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Abstract. For the past few decades, Combinatorics and Probability Theory
have had a fruitful symbiosis, each benefitting from and influencing develop-
ments in the other. Thus to prove the existence of designs, probabilistic
methods are used, algorithms to factorize integers need combinatorics and
probability theory (in addition to number theory), and the study of random
matrices needs combinatorics. In the workshop a great variety of topics ex-
emplifying this interaction were considered, including problems concerning
designs, Cayley graphs, additive number theory, multiplicative number the-
ory, noise sensitivity, random graphs, extremal graphs and random matrices.
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Introduction by the Organisers

The workshop was organized by Béla Bollobás (Cambridge and Memphis), Michael
Krivelevich (Tel Aviv), Oliver Riordan (Oxford) and Emo Welzl (Zürich). The
meeting was extremely well attended, with 53 participants from 13 countries, in-
cluding the US, Israel, Canada, Australia, Brazil, Korea, and various European
countries. Many excellent mathematicians who would have loved to participate
could not be invited, for lack of space. The programme consisted of 11 main lec-
tures, 14 shorter talks, and a problem session, with plenty of time for discussion.

The timing of the workshop was very fortunate, because recently several major
results have been proved in probabilistic combinatorics and combinatorial proba-
bility. The main lectures provided a very good overview of these great results. In
particular, Peter Keevash talked about his solution of a problem of Steiner from
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1853 concerning the existence of designs, József Balogh, Wojciech Samotij and An-
drew Thomason gave interconnected lectures on their extremely powerful method
of containers and its applications, and Paul Balister talked about a sharp result on
an old problem of Pomerance related to the fastest known algorithms for factoring
large integers. In addition, Noga Alon presented a probabilistic result answering a
basic extremal question concerning ‘universal’ graphs, David Gamarnik and Van
Vu presented recent developments in the theory of random matrices, Asaf Shapira
described a new version of Szemerédi’s regularity lemma (a fundamental tool in
many areas of combinatorics and elsewhere), Mathias Schacht talked about a new
class of extremal problems for hypergraphs, and Angelika Steger presented much
simpler proofs of stronger forms of a number of results in randomized optimiza-
tion. The shorter contributions, including several by younger researchers, covered
a wide range topics. In the following we include the extended abstracts of all the
talks, in the order they were given.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Zoltán Füredi (joint with Zeinab Maleki)
Minimizing the number of pentagonal edges . . . . . . . . . . . . . . . . . . . . . . . . . 1223



1192 Oberwolfach Report 22/2016
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Abstracts

Counting designs

Peter Keevash

When does a graph G have a triangle decomposition? (By this we mean a par-
tition of its edge set into triangles.) There are two obvious necessary ‘divisibility
conditions’: the number of edges must be divisible by three, and the degree of any
vertex must be even. We say that G is tridivisible if it satisfies these divisibility
conditions. In 1847 Kirkman proved that any tridivisible complete graph has a
triangle decomposition; equivalently, there is a Steiner Triple System on n vertices
if n is 1 or 3 mod 6. In [5] we showed more generally that a tridivisible graph
has a triangle decomposition if we assume a certain pseudorandomness condition.
In fact, we proved a more general result on clique decompositions of simplicial
complexes, which implies the Existence Conjecture for combinatorial designs.

In this extended abstract, we will outline estimates on the number of combi-
natorial designs, which prove (and generalise) a conjecture of Wilson from 1974
on the number of Steiner Triple Systems. We start by stating our result that
tridivisible pseudorandom graphs have triangle decompositions. The pseudoran-
domness condition is as follows. Let G be a graph on n vertices. The density of
G is d(G) = |G|/

(

n
2

)

. We say that G is c-typical if every vertex has (1 ± c)d(G)n

neighbours and every pair of vertices have (1 ± c)d(G)2n common neighbours.

Theorem 1. There exists 0 < c0 < 1 and n0 ∈ N so that if n ≥ n0 and G is a

c-typical tridivisible graph on n vertices with d(G) > n−10−7

and c < c0d(G)10
6

then G has a triangle decomposition.

One consequence of Theorem 1 is that the standard random graph model
G(n, 1/2) with high probability (whp) has a partial triangle decomposition that
covers all but (1 + o(1))n/4 edges. Indeed, deleting a perfect matching on the set
of vertices of odd degree and then at most two 4-cycles gives a graph satisfying
the hypotheses of the theorem. This is asymptotically best possible, as whp there
are (1 + o(1))n/2 vertices of odd degree, and any set of edge-disjoint triangles
must leave at least one edge uncovered at each vertex of odd degree. We can also
use Theorem 1 to prove the following conjecture of Wilson [12] on the number of
Steiner Triple Systems on n vertices, i.e. triangle decompositions of the complete
graph Kn; denote this by STS(n).

Theorem 2. If n is 1 or 3 mod 6, then STS(n) = (n/e2 + o(n))n
2/6.

The upper bound in Theorem 2 was recently proved by Linial and Luria [8], who

showed that STS(n) ≤ (n/e2 + O(
√
n))n

2/6. Our lower bound will be STS(n) ≥
(n/e2 +O(n1−a))n

2/6 for some small a > 0, We use the following triangle removal
process. We start with the complete graph Kn, and at each step we delete the
edges of a uniformly random triangle in the current graph. It is shown in [2]
that whp the process persists until only O(n3/2+o(1)) edges remain, but we will
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stop at n2−10−7

edges (i.e. at the nearest multiple of 3 to this number) so that
we can apply Theorem 1. We need the following additional facts from [2] about
this stopped process: whp the final graph is n−1/3-typical, and when pn2/2 edges
remain the number of choices for the deleted triangle is (1 ± n−2/3)(pn)3/6.

Proof of Theorem 2. Consider the following procedure for constructing a Steiner

Triple System on n vertices: run the triangle removal process until n2−10−7

edges
remain, then apply Theorem 1 (if its hypotheses are satisfied, which occurs in
1 − o(1) proportion of all instances of the process). Writing m for the number of
steps and p(i) = 1 − 6i/n2, the logarithm of the number of choices is

L1 =
m
∑

i=1

(log(p(i)3n3/6) ± 2n−2/3) = (n2/6)(log(n3/6) − 3 ± n−10−8

),

since
∑m

i=1 log p(i) = (1+O(n−10−7

logn))(n2/6)
∫ 1

0 log p dp and
∫ 1

0 log p dp = −1.
Also, for any fixed Steiner Triple System, the logarithm of the number of times it
is counted by this procedure is at most

L2 =

m
∑

i=1

log(p(i)n2/6) = (n2/6)(log(n2/6) − 1 ± n−10−8

).

Therefore log(STS(n)) ≥ L1 − L2 = (n2/6)(log(n) − 2 ± 2n−10−8

). �

The strategy of the proof of Theorem 1 is encapsulated by the following setup.
We say that J ⊆ G is c-bounded if |J(v)| < c|V (G)| for every v ∈ V (G), where
J(v) = {u ∈ V (G) : uv ∈ J} is the neighbourhood of v in J .

Setup 3. Suppose we have G∗ ⊆ G with a ‘template’ triangle decomposition T
such that

Nibble: G \G∗ contains a set N of edge-disjoint triangles with ‘leave’ L :=
(G \G∗) \ ∪N that is c1-bounded,

Cover: For any L ⊆ G \ G∗ that is c1-bounded, there is a set M c of edge-
disjoint triangles such that L = (G \ G∗) ∩ (∪M c) and the ‘spill’ S :=
G∗ ∩ (∪M c) is c2-bounded,

Hole: For any tridivisible S ⊆ G∗ that is c2-bounded, there are ‘outer’ and
‘inner’ sets Mo,M i of edge-disjoint triangles in G∗ such that ∪Mo is c3-
bounded and (S,∪M i) is a partition of ∪Mo,

Completion: Given L, M c, Mo and M i as above, there are sets M1, M2,
M3, M4 of edge-disjoint triangles in G∗ such that (L,∪M2) is a partition
of ∪M1, ∪M3 = ∪M4, M3 ⊆ T and M2 ⊆M4.

The key step is choosing T (which determines G∗). We will use our method of
Randomised Algebraic Construction, which takes a particularly simple form for
triangle decompositions. To motivate the construction, suppose that V (G) is an
abelian group, and consider the set Σ of triples xyz such that x + y + z = 0. We
note that Σ is a good ‘model’ for a triangle decomposition, as for any xy there is
a unique z such that x+ y + z = 0. However, we cannot simply take Σ, as not all
such xyz are triangles of G; moreover, x, y, z may not even be pairwise distinct.
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The idea of the construction is that a suitable random subset of Σ can act as
a template, which covers a constant fraction of G. Next we find an approximate
decomposition of the rest of G by random greedy algorithms: this is accomplished
by steps Nibble and Cover of Setup 3. After these steps, every edge of G has
been covered once or twice, and the spill S is the set of edges that have been
covered twice. Finally, we use local modifications built into the template to turn
the approximate decomposition into an exact decomposition: this is accomplished
by steps Hole and Completion of Setup 3.

To motivate Completion, we imagine first that we have Hole and also Mo ⊆
T . Then we could delete Mo and take M i instead, thus reducing by one the
multiplicity of every edge in S, so that we have a triangle decomposition of G.
However, specifying a triangle of T is very restrictive, as there are only order(n2)
such triangles out of a total of order(n3) triangles in G. If we had chosen T uni-
formly at random it would be hopeless to obtain any useful configuration formed
by triangles of T . However, the algebraic structure implies that certain config-
urations of triangles are dense within a sparse configuration space (described by
linear constraints). This forms the basis of a modification procedure that replaces
M c, Mo and M i by other sets of triangles with the same properties, where M1

plays the role of M c∪M i, M2 of Mo, and each triangle f of M2 can be embedded
in a small subgraph that has one triangle decomposition (part of M4) using f and
another triangle decomposition (part of M3) contained in T .
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High-dimensional discrepancy

Nati Linial

(joint work with Zur Luria)

The notion of discrepancy is central to all branches of discrete mathematics.
Roughly speaking, one asks how well finite sets can approximate a uniform mea-
sure. A bit more concretely, the problem is defined in terms of a collection F of sub-

sets in a probability space (Ω, µ). We seek the minimum of supX∈F | |S∩X|
|S| −µ(X)|

over all sets S of given cardinality. Such questions and their many variants make
sense and are interesting in numerous contexts. An important example from graph
theory is the expander mixing lemma. Let G = (V,E) be a d-regular n-vertex
graph. This lemma asserts that if G is an expander graph, then for every two
subsets A,B ⊆ V there holds |e(A,B) − d

n |A||B|| ≤ O(
√

|A||B|) where e(A,B) is
the number of ordered pairs (a, b) with a ∈ A, b ∈ B and ab ∈ E. The unspecified
constant in the big-oh term depends on the spectrum of G’s adjacency matrix.

A considerable body of recent research is aimed at developing a theory of high-
dimensional combinatorics. Many basic combinatorial constructs have interesting
high-dimensional counterparts, and it is natural to study discrepancy phenomena
in these frameworks. Specifically we consider discrepancy in high-dimensional
permutations. Let us briefly recall this concept [6]. We equate a (classical, i.e.,
one-dimensional) permutation with its permutation matrix, namely, an n×n array
of zeros and ones where every row and every column contains exactly one 1. In
analogy, a d-dimensional permutation A is an [n]d+1 = n×n× . . .n array of zeros
and ones such that for every index d + 1 ≥ i ≥ 1 and every choice of integers
αj ∈ [n] over 1 ≤ j 6= i ≤ d + 1 there is exactly one choice of x ∈ [n] for which
A(α1, . . . , αi−1, x, αi+1, . . . , αd+1) = 1. Note, in particular, that a two-dimensional
permutation is synonymous with a Latin square.

The class F that defines our discrepancy problem is comprised of all boxes T =
T1× . . .×Td+1 ⊆ [n]d+1. The volume of this box is defined to be vol(T ) :=

∏ |Ti|.
Our discrepancy problem is to find d-dimensional permutations A, such that for

every box T it holds that A(T ) := |{α ∈ T : A(α) = 1}| is close to vol(T )
n . (Clearly

this is what one would expect, since the density of 1 entries in a d-dimensional
permutation is 1

n ). We propose the following conjecture.

Conjecture 1. For every d ≥ 2 there exist arbitrarily large d-dimensional permu-
tations A such that for every box T we have

∣

∣

∣

∣

A(T ) − vol(T )

n

∣

∣

∣

∣

= O(
√

vol(T )).

There are at least two reasons why we expect this to be true. Consider the
following “poor man’s analog” of a random Latin square. It is a random n×n×n
array of zeros and ones whose entries are chosen independently with the same
distribution, where 1 is chosen with probability 1

n . It is easily verified that this
relation holds in that model. In addition, a d-dimensional permutation may be
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viewed as a (d+ 1)-partite (d+ 1)-uniform hypergraph, and we find the similarity
with the expander mixing lemma rather compelling.

We say that T is an empty box in A if A(T ) = 0, and denote by ε(A) the maxi-
mal volume of an empty box in A. One consequence of the above conjecture is that
there are d-dimensional permutations A such that ε(A) = O(n2). On the other
hand, it is easy to see that ε(A) = Ω(n2) for every d-dimensional permutation, since
every (classical) permutation matrix contains a ⌊n

2 ⌋ × ⌊n
2 ⌋ block of zeros. Indeed,

let A be an arbitrary d-dimensional permutation. Pick some T2 ⊆ [n] of cardinal-
ity ⌊n

2 ⌋ and some t3, . . . , td+1 ∈ [n], and let T3 = {t3}, . . . , Td+1 = {td+1}. We can

find a subset T1 ⊆ [n] of cardinality ⌊n
2 ⌋ for which T = T1 × . . . × Td+1 ⊆ [n]d+1

is an empty box in A. Indeed, for every t ∈ T2, there is exactly one x ∈ [n] for
which A(x, t, t3, . . . , td+1) = 1 and clearly x cannot belong to T1. But altogether
only ⌊n

2 ⌋ elements are ruled out from being in T1, one per each element of T2 so
that at least ⌊n

2 ⌋ are still acceptable and the claim follows.
We prove the following theorems in this spirit for 2-dimensional permutations,

i.e., for Latin squares.

Theorem 2. Asymptotically almost every order-n Latin square A satisfies ε(A) =

O(n2 log2(n)).

Theorem 3. There exist infinitely many order-n Latin squares satisfying ε(A) =
O(n2) (and hence ε(A) = Θ(n2)).

We tend to believe the following statement which subsumes both theorems:

Conjecture 4. Asymptotically almost every order-n Latin square A satisfies ε(A)
= O(n2).

In fact, it is conceivable, that our discrepancy conjectures hold for asymptoti-
cally almost every d-dimensional permutation.

It is easy to see that the multiplication table of a finite group is a Latin square,
and problems that we consider here have been previously addressed in the group
theory literature. Babai and Sós [1], defined a subset S ⊂ Γ of a finite group to
be product-free if there are no three elements x, y, z ∈ S with xy = z. Note that
in our language this means that S × S × S is an empty box in the Latin square
L corresponding to Γ. Using the classification of finite simple groups, Babai and
Sós showed that every finite group contains large product-free sets. Subsequently,
Kedlaya [3] improved their bound. His result implies:

Theorem 5 (Kedlaya). If L is a Latin square that is the mutiplication table of

an order-n group, then ε(L) ≥ cn
33
14 for some fixed c > 0.

On the other hand, Gowers [2] has exhibited order-n groups for which ε(L) ≤
Cn

8
3 for some fixed C > 0.

These results show that a typical Latin square has substantially lower discrep-
ancy than any group of the same order.

A cube is a box A × B × C with |A| = |B| = |C|. It is easy to see that every
order-n Latin square has an empty cube of side ⌊(n+ 1/4)1/2 − 1/2⌋, and we can
show:
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Theorem 6. There exist infinitely many order-n Latin squares L in which every
empty cube has side O((n log n)1/2).

As mentioned, Kedlaya finds an empty cube of side Ω(n11/14) in the Latin
square of every order-n group.

Our proofs are based on two methods: (i) Our earlier work [6] in which we
derived an upper bound on the number of d-dimensional permutations, (ii) Ideas
developed by P. Keevash in his recent breakthrough work on the theory of combi-
natorial designs. He considers in [5] a random greedy process in which a set system
evolves as sets are added to it in sequence. As he shows, with high probability the
partial design that is obtained this way can be completed to a bona-fide design.

The full version of this note is [7].
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Counting sparse graphs with no induced 4-cycle

Wojciech Samotij

(joint work with Robert Morris, David Saxton)

In extremal and structural graph theory, two of the central objects of study are
the family of H-free graphs and the family of induced-H-free graphs, where H is
some fixed graph. More generally, it is natural to consider an arbitrary monotone
or hereditary property of graphs, that is, a family of graphs that is closed under
taking subgraphs or induced subgraphs, respectively. In recent years, the problem
of understanding the typical behaviour of sparse graphs in monotone properties has
attracted a great deal of attention and general techniques for attacking problems
of this type have been developed, see [1, 2, 5, 6]. For example, it follows from the
main results of these papers that (if H is not bipartite) a typical H-free graph
with n vertices and m edges is ‘structured’ if m ≫ n2−1/m2(H) and ‘random-like’
if m ≪ n2−1/m2(H). More precisely, above (resp. below) the threshold almost
all such graphs are close to (resp. far from) being (χ(H) − 1)-partite. As usual,
m2(H) denotes the 2-density of the graph H , that is, the maximum value of
(e(F ) − 1)/(v(F ) − 2) over all subgraphs F ⊆ H with v(F ) ≥ 3. However, for
induced-H-free graphs, these methods do not typically allow one to establish such
a threshold, and its existence is unknown in all non-trivial cases.
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We introduce a new ‘asymmetric’ version of the so-called ‘method of hypergraph
containers’, which was introduced recently by Balogh, Morris, and Samotij [1] and
independently by Saxton and Thomason [5] and use it to determine the structure
of a typical graph with n vertices, m edges, and no induced copy of C4 for all m
satisfying n4/3(logn)2 ≤ m≪ n2. The lower bound on m is best possible up to a
polylogarithmic factor, as we also show that if m≪ n4/3(logn)1/3, then a typical
such graph does not have such structure, and if m ≪ n4/3, then it is ‘random-
like’. We believe that the ideas contained in this work bring us closer towards
determining analogous thresholds for families of graphs containing no induced
copy of an arbitrary H .

Let us say that a graph G is ε-close to being a split graph if there exists a

partition V (G) = A ∪ B such that G[A] has at least (1 − ε)
(|A|

2

)

edges and G[B]
has at most εe(G) edges. The main result of this work is the following theorem,
which is motivated by a classical work of Prömel and Steger [4], who proved that
almost every graph with n vertices (with no restriction on the number of edges)
and no induced copy of C4 is actually a split graph, i.e., 0-close to being a split
graph.

Theorem 1. Fix ε > 0 and let m = m(n) ≥ n4/3(log n)2. Then almost every
graph with n vertices, m edges, and no induced copy of C4 is ε-close to being a
split graph.

The proof of Theorem 1 relies on two new results: an ‘asymmetric container
lemma’, which generalizes the main results of [1] and [5], and an analogue of
(a ‘supersaturated’ version of) the Erdős–Simonovits stability theorem [3, 7] for
sparse graphs with no induced copy of C4.
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Optimal induced universal graphs

Noga Alon

Let F be a finite family of graphs. A graph G is induced universal for F if every
member F of F is an induced subgraph of G. There is a vast literature about
induced universal graphs since their introduction by Rado [7]. Let F(k) denote
the family of k-vertex undirected graphs, and let f(k) denote the smallest possible
number of vertices of an induced universal graph for F(k). Moon [5] observed that a
simple counting argument gives f(k) ≥ 2(k−1)/2 and proved that f(k) ≤ O(k2k/2).
Alstrup, Kaplan, Thorup and Zwick [2] determined f(k) up to a constant factor,
showing that f(k) ≤ 16 ·2k/2. Bollobás and Thomason [3] proved that the random
graph G(n, 0.5) on n = k22k/2 vertices is induced universal for F(k) with high
probability, that is, with probability that tends to 1 as k tends to infinity. The
question of finding tighter bounds for f(k), suggested by the work of Moon, is
mentioned by Vizing in [8] and by Alstrup et. al (despite the fact their work

determines it up to a constant factor of 16
√

2) in [2]. Here we show that the lower
bound is tight, up to a lower order additive term.

Theorem 1.

f(k) = (1 + o(1))2(k−1)/2.

The proof combines probabilistic and combinatorial arguments with some group
theoretical facts about graphs with large automorphism groups. Similar argu-
ments supply asymptotically tight estimates for the analogous questions for di-
rected graphs, oriented graphs, tournaments, bipartite graphs or complete graphs
with colored edges, improving results in [6], [4], [2].

As a byproduct of (a variant of) the first part of the proof we show that the
minimum number of vertices n so that the random graph on n vertices is in-
duced universal for F(k) with high probability is (1 + o(1))ke 2(k−1)/2, improving
the estimate in [3] (which was harder to improve in 1981, when [3] was written,
but is simpler now, using some of the more recently developed high deviation in-
equalities.) Combining this argument with some group theoretic tools and the
Stein-Chen method (as used in in [1]) we prove a more precise statement, as fol-
lows.

Theorem 2. Let n > k > 1, let G = G(n, 0.5) be the binomial random graph, and
put

λ =

(

n

k

)

2−(k
2).

Then the probability that G is induced universal for F(k) is (1−e−λ)2+o(1), where
the o(1) tends to 0 (uniformly in k = k(n)) as n tends to infinity.
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Quasirandom Cayley graphs

Yufei Zhao

(joint work with David Conlon)

A fundamental result of Chung, Graham, and Wilson [4], building on earlier work
of Thomason [8, 9], states that for a sequence of graphs of constant edge-density,
a number of seemingly distinct notions of quasirandomness are equivalent. In par-
ticular, for n-vertex, d-regular graphs, the following two properties are equivalent
as long as d = Θ(n):

• Discrepancy condition: For all vertex subsets S and T ,

e(S, T ) =
d

n
|S||T | + o(nd);

• Eigenvalue condition: All eigenvalues of the the adjacency matrix, except
the largest, are o(d).

What about for sparse graphs, when d = o(n)?
The eigenvalue condition always implies the discrepancy condition. This is a

consequence of the famous expander mixing lemma, which says that in an (n, d, λ)-
graph (i.e., an n-vertex d-regular graph where all eigenvalues of the adjacency
matrix, except the largest, are at most λ in absolute value), one has

(1)

∣

∣

∣

∣

e(S, T ) − d

n
|S||T |

∣

∣

∣

∣

≤ λ
√

|S||T |

for all vertex subsets S and T .
However, the discrepancy condition does not necessarily imply the eigenvalue

condition when d = o(n) [7, 3]. Consider the disjoint union of a large d-regular
random graph and a copy of Kd+1. This graph satisfies the discrepancy condition
since the copy of Kd+1 does not significantly affect discrepancy. On the other
hand, the eigenvalue d appears with multiplicity two (once for each connected
component), so the graph does not satisfy the eigenvalue condition.
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There have been some partial converses. For example, Bilu and Linial [2] gave
a converse to the expander mixing lemma, showing that if (1) holds for all S and
T , then the graph is an (n, d, λ′)-graph with λ′ = O(λ log d). The extra factor of
log d cannot be removed. In a different direction, Alon et al. [1] showed that if the
discrepancy condition is satisfied, then one can remove a o(1)-fraction of vertices
from the graph so that remaining graph satisfies the eigenvalue condition.

A result of Kohayakawa, Rödl, and Schacht [6] (originally from 2003) comes as
something of a surprise: the two properties are always equivalent for Cayley graphs
of abelian groups. In our work [5], we extend their result to non-abelian groups,
and more generally, all vertex-transitive graphs. Here is a precise statement of our
theorem.

Theorem 1. If an n-vertex d-regular Cayley graph (or more generally, a vertex-
transitive graph) has the property that

(2)

∣

∣

∣

∣

e(S, T ) − d

n
|S||T |

∣

∣

∣

∣

≤ ǫdn

for all vertex subsets S and T , then it is an (n, d, λ)-graph with λ ≤ 8ǫd.

The proof uses Grothendieck’s inequality. We consider the cut norm for matri-
ces, and show that its semidefinite relaxation equals the spectral norm when the
matrix arises from a weighted Cayley graph. See our paper [5] for details.
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and algorithmic regularity for graphs with general degree distributions, SIAM J. Comput.
39 (2010), 2336–2362.

[2] Y. Bilu and N. Linial, Lifts, discrepancy and nearly optimal spectral gap, Combinatorica
26 (2006), 495–519.

[3] B. Bollobás and V. Nikiforov, Hermitian matrices and graphs: singular values and discrep-
ancy, Discrete Math. 285 (2004), 17–32.

[4] F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica 9

(1989), 345–362.
[5] D. Conlon and Y. Zhao, Quasirandom Cayley graphs, preprint, available at arXiv:1603.03025

[math.CO].
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Ways to build containers

Andrew Thomason

A collection C of subsets of the vertices of a hypergraph G is said to be a set of
containers for G if, for every independent subset I in G (that is, I is a subset of the
vertices that contains no edge), there is some C ∈ C with I ⊂ C. The existence of
useful collections of containers was demonstrated recently by Balogh, Morris and
Samotij [1] and by Saxton and Thomason [4]. Roughly speaking, C is useful if each
C ∈ C is close to independent, and |C| is not very large — certainly much smaller
than the number of independent sets. The collections described in [1] and [4] are
in some senses optimal, and there have been quite a few applications. Wojciech
Samotij in an earlier talk gave an overview of containers, together with some more
recent developments, and József Balogh will discuss further new applications. In
this talk we do not give new results but, rather, we attempt to give an idea of two
ways in which containers can be built.

The first way is based on an older theorem of Saxton and Thomason [3], supply-
ing containers for simple d-regular hypergraphs (simple means that no two edges
share two common vertices). The containers in this theorem satisfied the bound
|C| ≤ (1−c)|G| for some constant c (in fact, c = 1/4r2). It was subsequently noted
that essentially the same argument gives containers satisfying µ(C) ≤ (1 − c) in
hypergraphs of average degree d. Here, µ(C) = (1/d|G|)∑v∈C d(v); it is readily
checked that µ(C) ≤ (1 − c) implies |C| ≤ (1 − c)|G| if G is regular, but also
that e(G[C]) ≤ µ(C)e(G) whether or not G is regular. The great advantage of
this latter inequality is that it allows the container construction process to be
iterated: by applying the theorem to the hypergraph G[C] we obtain C′ ⊂ C
with e(G[C′]) ≤ (1 − c)2e(G), and a few more iterations produces the following
corollary, taken from [5].

Theorem 1. Let G be a simple r-graph of average degree d. Let 0 < δ < 1. If d
is large enough, then there is a collection of sets C of subsets of V (G) satisfying

• if I ⊂ V (G) is independent, there is some C ∈ C with I ⊂ C,
• e(G[C]) < δe(G) for every C ∈ C,
• |C| ≤ 2α|G| where α = (1/d)1/(2r−1).

The initial containers are built as follows. Given an integer 0 ≤ j < r and two
disjoint subsets X,Y ⊂ V (G), let Γj(X,Y ) be the set of vertices v for which there
is an edge containing v, j vertices of X and r − j − 1 vertices of Y . Then, given
a third set Z, let Cj(X,Y, Z) be the set (V (G) \ Γj(X,Y )) ∪ Z, unless this set
has measure more than 1 − c, in which case put Cj(X,Y, Z) = ∅. The collection
C in the theorem is the collection of all Cj(X,Y, Z) for all j and all small X , Y
and Z (meaning, say, less than α|G|). Every independent set I is in one of these
containers, for the following reason. Given I, there are no edges with r vertices
in I, but plenty of edges with no vertices in I. So there is some j such that
there are many more edges with j vertices in I than with j + 1. Pick X ⊂ I
and Y ⊂ V (G) \ I randomly, and let Z = I ∩ Γj(X,Y ). The hypotheses and the
simplicity of G guarantee µ(Γj(X,Y )) is large, and that Z is small, so we are done.
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(For the sake of correctness it should be said that this method fails completely in
the form stated, but the addition of an unexpected twist restores it to life — for
details see [5]).

This method gives us a useful collection of containers for a simple hypergraphG.
But it can nevertheless be applied to some denser hypergraphs, as follows. If G
is dense, find a simple subgraph Gsimple of G by randomly selecting a sparse set
of edges and doing a bit of tidying up. We expect to find that, for every subset
C ⊂ V (G), if e(Gsimple[C]) < δe(Gsimple) holds then e(G[C]) < 2δe(G) holds.
Thus Theorem 1 can be applied to Gsimple to obtain containers which are also
useful containers for G. In this way, for example, a very short proof can be
given that, if H is an ℓ-uniform hypergraph, then the number of H-free ℓ-uniform

hypergraphs on n vertices is 2π(H)(n
ℓ)+o(nℓ) (a result with a long pedigree described

by Samotij in his talk, but in this form due to Nagle, Rödl and Schacht [2]).
Theorem 1 offers an easy way to build containers but the number of containers

produced is more than necessary. The next theorem, similar to ones in [1] and [4],
is more or less optimal.

Theorem 2. Given r ∈ N and ǫ > 0 there exists c = c(r, ǫ) as follows.
Let G be an r-graph of average degree d. Let 0 < p ≤ 1 satisfy

(†) d(T ) ≤ cp|T |−1d holds for all T , 2 ≤ |T | ≤ r

Then there is a function C : PV → PV , such that, for every independent set
I ⊂ V

(a) there is some S ⊂ V with S ⊂ I ⊂ C(S),
(b) |S| ≤ p|V |, and
(c) e(G[C(S)]) ≤ ǫe(G).

In fact the above holds for all sets I ⊂ V such that either G[I] is ⌊cpr−1d⌋-
degenerate or e(G[I]) ≤ cpre(G).

The reason why a condition like (†) is needed was discussed by Wojciech Samotij
in his talk. We don’t prove this theorem but try to give an indication of how it
can be proved. The previously mentioned ideas of degree measure and iteration
can be used here too, so we imagine that G is regular, and our job is to specify
a small set S ⊂ I whereby it is possible to identify a set C, with I ⊂ C and
|C| ≤ (1 − c)|G| for some positive c. The methods in [1] and [4] were algorithmic
but the description here is non-algorithmic.

In the graph case, r = 2, when (†) reduces to p ≥ 1/cd, the method used by
Saphozhenko in several of his papers is to choose S ⊂ I so that Γ, the set of
neighbours of S, is as large as possible whilst S is kept small. Evidently I ∩Γ = ∅,
so we can choose C ⊂ V (G)\Γ. If G is d-regular we cannot achieve |Γ| > d|S| but
we aim for |Γ| > ζd|S|, for some small fixed constant ζ (ζ = 1/12r! is ok in general).
One way to do this is to define a function ψ(S) = −ζd|S|+ |Γ|, and to pick S ⊂ I
that maximises ψ(S). Then define C(S) = {v /∈ Γ : ψ(S ∪ {v}) ≤ ψ(S)}. Then
I ⊂ C(S) by the maximality of ψ(S). Moreover, ψ(S) ≥ 0 because ψ(∅) = 0, and
since |Γ| ≤ |V | this means |S| ≤ |V |/dζ, which gives (b) if c ≤ ζ. Finally, note that
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the graph G[C] has no vertex of degree exceeding ζd, for if v were such a vertex,
then adding v to S would increase |Γ| by more than ζd and thus ψ(S∪{v}) > ψ(S).
Hence G[C] is sparse relative to G, and since G is regular we know |C| is not much
more than |V |/2. This establishes the case r = 2.

To extend the argument to r = 3, we try to define a suitable function ψ(S).
We need ψ(∅) = 0, and that ψ(S) ≥ 0 implies |S| ≤ p|V |. Again we define
C(S) = {v /∈ Γ : ψ(S∪{v}) ≤ ψ(S)}. It should be the case that |C(S)| being close
to |V | implies that there are plenty of vertices v ∈ C with ψ(S ∪ {v}) > ψ(S).

This time we define Γ to be the (possibly empty) set of vertices v for which
there is an edge containing v and two vertices of S. We look too at the link graph
of S. Observe that, loosely speaking, a vertex of large degree v in the link graph
could be added to S to increase Γ. So we add a term to ψ to represent the link
graph. But that term must be bounded in order that ψ(S) is bounded (so we can
bound |S|). We therefore use a subgraph P2 of the link graph having a bounded
number of edges. In order that we can infer the existence of lots of vertices v of
large degree in P2 when P2 has many edges, we in fact bound, not the number of
edges in P2, but the maximum degree.

So we are led to define P2 to be a set of edges of G, each having at least one
vertex in S, such that d2(w) ≤ qd where d2(w) is the number of edges in P2

containing w and some (other) vertex of S. Here q = 1/
√
d, and since p = 1/c

√
d

typically satisfies (†), this means q = cp. Note |P2| ≤ qd|V |/2. We similarly define
P1 to be a set of edges with at least two vertices in S, such that d1(w) ≤ q2d, so
|P1| ≤ q2d|V |. Define the linear function ψ(S) = −3cd|S|/2q + |P1|/q2 + |P2|/q.
Then ψ(S) ≥ 0 implies |S| ≤ p|V |. Moreover |C(S)| cannot be close to |V |, for in
that case either lots of vertices w ∈ C have d2(w) = qd, so |P2| is big and some
v ∈ C can be added to S to increase P1 substantially, or few w have d2(w) = qd,
in which case lots of v in C lie in many edges not meeting these ws, and adding
such a v to S increases P2 substantially.

The description extends to r ≥ 4. But this vague outline made no use of the
condition (†). The condition comes in because, when adding v to S, the degrees
d∗(w) could potentially increase greatly, beyond the allotted bounds, due to the
effect of overlapping edges. The condition (†) allows these overlaps to be accounted
for and the calculations to be made correctly.
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VC-dimension

János Pach

(joint work with Jacob Fox, Andrew Suk)

A graph G is said to have Vapnik-Chervonenkis dimension d (VC-dimension;
see [4]), if the set system induced by the neighborhoods of each vertex has VC-
dimension d. In this paper, we strengthen several classical results in extremal
graph theory for graphs with bounded VC-dimension. In particular, we show
that every such n-vertex graph contains a clique or an independent set of size

e(logn)1−o(1)

. This improves upon the previous bound of ec
√
logn, which can be

obtained by applying a classic result of Erdős and Hajnal.

We also strengthen and extend the Lovász-Szegedy [3], Alon-Fischer-Newman [1]
ultra-strong regularity lemma for graphs with bounded VC-dimension, showing
that it extends algorithmically to uniform hypergraphs and the number of parts
in the partition can be taken to be (1/ε)O(d), which we show is tight up to the
absolute constant factor in the exponent. Moreover, we give an O(nk)-time algo-
rithm for finding such a partition. We establish tight bounds on Ramsey-Turán
number for graphs with bounded VC-dimension, and obtain several Ramsey-type
results for hypergraphs with VC-dimension d.
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[2] P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Appl. Math. 25 (1989), 37–52.
[3] L. Lovász and B. Szegedy, Regularity partitions and the topology of graphons, in: An Irreg-
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Regularity lemmas and applications

Jacob Fox

(joint work with László Miklós Lovász, Yufei Zhao)

Szemerédi’s regularity lemma [14] is one of the most powerful tools in graph theory.
To properly state the regularity lemma requires some terminology. Let G be a
graph, and X and Y be (not necessarily disjoint) vertex subsets. Let e(X,Y )
denote the number of pairs vertices (x, y) ∈ X × Y that are edges of G. The edge
density d(X,Y ) = e(X,Y )/(|X ||Y |) between X and Y is the fraction of pairs in
X × Y that are edges. The pair (X,Y ) is ǫ-regular if for all X ′ ⊆ X and Y ′ ⊆ Y
with |X ′| ≥ ǫ|X | and |Y ′| ≥ ǫ|Y |, we have |d(X ′, Y ′)−d(X,Y )| < ǫ. Qualitatively,
a pair of parts is ǫ-regular with small ǫ if the edge densities between pairs of large
subsets are all roughly the same. A vertex partition V = V1 ∪ . . .∪ Vk is equitable
if the parts have size as equal as possible. An equitable vertex partition with k
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parts is ǫ-regular if all but ǫk2 pairs of parts (Vi, Vj) are ǫ-regular. The regularity
lemma states that for every ǫ > 0 there is a (least) integer K(ǫ) such that every
graph has an ǫ-regular equitable vertex partition into at most K(ǫ) parts.

Arguably the main drawback of Szemerédi’s regularity lemma is that the proof
gives an enormous upper bound K(ǫ) on the number of parts, namely an exponen-
tial tower of twos of height O(ǫ−5). Eventually, Gowers [9] proved a lower bound
on K(ǫ) which is an exponential tower of twos of height Ω(ǫ−1/16). Conlon and Fox
[3] determined the dependence on the number of irregular pairs, and Moshkovitz
and Shapira [13] gave a simpler proof of Gowers’ result. The first two authors [8]
determine the order of the tower height in a version of the regularity lemma.

Due to the many applications of the regularity lemma, there has been consider-
able research on algorithmic versions of the regularity lemma. We would like to be
able to find an ǫ-regular partition of a graph on n vertices in time polynomial in n.
Szemerédi’s proof of the regularity lemma was not algorithmic. The reason is that
it needs to be able to check if a pair of parts is ǫ-regular, and if not, to use subsets
of the parts that realize this. This is problematic because it is shown in [1] that
determining whether a given pair of parts is ǫ-regular is co-NP-complete. They use
this to show that checking whether a given partition is ǫ-regular is co-NP-complete.

However, Alon et al. [1] show how to find, if a given pair of vertex subsets
of size n are not ǫ-regular, a pair of subsets which realize that the pair is not
ǫ4/16-regular. The running time is Oǫ(n

ω+o(1)), where ω < 2.373 is the matrix
multiplication exponent (multiplying two n×n matrices in nω+o(1) time) [12]. Here
we use the subscript ǫ to mean that the hidden constants depend on ǫ. Finding
a pair of subsets of vertices that detect irregularity is the key bottleneck for the
algorithmic proof of the regularity lemma. It was shown [1] that one can find
an ǫ-regular partition with the number of parts at most an exponential tower of
height O(ǫ−20) in an n-vertex graph in time Oǫ(n

ω+o(1)).
Kohayakawa, Rödl, and Thoma [11] gave a faster algorithmic regularity lemma

with optimal running time of Oǫ(n
2). Alon and Naor [2] develop an algorithm

which approximates the cut norm of a graph within a factor 0.56 using Grothen-
dieck’s inequality and apply this to find a polynomial time algorithm which finds,
for a given pair of vertex subsets of order n which is not ǫ-regular, a pair of
subsets which realize that the pair is not ǫ3/2-regular. Their approach gives an
improvement on the tower height in the algorithmic regularity lemma to O(ǫ−7).

However, due to the tower-type dependence for the number of parts on the
regularity parameter, these are not practical algorithms. While most graphs have
a small regularity partition, the previous algorithmic proofs would not necessarily
find it and would only guarantee to find a regular partition with a tower-type
number of parts. Addressing this issue, Fischer, Matsliah, and Shapira [7] give
a probabilistic algorithm which runs in time Oǫ(n) which with high probability
finds, in a graph which has an ǫ/2-regular partition with k parts, an ǫ-regular
partition with at most k parts. Tao [15] gives a probabilistic algorithm which
with high probability in constant time (depending on ǫ) produces an ǫ-regular
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partition. The algorithm takes a random sample of vertices (the number of which
is also random) and outputs the common refinement of the neighborhoods.

Still, it is desirable to have a fast deterministic algorithm for finding a regularity
partition, which we obtain here. An example theorem of this sort is the following.

Theorem. There exists an Oǫ,α,k(n2) time algorithm, which, given 0 < ǫ, α < 1
and k, and a graph G on n vertices that admits an equitable ǫ-regular partition
with k parts, outputs an equitable (1 + α)ǫ-regular partition of G into k parts.

Thus, if a graph has a regular partition with few parts, then we can quickly find
a regular partition (with a slight regularity loss) with the same number of parts.

Counting the number of copies of a graph H in another graph G is a famous
algorithmic problem. A special case of this problem is to determine the clique
number of a graph. This is a well-known NP-complete problem. In fact, H̊astad
[10] and Zuckerman [16] proved that it is NP-hard to approximate the clique
number of a n-vertex graph within a factor n1−ǫ for any ǫ > 0.

There is a fast probabilistic algorithm for approximating up to ǫ the fraction
of k-tuples which make a copy of H . The algorithm takes s = 10ǫ−2 samples of
k-tuples of vertices uniformly at random from G and outputs the fraction of them
that make a copy of H . The number of copies of H is a binomial random variable
with standard deviation at most s1/2/2, and hence the fraction of k-tuples which
make a copy of H in this random sample is likely within ǫ of the fraction of k-tuples
which makes copies of H . However, this algorithm has no guarantee of success. It
is therefore desirable to have a deterministic algorithm for counting copies which
gives an approximation for the subgraph count with complete certainty.

The algorithmic regularity lemma is useful for deterministically approximating
the number of copies of any fixed graph in a graph. Duke, Lefmann, and Rödl [6]
gave a faster approximation algorithm for the number of copies of H in a graph G.
They first develop a weak regularity lemma which has an exponential dependence
instead of a tower-type dependence. This gives an algorithm which runs in time

2(k/ǫ)
O(1)

nω+o(1) which computes the number of copies of a graph H on k vertices
in a graph on n vertices up to an additive error of ǫnk.

We give a faster approximation algorithm for the subgraph counting problem,
improving the dependence on the error parameter from exponential to polynomial.

Theorem. Let H be a graph with v vertices and e edges, and let ǫ > 0 be given.
There is a deterministic algorithm that runs in time OH(ǫ−O(1)nω+o(1) + ǫ−O(e)n)
which finds the number of copies of H in G up to an error of at most ǫnv.

For example, we can count the number of cliques of order 1000 in an n-vertex

graph up to an additive error n1000−10−6

in time O(n2.4). The proofs of these new
results utilize recent algorithmic version of the Frieze–Kannan weak regularity
lemma due to Dellamonica, Kalyanasundaram, Martin, Rödl, and Shapira [4], [5].
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Ramsey goodness of paths

Benny Sudakov

(joint work with Alexey Pokrovskiy)

Given a pair of graphs G and H , the Ramsey number R(G,H) is the smallest N
such that every red-blue coloring of the edges of the complete graph KN contains
a red copy of G or a blue copy of H . It is a corollary of the celebrated theorem of
Ramsey that these numbers are always finite. Let χ(H) be the chromatic number
of H , i.e. the smallest number of colors needed to color the vertices of H so that
no pair of adjacent vertices have the same colour, and σ(H) be the the size of the
smallest color class in a χ(H)-colouring of H . It was observed by Burr [2] that for
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connected G with |G| ≥ σ(H) Ramsey numbers always satisfy the following easy
lower bound

(1) R(G,H) ≥ (|G| − 1)(χ(H) − 1) + σ(H).

To prove (1), consider a 2-edge-coloring of the complete graph on N = (|G| −
1)(χ(H)− 1) + σ(H)− 1 vertices consisting of χ(H)− 1 disjoint red cliques of size
|G| − 1 as well as one disjoint red clique of size σ(H) − 1. This coloring has no
red G because all red connected components have size ≤ |G| − 1, and there is no
blue H since the partition of this H induced by red cliques would give a coloring
of H by χ(H) colors with one color class smaller than σ(H), contradicting the
definition of σ(H).

For some graphs the bound in (1) is quite far from the truth. For example
Erdős [6] showed that R(Kn,Kn) ≥ Ω(2n/2) which is much larger than the qua-
dratic bound we get from (1). However there are many known pairs of graphs
for which R(G,H) = (|G| − 1)(χ(H) − 1) + σ(H). In this case we say that G is
H-good. The notion of Ramsey goodness was introduced by Burr and Erdős [3] in
1983 and was extensively studied since then, see, e.g., [1, 4, 5, 10, 8, 9] and their
references.

In this short note we study the question of when the n-vertex path Pn is H-
good, for some fixed graph H . This problem goes back to the work of Erdős,
Faudree, Rousseau, and Schelp [7], who in 1985 proved that there is a function f
such that Pn is H-good for all n ≥ f(|H |). The function f(|H |) is not explicit
in [7], but f(H) = O(|H |4) can be proved using their method. Häggkvist [11] (for
k = 2) and later Pokrovskiy [13] obtained a general upper bound on the Ramsey
number of path versus complete k-partite graphs, showing that R(Pn,Km,...,m) ≤
(k − 1)(n − 1) + km − k + 1. Here and later, Km1,...,mk

denotes a complete k-
partite graph with parts of order m1, . . . ,mk together with all the edges connecting
vertices in different parts. Although this bound is not strong enough to prove
goodness, it holds for all values of the parameters. More recently, Pei and Li [12]
showed that if n ≥ 8|H | + 3σ(H)2 + cχ8(H), then Pn is H-good. For general
H (e.g., when H = Km,m) this result requires n to be quadratic in |H |. Allen,
Brightwell, and Skokan [1] conjectured that Pn is H-good already when n is linear
in |H |.

Conjecture 1 ([1]). Let H be a fixed graph with chromatic number k and let
n ≥ k|H |. Then R(Pn, H) = (n− 1)(k − 1) + σ(H).

Let R(C≥n, H) be the smallest N such that any 2-edge-coloring of KN con-
tains either a red cycle of length at least n or a blue H . Notice that we always
have R(Pn, H) ≤ R(C≥n, H). Motivated by the above conjecture, we prove the
following theorem.

Theorem 2. Given integers m1 ≤ m2 ≤ · · · ≤ mk and n ≥ 3mk + 5mk−1, we
have

R(C≥n,Km1,...,mk
) = (k − 1)(n− 1) +m1.
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Notice that the vertices of a k-chromatic graph H can be partitioned into k in-
dependent sets of sizes m1, . . . ,mk with σ(H) = m1 ≤ m2 ≤ · · · ≤ mk. This is
equivalent to H being a subgraph of Km1,...,mk

. Since 4|H | ≥ 4mk + 4mk−1 ≥
3mk + 5mk−1, Theorem 2 implies the following.

Corollary 3. Let H be a fixed graph with chromatic number k and let n ≥ 4|H |.
Then R(Pn, H) = (n− 1)(k − 1) + σ(H).

For k ≥ 4, this corollary proves Conjecture 1 in a very strong form, showing
that the condition n ≥ χ(H)|H | is unnecessary, and n ≥ 4|H | suffices. For k ≤ 3,
our result is slightly weaker than the conjecture, but is a large improvement on
the best previously known [12] quadratic dependence of n on |H |. Moreover, for
certain graphs H , Theorem 2 shows that Pn is H-good even when n is smaller than
4|H |. For example if H is balanced (i.e. if |H | = σ(H)χ(H)), then this theorem
implies that Pn is H-good as long as n ≥ 8|H |/χ(H).
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Finding a Large Submatrix of a Gaussian Random Matrix

David Gamarnik

(joint work with Quan Li)

We consider the algorithmic problem of finding a submatrix of a given random
matrix such that the average value of the submatrix is appropriately large. Specif-
ically, consider an n × n matrix Cn with i.i.d. standard Gaussian entries. Given
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k ≤ n, the goal is to find algorithmically a k×k submatrix A of Cn (not necessarily
principal) with average entry as large as possible. The problem has motivations
in several areas, including biomedicine, genomics and social networks [2, 3, 4].

The problem of finding asymptotically the largest average entry of k × k sub-
matrices of Cn was recently studied by Bhamidi et.al. [1] (see also [5] for a related
study) and questions arising in this paper constitute the motivation for our work.
It was shown in [1] using a non-constructive method of moments that the largest
achievable average entry of a k × k submatrix of Cn is asymptotically with high
probability (w.h.p.) (1 + o(1))2

√

logn/k when k = O(log n/ log logn). Here o(1)
denotes a function converging to 0 as n→ ∞ regardless of k. Furthermore, the au-
thors consider the asymptotic value and the number of so-called locally maximum
matrices. A k×k matrix A is locally maximal if every k×k matrix of Cn with the
same set of rows as A has a smaller average value than A and every k× k matrix
of Cn with the same set of columns as A has a smaller average value than A. Such
local maxima are natural objects arising as terminal matrices produced by a simple
iterative procedure called Large Average Submatrix (LAS), designed for finding
a matrix with a large average entry. LAS proceeds by starting with an arbitrary
k × k submatrix A0 and finding a matrix A1 sharing the same set of rows with
A0 which has the largest average value. The procedure is then repeated for A1 by
searching through columns of A1 and identifying the best matrix A2. The itera-
tions proceed while possible and at the end some locally maximum matrix ALAS is
produced as the output. The authors show that when k is constant, the majority
of locally maximum matrices of Cn have an asymptotic value (1+o(1))

√

2 logn/k

w.h.p., thus factor
√

2 smaller than the global optimum. Motivated by this find-
ing, the authors suggest that the outcome of the LAS algorithm should be also
factor

√
2 smaller than the global optimum, however one cannot deduce this from

the result of [1] since it is not ruled out that LAS is clever enough to find a “rare”

local maximum with a significantly larger average value than
√

2 logn/k.
In this paper [6] we show that the matrix produced by the LAS algorithm is

indeed (1 + o(1))
√

2 logn/k w.h.p. when k is constant and n grows. Then by
drawing an analogy with the problem of finding cliques in random graphs, we
propose a simple greedy algorithm which produces a k× k matrix with asymptot-
ically the same average value (1 + o(1))

√

2 logn/k w.h.p., for k = o(logn). Since
the greedy algorithm is the best known algorithm for finding cliques in random
graphs, it is tempting to believe that beating the factor

√
2 performance gap suf-

fered by both algorithms might be very challenging. Surprisingly, we show the
existence of a very simple algorithm which produces a k × k matrix with average
value (1 + ok(1))(4/3)

√

2 logn/k for k = O(log n). Here ok(1) denotes a function
decaying to zero as k increases.

To get an insight into the algorithmic hardness of this problem, and motivated
by the so-called Overlap Gap Property (OGP) observed in several spin glass mod-
els, we study the OGP in the context of our problem in the following way. We
fix α ∈ (1,

√
2) and let L(α) denote the set of matrices with average value asymp-

totically α
√

2 logn/k. Thus α conveniently parametrizes the range between the
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achievable value on the one hand, namely α = 1 for LAS and greedy algorithms,
α = 4/3 for the new algorithm we propose, and α =

√
2 for the global optimum on

the other hand. For every pair of matrices A1, A2 ∈ L(α) with row sets I1, I2 and
column sets J1, J2 respectively, let x(A1,A2) = |I1∩I2|/k, y(A1,A2) = |J1∩J2|/k.
Namely x and y are the normalized counts of the common rows and common
columns for the two matrices. For every (x, y) ∈ [0, 1]2 we consider the ex-
pected number of pairs A1, A2 such that x(A1,A2) ≈ x, y(A1,A2) ≈ y in
some appropriate sense. We compute this expectation asymptotically. We define
R(x, y) = 0 if such an expectation converges to zero as n → ∞ and = 1 other-
wise. Thus the set R(α) = {(x, y) : R(x, y) = 1} describes the set of achievable

in expectation overlaps of pairs of matrices with average value α
√

2 logn/k. At

α∗ = 5
√

2/(3
√

3) ≈ 1.3608.. we observe an interesting phase transition – the set
R(α) is connected for α < α∗, and is disconnected for α > α∗. For α > α∗, we say
that the model exhibits the OGP. That is, the overlaps of two matrices belong to
one of the two disconnected regions. We conjecture that OGP observed for α > α∗

also marks the onset of the algorithmic hardness - no polynomial time algorithm
exists for finding matrices with average value at least (1+o(1))α

√

2 logn/k, when
α > α∗ and k is a growing function of n.
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A sparse regular approximation lemma

Asaf Shapira

(joint work with Guy Moshkovitz)

We introduce a new variant of Szemerédi’s regularity lemma which we call the
sparse regular approximation lemma (SRAL). The input to this lemma is a graph
G of edge density p and parameters ǫ ≪ δ. The goal is to construct an ǫ-regular
partition of G while having the freedom to add/remove up to δ|E(G)| edges. As
we show, this weaker variant of the regularity lemma already suffices for proving
the graph removal lemma and the hypergraph regularity lemma, which are two of
the main applications of the (standard) regularity lemma. This of course raises
the following question: can one obtain quantitative bounds for SRAL that are
significantly better than those associated with the regularity lemma?
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Formally, for every ǫ, δ, p > 0 let S = S(ǫ, δ, p) be the smallest integer so
that if G is a graph of density at least p, and P0 is an equipartition of V (G)
of order at most 1/ǫ, then one can add/remove at most δ|E(G)| edges and thus
turn G into a graph that has an ǫ-regular equipartition that refines P0 and has
order at most S. Observe that if we allow δ to depend on ǫ, say if δ = ǫ4,
then S(ǫ, ǫ4, p) ≥ M(2ǫ) ≥ twr(poly(1/ǫ)). Indeed, this follows from the simple
observation that an ǫ-regular bipartite graph remains 2ǫ-regular if only ǫ3-fraction
of the possible edges are added/removed. Hence, the main interest in SRAL is
when δ < 1 is constant. As we show, even in this case SRAL has some unexpected
applications. In fact, SRAL will be interesting even when ǫ = poly(p), hence our
main interest will be in bounding the function S(poly(p), δ0, p) for constant δ0.

One of our main motivations for introducing SRAL is that one can in fact prove
the graph removal lemma using SRAL. The celebrated graph removal lemma of
Ruzsa and Szemerédi [11] states that for every fixed graph H there is a function
RemH(ǫ) so that if one must remove from an n-vertex graph G at least ǫn2 edges
in order to make it H-free then G contains at least nh/RemH(ǫ) copies of H ,
where h = |V (H)|. The standard proof of the removal lemma, via the regularity
lemma, establishes the bound RemH(ǫ) ≤M(poly(ǫ)) = twr(poly(1/ǫ)). The fact
that SRAL implies the removal lemma is stated explicitly as follows.

Theorem 1. For any graph H on h ≥ 3 vertices we have

RemH(ǫ) ≤
[

S
(

(ǫ/h)h
2

, 1/4h4, ǫ
)

· (h/ǫ)2h
]h
.

The proof of the Theorem 1 is much more delicate than the usual proof of the
removal lemma via the standard regularity lemma, mainly due to having to work
with a modified version of the input graph. In particular, we need to prove a count-
ing lemma which is suitable for SRAL. This leads to the following question; can
one obtain a significantly better bound for S(poly(p), δ, p) than twr(poly(1/p))?

Before describing our solution of the above problem, we first describe a related
variant of the regularity lemma. As the name SRAL suggests, it is a variant of the
so called regular approximation lemma (RAL for short). The RAL was introduced
as part of the study of graph limits and of the hypergraph regularity lemma by
Lovász and Szegedy [7] and Rödl and Schacht [9], respectively.

Let us define a special case of RAL. For ǫ, δ > 0 let T = T (ǫ, δ) be defined
similarly to S(ǫ, δ, p), only that the number of allowed edge modification is δn2

rather than δ|E(G)|, and p, the density of G, is unconstrained. (The full-fledged
RAL allows one to replace ǫ with an arbitrary function f , so that the equipartition
P is such that all pairs are f(|P|)-regular.) Notice we have the trivial relation

(1) S(ǫ, δ, p) ≤ T (ǫ, δp) .

The upper bounds obtained in [7, 9], when specialized to the definition of T (ǫ, δ),
are no better than the trivial T (ǫ, δ) ≤M(ǫ) = twr(poly(1/ǫ)) bound that follows
from the regularity lemma. A considerably better bound was given by Conlon
and Fox [1] who showed that T (ǫ, δ) ≤ twr1/ǫ(poly(1/δ)), where twry(x) denotes a
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tower of x exponents with y at the top. Note that for a fixed δ, this is a fixed num-
ber of exponents, which is significantly better than the twr(poly(1/ǫ)) bound given
by the regularity lemma. However, even this bound implies, via (1), that when
δ is a fixed constant and ǫ = poly(p) we have S(ǫ, δ, p) ≤ twr1/ǫ(poly(1/δp)) =
twr(poly(1/ǫ)), which does not improve over the regularity lemma.

Our first bound shows one can improve the bound of the regularity lemma, even
if the number of modifications allowed is relative to the graph’s density.

Theorem 2. There is c > 0 such that S(ǫ, δ, p) ≤ twr1/ǫ(c log(1/p)/δ2). In
particular, for every fixed C, δ0 > 0 we have

S(pC , δ0, p) ≤ twr(O(log(1/p))) .

Since we trivially have T (ǫ, δ) ≤ S(ǫ, δ, 1/2), Theorem 2 immediately gives as
a special case the bound T (ǫ, δ) ≤ twr1/ǫ(poly(1/δ)) for RAL, which was first
proved in [1]. We note that, just like the full-fledged RAL, our proof of Theorem 2
gives a much more general result where the partition is such that all the pairs are
ǫ-regular and where ǫ is a function of the order of the partition.

The proof of Theorem 2 is motivated by the one taken by Conlon and Fox [1],
using an iterated version of the weak regularity lemma of Frieze and Kannan [4].
Our proof however differs in two important aspects. First, we use (and prove)
a new variant of the weak regularity lemma which we need for our purposes.
Second, we use the entropy potential function (first used by Fox [2]) together with
Pinsker’s inequality from information theory, in order to control the ℓ1-distance,
relative to the graph’s density, between partitions with similar entropy potentials.
An immediate application of Theorems 1 and 2 gives the following:

Corollary 3. For every h-vertex graph H we have RemH(ǫ) ≤ twr(O(log(1/ǫ))).

As is of course well known, the above bound for the removal lemma was first
obtained by Fox [2], who was the first to improve upon the twr(poly(1/ǫ)) bound
that follows from applying the regularity lemma. We think it is important to see
that this result can be derived from an appropriate regularity lemma and not just
from an ad-hoc argument.

The possibility of obtaining even better bounds for the removal lemma (via
Theorem 1) naturally raises the question if one can obtain even better bounds for
SRAL, say, twr1/ǫ(poly(1/δ)) as the one obtained by Conlon and Fox [1] for RAL.

As our second result shows, such an improvement is not possible, even when ǫ = p5

and δ is a fixed constant.

Theorem 4. There are fixed constants δ0, c > 0 such that

(2) S(p5, δ0, p) ≥ twr(c log(1/p)) .

Furthermore, one can decompose the complete bipartite graph into 1/p graphs of
density p so that each of them witnesses (2).

The proof of (2) is by far the most complicated part of this paper. While the
construction has a (relatively) simple description, proving its correctness requires
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a very careful analysis, employing some ideas we used in [8], together with those
of Gowers [5]. The main difficulty lies in handling an absolute constant δ0 (we
obtain δ0 = 10−11 but make no effort to optimize it), i.e., even when the graph is
very sparse and one is allowed to change a constant fraction of its edges!

Finally, we believe that an important aspect of Theorem 4 is in being a major
step towards proving lower bounds for the hypergraph regularity lemma [6, 10, 12].
We have very strong evidence that the construction used to prove the “furthermore
part” of Theorem 4 can be used as a key building block for proving a Wowzer-type
lower bound for the 3-graph regularity lemma of Frankl and Rödl [3]. We intend
to return to this subject in the near future.
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[3] P. Frankl and V. Rödl, Extremal problems on set systems, Random Struct. Algor. 20 (2002),

no. 2, 131–164.
[4] A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica

19 (1999), no. 2, 175–220.
[5] T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, GAFA 7 (1997),
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Problem Session

Nathan Linial (chair)

Zeev Dvir

Coloring the complete bipartite graph with no zero cycles

The following problem was communicated to me by Sergey Yekhanin. Let Kn,n

denote the complete bipartite graph on 2n vertices. Let F2 denote the field of two
elements. Let t(n) be the minimum integer t ≥ 1 so that we can color the edges of
Kn,n with elements of Ft

2 so that the sum over each cycle is non-zero (in F
t
2). The



Combinatorics and Probability 1217

problem is to determine t(n) asymptotically as n tends to infinity. It is known
that

Ω(log2(n)) ≤ t(n) ≤ O(n log(n)),

where the upper bound can be obtained from a random coloring (but also ex-
plicitly) and the lower bound requires a clever proof by induction. See [1] for the
proofs and the motivation for the problem which comes from error correcting codes
with local recovery properties.
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Bhargav Narayanan

Laws for the symmetric group

A word w from the free group over two letters defines a map fw : Sn × Sn → Sn

by composition: for example, if w = aba−1, then fw(π, σ) = π ◦σ ◦π−1. A word w
is a law for Sn if fw maps every pair of permutations to the identity permutation.
How long is the shortest non-trivial law for Sn?

There has been a lot of work on constructing short laws; the record belongs
to Kozma and Thom who recently constructed laws of length exp((log n)O(1)).
However, we do not seem to know much about lower bounds. A lower bound of
n− 1 is an easy exercise. This almost trivial bound is pretty close to the state of
the art; the best known lower bound is 2n− 2 and this is due to Buskin.

Ehud Friedgut

Partitioning the symmetric group into cosets

A t-coset of Sn is a coset of a subgroup which is the stabilizer of t points. Show
that for every fixed t and sufficiently large n, any partition of Sn into t-cosets is a
refinement of a partition into (t− 1)-cosets.

This turns out to be false; a counterexample was found by Gábor Tardos.

Johannes Lengler

Diameter of Geometric Power Law Random Graphs

Consider the following random graph model with constant parameters 2 < β < 3,
d ∈ N, and α > 1. The graph has n vertices. Every vertex v draws independently

• a weight wv from a power-law distribution with parameter β and minimum
1, i.e., P[wv ≥ w] = w1−β for all w ≥ 1.

• a position xv u.a.r. from the d-dimensional torus [0, 1]d.
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Then for each pair (u, v) of vertices we flip a coin, and we connect them with
probability

puv = min

{

1,

(

wuwv

n||xu − xv||d
)α}

.

Details to the model can be found in [1, 2]. Here we just mention that the
marginal edge probability is

Pxu,xv [(u, v) ∈ E] = Θ
(

min
{

1,
wuwv

n

})

,

as in Chung-Lu random graphs. Hence, deg(v) converges in distribution to Poi(µ)
for some µ = Θ(wv). Moreover, almost surely there is a giant component of linear
size, all other components have size (logn)O(1), and the average distance in the

giant is (2 + o(1)) log logn
| log(β−2)| .

Conjecture. Almost surely, every component of the graph has diameter O(log n).

It should be mentioned that the giant component is easily seen to have diameter
Ω(logn) almost surely, and that an upper bound of (logn)O(1) for the diameter is
known. Moreover, the size of the second largest component is (logn)1+Ω(1), so the
conjecture is nontrivial even for smaller components.
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Noga Alon

When are random permutations k-universal?

A sequence (x1, x2, . . . , xk) of distinct reals defines a permutation σ ∈ Sk in a natu-
ral way: σ(i) < σ(j) iff xi < xj . For n > k, a sequence (x1, x2, . . . , xn) of n distinct
reals contains a permutation σ ∈ Sk if there is a subsequence (xi1 , xi2 , . . . , xik)
defining σ. It is k-universal if it contains every σ ∈ Sk. Let f(k) be the minimum
n = n(k) so that a random sequence of n reals in [0, 1] chosen uniformly and
independently is k universal with high probability.

Quite some time ago (see [1]) I conjectured that f(k) = (14 + o(1))k2, and

observed that f(k) ≥ (14+o(1))k2 by the known results about the longest increasing
subsequence of a random permutation. It is worth noting that this contradicts
another (open) conjecture asserting that the minimum possible length of a k-
universal sequence is (1/2 + o(1))k2.

The following weaker version of the conjecture is also open:

Conjecture. f(k) ≤ 1000k2.

It is easy to show that f(k) ≤ O(k2 log k).
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Oliver Riordan

What can one say about three up-sets?

If A and B are up-sets (increasing events) in a (finite, say) product probability
space, then Harris’s Lemma says that P(A ∩ B) ≥ P(A)P(B). In this generality,
there is of course nothing further to say: given real numbers p00, p01, p10, p11 ≥ 0
summing to 1, there exist increasing events in some product probability space with
P(Ac ∩Bc) = p00, P(Ac ∩B) = p01, etc, if and only if p11 ≥ (p10 + p11)(p01 + p11).

What about three up-sets A, B and C? Applying Harris’s Lemma to A∪B and
C, etc, gives certain inequalities, but in terms of the 8 probabilities p000, p001, etc,
these conditions turn out not to be sufficient for realisability by three up-sets. (For
example, Jeff Kahn, Béla Bollobás and I, and Milanka Jankovic have found non-
realisable examples.) Siddhartha Sahi [1] has conjectured (among other things)
that the additional inequality 2P(A ∩B ∩ C) − P(A ∩B)P(C) − P(A ∩ C)P(B) −
P(B ∩C)P(A) + P(A)P(B)P(C) ≥ 0 holds, but not that this is sufficient.

It seems conceivable that if the realisable subset of [0, 1]8 has a manageable de-
scription, this might be easier to prove by induction than any particular inequality
or incomplete set of inequalities.
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Van Vu

Tail bounds for the number of Hamiltonian cycles

The following problem came up in our recent studies with A. Ferber and D. Mon-
telegre (both at Yale).

Problem. Let G(n,m) denote the random graph on n vertices and m edges, where
m = Θ(n2). Let H be the number of Hamiltonian cycles in the graph. Let µ be its
expectation. The problem is to estimate the probability that H ≤ mu

2 .

A variance computation shows that one can have a bound of order 1/n. The
truth is probably much smaller. Also notice that if we replace G(n,m) by G(n, p),
the answer is Θ(1).

Nati Linial

Girth vs. Diameter

We consider here only graphs in which all vertex degrees are at least 3.
Consider the distance between two diametrically opposite vertices in a shortest

cycle in a graph G to derive the well known fact that diameter(G) ≥ girth(G)−1
2 .
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Question. What is x = lim sup girth(G)
diameter(G) (as diameter(G) → ∞)?

Clearly 2 ≥ x. It is also known (e.g., [1]) and can be shown in numerous ways
that x ≥ 1, but this is all I know. Most concretely, I wonder whether x is strictly
bigger than 1.
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Random graphs have simple spectrum

Van Vu

In the 1980s, Babai [1] posed the following conjecture

Conjecture 1. G(n, 1/2) has simple spectrum, with probability 1 − o(1).

A (hermitian) matrix has simple spectrum if its eigenvalues are different. A
graph has simple spectrum if its adjacency matrix does. G(n, 1/2) is, as usual, the
Erdős-Rényi graph with density 1/2.

In a recent paper [3], Tao and Vu proved Babai’s conjectrure. Their proof holds
for a large class of random matrices with independent (but not necessarily iid
entries). As a matter of fact, the only condition required is that the entries are
not concentrated on one point (in other words, they need to be truly random).

In a subsequent paper [4], Nguyen and the above two authors studied a harder
problem of bounding the gaps between consecutive eigenvalues. Their results are
near optimal and have applications in many areas, including the studies of nodal
domains, numerical analysis, mathematical physics and control theory.

A key tool in the proof is the so-called Inverse Littlewood-Offord theorems,
developed in the last 10 years or so. These theorems form a new and essential part
of the theory of Anti-concentration; see [2] for a survey.
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Rigorous Analysis of a Randomised Number Field Sieve

Jonathan Lee

(joint work with Ramarathnam Venkatesan)

For real numbers a, b, x, we write

Lx (a, b) = exp
(

b (log x)
a

(log log x)
1−a
)

.

Integer factorisation is of fundamental importance both in algorithmic number
theory and in cryptography. In the latter setting, it is especially important to
have effective bounds on the run time of existing algorithms, as many existing
systems depend on being able to produce integers whose factorisations will remain
unknown for decades, even allowing for the rapid increases in the cost-effectiveness
of computational hardware. For example, an understanding of the factoring of
numbers n with log2 n ≈ 4096 is important in practice, while the public record
for a factorisation of a general number stands at log2 n ≈ 768. A uniform and
effective bound will be useful in understanding the run time as log2 n increases.

The Number Field Sieve (NFS) has been the state of the art algorithm for
factorisation since its introduction nearly three decades ago [1]. Unfortunately,
its analysis has been thus far entirely heuristic [6], with the claimed run time on

an input n of Ln

(

1
3 ,

3

√

64
9 + o(1)

)

. This became of practical importance in the

mid 1990s when it bettered the (also heuristic) Ln

(

1
2 , 1 + o(1)

)

run time of the
previous champion Quadratic Number Field Sieve.

Even assuming standard conjectures (e.g.; GRH), there is no analysis that any
substantial part of the NFS will halt. In particular, the NFS and other algorithms
critically depend on the existence of sufficient numbers of smooth elements among
rational or algebraic integers on certain linear forms. This can not be be guar-
anteed, nor can one assure the reduction from smooth relations to a congruence
of squares and so on. Our explicit randomisation allows us to get around these
problems by analysing the average case as opposed to the worst case, influenced by
the recent works on distribution of smooths on arithmetic progressions [7, 2, 3, 5]
and the philosophy that sums of arithmetic functions are essentially determined
by the part over smooths [4, 8]. In short, we make essential use and strengthening
of these tools as well as probabilistic combinatorics, and it may explain why no
analysis was available earlier.

For each n, we bound the expected time taken to form a congruence of squares
modulo n by Ln(1/3, 2.77) unconditionally. Assuming the GRH, we prove an

upper bound of Ln

(

1/3, 3

√

64
9

)

, matching the best known heuristic estimate. If n

is randomised, we unconditionally bound the harmonic mean of the run time by

Ln

(

1/3, 3

√

64
9

)

.
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Bootstrap percolation on G(n, p) revisited

Mihyun Kang

(joint work with Tamás Makai)

Bootstrap percolation on a graph with infection threshold r ∈ N is a determinis-
tic infection process, which starts from a set of initially infected vertices and in
each step every uninfected vertex becomes infected if it has at least r infected
neighbours, otherwise it remains uninfected. Once a vertex has become infected,
it remains infected forever.

Bootstrap percolation was introduced by Chalupa, Leath, and Reich [5], and
since then it has been used to describe several complex phenomena from neuronal
activity [1, 7] to the dynamics of the Ising model at zero temperature [9]. Several
qualitative characteristics of bootstrap percolation have been studied on a variety
of deterministic and random graphs, such as grids [3], hypercubes [2], random
regular graphs [4, 6], random graphs with given degree sequence [10], and the
binomial random graph G(n, p) [11, 7, 8].

Consider bootstrap percolation on G(n, p). For r ≥ 2 and p satisfying both
p = ω(n−1) and p = o(n−1/r), Janson,  Luczak, Turova, and Vallier [11] showed,
among other results, that with probability tending to one as n→ ∞ either only a
few additional vertices are infected or almost every vertex becomes infected. We
strengthen this result by showing that this happens with exponentially high prob-
ability. To achieve the result we introduce a martingale to show that the number
of infected vertices is concentrated around its expectation with exponentially high
probability. The martingale is similar to the one used in [11], however the max-
imal one step difference in our martingale is significantly lower and thus allows
for tighter concentration. In the subcritical case, the expected number of infected
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vertices is ‘small’ and therefore the martingale argument alone implies the result.
In the supercritical case, the martingale argument is not sufficient, however it
still ensures that the number of infected vertices is ‘large’ with exponentially high
probability. We show then that the subgraph spanned by the vertices with r − 1
infected neighbours grows quite large to contain a giant component. The infection
of just one vertex in this giant component leads to every vertex in the component
becoming infected and we show that this in fact happens with exponentially high
probability.
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Minimizing the number of pentagonal edges

Zoltán Füredi

(joint work with Zeinab Maleki)

Erdős, Faudree and Rousseau [3] proved that an n-vertex graph with ⌊n2/4⌋ + 1
edges contains:

(1) At least 2⌊n/2⌋ + 1 edges in triangles.
(2) At least 11n2/144 edges on C5 cycles (n > n0).

In [4] we have considered a more general problem, where the number of edges
may be larger than ⌊n2/4⌋ + 1. Given a graph G, denote by Tr(G) the number
of edges of G contained in triangles, and let Tr(n, e) := min{Tr(G) : |V (G)| =
n, e(G) = e}. With this notation (1) can be reformulated as

(1) Tr(n, ⌊n2/4⌋ + 1) = 2⌊n/2⌋ + 1.
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Note that Tr(n, e) = 0 whenever e ≤ n2/4, because in that case there exist triangle-
free (even bipartite) graphs with n vertices and e edges.

Given integers a, b and c, (a ≥ 2), define a family of graphs Tr(a, b, c) as follows.
The vertex set V of a graph G in this class has a partition V = A ∪B ∪C where
|A| = a, |B| = b, and |C| = c, such that B and C are independent sets, B ∪ C
induces a complete bipartite graph Kb,c, the vertices of C have neighbors only in
B, and G[A] and G[A,B] are ‘almost complete graphs’, namely, they span more

than
(|A|−1

2

)

+ |A||B| edges. The edges of G[B,C] are the non-triangular edges.

Given integers n ≥ 3 and n2/4 < e ≤
(

n
2

)

, we define a class of graphs, Tr(n, e),
with many non-triangular edges as follows. Put a graph G ∈ Tr(a, b, c) into the
class Tr(n, e) if it has n vertices and e edges and it has the minimum number of
triangular edges among these type of graphs. Define g(n, e) as min{Tr(G) : G ∈
Tr(n, e)}. We have Tr(n, e) ≤ g(n, e), and

g(n, e) = min{e− bc : a+ b+ c = n, a, b, c ∈ N ∪ {0},
(

a

2

)

+ ab+ bc ≥ e}.

We believe that one can extend (1) as follows.

Conjecture 1. Suppose that G is an n-vertex graph with e edges, such that e >
n2/4 and it has the minimum number of triangular edges. Then G ∈ Tr(n, e).

In particular, we conjecture that Tr(n, e) = g(n, e). For e > n2/4 we [4] have
proved a slightly weaker result

g(n, e) − (3/2)n ≤ Tr(n, e) ≤ g(n, e).

Our main tool was a new symmetrization method, a generalization of previous
results by Zykov and Motzkin and Straus such that it can be applied to more than
one graph simultaneously.

More recently, Gruslys and Letzter [6] using a refined version of the symmetriza-
tion method proved that there exists an n0 such that Tr(n, e) = g(n, e) for all
n > n0. The second part of our Conjecture 1, namely that the extremal graph
should be from a Tr(a, b, c), is still open.

In this talk we investigate these in an even more general setting. Given two
graphs G and F let h(G,F ) denote the number of edges of G in subgraphs iso-
morphic to F , and let h(n, e, F ) = minh(G,F ) where |V (G)| = n and |E(G)| = e.
Obviously, h(n, e, F ) = 0 if and only if e ≤ ex(n, F ) (the Turán number).

Using new ideas and Szemerédi’s Regularity Lemma we [5] asymptotically de-
termine h(n, e, F ) for every given F with chromatic number χ(F ) = 3 as follows.

Theorem 2. For every 1/4 < λ < 1/2, limn→∞ h(n, λn2, F )/n2 exists, and it
equals to one of the (well described) functions gi(λ), (1 ≤ i ≤ 13).

We say that a graphG is of type (α, β, γ) (say Tα,β,γ for short), where α, β, γ ≥ 0
integers or ∞, if the vertex set V (G) has a 5 partition V (G) = U ∪ V ∪A∪B ∪C
such that U 6= ∅, V 6= ∅ and U and V are independent sets, K(U, V ) ⊂ G,
N(U) ⊆ V ∪ A, N(V ) ⊆ U ∪ B (so v ∈ V has neighbors only in U and B) and
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χ(G[A]) ≤ α, χ(G[B]) ≤ β, and χ(G[C]) ≤ γ. The edges between U and V are
referred as special edges. If α = 0 (β = 0, γ = 0) then A = ∅ (B = ∅, C = ∅,
respectively). If α = 1 (β = 1, γ = 1) then A is an independent set in G (B and C
are independent, respectively). When α (β, or γ) is ∞ then we have no restriction
on the chromatic number of G[A] (G[B] or G[C]). The graphs of Tr(n, e) have
type (∞, 0, 0).

Let G(α, β, γ) be the class of all graphs of type (α, β, γ). Let Gn(α, β, γ) stand
for the n-vertex members of G(α, β, γ). A graph G ∈ G(α, β, γ) is called F -feasible
if for every n, for every possible G ∈ Gn(α, β, γ) a special edge uv (u ∈ U , v ∈ V )
can never be an F -edge. Also, for some G ∈ G(α, β, γ) all other edges, except the
special edges, are F -edges. So, G contains at most e− |U ||V | F -edges. Define

gαβγ(n, e) := min{e− |U ||V | : G ∈ Gn(α, β, γ), |E(G)| = e},
i.e., it is the solution of the following minimization problem. Minimize e− uv for
given integers n and e,

(

n
2

)

≥ e ≥ n2/4, subject to

n = u+ v +

α
∑

i=1

ai +

β
∑

i=1

bi +

γ
∑

i=1

ci,

where every variable is a non-negative integer and

uv+u

α
∑

i=1

ai+v

β
∑

i=1

bi+(

α
∑

i=1

ai+

β
∑

i=1

bi+

γ
∑

i=1

ci)
2/2−(

α
∑

i=1

a2i +

β
∑

i=1

b2i +

γ
∑

i=1

c2i )/2 ≥ e.

Our real result is the following:

Theorem 3. For every graph F with χ(F ) = 3 and ε > 0 there exists an n0 =
n0(F, ε) such that for 1/4 + ε < λ < 1/2, for n > n0 there exists a type (α, β, γ) ∈
{0, 1, 2,∞}3 such that

h(n, e, F ) = gαβγ(n, e) + o(n2).

Especially, we got a counterexample for a conjecture of Erdős [2] regarding
pentagonal edges asserting that h(n, ⌊n2/4⌋ + 1, C5) ≥ (n2/4) − n2/36 + O(n).
This value can be obtained by considering a graph having two components, a
complete graph on [2n/3] + 1 vertices and a complete bipartite graph on the rest.
(Type (0, 0,∞)). This conjecture was mentioned in the papers of Erdős [2] and
also in the problem book of Fan Chung and Graham [1]. However there are graphs

of type (1, 0,∞) with ⌊n2/4⌋ + 1 edges and n2/8(2 +
√

2) + O(n) = n2/27.31...
non-pentagonal edges, disproving Erdős’ conjecture.

On the other hand, Theorem 3 asymptotically verifies the conjecture of Erdős
that for every k ≥ 3, the maximum number of non-C2k+1 edges in a graph of size
exceeding (n2/4) + o(n2) is at most n2/36 + o(n2) non-C2k+1 edges.

Grzesik, P. Hu, and Volec [7] using Razborov’s flag algebra method showed that

every n-vertex graph with ⌊n2/4⌋+1 edges has at least (n2/4)−n2/8(2+
√

2)−εn2

pentagonal edges for n > n0(ε) for every ε > 0. They also proved that those
graphs have at most n2/36 + εn2 non-C2k+1-edges for n > nk(ε) for every ε > 0
and k ≥ 3. In Theorem 3 we were able to prove the same results only for graphs
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with ⌊n2/4⌋ + εn2 edges (for n > n0(k, ε), k ≥ 2). Let’s close with a slightly
corrected version of Erdős conjecture.

Conjecture 4. Suppose that G is an n-vertex graph with e edges, such that e >
n2/4 and it has the minimum number of C2k+1-edges, k ≥ 3, n > nk. Then G is
connected and has two blocks, one of them is a complete bipartite graph and the
other one is almost complete.

Many problems, e.g., an F with a higher chromatic number, or natural gener-
alizations for hypergraphs remain open.

References
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The number of subsets of integers with no k-term arithmetic
progression

József Balogh

(joint work with Hong Liu, Maryam Sharifzadeh)

Enumerating discrete objects in a given family with certain properties is one of the
most fundamental problems in extremal combinatorics. In the context of graphs,
this was initiated by Erdős, Kleitman and Rothschild [6] who studied the family
of triangle-free graphs. Here, we investigate a counting problem in the arithmetic
setting. A subset of [n] := {1, 2, . . . , n} is k-AP-free if it does not contain a k-term
arithmetic progression. Denote by rk(n) the maximum size of a k-AP-free subset
of [n]. Cameron and Erdős [3] raised the following question:

Question 1. Is it true that the number of k-AP-free subsets of [n] is

2(1+o(1))rk(n)?

Since every subset of a k-AP-free set is also k-AP-free, one can easily obtain
2rk(n) many k-AP-free subsets of [n]. In fact, Cameron and Erdős [3] slightly



Combinatorics and Probability 1227

improved this obvious lower bound: writing Rk(n) for the number of k-AP-free

subsets of [n], they proved that lim supn→∞
Rk(n)

2rk(n) = ∞.
Until recently, the only progress on the upper bound in the last 30 years was

improving the bounds on rk(n). Then Balogh, Morris and Samotij [1], and inde-
pendently Saxton and Thomason [10], proved the following: for any β > 0 and
integer k ≥ 3, there exists C > 0 such that for m ≥ Cn1−1/(k−1), the number
of k-AP-free m-sets in [n] is at most

(

βn
m

)

. This deep counting result implies the
sparse random analogue of Szemerédi’s theorem [12] which was proved earlier by
Conlon and Gowers [4] and independently by Schacht [11]. However, this bound
is far from settling Question 1.

One of the reasons for the difficulty in finding good upper bounds on Rk(n) is
our limited understanding of rk(n). Indeed, despite much effort, the gap between
the current known lower and upper bounds on r3(n) is still rather large; closing
this gap remains one of the most difficult problems in additive number theory. For
the lower bound on r3(n), the celebrated construction of Behrend [2] shows that

r3(n) = Ω
(

n · 2−2
√
2
√

log2 n
)

.

For k ≥ 4 there exist ck, c
′
k > 0 such that

n

2ck(log n)1/(k−1)
≤ rk(n) ≤ n

(log logn)c
′

k

,(1)

where the lower bound is due to Rankin [9] and the upper bound is by Gowers [8].
Notice that, using the lower bound in (1), we obtain the following trivial upper

bound for Rk(n):

Rk(n) ≤
rk(n)
∑

i=0

(

n

i

)

< 2

(

n

rk(n)

)

< 2

(

en

rk(n)

)rk(n)

= 2
O

(

rk(n)·(logn)
1

k−1

)

.

Our main result is removing the log-factor from the exponent.

Theorem 2. The number of k-AP-free subsets of [n] is 2O(rk(n)) for infinitely
many values of n.

An immediate corollary of Theorem 2 is the following.

Corollary 3. For every ε > 0, there exists a constant b > 0 such that the following
holds. Let A(b) ⊆ Z consist of all integers n such that the number of k-AP-free
subsets of [n] is at most 2b·rk(n). Then

lim sup
n→∞

|A(b) ∩ [n]|
n

≥ 1 − ε.

For all values of n, we obtain the following weaker counting estimate, which is
nevertheless sufficient to improve previous transference theorems for Szemerédi’s
theorem, in particular implies Corollary 5.

Theorem 4. If rk(n) ≤ n
h(n) , where h(n) ≤ (logn)c for some c > 0, then the

number of k-AP-free subsets of [n] is at most 2O(n/h(n)). Furthermore, for any
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γ > 0, there exists C = C(k, c, γ) > 0 such that for any m ≥ n1− 1
k−1+γ , the

number of k-AP-free m-subsets of [n] is at most
(

Cn/h(n)

m

)

.

We say that a set A ⊆ N is (δ, k)-Szemerédi if every subset of A of size at
least δ|A| contains a k-AP. Denote by [n]p the p-random subset of [n], where each
element of [n] is chosen with probability p independently of others. As mentioned
earlier, the counting result of [1] and [10] implies the following sparse analogue
of Szemerédi’s theorem, which was only recently proved by a breakthrough trans-
ference theorem of Conlon and Gowers [4] and Schacht [11]: For any constant
δ > 0 and integer k ≥ 3, there exists C > 0, such that almost surely [n]p is (δ, k)-

Szemerédi for p ≥ Cn− 1
k−1 . As an easy corollary of Theorem 4, we obtain the

following sharper version, in which δ could be taken as a function of n. In fact,
it transfers the current best bounds on rk(n) of Gowers [8] to the random setting.
Proving Corollary 5 from Theorem 4 is similar as in [1] and [10]. We remark that
the bound on p is optimal up to the additive error term γ in the exponent.

Corollary 5. If rk(n) ≤ n
h(n) , where h(n) ≤ (logn)c for some constant c > 0,

then for any γ > 0, there exists C = C(k, c, γ) > 0 such that the following holds.

If pn ≥ n− 1
k−1+γ for all sufficiently large n, then

lim
n→∞

P

(

[n]pn is

(

C

h(n)
, k

)

-Szemerédi

)

= 1.

The proof of Theorem 2 uses the hypergraph container method, developed
by Balogh, Morris and Samotij [1], and independently by Saxton and Thoma-
son [10]. In order to apply the hypergraph container method, we need a super-
saturation result. Supersaturation problems are reasonably well-understood if the
extremal family is of positive density. For example, the largest sum-free subset
of [n] has size ⌈n/2⌉, while any set of size (12 + ε)n has Ω(n2) triples satisfying
x + y = z. In the context of graphs, the Erdős-Stone theorem gives ex(n,G) =
(

1 − 1
χ(G)−1 + o(1)

)

n2

2 , while any n-vertex graph with
(

1 − 1
χ(G)−1 + ε

)

n2

2 edges

contains Ω(n|V (G)|) copies of G. However, the degenerate case is significantly
harder. Indeed, a famous unsolved conjecture of Erdős and Simonovits [7] in ex-
tremal graph theory asks whether an n-vertex graph with ex(n,C4) + 1 edges has
at least two copies of C4.

For arithmetic progressions Croot and Sisask [5] proved a nice formula, which is
unfortunately not helping when |A| ≤ O(rk(n)) and rk(n) ≪ n/f(n) where f(n)
is a polylogarithmic function. Their formula is that for every A ⊂ [n], and every
1 ≤M ≤ n, the number of 3-APs in A is at least

( |A|
n

− r3(M) + 1

M

)

· n
2

M4
.

We need a supersaturation for sets of size Θ(rk(n)).
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Theorem 6. Given k ≥ 3, there exists a constant C′ = C′(k) > 0 and an infinite
sequence {ni}∞i=1, such that the following holds. For any n ∈ {ni}∞i=1 and any
A ⊆ [n] of size C′rk(n), the number of k-APs in A is at least

log3k−2 n ·
(

n

rk(n)

)k−1

· n.

Note that improving Theorem 6 could lead to solution of the question of Cameron
and Erdős, Question 1.
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Strong noise sensitivity and random graphs

Eyal Lubetzky

(joint work with Jeff Steif)

Noise sensitivity, a concept introduced by Benjamini, Kalai and Schramm [1],
captures the notion that the value of a Boolean function of many i.i.d. variables
would flip under small perturbations of its input. Consider a sequence of functions
fn : Ωn → {0, 1} paired with a sequence of probabilities pn, where each domain
Ωn = {0, 1}Λn is a product space of Bernoulli(pn) variables, and the sets Λn are
finite and increasing with n. Further assume (pn) is non-degenerate in the sense
that P(fn = 1) is uniformly bounded away from 0 and 1. Given ω ∈ Ωn and some
ǫ ∈ (0, 1), let ωǫ denote the result of resampling the Bernoulli(pn) variable ωx
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independently with probability ǫ for each x ∈ Λn. The sequence (fn) is said to be
noise sensitive (Sens) w.r.t. pn and a given ǫ > 0 if

(1) lim
n→∞

P (fn(ωǫ) = 1 | fn(ω) = 1) − P (fn = 1) = 0 ,

or equivalently (recall that (fn) is non-degenerate), Cov (fn(ω), fn(ωǫ)) → 0.
When a function (fn) is Sens it is natural to further discuss quantitative noise
sensitivity, i.e., how fast can ǫ→ 0 with n such that (1) still holds.

In the setting where pn ≡ 1/2 and the functions fn are monotone w.r.t. the
natural partial order on the hypercube Ωn, a beautiful argument of [1] gave a
criterion for noise sensitivity in terms of the first level of Fourier coefficients of fn.

Namely, (fn) is noise sensitive if and only if limn→∞
∑

x∈Λn
f̂n(x)2 = 0, where

f̂n(x) is the Fourier coefficient corresponding to the singleton {x}. Unfortunately,
this criterion becomes invalid when pn → 0 (e.g., the indicator of a random graph
being triangle-free satisfies the above condition and yet it is not noise sensitive;
see [1, §6.4]), and determining noise sensitivity without it can be highly nontrivial.

Strong noise sensitivity. Going back to (1), this is known to be equivalent to
having the average of

∣

∣P (fn(ωǫ) = 1 | ω) − P (fn = 1)
∣

∣ over {ω : fn(ω) = 1} tend
to 0 as n → ∞. When dealing with monotone functions, however, it is in many
cases more natural and useful to condition on a witness for fn(ω) = 1 instead of
the entire configuration ω.

Definition 1. A 1-witness for a monotone function f : {0, 1}Λ → {0, 1} is a
minimal subset W ⊂ Λ such that ωW ≡ 1 implies f(ω) = 1.

Let W1 = W1(f) be the set of 1-witnesses of a monotone Boolean function f ,
and let W0 = W0(f) denote its analogously defined 0-witnesses.

Perhaps surprisingly, it can be the case that (fn) is noise sensitive and yet
the probability that fn(ωǫ) = 1 substantially increases when we condition on any
particular 1-witness in ω. This motivates the following definition.

Definition 2. A sequence (fn) of monotone increasing Boolean functions is said
to be 1-strongly noise sensitive (StrSens1) w.r.t. pn and ǫ > 0 if

(2) lim
n→∞

max
W∈W1

P(fn(ωǫ) = 1 | ωW ≡ 1) − P(fn = 1) = 0 .

The notion of 0-strong noise sensitivity (StrSens0) is defined analogously. (Note
that a sequence of increasing functions (fn) is StrSens0 if and only if its com-

plement (fn) is StrSens1, where fn(ω) = fn(ω) with x = 1 − x.)

As suggested by its name, the notion of strong noise sensitivity, which addresses
the subtler effect of conditioning on any particular witness (cf. (1) vs. (2)), indeed
implies (even when ǫ→ 0) the standard noise sensitivity but not vice versa.

Examples. The next two examples of monotone noise sensitive functions, which
were discussed in [1], both trace back to Ben-Or and Linial in the related work [2].
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(i) Tribes: partition Λn = {x1, . . . , xn} into blocks of log2 n − log2 log2 n vari-
ables, let pn ≡ 1/2 and set fn to be 1 if there is an all-1 block. This function
is non-degenerate and Sens([1, §6.1]): A 1-witness W in ω is a full block,
which the noise will destroy with probability approaching 1, and the probability
of encountering another is (1 − o(1))P(fn = 1). Indeed, tribes is StrSens1.

(ii) Recursive 3-Majority: Index n = 3k variables by the leaves of a ternary
tree, and iteratively set the value of each node to be the majority of its chil-
dren. Take pn ≡ 1/2 and define fn to be the value at the root. Clearly non-
degenerate, this function is Sens([1, §6.2]): P (fn(ωǫ) = 1 | fn(ω) = 1) →
1/2 as n→ ∞. A 1-witness W is a set of 2k leaves (positioned in the obvious
way to force the majority). One can verify that P (fn(ωǫ) = 1 | ωW ≡ 1) =
1 − ǫ/2, and therefore this function is not StrSens1 (nor StrSens0 by
symmetry).

Notice the potentially different behaviors of 0-witnesses and 1-witnesses w.r.t.
strong noise sensitivity, in contrast with standard noise sensitivity (which is closed
under complements). E.g., the tribes function is StrSens1 but not StrSens0.

Properties of random graphs. The Erdős-Rényi random graph, G(n, p), is a
probability distribution over graphs on n labeled vertices, where each undirected
edge appears independently with probability p = p(n). A monotone increasing
graph property is a collection of graphs closed under isomorphism and the addition
of edges, identified with its indicator function on the

(

n
2

)

edge variables.

Theorem 1. Fix 0 < a < b and let fn be the property that the critical random
graph G(n, 1/n) contains a cycle of length ℓ ∈ (an1/3, bn1/3). Then (fn) is non-
degenerate and noise sensitive, and furthermore, it is StrSens1.

Moreover, the analogue of this conclusion for quantitative noise sensitivity holds
if and only if the noise parameter ǫ = ǫ(n) satisfies ǫ≫ n−1/3.

Theorem 1 holds throughout the critical window p = 1±ξ
n with ξ = O(n−1/3),

around which the longest cycle grows from constant to linear (e.g., taking ξ3n→ ∞
still with ξ = o(1), the maximum length of a cycle is Θp(1/ξ) at p = 1−ξ

n and

Θp(ξ
2n) at p = 1+ξ

n ; see [3, 4]).
Revisiting the quantitative conclusion of Theorem 1 now highlights an interest-

ing phenomenon, where the ǫ≫ n−1/3 threshold for noise sensitivity coincides with
the boundary of the critical window (p = 1±ξ

n for ξ ≫ n−1/3). This phenomenon
is best explained through the following equivalent process:

• Let ω be a uniform set of N ∼ Bin(
(

n
2

)

, p) edges.
• Obtain ω̄ by deleting a uniform set of Bin(N, ǫ(1 − p)) edges from ω.
• Add a uniform set of Bin(

(

n
2

)

−N, ǫp) edges missing from ω to get ωǫ.

As the edge probability in ω̄ is p(1 − ǫ) + ǫp2, on a heuristic level we have:

(a) If ǫ = O(n−1/3) then ω̄ remains in the critical window, where (fn) is non-
degenerate, so fn(ω), fn(ω̄) (thus fn(ω), fn(ωǫ)) should be correlated.

(b) If ǫ ≫ n−1/3 then ω̄ is subcritical whence fn(ω̄) is degenerate, effectively
decorrelating fn(ω̄) from fn(ω) (thus also fn(ω), fn(ωǫ)) yielding Sens.
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Intuitively, we expect a random graph property to be Sens when it has no
bounded-size witnesses (thus none will survive the noise) and distinct witnesses
are essentially independent (so surviving fragments of a witness will have negligible
impact), as is the case in the theorem above. However, for various important graph
properties the witnesses happen to be highly correlated, foiling this intuition. E.g.,
containing a Hamilton cycle is non-degenerate at p ∼ logn

n yet the expected number
of witnesses becomes exponentially large in n already at p = O(1/n), and similarly
for perfect matchings. Nevertheless, these are in fact noise sensitive:

Theorem 2. Let fn be the property that the minimum degree of G(n, p) is at least
k for some fixed k ≥ 1, and suppose p = p(n) is such that (fn) is non-degenerate.
Then (fn) is noise sensitive, and moreover, it is StrSens0.

As a result, the following properties of G(n, p) are noise sensitive:

(i) containing a Hamilton cycle,
(ii) containing a perfect matching (in general, an r-factor1 for r fixed),
(iii) connectivity (in general, k-vertex and k-edge connectivity for k fixed),
(iv) having an isoperimetric constant2 of at least γ for some fixed γ > 0.

Furthermore, each of these is quantitatively noise sensitive iff ǫ≫ 1
logn .

Note that even the (non-strong) noise sensitivity in Theorems 1 or 2 cannot be
obtained from the best known generalizations of the BKS criterion for varying p
(see [5]), as these all require 1/p = no(1).
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1An r-factor of a graph is a spanning r-regular subgraph
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Minimising the number of triangular edges

Shoham Letzter

(joint work with Vytautas Gruslys)

1. Introduction

We consider the following question: given n and e, what is the minimum number
of triangular edges (i.e. edges on triangles) over n-vertex graphs with e edges? We
note that a similar question, of minimising the number of triangles, was first con-
sidered by Rademacher [9], generalised by Erdős [1, 2], and subsequently studied
by Lovász and Simonovits [6, 7] and by Razborov [10].

Erdős, Faudree and Rousseau [3] considered the first instance of the question:
they showed that an n-vertex graph with ⌊n2/4⌋+ 1 edges has at least 2⌊n/2⌋+ 1
triangular edges. We consider the question for general e. For convenience, we
consider the following equivalent question: what is the maximum number of non-
triangular edges among n-vertex graphs with at least e edges?

Let G(a, b, c) be the graph that consists of a clique A of size a and two inde-
pendent sets B and C of sizes b and c, such that B is joined to all of A ∪ C and
there are no edges between A and C (see Figure 1). Let s(G) be the number of
non-triangular edges in G, and let s(n, e) be the maximum of s(G) over n-vertex
graphs with at least e edges. Füredi and Maleki [4] made the following conjecture.

Conjecture 1 (Füredi and Maleki [4]). For every n and e, there is a graph H =
G(a, b, c) with n vertices and at least e edges such that s(H) = s(n, e).

A
C

B

Figure 1. The graph G(a, b, c)

Note that the aforementioned result of Erdős, Faudree and Rousseau [3] con-
firms Conjecture 1 for e = ⌊n2/4⌋+ 1, (consider the graph G(2, ⌊n/2⌋, ⌈n/2⌉− 2)).
Füredi and Maleki proved an approximate version of their conjecture.

Theorem 2 (Füredi and Maleki [4]). For every n and e there is a graph H =
G(a, b, c) such that |H | = n, e(H) ≥ e and s(H) ≥ s(n, e) − 3n/2.

We prove the conjecture exactly, for large n.

Theorem 3. There is n0 such that for every n ≥ n0 and every e, there is a graph
H = G(a, b, c) such that |H | = n, e(H) ≥ e and s(H) = s(n, e).

The proof for e that is close to either n2/4 or
(

n
2

)

is easier; we discuss it briefly

in the next section. The middle range, when e is bounded away from both n2/4
and

(

n
2

)

, is the heart of the proof, and we elaborate more about it in Section 3.
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2. The extremal ranges

The plan in each of the extremal ranges is the following. Let G be a graph with
n vertices, at least e edges and s(n, e) triangular edges. We first show that G is
close to a graph G(a, b, c) (e.g. when e is close to n2/4, we show that G has an
induced complete bipartite subgraph spanning almost all of the vertices). Then,
using a lower bound on the number of triangular edges, we obtain sharper bounds
on a, b, c. Finally, using edges-shifting operations we show that G ∼= G(a, b, c).

3. The middle range

Let G be an n-vertex graph with at least e edges and s(n, e) non-triangular edges.
In order to obtain information about the structure of G, we use the following two
tools: compressed graphs - these are graphs with somewhat restrictive structure,
and we show that G may be assumed to be compressed; and the continuity of
s(n, e), which enables us to extract information about G using operations of ad-
dition or deletion of edges. We discuss these two tools in more details in the next
two subsections, and finish with a sketch of the proof.

3.1. Compressed graphs. We discuss briefly the notion of weighted graphs. A
weighted graph Gw is a graph G with a non-negative weighting w of the vertices.
|Gw| is the sum of weights of the vertices; e(Gw) is the sum of w(u)w(v) over edges
uv; s(Gw) is defined similarly. Note that if w is integer valued, then Gw represents
a blow-up of G, where a vertex u is replaced by an independent set of size w(u).

As the first step in the proof of Theorem 2, Füredi and Maleki [4] show that
every graph G has a subgraph H with weighting w such that |Hw| = |G|, e(Hw) ≥
e(G), s(Hw) ≥ s(G) and α(H) ≤ 2. With some effort, Theorem 2 follows. The
main drawback in this approach is that w need not be integer valued, and thus
Hw does not represent a graph. We are able to overcome this issue as follows: we
show that every graph G has a subgraph H with integer weighting w, satisfying
|Hw| = |G|, e(Hw) ≥ e(G) and s(Hw) ≥ s(G) and α(H) ≤ 2 logn. Since H has
integer weights, we may think of it as a graph, and we call such a graph compressed.

Our main use of the fact that we can focus on compressed graph is the following
observation: if G is compressed, then any independent set I contains a set of clones
(i.e. vertices that have the same neighbourhood) J of size at least |I|/(2 logn).

3.2. Continuity. We show that s(n, e) is ‘continuous’: s(n, e)−Cx ≤ s(n, e+x) ≤
s(n, e)−cx. These inequalities hold for x not too large or too small and e bounded
away from n2/4 and

(

n
2

)

. This turns out to be very useful. For example, it allows
us to conclude that if an addition of x edges to G reduces the number of non-
triangular edges only slightly, then x cannot be very large.

3.3. Sketch of the proof. We may assume that G is compressed. We note that
the proof of Füredi and Maleki [4] implies that G has a clique of size Ω(n), from
which it follows, using the fact that G is compressed and the continuity of s(n, e),
that the set A of triangular vertices (i.e. vertices incident only with triangular
edges) has size Ω(n). We note that we can assume that A spans a clique and its
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vertices have the same neighbourhoodB outside A. Finally, let C = V (G)\(A∪B).
We further use the fact that G is compressed and the continuity of s(n, e) to
show that B and C may both be partitioned into O(1) sets of clones and a small
remainder (see Figure 2).

B

C

A

O(1) sets of clones
remainder

Figure 2. Structure of G

By running a weight shifting process on the graph (with the remainder re-
moved), we show that the numbers of edges and non-triangular edges in G are
close to those of a graph G(|A|, |B|, |C|). It follows that almost all edges between
B and C are present in G and are non-triangular. A sequence of edge shifting
operations implies that G = G(|A|, |B|, |C|).

4. Conclusion

The question of minimising the number of triangular edges can be generalised
naturally: given any fixed H , one can ask for the minimum number of edges in
copies of H . Two choices for the graph H seem particularly natural: H = Kr and
H = C2r+1. We note that Erdős, Faudree and Rousseau [3] considered the number
of pentagonal edges in n-vertex graphs with ⌊n2/4⌋+1 edges. Furthermore, Füredi
and Maleki [5] made progress on the above problem for any H with chromatic
number 3 (so in particular for H = C2l+1).
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[4] Z. Füredi, Z. Maleki, The minimum number of triangular edges and a symmetrization for

multiple graphs, preprint, arXiv:1411.0771.
[5] Z. Fürdei, Z. Maleki, A proof and a counterexample for a conjecture of Erdős concerning
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On the chromatic number of random regular graphs

Samuel Hetterich

(joint work with Amin Coja-Oghlan, Charilaos Efthymiou)

Let G(n, d) be the random d-regular graph on the vertex set V = {1, . . . , n}.
Determining the chromatic number of random graphs is one of the longest-standing
challenges in probabilistic combinatorics. For the Erdős-Rényi model, which we
denote byGER(n,m) the uniformly random graph on V with preciselym edges and
which is the single most intensely studied model in the random graphs literature,
the question dates back to the seminal 1960 paper that started the theory of
random graphs [8]. Apart from that model, the one that has received the most
attention certainly is the random regular graph G(n, d) [4, 9]. We provide an
almost complete solution to the chromatic number problem on G(n, d), at least in
the case that d remains fixed as n→ ∞. Our main result1 is

Theorem 1. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that the
following is true.

(1) If d ≤ (2k − 1) ln k − 2 ln 2 − εk, then G(n, d) is k-colorable w.h.p.
(2) If d ≥ (2k − 1) ln k − 1 + εk, then G(n, d) fails to be k-colorable w.h.p.

Theorem 1 implies the following “threshold result”.

Corollary 2. There is a constant k0 > 0 such that for any integer k ≥ k0 there
exists a number dk−col with the following two properties.

• If d < dk−col, then G(n, d) is k-colorable w.h.p.
• If d > dk−col, then G(n, d) fails to be k-colorable w.h.p.

To obtain Corollary 2, let εk as in Theorem 1 and consider the interval Ik =
((2k−1) lnk−2 ln 2−εk, (2k−1) lnk−1+εk). Then Ik has length 2 ln 2−1+2εk ≈
0.386 + 2εk. Since εk → 0, for sufficiently large k the interval Ik contains at most
one integer. If it does, let dk−col be equal to this integer. Otherwise, pick any
dk−col in Ik. For infinitely many values of k, dk−col is not an integer, in which case
Corollary 2 solves the k-colorability problem on G(n, d) completely. In fact, we
can make the following more precise quantitative statement. Since the sequence
((2k− 1) ln k mod 1)k is asymptotically uniform on [0, 1] by Weyl’s criterion [12],
the set {k : dk−col 6∈ Z} has asymptotic density 2(1 − ln 2) ≈ 0.614.

Another consequence of Theorem 1 is that it allows us to pin down the chromatic
number χ(G(n, d)) exactly for “almost all” d.

Corollary 3. There exist a set D ⊂ Z≥0 of asymptotic density 1 and a function
F : D → Z≥0 such that for all d ∈ D we have χ(G(n, d)) = F(d) w.h.p.

To obtain Corollary 3, let k0, (dk−col)k≥k0 be as in Corollary 2, let D = Z≥0 \
([0, dk0−col] ∪ {dk−col : k ≥ k0}) and define F(d) to be the smallest integer k ≥ k0

1The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement n. 278857–PTCC



Combinatorics and Probability 1237

such that d < dk−col. Because d(k+1)−col − dk−col ≥ ln k for large enough k, D has
asymptotic density one.

The best current results on coloring GER(n,m) as well as the best prior result
on χ(G(n, d)) are obtained via the second moment method [3, 7, 10]. So are the
present results. Generally, this is applying the Paley-Zygmund inequality to a
random variable Z ≥ 0 (s.t. Z(G) > 0 only if G is k-colorable) to obtain a
lower bound on the probability that G is k-colorable if the second moment of Z is
bounded from above by a constant times the square of the first moment of Z.

But what random variable Z might be suitable? A convenient choice is the num-
ber Zk,bal of balanced k-colorings, in which all of the k color classes are the same
size. Indeed, the core of the paper by Achlioptas and Naor [3] is to establish the
second moment bound for the number Zk,bal(GER(n,m)) of balanced k-colorings
of GER(n,m) under the assumption that d = 2m/n ≤ (2k − 2) ln k − 2 + ok(1).
Achlioptas and Naor rephrase this problem as a non-convex optimization problem
over the Birkhoff polytope, i.e., the set of doubly-stochastic k × k matrices, and
establish the bound by solving a relaxation of this problem. This implies that
GER(n,m) is k-colorable with a non-vanishing probability if d ≤ (2k−2) ln k−2+
ok(1). The sharp threshold result of Achlioptas and Friedgut [1] leads to a prob-
ability of order 1 − o(1). A simple first moment argument shows that GER(n,m)
is non-k-colorable w.h.p. if d > (2k − 1) ln k.

Achlioptas and Moore [2] use the same random variable Zk,bal on G(n, d) ob-
serving that the solution to the (relaxed) optimization problem over the Birkhoff
polytope from [3] can be used as a “black box” to obtain the same results by using
the second moment method. They prove that G(n, d) is k-colorable with a non-
vanishing probability if d ≤ (2k−2) lnk−2+ok(1). But unfortunately, in the case
of random regular graphs there is no sharp threshold result to boost this proba-
bility to 1 − o(1). To get around this issue, Achlioptas and Moore instead adapt
concentration arguments from [13, 16] to the random regular graph G(n, d). How-
ever, these arguments inevitably require one extra “joker” color. Hence, Achlioptas
and Moore obtain that χ(G(n, d)) ≤ k+ 1 w.h.p. for d ≤ (2k− 2) ln k− 2 + ok(1).

Kemkes, Pérez-Giménez and Wormald [10] remove the need for this additional
color, matching the result established in [3] for the Erdős-Rényi model. Instead
of employing “abstract” concentration arguments, Kemkes, Pérez-Giménez and
Wormald use the small subgraph conditioning technique [15].

Coja-Oghlan and Vilenchik [7] improved the result from [3] on the chromatic
number of GER(n,m) recently. They showed that GER(n,m) is k-colorable w.h.p.
if d = 2m/n ≤ (2k − 1) ln k − 2 ln 2 − ok(1), gaining about an additive ln k. They
considered a different random variable, namely the number Zk,good of “good”
k-colorings, whose definition draws on intuition from non-rigorous statistical me-
chanics work on random graph coloring [11, 17]. Indeed, the concept of good
colorings facilitates the computation of the second moment. The second moment
method together with the sharp threshold result [1] leads to their improved lower
bound on the k-colorabilty threshold.
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Our main result matches [7] for G(n, d). Following [10], we combine the sec-
ond moment bound from [7] (which we can use largely as a “black box”) with
small subgraph conditioning. The main work in establishing the first part of The-
orem 1 consists in computing the first moment of the number of good k-colorings
in G(n, d), a task that turns out to be technically quite non-trivial.

The previous lower bound on the chromatic number of G(n, d) is based on a
simple first moment argument over the number of k-colorings. The bound that
can be obtained in this way, attributed to Molloy and Reed [14], is that G(n, d) is
non-k-colorable w.h.p. if d > (2k−1) lnk. By contrast, the second assertion in The-
orem 1 marks a strict improvement. The proof is via an adaptation of techniques
developed in [6] for the random k-NAESAT problem. Extending this argument
to the chromatic number problem on G(n, d) requires substantial technical work.
A matching improved lower bound on the chromatic number of GER(n,m) was
recently obtained via a different argument [5].
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The sharp threshold for making squares

Paul Balister

(joint work with Béla Bollobás, Robert Morris)

Many of the fastest known algorithms for factoring large integers rely on find-
ing subsequences of randomly generated sequences of integers whose product is a
perfect square. Examples include Dixon’s algorithm [4], the quadratic sieve [9],
and the number field sieve (see, e.g., [8]); an excellent elementary introduction to
the area is given by Pomerance [11]. In each of these algorithms one generates a
sequence of congruences of the form

ai ≡ b2i (mod n), i = 1, 2, . . .

and then one aims to find subsets of the ai whose product is a perfect square, say
∏

i∈I ai = X2, so then one has X2 ≡ Y 2 (mod n) with Y =
∏

i∈I bi. If one is
lucky then X 6≡ ±Y (mod n), in which case one can generate non-trivial factors
of n as gcd(X ± Y, n).

A useful heuristic, suggested by Schroeppel in the 1970s (see [11]), is to imagine
that the numbers ai are chosen independently and uniformly at random from
the set {1, . . . , x}, for some suitably chosen integer x. Motivated by this idea,
Pomerance [10] posed the problem of determining the threshold for the event that
such a collection of random numbers contains a subset whose product is a square.
To be precise, given x ∈ N, let us define a probability space Ω(x) by choosing
a1, a2, . . . independently and uniformly at random from {1, . . . , x}, and a random
variable T (x) by setting

T (x) := min

{

N ∈ N :
∏

i∈I

ai is a perfect square for some I ⊆
{

1, . . . , N
}

, I 6= ∅
}

.

Pomerance [12] proved that for all ε > 0,

(1) exp
(

(

1 − ε
)
√

2 logx log log x
)

≤ T (x) ≤ exp
(

(

1 + ε
)
√

2 log x log log x
)

with high probability1, and conjectured that T (x) in fact exhibits a sharp threshold,
i.e., that there exists a function f(x) such that (1 − ε)f(x) ≤ T (x) ≤ (1 + ε)f(x)
with high probability for all ε > 0. Croot, Granville, Pemantle and Tetali [3]
significantly improved these bounds (see (3), below), and stated a conjecture as to
the location of the threshold, i.e., the value of the function f(x). Our main result
proves these two conjectures.

In order to state the theorem and conjecture of Croot, Granville, Pemantle and
Tetali, we need to recall some standard notation. Let π(y) denote the number of
primes less than or equal to y, let Ψ(x, y) denote the number of y-smooth integers
in {1, . . . , x}, that is, the number of integers with no prime factor strictly greater
than y, and define

(2) J(x) = min
2≤y≤x

π(y)x

Ψ(x, y)
.

1We use the term with high probability to mean with probability tending to 1 as x → ∞.
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It can be shown that the minimum in (2) occurs at

y0 = y0(x) = exp
(

(

1 + o(1)
)

√

1
2 log x log log x

)

and that

J(x) = y
2+o(1)
0 = exp

(

(

1 + o(1)
)
√

2 log x log log x
)

.

We remark that a relatively straightforward argument, originally due to Schroeppel
(see [12]), shows that, for all ε > 0,

T (x) ≤
(

1 + ε
)

J(x)

with high probability, which implies the upper bound in (1). Indeed, if N ≥
(1+ε)J(x) then with high probability at least π(y0)+1 of the numbers a1, . . . , aN
will be y0-smooth, since each ai is y0-smooth with probability Ψ(x, y0)/x =
π(y0)/J(x). Now, by simple linear algebra, it follows that the vectors encoding
the primes that divide ai an odd number of times are linearly dependent over F2,
and hence there exists a subset whose product is a square, as required.

Pomerance’s conjecture remained wide open for over ten years, until a funda-
mental breakthrough was obtained by Croot, Granville, Pemantle and Tetali [3],
who used a combination of techniques from number theory, probability theory and
combinatorics to show that

(3)
π

4

(

e−γ − ε
)

J(x) ≤ T (x) ≤
(

e−γ + ε
)

J(x)

with high probability, where γ ≈ 0.5772 is the Euler–Mascheroni constant.
The authors of [3] conjectured that the upper bound in (3) is sharp. Our main

theorem confirms their conjecture.

Theorem 1. For all ε > 0 we have with high probability
(

e−γ − ε
)

J(x) ≤ T (x) ≤
(

e−γ + ε
)

J(x).

Since the upper bound in Theorem 1 was proved in [3], we are only required to
prove the lower bound. However, we also obtain a new proof of the upper bound,
quite different from that given in [3], as a simple consequence of our method.
Another significant advantage of our proof is that it gives detailed structural in-
formation about the typical properties of the set of numbers that are left over after
sieving and “singleton removal” (see, e.g., [7]).

The lower bound of Croot, Granville, Pemantle and Tetali [3] was obtained via
the first moment method, by counting the expected number of non-empty subsets
I ⊆ {1, . . . , N} such that

∏

i∈I ai is a square. Unfortunately, we can show that
there exists a constant c > 0 such that this expected number blows up when
N ≥ (e−γ − c)J(x), which implies that a sharp lower bound cannot be obtained
by this method.

Instead, we use the method of self-correcting martingales, introduced recently
in [5] (see also [1, 2]), to follow a random process which removes numbers from
the set {a1, . . . , aN} as soon as we can guarantee that they are not contained in a
subset whose product is a square. This is in one sense very simple: a number ai can
be discarded if there exists a prime for which ai is the only remaining number that
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it divides an odd number of times. However, this apparent simplicity is deceiving,
and the technical challenges involved in tracking the process are substantial. For
example, we need to reveal the random numbers {a1, . . . , aN} gradually (roughly
speaking, prime by prime, in decreasing order), and the amount of information we
are allowed to reveal at each step is rather delicate. Moreover, the removal of a
number can trigger an avalanche, causing many other numbers to be removed in the
same step. Fortunately, however, self-correction (which is partly a result of these
avalanches) allows us to show that the process remains subcritical (in a certain
natural sense), which in turn allows us to control the upper tail of the size of the
avalanches. In order to do so, we need good control over the dependence between
the prime factors of the numbers {a1, . . . , aN}, conditioned on the information
we have observed so far. This is obtained by a comparison theorem which gives
strong bounds on the ratio between the (conditional) probability of certain ‘basic’
events, and the corresponding probabilities in a simpler independent model. These
bounds require some number-theoretic estimates, most of which follow from the
fundamental work of Hildebrand and Tenenbaum [6] on smooth numbers.

Using the method described above, we have shown that with high probability
the number of ‘active’ numbers (i.e., elements of {a1, . . . , aN} that we have not
yet discarded) tracks a deterministic function until there are very few numbers

remaining (roughly e−C
√
log y0y0 for some large constant C), at which point we can

apply the first moment calculation from [3]. Finally, in order to prove the upper
bound in Theorem 1, we observe that the ratio of the number of active numbers and
active primes (that is, primes which could still appear in some square) approaches
1 when we have revealed primes down to y0 and N/J(x) approaches e−γ . Thus,
by adding just a few extra y0-smooth numbers, we can apply the linear algebra
approach of Schroeppel to obtain a subset whose product is a square, as required.
We would like to thank Jonathan Lee for pointing out to us this particularly simple
deduction from our proof.
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Extremal problems for uniformly dense hypergraphs

Mathias Schacht

(joint work with Christian Reiher, Vojtěch Rödl)

1. Extremal problems for graphs and hypergraphs

Given a fixed graph F a typical problem in extremal graph theory asks for the
maximum number of edges that a (large) graph G on n vertices containing no copy
of F can have. More formally, for a fixed graph F let the extremal number ex(n, F )
be the number |E| of edges of an F -free graph G = (V,E) on |V | = n vertices with
the maximum number of edges. It is well known and not hard to observe that
the sequence ex(n, F )/

(

n
2

)

is decreasing. Consequently one may define the Turán
density

π(F ) = lim
n→∞

ex(n, F )
(

n
2

)

which describes the maximum density of large F -free graphs. The systematic
study of these extremal parameters was initiated by Turán [9], who determined
ex(n,Kk) for complete graphs Kk. Thanks to his work and the results from [3] by
Erdős and Stone it is known that the Turán density of any graph F with at least
one edge can be explicitly computed using the formula

(1) π(F ) = χ(F )−2
χ(F )−1 .

Already in his original work [9] Turán asked for hypergraph extensions of these
extremal problems. We restrict ourselves to 3-uniform hypergraphs H = (V,E),

where V is a finite set of vertices and the set of hyperedges E ⊆
(

V
3

)

is a collection
of 3-element sets of vertices. Here we shall only consider graphs and 3-uniform
hypergraphs and when we are referring simply to a hypergraph we will always mean
a 3-uniform hypergraph. Despite considerable effort no formula similar to (1) is
known or conjectured to hold for general 3-uniform hypergraphs F . Determining
the value of π(F ) is a well known and hard problem even for “simple” hypergraphs

like the complete 3-uniform hypergraph K
(3)
4 on four vertices, which is also called

the tetrahedron. Currently the best known bounds for its Turán density are

5

9
≤ π(K

(3)
4 ) ≤ 0.5616 ,

where the lower bounds is given by what is believed to be an optimal construction
due to Turán (see, e.g., [2]). The upper bound is due to Razborov [6] (see also
Baber and Talbot [1]) and its proof is based on the flag algebra method introduced
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by Razborov [5]. For a thorough discussion of Turán type results and problems
for hypergraphs we refer to the recent survey of Keevash [4].

1.1. Uniformly dense hypergraphs. We consider a variant of Turán type ques-
tions in connection with uniformly dense hypergraphs. Roughly speaking, a uni-
formly dense hypergraph has the property that a specified class of witnesses always
induces at least a given proportion of all possible hyperedges on these witnesses.
Here we will consider the following notion.

Definition 1. A 3-uniform hypergraph H = (V,E) is (d, η, )-dense if for every
subset X ⊆ V of vertices and every subset of pairs of vertices P ⊆ V × V the
number e (X,P ) of pairs (x, (y, z)) ∈ X × P with {x, y, z} ∈ E satisfies

e (X,P ) ≥ d |X | |P | − η |V |3 .
We are interested in Turán densities for -dense hypergraphs given by the

following function. For a 3-uniform hypergraph F we set

π (F ) = sup
{

d ∈ [0, 1] : for every η > 0 and n ∈ N there exists an F -free,

3-uniform, (d, η, )-dense hypergraph H with |V (H)| ≥ n
}

.

The first interesting open case is, when F is the tetrahedron K
(3)
4 . The following

random construction from [8] establishes

(2) π (K
(3)
4 ) ≥ 1

2
.

Example 1. Given any map ϕ :
(

[n]
2

)

→ {red, green} we define the 3-uniform
hypergraph Hϕ with vertex set [n] = {1, . . . , n} by putting a triple {i, j, k} with
i < j < k into E(Hϕ) if and only if the colours of ij and ik differ.

Irrespective of the choice of the colouring ϕ, the hypergraph Hϕ contains no
tetrahedra: for if a, b, c, and d are any four distinct vertices, say with a =
min(a, b, c, d), then it is impossible for all three of the pairs ab, ac, and ad to
have distinct colours, whence not all three of the triples abc, abd, and acd can be
hyperedges of Hϕ.

Moreover, if the colouring ϕ is chosen uniformly at random, then for any η > 0
the hypergraph Hϕ is with high probability (1/2, η, )-dense as n tends to infinity.
This is easily checked using standard tail estimates for binomial distributions.
Consequently, the lower bound (2) follows.

We provide a matching upper bound and show that for K
(4)
3 -free -dense hy-

pergraphs the construction given in Example 1 is best possible.

Theorem 2. For every ε > 0 there exists an η > 0 and an integer n0 such that
every 3-uniform (12 +ε, η, )-dense hypergraph H with at least n0 vertices contains

a tetrahedron. In particular, we have π (K
(3)
4 ) = 1/2.

The proof of Theorem 2 is based on the regularity method for 3-uniform hyper-
graphs combined with Ramsey-type arguments and ideas from extremal combina-
torics. The details can be found in [7].
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Drift Analysis Revisited

Angelika Steger

(joint work with Johannes Lengler)

One of the easiest randomized greedy optimization algorithms is the following
evolutionary algorithm which aims at maximizing a boolean function f : {0, 1}n →
R. This algorithm starts with a random search point x ∈ {0, 1}n, and in each
round it flips each bit of x with probability (or mutation rate) c/n, where c > 0
is the mutation parameter. The thus created offspring x′ replaces x if and only if
f(x′) > f(x). We are interested in the optimization time of f , i.e., in the number
of rounds until a maximum of f is found. Even for the seemingly trivial case that
f is a strictly monotone function (that is, f(x) > f(x′) for all x, x′ so that x 6= x′

and xi ≥ x′i for all 1 ≤ i ≤ n) determining the asymptotic running time turned out
to be far from trivial. One of the first rigorous results in this direction was [6] who
determined the running time for the case that f(x) =

∑n
i=1 xi. For general linear

function it required substantial efforts [5, 7, 8, 4, 3] until Doerr and Goldberg [1]
finally showed that the running time is Θ(n logn) for all constants c > 0. For
general linear functions it is easy to see, cf. e.g. [2], that the running time is also
Θ(n logn) for all 0 < c < 1. However, as it turned out, this is not necessarily so
for larger mutation parameters. Doerr et al. [2] showed that there are monotone
function such that for c > 16 the algorithm takes exponential time.

In this talk we will provide short and elegant proofs for various drift theo-
rem that will allow us to give proofs for the above statements which are simpler
and stronger than previous results. The accompanying paper is completely self-
contained.
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The degree sequence of a random graph

Nick Wormald

(joint work with Anita Liebenau)

The degree sequence of a random graph has received considerable attention, and
indeed was the first major topic dealt with in Bollobás’ seminal book on ran-
dom graphs [3]. Many interesting results are included there, for instance on the
distribution of the kth largest element dk of the sequence was determined quite
precisely when k is small. The book “Poisson Approximation” by Barbour, Holst
and Janson [1] contained much information on the distribution of the number Dk

of vertices of degree k.
Independently of this, the asymptotic numbers of graphs with given degrees

were considered by various authors, culminating in papers giving asymptotic for-
mulae for a wide range of degrees, provided the average degree d is in the range
d = o(

√
n) (see McKay and Wormald [4]) or between cn/ logn and n/2 for a cer-

tain c (see [5], and more recently [2] for a wider spread of degrees, but similar
density). The complementary ranges larger than n/2 are automatically implied.

In [6], McKay and Wormald, found that the asymptotic formulae derived in both
sparse and dense cases can be recast into a common form, and conjectured that this
form holds for all densities (except in some trivial cases). To present the conjecture,
we first make some definitions. Let An and Bn be two sequences of probability
spaces with the same underlying set for each n. Suppose that for all events Hn

having probability at least n−K for all K, it is true that PAn(H) ∼ PBn(H). Then
we say that An and Bn are asymptotically quite equivalent (a.q.e.). We assume that
a graph on n vertices has vertex set v1, . . . , vn and degree sequence (d1, . . . , dn), so
that d(vi) = di. If G is a (random) graph, let D(G) be its (random) degree sequence,
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and define Bp(n) to be the random sequence consisting of n independent binomial
variables Bin(n− 1, p).

Given m, set p = m/
(

n
2

)

. In [6] it was conjectured that for p(1 − p) =

ω(logn/n2),

(i) D(G(n,m)) and Bp(n) |Σ=2m are a.q.e.
(ii) D(G(n, p)) and Bp̂(n) |Σ is even are a.q.e.,

where Σ denotes the sum of the components of the random vector Bp(n), and p̂ has
a randomly chosen value that is tightly concentrated near p. It is shown in [6] that,
if true for a given function m (and p), (ii) implies that general classes of properties
of D(G(n, p)) can be derived by transferring results from the independent binomial
model Bp(n). (This is done be showing how to deal with the conditioning on
parity, and also the integration implicit in p̂.) It is also observed, from the known
asymptotic formulae, that (i) and (ii) hold when p = o(1/

√
n) or p(1 − p) >

n/c logn.
The condition on p in both cases is just enough to ensure that the number of

edges in both the graph and its complement grows somewhat faster than logn.
The conjectures were actually made in a stronger form, in terms of the asymp-

totic numbers of graphs with degree sequences that have the degrees in the typical
ranges for the random graphs.

Using methods that are quite different from those previously used for this prob-
lem, we prove that all of these conjectures hold by establishing them for all p in
the gap. This shows that for instance the asymptotic formula for the number of
d-regular graphs conjectured in [6] is valid for all functions d of n.

We outline some of the main elements of our approach. Let d ≤ n, let d
denote a non-negative integer sequence of length n such that the entries sum to
2m = dn. Let G(d) denote the set of graphs with degree sequence d, and put
N(d) = |G(d)|. We first compare N(d) to N(d − ei + ej), the degree sequence
obtained by decreasing di by 1, and increasing dj by 1, for 1 ≤ i, j ≤ n.

For simplicity of notation, fix i = 1, j = 2, and let G be a graph in G(d)
with a distinguished edge incident to v1. The number of such objects is d1N(d).
Disconnecting the distinguished edge from v1 and reconnecting it to v2 (i.e. if the
edge is v1vi, deleting it and adding v2vi), produces a graph G′ ∈ G(d − e1 + e2)
with a distinguished edge incident to v2, unless this switching produces a loop
(whence the distinguished edge is v1v2) or a double edge (whence v2vi is already
an edge in G). Let Bad(v1, v2,d) denote the probability that this happens when
G is chosen uniformly at random from G(d) and the distinguished edge is chosen
uniformly at random from all edges incident to v1. Then the number of admissible
switchings is

d1N(d)(1 − Bad(v1, v2,d)).

Conversely, let G′ ∈ G(d − e1 + e2) with a distinguished edge incident to v2, say
v2vi. Then G′ is obtained through a switching as described above unless v1vi is
an edge in G′ or the distinguished edge is v1v2. The number of such graphs with
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a distinguished edge, and hence the number of admissible switchings, is

(d2 + 1)N(d− e1 + e2)(1 − Bad(v2, v1,d− e1 + e2)).

It follows that

(1) R12(d) :=
N(d)

N(d− e1 + e2)
=
d2 + 1

d1
· 1 − Bad(v2, v1,d− e1 + e2)

1 − Bad(v1, v2,d)
.

The probability Bad(v1, v2,d) can be expressed in terms of various quantities
Pij(d

′), the probability of the edge vivj in a graph G that is drawn uniformly at
random from G(d′), where d′ is a degree sequence quite similar to d. Without
loss of generality, we may focus on P12(d). We obtain the following identity by
considering a distinguished edge incident to v1:

(2) P12(d) = d1

(

n
∑

i=2

R2i(d− ei)
1 − P1i(d− e1 − ei)

1 − P12(d− e1 − e2)

)

.

Using the recursive identities (1) and (2), we can eventually show, under suitable
assumptions on d, that

P12(d) =
d1d2(n− d)

(n− 1)(dn− dd1 − dd2 + d1d2)
+O(δ(n)σ∗/dn)

and

(3) R12(d) =
d2(n− d1)

d1(n− d2)

(

1 − d1 − d2
dn

)

+O(δ(n)σ∗/dn),

where δ(n) is an upper bound on maxi |di − d|, and σ∗ =
∣

∣

∣1 −
∑

i(di−d)2

dn

∣

∣

∣ .

For almost all degree sequences of the random graph G(n, p), under suitable

assumptions on p, we have
∑

i |di−d| = O(n
√
d) and the relative error term in (3)

is o(1/n
√
d). For such a degree sequence d, the ratio of N(d) to N(d0), where d0

is nearly regular, is a product of O(n
√
d) separate ratios given by (3). Hence the

relative error in the resultant ratio is o(1). The conditions on p mentioned above
are satisfied provided that

p = o(1/
√

logn)

and also that p grows sufficiently quickly. Hence, for all such p, the ratios agree
with the binomial conjecture mentioned above. From this we are able to show that
the conjecture holds in full.

More accurate estimates of the error terms allow us to find asymptotic formu-
lae for the numbers of graphs of given degrees for a quite wide range of degree
sequences. We also obtain similar results for bipartite graphs, directed graphs and
r-uniform hypergraphs.
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Finite reflection groups and graph norms

David Conlon

(joint work with Joonkyung Lee)

Let H be a graph and f : [0, 1]2 → R be a Lebesgue integrable function. Consider
the integral

∫

∏

ij∈E(H)

f(xi, xj)dµ
|V (H)|,(1)

where µ is the Lebesgue measure on [0, 1]. If we choose f so as to model the adja-
cency matrix of a graph G, the integral above corresponds to the homomorphism
density tH(G), which plays a key role in extremal graph theory. In particular,
when H is a cycle of length 4, (1) becomes the fourth power of the Gowers unifor-
mity norm, which measures the quasirandomness of f . More generally, when H is
an even cycle, (1) corresponds to the well-known Schatten–von Neumann norms in
operator theory, while a suitable hypergraph generalisation is related to Gowers’
octahedral norms.

A natural question, proposed by Lovász, is to determine those graphs H for
which the integral (1) gives a (semi-)norm. Formally, we say that a graph H is
norming if the functional defined by

‖f‖H :=

∣

∣

∣

∣

∣

∣

∫

∏

ij∈E(H)

f(xi, xj)dµ
|V (H)|

∣

∣

∣

∣

∣

∣

1/|E(H)|

(2)

is a semi-norm, and H is weakly norming if

‖f‖r(H) :=





∫

∏

ij∈E(H)

|f(xi, xj)|dµ|V (H)|





1/|E(H)

(3)

is a norm. It is easy to check that every norming graph is also weakly norming.
The study of (weakly) norming graphs was initiated by Hatami [2]. A moment’s

thought shows that H is necessarily bipartite whenever it is weakly norming.
In [2], Hatami showed that hypercubes and complete bipartite graphs are weakly
norming. He also observed that for even cycles, ‖·‖C2k

corresponds to the classical
Schatten–von Neumann norms, and hence even cycles are norming. Subsequently,
Lovász [3] showed that the complete bipartite graphKn,n minus a perfect matching
is weakly norming.



Combinatorics and Probability 1249

We generalise these results, finding a much larger class of (weakly) norming
graphs coming from finite reflection groups that includes all of the known examples.
To give some indication of our results, suppose that k and r are integers with k ≤ r
and P is a polytope. Consider the bipartite graph between k-faces and r-faces of
P indicating their incidence. That is, we place an edge between a k-face and an
r-face if one contains the other. We call this graph the (k, r)-incidence graph of
the polytope P . We then have the following theorem:

Theorem 1. A bipartite graph H is weakly norming whenever it is the (k, r)-
incidence graph of a regular polytope for some k and r.

For example, in an n-dimensional simplex, the k-faces and r-faces naturally
correspond to (k + 1)-element and (r + 1)-element subsets of [n]. Therefore, the
(k, r)-incidence graph of an n-simplex is the inclusion graph between (k + 1)-sets
and (r+1)-sets. In particular, the (0, 1)-incidence graph is the 1-subdivision of Kn,
the (0, n−2)-incidence graph is Kn,n minus a perfect matching, and the (0, n−1)-
incidence graph is the star K1,n, which by tensor powering shows that Km,n is
also weakly norming. Even cycles C2k are the (0, 1)-incidence graphs of regular
k-gons and thus are weakly norming. More generally, by considering the (0, 1)-
incidence graph of any regular polytope, such as hypercubes, the icosahedron, or
the dodecahedron, we see that their 1-subdivisions are weakly norming.

When proving that ‖ · ‖r(H) is a norm, all of the difficulties lie in proving
the triangle inequality. Hatami’s work in [2] started from the observation that a
Hölder-like inequality is equivalent to the triangle inequality for ‖ · ‖r(H). To state
his condition, we have to introduce some notation that slightly generalises (2) and
(3). Let m = |E(H)| and let χ : E(G) → [m] be a (not necessarily proper) edge
colouring of H . Consider a family F = {f1, f2, · · · , fm} of integrable functions
on [0, 1]2, indexed by 1, 2, · · · ,m. Now define a multilinear product 〈·〉H of m
functions with respect to χ by

〈F ;χ〉H :=

∫

∏

e=ij∈E(H)

fχ(e)(xi, xj)dµ
|V (H)|.(4)

Note that if fi = |f | for all i = 1, 2, · · · ,m, then 〈F ;χ〉H = ‖f‖|E(H)|
r(H) , while

if fi = f , then | 〈F ;χ〉H | = ‖f‖|E(H)|
H . In [2], it was shown that the triangle

inequality for ‖ ·‖r(H) is equivalent to showing that the following inequality is true
for all choices of F and χ:

〈F ;χ〉H ≤
∏

e∈E(H)

‖fχ(e)‖r(H).(5)

Furthermore, ‖·‖H is a semi-norm if and only if the inequality obtained by replacing
‖fχ(e)‖r(H) with ‖fχ(e)‖H holds.

Suppose the functions f1, · · · , fm correspond to m distinct graphs on the same
vertex set and imagine each edge of fi has the colour i. Then 〈F ;χ〉H is the number
of (homomorphic) copies of H which are coloured according to χ, i.e., each edge
e ∈ E(H) receives the colour χ(e). In particular, if χ is a one-to-one map then
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〈F ;χ〉H counts the number of ‘rainbow’ copies of H , while ‖fi‖|E(H)|
r(H) counts the

number of monochromatic copies of H in colour i. Thus, (5) is equivalent to
the statement that the number of rainbow copies of H is bounded above by the
geometric mean of the number of monochromatic copies in each colour.

Let f be a function on [0, 1]2, fix an edge e∗ of H , and put χ(e∗) = 1, f1 = |f |,
and f2 = f3 = · · · = fm = 1. Then 〈F ;χ〉H = ‖f‖r(K2), where K2 is just a single
edge, so (5) implies that

‖f‖r(K2) ≤ ‖f‖r(H).(6)

That is, when H is weakly norming, H satisfies Sidorenko’s conjecture, which says
exactly that for any bipartite graph H and any f an inequality of the form (6)
holds. Sidorenko’s conjecture is one of the major open problems in extremal graph
theory, and there has been much recent work verifying the conjecture for a widening
class of graphs. As noted above, all weakly norming graphs also satisfy Sidorenko’s
conjecture. However, this is not the only application of our results to Sidorenko’s
conjecture. By applying the entropy techniques developed in [1, 4], weakly norming
graphs can also be used as building blocks for constructing new graphs that satisfy
the conjecture.
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Successive minimum spanning trees

Svante Janson

(joint work with Gregory Sorkin)

Consider the complete graph Kn with edge costs that are i.i.d. random variables,
with a uniform distribution U(0, 1) (or, alternatively, an exponential distribution
Exp(1)). A well-known problem is to find the minimum (cost) spanning tree T1,
and its cost c(T1). A famous result by Frieze [2] shows that as n→ ∞, c(T1)
converges in probability to ζ(3). (In both the uniform and exponential cases.)

Suppose now that we want a second spanning tree T2, edge-disjoint from the
first, and that we select it in a greedy fashion by first finding the minimum spanning
tree T1, and then the minimum spanning tree T2 using only the remaining edges.
(I.e., the minimum spanning tree in Kn \ T1, meaning the graph with edge set
E(Kn) \ E(T1).) We then continue and define T3 as the minimum spanning tree
in Kn \ (T1∪T2), and so on. We show that the costs c(T2), c(T3), . . . also converge
in probability to some constants.



Combinatorics and Probability 1251

Theorem 1. For each k ≥ 1, there exists a constant γk such that, as n→ ∞,

c(Tk)
p−→ γk (for both uniform and exponential cost distributions).

The result extends easily to other distributions of the edge costs, by standard
arguments, but we consider in here only the uniform and exponential cases.

By Frieze [2], γ1 = ζ(3). The constants γk for larger k are given by some
expressions in the proof, but not in a form that is easily evaluated since they involve
solutions of some non-linear functional equations (which furthermore involve a
parameter). We can show the following bounds, which imply that γk is roughly
2k for large k:

(1) k2 ≤
k
∑

i=1

γi ≤ k2 + k, k ≥ 1

and

(2) 2k − 2k1/2 < γk < 2k + 2k1/2, k ≥ 1.

A minor technical problem is that T2 (and T3, . . . ) does not always exist; it
may happen that T1 is a star and then Kn \T1 is disconnected. This happens only
with a small probability, and w.h.p. (with high probability, i.e., with probability
1−o(1) as n→ ∞), Tk is defined for every fixed k. However, we avoid this problem
completely by modifying the model: we assume that we have a multigraph with
an infinite number of copies of each edge in Kn, and that these have the costs
given by the points in a Poisson process with intensity 1 on [0,∞). (The Poisson
processes for different edges are, of course, independent.) Note that when finding
T1, we only care about the cheapest copy of each edge, and its cost has an Exp(1)
distribution, so the problem for T1 is the same as the original one. However, we
now never run out of edges and we can define Tk for all integers k = 1, 2, 3, . . . .
Asymptotically, the three models are equivalent, and Theorem 1 holds for any of
the models.

The multigraph model, moreover, is useful in our proofs because of the added
independence.

Frieze [2] also proved that the expectation E c(T1) converges to ζ(3). For the
multigraph model just described, this too extends.

Theorem 2. For the multigraph model, E c(Tk) → γk for each k ≥ 1 as n→ ∞.

Remark 3. However, for the simple graph Kn with, say, exponential costs, there
is as said above a small but positive probability that Tk does not exist for k ≥ 2.
Hence, either E c(Tk) is undefined for k ≥ 2, or (better) we define c(Tk) = ∞ when
Tk does not exist, and then E c(Tk) = ∞ for k ≥ 2 and every n. Hence Theorem 2
does not hold for simple graphs, and the multigraph model is essential for studying
the expectation.

Remark 4. Frieze and Johansson [3] recently considered a related problem, where
instead of choosing spanning trees T1, T2, . . . greedily one by one, they choose k
edge-disjoint spanning trees with minimum total cost. It is easy to see, by small
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examples, that selecting k spanning trees greedily one by one does not always
give a set of k edge-disjoint spanning trees with minimum cost, so the problems
are different. We can also show that, at least for k = 2, the two problems also
asymptotically have different answers, in the sense that the limiting values of the
minimum cost (which exist for both problems) are different.

The proofs are, as in many other previous papers on the random minimum
spanning tree problem, based on Kruskal’s algorithm which processes the edges
in order of increasing cost and keeps the ones that join two different components
in the forest obtained so far. (I.e., it keeps the edges that do not form a cycle
together with some previously chosen edges.) The second minimum spanning tree
can then be found by another application of the same algorithm to the remaining
edges, and so on.

The results are proved by considering a random (multi)graph process, where
copies of each edge ij arrive as a Poisson process with intensity 1/n; an edge
arriving at time t has cost t/n. We let G1(t) be the multigraph formed by the
edges that have arrived at time t. We run Kruskal’s algorithm and let F1(t) be
the forest formed by the edges selected up to time t for the minimum spanning
tree T1. We let G2(t) be the multigraph consisting of the edges in G1(t) \ F1(t),
and let F2(t) be the forest formed by the edges selected up to time t by Kruskal’s
algorithm applied to G2(t), and so on. We show, by induction in k, that each
Gk(t) is an example of an inhomogeneous random graph of the type studied in
[1]; results from [1] thus yield results on the (asymptotic) structure of Gk(t), in
particular on the existence and size of a giant component, and these structural
results are used to show the theorems above on the cost c(Tk).
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Prof. Dr. Béla Bollobás

Department of Pure Mathematics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UNITED KINGDOM

Prof. Dr. Amin Coja-Oghlan

Institut für Mathematik
Goethe-Universität Frankfurt
Robert-Mayer-Straße 6-10
60325 Frankfurt am Main
GERMANY

Dr. David Conlon

Mathematical Institute
Oxford University
Woodstock Road
Oxford OX2 6GG
UNITED KINGDOM

Zeev Dvir

Department of Computer Science
Princeton University
35 Olden Street
Princeton, NJ 08544-5233
UNITED STATES

Prof. Dr. Jacob Fox

Department of Mathematics
Stanford University
Stanford, CA 94305-2125
UNITED STATES

Prof. Dr. Ehud Friedgut

Department of Mathematics
The Weizmann Institute of Science
P. O. Box 26
Rehovot 76100
ISRAEL

Prof. Dr. Zoltan Furedi

Alfred Renyi Institute of Mathematics
Hungarian Academy of Sciences
P.O.Box 127
1364 Budapest
HUNGARY



1254 Oberwolfach Report 22/2016

Prof. Dr. David Gamarnik

Massachusetts Institute of Technology
Sloan School of Management
E 53 - BS 7
77 Massachusetts Avenue
Cambridge MA 02139-4307
UNITED STATES

Dr. Karen Gunderson

Department of Mathematics
University of Manitoba
Winnipeg, MB R3T 2N2
CANADA

Prof. Dr. Penny E. Haxell

Department of Combinatorics
and Optimization
University of Waterloo
Waterloo, ONT N2L 3G1
CANADA

Samuel Hetterich

Institut für Mathematik
Goethe-Universität Frankfurt
Postfach 111932
60054 Frankfurt am Main
GERMANY

Dr. Cecilia Holmgren

Matematiska Institutionen
Uppsala Universitet
Box 480
751 06 Uppsala
SWEDEN

Prof. Dr. Svante Janson

Matematiska Institutionen
Uppsala Universitet
Box 480
751 06 Uppsala
SWEDEN

Prof. Dr. Jeff Kahn

Department of Mathematics
Rutgers University
Piscataway NJ 08854-8019
UNITED STATES

Prof. Dr. Mihyun Kang

Institut für Diskrete Mathematik
Technische Universität Graz
Steyrergasse 30
8010 Graz
AUSTRIA

Prof. Dr. Peter Keevash

Mathematical Institute
Radcliffe Observatory Quarter
Woodstock Road
Oxford OX2 6GG
UNITED KINGDOM

Prof. Dr. Jeong Han Kim

Department of Mathematics
Yonsei University Graduate School
50 Yonsei-Ro, Seodaemun-Gu
Seoul 120-749
KOREA, REPUBLIC OF

Prof. Dr. Yoshiharu Kohayakawa

Instituto de Matematica e
Estatistica
Universidade de Sao Paulo (IME-USP)
Rua do Matao 1010
Sao Paulo 05508-090 - SP
BRAZIL

Prof. Dr. Michael Krivelevich

School of Mathematical Sciences
Sackler Faculty of Exact Sciences
Tel Aviv University
Tel Aviv 69978
ISRAEL



Combinatorics and Probability 1255

Dr. Jonathan D. Lee

Merton College
Oxford University
Oxford OX1 4JD
UNITED KINGDOM

Dr. Johannes Lengler

Institut für Theoretische Informatik
ETH Zürich
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SWITZERLAND

Prof. Dr. Tibor Szabo

Institut für Mathematik & Informatik
Freie Universität Berlin
Arnimallee 6
14195 Berlin
GERMANY

Prof. Dr. Anusch Taraz

Institut für Mathematik (E-10)
Technische Universität Hamburg
Am Schwarzenberg Campus 3
21073 Hamburg
GERMANY

Prof. Dr. Gábor Tardos
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