [Cd/Sd]
b→ Symd(C)

c→ Picd(C),
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here the first map is the tautological (stacky) quotient by the symmetric group
action, the second map is a coarse moduli space, and the last map is the unique
one that identifies the composite Cd → Picd(C) as the map sending (c1, ..., cd) to
OC([c1] + [c2] + ...+ [cd]).

Taking exterior products gives a local system L⊠d ∈ Loc1(C
d). This local

system is naturally Sd-equivariant, and thus descends along a to some local system
L[d] ∈ Loc1([C

d/Sd]).

To descend this local system to Symd(C), we must check that the stabilizers on
the stack [Cd/Sd] act trivially on the stalks of L[d]. But this is easily seen to be a
consequence of L having rank 1: for a free Λ-module M of rank 1 and any integer
n ≥ 1, the natural symmetric group action on M⊗n is trivial. Thus, L[d] descends
along b to some L(d) ∈ Loc1(Sym

d(C)).
To descend L(d) along c, note that c is a projective space bundle by the Riemann-

Roch theorem as d > 2g− 1. As projective space is simply connected, this implies
that c induces an isomorphism on π1(−), and thus any local system on Symd(C)

descends along c. In particular, L(d) descends to some AutL,d ∈ Loc1(Pic
d(C)).

Next, we observe the associativity property of exterior products translates to
the following compatibility property of this construction: for d, e > 2g − 1, if
m : Picd(C) × Pice(C) → Picd+e(C) denotes the addition map, then there is a
canonical isomorphism

m∗AutL,d+e ≃ AutL,d ⊠AutL,e,

and this isomorphism is transitive in d and e in the evident sense. Using this
property, one formally constructs AutL,d ∈ Loc1(Pic(C)) for all values of d ∈ Z in
such a way that the transitive family of isomorphisms as above hold for all d and e.
But this means exactly that the resulting local system AutL ∈ Loc1(Pic(C)) is a
character local system, and pulls back to L(d) ∈ Loc1(C

d) along the (generalized)
Abel-Jacobi map Cd → Pic(C) considered above; taking d = 1 then verifies that
AutL descends L along AJ∗. �

2. The ramified story

We continue with the notation above, and allow ramification. Thus, fix a non-

empty effective divisor D on C with affine complement U , and let Ĉ/D be the
formal completion of C along D. The goal of ramified class field theory is to un-
derstand the Galois group parametrizing abelian extensions of K unramified over
U ; equivalently, we must understand the category Loc1(U). As in the unramified
case, the automorphic side will be understood via a certain moduli space of line
bundles. More precisely, we study line bundles with “full level structure at D”:

Definition 8. Let PicD∞(C) be the space parametrizing line bundles on C with

a trivialization over Ĉ/D.

PicD∞(C) is a pro-algebraic group. Moreover, forgetting the trivialization de-
fines a map

α : PicD∞(C)→ Pic(C)
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which is a torsor for O∗
Ĉ/D

, viewed as a pro-algebraic group over k. For any c ∈ U ,

the line bundle OC([c]) is canonically trivialized over Ĉ/D since {c}∩D = ∅. Thus,
there is an Abel-Jacobi map

AJU : U → PicD∞(C).

The main result of geometric ramified class field theory is an exact analogue of
Deligne’s theorem above:

Theorem 9. The map AJU induces an equivalence of categories

AJ∗ : CharLoc(PicD∞(C)) ≃ Loc1(U).

Remark 10. The usual idele-theoretic formulation can be obtained by inverting
the recipe used in the unramified case to go in the reverse direction.

The classical proof of Theorem 9, as presented in [3], relies on the following
two facts: (a) the map AJU is the (pro-)universal map from U to a smooth con-
nected commutative algebraic group (Rosenlicht), and (b) for any finite abelian
group A, any A-torsor V → U is the pullback of an isogeny G′ → G of smooth
connected commutative algebraic groups with kernel A. Below, instead, we pro-
ceed by imitating Deligne’s argument in the unramified case to reduce to a local
statement:

Proof Sketch. Fix an integer d > 2g − 1. Then there is a commutative diagram

Symd(U)
e //

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙

T |Symd(U) ≃ Symd(U)×O∗
Ĉ/D

cU //

α
Symd(U)

��

T
bU //

α
Symd(C)

��

PicdD∞(C)

α

��
Symd(U)

c // Symd(C)
b // Picd(C).

Here both squares are fibre squares, the maps c and cU are open immersions, all
vertical arrows are O∗

Ĉ/D
-torsors, the base change of α along b ◦ c is split as any

divisor on C supported on U is canonically trivialized over Ĉ/D, and the map e is
the 0-section of the resulting trivial torsor αSymd(U).

We need to check that any L ∈ Loc1(U) descends along AJU to a character local
system on PicD∞(C). We prove this as in the unramified case. Thus, first, note

that the local system L⊠d ∈ Loc1(U
d) descends to some L(d) ∈ Loc1(Sym

d(U)).

We must show that L(d) is pulled back along the composite map Symd(U) →
PicdD∞(C) in the diagram above. By base change, bU is a projective space bundle;

thus, as in the unramified case, it suffices to show that L(d) extends to T . By purity
for the fundamental group, it suffices to show the following: there exists a unique
character local system M on O∗

Ĉ/D
such that L(d)

⊠M ∈ Loc1(Sym
d(U)×O∗

Ĉ/D
)

extends across all the codimension 1 points of T lying in Z := T−T |Symd(U). Now,

at points of Symd(C) of codimension 1 lying in Symd(C)− Symd(U), at most one

point of Symd(C) is allowed to lie in D. Thus, by working locally, we reduce to
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the case d = 1 and D = {c} being a single point. In this case, the existence of
such an M is ensured by geometric local class field theory, as stated in Theorem
11 below. �

3. The local story

We saw above that geometric ramified class field theory reduces to a local state-
ment; we formulate this local statement somewhat imprecisely and “semi-globally”
next, and refer to [1, 2] for precise definitions and statements, including a purely
local formulation which makes sense of “punctured formal discs”.

Continuing the notation of the previous section, fix a point c ∈ |C|, let D = [c],

and Ĉ = Ĉ/D be the completion of C at c; to avoid a discussion of punctured

formal discs, we simply define Ĉ to be the spectrum of the formal completion of

the local ring of C at c. Let T̂ → Ĉ be the base change of the torsor α considered in

the previous section along the map Ĉ → C
AJ→ Pic(C). Thus, one may informally

view T̂ as parametrizing points y ∈ C close to c, together with a trivialization of

OC([y]) at Ĉ. Over Û = Ĉ − {c}, the torsor T̂ |Û → Û is canonically trivialized,

so we have T̂ |Û ≃ Û ×O∗Ĉ . The main theorem of local geometric class field theory

relates local systems on Û to character local systems on O∗
Ĉ
via the torsor T̂ . More

precisely, we have:

Theorem 11. There is a canonical equivalence

Loc1(Û)/Loc1(Ĉ) ≃ CharLoc(O∗
Ĉ
).

This equivalence is characterized as follows: a local system L ∈ Loc1(Û) is as-
sociated to a character local system M ∈ CharLoc(O∗

Ĉ
) if and only if L ⊠M ∈

Loc1(T̂ |Û ) extends to a local system on T̂ .
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La courbe de Fargues-Fontaine

Pierre Colmez

1. Anneaux de Fontaine

Soient k un corps parfait de caractéristique p, K0 = W (k)[ 1p ] le corps de car-

actéristique 0, complet non ramifié, de corps résiduel k, K une extension finie
totalement ramifiée de K, K une clôture algébrique de K et C le complété de
K, ce qui fait de C un corps algébriquement clos, complet pour vp, dont le corps
résiduel kC est une clôture algébrique de k. Soit

C♭ = {x = (x(n))n∈N, (x
(n+1))p = x(n), ∀n ∈ N}.

On munit C♭ des lois + et · définies par x+ y = s et xy = t, avec

s(n) = lim
k→+∞

(x(n+k) + y(n+k))p
k

, t(n) = x(n)y(n)

Si x = (x(n)) ∈ C♭, soit x♯ = x(0), et si x ∈ C, on note x♭ n’importe quel
élément de C♭ tel que (x♭)♯ = x (et donc x♭ n’est bien déterminé qu’à ǫZp près, où
ǫ = (1, ζp, . . . ) et ζp est une racine primitive p-ième de l’unité; cela est source de
bien des complications).

Théorème 1. C♭ est un corps algébriquement clos de caractéristique p, complet
pour la valuation vC♭(x) = vp(x

♯), de corps résiduel kC♭ = kC .

Remarque 2. La construction C 7→ C♭ est une vieille construction de Fontaine,
et s’applique à n’importe quelle algèbre munie d’une topologie plus faible que celle
définie par la valuation p-adique. Dans la terminologie de Scholze, cette opération
s’appelle le basculement (tilting), et C♭ est le basculé de C en caractéristique p.

Soit Ainf = W (OC♭), l’anneau des vecteurs de Witt à coefficients dans OC♭ .
Si x ∈ OC♭ , notons [x] son représentant de Teichmüller. Alors, tout x ∈ Ainf

peut s’écrire, de manière unique, x =
∑

k∈N[xk]p
k, où les xk sont des éléments

arbitraires de OC♭ . Par fonctorialité, Ainf est muni d’un frobenius ϕ donné par
ϕ(

∑
k∈N[xk]p

k) =
∑

k∈N[xpk]p
k. On définit θ : Ainf → OC par

θ(
∑

k∈N

[xk]p
k) =

∑

k∈N

pkx♯k.

Proposition 3. θ : Ainf → OC est un morphisme surjectif d’anneaux dont le
noyau est engendré par (p− [p♭]).

Remarque 4. La proposition précédente montre que l’on peut reconstruire C à
partir de C♭ (i.e. rebasculer en caractéristique 0), en posant C =W (C♭)/(p− [p♭]).
Ceci joue un grand rôle dans la construction des diamants de Scholze.

Soit B+
dR = lim

←−
(Ainf [

1
p ]/(p − [p♭])k). C’est un anneau de valuation discrète de

corps résiduel C qui contient Acris, complété de Ainf [
(p−[p♭])k

k! , k ∈ N] pour la
topologie p-adique. Le frobenius ϕ s’étend par linéarité et continuité à Acris, et
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si on note t = log[ǫ] = −∑
k∈N

(1−[ǫ])k

k+1 , alors t est une uniformisante de B+
dR

appartenant à Acris et ϕ(t) = pt.
L’action de ϕ s’étend donc au sous-anneau Bcris = Acris[

1
t ] de BdR = B+

dR[
1
t ],

et on note Be le sous-anneau Bϕ=1
cris . L’inclusion de Be dans BdR induit alors la

suite exacte fondamentale:

0→ Qp → Be → BdR/B
+
dR → 0.

La structure algébrique de l’anneau Be est surprenamment simple.

Théorème 5. Be est un anneau principal.

2. La courbe

Des considérations venant des théorèmes de comparaison entre les cohomologies
étale et de de Rham des variétés p-adiques ont conduit Berger à introduire la
catégorie des B-paires: une B-paire est une paire (We,W

+
dR), où We est un Be-

module muni d’une action semi-linéaire du groupe de Galois absolu GK deK,W+
dR

est un sous-B+
dR-réseau de BdR ⊗Be We stable par GK . La catégorie des B-paires

contient naturellement la catégorie des représentations p-adiques de GK .
Sans action de Galois, on tombe sur une catégorie ayant aussi de bonnes pro-

priétés, en particulier une filtration de Harder-Narasimhan, et la question que se
sont posée Fargues et Fontaine est: existe-t-il un objet géométrique qui explique
toutes ces belles propriétés? La réponse est ”oui!”: on peut considérer la “courbe”
SpecBe (c’est une courbe un peu spéciale car pas du tout de type fini), que l’on
peut compactifier en rajoutant un point ∞; le résultat est une courbe complète

X = Proj
(
⊕d∈N (Acris[

1
p ])

ϕ=pd
)
,

l’anneau Be est l’anneau des fonctions régulières sur l’ouvert X − {∞}, l’anneau
B+

dR est le complété de l’anneau local en ∞, et les paires (We,WdR) comme ci-
dessus sont les fibrés sur X (décrits à la Beauville-Laszlo, en prenant comme
recouvrement de X , l’ouvert SpecBe et un voisinage infinitésimal du point ∞).

L’histoire ne s’arrête pas là car le fait que les fonctions sur X sont obtenues en
prenant les points fixes de ϕ laisse entendre que X est le quotient d’un espace Y
par ϕ. Le problème est alors: comment définir Y et dans quelle catégorie prendre
le quotient? La réponse fait, cette fois, intervenir l’anneau Ainf : pour Y on prend
l’espace analytique SpaAinf privé des diviseurs p = 0 et [p♭] = 0, et alors l’espace
analytique Xad associé à X est le quotient de Y par ϕZ.
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Perfectoid Spaces

Urs Hartl

This talk gave a brief introduction to perfectoid spaces which were discovered
by Peter Scholze [Sch12]. They are adic spaces in the sense of Huber [Hub96].
A crucial feature of perfectoid spaces is the tilting operation, which assigns to
any perfectoid space X a perfectoid space X♭ in positive characteristic with same
underlying topological space and same étale site as X .

1. Perfectoid Algebras

Throughout we fix a prime number p ∈ N. For the theory of adic spaces we also
refer to the exposition of T. Wedhorn in this Oberwolfach report.

Definition 1. (a) A complete Tate ring is a topological ring A for which
there is an open subring A0 ⊂ A, a finitely generated ideal I ⊂ A0 and
an element ̟ ∈ A× such that {In : n ∈ N} is a neighborhood basis of 0,
the rings A and A0 are I-adically complete, and ̟n → 0 for n→∞. The
element ̟ is called a pseudo-uniformizer.

(b) A subset S ⊂ A is bounded if S ⊂ ̟−nA0 for some n. This notion does
not depend of the choice of A0 and ̟. The set of power bounded elements
is A◦ :=

{
x ∈ A : {xn : n ∈ N} is bounded

}
.

(c) A perfectoid ring is a complete Tate ring A with A◦ bounded, such that
there is a pseudo-uniformizer ̟ ∈ A× with ̟p|p in A◦ and

Φ: A◦/(̟) −→ A◦/(̟p), x 7→ xp

is an isomorphism. Also this definition does not depend on ̟.

Examples 2. (a) The p-adic completion Qcycl
p of Qp(

pn
√
1 : all n) is a perfectoid

field of characteristic 0.

(b) The t-adic completion Fp((t
1/p∞)) of

⋃
n Fp((t

1/pn

)) is a perfectoid field of char-
acteristic p.

(c) If A is a complete Tate ring with A◦ bounded and p = 0 in A, then A is
perfectoid if and only if A is perfect, that is, Φ: A → A, x 7→ xp is an
isomorphism, [Sch12, Proposition 5.9].

(d) If A = K is a non-archimedean valued field, then K is perfectoid if and only
if the valuation is non-discrete, |p| < 1 and Φ: OK/(p)→ OK/(p), x 7→ xp is
surjective, [Sch14, Propositions 6.1.8 and 6.1.9].

We saw in Wedhorn’s talk that if we have a Tate ring, then we can form a Huber
pair and then take its adic spectrum. However, it is not clear that this gives rise
to an adic space because it is not clear that the structure presheaf will be a sheaf.
In the perfectoid case things are better.

Theorem 3 ([Sch12, Theorem 6.3(iii)]). Let (A,A+) be a Huber pair (i.e. A+ ⊂ A
is an integrally closed, open subring with A+ ⊂ A◦) with A perfectoid. Then for
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every rational subset U ⊂ X = Spa(A,A+) the ring OX(U) is perfectoid. In
particular OX(U)◦ is bounded and this implies that OX is a sheaf on X.

The proof of Theorem 3 uses

2. Tilting

Definition 4. For a perfectoid ring A the tilt is defined as

A♭ := lim
←−

x 7→xp

A .

We write the elements of A♭ as x = (x(0), x(1), . . .) with x(n) = (x(n+1))p. The set

A♭ is a ring under the addition (x(n))n+(y(n))n :=
(
limk→∞(x(n+k) + y(n+k))p

k)
n

and the multiplication (x(n))n · (y(n))n := (x(n) · y(n))n.

Example 5. (Qcycl
p )♭ = Fp((t

1/p∞)) with t = (1, ε1, ε2, . . .) − (1, 1, 1, . . .) and

t1/p
n

= (εn, εn+1, . . .)−(1, 1, . . .), where ε1 6= 1, εp1 = 1, εpn+1 = εn. The cyclotomic

character Z×p
∼−→AutcontQp

(Qcycl
p ), a 7−→ (εn 7→ εa mod pn

n ) induces by functoriality

of tilting an action Z×p
∼−→Aut

(
Fp((t

1/p∞))
)
, a 7−→

(
t1/p

n 7→ (1 + t1/p
n

)a − 1
)
.

Lemma 6 ([Sch14, Lemmas 6.2.2 and 6.2.4]).

(a) A♭ is a perfectoid ring with p = 0.
(b) A♭◦ = lim

←−
x 7→xp

A◦ = lim
←−

x 7→xp

A◦/(p).

(c) There is a pseudo-uniformizer ̟ ∈ A× which has a compatible system of
pn-th roots ̟1/pn ∈ A for all n. We write ̟♭ = (̟,̟1/p, . . .) ∈ A♭. Then
A♭ = A♭◦[ 1

̟♭ ].

(d) The map A♭ → A, (x(n))n 7→ x(0), which is denoted x 7→ x♯, is multi-
plicative but not additive in general. It induces an isomorphism of rings

A♭◦/(̟♭) ∼−→A◦/(̟) for ̟ = (̟♭)♯.
(e) For a fixed perfectoid ring A with tilt A♭, the assignment A+ 7−→ A+♭ :=

lim
←−

x 7→xp

A+ yields a bijection

{A+ : (A,A+) is a Huber pair} ∼−→{A♭+ : (A♭, A♭+) is a Huber pair} .

Theorem 7 ([Sch12, Theorem 6.3(i),(ii)]).

(a) There is a homeomorphism X = Spa(A,A+) ∼−→X♭ = Spa(A♭, A+♭) send-
ing a valuation x = | . |x on A to the valuation x♭ = | . |x♭ on A♭ with
|f |x♭ := |f ♯|x for f ∈ A♭. It preserves rational subsets, that is, maps a ra-
tional subset U ⊂ X homeomorphically onto the rational subset U ♭ ⊂ X♭.

(b) If U ⊂ X is a rational subset then
(
OX(U),O+

X(U)
)
is perfectoid with tilt(

OX♭(U ♭),O+
X♭(U

♭)
)
.
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3. Perfectoid Spaces — The Étale Site

Definition 8. A perfectoid space is an adic space covered by Spa(A,A+) with A
perfectoid.

Theorem 7 implies that tilting glues to give a functor X 7−→ X♭ on perfectoid
spaces X .

Theorem 9. Let A be a perfectoid ring with tilt A♭. Then

(a) any finite étale A-algebra B is perfectoid, [Sch12, Theorem 7.9],
(b) the functor B 7−→ B♭ is an equivalence between
• perfectoid A-algebras and perfectoid A♭-algebras, [Sch12, Theorem 5.2],
• finite étale A-algebras and finite étale A♭-algebras, [Sch12, Thm. 5.25].

Definition 10. A morphism of perfectoid spaces f : Y → X is

(a) finite étale if for every open affinoid U = Spa(A,A+) ⊂ Y the preimage
f−1U = Spa(B,B+) is affinoid with B a finite étale A-algebra and B+

being the integral closure of A+ in B.
(b) étale if for every point y ∈ Y there is an open neighborhood V ⊂ Y of y,

an open subset U ⊂ X with f(V ) ⊂ U , and a commutative diagram

V

f ��❅
❅❅

❅❅
❅❅

❅
�

� open // W

finite étale~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

U

Remark 11. Since all perfectoid rings are reduced, it does not make sense to
define étale maps with the infinitesimal lifting property. However, for perfectoid
spaces (and rigid analytic spaces) the above definition yields the correct theory of
étale maps, although this definition would be false for schemes.

Proposition 12. (a) (Finite) étale morphism of perfectoid spaces are stable
under composition and base change (and in particular fiber products ex-
ist, which is not true for general adic spaces), [Sch12, Lemma 7.3 and
Corollary 7.8].

(b) Étale morphisms of perfectoid spaces are open, [Sch12, Corollary 7.8].
(c) If f : Z → Y and g : Y → X are morphisms of perfectoid spaces with g

and g ◦ f étale, then f is étale, [Sch14, Proposition 7.5.2].
(d) A morphism f : Y → X between perfectoid spaces is étale if and only if its

tilt f ♭ : Y ♭ → X♭ is étale, [Sch12, Proposition 6.17 and Theorem 5.25].

Proof. Via (d) statements (a), (b) and (c) are transfered to characteristic p, where
they are reduced to results of Huber [Hub96]. �

Definition 13. The étale site Xét of a perfectoid space X is the category of
perfectoid spaces étale over X with topological coverings.

Corollary 14. Xét
∼= X♭

ét, Y 7→ Y ♭.
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Remark 15. The philosophy of tilting is that for a perfectoid space X all topolog-
ical information like the underlying topological space, or the étale site Xét can be
recovered fromX♭. However, ifX is in addition an adic space overQp the structure
morphism X → Spa(Qp,Zp) is forgotten under tilting. To remedy this, Scholze
introduced diamonds; see the talk of M. Morrow on “Relative Fargues-Fontaine
Curves” in this Oberwolfach report.
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The pro-étale and the v-topology

Eugen Hellmann

We introduce the pro-étale and the v-topology on the category of perfectoid spaces,
following [2, Lectures 8, 9 and 15].

Definition: (i) A morphism Spa(A∞, A
+
∞) → Spa(A,A+) of affinoid perfectoid

spaces is called affinoid pro-étale if

(A∞, A
+
∞) = ̟-adic completion of lim

−→
(Ai, A

+
i ),

where ̟ ∈ A is a pseudo-uniformizer and (Ai, A
+
i ) is a filtered system of affinoid

perfectoid spaces such that Spa(Ai, A
+
i )→ Spa(A,A+) is étale.

(ii) A morphism of perfectoid spaces is called pro-étale if it is locally on source
and target an affinoid pro-étale morphism.

We point out that the notion of being pro-étale is local in the analytic topology.
Moreover, compositions of pro-étale morphisms are pro-étale and the base change
of a pro-étale morphism is pro-étale. However, it is not true that pro-étale mor-
phisms are open in general: for example the inclusion of a point in a pro-finite set
is pro-étale but usually not open.

We define (slightly sloppy) the pro-étale topology to be the (pre-)topology on the
category of perfectoid spaces whose coverings are generated by the open coverings
and the surjective affinoid pro-étale morphisms.

Proposition: The structure sheaf X 7→ OX(X) is a sheaf for the pro-étale topol-
ogy.

Proof: Let X = Spa(A,A+) be an affinoid perfectoid space and let ̟ ∈ A be
a pseudo-uniformizer. By standard arguments it is enough to show that Y 7→
(O+

Y /̟)a is a sheaf for the pro-étale topology on the category of perfectoid spaces
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over X . For affinoid pro-étale covers of Y = Spa(B,B+) the sheaf property is
easily deduced from the fact that

Hi
ét(Y,O+

Y /̟)
a
=

{
B+/̟ i = 0

0 i > 0.

Here the superscript a indicates that this an almost equality, i.e. an equality in the
category of almost A+/̟-modules.

The following is a direct consequence of the sheaf property of OX .

Corollary: The pro-étale topology is subcanonical, i.e. for every perfectoid space
X the functor hX represented by X is a sheaf for the pro-étale topology.

The property of being pro-étale is not local in the pro-étale topology. In fact a
morphism f : Y → X of perfectoid spaces becomes pro-étale over some pro-étale
cover X ′ → X if and only if it is locally quasi pro-finite, i.e. if for every geometric
point Spa(C,C+)→ X with C algebraically closed the fiber product

Y ×X Spa(C,C+)

is pro-étale over Spa(C,C+).

For future use we give the definition of a diamond.

Definition: A diamond is a sheaf F for the pro-étale topology on the category
(Perf) of perfectoid spaces of characteristic p such that there exists a perfectoid
space Y and a surjective morphism hY → F of pro-étale sheaves that is relatively
representable and locally quasi pro-finite.

We point out that the above implies that the structure sheaf is still a sheaf in the
topology generated by the locally quasi pro-finite covers. This class of coverings
does not involve any flatness assumptions. This motivates the following definition
of the v-topology (called the faithful topology in [2, Lecture 15]).

Definition: The v-topology is the (pre-)topology whose coverings are generated
by the open coverings and the surjective morphisms Spa(B,B+)→ Spa(A,A+).

Theorem: The structure sheaf is a sheaf for the v-topology.

Proof: Given a surjective morphism X ′ = Spa(B,B+) → Spa(A,A+) = X of
affinoid perfectoid spaces we need to show that the complex

0 −→ F(X) −→ F(X ′) −→ F(X ′ ×X X ′) −→ . . .

is (almost) exact, where F = O+
X/̟. We split this claim into two parts:

(i) X ′ → X is a w-localization in the sense of [1]
(ii) X ′ is arbitrary, but X is w-local.

Recall that a spectral space X is called w-local if every connected component has
a unique closed point and if the set of closed points Xc is closed in X . In this case
the composition of the canonical maps

Xc −→ X −→ π0(X)

is a homeomorphism. Moreover, given an affinoid (perfectoid) space X there exists
a w-local spaceXZ with a morphismXZ → X that is universal for morphisms from



Arbeitsgemeinschaft: The Geometric Langlands Conjecture 1049

w-local spaces to X . By construction the space XZ is again affionid (perfectoid)
and the morphism XZ → X is pro-étale. This implies that the claim is true in
case (i).
We are left to prove (ii). This is the content of the following surprising lemma.

Lemma: Let X = Spa(A,A+) be an affinoid w-local perfectoid space. Let ̟ ∈ A
be a pseudo-uniformizer and let f : Y = Spa(B,B+) → X be a morphism of
affinoid perfectoid spaces. Then B+/̟ is flat over A+/̟ (and even faithfully flat
if f is surjective).

Proof: Consider the diagram

Y
f−→ X

g−→ T = π0(X)

and write A = g∗(O+
X/̟) andM = (g ◦ f)∗(O+

Y /̟). Then B+/̟ = Γ(T,M) is
flat over A+/̟ = Γ(T,A) if and only if for all y ∈ T the stalk My is flat over
Ay. But since X is w-local a point y ∈ T is just a closed point Spa(K,K+) of X
and we need to show that B+

y /̟ =My is flat over K+/̟ = Ay. Now K+ is a

valuation ring and hence flatness over K+ is equivalent to ̟-torsion freeness. The
claim follows from the fact that B+

y is ̟-torsion free.

Corollary: The v-topology is subcanonical.

Finally we show that we can glue vector bundles in the v-topology:

Theorem: The groupoid of vector bundles is a stack for the v-topology.

This is the content of [2, Lemma 20.2.2]. One needs to show that vector bundles
with a descend datum can be descended along surjective morphisms

Spa(B,B+) −→ Spa(A,A+).

First one treats the case where A is a field. Then the general case is dealt with by
an approximation argument.
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Statement of Galois to Automorphic in the geometric context

Tsao-Hsien Chen

In the talk I will explain the statement of Geometric Langlands correspondence
for a general reductive group. The main references are [1, 2, 3, 4, 5].

Let Fq be a finite field and X be a smooth complete curve over Fq. Let K be
the function field of X . We denote by π1(X) the étale fundamental group of X .
For each closed point x ∈ |X | we denote by Ox the completed local ring at x and
Kx its field of fraction. We denote by AK the ring of adèles, and OK the ring of
integral adèles. We fixe a prime ℓ not equal to the characteristic of Fq.
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In the first part of my talk I will explain the statement of the classical unramified
Langlands correspondence for GLn. Let

An := Functcusp(GLn(K)\GLn(AK)/GLn(OK), Q̄ℓ)

be the space of cuspidal unramified automorphic forms on GLn and Hx the local
Hecke algebra corresponding to a closed point x ∈ |X |, that is, the space of
compactly supported GL(Ox)-biinvariant functions on GLn(Kx). The basic facts
are
(1) there is an action Hx ×An → An, (T, f) 7→ T (f)
(2) the Satake isomorphism Hx ≃ K0(Rep(GLn(Q̄ℓ))⊗Z Q̄ℓ.
The classical unramified Langlands correspondence for GLn says that to every
geometrically irreducible ℓ-adic representation σ : π1(X) → GLn(Q̄ℓ) there corre-
sponds to a (non-zero) cuspidal unramified automorphic form fσ ∈ An satisfying
the Hecke eigenproperty with respect to σ. The last property means that for each
V ∈ Rep(GLn(Q̄ℓ)) we have

TV (fσ) = Tr(σ(Frobx)|V )fσ,

here TV ∈ Hx is the image of V under the Satake isomorphism and Frobx is the
Frobenius conjugacy class in π1(X) corresponding to x ∈ |X |.

In the second part of my talk, I will recall some basic facts about affine Grass-
mannians for a general reductive group and state the geometric Satake equivalence.
Let k be an algebraically closed field. Let G be a reductive group over k and let
T ⊂ G be a maximal torus. Let LG = G(k((t))) and L+G = G(k[[t]]) be the
corresponding loop group and positive loop group. The affine Grassmannian for
G is the fpqc quotient

GrG := LG/L+G.

It is an ind-projective scheme. The positive loop group L+G acts naturally on
GrG and the assignment

λ ∈ X+
∗ (T ) 7→ Oλ := LG+ · tλ

defines a bijection between the set of dominant co-weights and the set of LG+-
orbits on GrG. HereOλ is the LG+-orbit through the image of tλ ∈ T (k((t))) inside
GrG. Let SatG := PervL+G(GrG) be the category of L+G-equivariant perverse
sheaves on GrG. There is a convolution product ∗ : SatG× SatG → SatG on SatG.
Define

H :=
⊕

i∈Z

RiΓ(GrG,−) : SatG → Vect,

where Vect is the category of vector spaces over Q̄ℓ. Let (Rep(Ĝ),⊗) be the tensor
category of finite dimensional representations of the dual group Ĝ over Q̄ℓ. The
geometric Satake equivalence is the following assertion.

Theorem 1. 1) The pair (SatG,
∗) admits a unique structure of a tensor category

such that the functor H is symmetric monoidal.
2) There is an equivalence of tensor categories

S : (SatG, ∗) ≃ (Rep(Ĝ),⊗)



Arbeitsgemeinschaft: The Geometric Langlands Conjecture 1051

such that For ◦ S ≃ H, where For is the forgetful functor on (Rep(Ĝ),⊗).
Finally, I will explain how to use the geometric Satake equivalence to introduce

the notion of a Hecke eigensheaf and state a version of the unramified geometric
Langlands correspondence for a general reductive group. To this end, let Hecke be
the Hecke stack which classifies quadruples (E1, E2, x, β), where Ei is a G-bundle
on X , x ∈ X and β : E1|X−x ≃ E2|X−x is an isomorphism between E1 and E2 away
from x. Let BunG be the moduli stack of G-bundles on X . We have natural maps

pi : Hecke→ BunG,

π : Hecke→ X

where pi(E1, E2, x, β) = Ei and π(E1, E2, x, β) = x. The fibers of the map

p2 × π : Hecke→ BunG×X
are (non-canonically) isomorphic to the affine Grassmannian and for each V ∈
Rep(Ĝ) there exists a perverse sheaf ICHk

V on Hecke such that its restriction to
each fiber of p2 × π is isomorphic to ICV := S−1(V ).

Denote by D(BunG) (resp. D(BunG×X)) the bounded derived category of ℓ-
adic sheaves on BunG (resp. BunG×X). Define the Hecke functor

Hk: Rep(Ĝ)×D(BunG)→ D(BunG×X)

by the formula Hk(V,F) = (p2 × π)!(p∗1F ⊗ ICHk
V ).

Let E be a Ĝ-local system on X , viewed as a tensor functor E : Rep(Ĝ) →
Loc(X), V 7→ EV .

Definition 2. A Hecke eigensheaf with eigenvalue E is a perverse sheaf F on

BunG together with isomorphisms αV : Hk(V,F) ≃ F ⊠ EV , for all V ∈ Rep(Ĝ),

that are compatible with the symmetric tensor structure on Rep(Ĝ).

We are now ready to state a version of the geometric Langlands correspondence.

Conjecture 3. To every irreducible Ĝ-local system E, there exists a non-zero
Hecke eigensheaf F with eigenvalue E such that its restriction to each irreducible
component of BunG is an irreducible perverse sheaf.
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Vector bundles on the Fargues-Fontaine curve

Gabriel Dospinescu

1. The Fargues-Fontaine curve

Let E be a local field with residue field Fq of characteristic p and let F be a
perfectoid and algebraically closed extension of Fq. Finally, let π be a uniformizer
of E and ̟ a pseudo-uniformizer of F .

One associates to this data an adic space

Y ad = Spa(WOE (OF )) \ V (π[̟])

endowed with a Frobenius ϕ, acting properly and discontinuously and giving rise
to an adic space Xad = Y ad/ϕZ over E. We also obtain a scheme X = Proj(P )
over E, where P is the graded E-algebra

P =
⊕

d≥0

O(Y ad)ϕ=πd

.

Even though P depends on π, X does not. Moreover, if E′ is a finite extension
of E and X ′ is the curve attached to E′ and F , there is a canonical isomorphism
X ′ ≃ X ⊗E E

′.
We fix once and for all a point ∞ ∈ |X | and let C be its residue field (an

algebraically closed and complete extension of E) and i : {∞} → X the natural
inclusion. X is not of finite type over E, but we have the following deep result of
Fargues and Fontaine [3] (|X | is the set of closed points of X).

Theorem 1. (a) X is a noetherian, regular scheme of dimension 1.

(b) X \ {∞} is the spectrum of a principal ideal domain.

(c) For each rational function f ∈ E(X)∗ we have
∑

x∈|X|

vx(f) = 0.

The previous theorem yields the existence of a degree map deg: Pic(X) →
Z which allows us to define the degree of any vector bundle on X (using its
determinant). Moreover, the theorem shows that Pic0(X) = 0 and so the degree
map deg : Pic(X) → Z is an isomorphism. One checks that a map of vector
bundles of the same rank and degree which is a generic isomorphism is actually an
isomorphism, thus the theory of Harder-Narasimhan filtrations for vector bundles
on X applies (in particular the notions of semi-stable bundle and slope of a bundle
make sense).

2. Construction of vector bundles

Let L = Ênr and let ϕModL be the category of L-isocrystals (i.e. finite dimensional
L-vector spaces with a bijective semi-linear Frobenius). By the Dieudonné-Manin
theorem, the category ϕModL is semi-simple, with simple objects parametrized by
their slope, which is a rational number λ.
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By construction Y ad lives over Spa(L), yielding a functor from ϕModL to the
category BunXad of vector bundles on Xad (sending an isocrystal D to the bundle
(D×Y ad)/ϕZ). This category has good properties sinceXad is strongly noetherian,
by a theorem of Kedlaya. Using GAGA (which follows by combining work of
Fargues-Fontaine [3], Hartl-Pink [6] and Kedlaya-Liu [7]), we obtain a functor

ϕModL → BunX , D 7→ E(D).

Explicitly, E(D) is the quasi-coherent sheaf attached to the graded P -module
⊕

d≥0

(D ⊗L O(Y ad))ϕ=πd

.

In particular, we obtain a vector bundle O(λ) = OX(λ) for each λ ∈ Q, namely
O(λ) = E(D) for D ∈ ϕModL simple of slope −λ (note the minus sign!).

Remark 2. If λ ∈ Z, then O(λ) is the line bundle attached to the graded P -
module P [λ] (this really is a line bundle since P is generated by its degree 1
homogeneous elements, a theorem of Fargues and Fontaine). Moreover, one proves
that there is an isomorphism O(λ) ≃ O(λ · ∞) (where O(λ · ∞) is the usual line
bundle attached to the divisor λ · ∞), thus degO(λ) = λ and so λ 7→ O(λ) is the
inverse of the isomorphism Pic(X) ≃ Z induced by the degree map.

The result (due again to Fargues and Fontaine [3]) we want to discuss in this
talk is the following:

Theorem 3 (classification theorem). The functor D 7→ E(D) is essentially surjec-
tive. In other words every vector bundle on X is isomorphic to O(λ1)⊕ ...⊕O(λn)
for some λ1, ..., λn ∈ Q, uniquely determined up to permutation.

We stress that the functor is very far from being fully faithful: Hom(O,O(1)) is
infinite dimensional over E, while the corresponding Hom on the level of isocrystals
is 0.

3. Cohomology of O(λ)

Let λ be an integer. Fargues and Fontaine prove that H0(O(λ)) = O(Y ad)ϕ=πλ

and that this is 0 if λ < 0. The fundamental exact sequence of p-adic Hodge theory
translates into

0→ E → H0(X \ {∞},O)→ Frac(ÔX,∞)/ÔX,∞ → 0

and this is easily seen to be equivalent to the following

Theorem 4. We have H0(O) = E and H1(O) = 0.

Suppose now that λ /∈ Z and write λ = d
h with d, h ∈ Z relatively prime and

h > 0. Let Eh be the unramified extension of degree h of E and write Xh for the
curve attached to Eh and F . We have a finite étale covering πh : Xh → X induced
by Xh ≃ X ⊗E Eh. Using the explicit form of the simple isocrystal of slope −λ,
one checks that

OX(λ) = πh∗(OXh
(d)).



1054 Oberwolfach Report 20/2016

In particularHi(OX(λ)) = Hi(Xh,OXh
(d)) for all i, and OX(λ) is a vector bundle

of rank h and degree d, thus of slope λ. Moreover, we have π∗hOX(λ) ≃ OXh
(d)⊕h,

hence OX(λ) is semistable.
Using these results and the easily checked fact that O(λ)⊗O(µ) is a direct sum

of finitely many copies of O(λ + µ), one obtains:

Theorem 5. We have

(a) H0(O(λ)) = 0 for λ < 0 and H1(O(λ)) = 0 for λ ≥ 0.

(b) Hom(O(λ),O(µ)) = 0 for µ < λ and Ext1(O(λ),O(µ)) = 0 for µ ≥ λ.

Remark 6. (a) When nonzero the spacesH0(O(λ)) andH1(O(λ)) are huge (with
the exception of H0(O) = E), for instance H1(O(−1)) ≃ C/E and H0(O(1))
lives in an exact sequence

0→ E → H0(O(1))→ C → 0.

(b) In particular, there is a huge amount of extensions

0→ O(−1)→ E → O(1)→ 0

and theorems 3 and 5 imply that for any such extension we have H0(E) 6= 0.
This is fairly hard to prove directly. It can be reformulated in the following

innocent-looking statement: for all a, b ∈ ÔX,∞ there are x, y ∈ H0(O(1)) not
both 0 such that v∞(ax + by) ≥ 2 (this can be proved using the theory of
Banach-Colmez spaces).

(c) More generally, theorems 3 and 5 imply that any nonzero vector bundle of
degree 0 has (nonzero) global sections, that semi-stable vector bundles of slope
0 are trivial and more generally semi-stable vector bundles of slope λ are
isomorphic to O(λ)⊕n for some n.

(d) Conversely, in order to prove theorem 3 it suffices to show that any nonzero
bundle of degree 0 has (nonzero) global sections. Indeed, one first proves by
induction on the rank that semi-stable bundles of slope 0 are trivial1. One
deduces by twisting and Galois descent that semi-stable bundles of slope λ are
isomorphic to O(λ)⊕n. Combining this with theorem 5 yields theorem 3 (and
the non-canonical splitting of the Harder-Narasimhan filtration of bundles on
X).

In order to prove that bundles of degree 0 have global sections, Fargues and
Fontaine use periods of p-divisible groups. We will sketch the argument in the
next section.

1If E is such a bundle, by our assumption H0(E) 6= 0, so there is an embedding O → E. The
Harder-Narasimhan formalism implies that E/O is a semi-stable bundle of slope 0, thus trivial
by induction and so E is trivial since Ext1(O,O) = 0.
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4. Link with p-divisible groups

From now on we assume for simplicity that E = Qp.

Fix a p-divisible group H over Fp and let D ∈ ϕModL be its rational covariant
Dieudonné module. Let E = E(D) ⊗ O(1). We will use the deformation theory
of p-divisible groups to construct many minuscule modifications of E and give a
practical criterion for their triviality.

Let M be the rigid space over L, generic fibre of the formal scheme over OL

classifying deformations by quasi-isogenies of H (M is the Rapoport-Zink space [9]
attached to H). A C-point ofM is a (class of isomorphism of a) pair (G, ρ), where
G is a p-divisible group over OC and ρ is a quasi-isogeny between H ⊗Fq

OC/p

and G⊗OC OC/p (we fixed a section of the natural map OC/p→ Fq).
We have an étale morphism of rigid spaces, the period map πGM : M → F ,

where F is the rigid space over L classifying d = dimH-dimensional quotients ofD.
On C-points πGM is described as follows: let (G, ρ) ∈M(C), then Grothendieck-
Messing theory implies that the quasi-isogeny ρ induces an isomorphism between
D ⊗ C and2 Lie(E(G))[1/p]. Since Lie(G)[1/p] is a d-dimensional quotient of
Lie(E(G))[1/p], we obtain a C-point of F , which is by definition πGM (G, ρ).

Let x = [D⊗C →W ] ∈ F(C). Recall that i : {∞} → X is the natural inclusion
and E = E(D) ⊗ O(1). We have a canonical isomorphism i∗E = D ⊗ C, which
defines a surjection E → i∗(D ⊗ C) and thus a surjection E → i∗(W ). Call E(x)
the kernel of this map. It is a vector bundle on X sitting in an exact sequence

0→ E(x)→ E → i∗W → 0.

Definition 7. A degree d (minuscule) modification of a vector bundle E on X is
the kernel of a surjection E → i∗W , where W is a d-dimensional C-vector space.

The previous construction gives a map x 7→ E(x) from F(C) to the set of degree
d modifications of E . The following theorem is a ”sheafy” version of the p-adic
comparison theorem for p-divisible groups:

Theorem 8. For any x = (G, ρ) in the image of πGM the vector bundle E(x) is
trivial. More precisely, there is a canonical isomorphism E(x) = Vp(G)⊗Qp OX .

The converse of the previous theorem holds, by results of Fargues [4], Faltings
[2] and Scholze-Weinstein [10], giving a description of the image of the period map
in terms of modifications of vector bundles on X .

We sketch the proof of the previous theorem: letting B = O(Y ad), Dieudonné
and Grothendieck-Messing theory give a map Vp(G) → (D ⊗ B)ϕ=p such that
the induced map Vp(G) ⊗ B[1/t] → D ⊗ B[1/t] is an isomorphism. On the other
hand we have H0(E) = (D ⊗ B)ϕ=p, thus we obtain a map Vp(G) ⊗ OX → E ,
which factors through E(x) again by general considerations, yielding a generic
isomorphism Vp(G)⊗OX → E(x). Since the two vector bundles have the same rank
(namely dimD = ht(H) = dimVp(G)) and the same degree (an easy computation

2Lie(E(G)) is the Lie algebra of the universal vector extension E(G) of G
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shows that E has degree d = dimH , thus E(x) has degree 0), this map is thus an
isomorphism, yielding the theorem.

Corollary 9. If πGM is surjective, then all degree d modifications of E are trivial
vector bundles.

An important example is the following: let H be a formal p-divisible group of
dimension 1 and height n ≥ 1 over Fp, thenM is the Lubin-Tate space, F is the
projective space over D (thus isomorphic to Pn−1), and a theorem of Laffaille [8]
and Gross-Hopkins [5] shows that πGM is surjective. Moreover E = O( 1

n ). The
previous corollary thus yields the first part of the following crucial result:

Theorem 10. Let n ≥ 1.
(a) Any degree 1 modification of O( 1n ) is trivial (i.e. isomorphic to On).

(b) Any degree 1 modification of On either has nonzero global sections or is iso-
morphic to O(− 1

n ).

Part (b) of theorem 10 follows by combining the previous corollary with a
theorem of Drinfeld [1], giving the image of the period map for the Drinfeld space.
This space appears naturally as follows: if E is a degree 1 modification of On,
arising as kernel of a map On → i∗C, then saying that E has no nonzero global
sections is precisely saying that the n elements of C that define the map On → i∗C
are linearly independent over Qp, i.e. they define a point in the Drinfeld space
Ω(C) ⊂ Pn−1(C).

Theorem 10 implies theorem 3 rather formally. Since the technical details are
a bit painful, I will just explain why any extension

0→ O(−1)→ E → O(1)→ 0

has (nonzero) global sections. This already contains the key ideas in the proof.
Assume that H0(E) = 0. Let F be the kernel of the map E → O(1) → i∗C,

where O(1) → i∗C is the natural map (with kernel O). Then we have an exact
sequence 0 → O(−1) → F → O → 0. Embed O(−1) → O (as O-modules) and
consider the resulting push-out extension, which is an extension of O by itself,
thus trivial (since Ext1(O,O) = 0). It follows that F embeds (as O-module) in
O2 and so it is a degree −1 modification of O2, without nonzero global sections
(as H0(E) = 0 and F embeds into E). By theorem 10 we obtain F ≃ O(− 1

2 ), thus
we obtain an exact sequence

0→ O(−1

2
)→ E → i∗C → 0.

Taking duals and using theorem 10 again, we deduce that E∨ is trivial, thus E is
trivial, contradicting the equality H0(E) = 0. This finishes the proof.
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Banach-Colmez spaces

Arthur-Cesar Le Bras

Banach-Colmez spaces were introduced by Colmez in [1] (under the name ”Espaces
de Banach de Dimension Finie”) almost fifteen years ago to give a new proof of
the conjecture ”weakly admissible implies admissible” in p-adic Hodge theory. The
goal of the talk was to show why they are important and ubiquitous.

Let C be the completion of an algebraic closure of Qp. Let PerfC be the
category of perfectoid spaces over C, and PerfC,proét be the big pro-étale site of
C (the above category endowed with the pro-étale topology). We will look at
presheaves on the category PerfC with values in the category of Qp-topological
vector spaces, which are sheaves on PerfC,proét when viewed simply as presheaves
of Qp-vector spaces. Such a functor F is called a Banach sheaf when F(X) is
a Banach space for all affinoid perfectoid X . Here are two simple examples of
Banach sheaves : the constant sheaf V , for any finite dimensional Qp-vector space
V ; the sheaf W ⊗C O, for any finite dimensional C-vector space W .

The following definition looks a bit different from Colmez’s one, but is actually
equivalent.

Definition 1. An effective Banach-Colmez space is a Banach sheaf F ′ which is
an extension1

0→ V → F ′ →W ⊗C O → 0,

V (resp. W ) being a finite dimensional Qp-vector space (resp. a finite dimensional
C-vector space). A Banach-Colmez space is a Banach sheaf F which is a quotient

0→ V ′ → F ′ → F → 0,

where F ′ is an effective Banach-Colmez space and V ′ a finite dimensional Qp-
vector space. The category of Banach-Colmez spaces will be denoted BC.

1By definition, a sequence of Banach sheaves is said to be exact if it is so as a sequence of
sheaves of Qp-vectors spaces on PerfC,proét.
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To any presentation of a Banach-Colmez space as in the definition, we associate
two integers : its dimension dimC W and its height dimQp V − dimQp V

′.
The definition of the category of Banach-Colmez spaces may look a bit strange,

but Colmez proved the following difficult theorem ([1]).

Theorem 2. The category BC is an abelian category. The functor F 7→ F(C) is
exact and conservative on BC.

Moreover, the functions dimension and height do not depend on the presentation
and define two additive functions on BC.

At this point it is not clear that there exist interesting examples of Banach-
Colmez spaces apart the obvious ones. To construct geometrically such examples,
one can use p-divisible groups, as was observed by Fargues ([2]). Let G be a p-

divisible group over OC . Its universal cover G̃ is the sheaf which associates to any
perfectoid algebra R over C the Qp-vector space

G̃(R) = lim←−
×p

lim←−
k

lim−→
n

G[pn](R◦/pk).

This sheaf is representable by a perfectoid space over C. For example if G =
Qp/Zp, G̃ = Qp.

2 In general, one has an exact sequence of pro-étale sheaves

0→ V (G)→ G̃
logG−→ Lie(G)[p−1]⊗O → 0,(1)

V (G) being the rational Tate module of G. As moreover G̃(R) is a Banach space
for any perfectoid C-algebra R, this exact sequence shows that universal covers of
p-divisible groups are examples of effective Banach-Colmez spaces ! Actually, one
can prove the following result

Theorem 3. Universal covers of p-divisible groups over OC are Banach-Colmez
spaces and any Banach-Colmez space is the quotient of the universal cover of a p-
divisible group by the Banach-Colmez space V associated to some finite dimensional
Qp-vector space V .

This result has two consequences. The first one is the

Corollary 4. Banach-Colmez spaces are diamonds over Spa(C♭).3

The deep results of Fargues [2] and Scholze-Weinstein [4] on p-divisible groups
allow to describe universal covers in terms of p-adic Hodge theory. The second
consequence of the theorem is thus that one can get many explicit examples of
Banach-Colmez spaces by playing with Fontaine rings. Here is an example : for

any λ = d/h ∈ Q, λ ≥ 0, the functorUλ : R 7→ B+
cris(R

◦)ϕ
h=pd

is a Banach-Colmez
space. For instance, U1 = µ̃p∞ and the exact sequence (1) for G = µp∞ evaluated
on C becomes identified with the famous exact sequence

0→ Qp.t→ (B+
cris)

ϕ=p θ−→ C → 0.

2This sheaf is representable by the perfectoid space Spa(C0(Qp, C), C0(Qp,OC)).
3Here we implicitely identify PerfC,proét with PerfC♭,proét, using Scholze’s equivalence.
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To completely elucidate the nature and the structure of the category BC, we
now turn to the relation with the Fargues-Fontaine curveX (for E = Qp, F = C♭).
Let

Coh0,−(X) = {F ∈ D(X), Hi(F) = 0 for i 6= −1, 0;H−1(F) < 0, H0(F) ≥ 0},

where D(X) is the bounded derived category of the abelian category Coh(X) of
coherent sheaves on X , and where for E ∈ Coh(X), the notation E ≥ 0 (resp.
E < 0) means that all the slopes of E are non negative (resp. negative). This full
subcategory of D(X) is actually an abelian category (this is a consequence of the
general theory of tilting and torsion pairs), and is endowed with a degree function

deg0,− and a rank function rk0,−.
For any perfectoid space S over C♭, there exists a relative version XS of the

curve (for S = Spa(C♭), this is just the usual Fargues-Fontaine curveX). Although
there is no morphism of adic spaces XS → S, one has a morphism of sites τ from
PerfC♭,proét to the big pro-étale site of X . In particular, one can associate to any

complex of coherent sheaves F on X a sheaf Rjτ∗F on PerfC♭,proét, for any j ≥ 0.

Theorem 5. The functor R0τ∗ induces an equivalence of categories

Coh0,−(X) ≃ BC.

Under this equivalence the functions deg0,− and −ht (resp. rk0,− and dim) corre-
spond to each other.

For example, R0τ∗ sends OX to Qp, i∞,∗C to O, and OX(−1)[1] to O/Qp. This

result gives a precise meaning to the idea that all Banach-Colmez spaces can be
obtained by using H0 and H1 of coherent sheaves on the Fargues-Fontaine curve.
It also shows that the category BC only depends on C♭.

Using this result and the corollary 4, one can show that automorphism groups
of vector bundles onX are diamonds : see [3, Prop. 2.5]. For example, Aut(On

X) =
GLn(Qp) (and not the algebraic group GLn!). This point is important for Far-

gues’s conjecture.
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The relative Fargues–Fontaine curve

Matthew Morrow

There are two primary goals of this talk:

(1) Define YS and the relative Fargues–Fontaine curve XS = YS/ϕ
Z for an

arbitrary perfectoid space S over Fp. These will be adic spaces over

SpaQp := Spa(Qp,Zp) which, in the special case S = Spa(C♭
p,O♭

Cp
), re-

duce to the adic spaces Y ad and Xad which appeared in Colmez’ talk.
(2) Relate YS to untiltings of S and describe how the formula

“YS = S × SpaQp”

can be made precise using diamonds.

We mention that, by picking an auxiliary local (or perfectoid) field E, one may
more generally construct YS,E and XS,E; in this talk we are implicitly restricting
entirely to the case E = Qp.

For further details and references we refer the reader primarily to Caraiani–
Scholze [1, §3.3] and Fargues [3, §1.1–1.3] [4, §1.1–1.4].

1. Constructing YS and XS

1.1. Case of affinoid perfectoid S. We begin by constructing YS and XS in the
case that S := Spa(R,R+) is affinoid perfectoid over Fp; fix a pseudo-uniformiser
π ∈ R. Set A := W (R+), which is equipped with the 〈p, [π]〉-adic topology, and
define a preadic SpaQp-space

Y(R,R+) := Spa(A,A) \ V (p[π]).

Concretely, a point of Y(R,R+) is a continuous absolute value | · | : A → Γ ∪ {0}
which satisfies |a| ≤ 1, for all a ∈ A, and |p[π]| 6= 0; it follows from this latter
condition that the vanishing ideal of | · | is not open in A, i.e., Y(R,R+) is an analytic
preadic space, and that moreover the radius function

δ : Y(R,R+) −→ (0, 1), (| · |,Γ) 7→ p− sup{r/s∈Q≥0:|[π]|
r≥|p|s}

(“the closest point to |p| on the positive real line spanned by |[π]|”) is a well-defined,
continuous map. We may therefore introduce, for any closed interval I ⊂ (0, 1),
the associated annulus

Y(R,R+)

open

⊇ Y I
(R,R+) := the interior of the preimage δ−1(I),

which can be shown, in the case that I = [p−r/s, p−r
′/s′ ] for r, s, r′, s′ ∈ N, to

be the rational subdomain of Spa(A,A) consisting of those points | · | for which

|[π]|r ≤ |p|s and |[π]|r′ ≥ |p|s′ . Clearly therefore Y(R,R+) is the filtered increasing
union, over all closed intervals I ⊂ (0, 1), of the associated annuli.

It can be shown that Y(R,R+) is sheafy, i.e., an adic space. To do this one picks a

perfectoid field E/Qp and checks that Y I
(R,R+)×SpaQp SpaE is affinoid perfectoid,

hence sheafy by Scholze or Kedlaya–Liu. In other words Y I
(R,R+) is preperfectoid,

and hence is also sheafy; see [2, §2.2] for further details and references. It then
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follows immediately from the description of Y(R,R+) as a union of annuli that it is
also sheafy.

1.2. The quotient by the Frobenius. The usual Witt vector Frobenius ϕ on A
induces a Frobenius action ϕ on Y(R,R+) which satisfies δ(ϕ(y)) = δ(y)1/p for all
y ∈ Y(R,R+). It follows that this latter action is proper and totally discontinuous,
whence

X(R,R+) := Y(R,R+)/ϕ
Z

is a well-defined adic space over SpaQp and Y(R,R+) → X(R,R+) is an open quotient

map. Moreover, if I = [a, b] ⊂ (0, 1) is an interval satisfying bp < a ≤ b < a1/p,
then Y I

(R,R+) is disjoint from ϕn(Y I
(R,R+)) for all 0 6= n ∈ Z, and so this quotient

map sends Y I
(R,R+) isomorphically to an open subspace of X(R,R+). In short,

sufficiently thin annuli provide an explicit affinoid open cover of X(R,R+).

1.3. The case of general S. For any closed interval I ⊂ (0, 1) and suitable
elements f1, . . . , fn, g ∈ R+, it is not hard to check that there is a natural identi-
fication between

Y I
(R,R+)

〈
[f1],...,[fn]

[g]

〉
and Y I

(R〈 f1,...,fn
g 〉,R〈 f1,...,fn

g 〉+),

where the left is a rational subdomain of Y I
(R,R+) and the right is Y I

(−,−) of a

localisation of the pair (R,R+). It is therefore straightforward to glue along ra-
tional subdomains in order to define YS and the relative Fargues–Fontaine curve
XS := YS/ϕ

Z for an arbitrary perfectoid space S over Fp.

1.4. The map θ. In the case in which S is the tilt S♯♭ of some fixed perfectoid
space S♯ over SpaQp, there is an induced closed immersion θ : S♯ →֒ YS which
is locally given by Fontaine’s map θ : W (R+) → R♯+ arising from the universal

property of Witt vectors. Remarkably, the composition S♯ θ→֒ YS → XS is still
a closed embedding: indeed, we may assume that S = Spa(R,R+) and S♯ =
Spa(R♯, R♯+) are affinoid perfectoid, in which case the kernel of Fontaine’s map
is generated by a degree one primitive element, i.e., an element ξ ∈ A of the form
ξ = [π] + pu where π ∈ R is a pseudo-uniformiser and u ∈ A×; it follows easily
that the closed immersion θ : Spa(R♯, R♯+) →֒ Y(R,R+) factors through the annulus

associated to the interval [p−1, p−1], which as explained in 1.2 maps isomorphically
to an open subspace of X(R,R+).

2. Diamonds and untilting

If X is an analytic adic space over Spa(Zp,Zp), then there is an associated presheaf

X⋄ : PerfFp −→ Sets, T 7→ untilts over X of T ,

where the right side is more precisely defined to the set of pairs, up to the obvious
notion of an isomorphism of pairs, (T ♯, ι) where T ♯ is a perfectoid space over X

and ι : T ♯♭ ≃→ T . If X is itself a perfectoid space, then the equivalence of categories
between perfectoid spaces over X♭ and perfectoid spaces over X implies that X⋄
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canonically identifies with the representable presheaf Hom(−, X♭); as a special
case, if X is a perfectoid space over Fp then X⋄ identifies with Hom(−, X).

An important result (though not strictly necessary for the talk) is that X⋄ is
a sheaf for the pro-étale topology on PerfFp , and even a diamond (recall from
Hellmann’s talk that diamonds are a full subcategory – informally the pro-étale
quotients of representable objects – of pro-étale sheaves on PerfFp). Informally,
this is proved by picking a perfectoid cover {Ui}i of X in the pro-étale topology
and then noting that X⋄ is a pro-étale quotient of

⊔
i U
⋄
i =

⊔
i Hom(−, U ♭

i ).
We may now state the two main results of the talk; let S be a perfectoid space

over Fp. Firstly, there is a natural isomorphism of diamonds (equivalently, of
pro-étale sheaves on PerfFp)

Y ⋄S
∼= S⋄ × SpaQ⋄p,

which gives a precise meaning to the sense in which YS is the product of S and
SpaQp. Secondly, the following four collections are in canonical bijection with one
another:

(I) Sections of the projection Y ⋄S → S⋄.
(II) Maps S⋄ → SpaQ⋄p.
(III) Untilts in characteristic zero (i.e., over SpaQp) of S.
(IV) Closed immersions into YS defined locally by a degree one primitive ele-

ment.

Concerning proofs, we restrict ourselves here to the briefest sketch. The isomor-
phism in the product formula is given, for each test object T ∈ PerfFp , by

Hom(T, S)× SpaQ⋄p(T ) −→ Y ⋄S (T ), (f, (T ♯, ι)) 7→ (T ♯, ι),

where the T ♯ on the right is viewed as a perfectoid space over YS via the compo-
sition

T ♯ θ→֒ YT ♯♭

ι∼= YT
f→ YS .

This is shown to be a bijection using the universal nature of Fontaine’s map.
Meanwhile, (I) and (II) trivially correspond since Y ⋄S

∼= S⋄×SpaQp; secondly, (II)
and (III) correspond by the Yoneda Lemma; thirdly, (III) and (IV) correspond
thanks to the converse of an assertion in 1.4, namely that each degree one primitive
element ξ ∈ A gives rise to an untilt A/ξ[ 1p ] of R.

The two main results of the previous paragraph have obvious analogues in which
YS is replaced by XS , untilts are taken modulo Frobenius equivalence, and S⋄ is
replaced by S⋄/ϕZ, though these were unfortunately not covered in the talk.
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Beauville-Laszlo uniformization

Yakov Varshavsky

Abstract: Let k be an algebraically closed field, G be a split reductive group over
k, and X a connected smooth projective curve over k. The goal of my talk is to
show that the moduli stack BunG(X) of G-bundles on X is uniformized by the
affine Grassmanian GrG.

We follow a beautiful work of Drinfeld–Simpson (see [1]).

I. Existence of B-structures. Let B ⊂ G be a Borel subgroup. Our first goal is
to show that a G-bundle over X admits a B-structure, étale locally on the space
of parameters. More precisely, let S be a scheme over k, and let F be a G-bundle
over X × S. Then we have the following result.

Theorem 1. There exists an étale surjective morphism S′ → S such that the
G-bundle F ×S S

′ over X × S′ has a B-structure.

Remark. By a theorem of Steinberg, we have H1(k(X), G) = 1, therefore every
G-bundle over X is generically trivial. Thus, for S = Spec k, our Theorem 1
follows from the valuative criterion.

Strategy of the proof. Consider the moduli schemeMF classifying B-structures
of F , and its open (and closed) subscheme M+

F ⊂ MF classifying B-structures
”all of its degrees” are sufficiently small. It suffices to show that the projection
M+
F → S is smooth and surjective.
The smoothness assertion follows from the deformation theory and the Riemann-

Roch theorem. To show the surjectivity, we can assume that S = Spec k. Then,
by the remark above, we can assume that F is trivial, hence X = P1, and G is
semisimple and simply connected. In this case, the assertion follows from the fact
that the substack of trivial G-bundles in BunG(P1) is open and dense.

II. Triviality of the bundle, restricted to the punctured curve. Assume
now that G is semisimple. Our second goal is to show that the G-bundle on X
becomes trivial when restricted to the punctured curve, fppf locally with respect
to the scheme of parameters (and “fppf” can be replaced by “étale” in most cases).
More precisely, let x ∈ X be a closed point, set X0 := X − x, and let S and F be
as above. Then we have the following result.

Theorem 2. There exists a faithfully flat morphism of finite presentation S′ → S
such that the restriction F ×S S

′|X0×S′ is a trivial G-bundle. Moreover, S′ → S
can be chosen to be étale, if the cardinality of π1(G) is invertible in k.

Remark. Theorem 2 is equivalent to the assertion that the natural projection
GrG → BunG(X) from the affine Grassmannian of G to the moduli stack of G-
bundles on X is surjective in the fppf (or étale) topology.

Strategy of the proof. The assertion is local in S, so we can assume that S is
affine. By Theorem 1, we can assume that F comes from a B-bundle. Moreover,
using the fact that X0 and S are affine, we can assume that F comes from a
T -bundle E , where T ⊂ B is a maximal torus.
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Since the assertion is tautological, if E is trivial, it remains to show that for

every two T -bundles E and E ′ over X×S, the induced G-bundles G
T
×E and G

T
×E ′

have isomorphic restrictions to X0 × S after we pass to a fppf (or étale) cover of
S.

Replacing S by a finite abelian covering S′ → S, whose order is a power of
|π1(G)|, we can assume that G is simply connected. In this case, we can assume
that E and E ′ differ by a simple root, thus reducing to the ”GL(2)-case”. Namely,
it suffices to show that if E and E ′ are rank two vector bundles over X × S such
that det E ∼= det E ′, then the restrictions of E and E ′ to X0×S become isomorphic
after we pass to a Zariski cover of S.
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The Classification of G-bundles

Michael Rapoport

We want to generalize the classification of vector bundles on Fargues-Fontaine
curves to G-bundles (recovering the old results when G = GLn).

1. Background

1.1. Notation. We fix the notation for this talk: let

• E be a local field (of characteristic 0 or p),
• ̟E the uniformizer,
• Fq the residue field,

• Ĕ the completion of the maximal unramified extension, and
• F an algebraically closed perfectoid field of characteristic p.
• X = XE,F the corresponding Fargues-Fontaine curve.

1.2. Classical G-bundles.

Definition 1. Let G be a connected linear algebraic group over E. A G-bundle
on X can be defined in either of the following two ways:

(i) (“internal”) A principal homogeneous space T under G on X which is locally
trivial for the (étale or fppf) topology (a G-torsor).

(ii) (“external” ) An exact faithful E-linear ⊗−functor V : RepE G→ VectX .
(Note, however, that VectX is not an abelian category, it is only an exact

category.)

Example 2. Why are the two definitions equivalent? We sketch one direction.
Given a G-torsor T , we can define the functor

VT ((V, ρ)) = T ×G,ρ V.
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Definition 3. We denote by |BunG | the set of isomorphism classes of G-bundles
on X .

Example 4. If G = GLn then BunG = VectX,n.

1.3. The classification of VectX . We have a functor

E : ϕ−ModĔ → VectX

sending

(N,ϕ) 7→
⊕

d≥0

(
B+

E,F ⊗Ĕ N
)ϕ=̟d

E

.

An equivalent way, using GAGA, is to take the quotient of N×Ĕ YE with ϕ acting
diagonally on YE and on N .

Theorem 5. The functor E is a faithful exact and E-linear ⊗-functor, which is
essentially surjective (but not fully faithful, see Warning 6).

It also induces an equivalence of categories

(isoclinic ϕ-isocrystals) ↔ (semi-stable vector bundles)

and a bijection of sets of isomorphism classes

|ϕ−ModĔ | = |VectX |.
Warning 6. The functor is not fully faithful because End(Triv⊕Triv(1)) is E⊕E
in the category of isocrystals but a “Banach-Colmez-like object”

(
E BC

E

)
in

the category of vector bundles.

This theorem is what we want to generalize, from vector bundles to G-bundles.

2. G-isocrystals (following Kottwitz)

In this section we survey some results in [3].

2.1. The definition.

Definition 7. Let G be a connected linear algebraic group over E. A G-isocrystal
can be defined in either of the following two ways:

(i) (external) An exact faithful E-linear ⊗-functor
N : RepE G→ ϕ−ModĔ .

(ii) (internal) An element b ∈ G(Ĕ). These form a category via

Hom(b, b′) = {g ∈ G(Ĕ) | gbσ(g)−1 = b′}.
We denote by B(G) the set of G-isocrystals up to isomorphism.

Example 8. Why are the internal and external versions equivalent? Given b ∈
G(Ĕ), we can associate the functor Nb defined by

Nb((V, ρ)) = (V ⊗E Ĕ, ρ(b) ◦ (Id⊗σ))
Essential surjectivity follows from Steinberg’s theorem.
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Example 9. For G = GLn, the classical isocrystal description of an element
b ∈ G(Ĕ) is (Ĕ⊕n, b ◦ σ).

2.2. The Newton and Kottwitz invariants. Let G be reductive. We construct
two invariants associated to G-isocrystals.

The Newton Invariant. Let b ∈ G(Ĕ). Then we can associate to b a homomorphism

νb : DĔ → GĔ

where D is the split pro-torus over E with X∗(D) = Q. This homomorphism νb is
characterized by the property that for all (V, ρ), the morphism

ρ ◦ νb : DĔ → GL(VĔ)

has induced Q-grading on VĔ equal to the slope grading of (VĔ , ρ(b)σ).

The set X∗(G)Q of homomorphisms DĔ → GĔ has an action of G(Ĕ), and we
set

X∗(G)Q/G = HomĔ(DĔ , GĔ)/G(Ĕ).

There is an action of σ on X∗(G)Q/G, and one can show that the image of νb in
(X∗(G)Q/G)

σ only depends on [b], thus inducing a well-defined map

(1) ν : B(G)→ (X∗(G)Q/G)
σ.

This is the Newton invariant.

Example 10. If G is quasi-split, say with Borel B, maximal torus T ⊂ B, and
maximal split torus A ⊂ T ⊂ B, then the right side of (1) can be identified with
X∗(A)

+
Q .

Remark 11. There is also an internal definition of the Newton invariant. Given
b, there exists b′ with b ∼ b′ such that for s≫ 0

(b′σ)s = sνb′(̟E) · σs,

with the equality taking place in G(Ĕ)⋊ 〈σ〉. This characterizes ν[b] = ν[b′] (since
ν is supposed to be defined on isomorphism classes).

The Kottwitz invariant. Consider

π1(G) = X∗(T )/X∗(Tsc).

This is independent of the choice of the maximal torus, and is canonically and
functorially associated to G, and admits an action of Γ := Gal(Ē/E). The Kot-
twitz invariant is described in terms of this fundamental group, as a map into the
set of coinvariants,

κ : B(G)→ π1(G)Γ.

This is not so easy to define, but we will try to give some feeling for it. Roughly
G(Ĕ) is similar to a loop group LG (although this isn’t quite right) and π0(LG) =
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π1(G)I , where I denotes the inertia subgroup of Γ. Now κ is defined so as to make
the following diagram commutative,

B(G) // π1(G)Γ

G(Ĕ)

OO

// π1(G)I

OO

Theorem 12. The map B(G)→ (X∗(G)Q/G)
σ × π1(G)Γ is injective.

The description of the image is not easy, but in the quasi-split case it is fairly
easy to describe it.

Example 13. Let G = GLn. Then X∗(A)
+
Q = (Qn)+ and π1(G)Γ = Z. In this

case the first component of the map gives the slopes of the Newton polygon, and
the second component gives the endpoint of the Newton polygon. So in this case
the first component determines the second, since the endpoint can be determined
from the slopes via the formula

(λi) ∈ (Qn)+ 7→
∑

λi.

In this case, the image can be characterized as the tuples whose break points are
integers.

Example 14. Let G = T , a torus. Then X(A)+Q = X∗(T )Γ ⊗ Q. (There are

no positivity conditions because there are no roots.) The second component is
π1(T )Γ = X∗(T )Γ. In this case the second component determines the first, via

γ ∈ X∗(T )Γ → X∗(T )Γ ⊗Q.

In general, the first component determines the second up to torsion, i.e., its
image in π1(G)Γ ⊗Q

2.3. More structure to B(G). The basic subset. There is an analogue of the
semistable/isoclinic set.

Definition 15. Let

B(G)basic = {[b] | νb is a central homomorphism},
B(G)0basic = {[b] | νb trivial}

Example 16. For G = GLn, basic means isoclinic; the second subset is the
analogue of the unit root isocrystals.

The basic set forms a section to the Kottwitz invariant. In other words, κ
induces bijections

B(G)basic → π1(G)Γ

B(G)0basic → π1(G)Γ,tors ∼= H1(E,G).

In this sense B(G) is an extension of Galois cohomology.
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The automorphism group. Another piece of structure is the automorphism group.
For b ∈ G(Ĕ), we can associate a group functor on E-algebras

Jb(R) := {g ∈ G(Ĕ ⊗R) | gbσ(g)−1 = b}.
This functor is representable by a reductive group over E. Then Jb(E) = Aut(b).
If G is quasisplit, then Jb is an inner form of a Levi subgroup.

Further facts.

• An element b ∈ G(Ĕ) is basic if and only if Jb is an inner form of G.

• If Z(G) is connected, then every inner form comes from some basic b.

• If G is quasisplit, then B(G) can be described in terms B(M)basic for standard
Levi subgroups M ⊂ G.
• B(G) is a partially ordered set such that only finitely many elements are smaller
than a given one. The basic elements are the minimal elements.

3. G-bundles on the Fargues-Fontaine Curve (following Fargues)

In this section we survey results from [1].

3.1. The main result. We want to define a functor

EG : G− isocrystals→ BunG .

There are again two definitions.

(i) (external) Given a G-isocrystal RepE G→ ϕ−ModĔ in the external sense,
composing with E gives

RepE G→ ϕ−ModĔ
E−→ VectX .

This is a G-bundle in the external sense.

(ii) (internal) Given b ∈ G(Ĕ), form GĔ ×Ĕ YE/ϕ
Z with ϕ acting diagonally by

ϕ on YE and by g 7→ bσ(g) on GĔ . The G-torsor structure on GĔ ×Ĕ YE from
the right descends to a G-torsor structure on the quotient. Here we are using
implicitly GAGA.

Theorem 17. Assume that charE = 0. Then the functor EG is faithful and
induces a bijection

B(G)→ |BunG |.
Furthermore, EG induces an equivalence of categories between B(G)basic and the
category of semi-stable G-bundles.

Here we are using the following definition.

Definition 18. A G-bundle T is semi-stable if

(i) (half-external) T ((LieG,Ad)) is a semi-stable vector bundle.

(ii) (external) T ((V, ρ)) is a semi-stable vector bundle if ρ is homogeneous.
(We are using here that the tensor product of semistable vector bundles is

semistable, as follows from their classification.)
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(iii) (internal, if G is quasi-split) We first introduce some notation. Let
P ⊂ G be a parabolic subgroup. Let AP be the split part of the center of MP .
We have dually A′P , the split part of the cocenter of MP . Then the map

AP → A′P

is an isogeny, identifying the rational cocharacter groups. Let T be a G-bundle
and suppose TP is a P -structure on T . Then we define the slope cocharacter
µ(TP ) ∈ X∗(AP )Q which is characterized by the property

〈µ(TP ), λ〉 = degλ∗(TP ) for all λ ∈ X∗(A′P ),
where λ∗(TP ) is the line bundle obtained by push-out.

Now T is said to be semi-stable if and only if for all parabolic subgroups P and
all P -structures TP on T , we have

〈µ(TP ), α〉 ≤ 0, for all roots α occurring in LieNP .

3.2. The two invariants. How are the two invariants expressed in terms of the
corresponding G-bundles?

Newton invariant. By descent, we may assume that G is quasi-split, with A ⊂ T ⊂
B as before. Let T be a G-bundle. The Harder-Narasimhan reduction theorem
says that there exists a unique pair (P, TP ) with P a standard parabolic subgroup
and TP a P -structure such that

(1) TP ×P MP is a semistable MP -bundle, and
(2) µ(TP ) ∈ X∗(AP )

++
Q .

The inclusion AP ⊂ A gives a map X∗(AP )
++
Q → X∗(A)

+
Q , sending µ(TP ) to

νT ∈ X∗(A)+Q .
Proposition 19. There is the identity in (X∗(G)Q/G)

σ,

[νb] = [−νT (b)].

Why the minus sign? It came up already in Dospinescu’s talk: a minus sign
was taken to get compatibility of endomorphism algebras.

Kottwitz invariant. We know that

|BunG | = H1
ét(X,G).

Fargues defines a G-equivariant Chern class

cG1 : H1
ét(X,G)→ π1(G)Γ.

Proposition 20. There is the identity

κ(b) = cG1 (EG(b)).
Conjecture 21. Theorem 17 also holds when E is of characteristic p.

The reason for the restriction on E in Theorem 17 is the following key step in
the proof. In the book of Fargues and Fontaine [2], they construct equivalences
of various categories of ϕ-isocrystals with the category of vector bundles. One of
these functors is not exact. When one wants to apply the external definition of
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G-bundles, one needs an exact functor; this uses the fact that in characteristic 0
the representation theory is semisimple.
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Proof of Geometric Langlands for GL(2), Part One

Stefan Patrikis

1. Statement of the theorem

Let X be a smooth projective geometrically connected curve over a finite field
k = Fq of residue characteristic p. Let F = k(X) denote the function field of X .
The aim of this talk is, following [3], to begin to explain the construction of cuspidal
automorphic representations associated to everywhere unramified, geometrically
irreducible, Galois representations

σ : Gal(F/F )→ GLn(Qℓ).

We begin by making this goal precise. Let |X | denote the set of closed points of
X , and for all x ∈ |X |, let Ox be the complete local ring of X at x, with fraction
field Fx, and set Gx = GLn(Fx), Kx = GLn(Ox), and Hx = H(Gx,Kx), the (ℓ-
adic) spherical Hecke algebra at x. Let frx denote a geometric frobenius element
at x, and let γx denote the semi-simple conjugacy class in GLn(Qℓ) associated
to the semi-simple part of σ(frx). Let AF denote the ring of adèles of F , and
let O be the subring

∏
x∈|X|Ox. We begin with the most classical formulation of

unramified Geometric Langlands:

Theorem 1 (Drinfeld ([2]), Lafforgue ([7]), Frenkel, Gaitsgory, Kazhdan, Vilonen
([3], [4], [5])). For each everywhere unramified, geometrically irreducible, Galois
representation σ : Gal(F/F ) → GLn(Qℓ), or equivalently for each geometrically
irreducible local system E = Eσ on X, there is a non-zero unramified automorphic
form

fσ : GLn(F )\GLn(AF )/GLn(O)→ Qℓ,

related to σ as follows: for all x ∈ |X |, under the Satake isomorphism Hx
∼−→

R(GLn) between the spherical Hecke algebra and the representation ring (over Qℓ)
R(GLn) of the algebraic group GLn, the eigencharacter χγx of Hx acting on the

line Qℓ · fσ corresponds to the character

R(GLn)→ Qℓ

[V ] 7→ tr(σ(γx)|V ).
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In the geometric setting there is a stronger formulation, which also opens up
avenues for proving this theorem that are not available in the arithmetic (number
field) setting. Let Bunn denote the moduli stack over k of rank n vector bundles
on X ; it is a smooth algebraic stack. A fundamental observation of Weil is that
we can identify the double coset space GLn(F )\GLn(AF )/GLn(O) → Qℓ with
the set of isomorphism classes |Bunn(k)| (in fact, there is even an equivalence of
groupoids). A stronger form of unramified geometric Langlands then asserts:

Theorem 2 (Drinfeld ([2]), Frenkel, Gaitsgory, Kazhdan, Vilonen ([3], [4], [5])).
There is a perverse Hecke eigensheaf AutE on Bunn whose trace function

tr(AutE) : |Bunn(k)| → Qℓ

is under Weil’s equivalence identified with the automorphic form fσ of Theorem 1.

This talk will begin the construction of a candidate for the automorphic sheaf
AutE .

2. Classical motivation: cusp forms from Whittaker models via the
Fourier expansion

A simple classical idea underlies the first steps in the construction of AutE . Fix

a non-trivial character Ψ: F\AF → Q
×

ℓ . Let T , B, and N be the subgroups
of diagonal, upper triangular, and unipotent upper triangular matrices in GLn.
The character Ψ induces a character, which we also denote Ψ, of N(AF ) via
(ni,j) 7→

∑
i Ψ(ni,i+1). When n = 2, any cuspidal automorphic form ϕ is easily

seen to admit a Fourier expansion

ϕ(g) =
∑

γ∈F×

Wϕ,Ψ

((
γ 0
0 1

)
· g

)
,

where Wϕ,Ψ denotes the Whittaker function

Wϕ,Ψ(g) =

∫

N(F )\N(AF )

ϕ(ng)Ψ(n)−1dn;

to see this, one simply takes an abelian Fourier expansion for the function x 7→
ϕ

((
1 x
0 1

)
· g

)
on F\AF . With more endurance, one establishes the following

equivalence:

Proposition 3 (Theorem 5.9 of [9]). Let P1 ⊂ GLn denote the mirabolic subgroup

of matrices of the form

(
A B
0 1

)
, where A is an (n − 1) × (n − 1) block matrix.

Then there is a GLn(AF )-equivariant (for right translation) isomorphism

Φ: C∞(GLn(AF ))
(N(AF ),Ψ) ∼−→ C∞(P1(F )\GLn(AF ))cusp

between smooth functions W satisfying W (ng) = Ψ(n)W (g) for all n ∈ N(AF )
and g ∈ GLn(AF ), and smooth cuspidal functions left-invariant under P1(F ).
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Our everywhere unramified Galois representation σ easily leads to the construc-
tion of an element of the space C∞(GLn(AF ))

(N(AF ),Ψ). Namely, for all x ∈ |X |,
there is (see [1]) a unique unramified Whittaker functionWγx : Gx → Qℓ satisfying
Wγx(1) = 1, Wγx(ngk) = Ψx(n)Wγx(g) for all n ∈ N(Fx), g ∈ Gx, and k ∈ Kx,
and h ·Wγx = χγx(h)Wγx for all h ∈ Hx. Assembling these local constructions,
we produce

Wσ =
∏

x∈|X|

Wγx : GLn(AF )→ Qℓ

and its corresponding cuspidal function

f ′σ(g) := Φ(Wσ)(g) =
∑

γ∈Nn−1(F )\GLn−1(F )

Wσ

((
γ 0
0 1

)
· g

)
.

To prove Theorem 1, one has to show that f ′σ is (left) GLn(F )-invariant, rather
than merely P1(F )-invariant. The first step is to realize the function f ′σ as the
trace function of a sheaf (complex) on a new moduli space Bun′n → Bunn.

3. From functions to sheaves

In what follows, it is convenient to work with moduli spaces whose sheaves define
trace functions not on GLn(AF ) and its subgroups, but on a twisted (Zariski-
locally isomorphic) form of GLn over the curve X . We will, following [3], write

GLJ
n, P

J
1 , etc. for these twisted forms; the constructions, especially of Wσ and

f ′σ, of the previous section carry through for these twisted versions. The domain

of f ′σ : P
J
1 (F )\GLJ

n(AF )/GLJ
n(O) → Qℓ is naturally identified with the k-points

of the moduli space Bun′,ratn of pairs (L,Ω⊗n−1F →֒ LF ), where L ∈ Bunn and

Ω⊗n−1F →֒ LF is a generic embedding of coherent sheaves (we do not make this
notion precise in this abstract).

The basic geometric problem faced here is that Bun′,ratn is not represented by an
ind-scheme or algebraic stack. In order to make sense of it geometrically, one has
to do algebraic geometry in a setting in which functors like RanX = colimI X

I ,
the (non-filtered!) colimit taken over all finite sets, are “spaces.” This is in fact
possible (see eg [6]), but in this talk, as in [3], we take a more classical approach.
Thus we begin by defining Bun′n to be the moduli of pairs (L,Ωn−1 →֒ L), where
now the embedding Ωn−1 →֒ L is everywhere, rather than merely generically,
regular. There is then an identification

|Bun′n(k)| ∼= P J
1 (F )\P J(AF )

+/P J(O),
where P is the standard (n − 1, 1) parabolic, and P J(AF )

+ =
∏′

x∈|X| P
J(Fx)

+,

with P J(Fx)
+ =

{(
a b
0 d

)
∈ P J (Fx) : |d| ≤ 1

}
. We can now state the main the-

orem of the talk:

Theorem 4 ([3]). There is an object Aut′E ∈ Db
c(Bun

′
n;Qℓ) such that

tr(Aut′E) = f ′σ|Bun′n(k)
.
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We conclude with some remarks on the proof of the theorem. The essential step
is geometrizing the Whittaker function Wσ, or rather its restriction to a subset of
N(F )\GLn(AF )/GLn(O) that is the k-points of an algebraic stack ν : Q→ Bun′n
over Bun′n such that ν! corresponds to the Fourier expansion Φ of Proposition 3:
an appropriate Q gives

Q(k) = N(F )\B(AF )
+/B(O),

where B(Fx)
+ = N(Fx) · (T (Fx) ∩Matn(Ox)). A basic observation that allows

geometrization of Wσ|Q(k) is that the unramified Whittaker function Wγx is de-
termined by its restriction to T (Fx), and there it is, modulo center, supported on
T (Fx)∩Matn(Ox), with values explicitly given by the Shintani-Casselman-Shalika
formula:

Theorem 5 (Shintani ([10]), Casselman-Shalika ([1])). If λ ∈ X•(T ) is not a
dominant weight, then Wγx(λ(̟x)) = 0. If λ is dominant, then

Wγx(λ(̟x)) = q−〈λ,ρ〉x tr(γx|V (λ)),

where Vλ denotes the irreducible representation of (the dual group) GLn of highest
weight λ.

Laumon ([8]) exploited this observation to geometrize a version of the unram-
ified Whittaker function on a moduli space of torsion coherent sheaves on X ,
and used this construction to give a conjectural construction of the sheaf Aut′E .
Frenkel, Gaitsgory, Kazhdan, and Vilonen proved Laumon’s conjecture to establish
Theorem 4 above.
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Beauville–Laszlo Uniformization for the Fargues–Fontaine curve

Peter Scholze

Let X be a smooth projective curve over a field k, G/k a reductive group, and
x ∈ X(k) a rational point. In this situation, one has the stack of G-bundles BunG
on X , as well as the affine Grassmannian GrG associated with G. Modifying the
trivial G-bundle at the chosen point x defines the Beauville–Laszlo uniformization
map

GrG → BunG ,

which is a flat cover if G is semisimple by Drinfeld–Simpson (see the exposition
of Y. Varshavsky in this report). The goal of this talk was to define the similar
objects in the context of the Fargues–Fontaine curve.

For simplicity, we fix the field E = Qp. First, we define the analogue of the
affine Grassmannian. In this context, this affine Grassmannian parametrizes B+

dR-

lattices in Bn
dR (if G = GLn), where B

+
dR is the complete discrete valuation ring

defined by Fontaine in p-adic Hodge theory. It appears as the complete local ring
of a closed point on the Fargues–Fontaine curve.

To define this in families, one has to associate a ring B+
dR(R) for any perfectoid

Tate ring R. This is defined as the ξ-adic completion of W (R♭◦)[ 1
[̟♭]

], where R♭ is

the tilt of R, ̟♭ ∈ R♭ is a pseudo-uniformizer, and as usual ξ generates the kernel
of θ : W (R♭◦) → R◦. One also sets BdR(R) = B+

dR(R)[ξ
−1]. If R = Cp, B

+
dR(R)

is a complete discrete valuation ring with residue field Cp, and so is abstractly
isomorphic to Cp[[ξ]]. However, there is no good choice of such an isomorphism,
and in families such an isomorphism fails to exist.

Now, if G is a reductive group over Qp, one can define GrG as the functor on
all perfectoid Tate rings R over Qp, sending R to the set of all G-torsors over

SpecB+
dR(R) with a trivialization over SpecBdR(R). Note that by definition of

Spa(Qp)
⋄, one can reinterpret the input data as a pair of an affinoid perfectoid

space S of characteristic p, together with a map S → Spa(Qp)
⋄. Under this

translation, GrG becomes an ind-diamond with a structure map to Spa(Qp)
⋄.

On the other hand, one can define the stack of G-bundles BunG. This takes any
perfectoid space S of characteristic p to the groupoid of G-bundles on the relative
Fargues–Fontaine curve XS . An important feature, which differs drastically from
the case of a usual smooth projective curve, is that the automorphisms of the trivial
G-torsor are not the algebraic group G, but the p-adic group G(Qp). We briefly
discussed that there should be a notion of smooth morphism between diamonds,
and a corresponding notion of an Artin stack; BunG should be an example of an
Artin stack.

Finally, as in the classical situation, one can define the Beauville–Laszlo uni-
formization map

GrG → BunG ,

which is surjective (even if G is not semisimple) by a theorem of Fargues (see
[1]). The Beauville–Laszlo map can be used to construct interesting maps into
BunG. For example, for G = GL2, one gets a map (P1

Qp
)⋄ → BunG; this sends the



Arbeitsgemeinschaft: The Geometric Langlands Conjecture 1075

Qp-rational points P1(Qp) to the vector bundle O ⊕ O(1), and the complement
P1
Qp
\ P1(Qp), known as Drinfeld’s upper half-plane, to the vector bundle O(1/2).

This demonstrates the highly transcendent nature of the geometry of BunG.
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The relationship with the classical local Langlands correspondence

Ana Caraiani

In this talk, I recalled the local Langlands conjecture in its refined form and its ex-
tension to non-quasi-split groups via extended pure inner forms, as in Conjecture F
of [4]. This form of the conjecture is necessary to connect Fargues’ geometrization
conjecture [3] to the local Langlands correspondence.

Let E be a local field of characteristic 0 and G a connected reductive group
defined over E. The local Langlands correspondence proposes to understand ir-
reducible admissible representations of G(E) in terms of arithmetic data. As a
consequence of the Langlands classification, it is enough to understand tempered
representations Πtemp(G), which are supposed to be matched with tempered L-
parameters.

Let LE be the local Langlands group of E: the Weil group WE if E is archi-
medean and WE × SU2(R) if E is non-archimedean. In the non-archimedean
case, this is a form of the so-called Weil-Deligne group of E and was introduced to

account for representations such as the Steinberg. Let Ĝ be the connected complex
Langlands dual group of G, which has a natural action of Γ := Gal(Ē/E), and

define the L-group of G to be LG := Ĝ ⋊ Γ. Note that LG only depends on the
quasi-split inner form of G.

Let Φtemp(G) be the set of Ĝ-conjugacy classes of tempered admissible L-
homomorphisms

φ : LE → LG.

The requirement that φ be an L-homomorphism is the requirement that it com-
mutes with the map WE → Γ. The admissibility condition says that φ is contin-
uous and sends elements of WE to semisimple elements of LG. The temperedness

condition says that the image of φ projects to a bounded subset of Ĝ.

Conjecture 1. There exists a map

LL : Πtemp(G)→ Φtemp(G)

with finite fibers Πφ(G) := LL−1(φ), which are called L-packets.

The map LL should have several additional nice properties: we should understand
its image, it should be compatible with the Satake isomorphism in the unramified
case and with parabolic induction etc. For the precise statement, see [2].
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Remark. (1) For E a p-adic field and G = GLn, it is a theorem of Harris-
Taylor and Henniart that the desired map LL exists and is a bijection.
In particular, in this case every L-packet consists of one element. This is
very far from being true in general.

(2) If E = R and G = SL2, the discrete series representations with the same
infinitesimal character give examples of L-packets of size 2.

From now on we will be interested in finding a way to address individual represen-
tations in a given L-packet Πφ(G). The original motivation for this is global: in
order to understand the spectral content of the stable trace formula and in order
to compute multiplicities of automorphic representations (see [4]).

If G is a quasi-split group, we have the following parametrization of tempered
L-packets, known as the refined local Langlands conjecture. Let

Sφ := { g ∈ Ĝ | gφg−1 = φ }.

Note that we always have Z(Ĝ)Γ ⊂ Sφ and that the connected component of the

identity S◦φ in Sφ is a reductive group. Set S̄φ := Sφ/Z(Ĝ)
Γ and let π0(S̄φ) be its

group of connected components. Since we are in the quasi-split case, we can and
do choose w = (B,ψ), a Whittaker datum for G.

Conjecture 2. (1) There exists an injective map

ιw : Πφ(G) →֒ Irr
(
π0(S̄φ)

)
,

which is a bijection if E is p-adic.
(2) There is a unique w-generic constituent of Πφ(G), which corresponds to

the trivial representation of π0(S̄φ) under ιw.
(3) If E is p-adic, the bijection can be reinterpreted as a ”perfect pairing”

〈 , 〉 : Πφ(G)× π0(S̄φ)→ C

which should satisfy certain endoscopic character identities. For the pre-
cise statement, see Section 1.4 of [4].

Observe that the map ιw does depend on the choice of Whitakker datum w, by
the second part of the conjecture. If G is no longer quasi-split, one can no longer
formulate the conjecture as above. See Section 2 of [4] for a detailed discussion on
why all three statements above become problematic.

If G is no longer quasi-split, the fundamental idea is to extend the local Lang-
lands conjecture by treating several (or even all) inner forms at once [1, 5]. In the
archimedean case, the problem is completely solved by work of Adams, Barbasch
and Vogan [1]. Assume that E is non-archimedean. Let G∗ be the quasi-split inner
form of G. Let B(G∗) be Kottwitz’s set of isocrystals with G∗-structure, which

coincides with the set of σ-conjugacy classes in G∗(Ĕ), where Ĕ is the completion
of the maximal unramified extension of E and σ is the lift of Frobenius. Kottwitz
has defined a map

κ : B(G∗)→ X∗(Z(Ĝ∗)Γ).
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Note thatX∗(Z(Ĝ∗)) is canonically isomorphic to the algebraic fundamental group
π1(G

∗) as a Γ-module, so π1(G
∗)Γ is used in some formulations.

Let B(G∗)bas ⊂ B(G∗) be the subset of basic elements. On this subset, we have

a bijection κ : B(G∗)bas
∼−→ X∗(Z(Ĝ∗)Γ). Given b ∈ B(G∗)bas, we can obtain an

inner form Jb of G∗: in fact, by choosing a representative of b in G∗(Ĕ) we get a
pair (b, ξ) with ξ : G∗ → Jb an inner twist. The pair (ξ, b) is called an extended
pure inner twist and Jb is an extended pure inner form of G∗.

Assume, for simplicity, that φ is a discrete L-parameter, which is defined by the

requirement that Sφ/Z(Ĝ
∗)Γ be a finite group.

Conjecture 3. (1) There is a commutative diagram

⊔
(b,ξ) Πφ ((b, ξ))

��

ιw,∼ // Irr (Sφ)

��
B(G∗)bas

κ,∼ // X∗(Z(Ĝ∗)Γ).

The (b, ξ) run over all extended pure inner twists and Πφ ((b, ξ)) is the
L-packet for the corresponding extended pure inner form. The left vertical
map is given by (b, ξ) 7→ b ∈ B(G∗), whereas the right vertical map is
induced by the natural restriction.

(2) There is a unique w-generic constituent of Πφ ((1, id)), which corresponds
to the trivial representation of Sφ.

(3) Analogues of the endoscopic character identities of Conjecture 2 hold. For
the precise statement, see Conjecture F of [4].

Remark. (1) The theory of extended pure inner forms is consistent with and
generalizes Vogan’s theory of pure inner forms, which are parametrized
by H1(Γ, G∗) [5]. There is a natural injection H1(Γ, G∗) →֒ B(G∗), whose

image under κ can be identified with π0(Z(Ĝ
∗)Γ)∨. This is the torsion

part of X∗(Z(Ĝ)Γ) ≃ π1(G)Γ. By Hilbert’s Theorem 90, the theory of
pure inner forms does not reach any non-trivial inner form of G∗ = GLn.

(2) When Z(G∗) is connected, the map B(G∗)→ H1(Γ, G∗ad) is surjective, so
the theory of extended pure inner forms covers all inner forms of G∗.

In the case when φ is a discrete parameter for G∗ = GLn, we have

Sφ = Z(Ĝ∗)Γ = Gm, so the right vertical map is the identity on Z. The
set B(GLn)bas can be identified with Z as well. All the L-packets have size
1. Note that the L-packet for a fixed inner form appears infinitely many
times on top of the diagram: in this case, the inner form only depends on
the image under the natural surjection B(GLn)bas = Z ։ H1(Γ, PGLn) =
Z/nZ.
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Formulation of the conjecture

Laurent Fargues

Let E be either a finite degree extension of Qp or Fq((π)). We note Fq = OE/π.
Let G be a quasi-split reductive group over E. To this datum is associated a stack
BunG on PerfFq , the catgory of Fq-perfectoid spaces equipped with the pro-étale
topology. In fact, if S ∈ PerfFq then one can consider the relative curve

XS = YS/ϕ
Z

as an E-adic space. One has

BunG(S) = {G-bundles over XS}.
This stack is in some sense a ”perfectoid stack” (by analogy with the notion of an
algebraic stack); we can put some perfectoid charts on it.

Let Ĕ be the completion of the maximal unramified extension of E and σ its
Frobenius. Recall Kottwitz set

B(G) = G(Ĕ)/σ-conjugacy.

According to the main theorem of [1] there is an identification

B(G) =
∣∣BunG,Fq

∣∣.
The stack BunG has a nice Harder-Narasimhan stratification for which the

semi-stable locus is open. There is moreover a decomposition into open/closed
substacks

BunG =
∐

α∈π1(G)Γ

BunαG,

where Γ := Gal(Ē/E), given by the Kottwitz invariant

κ : B(G) −→ π1(G)Γ.

For each α ∈ π1(G)Γ the open subset

|Bunα,ss
G,Fq
|
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is one point given by κ : B(G)basic
∼−→ π1(G)Γ. The residual gerbe at this point is

given by [
Spa(Fq)/Jb(E)

] ∼−→ Bunα,ss
G,Fq

.

for b basic with κ(b) = α.

Fix T ⊂ B in G. For each µ ∈ X∗(T )+/Γ there is a Hecke diagram

Hecke≤µ
←

h

yytt
tt
tt
tt
tt →

h

((PP
PP

PP
PP

PP
PP

P

BunG BunG× Spa(E)⋄.

The right morphism if a locally trivial fibration in GrBdR,≤µ /E⋄, a closed Schu-
bert cell in Scholze’s BdR-affine Grassmanian. Conjecturaly one can construct
an intersection cohomology complex ICµ on GrBdR,≤µ and transfer it to Hecke≤µ

via
→

h . Given a complex of sheaves F on BunG one can then construct its Hecke
transform

→

h !

(←
h
∗

F ⊗ ICµ

)
.

The conjecture is now the following.

Conjecture. Fix a Whittaker datum for G. Let ϕ : WE −→ LG be a discrete

Langlands parameter where LG = Ĝ ⋊WE with Ĝ the Qℓ-Langlands dual, ℓ 6= p

fixed. Here discrete means Sϕ/Z(Ĝ)
Γ is finite where Sϕ := {g ∈ Ĝ | gϕg−1 =

ϕ}. We then conjecture there exists a ”perverse” Qℓ-Weil sheaf Fϕ on BunG,Fq

equipped with an action of Sϕ such that:

(1) For each α ∈ π1(G)Γ the action of Z(Ĝ)Γ on Fϕ|Bunα
G

is given by α via

π1(G)Γ = X∗(Z(Ĝ)Γ).

(2) For each b ∈ G(Ĕ) basic if xb :
[
Spa(Fq)/Jb(E)

]
→֒ BunG,Fq

then

x∗bFϕ =
⊕

ρ∈Ŝϕ
ρ
|Z(Ĝ)Γ

=κ(b)

ρ⊗ πϕ,b,ρ

where {πϕ,b,ρ}ρ is an L-packet for a local Langlands correspondence for the
extended pure inner form Jb of G. Moreover πϕ,1,1 is generic with respect
to the chosen Whittaker datum.

(3) If ϕ is moreover cuspidal i.e. the 1-cocyle IE
ϕ−→ LG։ Ĝ has finite image,

then
Fϕ = j!j

∗Fϕ

with j the inclusion of the semi-stable locus.
(4) For each µ ∈ X∗(T )+/Γ

→

h !

(←
h
∗

F ⊗ ICµ

)
≃ Fϕ ⊠ rµ ◦ ϕ

that is to say Fϕ is an Hecke eigensheaf with eigenvalue the Weil local

system rµ ◦ ϕ on Spa(Ĕ)⋄
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(5) There is a ”naive” character sheaf property: for each δ ∈ G(E), xδ is
defined over Fq and the action of the corresponding Frobenius coming from
the Weil structure on x∗δFϕ is given by δ ∈ Jδ(E)

(6) There is a local/global compatibility between Fϕ and the Caraiani-Scholze
sheaf constructed in [2] for Hodge type Shimura varieties.
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Proof of Geometric Langlands for GL(2), second part

Jochen Heinloth

As in the first talk by S. Patrikis on the proof of geometric Langlands for GL(2)
we fix a smooth, geometrically irreducible projective curve X/Fq. The aim of the
talk is to explain how Frenkel, Gaitsgory and Vilonen [3] proved that for every
geometrically irreducible local system E of rank n on X there exists a Hecke-
eigensheaf AutE on Bunn. To clarify the basic strategy, we will restrict to the
case n = 2 for most of the talk. This case is due to Drinfeld [1] but we will try to
rephrase the proof in the formulation of [3].

An exceptionally clear and much more detailed exposition can be found in
Laumon’s Bourbaki talk on this work [8]

1. The starting point

To begin, let us recall the case n = 1 form Bhargav Bhatt’s talk: Given a 1-
dimensional local system L on X we already knew the values of the potential
automorphic function fL on divisors. A geometric incarnation of this function was
given by the symmetric power L(d) on the symmetric power X(d) of the curve,
classifying effective divisors of degree d on X :

X(d)

AJ
��

〈O →֒ L|L ∈ Picd〉

Picd

.

(Here and in the following we will often denote by 〈objects〉 the algebraic stack
classifying the objects inside of the brackets.)

As for d > 2g − 2 the Abel-Jacobi map AJ is a projective bundle and projec-
tive space is simply connected any local system on X(d) descends to Picd. This
procedure constructed AutL.

In higher rank the strategy is similar: Again a candidate for the automorphic
function is known and can this time be interpreted as the trace function of a sheaf
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Aut′E on

Bun′2

forget

��

〈ΩC →֒ E|E ∈ Bun2〉

Bund2

.

The main point of the talk is thus to sketch that

1. Aut′E is an (irreducible) perverse sheaf (this is crucial for proving 2.).
2. Aut′E descends to a (perverse) sheaf AutE on Bun2.
3. AutE is a Hecke eigensheaf. (Of course, we know this already for its trace

function.)

Again the forgetful map is a bundle over a large open subset of Bun2. As it is not
too hard to keep track of the problem that this only true on an open subset, we
will ignore this issue for the purpose of this talk.

2. Reminder on the construction of the candidate sheaf Aut′E

We briefly need to recall that Aut′E was constructed through the following diagram

〈(J ⊂ E)|J∈Ext1(O,Ω)
E∈Bun2

〉〉

ν̃
vv♥♥♥

♥♥
♥♥
♥♥
♥♥
♥♥

ext× quot // A1 × Coh0

Bun′2 〈ΩC →֒ E|E ∈ Bun2〉
as

Aut′E := ν̃!(ext
∗AS × quot∗(LE))

where AS is the Artin-Schreier sheaf on A1 and LE is Laumon’s sheaf on the stack
of torsion sheaves on X , which was denoted by Coh0. Recall that the construction
of LE was closely related to the symmetric products of X via:

C̃oh
d

0

π

��

〈T1 ⊂ · · · ⊂ Td〉
gr // ∏Coh10

// Xd

��
Cohd0

supp // X(d)

as LE |Cohd
0
:= (Rπ∗ gr∗E⊠d)Sd , where the Sd action comes from the fact that

π is a small map, which is generically an Sd covering. Alternatively LE can be
described, on Cohd0, as the middle extension of E(d) from the substack of torsion
sheaves supported at d distinct points.

3. Perversity of Aut′E

The trick to show that Aut′E is perverse is to reinterpret the above construction as
a Fourier transformation, which is known to preserve perversity [7]. The reinter-
pretation due to Laumon comes from noting that 〈ΩC →֒ E|E ∈ Bun2〉 is an open
substack of the stack of extensions Ext( ,Ω) over the stack Coh1 of coherent
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sheaves of rank 1. By Serre duality this is dual to Hom(O, ) which contains the

injective homomorphisms j : Hominj(O, ) →֒ Hom(O, ), which in turn map to
Coh0.

Unraveling the definitions one finds that Aut′E is the Fourier transform of
j!(quot

∗ LE). Thus one needs to show that in this case j!(quot
∗ LE) =

j!∗(quot
∗ LE).

In general for equivariant sheaves defined on the complement of the zero section
of a vector bundle this property is equivalent to the vanishing of the cohomology
of the corresponding sheaf on the associated projective bundle.

In the talk we explained how this is connected to the vanishing conjecture of [3],
proven in [4] and sketched Deligne’s argument in the rank 2 case from [1]. Thus
we find that Aut′E is indeed perverse and irreducible if E is.

4. The descent argument

As an irreducible perverse sheaf is the middle extension of some local system on
some subset, we could prove descent of Aut′E as in the rank 1 case if we only knew
that this open subset of Bun′2 can be chosen as the preimage of an open subset of
Bun2. The first trick is to observe that:

Lemma 1. A perverse sheaf F on a smooth variety is a local system if and only
if the Euler-characteristic of its stalks is constant.

So to show that Aut′E descends we only need to show that the Euler charac-
teristic of the stalks of Aut′E are constant along the fibers of the forgetful map to
Bun2.

In turn this property is independent of E if one manages to rewrite the con-
struction of Aut′E in a way that uses only push forwards along projective maps.
This can be achieved using Drinfeld’s compactification (called Q in [3]).

Thus one is reduced to showing the property for a single local system E0, e.g.
one could take E0 trivial. In [3] the authors use that it would also suffice to find
one local system for which the corresponding automorphic representation is known
to exist and argue that such a system can be constructed using cyclic base change.

An alternative approach is given in Gaitsgory’s thesis by comparing Aut′E to
Eisenstein series in case E = ⊕n

i=1Li is a generic direct sum of rank 1 local systems.
Note that in this case the argument j! = Rj∗ for Aut

′
E no longer holds, but looking

at the vanishing result one finds that the Euler characteristics of the two complexes
still agree, which in the end turns out to suffice.

Also note that as a consequence, the constancy of the Euler characteristics also
holds for the trivial local system which is a non-trivial geometric statement, which
by constructibility can then be transferred to characteristic 0.
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5. The Hecke property

As little time was left, we briefly explained how the Hecke property for GLn needs
only be checked on the first Hecke operator, if one knew that the Hecke invariance
under the basic Hecke operator satisfies a symmetry property with respect to
iterations. The argument is an application of Springer theory.

To show the Hecke property of AutE for the first Hecke operator one does a
direct calculation using that Laumon’s sheaf LE already satisfies a Hecke property
on Coh0.
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The case of Gm

Ulrich Görtz

In this talk, we prove Fargues’s conjecture [1] §4 in the case of G = GL1, using
local class field theory in the form of Lubin-Tate theory. The crucial point is the
Hecke eigensheaf property. We closely follow loc. cit., §9.1.

We fix a finite extension E/Qp, and a uniformizer π ∈ E. Let q denote the
cardinality of the residue class field of E.

For G = GL1, the stack of G-bundles on the Fargues-Fontaine curve X is just
the Picard stack Pic of line bundles. It decomposes as

Pic =
∐

d∈Z

Picd,

according to the degree d of a line bundle. In this case, the semi-stable locus is
equal to the whole stack Pic.
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The choice of the uniformizer π gives rise to a line bundle O(1) on X , hence
line bundles O(d) for all d ∈ Z, and these induce isomorphisms

[Spa(Fq)/E
×] ∼= Picd .

From this point of view, the universal object over Picd is an E×-torsor on Spa(Fq)
which we denote by Td.

Now fix a cocharacter µ of GL1, say µ(z) = zk. We restrict the Hecke diagram

Pic Hecke≤µ
←−
hoo

−→
h // Pic×Div1X ,

where Div1X = Spa(E)⋄/ϕZ, to Picd×Div1X and obtain

Picd+k Hecke≤µ,d
←−
hoo

−→
h // Picd×Div1X ,

(with Hecke≤µ,d :=
−→
h −1(Picd×Div1X)). In this diagram, the morphism

−→
h is an

isomorphism: For a lattice in a one-dimensional vector space over a discretely
valued field (such as BdR), there exists a unique lattice in relative position k.
Hence given a line bundle on X , there is a unique modification along a given
Cartier divisor on X with a fixed relative position.

Now fix a Lubin-Tate formal OE -module attached to π, let E(1) denote its
rational Tate module, E(k) = E(1)⊗k. This is a pro-étale local system on Spa(E)⋄

(and hence on Div1X). Denote by LTd the corresponding E×-torsor.
The key property that will allow us to define a Hecke eigensheaf on Pic is the

following

Proposition 1. There is a natural isomorphism

←−
h ∗Td+k

∼= −→h ∗(Td)×E× LT−k
of E×-torsors on Hecke≤µ,d.

Proof. The main ingredient is the fundamental exact sequence in p-adic Hodge
theory. In fact, seen as a sequence of sheaves over Spa(E)⋄, it allows us to see
O(d+ k) as a modification of O(d) (of relative position k ≥ 0, say) of line bundles
on the relative curve (over some perfectoid space S over Spa(E)⋄), induced from a
section of O(k) which “comes from” E(k)⋄. Comparing this modification with the
universal modification over the Hecke stack, pulled back to S, gives the proposition.
See [1] Prop. 9.1 (2). �

Now define a Weil-E×-torsor on PicFq
as follows:

• F |Picd
Fq

= Td

• The Weil descent datum on Picd
Fq

is given by multiplying the canonical

Weil descent datum (which we have since Td is defined over Fq) by π
−d.

Now consider a continuous character ϕ : WE → Q
×

ℓ , i.e., a (discrete, cuspidal)
Langlands parameter for GL1. We denote by Art: E× → W ab

E the Artin map
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for E (normalized so that uniformizers correspond to lifts of Frobenius), and let

χ : E× → Q
×

ℓ be the composition χ := ϕ ◦Art.
We define

Fϕ := F ×E×,χ Qℓ,

a Weil ℓ-adic sheaf on Pic, and claim that this sheaf satisfies the conditions in

Fargues’s conjecture. Note that in this case, there is a unique action of Sϕ(= Q
×

ℓ )
such that part (1) of the conjecture is satisfied. Furthermore, the cuspidality
condition (2) is clear since the semi-stable locus is all of Pic, and the compatiblity
with the local Langlands correspondence is clear by the definitions. It remains to
show the Hecke eigensheaf property and the character sheaf property. The latter
is checked easily (see [1] §9.1).

The Hecke eigensheaf property follows from the above proposition together with
Lubin-Tate theory. Namely, denoting by χLT : W

ab
E → O×E ⊂ E× the Lubin-Tate

character, we have that

(1) If σ = Art(π), then Art ◦χLT (σ) = 1,
(2) if σ lies in the image of the inertia subgroup of WE in W ab

E ,
then Art ◦χLT (σ) = σ−1.

In particular, part (2) implies that for the restriction to the inertia group IE ⊂WE ,
we have

(χ ◦ χLT )−k|IE = rµ ◦ ϕ|IE
(recall that µ(z) = zk). Using this and the above proposition, we obtain

−→
h !(
←−
h ∗Fϕ)|Picd

Fq
×Div1

Fq

= Fϕ|Picd
Fq

⊠ rµ ◦ ϕ|IE ,

where we regard rµ◦ϕ|IE as an ℓ-adic local system on Div1 = Spa(E)⋄/ϕZ. (Cf. [2]
17.3). It is easy to check using (1) above that with the Weil sheaf structure
defined on F above and the canonical Weil sheaf structure on rµ ◦ ϕ|IE this is an
isomorphism of Weil sheaves, as desired.

Along similar lines, the conjecture can be proved for arbitrary tori; see [1] §9.2.
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Relation with the cohomology of Lubin-Tate spaces

Jared Weinstein

The goal of this talk is to confirm a prediction of Fargues’ conjecture in the case
of the group GLn. We will see that the existence of the Hecke eigensheaf implies
that the cohomology of Lubin-Tate space realizes the local Langlands and local
Jacquet-Langlands correspondences simultaneously.

Define the following data:

• G = GLn /Qp,
• µ(z) = diag(z, 1, . . . , 1),

• b =




1
. . .

1
p−1


 ∈ G(Q̆p),

• Jb(Qp) = D∗ where D/Qp is a division algebra of invariant 1/n.

1. The Hecke stack

We have a Hecke stack

Heckeµ

h←

yysss
ss
ss
ss
ss

h→

((PP
PP

PP
PP

PP
PP

P

BunG,Fp
BunG,Fp

× SpaQ⋄p

where Heckeµ is the following sheaf on Perf:

Heckeµ(S) =




(E , E ′, S#, u) :

E , E ′ = G-bundles
S# = untilt ↔ i : D →֒ XS

u : E ≤µ99K E ′ such that
Cokerµ is supported on D





We could (and usually would) write Hecke≤µ but in this case there’s no difference
because µ is minuscule. The modification will be

0→ E → E ′ → i∗W → 0

where W is a locally free S#-module of rank 1.
The functor Heckeµ will not be representable by a perfectoid space, because

E and E ′ generally have many automorphisms. We can address this issue by
rigidifying E and E ′, and that is how the Lubin-Tate tower shows up.
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2. Rigidification: the Lubin-Tate tower at infinite level

Let y1 : SpaFp → BunG,Fp
and yb : SpaFp → BunG,Fp

be two points. (We pass

to the algebraic closure because we do not want to keep track of the Weil descent
datum right now; one can always go back to this later.) We define a sheaf M∞
on Perf by the cartesian diagram

M∞ //

��

Heckeµ

h←×h→0

��
SpaFp

y1×yb // BunG,Fp
×BunG,Fp

where h→0 = p1◦h→. Since y1 corresponds to the trivial bundle,M∞ parametrizes
modifications of the form

0→ O⊕nX
u−→ OX(1/n)→ i∗W → 0.

Note that the only thing that varies here is u.

Theorem 1 (Scholze-Weinstein [1]). Let H0/Fp be the p-divisible group which
is connected of dimension 1 and height n (exactly the one corresponding to the
isocrystal b).

(1) For a perfectoid Qp-algebra (R,R+), we have

M∞(R,R+) =



(H, ι, α) :

H = p-div group / R+

α = quasi-isog. : H ⊗R+ R+/p ∼ H0 ⊗Fp
R+/p

ι : TpH ⊗Qp
∼= Q⊕np





This has an action of GLn(Qp)× Jb(Qp), with GLn(Qp) acting on ι and
Jb(Qp) acting on α.

(2) M∞ is a preperfectoid space.

Remark 2. The GLn(Qp) × Jb(Qp)-action is also clear from the description of
M∞ as parametrizing extensions

0→ O⊕nX
u−→ OX(1/n)→ i∗W → 0.

because GLn(Qp) is automorphism group of E1 = On
X and Jb(Qp) is automorphism

group of Eb = OX(1/n).

Remark 3. M∞ comes equipped with a map to Qp because it’s fibered over
Heckeµ, which comes equipped with a map to SpaQ⋄p.

Proof Sketch. How do we parametrize these morphisms u? Well, u is a map of
vector bundles On

X → OX(1/n), which is the same as giving n global sections of
OX(1/n). So that gives a map

M∞ → H0(X,O(1/n))⊕n.
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(For clarity, we spell out that H0(X,O(1/n))⊕n is the sheaf that assigns to S ∈
PerfFp the set of n-tuples of sections in H0(XS ,O(1/n)).) As was explained in Le

Bras’ talk the sheaf H0(X,O(1/n)) is the same as H̃, the universal cover of any
lift H/W (Fp) of H0. (We have H0 ↔ b ↔ Eb, and the general theorem is that

H0(X, Eb) = H̃). The universal cover H̃ is preperfectoid. Scholze-Weinstein [1]

proves that M∞ → H̃ is a locally closed embedding, from which it follows that
M∞ is a preperfectoid space.

�

Remark 4. In factM∞ is a perfectoid space. One sees this by using the deter-
minant map fromM∞ onto the Lubin-Tate space for GL1 /Qp, which is Z copies
of SpaQcycl

p . ThusM∞ comes equipped with a map to a perfectoid field.

3. Another Rigidification

We just related the Hecke stack to a perfectoid space at infinite level, by rigidifying
both E and E ′. Perhaps this is overkill. What if we rigidify at just one vector bundle
and not the other? Suppose we just fix E ′ = OX(1/n). Then we are considering
the moduli problem which assigns to a test object S of Perf the set of modifications

0→ E → OXS (1/n)→ i∗W → 0.

Giving such a modification just amounts to specifying W . More precisely, one has
to choose an untilt S♯ of S, and then a rank 1 quotient of the fiber of the rank n
vector bundle OXS (1/n) at S

♯. But the fiber of OXS (1/n) at S
♯ can be identified

with (S♯)n. So our moduli problem is really just Pn−1,⋄

Q̆p
.

To understand what E is, we note that OXS (1/n) has rank n and degree 1 at
all geometric points of S, while i∗W has rank 0 and degree 1. By the additivity
of rank and degree, we deduce that E has rank n and degree 0 at all geometric
points of S. We also know that OXS (1/n) is semistable. So what could a slope of
E be? There cannot be a slope > 1/n by the semistability of OX(1/n). However,
any other positive slope would have a larger denominator, hence larger rank. So
we conclude that E must be semistable of slope 0.

Remark 5. This is a really special feature of the Lubin-Tate situation.

It’s proven in Kedlaya-Liu [2] that semistable vector bundles of slope 0 can be
trivialized over a pro-étale cover. That is: Isom(E ,O⊕nXS

) is a pro-étale G(Qp)-

torsor over S. These are classified by the stack [SpaFp/GLn(Qp)]. We have thus
constructed a morphism

r : Pn−1,⋄

Q̆p
→ [SpaFp/GLn(Qp)].
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Thus we get a diagram

(1) [SpaFp/GLn(Qp)]

��
Pn−1,⋄

Q̆p

//

r

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
Heckeµ

h← // BunG,Fp

The map

r : Pn−1,⋄

Q̆p
→ [SpaFp/GLn(Qp)]

corresponds by definition to a GLn(Qp)-torsor on Pn−1,⋄

Q̆p
. Unraveling the con-

structions, this torsor is none other thanM∞. The map to Pn−1,⋄

Q̆p
factors through

some finite layer, i.e., we have a diagram

M⋄∞ //

!!❉
❉❉

❉❉
❉❉

❉❉
Pn−1,⋄

Q̆p

M⋄K

<<①①①①①①①①

where K ⊂ GLn(Qp) is a compact open subgroup.
In order to match things up with the Hecke correspondence, we now base change

to Qp (because one of the maps of Heckeµ is to BunG,Fp
×(SpaQp)

⋄).

[Spa Q̆⋄p/Jb(Qp)]
(xb,1)−−−−→ BunG,Fp

× SpaQ⋄p.

We have a commutative diagram

[Pn−1,⋄

Q̆p
/Jb(Qp)]

j

��

i // Heckeµ

h→

��
[Spa Q̆⋄p/Jb(Qp)]

(xb,1) // BunG,Fp
× SpaQ⋄p

(We have written down this diagram before without modding out be Jb on the left

side.) The map i : [Pn−1,⋄

Q̆p
/Jb(Qp)] → Heckeµ is an open embedding. Indeed, as

Peter mentioned in his talk, there is a theorem that the semistable locus BunssG of
BunG is given by ∐

b basic

[
SpaFp/Jb(Qp)

]
= BunssG

and i is a base change of this map.
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To summarize, we have the commutative diagram

[SpaFp/GLn(Qp)]

x1

��
[Pn−1,⋄

Q̆p
/Jb(Qp)]

j

��

i //

r

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣
Heckeµ

h→

��

h← // BunG

[Spa Q̆⋄p/Jb(Qp)]
(xb,1) // BunG,Fp

× SpaQ⋄p

4. Fargues’ conjecture

Let ϕ : WQp → GLn(Qℓ) be a discrete Weil parameter. What does Fargues’
conjecture say in this case? (The situation here is a little simplified by the fact
that Sϕ is trivial.) It predicts that there exists Fϕ on BunG,Fp

such that (up to

shifts and twists)

• We have

(2) h→! h
←∗Fϕ = Fϕ ⊠ ϕ.

(This is simpler than in general because the IC sheaf is constant up to
shifts and twists, and also it is unnecessary to write rµ because it is the
standard representation of GLn.)
• We have x∗1Fϕ = π and x∗bFϕ = ρ where π and ρ correspond to ϕ under
the local Langlands correspondence.

Consequences of the conjecture. Pulling back (2) through (xb, 1)
∗ gives

(3) (xb, 1)
∗h→! h

←∗Fϕ = (xb, 1)
∗Fϕ ⊠ ϕ.

On the right side we get ρ ⊗ ϕ by the second property of the sheaf Fϕ. On the
left side, first apply proper base change to j from the earlier diagram

[Pn−1,⋄

Q̆p
/Jb(Qp)]

j

��

i // Heckeµ

h→

��
[Spa Q̆⋄p/Jb(Qp)]

(xb,1) // BunG,Fp
× SpaQ⋄p

to deduce that

(4) ρ⊗ ϕ = (xb, 1)
∗h→! h

←∗Fϕ = j!i
∗h←∗Fϕ.
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Now we use the top part of the diagram

[SpaFp/GLn(Qp)]

x1

��
[Pn−1,⋄

Q̆p
/Jb(Qp)]

i //

r

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Heckeµ

h← // BunG

to deduce that

j!i
∗h←∗Fϕ = j!r

∗x∗1Fϕ.

Then the second property of Fϕ, i.e., x∗1F = π, implies that this is j!r
∗π, so

combining this with (4) gives

ρ⊗ ϕ = j!r
∗π.

Recall that r corresponds to the (Jb(Qp)-equivariant) GLn(Qp)-torsor M⋄∞ on

Pn−1,⋄

Q̆p
.

Now we apply j! to get

(5) ρ⊗ ϕ = H∗c (P
n−1
Cp

, r∗π).

Here we have base-changed to Cp and gotten rid of the Jb quotient at the cost of
remembering the action of Galois and Jb. So the above isomorphism is equivariant
for the action of Jb(Qp)×WQp .)

We ignored shifts and twists; if you keep track of them then (assuming that π
is cuspidal) you get

(6) ρ⊗ ϕ = Hn−1
c (M∞,Qℓ)[π

∨](
1− n
2

).

This is a very deep theorem of Harris-Taylor. How did we get from (5) to (6)?
The Hochschild-Serre spectral sequence for the fibration

M∞,Cp

��
Pn−1

Cp

��
Cp

converges as

Hi(GLn(Qp), H
j
c (M∞,Cp ,Qℓ)⊗ π)⇒ H−i+j(Pn−1

Cp
, r∗π).

In the supercuspidal case there is no higher group cohomology, so you take the
invariants in this tensor product, which gives what we claim.
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École Normale Superieure
D. M. A.
45, Rue d’Ulm
75230 Paris Cedex 05
FRANCE

Prof. Dr. Ruochuan Liu

Beijing International Center for
Mathematical Research
No. 5 Yiheyuan Road Haidian District
Beijing 100 871
CHINA

Dr. Yifeng Liu

Department of Mathematics
Northwestern University
Lunt Hall
2033 Sheridan Road
Evanston, IL 60208-2730
UNITED STATES



1096 Oberwolfach Report 20/2016

Judith Ludwig

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Prof. Dr. Keerthi Madapusi Pera

Department of Mathematics
The University of Chicago
5734 South University Ave.
Chicago, IL 60637-1514
UNITED STATES

Dr. Michael McBreen

Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES

Prof. Dr. Sophie Morel

Department of Mathematics
Princeton University
Fine Hall
Princeton, NJ 08544-1000
UNITED STATES

Dr. Matthew Morrow

Hausdorff Center for Mathematics
Endenicher Allee 60
53115 Bonn
GERMANY

Prof. Dr. Wieslawa Niziol
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