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Abstract. The roots of both moduli spaces and modular forms go back to
the theory of elliptic curves in the 19th century. Both topics have seen an
enormous growth in the second half of the 20th century, but the interaction
between the two remained limited. Recently there have been new develop-
ments that led to new points of contact between the two topics. One is the
theory of K3 surfaces that is rapidly gaining a lot of new interest. Here the
link with modular forms on orthogonal groups has led to progress on the
Kodaira dimension of the moduli spaces of K3 surfaces. Another new devel-
opment has been the use of moduli spaces of curves to gather new information
about Siegel modular forms. The workshop intended to bring representatives
from both the theory of moduli and the theory of modular forms together to

further the interaction between the two topics as the time seemed ripe to do
this.
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Introduction by the Organisers

The workshop Moduli Spaces and Modular Forms, organized by Jan Bruinier
(Darmstadt), Gerard van der Geer (Amsterdam) and Valéry Gritsenko (Lille)
was held 25-29 April, 2016 and was attended by 52 participants from all over the
world. The attendance ranged from senior leaders in the field to young postdocs
and advanced Ph.D. students. The program consisted of 21 talks of one hour or
50 minutes. The lectures and the simple fact that people from different fields were
brought together initiated lots of discussions and forged new contacts between
participants. The program highlighted the diversity of the interactions between
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‘Moduli’ and ‘Modular Forms’. Topics ranged from the sphere packing problem
to moduli of supersingular K3 surfaces and Enriques surfaces in characteristic 2.

Three main themes of the workshop were ‘Moduli of K3 surfaces and Modular
Forms on Orthogonal Groups,’ ‘Moduli of Curves and Siegel Modular Forms’ and
‘Modular Forms on Ball Quotients.’

In recent years there has been a strong revival of interest in moduli of K3
surfaces. One development was the determination of the Kodaira dimension for
moduli of K3 surfaces of not too small degree, which was the last open problem in
A. Weil’s program on K3 surfaces. This progress used modular forms on orthog-
onal groups and Borcherds’ automorphic products in an essential way. Another
development was the proof of the conjectures of Artin and Tate for K3 surfaces
over finite fields for characteristic not 2 last year. Also this proof uses modular
forms. Besides this there are interesting developments concerning the compactifi-
cation of moduli of K3 surfaces. Also the moduli of polarized hyperkähler varieties
and Enriques surfaces are attracting new interest in algebraic and differential ge-
ometry. All these topics are related to modular forms on orthogonal groups. Apart
from this there are interesting links between moduli of K3 surfaces and moduli of
curves in a number of papers by Kondo, Allcock and others and modular forms
on ball quotients. The modular forms on ball quotients belong to the theory of
authomorphic forms on unitary groups, but there has been almost no interaction
between these two disciplines.

Siegel Modular forms occur in the cohomology of local systems on moduli spaces
of abelian varieties. Sometimes these moduli spaces are strongly related to moduli
of curves. For example, for genus ≤ 3 the moduli space of principally polarized
abelian varieties is very close to the moduli space of curves. This fact and the
fact that one can extract information about cohomology by using Frobenius over
finite fields have been used very effectively to obtain a lot of new information
about Siegel modular forms of genus ≤ 3 and also for Picard modular forms. The
link between the two topics that is thus obtained is an extremely useful tool. An
example of an application is the disproval of the Gorenstein conjecture for the
tautological ring of the moduli space M2,n of n-pointed curves of genus 2.

Modular forms on ball quotients have not attracted much attention. Ball quo-
tients are associated to moduli of abelian varieties associated to groups of type
U(n, 1). But there are interesting links between various other moduli spaces in al-
gebraic geometry and these Shimura varieties of type U(n, 1). For example, moduli
of K3 surfaces and moduli of curves are linked in a number of papers by Kondo,
Allcock and others to ball quotients and to modular forms on these ball quotients.
The modular forms on ball quotients belong to the theory of automorphic forms
on unitary groups, but there has been almost no interaction between the geometric
aspects and the automorphic aspects.

Recently there has been a lot of activity on Kudla’s program for unitary groups.
Kudla and Rapoport defined special cycles on integral models of unitary Shimura
varieties of type GU(n, 1) as the locus of abelian varieties (with additional data)
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whose endomorphism ring contains certain special endomorphisms. They com-
puted some of their arithmetic intersection numbers and related them to coeffi-
cients of derivatives of Eisenstein series. The height pairing of such Kudla-Raport
divisors with CM cycles has been expressed as the derivative of the central value
of a Rankin type L-function.

All these themes were well represented among the talks on this workshop. The
great variety of topics treated became already visible on the first day. The work-
shop started with a beautiful survey talk of Farkas on his joint work with Alexeev,
Donagi, Izadi and Ortega on the uniformization of the moduli space A6 of prin-
cipally polarized abelian varieties of dimension 6. It was followed by a talk by
S. Kondo who discussed Enriques surfaces in characteristic 2, an exceptional but
intriguing case where the moduli space is reducible. He considered the question
whether there exist Enriques surfaces in characteristic 2 with finite automorphism
group and with a prescribed dual graph of the configuration of all smooth rational
curves. He gave a 1-dimensional family of Enriques surfaces with a configuration
of type VII constructed using Rudakov-Shafarevich derivations on K3 surfaces.
The other two talks of the day showed the same diversity of topics. There was
talk of Maryna Viazovska on her sensational work on the sphere packing problem:
E8 and the Leech lattice provide the densest possible sphere packings in dimen-
sions 8 and 24. And Täıbi presented recent impressive advances on Siegel modular
forms, obtained by using Arthur’s multiplicity formula; he is able to derive explicit
dimension formulae for spaces of vector-valued Siegel modular forms of level 1.

The diversity of the first day was continued on the following days as illustrated
by the abstracts of the talks that follow hereafter. Some talks highlighted the
algebraic geometry aspect of the topic, others concentrated on Arakelov geometry
and there were talks dealing mostly with the modular forms side. The talks showed
a wide range of topics but also presented quite a number of unexpected relations.
The variation in the program was appreciated very much by the participants. It
led to a very lively atmosphere with many discussions and a very fruitful workshop.

The organizers thank the staff of Oberwolfach for creating excellent working
conditions during the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Shigeyuki Kondō in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

The uniformization of the moduli space of principally polarized
abelian 6-folds

Gavril Farkas

(joint work with Valery Alexeev, Ron Donagi, Elham Izadi, Angela Ortega)

It is a classical idea that general principally polarized abelian varieties (ppavs) and
their moduli spaces are hard to understand, and that one can use algebraic curves
to study some special classes, such as Jacobians and Prym varieties. This works
particularly well in small dimension, where in this way one reduces the study of
all abelian varieties to the rich and concrete theory of curves. For g ≤ 3, a general
ppav is a Jacobian, and the Torelli map Mg → Ag between the moduli spaces of
curves and ppavs respectively, is birational. For g ≤ 5, a general ppav is a Prym
variety by a classical result of Wirtinger. In particular, for g = 5, this gives a
uniformization of A5 given by the degree 27 Prym map

P : R6 → A5.

The purpose of this paper is to prove a similar uniformization result for the
moduli space A6 of principally polarized abelian varieties of dimension 6. The
idea of this construction is due to Kanev and it uses the rich geometry of the
27 lines on a cubic surface. Suppose π : C → P1 is a cover of degree 27 whose
monodromy group equals the Weyl group W (E6) ⊂ S27 of the E6 lattice. In
particular, each smooth fibre of π can be identified with the set of 27 lines on an
abstract cubic surface and, by monodromy, this identification carries over from one
fibre to another. Assume furthermore that π is branched over 24 points and that
over each of them the local monodromy of π is given by a reflection in W (E6).
A prominent example of such a covering π : C → P1 is given by the curve of
lines in the cubic surfaces of a Lefschetz pencil of hyperplane sections of a cubic
threefold. Each such a pencil contains precisely 24 singular cubic surfaces, each
having exactly one node.

By the Hurwitz formula, we find that each such E6-cover C has genus 46.
Furthermore, C is endowed with a symmetric correspondence D of degree 10,
compatible with the covering π and defined using the intersection form on a cubic
surface. Precisely, a pair (x, y) ∈ C × C with x 6= y and π(x) = π(y) belongs
to D if and only if the lines corresponding to the points x and y are incident.
The correspondence D is disjoint from the diagonal of C × C. The associated
endomorphism D : JC → JC of the Jacobian of C satisfies the quadratic relation
(D − 1)(D + 5) = 0. Using this, Kanev showed that the associated Prym-Tyurin-
Kanev variety

PT (C,D) := Im(D − 1) ⊂ JC

of this pair is a 6-dimensional ppav of exponent 6. Thus, if ΘC denotes the
Riemann theta divisor on JC, then ΘC|P (C,D) ≡ 6 · Ξ, where Ξ is a principal
polarization on P (C,D).
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Since the map π has 24 branch points corresponding to choosing 24 roots in E6

specifying the local monodromy at each branch point, the Hurwitz scheme Hur
parameterizing E6-covers π : C → P1 as above is 21-dimensional (and also irre-
ducible). The geometric construction described above induces the Prym-Tyurin-
Kanev map

PT : Hur → A6

between two moduli spaces of the same dimension.

Theorem 1. The Prym-Tyurin-Kanev map PT : Hur → A6 is generically finite.
It follows that the general principally polarized abelian variety of dimension 6 is a
Prym-Tyurin variety of exponent 6 corresponding to a E6-cover C → P1.

In the course of proving this result, we establish numerous facts concerning
the geometry of the E6-Hurwitz space. One of them is a surprising link between
the splitting of the rank 46 Hodge bundle E on the Hurwitz space into Hodge
eigenbundles and the Brill-Noether theory of E6-covers. For a point

[π : C → P1] ∈ Hur,

we denote by D : H0(C,KC) → H0(C,KC) the map induced at the level of
cotangent spaces by the Kanev endomorphism of JC and by

H0(C,KC) = H0(C,KC)
(+1) ⊕H0(C,KC)

(−5),

the decomposition into the (+1) and the (−5)-eigenspaces of holomorphic differ-
entials respectively. Denoting by L the degree 27 pencil on C, we show that the
following canonical identifications hold:

H0(C,KC)
(+1) = H0(C,L)⊗H0(C,KC ⊗ L∨)

and

H0(C,KC)
(−5) =

(
H0(C,L⊗2)

Sym2H0(C,L)

)∨

⊗
2∧
H0(C,L).

In particular, the (+1)-Hodge eigenbundle is fibrewise isomorphic to the image of
the Petri map µ(L) : H0(C,L) ⊗ H0(C,KC ⊗ L∨) → H0(C,KC), whenever the
Petri map is injective.

We are also able to describe the ramification divisor of the Prym-Tyurin-Kanev
map in terms of the geometry of the Abel-Prym-Tyurin curve

ϕ(−5) = ϕH0(KC)(−5) : C → P5

given by the linear system of (−5)-invariant holomorphic forms on C.

Theorem 2. An E6-cover [π : C → P1] lies in the ramification divisor of the map
PT : Hur → A6 if an only if the Abel-Prym-Tyurin curve ϕ(−5)(C) ⊂ P5 lies on a
quadric.
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Enriques surfaces with finite automorphism group in characteristic 2

Shigeyuki Kondō

(joint work with Toshiyuki Katsura)

Recall that, over the complex numbers, a generic Enriques surface has an infinite
group of automorphisms (Barth and Peters [1]). On the other hand, Fano [5] first
gave an Enriques surface with a finite group of automorphisms. Later Dolgachev
[3] gave another example of such Enriques surfaces. Then Nikulin [8] classified
the periods of such Enriques surfaces. Finally Kondo [7] classified all complex
Enriques surfaces with a finite group of automorphisms and gave their explicit
constructions. There are seven types I, II, . . . ,VII of such Enriques surfaces. The
Enriques surfaces of type I or II form an irreducible 1-dimensional family, and each
of the remaining types consists of a unique Enriques surface. The first two types
contain exactly 12 nonsingular rational curves, on the other hand, the remaining
five types contain exactly 20 nonsingular rational curves. The Enriques surface of
type I (resp. of type VII) is the example given by Dolgachev (resp. by Fano). We
call the dual graphs of all nonsingular rational curves on the Enriques surface of
type K the dual graph of type K (K = I, II, ...,VII). For example, the dual graph
of type VII is given in the Figure 1. For other dual grpahs, we refer the reader to
[7].

In positive characteristics, the classification problem of such Enriques surfaces
is still open. The most interesting case is in characteristic 2. In the paper [2],
Bombieri and Mumford classified Enriques surfaces in characteristic 2 into three
classes, namely, classical, singular and supersingular Enriques surfaces. As in the
case of characteristic 0, an Enriques surface X in characteristic 2 has a canonical
double cover π : Y → X , which is a purely inseparable µ2-cover, Z/2Z-cover or
a purely inseparable α2-cover according to X being classical, singular, or super-
singular. Here Y might have singularities, and moreover non-normal case occurs,
but it is a K3-like surface, that is, the dualizing sheaf of Y is trivial.

In this talk we consider the following problem: does there exist an Enriques
surface in characteristic 2 with a finite group of automorphisms whose dual graph
of all nonsingular rational curves is of type I, II, ...,VI or VII ? Table 1 gives the
answer to this problem.

In Table 1,©means the existence and×means the non-existence of an Enriques
surface with the dual graph of type I, ...,VII. In case of singular Enriques surfaces
with the dual graph of type I, II,VI, the construction of such Enriques surfaces
over the complex numbers works well in characteristic 2. On the other hand, the
non-exsistence follows from some properties of genus one fibrations on Enriques
surfaces. The most difficult and interesting case is of type VII. The main result
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Type I II III IV V VI VII
singular © © × × × © ×
classical × × × × × × ©

supersingular × × × × × × ©
Table 1

is to give a 1-dimensional family of classical and supersingular Enriques surfaces
with the finite automorphism group Aut(X)(∼= S5) whose dual graph of all non-
singular rational curves is of type VII. We use Rudakov and Shafarevich’s theory
of derivations [9] to construct such Enriques surfaces. The following is the dual
graph of all nonsingular rational curves of type VII:

Figure 1

It is known that there exist Enriques surfaces in characteristic 2 with a fi-
nite group of automorphisms whose dual graphs of all nonsingular rational curves
do not appear in the case of complex surfaces (Ekedahl and Shepherd-Barron[4],
Salomonsson[10]). For example, there exists an Enriques surface X which has a

genus one fibration with a multiple singular fiber of type Ẽ8 and with a bi-section.
We have ten nonsingular rational curves on X , that is, nine components of the
reducible singular fiber and the bi-section, whose dual graph is given in Figure 2.

❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞

❞

Figure 2
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The remaining problem of the classification of Enriques surfaces in characteristic
2 with a finite group of automorphisms is to determine such Enriques surfaces
appeared only in characteristic 2.
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The sphere packing problem in dimensions 8 and 24

Maryna Viazovska

(joint work with H. Cohn, A. Kumar, S. D. Miller, D. Radchenko)

In this talk we present a solution of the following two theorems.

Theorem 1 (Viazovska [3]). No packing of unit balls in Euclidean space R8 has
density greater than that of the E8-lattice packing.

Theorem 2 (Cohn, Kumar, Miller, Radchenko, Viazovska [2]). No packing of
unit balls in Euclidean space R24 has density greater than that of the Leech lattice
packing.

Our proof is based on a linear programming method developed by H. Cohn
and N. Elkies. Let us briefly explain this method. The Fourier transform of an
L1 function f : Rd → C is defined as

f̂(y) :=

∫

Rd

f(x) e−2πix·y dx, y ∈ Rd

where x · y = 1
2‖x‖2 + 1

2‖y‖2 − 1
2‖x− y‖2 is the standard scalar product in Rd.
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Theorem 3 (Cohn and Elkies [1]). Let f : Rn → Rn be a Schwartz function and

r a positive real number such that f(0) = f̂(0) = 1, f(x) ≤ 0 for |x| ≥ r, and

f̂(y) ≥ 0 for all y. Then the sphere packing density in Rn is at most

πn/2

Γ(n/2 + 1)

(r
2

)n
.

The main step in our proof of Theorem 1 is the explicit construction of a function
with the following properties.

Theorem 4. There exists a radial Schwartz function f : R8 → R which satisfies:

f(x) ≤ 0 for ‖x‖ ≥
√
2(1)

f̂(x) ≥ 0 for all x ∈ R8(2)

f(0) = f̂(0) = 1.(3)

The proof of Theorem 2 follows from

Theorem 5. There exists a radial Schwartz function f : R24 → R which satisfies:

f(x) ≤ 0 for ‖x‖ ≥ 2(4)

f̂(x) ≥ 0 for all x ∈ R24(5)

f(0) = f̂(0) = 1.(6)

Let us briefly explain our strategy for the proof of Theorems 4 and 5. First,
we observe that conditions (1)–(3) imply additional properties of the function f .
Suppose that there exists a Schwartz function f such that the conditions (1)–(3)
hold. The E8 lattice Λ8 ⊂ R8 is even and unimodular. Therefore, the Poisson
summation formula implies

(7)
∑

ℓ∈Λ8

f(ℓ) =
∑

ℓ∈Λ8

f̂(ℓ).

Since ‖ℓ‖ ≥
√
2 for all ℓ ∈ Λ8\{0} then conditions (1) and (3) imply

(8)
∑

ℓ∈Λ8

f(ℓ) ≤ f(0) = 1.

On the other hand, conditions (2) and (3) imply

(9)
∑

ℓ∈Λ8

f(ℓ) ≥ f(0) = 1.

Therefore, we deduce that f(ℓ) = f̂(ℓ) = 0 for all ℓ ∈ Λ8\{0}. Moreover, the

first derivatives d
drf(r) and d

dr f̂(r) also vanish at all Λ8-lattice points of length

bigger then
√
2. We will say that f and f̂ have double zeroes at these points. This

property gives us a hint how to construct function f explicitly.
We illustrate the idea of the proof of Theorems 4 and 5 with the following easier

construction. For simplicity, we concentrate on the dimension 8 case. We show
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how to construct Fourier eigenfunctions with simple zeroes at vectors of integer
norm.

Proposition 6. Fix ε ∈ ±1 and d ∈ 8N. Let g ∈ M !
2−d/2(Γθ, χε) be a weakly

holomorphic modular form. Suppose that the only pole of g is at the cusp i∞ and
at this cusp g has the Fourier expansion

g(τ) =
∑

n≫−∞

c(n)eπinτ .

Consider the following radial function in Rd

f(r) :=

∫

C

g(τ) eπir
2τ dτ,

where C is any contour in the upper half-plane connecting −1 and 1. Then

f̂(y) =− ε f(10)

f(
√
n) =c(−n) for n ∈ Z>0.(11)

Proof. Firstly, we prove (10). We have

f̂(r) =

1∫

−1

g(τ) τ−d/2 eπir
2(−1/τ) dτ.

After the change of variables τ = −1
w we obtain

F(f)(r) =

−1∫

1

g

(−1

w

)
wd/2 eπir

2w w−2 dw.

Using g
(
−1
w

)
= εw2−d/2 g(w) be arrive at

F(f)(r) = −ε
1∫

−1

g(w) eπir
2w dw = −ε f(r).

Now we prove (11). Note that g(τ) eπinτ is periodic with period 2 for n ∈ Z.
Therefore, by the residue theorem

f(
√
n) =

1∫

−1

g(τ) eπinτ dτ = c(−n).

�
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Computing with Siegel modular forms using Arthur’s endoscopic
classification

Olivier Täıbi

For a genus g ≥ 1, let Hg be the Siegel upper-half space, Γg = Sp2g(Z) and
Ag = Γg\Hg the moduli space of principally polarized abelian varieties. Any tu-
ple k = (k1, . . . , kg) of integers satisfying k1 ≥ · · · ≥ kg defines an irreducible
algebraic representation of GLg, from which one defines the finite-dimensional
C-vector space Sk(Γg) of Siegel cusp forms of weight k. See [9] for precise defi-
nitions. The space Sk(Γg) is naturally endowed with a semisimple action of the

Hecke algebra T =
⊗′

p primeTp, where each Tp is a commutative C-algebra and

HomC−alg(Tp,C) is in bijection with the set of semisimple conjugacy classes in
GSpin2g+1(C), via the Satake isomorphism. The goal of this report is to present
recent advances, by others and myself, in explicitly computing these spaces along
with the action of T, using Arthur’s multiplicity formula, that is a precise formu-
lation of the global Langlands correspondence for arbitrary connected reductive
groups over number fields.

This problem can be reformulated in terms of automorphic representations as
follows. Assume that kn ≥ n + 1, then Sk(Γg) is isomorphic a subspace of the
space of discrete automorphic forms of “level one” for Sp2g:

Adisc(Sp2g(Q)\Sp2g(A)/Sp2g(Ẑ)).

This subspace is defined by a condition of extremality for the action of the Lie
algebra sp2g, as in the theory of Verma modules, and this identification is equi-

variant for the action of the Hecke algebra T0 =
⊗′

p primeT
0
p ⊂ T. Note that

HomC−alg(T
0
p,C) is in bijection with the set of semisimple conjugacy classes in

SO2g+1(C), so that some information is lost in this reformulation using Sp2g in-
stead of GSp2g. Decomposing the space of discrete automorphic forms in terms of

automorphic representations, we obtain a T0-equivariant isomorphism

Sk(Γg) ≃
⊕

π

(
π
Sp2g(Ẑ)

f

)⊕m(π)

where the sum is over the set of discrete automorphic representations π = π∞ ⊗
πf for Sp2g such that π∞ is the holomorphic discrete series representation σhol

k

of Sp2g(R) having infinitesimal character (±(k1 − 1), . . . ,±(kg − g), 0), seen as
a semisimple conjugacy class in the Lie algebra so2g+1(C) dual to sp2g. The
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integer m(π) ≥ 1 is the multiplicity of π, and π
Sp2g(Ẑ)

f is either 0 or an irreducible

one-dimensional representation of T0. The natural approach to compute these
representations of T0 consists in applying some version of the Arthur-Selberg trace
formula, using a pseudo-coefficient for σhol

k to select the relevant automorphic

representations. In [10], I used Arthur’s L2-Lefschetz trace formula [4] instead, to
derive dimension formulae for the spaces Sk(Γg).

Theorem 1. For m ≥ 1 denote ζm = exp(2iπ/m). There exists a finite family
(ma, Pa,Λa)a∈A, where for any a ∈ A

• ma ≥ 1 is an integer,
• Pa ∈ Q(ζma

)[X1, . . . , Xg],
• Λa : (Z/maZ)

g → Z/maZ is a surjective group morphism,

such that for any k1 ≥ k2 ≥ · · · ≥ kg > g + 1, we have

(1) dimSk(Γg) =
∑

a∈A

trQ(ζma )/Q

(
Pa(k1, . . . , kg)ζ

Λa(k1,...,kg)
ma

)
.

Moreover there is an algorithm to compute the family (ma, Pa,Λa)a∈A, and they
have been computed for all g ≤ 7. There are similar formulae for kg = g + 1, but
they are not the specialisation of (1).

This version of the trace formula uses a stable pseudo-coefficient of discrete
series, which has a non-vanishing trace in each of the 2g representations in the
L-packet of discrete series containing σhol

k . The reason for using this version of
the trace formula is that the geometric side simplifies, involving only semisimple
R-elliptic conjugacy classes in Levi subgroups of Sp2g. Nevertheless, the main
difficulty in computing the geometric side is the evaluation of local orbital integrals,

because the level Sp2g(Ẑ) is not neat. The price to pay for this simplification of the
geometric side is that the spectral side does not distinguish between the elements
of the L-packet containing σhol

k . This is where Arthur’s endoscopic classification

[3] comes into play.
Arthur proved that for any automorphic discrete representation π = π∞⊗πf for

Sp2g, there is an associated “formal Arthur-Langlands parameter” ψ = ⊞i∈Iπi[di].
Here each πi is a self-dual automorphic cuspidal representation of GLni

, and di ≥ 1
are integers. They satisfy several additional conditions, among which we have∑

i∈I dini = 2g + 1. In level one, the relation between π and ψ is that each πi
is everywhere unramified, and for any prime p the eigenvalues of the Satake pa-
rameter of πp (in SO2g+1(C)) are

(
αi,jp

(di−1)/2, . . . , αi,jp
(1−di)/2

)
i∈I,j∈Ji

where

(αi,j)j∈Ji
denote the eigenvalues of the Satake parameter of (πi)p. Furthermore,

Arthur proved a multiplicity formula, which given such a ψ characterises the rep-
resentations π∞ of Sp2g[R) such that π∞ ⊗ πf is automorphic, where πf = ⊗′

pπp
is determined from ψ as above. He also gave a formula for the integers m(π).
Arthur’s characterisation is quite abstract, but recently Arancibia, Moeglin and
Renard [2] have shown that, in all cases relevant to Arthur’s L2-Lefschetz trace
formula, Arthur’s packets of representations of Sp2n(R) coincide with those con-
structed in a more explicit manner by Adams and Johnson in [1]. Finally, using
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an inductive procedure, which also involves the families of split reductive groups
SO2n+1 and SO4n, the multiplicity of each π∞ in the discrete automorphic spec-
trum for Sp2g in level one can be recovered. The reason for the appearance of
these two additional families of reductive groups is that for each πi as above, the
Satake parameters associated come naturally from a Langlands dual group which
can be SOni

(C) (if ni 6= 2 mod 4) or Spni
(C) (if ni is even).

In theory one could use the same method to explicitly compute the trace of
an arbitrary element of T0 on Sk(Γg), but the computation of the geometric side
would be considerably more involved. In some cases, this difficulty can be circum-
vented by the use of definite inner forms. When m = −1, 0, 1 mod 8, there exists
a non-degenerate quadratic form q on Qm such that the associated special orthog-
onal group Gm = SO(q) is definite (i.e. Gm(R) is compact) and split over Qp for
all primes p. Unfortunately, symplectic groups do not admit definite inner forms
split at all finite places. Thanks to the compactness of Gm(R), level one automor-
phic forms for Gm can be seen as functions on the set of even unimodular (if m is
even) or 2-modular (if m is odd) lattices in (Qn, q) taking values in an irreducible
representation V of Gm(R). Since Gm(Q) has finitely many orbits on the set of
such lattices, spaces of automorphic forms for Gm are algebraic in nature and very
explicit. In particular, the trace formula for Gm is much more elementary than
the general case of arbitrary reductive groups. This allowed Chenevier and Re-
nard [7] to compute dimension formulae for m ∈ {7, 8, 9} and recently Mégarbané
[8] to compute traces for a number of Hecke operators. Note that Chenevier and
Renard’s computations precede mine. The groups Gm are inner forms of split spe-
cial orthogonal groups, which as explained above occur naturally in the inductive
endoscopic analysis of the spectral side of the trace formula for Sp2n. Similarly,
Sp6 is an endoscopic group for G8, the relation between the dual groups being the
natural embedding SO7(C) →֒ SO8(C). As a result one can easily derive, via the
Satake isomorphism, the action of T0

2 on Sk(Γ3) for 14 ≥ k1 ≥ k2 ≥ k3 ≥ 4, as well
as traces of some Hecke operators for 3 ≤ p ≤ 23. Mégarbané’s computations seem
to be in accordance with the conjectural values computed by Bergström, Faber
and van der Geer [5]. The fact that Arthur’s multiplicity formula is valid for inner
forms such as Gm is a consequence of [11], which came after [7], but of course
Chenevier and Renard already interpreted their computations using endoscopy.

Finally, I would like to point out that Chenevier and Lannes’ study of lattices
and Kneser neighbours (see [6]) using automorphic forms, which motivated the
following works mentioned in this report, contains other interesting applications
to Siegel modular forms.
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From exceptional groups to del Pezzo surfaces, via principal bundles
over elliptic curves

Nick I. Shepherd-Barron

(joint work with I. Grojnowski)

Brieskorn and Tyurina showed that deformations of simple singularities possess
simultaneous resolutions; Brieskorn, Grothendieck, Slodowy and Springer then
showed that this phenomenon could be realized inside the corresponding split sim-
ply connected simple algebraic group G. Later it was observed that deformations
of simply elliptic singularities possess simultaneous log resolutions; this can be
seen in terms of type II degenerations of K3 surfaces. In this talk I explained how
these simultaneous log resolutions could be realized inside the stack of G-bundles
over an elliptic curve, by considering the spaces that parametrize the reductions
of such a bundle to a Borel subgroup. In particular we see del Pezzo surfaces
arising directly from the group; for example, cubic surfaces appear from the sim-
ply connected split group E6. This inverts, in a geometrical way, the classical
passage from del Pezzo surface to group by way of root data constructed from the
configuration of lines on the del Pezzo.

Constructing Antisymmetric Paramodular Forms

Cris Poor

(joint work with Valery Gritsenko, David S.Yuen)

There are a couple of reasons to compute paramodular cusp forms of low weight.
Weight 3 forms give canonical divisors on A2(1, N), the moduli space of abelian
surfaces of polarization type (1, N). Weight 2 forms occur in the Paramodular
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Conjecture of Brumer and Kramer, a conjecture definitively describing the mod-
ularity of abelian surfaces. There are also reasons to single out antisymmetric
paramodular cusp forms. In 1995, Gritsenko [3] asked for ways of constructing
canonical divisors that were antisymmetric. Antisymmetric weight 2 paramodular
cusp forms conjecturally correspond to abelian surfaces over Q whose group of
rational points has odd rank.

Let N ∈ N. We set K(N) = StabSp2(Q) (Z⊕ Z⊕ Z⊕NZ), where we view
elements of Z⊕ Z⊕ Z⊕NZ as column vectors. The geometric significance of the
paramodular groups is that A2(1, N) ∼= K(N)\H2.

Here we use Borcherds Products to construct examples of antisymmetric para-
modular cusp forms of weights 2 and 3 with applications to both geometry and
modularity. Our method relies heavily on the theta blocks introduced by Grit-
senko, Skoruppa and Zagier in [5]. We use the theta blocks

TBk[d1, . . . , dℓ] = η2k
∏

i

(
ϑdi
η

)
,

for some list T = [d1, . . . , dℓ] of natural numbers. The product BTBT (ζ) =∏
i

(
ζdi/2 − ζ−di/2

)
is called the baby theta block. The basic examples of Ja-

cobi forms we make use of are the Dedekind Eta function η(τ) = q
1
24

∏
n∈N(1−qn)

and the odd Jacobi theta function:

ϑ(τ, z) = q
1
8

(
ζ

1
2 − ζ−

1
2

)∏

j∈N

(1− qjζ)(1 − qjζ−1)(1− qj).

We have ϑ ∈ Jcusp
1
2 ,

1
2

(ǫ3vH), η ∈ Jcusp
1
2 ,0

(ǫ) and ϑℓ ∈ Jcusp
1
2 ,

1
2 ℓ

2(ǫ
3vℓH), where ϑℓ(τ, z) =

ϑ(τ, ℓz) and ℓ ∈ N, compare [4].

Suppose that we have a Borcherds product f ∈ Sk (K(p))
ǫ
with Fourier-Jacobi

expansion

f = φp ξ
p + φ2p ξ

2p + · · ·
We assume that f is antisymmetric, that is, (−1)kǫ = −1. The antisymmetry of f
implies that φp vanishes to order two, φp ∈ Jcusp

k,p (2). If f is a Borcherds product

then φp is a theta block; indeed, Jcusp
2,587(2) is spanned by the single theta block

φ587 = TB2(1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14).

As a Borcherds product, f is determined by its first two Fourier-Jacobi coefficients
φp and φ2p. If we write φ2p = −φp|V2+Ξ, this forces Ξ ∈ Jcusp

k,2p (2). The involution

condition c(n, r;φmp) = (−1)kǫc(m, r;φnp) tells us the q
1 and q2 coefficients of Ξ.

A direct computation reveals that the q4-coefficient of φ587 is a baby theta block:
Coeff(q4, φ587) = Coeff(q2,Ξ) =

BTB(1, 10, 2, 2, 18, 3, 3, 4, 4, 15, 5, 6, 6, 7, 8, 16, 9, 10, 22, 12, 13, 14).

So we set

Ξ =TB2(1, 10, 2, 2, 18, 3, 3, 4, 4, 15, 5, 6, 6, 7, 8, 16, 9, 10, 22, 12, 13, 14)
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and check that Ξ ∈ Jcusp
2,1174(2). The list for this theta block Ξ has been written

so that each entry is visibly an integral multiple of the corresponding entry in the
theta block φ587.

We now combine two methods for constructing weight zero weakly holomorphic
Jacobi forms with integral Fourier coefficients and define

ψ =
φ587|V2 − Ξ

φ587
∈ Jw.h.

0,587(Z).

Here V2 is the level raising Hecke operator on Jacobi forms defined in [2]. Many
Fourier coefficients of ψ =

∑
n,r c(n, r;ψ)q

nζr have been computed, and we see
that the associated Borcherds product is holomorphic because the singular Fourier
coefficients are positive.

f( τ zz ω ) = q2ζ72ξ587
∏

n,r,m∈Z:m≥0, if m = 0 then n ≥ 0
and if m = n = 0 then r < 0.

(
1− qnζrξ587m

)c(nm,r;ψ)

This Borcherds product representation of the eigenform f ∈ S2 (K(587))− will
assist the computation of further eigenvalues.

Using this example as a model, we translated the search for meromorphic anti-
symmetric Borcherds products into a Diophantine problem. We wrote a computer
program that found two infinite families of integral solutions, F1 and F2.

Definition 1. Take c ∈ N24 with
∏24
j=1 cj = 1080. Define the following algebraic

set Ac = {d ∈ C24 : equation (1) holds}.

(1) exp


∑

n∈N

(−1)n

(2n)!
ζ(1− 2n)

24∑

j=1

(1− c2nj )d2nj z2n


 = 1+

1

540

∑

n∈N

(−1)n

(2n)!


 ∑

1≤i<j≤24

[
(di + dj)

2n + (di − dj)
2n
]
−

24∑

j=1

d2nj


 z2n

Note that Ac is defined by a countable set of homogeneous polynomials, one for
each positive even degree.

Theorem 2. Take c ∈ N24 with
∏24
j=1 cj = 1080. Every nontrivial integral point

d ∈ Ac corresponds to an antisymmetric meromorphic paramodular Borcherds
product as follows. Let k be the number of zero entries in d, and set ǫ = (−1)k+1.

The number N = 1
2

∑ℓ
j=1 d

2
j is intergal. Set m =

∏
j:dj=0 cj. We have Borch(ψ) ∈

Mmero
k (K(N))

ǫ
, where ψ =

φ|V2 −mΞ

φ
∈ Jw.h.

0,N (Z), φ = η2k
∏
j:dj 6=0(ϑdj/η) ∈

Jweak
k,N (2), and Ξ = η2k

∏
j:dj 6=0(ϑcjdj/η) ∈ Jweak

k,2N (2). The leading Fourier-Jacobi

coefficient of Borch(ψ) is φ.

We are especially interested in holomorphic Borcherds products. A direct search
through the two infinite families has located the following finite number of holo-
morphic antisymmetric paramodular Borcherds products.
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k = 2

N= 713 and N= 893 on F1. These, like 587 (which however is not on either family)
are conjecturally modular with respect to (known) A/Q with rank 1 and conductor
N, as in the Paramodular Conjecture.

k = 3

N=167 on F2, lowest weight 3 antisymmetric newform.
N=173 on F1 and F2,.
N=197 on F1.
Also N=122 on F1 (but this is an oldform), and 213 on F1 and 285 on F1 .
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Tautological classes with twisted coefficients

Dan Petersen

(joint work with Mehdi Tavakol, Qizheng Yin)

Let Mg be the moduli space of smooth curves of genus g ≥ 2, and π : Cg → Mg

the universal curve. Let Cng denote the n-fold fibered power of Cg with itself over
Mg. If Cng is thought of as the space of curves with n ordered marked points,
then we may consider the n line bundles on Cng whose fibers are given by the
cotangent space of the curve at the respective markings; the first Chern classes
of these bundles are denoted ψ1, . . . , ψn. The kappa classes on Mg are defined by

κd = π∗ψ
d+1
1 . We denote by the same symbol the pullbacks of the kappa classes

to Cng . Finally for 1 ≤ i, j ≤ n we let ∆ij be the locus where the ith and jth
point coincide. The tautological ring RH•(Cng ) is defined to be the subalgebra
of H•(Cng ,Q) generated by the psi-, kappa- and diagonal classes. (The usual
tautological ring is defined as a subalgebra of CH•

Q(Cng ), and everything we say
below is in fact valid also in Chow.)

The generators for the tautological rings satisfy the following relations:

∆ij∆ik = ∆ij∆jk ∆ij(ψi − ψj) = 0 ∆2
ij = −ψi∆ij .
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The first two are geometrically obvious, and the third is a consequence of the
excess intersection formula. The celebrated Madsen–Weiss theorem [5] (formerly
Mumford’s conjecture), combined with work of Looijenga [4], implies that for any
fixed N and g ≫ 0, the map RH•(Cng ) → H•(Cng ) is an isomorphism in degrees
up to N , and that the above three relations are the only relations between the
generators for the tautological ring in degrees up to N . We may in particular
think of the tautological ring as the image of the stable cohomology of Cng in the
unstable cohomology.

If f : Cng → Mg is the forgetful map, then by Deligne’s degeneration theorem
(since f is smooth and proper) there is an isomorphism of Q-vector spaces

Hk(Cng )
∼=

⊕

p+q=k

Hp(Mg, R
qf∗Q).

Moreover, by the relative Künneth formula, there is also an isomorphism Rf∗Q ∼=
(Rπ∗Q)⊗n, where π again denotes the projection from the universal curve. Since
the local systems R0π∗Q and R2π∗Q are trivial, the cohomology of Cng is thus

completely determined by the cohomology of the local system V
def
= R1π∗Q, and

its tensor powers, onMg. The local system V is of rank 2g and underlies a polarized
variation of Hodge structure of weight 1. The tensor powers of V may in turn be
decomposed in terms of the irreducible representations of Sp(2g). We denote by
Vλ the local system on Mg corresponding to the irreducible representation with
highest weight λ.

The upshot of the discussion in the previous paragraph is that the cohomology
groups H•(Cng ) (where n varies) are determined by, and completely determine, the
cohomology groups H•(Mg,Vλ) (where λ varies). But the cohomology of the local
systems “packages” the same information in a much more efficient way. Our first
result is that an analogous statement holds for tautological cohomology groups:

Theorem A (informally stated). Under the correspondence between H•(Cng )
and H•(Mg,Vλ) sketched above, the subspace RH•(Cng ) corresponds to a well de-
fined subspace RH•(Mg,Vλ). Thus the tautological groups RH•(Cng ) for varying n
are determined by, and completely determine, the tautological groups RH•(Mg,Vλ)
with twisted coefficients, for varying λ.

In low genus, we are able to determine RH•(Mg,Vλ) completely, for all λ.

Theorem B. For g = 2,

RH0(M2,V0) ∼= Q

and all other tautological cohomology groups of all Vλ vanish. For g = 3,

RH0(M3,V0) ∼= RH2(M3,V0) ∼= Q,

RH1(M3,V111) ∼= Q

and all other tautological cohomology groups of all Vλ vanish. For g = 4,

RH0(M4,V0) ∼= RH2(M4,V0) ∼= RH4(M4,V0) ∼= Q,

RH1(M4,V111) ∼= RH3(M4,V111) ∼= Q,
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RH2(M4,V11) ∼= Q

and all other tautological cohomology groups of all Vλ vanish.

The proof uses Pixton’s extension of the “FZ-relations” to Cng [6, 2], and some
representation theory for the symplectic group.

Theorem B implies quite complete descriptions of the tautological rings of Cn2 ,
Cn3 and Cn4 for all n. When g = 2 our Theorem B recovers results of Tavakol
[10] in a different way; the results for g = 3 and g = 4 are completely new. One
also obtains descriptions of the tautological rings of the spaces M rt

g,n of n-pointed
stable curves with rational tails for g ≤ 4, since the tautological rings of Cng and

M rt
g,n determine each other [8].
We also have explicit cycles which are generators for the above tautological

cohomology groups. For instance, RH1(Mg,V111) is spanned by the Gross–Schoen
cycle: the class

∆12∆13 −
1

2g − 2
(ψ1∆23 + ψ2∆13 + ψ3∆12) +

1

(2g − 2)2
(ψ1ψ2 + ψ1ψ3 + ψ2ψ3)

in RH4(C3
g ) lies in the first step of the Leray filtration, and turns out to define a

class in RH1(Mg,V111).
The above results are particularly interesting for the study of the Faber con-

jectures. In the 1990’s, Faber conjectured that the tautological rings Cng should
always enjoy Poincaré duality [1], based on extensive computer experiments. More
precisely, Looijenga has proved [3] that RH2g−4+2n(Cng )

∼= Q and that the tauto-
logical ring vanishes above this degree; the conjecture says that the pairing into
this degree is perfect. However, since then Faber, Pixton, Yin and others have
carried out even further computer experiments and found likely counterexamples
to the Faber conjectures. Also, analogous versions of the Faber conjecture on
M ct
g,n and Mg,n are now known to be false [9, 7]. Our results imply that one can

reformulate the Faber conjecture equivalently in terms of local systems:

Theorem C. The Faber conjecture holds for Cng for all n, if and only if the pairing

RHk(Mg,Vλ)⊗RH2g−4−k(Mg,Vλ) → RH2g−4(Mg,V0) ∼= Q

is perfect for all k and λ.

A corollary of Theorems B and C is that the Faber conjectures are satisfied for
Cng for all n and all g ≤ 4, since one can verify the above perfect pairing property
for all the above local systems easily enough. This explains the “symmetry” in our
expressions for RH•(Mg,Vλ): for all g ≥ 4 and all λ, the tautological cohomology
groups are symmetric around degree g − 2.

For all g ≥ 5, numerical experimentation suggests that the Faber conjecture
fails : for example, it appears that RH2(M5,V2222) = 0 and RH4(M5,V2222) ∼= Q,
which would contradict the Faber conjecture. This approach to constructing a
counterexample seems more tractable than previous ones: it would now be enough
to prove that the single cohomology group RH4(M5,V2222) is nonzero to find a
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counterexample, which ought to be easier than explicitly calculating the dimen-
sions of the (very large) tautological groups of C8

5 .
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[8] D. Petersen, Poincaré duality of wonderful compactifications and tautological rings, Int.
Math. Res. Not., to appear, arXiv:1501.04742.

[9] D. Petersen and O. Tommasi, The Gorenstein conjecture fails for the tautological ring of

M2,n, Invent. Math. 196 (2014), 139–161.
[10] M. Tavakol, The tautological ring of the moduli space Mrt

2,n, Int. Math. Res. Not. 24 (2014),
6661–6683.

Height of CM points on orthogonal Shimura varieties

Fabrizio Andreatta

(joint work with Eyal Goren, Ben Howard, Keerthi Madapusi Pera)

Let K be a number filed and let A be an abelian variety over K of relative dimen-
sion g. Assume that A has good reduction everywhere, i.e., that the Néron model
A of A over OK is an abelian scheme. We recall the definition of Faltings’ height
of A. Given a non-zero section s ∈ H0

(
A,ΩgAK/K

)
define

hFal∞ (A, s) := − 1

2[K : Q]

∑

σ : K→C

log
∣∣
∫

Aσ(C)

sσ ∧ sσ
∣∣

and

hFalf (A, s) :=
1

[K : Q]

∑

P⊂OK

ordP(s) logNm(P),

here the sum is over all non-zero prime ideals of OK and ordP (s) is the order of s
viewed as a rational section of the invertible OK-module H0

(
A,ΩgA/OK

)

One defines the Falting’s height hFal(A) of A as the sum hFal(A) := hFal∞ (A, s)+
hFalf (A, s). The definition is independent of the choice of the section s and the
number field K.

In particular if E is a CM field and A has complex multiplication by its ring of
integers OE , then A has potentially good reduction and its height is defined using
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the formulas above. A theorem of Colmez [2] shows that that hFal(A) depends
only on the field E and the CM type Φ ⊂ Hom(E,C) and not on A itself. We
denote such quantity by hFalt(E,Φ). Colmez has also provided a conjectural formula

for the value of hFalt(E,Φ) in terms of the logarithmic derivatives at s = 0 of certain

Artin L-functions. The first main application of our results is an averaged version
of his formula, namely

1

2d

∑

Φ

hFalt(E,Φ) = −1

2
· L

′(0, χ)

L(0, χ)
− 1

4
· log

∣∣∣∣
DE

DF

∣∣∣∣−
d

2
log(2π).

Here 2d is the degree of E, F ⊂ E is the totally real subfield, χ is the quadratic
Hecke character associated to the extension F ⊂ E, the sum on the left is taken
over all CM types Φ and DE andDF are the discriminants of E and F respectively.

Remarks: Shortly after our announcement X. Yuan and S.-W. Zhang announced
a proof of the same result, but using different methods.

Recently J. Tsimerman has proved that the averaged Colmez’s conjecture im-
plies the André-Oort conjecture for all Siegel modular varieties, without using
GRH.

The result is obtained studying the arithmetic intersection between big CM cy-
cles and certain arithmetic Heegner divisors on orthogonal type Shimura varieties,
following a strategy due to T. Yang [3] in the case d = 2.

GSpin Shimura varieties and Heegner divisors
Choose an element λ ∈ F such that λ is negative for one real embedding ι0 of
F and positive for all the others, we can associate a quadratic space V (Q) of
signature (2d− 2, 2) as follows. We put V := E and Q(x) = TrE/Q(λxx̄). In this
way (V,Q) is a quadratic space over Q of signature (n, 2) with n = 2d− 2.

If we fix a maximal lattice L ⊂ V , we obtain a Shmura variety M defined over
Q. The underlying algebraic group is G = GSpin(V ), the compact open subgroup
K ⊂ G(Af ) is defined using L, and the hermitian symmetric space is

D = {z ∈ VC : [z, z] = 0, [z, z] < 0}/C×.

The complex points of M coincide with the n-dimensional complex manifold

M(C) = G(Q)\D ×G(Af )/K.

Thanks to results of A. Vasiu, M. Kisin for primes not dividing the order DL of
L∨/L, K. Madapusi Pera for primes p ≥ 3 and W. Kim and K. Madapusi Pera for
p = 2 it admits a flat and normal integral model M over Z, which is smooth over
Z[1/2DL]. Furthermore it is endowed with an arithmetic line bundle ω̂ (called
the tautological bundle): over C the fiber over a point [z] ∈ D is the line Cz with
metric −[z, z].

From now on we assume that DL = 1 to void extra difficulties. The model M
carries a universal abelian scheme A, arising from the Kuga-Satake construction.
Denote by H(A) the motive associated to A: the underlying variation of Z-Hodge
structures on M(C), the relative de Rham homology over M, the ℓ-adic Tate
module over Z[ℓ−1], the Dieudonné crystal in characteristic p. Then over M we
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have a natural sub-motive V ⊂ End(H(A)) (in each of the realizations mentioned
above).

For every m ∈ N one defines Z(m) → M as the divisor classifying the endo-
morphisms f of A whose realizations lie in V ⊂ End(H(A)) and such that f ◦ f is
multiplication by m. Thanks to work of Borcherds, Bruinier, Bruinier and Funke
one can endow the invertible sheaf OM(Z(m)) with a natural metric at infinity

obtaining a metrized line bundle that we denote as Ẑ(m).

Big CM cycles and the Bruinier-Kudla-Yang theorem
Associated to our field E we also have a TE := ResE/Q(Gm) that acts via isometries

on V : given α ∈ E∗ we let it act on V = E via multiplication by xx̄−1. One can
lift such a map to a morphism of algebraic groups TE → G. The image T ⊂ G is a
torus. The choice of an embedding ι0 of E over the given one of F and the choice
of a suitable open compact subgroup of T (Af ) provide a 0-dimensional Shimura
variety Y and a morphism of Shimura varieties Y → M . The image consists of
special points called big CM points in [1]. Upon taking integral models we get an

arithmetic curve Y and a morphism Y → M. Given a metrized line bundle L̂ over

M we define its arithmetic degree [Y : L̂] along Y to be the arithmetic degree of
its pull–back to Y.

In [1] the contribution [Y : Ẑ(m)]∞ at infinity to the arithmetic degree of Ẑ(m)

along Y is computed and the contribution [Y : Ẑ(m)]f at finite places is conjec-
tured. This fits in the general framework of the Kudla’s program as the conjecture

predicts that the generating series
∑
m[Y : Ẑ(m)]f q

m is obtained, except for the
constant term, by diagonal restriction of the derivative of an incoherent Hilbert
Eisenstein series for the field F , of parallel weight 1. Our main result is the proof
of such conjecture up to rational multiples of log p for p primes in a finite collection
Dbad,L depending on λ and L.

Application to Colmez’s conjecture
One proves that the pullback to Y of the metrized line bundle ω̂ computes Faltings
heights of CM abelian varieties so that

[ω̂ : Y]
degC(Y )

≈L
1

2d−2

∑

Φ

hFalt(E,Φ) + 2d · log(2π).

On the other hand ω̂ is a rational combination of the Heegner divisors Ẑ(m). using

teh formulas for [Y : Ẑ(m)], we find that

1

2d

∑

Φ

hFalt(E,Φ) = −1

2
· L

′(0, χ)

L(0, χ)
− 1

4
· log

∣∣∣∣
DE

DF

∣∣∣∣−
d

2
log(2π) +

∑

p

bE(p) log(p)

for some rational numbers bE(p), with bE(p) = 0 for all primes p not dividing
Dbad,L.

The last step consists in showing that for every prime p one can choose L such
that p does not divide Dbad,L. This implies that bE(p) = 0, concluding the proof
of the averaged Colmez’s conjecture.
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Holomorphic torsion invariants for K3 surfaces with involution and
Borcherds products

Ken-Ichi Yoshikawa

(joint work with Shouhei Ma)

1. Introduction

Let H be the complex upper-half plane. For τ ∈ H, let Eτ be an elliptic curve with
period (1, τ), equipped with the flat Kähler metric gτ with area 1. Let �τ be the
Laplacian of (Eτ , gτ ) acting on C∞(Eτ ). Let ζτ (s) be the spectral zeta function
of �τ . Up to a trivial factor, ζτ (s) is given by the real analytic Eisenstein series.
By Kronecker’s limit formula, we have

(1.1) eζ
′
τ (0) = (2‖η(τ)‖4)−1,

where η(τ) is the Dedekind η-function, ‖η(τ)‖ is its Petersson norm, and the

quantity eζ
′
τ (0) is known as the (holomorphic) analytic torsion. In this note, we

report a recent progress on a generalization of (1.1) forK3 surfaces with involution.

2. 2-elementary K3 surfaces and their moduli space

The pair (X, ι) consisting of a K3 surface X and an anti-symplectic involution
ι : X → X is called a 2-elementary K3 surface. Let LK3 be the K3-lattice, i.e.,
a fixed even unimodular lattice of signature (3, 19). Let M ⊂ LK3 be a sublat-
tice such that M ∼= H2(X,Z)+, where H2(X,Z)+ ⊂ H2(X,Z) is the invariant
sublattice of H2(X,Z) with respect to the ι-action. Then M is a primitive 2-
elementary Lorentzian sublattice of LK3, whose isometry class determines the
deformation type of (X, ι). There exist 75 distinct deformation equivalence classes
of 2-elementary K3 surfaces, each of which is labeled by (an isometry class of) a
primitive 2-elementary Lorentzian sublattice of LK3. (See [1].)

We set Λ := M⊥LK3 . Then Λ is a 2-elementary lattice of signature (2, 20 − r)
isometric to H2(X,Z)−, the anti-invariant sublattice of H2(X,Z), where r :=
rkZM . Let ΩΛ := {[η] ∈ P(Λ ⊗ C); 〈η, η〉 = 0, 〈η, η̄〉 > 0} be the Hermitian
domain of type IV attached to Λ. By the global Torelli theorem and the surjectivity
of the period mapping for K3 surfaces, the moduli space of 2-elementary K3
surfaces of type M is given by the modular variety of dimension 20− r

M0
Λ := O(Λ)\(ΩΛ −DΛ),
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where DΛ :=
⋃
d∈Λ, d2=−2 d

⊥ is the discriminant divisor of ΩΛ (cf. [10]). There is
another distinguished divisor HΛ, called the characteristic Heegner divisor, asso-
ciated to the norm (12− r(Λ))/2 characteristic vectors of Λ∨.

3. Holomorphic torsion invariants for 2-elementary K3 surfaces

Let (X, ι) be a 2-elementaryK3 surface of typeM . In what follows, we set Λ =M⊥

and r = rkZM . Let Xι be the set of fixed points of ι. Then either Xι is empty
or the disjoint union of smooth curves. Let γ be an ι-invariant Ricci-flat Kähler
metric on X . By [2], we have a spectral invariant τZ2(X, γ)(ι) of (X, γ, ι) called
the equivariant analytic torsion. Similarly, by [3], for a theta characteristics Σ on
Xι, we have a spectral invariant τ(Xι,Σ; γ|Xι) of (Xι,Σ; γ|Xι) called the analytic
torsion. Here τ(Xι,Σ; γ|Xι) is understood to be multiplicative with respect to the
irreducible decomposition of Xι. We define

τ spinM (X, ι) :=
∏

Σ2=KXι , h0(Σ)=0

Vol(X, γ)
14−r

4 τZ2(X, γ)(ι) τ(X
ι,Σ; γ|Xι)−2,

where Σ runs over all ineffective even theta characteristics on Xι. Thanks to the
theory of (equivariant) Quillen metrics [2], [3], [8], τ spinM (X, ι) is independent of

the choice of γ. Hence τ spinM is viewed as a function on M0
Λ. In general, τ spinM is a

smooth function on M0
Λ \ HΛ. However, if HΛ 6= ∅, τ spinM is discontinuous along

HΛ, because of the jumping of τ(Xι,Σ; γ|Xι) as Xι approaches to a curve with

extra effective even theta characteristics. Thus HΛ is the jumping locus of τ spinM .

4. An explicit formula for τ spinM

To express τ spinM as a Borcherds product, we use a vector-valued modular form
constructed as follows. For a primitive 2-elementary sublattice Λ ⊂ LK3 of signa-
ture (2, n), we set φΛ(τ) := η(τ)−8η(2τ)8η(4τ)−8θ

A
+
1
(τ)10−n, where θ

A
+
1
(τ) is the

theta series of the A1-lattice 〈2〉. Let ρΛ : Mp2(Z) → GL(C[Λ∨/Λ]) be the Weil
representation attached to Λ. Let {eγ}γ∈Λ∨/Λ be the standard basis of the group
ring C[Λ∨/Λ]. We set

FΛ(τ) :=
∑

γ∈Γ̃0(4)\Mp2(Z)

φΛ|γ(τ) ρΛ(γ−1)e0,

where |γ denotes the Petersson slash operator. The C[Λ∨/Λ]-valued function FΛ

is a modular form for Mp2(Z) of type ρΛ of weight 1 − n
2 . If r(Λ) ≤ 16, FΛ

has integral Fourier coefficients. If g is the total genus of the fixed curve of a
2-elementary K3 surface of type Λ⊥, 2g−1FΛ has integral Fourier coefficients.

For a modular form ϕ of type ρΛ of weight 1−n
2 with integral Fourier coefficients,

let ΨΛ(·, ϕ) denote the Borcherds lift of ϕ (cf. [4]). For an even 2-elementary
lattice M , the parity of the discriminant form on the discriminant group M∨/M
is denoted by δ(M) ∈ {0, 1}. Now, our main result is stated as follows [7].

Main Theorem. The following equality of functions on M0
Λ \ HΛ holds

(4.1) τ spinM = CM ‖ΨΛ(·, 2g−1FΛ + fΛ)‖−1/2,
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where CM is a constant depending only on the lattice M and fΛ is given as follows:
(1) If (r, δ) 6= (2, 0), then fΛ = δr,10 FΛ.

(2) If (r, δ) = (2, 0), then either Λ ∼= U⊕2 ⊕ E⊕2
8 or Λ ∼= U⊕ U(2)⊕ E⊕2

8 and

fΛ(τ) = θ
E
+
8
(τ)/η(τ)24 = E4(τ)/η(τ)

24 (Λ ∼= U⊕2 ⊕ E⊕2
8 )

fΛ(τ) = 8
∑

γ∈Λ∨/Λ

{η(τ/2)−8η(τ)−8 + (−1)γ
2

η(
τ + 1

2
)−8η(τ + 1)−8}eγ

+ η(τ)−8η(2τ)−8e0 (Λ ∼= U⊕ U(2)⊕ E⊕2
8 ).

We remark that there is a non-twisted holomorphic torsion invariant τM for 2-

elementary K3 surfaces [10]. By the spin-1/2 bosonization formula, τM and τ spinM

are equivalent invariants. See [7] for an explicit formula for τM .

Problem 1. Determine the universal constant CM in Main Theorem.

Problem 2. Understand a geometric meaning of the modular form FΛ. In [5], [6],
for some M , FΛ appears as the elliptic genus of some bundle over a K3 surface.
Is a similar understanding possible for all FΛ or 2g−1FΛ + fΛ?

Problem 3. When HΛ 6= ∅, ‖ΨΛ(·, 2g−1FΛ + fΛ)‖ is a discontinuous function on
M0

Λ (cf. [9]). As an equality of discontinuous functions on M0
Λ, does (4.1) remain

valid?
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Birational geometry of the moduli space of quartic K3 surfaces

Radu Laza

(joint work with Kieran O’Grady)

An important problem in algebraic geometry is to construct a geometric com-
pactification for the moduli space of polarized degree d K3 surfaces Fd. By
Global Torelli, Fd is isomorphic to a locally symmetric variety, and hence it has
natural compactifications, such as Baily-Borel compactification F ∗

d , Mumford’s
toroidal compactifications, and more generally Looijenga’s semitoric compactifica-
tions. However, a priori, none of these compactifications have geometric meaning.
In order to attach some geometric meaning to them, it is natural to compare
these compactifications, especially the Baily-Borel one, with GIT compactifica-
tions. Looijenga ([9, 10]) has proposed a framework to compare locally symmetric
varieties (associated to type IV or I1,n Hermitian symmetric domains) with GIT
quotients. Looijenga’s approach was successfully applied in the case of moduli of
degree 2 K3 surfaces ([8], [13]), cubic fourfolds ([11], [7]), and a few other related
examples (e.g. cubic threefolds, see [1], [12], del Pezzo surfaces, etc.). One case
where the Looijenga’s framework does not apply is the moduli space of degree 4
K3 surfaces ([14]). While attempting to study this case, we uncovered a rich and
intriguing picture.

The starting point of our investigation are two limitations in Looijenga’s con-
struction. First of all, a certain technical assumption for Looijenga’s construction
is false for quartic K3s, while, in contrast, for the degree 2 case this assumption
is satisfied. Namely, for arithmetic reasons, the combinatorics of the hyperplane
arrangement involved in Looijenga’s construction [10] is much simpler for degree
2 K3 surfaces (and similarly cubic fourfolds) than for degree 4 K3 surfaces. Sec-
ondly, and more seriously, there exists a plethora of GIT models. In the low degree
cases considered here and in the literature, there might be a “natural” choice for
GIT, but this is misleading (see [3] for a hint of what would happen already in
degree 6). The solution that we propose to handle these two issues is to give flexi-
bility to Looijenga’s construction by considering a continuous variation of models.
More precisely, we recall that for a locally symmetric variety F = D/Γ, Baily-
Borel have shown that the eponymous compactification F ∗ is the Proj of the ring
of automorphic functions, i.e. F ∗ = ProjR(F , λ), where λ is the Hodge bundle.
Looijenga’s deep insight was to observe that in certain situations of geometric
interest, a certain GIT quotient M is nothing but the Proj of the ring of mero-
morphic automorphic forms with poles on a (geometrically meaningful) Heegner
(or Noether–Lefschetz) divisor ∆, and thus M = ProjR(F , λ + ∆). Further-
more, Looijenga has shown that under a certain assumption on ∆ (which fails for
quartics), ProjR(F , λ+∆) has an explicit combinatorial/arithmetic description.
Our approach is to continuously interpolate between the two models by control-
ling the order of poles for the meromorphic automorphic function, i.e. to consider
ProjR(F , λ+β∆) where β ∈ [0, 1]. This allows to understand the case of quartics
and more importantly to capture more GIT quotients.
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The variational approach to studying birational maps is the natural one from
the perspective of the modern MMP ([2]), and its power in the context of moduli
is clear ever since the VGIT theory of Thaddeus [15]. An inspiration for our work
is the so called Hassett-Keel program for moduli of curves (which studies the vari-
ation of log canonical models ProjR(Mg,K + α∆) of the Deligne-Mumford com-

pactificationMg). Experts in the field have speculated on analogue of Hassett-Keel
program (see [5, 6]) for (special) surfaces; for instance, one can hope to understand
the elusive KSBA compactification by starting with a GIT compactification and
interpolating (see [4]). Our study can be viewed as a first example of a Hassett-
Keel program for surfaces. Indeed, beyond the obvious analogy (i.e. λ+β∆ can be
easily rewritten as KF +α∆′), the modular behavior is also similar: for instance,
the first birational wall crossing for quartic K3s is associated to Dolgachev (or
triangle) singularities in a manner similar to the case of curves with cusp singu-
larities (which gives the first birational modification for ProjR(Mg,K + α∆) at
α = 9

11 ). The main point that we want to emphasize here is that the birational
transformations that occur are controlled by the arithmetic and combinatorics of
the hyperplane arrangement associated to ∆. While the picture that we discover
for quartic K3 surfaces is more complicated and subtle than that for K3 surfaces
of degree 2, the fundamental insight of Looijenga that arithmetic controls the bi-
rational models of F ∗

d still holds true. We view our work as a quantitative and
qualitative refinement of Looijenga’s seminal work [10].

While a variation of models ProjR(F , λ + β∆) makes sense in large gener-
ality for Type IV locally symmetric varieties (and also ball quotients), we focus
here on the so called D-tower of locally symmetric varieties, i.e. Type IV lo-
cally symmetric varieties associated to lattices U2 ⊕ Dn. More precisely, we let
F (N) be the N -dimensional locally symmetric variety corresponding to the lattice
ΛN := U2 ⊕DN−2 (so that dimF (N) = N), and an arithmetic group ΓN , which
is intermediate between the orthogonal group O+(ΛN ), and the stable orthogo-

nal subgroup Õ+(ΛN ). Then F (19) is the period space for quartic K3 surfaces,
F (20) is the period space for double EPW sextics modulo the duality involution
(i.e. non-polarized desingularized EPW sextics), and F (18) is the period space for
hyperelliptic quartic surfaces. The salient point in the D tower is that F (N − 1)
is isomorphic to a natural “hyperelliptic” Heegner divisor Hh(N) of F (N), and
this leads to an inductive behavior. From the perspective of comparing to GIT we
are led to study the variation of models under λ(N) + β∆(N)/2, where λ(N) is
the automorphic (or Hodge) orbiline bundle on F (N), and ∆(N) is Hh(N) except
when N ≡ 3, 4 (mod 8), in which case ∆(N) = Hh(N) + Hu(N) where Hu(N)
is the “unigonal” divisor. Our main result is to predict the critical values of β
where birational modifications of the models occur, and to identify the centers of
these birational modifications. Of course, the same type of arguments apply in
general for predicting the behavior of the interpolation between Baily-Borel with
say Chow GIT of 1-embedded K3 surfaces (and again, due to Mayer’s Theorem,
the essential actors are hyperelliptic Hh and unigonal divisor Hu), but the ac-
tual predictions depend very much on the arithmetic of the primitive lattice of
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a very general polarized K3 of degree d. For instance, in the degree 2 case, for
arithmetic reasons, the situation is very simple leading to Looijenga/Shah result
(while in d = 2 our analysis would be essentially empty, our perspective might
give deeper information, e.g. about the structure of the moving cone, than what is
currently known). In fact, the hyperelliptic divisor is the one leading to the failure
of the technical condition in Looijenga [10], and thus essentially the analysis of
the quartic surface case is the key case for quartic surfaces (complementing [10]).
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The geometric theta lift for non-compact quotients of the complex
n-ball

Jens Funke

(joint work with John Millson)

The theory of cohomology of arithmetic groups is one critical aspect of automor-
phic forms. One very fruitful line of investigation in this direction is to employ
the theta correspondence.
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Let V be a Hermitian space of signature (n, 1) over an imaginary quadratic
field, and let D be the associated symmetric space, which in our case can be
realized as the complex n-ball. We let Γ be a suitable congruence subgroup, so
that X = Γ\D is a quasi-projective algebraic variety. Following the classical
work of Hirzebruch-Zagier for Hilbert modular surfaces, one can define a family of
special (non-compact) divisors ZN in X parameterized by non-negative integers
N . Then Kudla and Millson [5] showed that the generating series of these cycles

P (τ) :=

∞∑

N≥0

[ZN ]q
N ∈ Mn+1(Γ

′)⊗H2(X)

defines a holomorphic modular form of weight n+ 1 with respect to a congruence
subgroup Γ′ of SL2(Z) with values in the second cohomology group of X . (Here
q = e2πiτ , τ ∈ H, the upper half plane). One can then obtain scalar-valued
modular forms by pairing P with homology classes in H2(X) or with classes in

H
2(n−1)
c (X), the cohomology of compact supports. In [5], P (τ) is realized as a

certain theta series θV (τ, z) associated to the indefinite space V . More precisely,
θV (τ, z) as a function of τ ∈ H transforms as a non-holomorphic modular form of
weight n+1 with respect to Γ′, while as a function of z ∈ X it is a closed differential
(1, 1)-form on X . Then the resulting cohomology class [θV (τ, z)] ∈ H2(X) is equal
to P (τ) via Poincaré duality. The work in [5] actually deals with the situation in
much greater generality for cycles of arbitrary codimension for arithmetic quotients
for orthogonal and unitary groups of any signature (p, q).

Millson and I have been pursuing a program to systematically extend the theta
lift defined by θV to (co)homology groups which capture the boundary of X . For
several cases we have succeeded to do so, namely for Hilbert modular surfaces
providing a different prespective on the celebrated work of Hirzebruch-Zagier [4],
and also for cycles in modular curves, extending the Shintani-lift to Eisenstein
series in a cohomological way [3]. The work described below should be seen in this
context.

We let ℓ be a rational isotropic line in V . Then W := ℓ⊥/ℓ is a positive
definite Hermitian space of dimension n−1. Let P be the real parabolic stabilizing
ℓ. Its nilpotent N subgroup is a Heisenberg: N = WR ⋉ R. For convenience
we assume that X has only one cusp. We set X∞ = Xℓ = (Γ ∩ N)\N . This
is a circle bundle over a complex torus TW associated to W . Note we have a
natural map H∗(TW ) → H∗(X∞). We obtain the Borel-Serre compactification
X = X∪X∞ which gives a real manifold with boundary. Also note that the Baily-

Borel compactification X̃ is obtained by collapsing the center of the Heisenberg

N . Then the boundary divisor X̃∞ is the torus TW .

Theorem 1.

(i) The theta series θV (τ) extends to a differential 2-form on X, and the
restriction of θV (τ) to the boundary stratum is a non-holomorphic theta
series of weight n + 1 associated to the positive definite space W with
values in the image of H2(TW ) in H2(X∞).
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(ii) Assume n = 2, so that X is a Picard modular surface. Then the restriction
to the boundary is an exact differential form onX∞. Moreover, a primitive
can be explicitly constructed as a non-holomorphic theta series θW (τ) of
weight 3 for W with values in the differential 1-forms on X∞:

θV |X∞ = dθW .

We now consider the mapping cone associated to the embedding of X∞ into X .
Then its cohomology realizes the cohomology of compact supports of X . In this
realization a class in degree 2 is represented by a pair [α, β] with α a 2-form on X
and β a 1-form on the boundary such that α|X = dβ. This (and further analysis)
yields

Theorem 2. Let n = 2.

(i) The pair [θV (τ), θW (τ)] defines a class in the compactly supported coho-
mology H2

c (X) of X , which as a modular form of weight 3 is holomorphic.
(Both θV (τ) and θW (τ) are individually non-holomorphic in τ). Thus

[θV , θW ] ∈M3(Γ
′)⊗H2

c (X).

In particular, this class [θV (τ), θW (τ)] can be cohomologically paired with
any class in H2(X) to obtain scalar-valued holomorphic modular forms.

(ii) Furthermore,

[θV , θW ] =
∑

N≥0

[ZcN ]q
n.

for some (appropriately) capped cycles ZcN on X. (The intersection of the
cycles ZN with X∞ yields 1-chains which are boundaries in X∞).

By considering the Baily-Borel compactification X̃ we also obtain a result for
[θV , θW ] in a more algebraic-geometric setting. The cohomology of compact sup-

ports for X is then replaced by the piece of the cohomology of H2(X̃) which is
orthogonal to the boundary divisor with respect to the intersection product on

H2(X̃). This recovers work of Cogdell [2].

For n > 2, the restriction of θV is no longer exact; the obstruction can be
explicitly described. We are currently working on a modification of our construc-
tion which again should yield holomorphic modular forms of weight n + 1 with
an interesting geometric interpretation. In fact, using the theory of singular theta
lifts going back to Borcherds, Bruinier-Howard-Yang [1] obtained such a result
(in a slightly stronger setting). However, one aspect is that we expect that our
constructions also work for cycles of higher codimension r, where the associated
Kudla-Millson generating series now define Hermitian modular forms for U(r, r).
In this situation we do not have a theory of singular theta lifts, so the methods of
[1] are not available (yet).
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On the Kodaira dimension of orthogonal modular varieties

Shouhei Ma

Let L be an integral lattice of signature (2, n) and O(L) be its full orthogonal group.
Let DL be the Hermitian symmetric domain attached to L and O+(L) < O(L) be
the index ≤ 2 subgroup preserving DL. We are interested in the birational type
of the quotient space

FL = O+(L)\DL,
which has the structure of a quasi-projective variety of dimension n. Note that
this space is invariant by scaling L.

Theorem 1. There are up to scaling only finitely many integral lattices L of
signature (2, n) with n ≥ 21 or n = 17 such that FL is not of general type.

In particular, when n is sufficiently large, FL is always of general type, and this
covers the general case of arithmetic group in that range.

Corollary 2. Let V be a rational quadratic space of signature (2, n) with n suffi-
ciently large (e.g. n ≥ 300) and Γ be an arithmetic subgroup of O+(V ). Then the
quotient space Γ\DV is always of general type.

In order to construct sufficiently many pluricanonical forms, we use a gener-
alization of the approach proposed by Gritsenko-Hulek-Sankaran [4], which is a
combination of the Gritsenko-Borcherds additive lifting ([2], [1]) and estimate of
the Hirzebruch-Mumford proportionally constants ([6], [3]).

The main idea of the proof is to show, in a quantitative way, that FL can be of
non-general type only when the lattice L is “small”. Here we use the dimension
n and the exponent of the discriminant group L∨/L (i.e., the maximal order of
elements) as the measure of “size”. The proof is effective, so it is in principal
possible to list all potential non-general type L (but this should contain large
redundancy). The proof also has the following consequences:
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Corollary 3. Let n ≥ 22 be an even number. Then for every lattice L of signature
(2, n) the quotient SO+(L)\DL is of general type.

Corollary 4. Let N > 0 be a fixed natural number. Then there are up to scaling
only finitely many lattices L with n ≥ 4 which carries a reflective modular form of
vanishing order ≤ N .

The last corollary (especially the N = 1 case) was conjectured by Gritsenko-
Nikulin in [5].
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Lorentzian Kac-Moody algebras with Weyl groups of 2-reflections

Viacheslav V. Nikulin

(joint work with Valery Gritsenko)

One of the most known examples of Lorentzian Kac–Moody algebras is the Fake
Monster Lie algebra defined by R. Borcherds (see [3]–[4]) in his solution of Moon-
shine Conjecture. Lorentzian Kac–Moody (Lie, super) algebras are automorphic
corrections of hyperbolic Kac–Moody algebras. In our papers [32], [33], [34], [12]–
[19], we developed a general theory of Lorentzian Kac–Moody algebras (see [16]
and [17] for the most complete exposition) based on the results by Kac [22]–[24],
Moody, and Borcherds [1]–[4]. In these our papers (especially see [16] and [17]),
we constructed and classified some of these algebras for the rank 3.

Here, we construct and classify some of Lorentzian Kac–Moody algebras for
all ranks ≥ 3. In our papers above and here, we mainly consider and classify
Lorentzian Kac–Moody algebras with Weyl groups W of 2-reflections. They are
groups generated by reflections in elements with square 2 of hyperbolic (that is of
signature (n, 1)) lattices (that is integral symmetric bilinear forms) S of rkS = n+1.

For an (automorphic) Lorentzian Kac–Moody Lie algebra with a hyperbolic
root lattice S, the Weyl group W must have the fundamental chamber M of finite
(elliptic case) or almost finite (parabolic case) volume in the hyperbolic space
L(S) = V +(S)/R++ where V +(S) is a half of the cone V (S) ⊂ S ⊗R of elements
x ∈ S ⊗ R with x2 < 0. For parabolic case, there exists a point c = R++r ∈ M,
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r ∈ S, r 6= 0 and r2 = 0, at infinity of M such that M is finite at any cone in
L(S) with the vertex at c.

We denote by P = P (M) ⊂ S the set of simple real roots or all elements
of S with square 2 which are perpendicular to faces of codimension one of M
and directed outwards. For a Lorentzian Kac–Moody algebra, P = P (M) must
have the lattice Weyl vector ρ ∈ S ⊗ Q such that (ρ, α) = −α2/2 = −1 for all
α ∈ P = P (M). For elliptic case, ρ2 = (ρ, ρ) < 0, and ρ2 = 0 for parabolic case
where R++ρ = c. For elliptic case, W has finite index in O(S), then S is called
elliptically 2-reflective. For parabolic case, O+(S)/W is Zm, up to finite index, for
some m > 0. We want to construct Lorentzian Kac–Moody algebras with the root
lattice S, the set of simple real roots P = P (M) ⊂ S and the Weyl group W .

Here, we consider the basic case of this problem when the Weyl group W is the
full group W = W (2)(S) generated by all reflections in vectors with square 2 of a
hyperbolic even lattice S.

All elliptically 2-reflective hyperbolic lattices S when the group W (2)(S) has
finite index in O(S) were classified by the second author in [27] and [30] for rkS 6= 4,
and by E.B. Vinberg [35] for rkS = 4. See also [31]. Their total number is finite
and rkS ≤ 19. They classify algebraic K3 surfaces over C with finite automorphism
groups. The number of parabolically 2 reflective hyperbolic lattices S for W =
W (2)(S) is also finite by [33], but their full classification is unknown. Many of
them were found in [27].

We use the list of elliptically 2-reflective even hyperbolic lattices S from [27], [30]
and [35], to find those of them which have the lattice Weyl vector ρ for P = P (M)
ofW (2)(S). There are 59 such lattices. 15 of them are of rank 3 and 44 of rank
≥ 4, and the maximal rank is equal to 18. For all these lattices S, we calculate
the set P = P (M) ⊂ S of simple real roots and its Dynkin diagram which is
equivalent to the generalized Cartan matrix

(1) A = ((α1, α2)) , α1, α2 ∈ P = P (M).

This matrix defines the usual hyperbolic Kac–Moody algebra g(A), see [22]. We
calculate the lattice Weyl vector ρ for P = P (M) for all these cases.

For an extended lattice T = U(m) ⊕ S of signature (n + 1, 2) where U is the
even unimodular lattice of signature (1, 1), U(m) means that we multiply the pair-
ing of the lattice U by some m ∈ N, and ⊕ is the orthogonal sum of lattices, we
consider the Hermitian symmetric domain Ω(T ) ∼= S ⊗ R + iV +(S). For all 59
lattices S of Theorem 3, we conjecture existence for somem of so called 2-reflective
holomorphic automorphic form Φ(z) ∈ Mk(Γ) on Ω(T ) of weight k > 0 with in-
tegral Fourier coefficients, where Γ ⊂ O(T ) is of finite index, whose divisor is
union of rational quadratic divisors with multiplicity one orthogonal to elements
with square 2 of T . The Fourier coefficients of Φ(z) at a 0-dimensional cusp

define additional sequence of simple imaginary roots P ′im ⊂ S with non-positive
squares. The sequences of the simple real roots P and the imaginary simple roots

P ′im define Lorentzian Kac–Moody–Borcherds Lie superalgebra g(P (M),Φ) by
exact generators and defining relations. This superalgebra is the (automorphic)
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Lorentzian Kac–Moody super-algebra which we want to construct. The Lorentzian
Kac–Moody (Lie super) algebra g(P (M),Φ) is graded by S. The dimensions
dim gα(P (M),Φ), α ∈ S, of this grading (equivalently, the multiplicities of all
roots of the algebra) are defined by the Borcherds product expansion of the auto-
morphic form Φ(z) at a zero dimensional cusp. See our papers above for the exact
definitions and details of the automorphic correction.

We determine automorphic corrections for 36 of 59 lattices of Theorem 3 but we
consider here more than 70 reflective modular forms. We are planing to construct
automorphic corrections for the rest 10 of 2-reflective lattices of rank 4 and 5 from
Theorem 3 in a separate publication. Some of these functions will be modular
with respect to congruence subgroups similar to [17].

We remark that the denominator functions of the corresponding Lorentzian
Kac–Moody algebras are automorphic discriminants of moduli spaces of some K3
surfaces with a condition on Picard lattices and they realise the arithmetic mir-
ror symmetry for some of such K3 surfaces and some of K3 surfaces with finite
automorphism groups (see [14], [18] and [19]).

See details and some other results and remarks in our recent preprint [20].
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Riemann–Roch isometries in the non-compact orbifold setting

Anna-Maria von Pippich

(joint work with Gerard Freixas i Montplet)

1. Introduction

A fundamental result in intersection theory is the arithmetic Riemann–Roch theo-
rem for arithmetic varieties by Gillet and Soulé [6]. This theorem developed from
previous versions by Faltings [3] and Deligne [2], who treated the case of arithmetic
surfaces. Deligne’s isometry and the arithmetic Riemann–Roch theorem both re-
quire the vector bundles to be endowed with smooth hermitian metrics. However,
many cases of arithmetic interest do not satisfy this assumption, for example, the
case of a modular curve, when considering the trivial bundle and the dualizing
sheaf endowed with the Poincaré metric. Already in this case the metric is sin-
gular at the cusps and the elliptic fixed points, and the results of Deligne and
Gillet–Soulé do not apply to this setting. In presence only of cusps, hence exclud-
ing elliptic fixed points, Freixas proved a version of the arithmetic Riemann–Roch
theorem for the trivial sheaf on a modular curve [4]. His method of proof has the
drawback that it cannot be adapted to the presence of elliptic fixed points and does
not carry over to more general bundles or to higher dimensions. Therefore, one
needs to develop new ideas that are better suited to these more general settings.

2. Statement of the main theorem

Let Γ ⊂ PSL2(R) be a Fuchsian group of the first kind. The quotient space Γ\H
admits a canonical structure of a Riemann surface. The points with non-trivial
automorphisms are called elliptic fixed points. By adding a finite number of cusps,
the Riemann surface Γ\H can be completed into a compact Riemann surface X .
We denote the set of elliptic fixed points and cusps by p1, . . . , pn, and assign to
them multiplicities m1, . . . ,mn ∈ N ∪ {∞}. The multiplicity of a cusp is ∞,
while for an elliptic fixed point it is the order of its automorphism group. We set
m :=

∏
mi<∞mi. The hyperbolic metric on H is given by

ds2hyp =
dx2 + dy2

y2
,

where x+iy is the usual parametrization ofH. As a metric onX , it has singularities
at the cusps and the elliptic fixed points.

In the recent preprint [5], we generalize the work of Deligne and Gillet–Soulé to
the case of the trivial sheaf on X , equipped with the singular hyperbolic metric.
Our main theorem relates the determinant of cohomology of the trivial sheaf, with
an explicit Quillen type metric in terms of the Selberg zeta function of Γ, to a
metrized version of the ψ line bundle of the theory of moduli spaces of pointed
orbicurves, and the self-intersection bundle of a suitable twist of the canonical
sheaf ωX .
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To be more precise, we consider the hermitian line bundle

ψ⊗m2

W =
⊗

i

(ωX,pi , ‖ · ‖W,pi)m
2(1−m−2

i ),

carrying the Wolpert metric. The underlying Q-line bundle is denoted by ψ.
Furthermore, the singular hyperbolic metric on X induces a singular hermitian

metric on the Q-line bundle

ωX(D), D :=
∑

i

(
1− 1

mi

)
pi.

By ωX(D)hyp we denote the resulting Q-hermitian line bundle over X . It still fits
the L2

1 formalism of Bost [1], which implies that the metrized Deligne pairing

〈ωX(D)hyp, ωX(D)hyp〉

is defined. This is a Q-hermitian line bundle over SpecC.
Finally, the determinant of cohomology of OX is the complex line

detH•(X,OX) = detH0(X,OX)⊗ detH1(X,OX)−1.

We define a Quillen metric on it by rescaling the L2 metric as follows

‖ · ‖Q = (C(Γ)Z ′(1,Γ))−1/2‖ · ‖L2 .

Here, C(Γ) is a real positive constant, which can be explicitly expressed in terms of
the multiplicities mi, special values of the Riemann zeta function ζ(s), the genus
of X , and the Euler–Mascheroni constant γ (see [5]). Furthermore, Z(s,Γ) is the
Selberg zeta function of Γ; it is defined, for s ∈ C with Re(s) > 1, by

Z(s,Γ) =
∏

γ

∞∏

k=0

(1 − e−(s+k)ℓhyp(γ))2,

where γ runs over the non-oriented primitive closed geodesics in Γ\H, and ℓhyp(γ)
denotes the hyperbolic length of γ. The determinant of cohomology together with
this Quillen metric will be denoted detH•(X,OX)Q.

In [5], we prove the following Riemann–Roch isometry.

Theorem 1. There is a canonical isometry of Q-hermitian line bundles

(1) detH•(X,OX)⊗12
Q ⊗ ψW

∼−→ 〈ωX(D)hyp, ωX(D)hyp〉.

For the proof of Theorem 1 we refer to [5]. The proof makes use of surgery tech-
niques and Mayer–Vietoris type formulae for determinants of Laplacians, Bost’s
L2
1-formalism of arithmetic intersection theory, the Selberg trace formula, and ex-

act evaluations of determinants of Laplacians on models of cusps and cones. The
explicit computations of the regularized determinants of Laplacians on models of
cusps and cones for the singular hyperbolic metric are of independent interest.
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3. Arithmetic applications

The advantage of the Riemann–Roch isometry (1) is that it easily leads to arith-
metic versions of the Riemann–Roch formula, in the sense of Arakelov geometry.
Let K be a number field and X → S = SpecOK a flat and projective regular
arithmetic surface. We suppose given sections σ1, . . . , σn, that are generically dis-
joint. We also assume that for every complex embedding τ : K →֒ C, the compact
Riemann surface Xτ (C) arises as the compactification of a quotient Γτ\H, and
that the set of elliptic fixed points and cusps is precisely given by the sections. We
construct Q-hermitian line bundles over S, with classes in the arithmetic Picard

group (up to torsion) P̂ic(S)⊗ZQ. We use similar notations as in the complex case.
A straightforward application of Theorem 1 then yields the following arithmetic
Riemann–Roch formula.

Theorem 2. We have the equality

12 d̂egH•(X ,OX )Q − δ + d̂egψW =(ωX/S(D)hyp, ωX/S(D)hyp)

−
∑

i6=j

(
1− 1

mi

)(
1− 1

mj

)
(σi, σj)fin,

where δ measures the bad reduction of X → S, and the right most intersection
numbers account for the intersections of the sections happening at finite places.

Because our results cover arbitrary Fuchsian groups, we can apply Theorem 2 to
cases of arithmetic interest, for example to the case of P1

Z, seen as an integral
model of PSL2(Z)\H ∪ {∞}. This leads to an explicit evaluation (carried out in
[5]) of the special value logZ ′(1,PSL2(Z)) as a rational expression in

L′(0, χi)

L(0, χi)
,
L′(0, χρ)

L(0, χρ)
,
ζ′(0)

ζ(0)
,
ζ′(−1)

ζ(−1)
, γ, log 2, log 3;

here, χi resp. χρ (with ρ := e2πi/3) is the quadratic character of Q(i) and Q(ρ),
respectively. This result can be considered as the analog of the analytic class
number formula for PSL2(Z).

References

[1] J.-B. Bost, Potential theory and Lefschetz theorems for arithmetic surfaces, Ann. Sci. École
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Quasimodular forms and counting torus coverings

Martin Moeller

(joint work with D. Chen, D. Zagier)

Quasimodular forms were first studied systematically in [4] and later in [3] in the
context of counting torus coverings. Torus coverings of degree d are, on the other
hand, the 1

d -integral points for the natural period coordinates on the moduli space
of flat surfaces ΩMg. This space is stratified into the strata ΩMg(m1, . . . ,mn)
where (m1, . . . ,mn) is a partition of 2g − 2. In terms of the counting problem,
this stratification corresponds to prescribing a ramification profile. The period
coordinates give rise to the natural Masur-Veech volume form on strata of flat
surfaces. A conjecture of Eskin and Zorich predicts the large genus asymptotics
of this strata, namely.

vol(ΩMg(m1, . . . ,mn))) ∼ 4

(m1 + 1)(m2 + 1) · · · (mn + 1)
+ o(1)

as
∑
mi = 2g − 2 tends to infinity.

The methods presented here give a proof of this conjecture for the principal
stratum, i.e. for all mi equal to one (see [2]), and an outline for the general case.
First, the counting problem (for covers without unramified components) can be
reduced via Burnside’s formula and inclusion-exclusion to the computation of cer-
tains q-brackets

〈f〉q =
∑

λ∈P
f(λ) q|λ|

∑
λ∈P

q|λ| .

If the function f on partitions is a shifted symmetric function, i.e. a polynomial in
the power sum functions pℓ(λ), then Bloch and Okounkov have shown ([1]) that
its q-bracket is a quasimodular form, i.e. a polynomial in the Eisenstein series E2,
E4 and E6. The second step is the observation that the homomorphism given by
Ev(E2) = X +12, Ev(E4) = X2 and Ev(E6) = X3 fully records the growth of the
coefficients of a quasimodular form.

The main step, both for computational and theoretical considerations, is to
obtain a managable expression of the partition function

Φ(u)q =
〈
exp

(∑

ℓ≥1

pℓ uℓ

)〉
q
=

∑

n≥0

〈p1 · · · p1︸ ︷︷ ︸
n1

· p2 · · · p2︸ ︷︷ ︸
n2

· · · 〉q
un

n!

of q-brackets. For the q-brackets themselves we are not aware of a good formula,
but for their Ev-images we have the following result.

Theorem 1 ([2]). The Ev-image Φ(u)X = Ev[Φ(u)q] of the partition function
can be expressed as the formal Gaussian integral

Φ(u)X =
1√
2π

∫ ∞

−∞

e−y
2/2+B(u,iy,X) dy .
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where we use the coefficients of
∑
k≥0 βkz

k = z/2
sinh(z/2) to define

B(u, y,X) =
∑

a>0
r≥0

(a1 + 2a2 + 3a3 + · · · )! β2−r+w(a)

√
X

2−r+w(a) ua

a!

yr

r!
.

For volume computations the counting functions for connected coverings is of
primary interest. This involves the passage from q-brackets to their cumlants (in
the sense of [3]). From the theorem above we deduce a formula for the generating
series of cumulants in terms of a fixed point of the y-derivative of B. If define the
renormalizations

vn =
2n−1(2n)!

n!
vol(ΩMg(m1, . . . ,mn))) (n > 0), v−2 = v0 = − 1

24
, v−1 = 0

of the volumes, then the whole process gives the following amusing closed formula
for the generating series of renormalized volumes.

Theorem 2. Define a Laurent series

B1/2(X) = X1/2 +
X−3/2

96
− 7X−7/2

6144
+

31X−11/2

65536
− · · ·

in X−1/2 as the unique solution in X−1/2Q[[1/X ]] of the functional equation

B1/2(X + 1
2 ) − B1/2(X − 1

2 ) =
X−1/2

2
.

Then the vn are given by the inversion formula

Y = B1/2(X) ⇐⇒ X =

∞∑

n=−2

2n+ 1

22n+1
vn Y

−2n−2 .

We provide a framework for computing the asymptotics of rapidly divergent
power series that allows to prove the Eskin-Zorich conjecture for the principal
stratum from this statement.

The preprint [2] that contains the results mentioned above also contains quasi-
modularity results for a weighted version of counting torus coverings, motivated
by the computation of Siegel-Veech constants for flat surfaces.
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Cohomology of local systems on M3

Carel Faber

(joint work with Jonas Bergström and Gerard van der Geer)

We study the cohomology of irreducible symplectic local systems Vλ on the moduli
space Ag of principally polarized abelian varieties of dimension g or their pullbacks
via the Torelli morphism to the moduli spaceMg of smooth curves of genus g ≥ 2.
Here λ = (λ1 ≥ · · · ≥ λg ≥ 0) indexes an irreducible representation of Sp2g. One
can go back and forth between the Euler characteristics (of compactly supported
cohomology) ec(Mg,Vλ), e

Sn
c (Mg,n), and eSnc (Mg,n) in certain ranges (e.g., be-

tween the latter two when g ≤ G and 2g + n ≤ 2G +N). For g ≤ 2, these Euler
charcteristics are known in K0(HS) or K0(Gal) (ℓ-adic Galois representations). So
g = 3 is the case of current interest.

In a recent paper [2], we found an explicit conjectural formula for ec(A3,Vλ).
It implies a dimension formula for spaces of Siegel cusp forms of genus 3, which
has been confirmed by Täıbi (cf. his talk and [5]) in very many cases. The answer
for A3 determines the answer for M3 when |λ| = λ1 + · · · + λg is even, but gives
nothing when |λ| is odd. For |λ| ≤ 7, ec(M3,Vλ) is known (Bergström [1]). For
9 ≤ |λ| ≤ 19, we have (with 3 exceptions) conjectural formulas (for which there is
much evidence); for |λ| = 17 or 19, these formulas involve ‘motives’ of odd weight
6 + |λ| and rank 6 or 8 (with associated group SO(7) or SO(9)), whose existence
was first established (in the automorphic world) by Chenevier and Renard [3]
and whose Hecke traces were recently computed by Mégarbané [4]; they match
perfectly with the Frobenius traces found by us for q ≤ 17. At the end of the talk,
I discussed the relationship with vector valued Teichmüller modular forms.
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Harmonic weak Siegel Maaß forms

Martin Westerholt-Raum

Harmonic weak (elliptic) Maaß forms are functions on the Poincaré upper half
space H that transform like elliptic modular forms, vanish under the suitably
normalized hyperbolic Laplace operator ∆k, and satisfy an exponential growth
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condition towards the cusps. Early on in the theory of harmonic weak Maaß
forms, it was discovered that there is an exact sequence

0 −→ M!
k −→ Mk −→ M!

2−k −→ 0 ,

where the left and right spaces consist of weakly holomorphic modular forms (i.e.
modular forms with relax growth condition towards the cusps) and the middle one
is the space of harmonic weak Maaß forms.

The above exact sequence corresponds to an exact sequence of Harish-Chandra
modules that arises from each harmonic weak Maaß form. By passing from from a
function f on H to one on the group SL2(R), and then to the (g,K)-module gen-
erated by it, we obtain a Harish-Chandra module ̟(f). The differential equation
∆k f = 0 can be encoded in a composition series for ̟(f). In the case of integral
weight k, we obtain

0 −→ ̟hol
k ⊕̟hol

k −→ ̟(f) −→ ̟finite
k −→ 0 .

Composition factors to the left are the holomorphic and anti-holomorphic (limits
of) discrete series (of Harish-Chandra parameter k − 1). The composition factor
to the right is a finite dimensional representation. For completeness, note that in
the case of half integral weight we obtain a similar short exact sequence

0 −→ ̟hol
k −→ ̟(f) −→ ̟θ

k −→ 0 .

The composition factor of ̟(f) that is an antiholomorphic (limit of) discrete
series corresponds to the classical ξ-operator mapping f to a holomorphic modular
form. The composition factor of ̟(f) that is a holomorphic (limit of) discrete
series corresponds to Bol’s Identity for harmonic weak Maaß forms of integral
weight. It also reflects the fact that harmonic weak Maaß forms have a holomorphic
part—called a mock modular form. In order to obtain Siegel mock modular forms,
one then should look for geometric realizations of extensions of Harish-Chandra
modules for Sp2(R) that contain a holomorphic Harish-Chandra module.

The easiest case of holomorphic Harish-Chandra modules arises from principal
series attached to the Siegel parabolic. Note that except for the holomorphic dis-

crete series with scalar minimal K-type, none of holomorphic subquotients ω
(2) hol
k

of principal series for the Siegel parabolic is square integral. The corresponding

Langlands quotient ω
(2) SK
k corresponds to a non-holomorphic Saito-Kurokawa lift.

By Arthur’s classification, non-holomorphic Saito Kurokawa lifts are in fact the
only automorphic forms that have this Langlands quotient as their Harish-Chandra
module.

Extending ideas of Bruinier and Funke to the higher dimensional case, we show
that there are functions f on the Siegel modular 3-fold with meromorphic sin-
gularities whose attached Harish-Chandra module ̟(f) fits into the short exact
sequence

0 −→ ̟
(2) SK
k −→ ̟(f) −→ ̟

(2) hol
k −→ 0 .
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Harmonic weak Siegel Maaß forms that arise this way are mapped by the vector-
valued lowering operator to non-holomorphic Saito-Kurokawa lifts. They have a
holomorphic part, which we call a mock Siegel modular form.

In earlier joint work with Bringmann and Richter, the speaker studied Fourier
coefficients of the analogous harmonic Siegel Maaß forms. In that situation, the
Kohnen limit process allows us to pass to harmonic Maaß Jacobi forms, which
are connected to usual harmonic Maaß forms (i.e. holomorphic modular forms and
harmonic Eisenstein series) via the theta-decomposition. Extending the Kohnen
limit process to harmonic weak Siegel Maaß forms, we obtain harmonic weak
Maaß Jacobi forms with meromorphic singularities. For harmonic weak Siegel
Maaß forms that map to suitable Saito-Kurokawa lifts via the lowering operator,
these Fourier Jacobi coefficients should enjoy a connection to central derivatives
of twisted L-values.

Regularized inner products

Kathrin Bringmann

(joint work with N. Diamantis, S. Ehlen, B. Kane, and A. von Pippich)

Many of the important application of modular forms come from its Hilbert space
structure. We [1, 2] introduce a new regularization which works for all meromor-
phic modular forms. For simplicity we restrict in this talk to the modular forms of
even integral weight for the full modular group SL2(Z), in [1] we use vector-valued
modular forms.

Recall that for f ∈Mk, the space of weight k holomorphic modular forms and
g ∈ Sk, the corresponding subspace of cusps forms, the Petersson inner product is
defined as (z = x+ iy)

〈f, g〉 :=
∫

F

f(z)g(z)yk
dxdy

y2
,

where F is the classical fundamental domain. Borcherds generalized this for f, g ∈
M !
k, the space of weight k weakly holomorphic modular forms by defining

〈f, g〉 := CTs=0 lim
T→∞

∫

FT

f(z)g(z)yk−s
dxdy

y2
.

where by CTs=0 F (s) we mean the constant term of the analytic continuation
of the function F at s = 0 and FT denotes the standard fundamental domain
cut off at height T . One can show that 〈f, g〉 exists for example if f ∈ Mk and
g ∈ M !

k. However it does not, for example, exist if f = g ∈ M !
k \Mk. Petersson

considered inner products for the space Sk of meromorphic cusp forms of weight
k (i.e., meromorphic modular forms which behave like cusp forms towards i∞) by
removing hyperbolic balls around the poles of the functions that are integrated
and letting their radii shrink to 0. This inner product however again does not
always exist.
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We next turn to the new regularizations. The idea is simple. We multiply the
integrands with a function that forces convergence and then analytically continue.
We start with weakly holomorphic forms. Observe that for Re(w) ≫ 0, the integral

I(f, g;w, s) :=

∫

F

f(z)g(z)yk−se−wy
dxdy

y2

converges and is analytic. For every ϕ ∈ (π/2, 3π/2) \ {π} it has an analytic
continuation Iϕ(f, g;w, s) to Uϕ×C with Uϕ ⊂ C a certain open set. Then define

〈f, g〉ϕ := CTs=0 Iϕ(f, g; 0, s)− i
∑

n>0

cf (−n)cg(−n) Im (E2−k,ϕ(−4πn))

where cF denote the Fourier coefficients of a function F and Er,ϕ is the generalized
exponential integral defined with branch cut on the ray {xeiϕ : x ∈ R+}.

Theorem 1 (B.-Diamantis-Ehlen). For f, g ∈M !
k, 〈f, g〉 exists and is independent

of the choice of ϕ. It equals Borcherds regularization if his exists.

We next turn to meromorphic cusp forms. Let s = (s1, . . . , sr) and define

〈f, g〉 := CTs=0

(∫

F

f(z)Hs(z)g(z)y
k dxdy

y2

)
,

where Hs(z) :=
∏r
ℓ=1 hsℓ,zℓ(z) with z1, . . . , zℓ are all of the poles of f and g in F .

Here hsℓ,zℓ(z) := r2sℓzℓ
(Mz) with rz(z) := | z−z

z−z
| where M ∈ SL2(Z) is chosen such

that Mz ∈ F .

Theorem 2 (B-Kane-von Pippich). The regularized inner product 〈f, g〉 always
exists for f, g ∈ Sk and it equals Petersson’s regularization whenever his exists.

Let me now describe 3 applications of our inner product:

1) Duke, Imamoḡlu, and Tóth used regularized inner products to obtain interest-
ing arithmetic information about elements of M !

0. For m ∈ N, let fm be the
unique modular function for SL2(Z) with Fourier expansion

fm(z) = q−m +
∑

n≥0

cm(n)qn

and cm(0) = 24
∑
d|m d. The {fm}m∈N together with the function 1 form a basis

of M !
0. Duke, Imamoḡlu, and Tóth showed that, for m 6= n,

(1) 〈fm, fn〉 = −8π2√mn
∑

c≥1

K(m,n; c)

c
F

(
4π

√
mn

c

)
.

Here K(m,n; c) is a Kloosterman sum and F a certain Bessel function. They
left it as an open problem to regularize 〈fm, fn〉 for m = n and to find a closed
formula.

Theorem 3 (B-Diamantis-Ehlen). Equation (1) also holds for m = n.
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2) A second application concerns weight 3/2 modular forms discussed again by
Duke, Imamoḡlu, and Tóth. Although this is not covered by the restricted
definition of regularized inner products, the vector-valued setting does contain
it. This is contained in the vector-valued setting does contain it. For every
d ∈ N satisfying d ≡ 0, 1 (mod 4) there exists a unique form gd ∈ M !

3/2, the

space of weakly holomorphic weight 3/2 modular forms in Kohnen’s plus space,
with Fourier expansion

gd(τ) = q−d +
∑

n≥0
n≡0,3 (mod 4)

Bd(n)q
n.

The coefficients Bd(n) are integers given by (twisted) traces of singular moduli.
Duke, Imamoḡlu, and Tóth proved that for positive fundamental discriminants
d 6= d′, the regularized inner product 〈gd, gd′〉 can be expressed in terms of
certain cycle integrals of the j-invariant.

Theorem 4 (B-Diamantis-Ehlen). We have

〈g1, g1〉 = − 3

4π
Re

(∫ i+1

i

J(τ)ψ(τ) dτ

)
,

where ψ(τ) := Γ′(τ)/Γ(τ) denotes the Digamma function and J := f1 − 24.

Remarks. (1) One can also state Theorem 4 as 〈g1, g1〉=̇L∗
J(0) for a certain

regularized L-series for f1.
(2) One could also obtain a similar identity for the Petersson norm of gd.

3) Our next application concerns cycle type integrals for meromorphic modular
forms. Zagier encountered the following cusp forms of weight 2k while investi-
gating the Doi-Naganuma lift (k ∈ N≥2, δ ∈ N)

(2) fk,δ(z) :=
∑

Q∈Qδ

Q(z, 1)−k.

Here Qδ is the set of integral binary quadratic forms of discriminant δ. Choosing
the discriminant to be negative instead, Bengoechea constructed meromorphic
modular forms with poles at CM-points which have been shown to be images of
theta lifts [1]. The singularities at the cusps are turned into singularities in the
upper half-plane under this lift. We have an analogous theorem for harmonic
Maass forms for the lift in the dual weight. Define for an equivalence class [Q]
of quadratic forms

GQ(z) := D
1−k
2

∑

Q∈[Q]

Q(z, 1)k−1

∫ artanh
(√

D
Qz

)

0

sinh2k−2 (θ) dθ.

Note that GQ(z) comes from a higher Green’s function Gk(z, z) by applying
raising operators and then evaluating at the root τQ of the quadratic form Q. It
turns out that these are polar harmonic Maass forms which are harmonic Maass
forms, annihilated by the weight 2 − 2k Laplacian, but may have poles in the
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upper half-plane. Moreover they are preimages of fQ (restricting the sum in (2)

to forms in [Q]) under ξ2−2k := 2iy2−2k ∂
∂z and D2k−1 := ( 1

2πi
∂
∂z )

2k−1.
The functions GQ reappear when taking inner products of fQ against mero-

morphic cusp forms. In the simplest case we have

Theorem 5 (B-Kane-von Pippich). Suppose that f has simple poles in SL2(Z)\H

only at distinct [z1], . . . , [zr] and zj 6= τQ. Then

〈f, fQ〉 = 2πi

r∑

ℓ=1

1

ωzℓ
GQ(zℓ)Resz=zℓf(z).

Remark 6. Our theorem also allows poles at τQ and higher order poles.

Moreover, the Petersson inner product of two fQ functions gives evaluation
of this Green’s function.

Theorem 7 (B-Kane-von Pippich). Suppose that −D1,−D2 < 0 are two dis-
criminants. For Q ∈ Q−D1 and Q ∈ Q−D2 with [τQ] 6= [τQ], we have

〈fQ, fQ〉 ·
=
Gk (τQ, τQ)

ωτQωτQ
.

Note that using work of Zhang one can also relate this result to certain height
pairings.
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Moduli of Supersingular K3 Crystals

Christian Liedtke

Supersingular K3 surfaces. A K3 surface X over an algebraically closed field
k of positive characteristic p is called supersingular, if the following two equivalent
conditions are fulfilled

(1) X has Picard rank ρ(X) = 22,

(2) the height of the formal Brauer group B̂r(X) is infinite.

Concerning the equivalences: whereas (1) ⇒ (2) is relatively easy to show (via
the Igusa-Mazur inequality), the implication (2) ⇒ (1) follows from the Tate-
conjecture for K3 surface, which is now a theorem of Charles, Nygaard, Maulik,
Madapusi-Pera, and Ogus. Moreover, the discriminant of the Néron–Severi group
satisfies

discNS(X) = −p2σ0 for some integer 1 ≤ σ0 ≤ 10
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that is called the Artin invariant and that was introduced by Artin [1]. In fact,
σ0 determines the Néron–Severi NS(X) up to isometry and such lattices are called
supersingular K3 lattices.

Moving torsor families. If X is a supersingular K3 surface with Artin invariant
σ0 ≤ 9 in characteristic p, then it admits a genus-one fibration X → P1

k with a
section [2]. Associated to this data, there exists a smooth family of supersingular
K3 surfaces, a family of moving torsors

X → X
↓ ↓

Spec k → Spec k[[t]]

such that specialization induces a short exact sequence

0 → Pic(Xη) → Pic(X) → Z/pZ → 0,

whose cokernel is generated by the class of the zero-section of the fibrationX → P1.
In particular, σ0(Xη) = σ0(X) + 1, and thus, this family has non-trivial moduli.
Moreover, this family can be algebraized and spread out from Speck[[t]] to a family
of smooth supersingular K3 surfaces over a curve that is of finite type over k. We
refer to [2] for details.

Moduli of supersingular K3 crystals. The second crystalline cohomology
group of a supersingular K3 surface in positive characteristic p is an F -crystal,
which is of slope 1 and weight 2. Moreover, Poincaré duality equips it with a
perfect pairing. In [3], Ogus classified such crystals together with markings by a
supersingular K3 lattice N , so called N -marked supersingular K3 crystals. In [3],
he also constructed a moduli space MN → Spec Fp for such crystals.

Theorem (Ogus). Let N be a supersingular K3 lattice in odd characteristic p.
Then, MN is smooth, proper, and of dimension (σ0(N) − 1) over Fp, and it has
two geometric components.

Given a K3 surface X together with a genus-one fibration X → P1
k and a

section, the divisor classes of a fiber and the divisor class of the section span a
hyperbolic plane U inside the Néron-Severi lattice NS(X). This said, the moving
torsor families from above manifest themselves on the level of Ogus’ moduli spaces
MN as follows.

Theorem. Let N and N+ be supersingular K3 lattices in odd characteristic such
that σ0(N+) = σ0(N) + 1. Then, a choice of hyperbolic plane U ⊂ N gives rise to
a morphism

MN+ → MN .

This morphism is a fibration, whose geometric fibers are rational curves with at
worst unibranch singularities (“cusps”).

Examples (Ogus). Let N be a supersingular K3 lattice in characteristic p ≥ 3.

(1) If σ0(N) = 1, then MN
∼= Spec Fp2 .

(2) If σ0(N) = 2, then MN
∼= P1

Fp2
.
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(3) If σ0(N) = 3, then MN×Spec Fp
SpecFp is the disjoint union of two Fermat

surfaces of degree (p+ 1).

Shioda [4] showed that the Fermat surface Fn := {xn0 + ... + xn3 = 0} ⊂ P3,
n ≥ 4, in characteristic p with gcd(n, p) = 1 is unirational if and only if there
exists an integer ν ≥ 1 such that pν ≡ −1 mod n. In particular, the Fermat
surfaces Fp+1 are unirational in characteristic p. Together with Ogus’ examples,
we obtain a new proof of Shioda’s theorem in the following special case.

Corollary (Shioda). For every prime p, the Fermat surface Fp+1 ⊂ P3 is unira-
tional in characteristic p.
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Complete moduli of cubic threefolds and their intermediate Jacobians

Samuel Grushevsky

(joint work with S. Casalaina-Martin, K. Hulek, R. Laza)

We work over C. To a smooth cubic threefold X one can associate its intermediate
Jacobian IJ(X) := H2,1(X,C)∗/H3(X,Z), which is a principally polarized abelian
variety of dimension 5. The intermediate Jacobians of cubic threefolds were studied
by Clemens and Griffiths [4], who used them to show that any smooth cubic
threefold is not rational.

We denote M the moduli space of smooth cubic threefolds, and denote A5 the
moduli space of principally polarized abelian fivefolds. We thus view the inter-
mediate Jacobian as a map IJ : M → A5. The theta divisor of an intermediate
Jacobian of a smooth cubic threefold has a unique singular point, which has mul-
tiplicity three. The projectivized tangent cone to the theta divisor at this singular
point is the cubic threefolds itself. Thus the Torelli theorem for cubic threefolds
holds: the map IJ is injective.

We study degenerations of cubic threefolds and the extension of the intermedi-
ate Jacobian map IJ . The moduli space of cubic threefolds admits a natural GIT
compactification M, described by Allcock [2]. There does not exist a universal
family over the GIT compactification. The most singular point Ξ ∈ M corre-
sponds to the chordal cubic — the secant variety of the rational normal curve.
From a different viewpoint, Allcock, Carlson, and Toledo [3] and Looijenga and
Swierstra [6] showed that M is an open dense subset of a suitable ball quotient.

They furthermore showed that there exists a suitable common resolution M̂ both
of M and of the Baily-Borel compactification of the ball quotient. The space
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M̂ is obtained from M as a Kirwan blowup of Ξ. The boundary ∂M̂ is essen-
tially a hyperplane arrangement, and thus by a wonderful blowup construction
of de Concini-Procesi one can construct the so-called wonderful compactification

M̃ → M̂, whose boundary is now a normal crossing divisor. The wonderful com-
pactification was first considered by Casalaina-Martin and Laza [5]. Our main
result is the following

Theorem. The intermediate Jacobian map extends to a morphism ĨJ : M̃ →
AV or

5 from the wonderful compactification of the moduli space of cubic threefolds
to the second Voronoi toroidal compactification of the moduli space of principally
polarized abelian fivefolds.

Our proof of this theorem proceeds by studying the monodromy cones (for ev-
erything except the blowup of the moduli point corresponding to the chordal cubic,
where the argument proceeds differently). We first recall that the intermediate Ja-
cobian of a smooth cubic threefold can also be described as the Prym variety of
an étale double cover of a smooth plane quintic. We then extend this description
to degenerating families of cubic threefolds, which acquire isolated singularities —
showing that these correspond to degenerating families of plane quintics, acquiring
the same type of singularities, while the double cover remains étale including over

the singularities. We thus reduce the extension question for the map ĨJ to the
problem of extending the Prym map.

The indeterminacy locus of the Prym map was described explicitly by Alexeev,
Birkenhake, Hulek [1] and Vologodsky [7] — it is equal to the closure of the locus
of so-called Friedman-Smith covers. By considering carefully the stable reductions
of étale (including over the singularities!) double covers of plane quintics with
arbitrary isolated singularities we are able to show that the corresponding covers
never lie in the Friedman-Smith loci. Thus the Prym map extends to all étale
double covers of singular plane quintics, and thus the intermediate Jacobian map

extends to all of M̃.
By further studying the details of this construction, we can further see that the

image of ĨJ is contained in the so-called matroidal locus, which is the largest set
of cones that the perfect cone and second Voronoi toroidal compactification have
in common. Our approach also gives a way to geometrically describe the image
of the locus of cubic threefolds with a given singularity profile under the extended
intermediate Jacobian map.
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On the (intersection) cohomology of Ag and its compactifications

Klaus Hulek

(joint work with Sam Grushevsky)

1. Introduction

The moduli space of principally polarized abelian varieties is, over the complex
numbers, the quotient

Ag = Sp(2g,Z)\Hg
where Hg denotes the Siegel upper half space. A well known result of Borel says
that the cohomology of Ag stabilizes. More precisely, let E be the Hodge vector
bundle on Ag, and denote its Chern classes by λi = ci(E) ∈ H2i(Ag,Q). It is well
known result due to Mumford that these classes fulfill the relation

(1) (1− λ1 + λ2 − . . .+ (−1)gλg)(1 + λ1 + λ2 + . . .+ λg) = 1.

Theorem 3 (Borel 74). The cohomolgy groups Hk(Ag,Q) are independent of k
in the range k < g. In this range the cohomology is freely generated by the odd
λ-classes.

This result was generalized to the Baily-Borel-Satake compactification ASat
g by

Charney and Lee, who also proved that the classes λi can be extended to ASat
g .

Theorem 4 (Charney, Lee 83). The cohomology groups Hk(ASat
g ,Q) do not de-

pend on g for k < g, and the stable cohomology ring is freely generated by the odd
λ-classes λ1, λ3, λ5, . . ., together with classes α3, α5, α7, . . . where the class αj is
in degree 2j.

The situation for toroidal compactifications is more subtle. For (stack) smooth

toroidal compactifications Ãtor
g with normal crossing boundary the pullback of

the λ-classes from ASat
g can be understood as the Chern classes of the extended

Hodge bundle. These classes still satisfy relation (1) and the tautological ring

Rg ⊂ H•(Ãtor
g ) is defined as the ring generated by the λ-classes.

The stabilization of cohomology for toroidal compactifications depends on the
fan, and hence the specific compactification chosen. For the perfect cone toroidal
compactification APerf

g we showed the following stabilization result in [5]

Theorem 5. The cohomology of the perfect cone compactification stabilizes in
close to the top degree, i.e. the groups Hg(g+1)−k(APerf

g ,Q) are independent of g
for k < g.
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In contrast to this, the cohomology of the second Voronoi toroidal compactifica-
tion AVor

g does not stabilize. The stack APerf
g is singular and Poincaré duality fails.

For this reason the above theorem cannot be reformulated to give a stabilization
result for Hk(APerf

g ,Q).
The failure of Poincaré duality for singular varieties is one of the motivations

for studying intersection cohomology, in particular also for compactifications of
Ag. We first recall that the tautological ring Rg is naturally contained in the
intersection cohomology of ASat

g . The latter stabilizes, in fact one has the

Theorem 6. The intersection cohomology IHk(ASat
g ,Q) is independent of g in

the range k < g where it coincides with the tautological ring.

This follows from combining results of Borel on the one hand and the proof
of the Zucker conjecture by Saper and Stern and Looijenga on the other hand.
Indeed, Borel showed in [2] that in the stable range Hk(Ag,C) ∼= Hk

(2)(Ag), where

the latter denotes L2 cohomology, whereas by Saper-Stern [9] and Looijenga [8]
one has that Hk

(2)(Ag) ∼= Hk(ASat
g ).

2. Main result

The main purpose of our work is to compute the intersection cohomology of ASat
g ,

not just in the stable range, for small values of g. We obtain

Theorem 7. For g ≤ 4 there is an isomorphism of graded vector spaces

IH•(ASat
g ) ∼= R•

g

between the intersection cohomology of the Satake compactification ASat
g and the

tautological ring – except that possibly IH10(ASat
4 ) ) R10

4 .

The main tool we use for proving this is the decomposition theorem for inter-
section cohomology for projective morphisms f : X → Y . This theorem is due
to Beilinson, Bernstein, Deligne and Gabber. It was reproved by de Cataldo and
Migliorini [3] and it is their approach which we use. We shall apply this theorem
to the projective morphism ϕ : AVor

g → ASat
g . The Satake compactification ASat

g

is naturally stratified as

(2) ASat
g = Ag ⊔ Ag−1 ⊔ . . . ⊔ A0

and over the strata Ak the map ϕ is a topological fibration. In genus g ≤ 4
the Voronoi compactification AVor

g is smooth and hence intersection cohomology
and cohomology coincide. We thus obtain the following decomposition where
i ∈ [−r(ϕ), r(ϕ)] and r(ϕ) is the defect of the morphism ϕ:
(3)

Hm(AVor
g ,Q) ∼= IHm(ASat

g ,Q)⊕
⊕

k<g,i,β

IHm−g(g+1)/2+k(k+1)/2+i(ASat
k ,Li,k,β)

for suitable local systems Li,k,β on Ak. The left hand side was computed in [5],
apart from the case g = 4 andm = 10. Also from [5] one knows the topology of the
fibres of the map ϕ. Moreover, we know that the tautological ring Rg is contained
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in IH•(ASat
g ). The combination of this information, together with the calculation

of the link cohomology of the stratum Ag−1, allows us to find sufficiently many
local systems Li,k,β to account for the entire topology of AVor

g and thus to conclude

that IH•(ASat
g ) = Rg in the range stated.

Applying the decomposition theorem to the map ϕ′ : AVor
4 → APerf

4 we also
obtain the

Proposition 8. All the odd degree intersection Betti numbers of APerf
4 are zero,

while the even ones ibj := dim IHj(APerf
4 ) are as follows:

(4)
j 0 2 4 6 8 10 12 14 16 18 20

ibj 1 2 4 9 14 ∗ 14 9 4 2 1

where we know that ∗ = dim IH10(APerf
4 ) ≥ 16.

Our method also gives us considerable information on the cohomology of the
link bundles.
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GERMANY

Prof. Dr. Tonghai Yang

Department of Mathematics
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706-1388
UNITED STATES



1318 Oberwolfach Report 23/2016

Dr. Ken-Ichi Yoshikawa

Department of Mathematics
Graduate School of Science
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto 606-8502
JAPAN

Dr. David S. Yuen

Mathematics & Computer Science
Department
Lake Forest College
555 N. Sheridan Road
Lake Forest, IL 60045-2399
UNITED STATES

Prof. Dr. Noriko Yui

Department of Mathematics & Statistics
Queen’s University
Jeffery Hall
Kingston, Ont. K7L 3N6
CANADA

Dr. Shaul Zemel

Einstein Institute of Mathematics
The Hebrew University
Givat Ram
Jerusalem 91904
ISRAEL


