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Introduction by the Organisers

Since its original development in the mid-nineties by T. Lyons the theory of rough
paths, based on the profound insight that stochastic differential equations can be
solved pathwise and that the solution map is continuous in suitable rough path
metrics, has grown into a mature and widely applicable mathematical theory.
Spectacular recent progress was made by Hairer (workshop participant, Fields
Medal 2014) and then Gubinelli-Imkeller-Perkowski with their respective exten-
sions of rough paths to “rough fields” (first presented in a similarly-spirited MFO
meeting in 2012), capable of giving meaning and robust solutions theories to a
number of singular non-linear stochastic partial differential equations (SPDEs).

The workshop was held between 1st-7th May 2016. Its aims were twofold: to
develop insights and applications on classical rough path theory on the one side,
and to investigate non-linear SPDEs and regularity structures on the other.

T. Lyons opened the meeting by giving a survey of recent applications of rough
paths to the analysis of data-streams. Other participants presented recent work
in rough differential equations and rough paths. For example, S. Aida, presented
a theory of reflected rough differential equations, A. Deya reported ongoing work
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on the ergodic properties of rough systems. M. Hofmanova presented work on
operator-valued rough paths, in particular applicable to (non-singular) SPDEs.
Y. Inahama showed how rough path continuity can be used in short-time asymp-
totic expansions of hypoelliptic heat kernel at the cut locus. H. Kawabi discussed
non-symmetric random walks on nilpotent covering graphs, naturally related to
Brownian rough paths with perturbed Levy area.

Progress on the side of singular SPDEs was introduced with two survey lectures,
given by H. Weber and A. Chandra on regularity structures and paracontrolled
distributions. These were followed by talks of M. Hairer on a singular SPDE moti-
vated by the geometrical evolution of random loops on manifolds and A. Kupiainen
which explained an approach to singular SPDEs using Wilsonian renormalization
group. L. Zambotti reported on the algebraic structures involved in the renor-
malization of a general class of SPDEs. While numerical approximation schemes
for singular SPDEs were discussed by K. Matetski. With financial applications in
mind, J. Teichmann discussed stochastic integration in the context of processes
with values in spaces of modelled distributions.

Other talks were dedicated to problems in nearby areas of stochastic analysis.
A. Abdesselam addressed the problem of defining pointwise products of singular
random Schwartz distributions using local integrability of moment kernels and
discussed connections with the description of non-linear operation on distribution
given by the Operator Product Expansion. A. Nahmod gave a comprehensive
introduction to the random data approach to the analysis of the low regularity
theory for nonlinear dispersive equations.

Over 50 invited participants attended the workshop. These scientists came
from a diverse set of countries and young mathematicians were especially well-
represented among them. The Mathematisches Forschungsinstitut Oberwolfach
provided the ideal environment for fruitful discussion between participants to de-
velop new collaborations and to enhance the synergy among those working in these
related areas.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Products of Random Distributions and Wilson’s Operator Product

Expansion

Abdelmalek Abdesselam

In this extended abstract we will report on the recent result obtained in [2] which is
a generalization to the non-Gaussian setting of the Wick product construction for
random distributional fields. Assume that we have a collection (OA)A∈B of S ′(Rd)-
valued random variables on some probability space (Ω,F ,P). Suppose they have
moments of all orders, i.e., for all test function f ∈ S(Rd), all A ∈ B and all p ≥ 1,
we have that the real-valued random variable OA(f) ∈ Lp(Ω,F ,P). Let ρ be a
mollifier, namely, a smooth compactly supported function Rd → R with

∫
ρ = 1.

For some fixed number L > 1, and for each r ∈ Z define the rescaled function
ρr(x) = Lrdρ(Lrx). We also define translates of the latter ρr,x(y) = ρr(y − x) for
each point x ∈ Rd. The moments of the given random variables such as

E [OA1(f1) · · · OAn(fn)]

can be seen as continuous n-linear forms on Schwartz space and also, via the
nuclear theorem, as elements of S ′(Rdn). The pointwise correlations or moments
are defined by the limit

〈OA1(x1) · · ·OAn(xn)〉 = lim
r→−∞

E [OA1(ρr,x1) · · · OAn(ρr,xn)]

if it exists.
The first main assumption we make is that these pointwise correlations exist

and are smooth functions on the configuration space Confn, i.e., the set of n-tuples
(x1 . . . , xn) made of distinct points in Rd. Furthermore, we require that moments
are given by integration against such pointwise correlations. More precisely, this
includes the local integrability condition

∫

Kn∩Confn

dx1 . . . dxn | 〈OA1(x1) · · · OAn(xn)〉 | <∞

for every compact K ⊂ Rd, as well as the condition

E [OA1(f1) · · · OAn(fn)] =∫

Confn

dx1 . . . dxn 〈OA1(x1) · · · OAn(xn)〉 f1(x1) · · · fn(xn)

for all f1, . . . , fn ∈ S(Rd).
Given these hypotheses it is trivial to define more complicated pointwise corre-

lations using formal multilinear expansion. For instance if f(x, y) is a function on
Conf2 Then

〈 (OA(x)OB(y)− f(x, y)OC(y)) (OD(z)−OE(u)) OF (v) 〉
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is to be understood as

〈OA(x)OB(y)OD(z)OF (v)〉
− 〈OA(x)OB(y)OE(u)OF (v)〉
− f(x, y) 〈OC(y)OD(z)OF (v)〉
+ f(x, y) 〈OC(y)OE(u)OF (v)〉

which is a well defined function of (x, y, z, u, v) ∈ Conf5. We also assume that
for each field OA we are given a number called the scaling dimension [A] which
governs the short distance singularities on the big diagonal. For instance, we
are requiring that covariance kernels 〈OA(x)OA(y)〉 are bounded by |x − y|−2[A]

(modulo eventual logarithmic corrections) for |x− y| small.
We say that an abstract system of pointwise correlations (eventually with fields

indexed by a set A containing B) satisfies Wilson’s operator product expansion
(OPE) if there exists smooth functions CCA,B(x, y) on Conf2 such that one has
“inside correlations” an expansion of the form

OA(x)OB(y) =
∑

[C]≤∆

CCA,B(x, y)OC(y) + o(|x− y|∆−[A]−[B])

for given cutoff ∆ on scaling dimensions. This allows us to state the second main
hypothesis of our theorem which is the bound ∃η > 0, ∃γ > 0, ∀ǫ > 0, ∃k ∈ N,

∃K > 0,

m+n∏

i=1

1l

{
|yi − xi| ≤ ηmin

j 6=i
|xi − xj |

}
×

∣∣∣∣∣

〈
m∏

i=1

OPEi(yi, xi)

m+n∏

i=m+1

CZi(yi, xi)

m+n+p∏

i=m+n+1

OBi(xi)

〉∣∣∣∣∣ ≤

K

m+n+p∏

i=1

〈xi〉k×
m+n∏

i=1

〈yi〉k×
m∏

i=1

{
|yi − xi|∆i+γ−[Ai]−[Bi] ×

(
min
j 6=i

|xi − xj |
)−∆i−γ−ǫ

}

×
m+n∏

i=m+1

{
|yi − xi|γ ×

(
min
j 6=i

|xi − xj |
)−[Bi]−γ−ǫ

}
×

m+n+p∏

i=m+n+1

(
min
j 6=i

|xi − xj |
)−[Bi]−ǫ

where we used the notation 〈x〉 =
√
1 + |x|2, as well as “OPE” for objects of the

form

OPEi(yi, xi) = OAi(yi)OBi(xi)−
∑

[Ci]≤∆i

CCi

Ai,Bi
(yi, xi)OCi(xi) ,

and “CZ” for objects of the form

CZi(yi, xi) = OBi(yi)−OBi(xi) .

The third needed hypothesis is a mild condition on the kernels CCA,B(x, y) which

means that the corresponding distribution in S ′(R2d) = S ′(Rd) ⊗̂ S ′(Rd) in fact
belongs to the smaller space S ′(Rd) ⊗̂ OM (Rd) (where OM is the space of smooth
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temperate functions) together with a bound of the form |x− y|[C]−[A]−[B] near the
diagonal (modulo eventual logarithmic corrections which explain the ǫ precaution
in the bound above).

Suppose we have a system of abstract pointwise correlations indexed by A =
B ∪ {C∗} satisfying the previous hypotheses and a pair A,B ∈ B such that

CC∗

A,B(x, y) is nonzero and obeys a lower bound of the form |x − y|[C∗]−[A]−[B].
Our main theorem is a construction of the a priori “virtual” field OC∗

as a Borel
measurable functional of the already existing fields (OC)C∈B on our probability
space (Ω,F ,P). Essentially, we define it as a renormalized product of the fields
OA and OB, intuitively given by the formula

OC∗
(x) = lim

y→x

1

CC∗

A,B(y, x)


OA(y)OB(x)−

∑

[C]≤[C∗],C 6=C∗

CCA,B(y, x)OC(x)


 .

Of course, this is to be understood in the sense of distributions and needs proper
smearing with a rescaled mollifier ρr, see [2, Theorem 1] for a more precise state-
ment. We also require the scaling dimensions of the fields to belong to the interval[
0, d2

)
. Indeed, higher scaling dimensions would invalidate our local integrabil-

ity hypothesis on pointwise correlations. The construction of renormalized Wick
products for Gaussian fields as in [3] is the simplest application of our theorem.
However, the latter should also apply in the case of non-Gaussian measures arising
in Euclidean quantum field theory and scaling limits of lattice spin systems such
as the critical long-range Ising model in three dimensions. See [1] for a broader
perspective. Indeed, our new result [2, Theorem 1] shows how to deduce [1, Con-
jecture 9] from [1, Conjecture 8].

References
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Reflected rough differential equations via controlled paths

Shigeki Aida

Let Xs,t = (Xs,t,Xs,t) be a β-Hölder rough path (1/3 < β ≤ 1/2). Let us consider
rough differential equations (=RDEs), dYt = σ(Yt)dXt, Y0 = ξ. The existence of
the solutions were proved by A.M. Davie (2008) under the assumption that σ ∈
Lipγ−1. Note that when γ = n+θ (n ∈ Z+, 0 < θ ≤ 1), Lipγ denotes the set of Cnb
functions such that the n-times deivative is θ-Hölder continuous. Also he proved
that there exist infinitely many solutions to the RDE for a certain σ ∈ Lip2−ε

and for almost all Brownian rough paths. On the other hand, if the state space of
stochastic processes is a domain of a Euclidean space, we need to study stochastic
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differential equations with (normal) reflections at the boundary. The equation
contains the bounded variation term Φ(t) corresponding to the local time term.
By using the Skorohod map, the SDE is transformed to a path-dependent SDE
without reflection term. However we cannot expect the Lipschitz continuity of the
Skorohod map generally. Therefore previous studies on RDEs cannot be applied
directly to RDEs with normal reflection.

Reflected rough differential equations(=RRDEs) are defined on connected do-
mains D. The boundary need not be smooth. As in the work by Lions-Sznitman
and Saisho, we consider the following conditions (A), (B) on the boundary.

Definition 1. We write B(z, r) = {y ∈ Rd | |y − z| < r}, where z ∈ Rd, r > 0.
The set Nx of inward unit normal vectors at the boundary point x ∈ ∂D is defined
by

Nx = ∪r>0Nx,r,

Nx,r =
{
n ∈ R

d | |n| = 1, B(x− rn, r) ∩D = ∅
}
.

(A) There exists a constant r0 > 0 such that

Nx = Nx,r0 6= ∅ for any x ∈ ∂D.

(B) There exist constants δ > 0 and δ′ ≤ 1 satisfying:
for any x ∈ ∂D there exists a unit vector lx such that

(lx,n) ≥ δ′ for any n ∈ ∪y∈B(x,δ)∩∂DNy.

When the domain D satisfies the conditions (A) and (B), the Skorohod problem
associated with a continuous path w ∈ C([0, T ],Rd) with w0 ∈ D̄

yt = wt + φt, yt ∈ D̄ 0 ≤ t ≤ T,

φt =

∫ t

0

1∂D(ys)n(s)d|||φ|||[0,s], n(s) ∈ Nys if ys ∈ ∂D

can be uniquely solved (Saisho, 1987). Here |||φ|||[s,t] denotes the total variation

of φu (s ≤ u ≤ t). We write L(w)(t) = φt. The following is our main theorem of
this talk.

Theorem 1. Assume σ ∈ Lipγ−1(Rd,L(Rn,Rd)). Then there exists a controlled

path (Z,Z ′) ∈ D
2β
X (Rd) and a bounded variation path Φ ∈ V1,β(R

d) with Φ0 = 0
such that

Zt = ξ +

∫ t

0

σ(Zs +Φs)dXs, Z
′
t = σ(Zt +Φt),

Φt = L

(
ξ +

∫ ·

0

σ(Zs +Φs)dXs

)

t

.

Further there exist positive constants C1, C2 such that

‖Z‖β + ‖RZ‖2β + |||Φ|||1,β ≤ C1e
C2ρ̃β(X)ρ̃β(X),

where C1, C2 are constants which depend only on σ, β, γ.
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About the notation above:

ρ̃β(X) =

3∑

i=1

ρβ(X)i, ρβ(X) = ‖X‖β +
√
‖X‖2β,

where ‖X‖2β = sup0<s<t<T
|Xs,t|

(t−s)2β
. V1,β(R

d) is a Banach space consisting of

continuous bounded variation paths Φ satisfying

|||Φ|||1,β := sup
0<s<t<T

|||Φ|||[s,t]
|t− s|β <∞.

In [1], we prove the existence of solutions under that σ ∈ C3
b and the condition,

(H1) Assume (A) and the mapping L appeared in the Skorohod problem satisfies

|||L(w)|||[s,t] ≤ CD max
s≤u,v≤t

|w(v) − w(u)| 0 ≤ s ≤ t ≤ T.

Tanaka (1979) proved that (H1) holds if D is convex and there exists a unit vector
l ∈ Rd such that inf{(l,n(x)) | n(x) ∈ Nx, x ∈ ∂D} > 0. Clearly, these conditions
imply (A) and (B).

Actually, the assumption σ ∈ C3
b can be relaxed to σ ∈ Lipγ−1 by a suitable

modification of the proof in [1]. On the other hand, concerning the boundary
condition, to prove Theorem 1, we use some properties of L which can be proved
by using (A) and (B). The properties of L is much weaker than (H1). Hence
Theorem 1 improves the existence theorem in [1] in this sense too.

Even if σ is sufficiently smooth, at the moment, it is not clear whether the
uniqueness of solutions holds. However, under the assumption in Theorem 1, we
can prove the existence of universally measurable solution mapping. About this
version, we show the support theorem holds.

References

[1] S. Aida, Reflected rough differential equations, Stochastic processes and their applications
125 (2015), 3570–3595.

[2] S. Aida, Reflected rough differential equations via controlled paths, Preprint, 2016.

SDE based regression for random PDEs

Christian Bayer

(joint work with Felix Anker, Martin Eigel, Marcel Ladkau, Johannes Neumann
and John Schoenmakers)

In this presentation, we consider the problem of a PDE with random coefficients.
In contrast to many other presentations at this workshop, we are working in a
linear setting, and the noise is smooth. The purpose of this presentation is, hence,
not to give a meaning to the (solution of the) equation, but rather to solve the
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equation numerically. To fix ideas, we shall consider one particular case, namely
Darcy’s equation,

−∇ · (κ(x)∇u(x)) = f(x), x ∈ D,(1a)

u(x) = g(x), x ∈ ∂D.(1b)

This equation is used to model groundwater flow, but also oil reservoir and many
other similar objects, and has been established as the de-facto benchmark problem
in uncertainty quantification, see for instance [1]. In (1), all the coefficients f, g, κ
can be random fields, but we will mostly concentrate on the field κ. As indicated
above, we assume that κ is smooth (e.g., C2) in space (for instance as obtained
from a Karhunen-Loeve expansion of a rougher fields, or simply by mollification),
and positive (so that we can solve (1) for each individual ω).

Standard techniques for solving (1) include Monte Carlo simulation coupled
with FEM, spectral methods or stochastic collocation methods. We propose an
alternative based on

• point-wise stochastic representation of the solution by a Feynman-Kac
formula (with random vector fields);

• spacial resolution of the solution by Monte Carlo regression.

Suppose that the actual quantity of interest is the function v(x) = E[u(x)],
x ∈ D—or a linear functional thereof. It is worth noting that the proposed method
allows us to directly approximate v, i.e., we do not need a (nested) Monte Carlo
simulation on u (on top of the Monte Carlo regression for u). Indeed, let

(2) dXx
t = ∇κ(Xt)dt+

√
2κ(Xt)dWt, Zxt =

∫ t

0

f(Xs)ds,

started at X0 = x, for a Brownian motion W independent of the random coeffi-
cients κ, f, g, then the Feynman-Kac representation implies

(3) v(x) = E [Φx] , Φx ≡ g(Xx
τ ) + Zxτ , x ∈ D,

τ denoting the first hitting time of ∂D.
Regarding the second step, we assume we are given basis functions φ1, . . . , φK :

D → R. Using Monte Carlo regression, we compute the (L2) projection of v to the
span of these basis functions. To this end, we give ourselves a probability measure
µ on D, sample points x1, . . . , xM ∈ D and, starting from these points, sample Φxi

(with the Wiener process and the random coefficients chosen independent from the
initial point). The principal idea is now to minimize the sum of squares

M∑

i=1


Φxi −

K∑

j=1

αjφ(xj)




2

→ min

in the coefficients α1, . . . , αK . However, since we have full control of both ba-
sis functions and sampling measure µ, it makes sense to choose them in such a
way that the basis functions are orthonormal w.r.t. µ. Define the semi-stochastic
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regression coefficients γ by

(4) γ ≡ 1

M
M⊤Y

with

M ≡ (φk(xi))1≤i≤M,1≤k≤K , Y ≡ (Φxi)1≤i≤M .

The corresponding approximate solution v ≡ ∑K
k=1 γkφk can then be seen to

converge to the true projection with error proportional to 1
M in the MSE sense.

The procedure is visualized In Figure 1.

Figure 1. Regression procedure

Finally, the SDE (2) is solved numerically by an adaptive (to the distance to
∂D) Euler scheme.

The method proposed here is very general and only relies on the existence of a
Feynman-Kac type stochastic representation. Therefore, we think that the method
will also work for those types of rough PDEs, where such a representation exists,
thereby reducing the problem of approximating the rough PDE to the problem of
solving the corresponding rough DE.
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Factorial decay estimates for rough paths

Horatio Boedihardjo

In this talk we will discuss a class of factorial decay estimates in rough path
theory. The motivation for these estimates arise from the study of linear differential
equation. More precisely, let X be a α-Hölder geometric rough path in Rd and
f : Rd → L(Rd,Rd

′

) be a linear vector field. One way to construct a solution for

dYt = f(Yt)dXt

is through Picard’s iteration. Picard’s iteration gives formally the following ex-
pansion for the solution Yt

Yt = Y0 +

∫ t

0

f(Y0)dXs1 +

∫ t

0

∫ s2

0

f [f(Y0)dXs1 ]dXs2 + . . . .

This series for Yt actually converges because of Lyons’ estimate [7] that
∥∥∥
∫ t

0

. . .

∫ s3

0

∫ s2

0

dXs1 ⊗ . . .⊗ dXsn

∥∥∥ ≤ cnα|X |nα−Höltαn
(n!)α

where |X |α−Höl denote the Hölder norm of the branched rough path X . The first
main result of this talk is an analogue of this factorial decay result for branched
rough paths. Branched rough paths are introduced by M. Gubinelli in [4] as a
theory of rough path calculus where the chain rule

d(XY ) = XdY + Y dX

does not necessarily hold. The failure of the chain rule means that, for Branched
rough paths, the Picard’s iteration will involve a lot more terms. These extended
set of terms will be indexed by rooted trees. Applying the Picard’s iteration for
the following differential equation driven by a branched rough path X

(1) dYt = f(Yt)dXt

will give a series expansion looking like

Yt = Y0 + f◦τ1(Y0)X
τ1
0,t + f◦τ2(Y0)X

τ2
0,t + . . .

where Xτ0,t denote the tree-indexed “iterated integral” of Branched rough path
X and f◦τ denote some “tree derivative” of f . We will not go into the precise
definition of Xτ and f◦τ—for our purpose, it’s enough to know that they arise
naturally from the Picard’s iteration. There is a natural notion of factorial of
trees (see [4]) defined in the following way. If • denote the tree with a single
vertex, then

•! = 1.
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If [τ1, . . . , τn]• is the tree obtained by joining the roots of n rooted trees τ1, . . . , τn
to a new root •, and let |τ | denote the number of vertices of a rooted tree τ , then

[τ1, . . . , τn]•! = (|τ1|+ . . .+ |τn|+ 1)τ1! . . . τn!.

The first main result of this talk is the following:

Theorem 1. (Conjectured by Gubinelli [4], proof proposed in [1]) There exists
cγ > 0 such that for all γ-Hölder Branched rough path X and all rooted trees τ ,

|Xτs,t| ≤
c
|τ |
γ |X ||τ |γ−Höl(t− s)γ|τ |

(τ !)γ

where X
τ denote the iterated integrals of X associated with the tree τ and |τ | be

the number of vertices in τ .

The interesting thing about this inequality is that the conventional approach
for proving this inequality—via the “neoclassical” inequality—fails. Our proof is
based on Lyons’ proof [6] in 1994 that does not use the “neoclassical” inequality.
Unfortunately, that proof was constructed for α-Hölder geometric rough paths
where α > 1

2 . The proof for main result Theorem 1 requires an extension of

Lyons’ 94 approach to the Hölder exponent α ≤ 1
2 and (the difficiult bit) to the

branched rough paths.
As mentioned, iterated integrals are interesting because they arise from Picard’s

iteration. There is a slightly different type of approximation, known as the Taylor
expansion, for the rough differential equation (1) with nonlinear vector field f . To

describe the Taylor expansion, we need some more notations. We define dkY
dXk :

Rd → L((Rd)⊗m,Rd
′

) inductively by

dY

dX
= f

dk+1Y

dXk+1
= D(

dkY

dXk
)
dY

dX
= D(

dkY

dXk
)f.(2)

We now define the order-n Taylor expansion by

Γ
(n)
s,t Ys =

n∑

k=0

dkY

dXk
(Ys)

∫ t

s

. . .

∫ s2

s

dXs1 ⊗ . . .⊗ dXsk .

The inductive relation (2) is well defined as dkY
dXk is a function on Rd. The second

main result of this talk is:

Theorem 2. (B., Lyons, Yang [2])Let X be a α-Hölder geometric rough path. Let
f be a Lip(n+ 1) vector field with n > α−1. Let Y be solution to

dYt = f(Yt)dXt.

There exists Cα,f,X > 0, depending only on α, f and X such that

|Yt − Γ
(n)
s,t Ys| ≤

Cn+1
α,f,X

(n+ 1)!α
‖f‖◦n+1‖X‖n+1

α−Höl(t− s)α(n+1)
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where

‖f‖◦n+1 = max
n−⌊α−1⌋+2≤m≤n+1

| d
mY

dXm
|Lip(min(n+1−m,1)).

This inequality builds on earlier work by A.M. Davie (α > 1
3 )[2] and Friz-Victoir

(all α)[3] who proved, under the same assumptions, that

‖Yt − Γns,tYs‖ ≤ Cf,n,X,α‖X‖n+1
α−Höl(t− s)αn.

Our main contribution is in making explicit the dependence of the “constant”
Cf,n,X on n.
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Hopf algebras of coloured forests in Regularity Structures

Yvain Bruned

(joint work with Martin Hairer and Lorenzo Zambotti)

The regularity structures introduced in [5] allow us to describe the solution of a
singular SPDE by a Taylor expansion with new monomials. These monomials are
of the form Πxτ where τ belongs to an abstract space T and where Πx interprets
τ as a distribution center at the point x. For solving a singular SPDE, we smooth
the noise with a mollifier. This procedure depends on a small parameter ε and we

want to pass to the limit for the Π
(ε)
x τ . It happens that some of these monomials

are singular and we need to perform a renormalisation procedure. We use Hopf
algebras in order to build two groups:

• The structure group (Positive renormalisation) which defines Πx and the
map Γxy used for changing the point of our monomials. This construction
has been performed in [5] and the coproduct is close to the Connes-Kreimer
coproduct [4].

• The renormalisation group (Negative renormalisation) which acts on the
model (Πx,Γxy) for proving the convergence. This one is defined through
the extraction-contraction coproduct in [1]. This coproduct has been used
for B-series in [3].
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In the case of the B-series, the interaction of these two Hopf algebras has been
outlined in [2]. But for the framework of regularity structure, these coproducts
act on decorated trees. In order to specify the interaction and to obtain a simple
formula for the renormalised model, we introduce in [1] the notion of coloured
trees. The colours allow us to order the two renormalisations and to remember
which part of the tree has been renormalised before. This information is one of
the key point for preparing the ground for the convergence of the renormalised
model.
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Malliavin Calculus for Regularity Structures: the case of gPAM

Giuseppe Cannizzaro

(joint work with Peter K. Friz and Paul Gassiat)

As it is well-known, the theory of Regularity Structures and the paracontrolled
distributions approach allowed to solve a number of ill-posed stochastic partial
differential equations (SPDEs). Now that local existence and uniqueness have been
established, the common aim is to move forward and investigate finer properties of
the solutions to such equations. Our work tries, in a sense, to go in this direction;
we introduce Malliavin calculus tools in the context of Regularity structures and
prove that the solution u to the generalized parabolic Anderson equation (gPAM),
one standard example to which the theory applies, admits a density with respect
to the Lebesgue measure when evaluated at a space-time point.
Recall that gPAM is formally given by the following non-linear SPDE

(1) (∂t −∆)u = g(u)ξ, u(0, ·) = u0(·).
for t ≥ 0, g sufficiently smooth, spatial white noise ξ = ξ(x, ω) and fixed initial
data u0. Assuming periodic boundary conditions, write x ∈ T

d, the d-dimensional
torus. Now a.s. the noise is a Gaussian random distribution, of Hölder regularity
α < −d/2. Standard reasoning suggests that u (and hence g(u)) has regularity
α + 2, due to the regularization of the heat kernel. But the product of two such
Hölder distributions is only well-defined, if the sum of the regularities is strictly
positive - which is the case in dimension d = 1 but not when d = 2. Hence we
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focus on gPAM in dimension d = 2, along [2] and also Gubinelli et al. [1] in the
already mentioned paracontrolled framework.

A necessary first step in employing Malliavin calculus in this context is an
understanding of the perturbed equation, formally given by

(2) (∂t −∆)uh = g(uh)(ξ + h), u(0, ·) = uh0(·)
where h ∈ H, the Cameron–Martin space, nothing but L2 in the Gaussian (white)
noise case. Proceeding on this formal level and setting vh = ∂

∂ε{uεh}|ε=0, one is
naturally lead to the following tangent equation

(3) (∂t −∆)vh = g(u)h+ vhg′(u)ξ, vh0 (·) = 0.

Readers familiar with Malliavin calculus will suspect (correctly) that vh =
〈Du, h〉H, whereDu is the Malliavin derivative (better: H-derivative) of u, solution
to gPAM as given in (1). Once in possession of a Malliavin differentiable random
variable, such as u = u(t, x;ω) for a fixed (t, x), non-degeneracy of 〈Du,Du〉H will
guarantee existence of a density. We have, loosely stated,

Theorem 1. In spatial dimension d = 2, equations (1),(2),(3) can be solved in
a consistent, renormalized sense (as reconstruction of modelled distributions, on a
suitably extended regularity structure). If the solution u to (1) exists on [0, T ), for
some explosion time T = T (u0;ω), then so does then vh, for any h ∈ L2, and vh

is indeed the H-derivative of u in direction h. At last, conditional on 0 < t < T ,
and for fixed x ∈ T2, the solution u = u(t, x;ω) to gPAM admits a density with
respect to the Lebesgue measure.

In order to prove a Theorem as the one stated above, there is a number of steps
and technical aspects that one has to take into account.

• To solve (1), (2) and (3) it is necessary at first to construct a suitable
regularity structure, which loosely speaking, consists of a list of symbols
representing the abstract counterpart of the processes on which the so-
lution to the equation we aim at solving, continuously depends. If for
(gPAM) this was done in [2] (resulting in Tg), for (2), the very presence
of a perturbation h ∈ L2 forces us to introduce a new symbol H , which
in turn induces several more and the notion of structure group has to be
revisited for the enlarged structure.

• Once the previous point has been settled, we have to give a meaning
to these symbols. To this purpose, Hairer defines the set of admissible
models for a generic regularity structure T , M (T ), containing those maps
that associate to each symbol a suitable distribution, or better the local
expansion of a distribution around every point and that encode the main
features of our equation. Now, we do not want to consider any admissible
model on our enlarged regularity structure, but only those for which H is
associated to a Cameron-Martin path, i.e. a function h ∈ L2. Therefore,
we introduce two maps, the extension map E, which assigns to every
function in H and admissible model on Tg, a unique admissible model
on the enlarged structure satisfying certain properties (among which the
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one stated above), and the translation map T , which assigns to every
function in H and admissible model on Tg, a unique admissible model on
Tg. Moreover, we show that these maps are both jointly locally Lipschitz
continuous in each of their arguments.

• The fact that it is possible to “lift” the white noise to a suitable model
was shown in [2]. Such a model was obtained as the limit of renormalized
smooth sequences. It is not hard to show that indeed the extension and
translation map commute with the renormalization procedure and, thanks
to their local Lipschitz continuity, we are able to extend and translate this
limiting gaussian model.

• We can now also “lift” our equations to the space of modelled distribu-
tions (the abstract counterpart of the space of Hölder functions), solve
them through a fixed point procedure and show that the solution to the
“abstract” tangent equation is indeed the derivative of the solution to the
abstract (gPAM) via a simple application of the implicit function theorem.
At last one reconstructs the modelled distributions so obtained, via the
reconstruction operator (see [2]).

• Non-degeneracy of 〈Du,Du〉H is established by a novel strong maximum
principle for solutions to linear equations – on the level of modelled dis-
tributions – which may be of independent interest. Indeed, the argument
we give, despite written in the context of gPAM, adapts immediately to
other situations, such as the linear multiplicative stochastic heat equation
in dimension d = 1 where we recover Mueller’s work, [3], and to the linear
PAM equation in dimensions d = 2, 3 for which the result appears to be
new.
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Rough interacting particle systems

Rémi Catellier

(joint work with Ismaël Bailleul)

A classical problem when dealing with interacting particle systems consists at
looking at the dynamic of n particles subject to mean-field interactions in the
drift and driven by some independent Brownian motions

(
X(i)

)
i≥1

, i.e.

(1) dY
(i),n
t = b

(
Y

(i),n
t , µ̄nt

)
dt+ σ

(
Y

(i),n
t

)
dX

(i)
t , Y

(i),n
0 ∼ µ0.
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Here

µ̄nt =
1

n

n∑

k=1

δ
Y

(k),n
t

∈ M1(Rd)

is the empirical measure of the points
(
Y (1),n, · · · , Y (n),n

)
,M1(Rd) is the set of

all regular probability measures on R
d, µ0 ∈ M1(Rd) and b : Rd ×M1(Rd) → R

d

and σ : Rd →
(
Rd

)⊗2
are two enough regular functions. One can think of b as

(2) b(x, µ) =

∫

Rd

b(x, y)dµ(y),

but more general type of functions b will be considered.
A natural question for such a system is the typical behavior of a particle when

n is large. Asymptotically, one expect propagation of chaos, which is equivalent
to the convergence of the measure valued process µ̄n to a limit µ. One can also
wonder more specific behavior of the empirical measure, such as large and moderate
deviations, and central limit theorems.

In the Brownian case, those questions are generally answered thanks to mar-
tingale problems, by looking at non-linear partial differential equations such as
McKean-Vlasov equations, see for example Sznitman [4] for more details. Nev-
ertheless, when the processes

(
X(i)

)
are not Brownian motions, neither semi-

martingales (one can think as fractional Brownian motion), those techniques are
no longer available. A possible answer to that difficulty is to use rough paths
theory, to make sense of the system and to study the empirical measure. Usually
when dealing with rough paths, one regain some continuity properties of the solu-
tion map with respect to the data and one expect that this will also be the case
in this setting.

Formally, if µ̄n converges to µ, one expect that µ satisfies the following couple
equations :

(3)

{
dYt = b(Yt, µt)dt+ σ(Yt)dXt

L(Yt) = µt,

where L(Yt) denotes the law of Yt. We present here a way to make sense of
the previous non-linear rough differential equation, and apply this theory to the
analysis of the interacting particle system (1).

Note that in the rough path setting, these questions have been studied previ-
ously by Cass and Lyons [2] when the drift b is of the form (2) and for general
diffusivity σ. For the same kind of drifts, with σ = id and for Brownian motions,
Deuschel, Friz, Maurelli and Slowik [3] have studied some special kind of large
deviation principles for the empirical measure.

The non-linear system: strategy. We want to solve the system (3) when X

is a random 1
p -Hölder geometric rough path. Furthermore we would like to have

a continuity of the solution (as a measure valued process) with respect to the law
of X.
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The strategy is described in the following steps. We fix a measure valued process
µ : [0, T ] → M1(Rd). Then we solve, in a pathwise sense, the rough differential
equation

dY µt = b
(
Y µt , µt

)
dt+ σ

(
Y µt

)
dXt.

Since X is a random rough path, Y µ is a random process, and it defines a measure
valued process L(Y µ). Then we prove that the fixed point problem

L(Y µ) = µ

has a unique solution. Finally we show that this solution is a continuous function
of the law of X.

Topologies. To fulfill such a program, one need to specify the topologies one the
different spaces which are involved. All of these topologies relies on the order of
the rough path p ≥ 1.

On the space M1(Rd) of regular probability measures on Rd, we consider the

trace of the topology of the dual space of C
[p]+1
b , i.e. for all P ,Q inM1(Rd),

d
(
P ,Q) = sup

f∈C
[p]+1
b

‖f‖
C

[p]+1
b

≤1

∣∣〈f,P −Q〉
∣∣.

Let ρ ≥ 1. Let ν be a probability measure on the space of 1
p -Hölder geometric

rough paths. We say that ν has a finite ρ-moment, and we note ν ∈ Eρ if
∫ (

1 + d(X, 0)ρ
)
dν(X) < +∞,

where d is the homogeneous distance on the space of rough paths. On Eρ we
consider the weak topology for the convergence of probability measures, i.e. a
sequence (νn) of elements of Eρ converges to ν ∈ Eρ if for all bounded and con-
tinuous function f from the space of rough paths to R, we have

〈f, νn〉 −→
n→∞

〈f, ν〉.

We are now able to state the main theorem of this analysis.

Theorem. Let p ≥ 1. Let us suppose that x → b
(
x,P

)
is in C

3+[p]
b

(
Rd,Rd

)

uniformly in P , that P → b
(
x,P

)
is Lipschitz continuous from M1(Rd) to R

d

uniformly in x and that σ is in C
2([p]+1)
b

(
Rd, (Rd)⊗2

)
.

Then there exists ρ > p such that for all ν ∈ Eρ and all random rough path X

of law ν, there exists a unique solution µ ∈ C 1
p
(
[0, T ];M1(Rd)

)
to the non-linear

problem (3). Furthermore, the following function is continuous :

F :

{
Eρ → C

(
[0, T ];M1(Rd)

)

ν → µ = F (ν).
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Corollary: the interacting particle system. Thanks to the previous theorem,
we are now able to study the empirical measure of the system (1). We use here a
trick due to Cass and Lyons [2].

Take a sequence of rough paths
(
X(i)

)
i≥1

, fix n ≥ 1 and consider the empirical
measure

ν̄n =
1

n

n∑

i=1

δX(i) .

Then ν̄n ∈ Eρ for all ρ > 1. If the coefficients satisfy the previous hypothesis, one
can show that the solution of the non-linear system (3) driven by a random rough
path X of law ν̄n coincides with the empirical measure of the interacting particle
system (1), hence we have

µ̄n = F (ν̄n).

Since F is a continuous function the asymptotic properties of ν̄n can be easily
transfered to µ̄n. This can be applied when

(
X(i)

)
i≥1

is a sequence of i.i.d. 1
p -

Hölder geometric rough paths of common law ν ∈ Eρ, where ρ is as in the theorem.
In that setting, ν̄n → ν almost surely and verifies a large deviation principle, hence
µ̄n → F (ν) almost surely and thanks to the contraction principle, µ̄n also verifies a
large deviation principle. Note also that this does not relies and the independence
of the previous sequence, but really on its asymptotic behavior.

Extension. When 1 ≤ p < 2, one can also consider interactions in the diffusivity,
and σ has to fulfills the same hypothesis than b. By slightly changing the space
Eρ, and by asking for one degree more of regularity for the coefficients, both
in the measure and the space variables, one can show that F is a continuously
differentiable function. Hence one can also prove moderate deviation principles
and central limit theorems for the empirical measure µ̄n.
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Regularity Structure II

Ajay Chandra

The bulk of my talk was a continuation of the introduction to SPDEs and Mar-
tin Hairer’s theory of regularity structures given by Hendrik Weber. I began by
recalling why the Da Prato - Debussche method for the Φ4

2 stochastic quantiza-
tion equation completely breaks down when treating Φ4

3 - regardless of where one
truncates the Wild expansion for the solution φ the fixed point problem for the
remainder is always ill-posed because the remainder has insufficient regularity to
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define products that appear in this fixed point problem. Here we are operating in
Holder-Besov spaces where there is a canonical product Cα × Cβ → Cα∧β if and
only if α+ β > 0

We adopted the point of view that regularity was the wrong property to demand
of our remainder since the regularity of a product of a pair of functions/distri-
butions, when it can be defined, is determined by the how singular the worst of
the pair is. On the other hand, if we are willing to adopt a more local point
of view, the quality of satisfying homogeneity bound at a specific point behaves
better under the products - given a pair of objects satisfying a homogeneity bound
at a space-time point x with exponents α and β, we are guaranteed their product
will satisfy a homogeneity bound at x with exponent α+ β.

Using this as motivation, we move away from using the global Wild expansion
and instead seek to describe φ as a jet of local expansions - here one generalizes
the classical notion of Taylor series by including indeterminants which represent
certain Gaussian polynomials (Wild trees) built out of the linear solution as mono-
mials in addition to classical polynomials. A key idea is that when the right deter-
ministic and quantitative notion of φ being locally well-approximated by explicit
Gaussian processes is combined with a probablistic algorithm for defining Gauss-
ian polynomials one gets a method of defining products of φ. One can view this
entire procedure as defining a new notion of regularity in which φ has positive
regularity.

After this I described the concept of a “model” which is what allows one to
associate concrete objects to abstract jets. The key content of a model is infor-
mation is (i) a map which associates to each Wild tree indeterminant a concrete
space-time distribution which is the “homogenous incarnation” of that tree and
(b) a family of parallel transport maps which allow one to move this these local
expansions from point to point. In order to define the map of item (a) one must
mollify the underlying driving white noise at some scale ǫ and then subtract renor-
malization constants (which diverge as ǫ ↓ 0) in order to guarantee a limit as the
mollification is removed. However convergence is not enough, one must also per-
form “recenterings” of this process so that these approximations satisfy, uniformly
in ǫ, a homogeneity bound. I then discussed results, obtained in collaboration with
Martin Hairer, which use multiscale techniques from constructive field theory in
order to show that one can define an automatic procedure to perform these renor-
malizations and check that after recentering one again gets convergence along with
the necessary homogeneity bounds.
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Characteristic functions of path signatures

Ilya Chevyrev

(joint work with Terry Lyons)

The signature of a geometric p-rough path x : [0, T ] 7→ G⌊p⌋(Rd) is the solution to
a universal linear differential equation

dS(x)t = S(x)t ⊗ dxt, S(x)0 = 1,

and is given concretely by the sequence of iterated integrals of x. Let E(Rd)

denote the algebra of tensor series over Rd with an infinite radius of convergence,
and G(Rd) the subset of group-like elements of E(Rd). A result of Chen [4] implies

that S(x) take values in the group G(Rd), and it has furthermore recently been
shown that the solution to any rough differential equation driven by x is completely
determined by S(x)T [1].

For a one-dimensional path x : [0, T ] 7→ R, the signature captures precisely the
powers of the increment xT − x0. In particular, for a random one-dimensional
path X : [0, T ] 7→ R, the expected signature, whenever it exists, is given by the
moments of XT −X0. It is natural then to interpret the expected signature of a
general random geometric rough path X : [0, T ] 7→ G⌊p⌋(Rd) (or more generally of

any G(Rd)-valued random variable) as the natural generalization of moments.

To study the expected signature of a G(Rd)-valued random variable, we intro-
duce a suitable notion of a characteristic function. For a Hilbert space H , let
u(H) denote the Lie algebra of anti-Hermitian operators on H . Let A be the

collection of all linear maps M : Rd 7→ u(H), where H varies over all finite dimen-
sional Hilbert spaces H . Every M ∈ A canonically induces a finite-dimensional
unitary representation of the group G(Rd). Our first result ensures that the map

M 7→ E [M(X)] is a meaningful characteristic function of a G(Rd)-valued random
variable X .

Theorem 1 ([6] Corollary 4.12). Let X and Y be G(Rd)-valued random variables.

Then X
D
= Y if and only if E [M(X)] = E [M(Y )] for all M ∈ A.

The proof rests crucially on the fact thatA separates the points of E(Rd), which
in turn follows from the study polynomial identities in unitary Lie algebras [9].

Denoting the expected value of a G(Rd)-valued random variable X by ESig [X ],
the following partial solution to the moment problem is an immediate consequence
of Theorem 1.

Corollary 2 ([6] Proposition 6.1). Let X and Y be G(Rd)-valued random variables
such that ESig [X ] = ESig [Y ]. If ESig [X ] has an infinite radius of convergence,

then X
D
=Y .

The characteristic function M 7→ E [MS(XT )] has been explicitly determined
for all Lévy p-rough paths X in [5], while the associated expected signature has
been determined under suitable integrability conditions in [8] (see also [6] Exam-
ple 6.2).
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To apply Corollary 2, it is important to control the radius of convergence of the
expected signature. In this direction, we have the following result stated in terms
of the local p-variation functional introduced in [2].

Theorem 3 ([6] Corollaries 6.6, 6.18). Let p ≥ 1 and N = N1,[0,T ],p(X) denote

the local p-variation of a random geometric p-rough path X : [0, T ] 7→ G⌊p⌋(Rd).

(1) If E
[
eλN

]
<∞ for all λ > 0, then ESig [S(X)T ] has an infinite radius of

convergence.
(2) If E

[
eλN

]
< ∞ for some λ > 0, then ESig [S(X)T ] has a non-zero radius

of convergence and the map r 7→ E [(rM)S(X)] is analytic on R.

Part (1) of Theorem 3 allows us to apply Corollary 2 to solve the moment
problem, whilst part (2) of Theorem 3 allows us to solve the moment problem

within the subclass of G(Rd)-valued random variables with analytic characteristic
functions.

The integrability condition E
[
eλN

]
< ∞ for all λ > 0 has been shown to hold

for Markovian rough paths [3] and a wide class of Gaussian rough paths [2, 7]
(see also [6] Examples 6.7, 6.8), whilst the integrability condition E

[
eλN

]
<∞ for

some λ > 0 holds for Markovian rough paths first stopped upon exiting a domain
(see [6] Example 6.20).

We note that in the multi-dimensional case d ≥ 2, unlike in the one-dimensional
case d = 1, analyticity of the characteristic function at the origin does not guar-
antee analyticity on all of R for a general G(Rd)-valued random variable (see [6]
Example 6.10).

Finally, we can demonstrate the following analogue of the classical method of
moments.

Theorem 4 ([6] Theorem 6.31). Let (Xn)n≥1 be a sequence of G(Rd)-valued ran-

dom variables such that E [Xn] ∈ E(Rd) for all n ≥ 1. Suppose that E [Xn]

converges to some x ∈ E(Rd) in the weak topology of E(Rd). Then there exists a

unique G(Rd)-valued random variable X such that Xn
D→X and x = E [X ].
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Continuous Schrödinger operator with white noise potential

Khalil Chouk

(joint work with Romain Allez)

The aim of my talk is to explain the construction of the schrödinger operator with
white noise potential on the two dimensional torus T2

R of size R performed in [1].
This operator is formally given by :

H = −∆+ η

Let us first observe that this operator was already constructed in [2] the one
dimensional setting with Dirichlet boundary on an interval of length R by using
the theory of Dirichlet form. Moreover the author show that it have compact
resolvent and compute explicitly the integrated density of state in this case.In
dimension two t he main difficulty with the operator is that the white noise is
a distribution and actually η ∈ C−1−ε for every ε > 0 almost surely. a naive
approach is to define the operator on the Sobolev space H1+ε so that the product
fη for f ∈ H1+ε is well-defined and actually lie in the spaceH−1−ε. Unfortunately
we can see immediately yield to a ”non robust” definition of the operator actually
the operaor construct in this way is not lower semi-bounded. Indeed let

q(f) =

∫
|∇f |2 +

∫
f2η

and XN a solution of
−∆XN = ΠNη

where ΠN is the projection on Fourier mode less thanN . Now pick fN = exp(θXN )
for some constant θ. A quick computation show that

q(fN ) = θ2
∫

|∇XN |2 exp(2θXN ) +

∫
exp(2θXN )η

the main observation now is that when N goes to the infinity
∫

exp(2θXN)η = θ

∫
XNη +O(1)

now the point is that

E|∇XN |2 = XNη =
1

2π
logN +O(1)

and actually we can prove that
∫
|∇XN |2 exp(2θXN ) ∼N→+∞

∫
XNη exp(2θXN)

∼ 1
2π logN

∫
e2θX where X is defined by −∆X = η. Thus for θ small enough

q(fN ) → −∞.

so to avoid this kind problem the philosophical idea is to choose a space of
function f for which the less regular part of −∆f cancel the less regular part of fη.
This heuristic can be made rigorous by using the Bony paraproduct decomposition
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and actually we will take as a domain of the operator the Hilbert space Dη formed
by the function in H1−ε for which f −f ≺ X ∈ H2−ε on this Hilbert space we can
define the operator H in rigorous. And a flavor of this construction is that we
can see our operator as the limit (in the resolvent sense) of classical Schrödinger
operator Hδ = −∆+ ηδ + cδ where ηδ is a smooth mollification of the white noise
and cδ a deterministic diverging constant. Actually we can choose cδ such that the
limit operator H does not depend on the way that we have mollified η. Moreover
we can prove that the ground state energy ΛR1 of the operator H satisfies that

sup
R

|ΛR1 |
logR

< +∞ almost surely ,

and

exp(−cR2 x(1 + o(1))) ≤ P(ΛR1 ≤ −x) ≤ exp(−cR1 x(1 + o(1)))

when x→ +∞, c1, c2 > 0 and where we recall that R is the size of the Torus.
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Sticking rough solutions driven by a fBm and related ergodic issues

Aurélien Deya

(joint work with Fabien Panloup and Samy Tindel)

The purpose of the talk was to give an idea of some of the technical difficulties
related to the ergodic analysis of the rough stochastic system

(1) dYt = b(Yt) dt+ σ(Yt) dB
H
t , Y0 = a ∈ R

d ,

where (BHt )t≥0 stands for an Rd-valued fractional Brownian motion (fBm) with
Hurst index H > 1

3 , and b : Rd → Rd, σ : Rd → L(Rd,Rd) satisfy standard
regularity, dissipativity and non-degeneracy conditions.

When H 6= 1
2 , it is a well-known fact that (BHt )t≥0 is not a Markov process,

and therefore classical ergodic theory and results cannot be applied to the system
(1) in this situation. Some ten years ago, M. Hairer [4] introduced an alternative
strategy based on a sophisticated coupling procedure. His results then included
existence and uniqueness of an invariant measure, as well as a bound on the rate
of convergence (in law) of any solution toward the stationary solution. However,
the analysis in [4] is limited to the sole case of a constant diffusion coefficient σ
(in particular, rough paths interpretation is not even required in this situation).

Extending the procedure of [4] to a more general vector field σ : Rd → L(Rd,Rd)
(that is, to the general rough system), which was essentially the aim of our analysis
in [1], is the source of several additional difficulties. The most delicate transition
issue lies in the so-called sticking (or hitting) step of the machinery. The challenge
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here can be loosely summed up as follows: given an R
d-valued fBm BH on [0, 1] and

two (deterministic) initial conditions a, ã ∈ Rd, construct a continuous (random)

function G = G(BH , a, ã) : [0, 1] → Rd such that the respective solutions Y, Ỹ of
the two systems

(2)
dYt = b(Yt) dt+ σ(Yt) dB

H
t , Y0 = a ,

dỸt = b(Ỹt) dt+ σ(Ỹt)
(
dBHt +Gt dt

)
, Ỹ0 = ã ,

meet at time 1, that is Y1 = Ỹ1, with strictly positive probability. Combining such
a construction with a Girsanov-type property then provides us with the desired
result, namely a control on the possibility to stick any general solution with the
stationary solution, a first step toward the asymptotic properties of the system
(1).

In [1], our strategy to construct the above drift function G is based on the
consideration of the intermediate functional-valued system

(3)

{
dY ξt =

[
b(Y ξt )−

∫ ξ
0 dη J

η
t

]
dt+ σ(Y ξt ) dB

H
t

dJξt = ∇b(Y ξt )Jξt dt+∇σ(Y ξt )Jξt dBHt
,

with initial condition

Y ξ0 = a+ ξ(ã− a) , Jξ0 = ã− a , for every ξ ∈ [0, 1] .

It can indeed be checked that if (Y ξt , J
ξ
t )t∈[0,1],ξ∈[0,1] is a solution of (3) (understood

in the rough sense) and if we define G as Gt := −σ(Y 1
t )

−1
∫ 1

0
dη Jηt , then the

processes Yt := Y 0
t and Ỹt := Y 1

t do satisfy the two equations in (2), as well as the

sticking condition Y1 = Ỹ1.

The advantage of the new formulation (3) of the problem lies in the disap-
pearance of any terminal condition: in brief, the problem is reduced to solving a
particular rough system. Unfortunately, the vector fields involved in (3), as well as
their derivatives, are not uniformly bounded, so that existence of a global solution
on the fixed interval [0, 1] cannot be derived from standard rough paths results,
and small-time explosion phenomenon may actually occurs for some particular
choices of a rough driver (when considering the general rough system).

One of the main results of our analysis consisted in the exhibition of a deter-
ministic constantM =M(a, ã) > 0 such that if ‖BH‖γ;[0,1] ≤M , then the system
(3) indeed admits a unique solution defined on [0, 1], and that this solution also
satisfies appropriate regularity conditions with respect to the parameter ξ. Here,
γ is a fixed parameter in (13 , H) and the notation ‖BH‖γ;[0,1] refers to the usual

γ-Hölder norm on [0, 1] of the canonical rough path above the fBm BH . Once
endowed with this existence result, the conclusion immediately follows from the
strict positivity of the probability P(‖BH‖γ;[0,1] ≤M) (as shown in [3]).

This simplified formulation of the problem however hides a certain number of
additional constraints induced by the non-Markovianity of the fBm and the nec-
essary control on the past dependence throughout the procedure. A possible way
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to express this difficulty is to go back to the Mandelbrot-Van-Ness representation
of the fBm, that is

BHt = αH

∫ 0

−∞

(−r)H− 1
2 (dWr+t − dWr) ,

where (Ws)s∈R is a two-sided Wiener process. With this representation in mind,
the actual quantity that we need to control is the conditional probability P(Y1 =

Ỹ1|(Ws)s≤0), where Y and Ỹ still stand for the solutions of the two equations (2).
As a consequence, our analysis first appeals to the decomposition of BH as the
sum of a smooth past component and a rough innovation component, respectively

DH
t := αH

∫ 0

−∞

{
(t−r)H− 1

2−(−r)H− 1
2

}
dWr and ZHt := αH

∫ t

0

(t−r)H− 1
2 dWr .

The argument then involves an extension of the above-described sticking procedure
that takes this past-innovation splitting into account.

By combining these technical ingredients with the general strategy displayed
in [2], we have indeed been able to extend all the results of [4] (for the additive
case) to a general vector fields σ : Rd → L(Rd,Rd), at least in the situation where
H > 1

3 .
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The parabolic Anderson model on 2-dimensional Riemmanian

manifolds

Joscha Diehl

(joint work with A. Dahlqvist, B. Driver)

The theory of regularity structures [1] is a recent development to solve singular
stochastic partial differential equations. A model equation is the two dimensional
parabolic Anderson model on the 2-dimensional torus. Formally

∂tu = ∆u+ uξ,(PAM)

where u : [0, 1] × T2 → R and ξ is (space) white noise on T2. This equation is
singular in the sense that the solution u is not expected to have enough regularity
to define canonically the product with the distribution ξ. Note that since we are
dealing with white noise in space, Itō’s theory of stochastic integration is also of
no help here.
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Using the theory of regularity structures one handles such equations in the
following way

• assume that u “looks like“ the solution νt =
∫ t
0
Psξds to the additive-noise

equation

∂tν = ∆ν + ξ

• under this assumption, if we somehow define νξ, then uξ is automatically
defined

• define νξ probabilistically
• close the fixpoint argument, i.e.

(1) u ”looks like“ ν

(2) w := Ptu0 +
∫ t
0 Pt−s[usξ]ds, then w ”looks like“ ν

We carry out this program for a 2-dimensional Riemannian manifold M . The
first hurdle to overcome is the fact that polynomials are an essential part for the
local description of u (u “looks like” ν above). There is no canonical (global)
replacement for them on curved spaces. Nonetheless there exist appropriate local
replacements. To be more specific, define

T := R⊕ T ∗M,

with Tx its fiber at x ∈M . Then for a+ b ∈ Tx,
Πx(a+ b) := a+ b exp−1

x (·)
works as a good replacement for linear polynomials. Classical polynomials have
the property that they can be re-expanded around any basepoint. In our case this
holds only true up to a certain order. In particular for a+ b ∈ Tx and y close to
x there is ã+ b̃ ∈ Ty such that

Πx(a+ b)−Πy(ã+ b̃) = O(| · −y|2).
This is enough to make reconstruction work, i.e. the construction of a unique
function/distribution after only knowing its local description (for example in terms
of polynomials and ν in the setting above).

In order to carry out a fixpoint argument for the equation, one needs to quantify
how the convolution with the heat kernel improves regularity. This “Schauder esti-
mate” has to be carried out on the level of the abstract spaces that locally describe
the distributions under considerations. Here we use classical results on asymptotics
of the heat kernel on Riemannian manifolds [2] and show the improvement “by
hand” for every term in the regularity structure for PAM. The heat kernel asymp-
totics are finally also used for renormalization, i.e. the probablistic construction
of νξ mentioned above.
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Regularization by noise for stochastic Hamilton-Jacobi equations

Paul Gassiat, Benjamin Gess

The questions of regularizing effects and well-posedness by noise for (stochastic)
partial differential equations have attracted much interest in recent years. The
principle idea is that the inclusion of stochastic perturbations may lead to more
regular solutions and in some cases even to uniqueness of solutions. However, the
type of noise leading to such an effect is a-priori unclear. Historically, possible
regularizing effects of additive noise have been investigated, e.g. for (stochastic)
reaction diffusion equations

dv = ∆v dt+ f(v) dt+ dWt

in [11] and for Navier-Stokes equations in [6, 7]. In [4, 3, 1], well-posedness and
regularization by linear multiplicative noise for transport equations, that is for

dv = b(x)∇xv dt+∇v ◦ dβt,
have been obtained. We refer to [5] for more details on the literature. Only very
recently, regularizing effects of non-linear stochastic perturbations in the setting
of (stochastic) scalar conservation laws have been discovered in [9]. In particular,
in [9] it has been shown that quasi-solutions to

(1) dv +
1

2
∂xv

2 ◦ dβt = 0 on T

where T is the one-dimensional torus, enjoy fractional Sobolev regularity of the
order

(2) v(t) ∈ Wα,1(T) for all α <
4

5
, t > 0, P-a.s..

This is in contrast to the deterministic case, in which examples of quasi-solutions
to

∂tv +
1

2
∂xv

2 = 0 on T

have been given in [2] such that, for all α > 1
3 ,

v(t) 6∈ Wα,1(T) for all t > 0.

In this sense, the stochastic perturbation introduced in (1) has a regularizing effect.
In [9], the question of optimality of the estimate (2) remained open.

Subsequently, the results and techniques developed in [9] have been (partially)
extended in [10] to a class of parabolic-hyperbolic SPDE, as a particular example
including the SPDE

(3) dv +
1

2
∂xv

2 ◦ dβt =
1

6
∂xxv

3 dt on T.

In [10], the regularity of solutions to (3) was analyzed. More precisely, it was
shown that

(4) v(t) ∈Wα,1(T) for all α <
2

3
, P-a.s..
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However, neither optimality of these results nor regularization by noise could be
observed in this case. That is, the regularity estimates for solutions to (3) proven
in [10] did not exceed the known regularity for the solutions to the non-perturbed
cases

(5) ∂tv +
1

2
∂xv

2 =
1

6
∂xxv

3 or ∂tv =
1

6
∂xxv

3 on T.

The purpose of this project is to provide sharp regularity estimates to a class of
SPDE, in particular including (3), and to prove regularization by noise in this
case. More precisely, sharp estimates are obtained for the L∞ norm of the second
derivative of solutions to SPDE of the type

du+ F (x, u,Du,D2u) dt+
1

2
|Du|2 ◦ dξt = 0 on R

N ,

for F satisfying appropriate assumptions detailed below and ξ being a continuous
function. Before stating the main theorem in detail let us first consider some
concrete examples.

As a first example, as mentioned above, the results answer the question of
optimal regularity and regularization by noise for (3). Indeed, let u be the unique
viscosity solution to the SPDE

du+
1

2
(∂xu)

2 ◦ dβt =
1

6
∂x(∂xu)

3dt, on R.

Then, informally, v = ∂xu is a solution to (3). Our results yield that if β = σB
where B is a standard Brownian motion, then

σ2 > 2 ⇒ v(t) ∈W 1,∞
P-a.s.,

whereas (at least for some choice of initial conditions)

σ2 ≤ 2 ⇒ P-a.s. ∃T > 0, ∀t ≥ T, v(t) /∈W 1,∞.

One actually has the sharp bound

‖∂xv(t)‖L∞ ≤ 1

L+(t) ∧ L−(t)
,

where L+, L− are the solutions to the reflected (at 0+) SDE with dynamics on
(0,∞) given by

dL+ = − 1

L+(t)
dt+ dβt, dL

− = − 1

L−(t)
dt− dβt

and initial conditions

L+(0) =
1

‖(∂xv0)+‖L∞

, L−(0) =
1

‖(∂xv0)−‖L∞

.

This demonstrates that, when the noise coefficient is large enough, the stochastic
perturbation in (3) has a regularizing effect as compared to the non-perturbed
situation

∂tw = ∂xxw
3, on R

for which solutions are known to develop singularities in terms of a blow-up of
‖∂xw‖L∞ .



Rough Paths, Regularity Structures and Related Topics 1351

As a second example, consider hyperbolic SPDE of the form

(6) du + F (x,Du) dt+
1

2
|Du|2 ◦ dβHt = 0, on R

N ,

where βH is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). Typ-
ically, the solutions to the deterministic counterpart

∂tw + F (x,Dw) +
1

2
|Dw|2 = 0 or ∂tw + F (x,Dw) = 0 on R

N

develop singularities in terms of shocks of the derivative, that is, Dw will become
discontinuous for large times, even if w0 is smooth. In contrast, our results yield
that

P(‖D2u(t, ·)‖L∞ <∞) = 1 ∀t > 0,

for u being a solution to (6).
We now proceed to the details of our main result. Roughly speaking, we as-

sume that F satisfies the usual assumptions from the theory of stochastic viscosity
solutions (cf. e.g. [14, 13, 8]) and allows for a control on the rate of loss of semi-
convexity, in the sense that there is a VF ∈ Liploc(R+ \ {0}) such that, for ℓ0 > 0,

(7) D2g ≤ Id

ℓ0
⇒ D2(SF (t, g)) ≤

Id

ℓ(t)
,

where t 7→ SF (t, g) denotes the solution to

∂tw + F (x,w,Dw,D2w) = 0

w(0) = g

and ℓ the solution to

ℓ̇(t) = VF (ℓ(t))

ℓ(0) = ℓ0.

The main theorem then reads

Theorem 1. Assume (7), let ξ be a continuous path and let u be the solution to

du + F (x, u,Du,D2u) dt+ 1
2 |Du|2 ◦ dξt = 0,

u(0, ·) = u0,

with u0 ∈ BUC(RN ) such that D2u0 ≤ Id
ℓ0

(ℓ0 ∈ [0,∞)). Then, for each t ≥ 0,
one has

(8) D2u(t, ·) ≤ Id

Lt
,

where L is the maximal solution to the reflected differential equation on [0,∞)

(9)
dLt = VF (Lt)dt+ dξt on {L > 0} , with Lt ≥ 0,

L0 = ℓ0.
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The proof of this result relies on a two-step approximation procedure. In a first
step, the possibly singular (at zero) vector field V is approximated by Lipschitz
continuous approximations. In the second approximation step, the solution u is
approximated via a Trotter-Kato approach. That is, the approximating solutions
un are constructed via a time-discretization and an operator splitting approach,
thus iteratively solving, for each discrete time-step, the purely deterministic PDE

(10) ∂tw + F (t, x, w,Dw,D2w) = 0

and the pure noise part

(11) dz +
1

2
|Dz|2 ◦ dξt = 0.

For the approximations un, the bound (8) can then be shown by applying As-
sumption (7) for the deterministic step and using semiconvexity estimates similar
to those established in [12] for the stochastic step (11). This yields a time-discrete
version of the bound (8) of the form

D2un(t, ·) ≤ Id

Lnt
where Ln can be regarded as a time-discrete approximation of L. The remaining
technical part of the proof then is to prove convergence of the approximations
un → u and Ln → L.
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The Signature of a Rough Path: Uniqueness and Reconstruction

Xi Geng

The signature of a path is a non-commutative tensor series of iterated path inte-
grals. Heuristically speaking, the description of a path involves its local behaviors
and their interactions, while the signature is a global quantity as it consists of the
total increment, geometric signed area and all higher order “areas” of the under-
lying path. It is widely believed (and surprisingly) that the signature contains
essentially all information about the underlying path.

In as early as 1958, when restricted to the class of piecewise regular and irre-
ducible paths, Chen [2] proved that a path is uniquely determined by its signature
up to translation and reparametrization. However, the class of paths he studied
is very special as it does not reveal a crucial invariance property of the signature
map: a piece along which the path x goes out and traces back does not contribute
to the signature of x. It was after more than five decades that Hambly and Lyons
[4] first gave a complete characterization of this invariance property for the class
of paths with finite length, in terms of a “tree-like” property defined by a height
function.

Since the work of Hambly and Lyons, it has been an important problem to
extend their result to the rough path setting. The fundamental difficulty in the
extension lies in the fact that their technique relies on the nice regularity of the
underlying path and the coarea formula in a crucial way. Moreover, their charac-
terization does not hold any more beyond the bounded variation case since their
tree-like notion actually forces the path to have finite length. To understand the
rough path situation, we need to identify the right notion of the above invariance
property and develop new ideas for the proof.

In a joint work with Boedihardjo, Lyons and Yang [1] in 2015, we proved that
the signature of a rough path X over some Banach space is trivial if and only
if X can be realized as a loop in some real tree. In particular, a rough path is
uniquely determined by its signature up to tree-like equivalence in this sense. For
the sufficiency part, the main idea is to properly construct a piecewise geodesic
approximation of a loop in some real tree. This step involves the basic theory of
real trees. For the necessity part, the main idea is to lift the underlying rough
path to its full signature path in the tensor algebra, and show that every signature
path has a unique reduced form in the sense of non-self-intersection. This gives
rise to a real tree structure on the signature group in a canonical way in terms of
tree-reduced paths.

The uniqueness result for signature establishes an isomorphism between the
space of rough paths modulo tree-like equivalence and the corresponding signa-
ture group. However, our proof of the uniqueness result does not contain any
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information on how to “see” the trajectory of a tree-reduced rough path from its
signature. This drawback is mainly due to the use of the homomorphism property
of the signature map as a starting point. In a recent work of myself [3], we devel-
oped a method to reconstruct a tree-reduced rough path from its signature in an
explicit and universal way. More precisely, let g be the signature of a tree-reduced
rough path X with roughness p. Then we were able to construct a sequence Xn of
piecewise linear paths in the truncated tensor algebra up to degree ⌊p⌋ from the
knowledge of the signature g only, such that

d([Xn], [X]) 6
68D

3
2

N(g)

n
.

Here d is the parametrization-free uniform distance, N(g) is a positive integer de-
termined by the signature g, and DN(g) is the dimensional of the truncated tensor
algebra up to degree N(g). Inspired by a series of probabilistic works, our method
is based on the understanding on certain stability properties associated with the
discrete route of a path in any given geometric configuration of disjoint compact
domains. Hopefully this work will provide us with a constructive understanding on
the uniqueness result for signature and in particular on the inverse of the signature
map.
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Random Strings

Martin Hairer

(joint work with Yvain Bruned, Ajay Chandra and Lorenzo Zambotti)

Given a Riemannian manifold (M, g), take a collection of vector fields σi on M
with the property that, interpreting the σi as first-order differential operators, one
has

∑
i σ

2
i = ∆, where ∆ is the Laplace-Beltrami operator on M. Given these

vector fields, it is natural to consider the stochastic perturbation to the usual
length-shortening flow written in local coordinates as

(⋆) ∂tu
α = ∂2xu

α + Γαβγ(u)∂xu
β∂xu

γ + σαi (u) ξi ,

where the ξi are independent space-time white noises and Γαβγ denotes the Christof-
fel symbols for the Lévy-Civita connection of M.

Unfortunately, it turns out that (⋆) is hopelessly ill-posed. For example, the
best one could hope for, based on the behaviour of the one-dimensional stochastic
heat equation, is that solutions to (⋆) are Hölder regular for exponents less than
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1/2 in space and 1/4 in time. In particular, one expects that the derivatives ∂xu
β

are very badly behaved distributions, so that their product is devoid of canonical
meaning. One natural way of trying to nevertheless give a meaning to (⋆) is in a

more pragmatic way. Take a sequence ξ
(ε)
i of smooth approximations to the ξi (say

by space-time convolution with a fixed mollifier) and consider the corresponding
sequence of solutions uε to (⋆). One then has the following result [1, 2].

Theorem 1. There exists a stochastic process u with values in M-valued loops
such that, as ε→ 0, uε converges weakly to u.

One major difficulty arising when trying to prove such a result with the help of
the theory of regularity structures is that a very high number of renormalisation
constants are needed in order to build a convergent model. One would therefore
like to have a systematic way of a) building a “sufficiently large” group G− acting
on the space of all admissible models for the type of regularity structure (T ,G+)
associated to a singular SPDE like (⋆) and b) having a systematic way of showing

that, given suitable regular approximations ξ
(ε)
i to space-time white noise, one can

find elements gε in G− so that, when acting with gε on the canonical lift of ξ
(ε)
i ,

one obtain a convergent sequence in the space of models.
This is achieved in [1, 2] via a construction with the following ingredients.

Write T̂− for the free algebra generated by all formal expressions appearing in the

usual construction of the regularity structure (T ,G+) and I+ ⊂ T̂− for the ideal
generated by expressions of positive degree. One then constructs

• A map ∆− : T̂− → T̂− ⊗ T̂− endowing T̂− with a bialgebra structure and

T− = T̂−/I+ with a Hopf algebra structure.
• A map ∆− : T → T− ⊗T yielding an action of the group G− of characters
for T− onto T .

• A projection π̂− : T̂− → T̂− onto the subspace spanned by the empty
product, as well as products of strictly negative total degree.

The two maps ∆− are formally defined in virtually the same way and consist
essentially in “extracting and contracting subforests”, as is familiar from renor-
malisation theory in perturbative QFT. One then shows that the action of G− on
T yields indeed in a natural way an action of G− on the space of admissible models
for (T ,G+). Furthermore, given a random linear map Π : T → C∞ satisfying suit-
able admissibility and stationarity properties, one can associate to it a character
g−
Π

for T̂− by setting

g−
Π
(τ) = E(Πτ)(0) ,

and then extending this multiplicatively to all of T̂−. It turns out that there

exists a “pseudo-antipode” Â− : T− → T̂− such that, or a very large class of

approximations ξ
(ε)
i with canonical lifts Π(ε), g−

Π(ε)Â− allows to renormalise the
model in such a way that it converges to a non-trivial limit as ε→ 0.
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Rough Gronwall Lemma

Martina Hofmanová

(joint work with Aurélien Deya, Massimiliano Gubinelli and Samy Tindel)

Lyons [2] introduced rough paths to give a description of solutions to ordinary dif-
ferential equation driven by external time varying signals which is robust enough
to allow very irregular signals like the sample paths of a Brownian motion. How-
ever, attempts to use the rough path theory to study rough path driven PDEs
have been so far limited by two factors: the first one is the need to look at RPDEs
as evolutions in Banach spaces perturbed by one parameter rough signals (in or-
der to keep rough paths as basic objects), the second one is the need to avoid
unbounded operators by looking at mild formulations or Feynman–Kac formulas
or transforming the equation in order to absorb the rough dependence into bet-
ter understood objects (e.g. flow of characteristic curves). These requirements
pose strong limitations on the kind of results one is able to obtain and the proof
strategies are very different from the classical PDE proofs.

In [1] we developed several general tools to deal with RPDEs in the context of
weak solutions, that is distributional relations satisfied by the unknown together
with its weak derivatives. The key problem with rough paths and rough integrals
is the absence of very basic and effective tools like Gronwall lemma. Skimming
over any book on PDEs shows how fundamental this tool is for any nontrivial
result on weak solutions. Our main technical contribution is a strategy to obtain
a priori estimates of Gronwall type for RPDEs via a Rough Gronwall lemma. This
result is not very difficult to prove but, as the standard one, it is the cornerstone of
various arguments aiming at establishing properties of weak solutions to RPDEs
leading to well–posedness.

In order to present the main ideas of our approach towards rough PDEs, let us
consider a toy model of a linear rough heat equation of the form

du = ∆u dt+ V · ∇u dz, x ∈ R
N , t ∈ (0, T ),

u(0) = u0,
(1)

where V = (V 1, . . . , V K) is a family of sufficiently smooth and bounded vector
fields on RN and z = (z1, . . . , zK) can be lifted to a geometric p-rough path for
p ∈ [2, 3). We denote by Z = (Z1, Z2) its rough path lift. Let us insist on the
fact that the linearity of the leading order operator does not play any role and
the discussion below can be easily adapted to quasilinear elliptic or monotone
operators.
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Setting (using the Einstein summation convention)

(2) A1
stu := Z1,k

st V k · ∇u, A2
stu := Z2,jk

st V k · ∇(V j · ∇u)
we observe that A = (A1, A2) defines an unbounded p-rough driver in the scale
En =Wn,2(RN ) and we are lead to the following formulation of (1) which should
be satisfied for every 0 6 s 6 t 6 T and every test function ϕ ∈W 3,2:

(3) δu(ϕ)st =

∫ t

s

ur(∆ϕ)dr + us(A
1,∗
st ϕ) + us(A

2,∗
st ϕ) + u♮st(ϕ)

where u♮ is an W−3,2-valued 2-index map such that for every ϕ ∈ E3 the map

u♮st(ϕ) possesses sufficient time regularity, namely, it has finite local q
3 -variation

for some q < 3 and some regular control.
In order to understand (somehow heuristically) the rough path mechanism, let

us assume that we are able to derive rigorously the equation for u2. This should
yield the following dynamics:

δu2(ϕ)st = −2

∫ t

s

|∇ur|2(ϕ) dr − 2

∫ t

s

(u∇ur)(∇ϕ) dr

+ u2s(A
1,∗
st ϕ) + u2s(A

2,∗
st ϕ) + u2,♮st (ϕ)

(4)

for some new remainder u2,♮. Remark that since u2 is expected to belong to
L1(RN ), the corresponding scale of test function spaces here is En =Wn,∞(RN ),
unlike in (3) where we considered En = Wn,2(RN ). Choosing ϕ = 1 and s = 0
leads to

‖ut‖
2
L2 + 2

∫ t

0

‖∇ur‖
2
L2 dr = ‖u0‖

2
L2 + u

2
0(A

1,∗
0t 1) + u

2
0(A

2,∗
0t 1) + u

2,♮
0t (1)

. ‖u0‖
2
L2

(

1 + |Z1
0t|‖V ‖W1,∞ + |Z2

0t|‖V ‖2W2,∞

)

+ |u2,♮
0t (1)|.(5)

In order to achieve a rough Gronwall lemma type argument, it is now easily seen
that we need to estimate the remainder u2,♮ in terms of the left hand side in (5).
Otherwise stated, our problem is reduced to show that:

|u2,♮0t (1)| .t sup
0≤r≤t

‖ur‖2L2 + 2

∫ t

0

‖∇ur‖2L2 dr

in such a way that the proportional constant can be made sufficiently small pro-
vided t is small. This estimate is the key element of our theory and its applications
are rather wide. The result is presented in full detail and generality in [1, Theorem
2.5].
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Short time full asymptotic expansion of hypoelliptic heat kernel at the

cut locus

Yuzuru Inahama

(joint work with Setsuo Taniguchi)

We discuss a short time asymptotic expansion of a hypoelliptic heat kernel on
an Euclidean space and on a compact manifold. We study the ”cut locus” case,
namely, the case where energy-minimizing paths which join the two points under
consideration form not a finite set, but a compact manifold. Under mild assump-
tions we obtain an asymptotic expansion of the heat kernel up to any order. Our
approach is probabilistic and the heat kernel is regarded as the density of the
law of a hypoelliptic diffusion process, which is realized as a unique solution of
the corresponding stochastic differential equation (SDE). Our main tools are S.
Watanabe’s distributional Malliavin calculus and T. Lyons’ rough path theory.

Our work has the following three features. To our knowledge, there are no
works which satisfy all of these conditions simultaneously:

(1) The manifold and the hypoelliptic diffusion process on it are rather general.
In other words, this is not a study of special examples.

(2) The ”cut locus” case is studied. More precisely, we mean by this that the
set of energy-minimizing paths (or controls) which connect the two points
under consideration becomes a compact manifold of finite dimension.

(3) The asymptotic expansion is full, that is, the polynomial part of the
asymptotics is up to any order.

On an Euclidean space, however, there are two famous results which satisfy (2),
(3) and the latter half of (1). Both of them are probabilistic and use generalized
versions of Malliavin calculus. One is Takanobu and Watanabe [3]. They use
Watanabe’s distributional Malliavin calculus. The other is Kusuoka and Stroock
[2]. They use their version of generalized Malliavin calculus. We use the former.

Though we basically follow Takanobu-Watanabe’s argument in [3], the main
difference is that we use T. Lyons’ rough path theory together, which is something
like a deterministic version of the SDE theory. The main advantage of using rough
path theory is that while the usual Itô map i.e., the solution map of an SDE
is discontinuous, the Lyons-Itô map i.e., the solution map of a rough differential
equation (RDE) is continuous.

This fact enables us to do ”local analysis” of the Lyons-Itô map (for instance,
restricting the map on a neighborhood of its critical point and doing a Taylor-
like expansion) in a somewhat similar way we do in the Fréchet calculus. Recall
that in the standard SDE theory, this type of local operation is very hard and
sometimes impossible, due to the discontinuity of the Itô map. For this reason,
the localization procedure in [3] looks so complicated that it might be difficult to
generalize their method if rough path theory did not exist. Of course, there is a
possibility that our main result can be proved without rough path theory, but we
believe that the theory is quite suitable for this problem and gives us a very clear
view (in particular, in the manifold case).
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A detailed proof can be found in our preprint [1]. We first reprove and generalize
the main result in [3] in the Euclidean setting by using rough path theory. Then, we
study the manifold case. Recall that Malliavin calculus for a manifold-valued SDE
was studied by Taniguchi [4]. Even in this Euclidean setting, many parts of the
proof are technically improved, thanks to rough path theory. We believe that the
following are worth mentioning: (i) Large deviation upper bound. (ii) Asymptotic
partition of unity. (iii) A Taylor-like expansion of the Lyons-Itô map and the
uniform exponential integrability lemma for the ordinary and the remainder terms
of the expansion. (iv) Quasi-sure analysis for the solution of the SDE.
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From non-symmetric random walks on nilpotent covering graphs to

rough paths via discrete geometric analysis

Hiroshi Kawabi

(joint work with Satoshi Ishiwata and Ryuya Namba)

As a fundamental problem in the theory of random walks, Donsker’s invariance
principle has been studied intensively and extensively. In rough path theory, Friz
and coauthors [1, 2] captured the Brownian rough path as the standard CLT-
scaling limit for random walks on a step-2 nilpotent Lie group satisfying some
standard conditions (including zero mean condition). In this report, we discuss this
problem from a viewpoint of discrete geometric analysis initiated by Sunada [6].
We consider a certain class of non-symmetric random walks on nilpotent covering
graphs and obtain a distorted Brownian rough path as the CLT-scaling limit.
In particular, we observe that an effect of the non-symmetry appears only on the
second level path of this rough path. It is closely related to the magnetic Brownian
rough path which was obtained by Friz–Gassiat–Lyons [3] as the small mass limit
of the canonical rough path lift of physical Brownian motion in a magnetic field.

Let X = (V,E) be a locally finite connected graph, where V and E denote the
sets of vertices and oriented edges, respectively. For each edge e ∈ E, the origin,
the terminus and the inverse edge are denoted by o(e), t(e) and e, respectively.
We call X a nilpotent covering graph if there exists a finitely generated torsion
free nilpotent group Γ acting on X on the left freely and its quotient Γ \X is a
finite graph. In other words, X is a covering graph of a finite graph X0 = (V0, E0)
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whose transformation group is a finitely generated torsion free nilpotent group Γ.
Throughout this report, we assume that Γ is step-2 nilpotent.

We introduce a random walk on X . A transition probability is given by a Γ-
invariant non-negative function p : E → R satisfying

∑
e∈Ex

p(e) = 1 (x ∈ V )

and p(e) + p(e) > 0 (e ∈ E), where Ex = {e ∈ E| o(e) = x}. Here p(e) stands
for the probability that a particle at o(e) moves to t(e) along the edge e in one
unit time. It induces the probability measure Px on the set Ωx(X) of all infinite
paths starting from x ∈ V . The random walk associated with p is the (time
homogeneous) Markov chain (Ωx(X),Px, {wn}∞n=0) with values in X . Here wn is
defined by wn(c) := o(c(n + 1)), where c(n) is the nth edge of the infinite path
c ∈ Ωx(X). Then the n-step transition probability p(n, x, y) (n ∈ N, x, y ∈ V )
is given by p(n, x, y) = Px(wn = y). Since p is Γ-invariant, we may project the
random walk on X0.

We assume that the random walk on X0 is irreducible, that is, for every x, y ∈
V0, there exists some n = n(x, y) ∈ N such that p(n, x, y) > 0. (If p(e) > 0 for each
e ∈ E0, this assumption holds.) Then by the Perron–Frobenius theorem, we find
a unique positive function m : V0 → R, called the invariant measure, satisfying

m(x) =
∑

e∈(E0)x

p(e)m(t(e)) (x ∈ V0),
∑

x∈V0

m(x) = 1.

We also write m : V → R for the (Γ-invariant) lift of the invariant measure, and
set m̃(e) = p(e)m(o(e)). Let H1(X0,R) and H1(X0,R) be the first homology group
and the first cohomology group, respectively. We define the homological direction
γp by

γp :=
∑

e∈E0

m̃(e)e ∈ H1(X0,R).

It should be noted that γp = 0 if and only if the random walk is m-symmetric,
i.e., m̃(e) = m̃(e) (e ∈ E0). By virtue of the discrete Hodge–Kodaira theorem, we
identify H1(X0,R) with the space of modified harmonic 1-forms on X0 Hence we
may equip H1(X0,R) with the flat metric

〈〈ω1, ω2〉〉 :=
∑

e∈E0

ω1(e)ω2(e)m̃(e)− 〈γp, ω1〉〈γp, ω2〉 (ω1, ω2 ∈ H1(X0,R)).

By Mal’cev’s theorem, there exists a connected and simply connected nilpotent
Lie group G = GΓ such that Γ is a cocompact lattice in G. Let g be the Lie
algebra of G. Since Γ is step-2 nilpotent, g has a direct sum decomposition of the
form

g = g
(1) ⊕ g

(2) = g
(1) ⊕ [g(1), g(1)].

Let π̂ : G → G/[G,G] be the canoncal projection and we identify G/[G,G] with
g
(1). Then π̂(Γ) is also lattice of G/[G,G] and there is an isomorphism between
π̂(Γ)⊗R and g

(1). Since X is a covering graph of X0 with the transformation group
Γ, there exists a surjective homomorphism from the fundamental group π1(X0) to
Γ. This yields a surjective linear map ρR : H1(X0,R) → π̂(Γ) ⊗ R ∼= g

(1). By
using the map ρR, we can induce the flat metric from H1(X0,R) to g

(1). We call
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the induced metric the Albanese metric on g
(1). We equip G with the Carnot–

Carathéodory metric

dCC(x, y) = inf
{∫ 1

0

|ċ(t)|g(1)dt
∣∣c ∈ AC([0, 1], G),

c(0) = x, c(1) = y, ċ(t) ∈ g
(1)
c(t)

}
(x, y ∈ G),

where AC([0, 1], G) and g
(1)
c(t) denote the set of absolutely continuous curves and the

evaluation of g(1) at c(t), respectively. Let {V1, . . . , Vd} be an orthonormal basis
of g(1) with respect to the Albanese metric. We extend Vi ∈ g (i = 1, . . . , d) to a
left invariant vector field on G in the usual way. Then we have an identification
of G with Rd(d+1)/2 as differential manifold given by

(xi;xij)1≤i<j≤d 7→ exp
( ∑

1≤i≤d

xiVi +
∑

1≤i<j≤d

xij [Vi, Vj ]
)
,

which is called the canonical coordinates of the first kind.
Let Φ : X → G be a Γ-equivalent map such that logΦ|g(1) : X → g

(1) is modified
harmonic. Namely, Φ(γx) = γΦ(x) (x ∈ V, γ ∈ Γ) and

∑

e∈Ex

p(e) log
(
Φ(o(e))−1 · Φ(t(e))

)∣∣
g(1) = ρR(γp) (x ∈ V ).

Here ρR(γp) is called the (g(1)-)asymptotic direction. Although the symmetry of
the random walk implies ρR(γp) = 0, the converse does not hold in general. There

exists such a map Φ and it is uniquely determined on g
(1) up to parallel transform

(cf. [4, 5]). We set

β(Φ) :=
∑

e∈E0

m̃(e) log
(
Φ(o(e))−1 · Φ(t(e))

)∣∣
g(2) =

∑

1≤i<j≤d

β(Φ)ij [Vi, Vj ].

Note that β(Φ) = 0. holds provided the random walk is m-symmetric.
We now fix a reference point x∗ ∈ V such that Φ(x∗) = 1G and put

ξn(c) := Φ(wn(c)), Ξn(c) := log(ξn(c)) (c ∈ Ωx∗
(X)).

We define Y(n)
t := τn−1/2(exp(X (n)

t )) (n ∈ N, t ≥ 0), where τε (ε > 0) is the dilation

operator on G and X (n)
t = Ξ[nt] + (nt− [nt])(Ξ[nt]+1 − Ξ[nt]).

We consider a G-valued diffusion process starting from 1G which solves

dYt =

d∑

i=1

Vi(Yt) ◦ dBit +
∑

1≤i<j≤d

β(Φ)ij [Vi, Vj ](Yt)dt,

where (Bt)t≥0 = (B1
t , . . . , B

d
t )t≥0 is a standard Brownian motion on Rd. If we use

the canonical coordinates of the first kind introduced above, (Yt) is given by

Yt =
(
Bit ;

1

2

∫ t

0

(Bis ◦ dBjs −Bjs ◦ dBis) + tβ(Φ)ij
)
1≤i<j≤d

(t ≥ 0).

Our main result in this report is the following:
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Theorem 1. Under ρR(γp) = 0, we have

(Y(n)
t )t≥0 =⇒

n→∞
(Yt)t≥0 in Cα([0, 1], G) for all α < 1/2.

In other words, Y(n) converges to a distorted Brownian rough path

B =
(
Bt −Bs,

∫ t

s

∫ u

s

dBv ⊗ ◦dBu + (t− s)β(Φ)
)
0≤s≤t≤1

in α-Hölder topology for all α < 1/2, where β(Φ) = (β(Φ)ij)di,j=1 is an anti-

symmetric matrix defined by βji(Φ) = −βij(Φ) for j ≥ i.
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Renormalization Group and SPDE’s

Antti Kupiainen

Nonlinear stochastic PDE’s driven by a space time white noise have been under
intensive study in recent years [1, 2, 3, 4, 5]. These equations are of the form

(1) ∂tu = ∆u+ V (u) + Ξ

where u(t, x) ∈ R
n is defined on Λ ⊂ R

d, V (u) is a function of u and possibly its
derivatives which can also be non-local and Ξ is white noise on R× Λ, formally

(2) E Ξα(t
′, x′)Ξβ(t, x) = δαβδ(t

′ − t)δ(x′ − x).

In order to be defined these equations in general require renormalization. One
first regularizes the equation by e.g. replacing the noise by a mollified version Ξ(ǫ)

which is smooth on scales less than ǫ and then replaces V by V (ǫ) = V +W (ǫ)

where W (ǫ) is an ǫ-dependent ”counter term”. One attempts to choose this so
that solutions converge as ǫ→ 0.

The rationale of such counterterms is that although they diverge as ǫ→ 0 their
effect on solutions on scales much bigger than ǫ is small. They are needed to make
the equation well posed in small scales but they disturb it little in large scales.

Such a phenomenon is familiar in quantum field theory. For instance in quantum
electrodynamics the ”bare” mass and charge of the electron have to be made
cutoff dependent so as to have cutoff independent measurements at fixed scales.
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The modern way to do this is to use the Renormalization Group (RG) method of
Wilson [8] which constructs a one parameter family of effective theories describing
how the parameters of the theory vary with scale.

Such a RG method was applied to SPDE’s in [5] for the case n = 1, d = 3 and

V (u) = u3.

In that case

W (ǫ) = (aǫ−1 + b log ǫ)u

and path wise solutions were constructed recovering earlier results by [1, 2]. In [9]
we considered the equations of Stochastic Hydrodynamics recently introduced by
Spohn [6]. They give rise to the problem (1) with n = 3, d = 1 and

(3) V (u) = (∂xu,M∂xu)

where (·, ·) denotes the standard inner product in R3 and M = (M (1),M (2),M (3))
with M (i) are symmetric matrices, so that (3) can be read component-wise as
Vi(u) = (∂xu,M

(i)∂xu) for i = 1, 2, 3. We construct path wise solutions in this
case by taking

W (ǫ) = aǫ−1 + b log ǫ.

The case n = 1 is the KPZ equation and this was constructed before by Hairer
[7]. In that case b = 0. For a generic Mαβγ in (3) b 6= 0. This counter term is
third order in the nonlinearity. Thus in this case the simple Wick ordering of the
nonlinearity does not suffice to make the equation well posed.
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Weakly asymmetric bridges and the KPZ equation

Cyril Labbé

We consider a discrete bridge from (0, 0) to (2N, 0), that is, a piecewise linear
function S : [0, 2N ] → R with slope ±1 on each interval [k, k + 1) such that
S(0) = S(2N) = 0. Then, we let this bridge evolve according to the corner growth
dynamics: namely, each downwards corner flips into an upwards corner at rate pN ,
and conversely, each upwards corner flips into a downwards corner at rate 1− pN .
We refer to Figure for an illustration. This defines a continuous-time Markov
chain on the finite state-space of discrete bridges. It is simple to check that this
is an irreducible chain, whenever pN 6= 0, 1. Let us point out that this process is
intimately related to the exclusion process with N particles on 2N sites.

We choose to parametrise the asymmetry of the jump rates as follows

pN =
1

2
+

σ

(2N)α
, σ, α ≥ 0 .

The important parameter is α. When it equals +∞, we are in the symmetric
regime, while α = 0 corresponds to a strong asymmetry. Since these two extreme
values lead to well-known behaviour, in the present work we focus on α ∈ (0,∞).

As we are considering an irreducible continuous time Markov chain on a finite state-
space, there exists a unique invariant measure µN whose expression is explicit. It
happens that this measure is also reversible. Our first result concerns the scaling
limit of the invariant measure. To state our result, let us define ΣNα as the mean of
S under µN . For α ≥ 1, we rescale the lattice [0, 2N ] onto [0, 1], and x 7→ ΣNα (x)
is a function from [0, 1] into R, then we set

uN (x) :=
S(x2N)− ΣNα (x)√

2N
, x ∈ [0, 1] .

For α < 1, we need to zoom in a window of order Nα centred at site N in
order to see non-trivial fluctuations and therefore x 7→ ΣNα (x) is a function from

0 2N

rate pN

rate 1 − pN

Figure 1. An example of interface.
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[−N/(2N)α, N/(2N)α] into R. Then, we set

uN(x) :=
S(N + x(2N)α)− ΣNα (x)

(2N)
α
2

, x ∈ [−N/(2N)α, N/(2N)α] .

Theorem 1. Under the invariant measure µN , we have uN ⇒ Bα as N → ∞.
The process Bα is a Brownian bridge on [0, 1] when α > 1. For α = 1, resp. α < 1,
it is the image of a Brownian bridge on [0, 1] through a deterministic time change
that maps [0, 1] onto itself, resp. onto R.

We now turn our attention to the dynamics. First, let us mention that it is
possible to characterise the dynamics at equilibrium: one gets fluctuations that
evolve according to a linear stochastic heat equation in the scaling limit. We do
not provide the details here, and refer the interested reader to [9].

Let us ask the following question: suppose we start from some initial profile S0

at time 0, how does the dynamical interface reach its stationary state ? In other
terms, we want to characterise the hydrodynamical limit of our process. To that
end, we set

mN (t, x) :=
S(t(2N)2, x2N)

(2N)2−α
, t ≥ 0 , x ∈ [0, 1] ,

when α ∈ [1, 3/2). In the case α < 1, we set

mN (t, x) :=
S
(
t(2N)α+1, x2N

)

2N
, t ≥ 0 , x ∈ [0, 1] .

Theorem 2. The process mN converges in probability, in the Skorohod space
D([0,∞), C([0, 1])), to the deterministic process m where:

(1) ∂tm = 1
2∂

2
xm+ σ, when α ∈ (1, 3/2),

(2) ∂tm = 1
2∂

2
xm+ σ

(
1− (∂xm)2

)
, when α = 1,

(3) ∂tm = σ
(
1− (∂xm)2

)
, when α < 1.

Additionally, in all three cases, m satisfies Dirichlet boundary conditions.

Compare these three PDEs and observe that, as α decreases, the asymmetric
term becomes predominant. Actually, the last equation is not well-defined and we
need to work at the level of the derivative of the interface in order to establish a
rigorous result. We refer to [9] for more details.

We now concentrate on the case α < 1. It happens that the solution of the PDE
in that case is explicit:

m(t, x) = σt ∧ x ∧ (1− x) .(1)

Essentially, the interface grows evenly, at speed σ, until it reaches the maximal
shape x ∧ (1 − x). It is then natural to ask for the fluctuations around this
hydrodynamical limit.

It appears that this question is related to a famous result of Bertini and Gia-
comin [1] on the Kardar Parisi Zhang (KPZ) equation, that we now briefly recall.
Consider a corner growth process on the infinite lattice Z with jump rates 1/2+

√
ǫ
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upwards and 1/2 downwards. If one starts from a flat initial profile, then results
in [3, 2] ensure that the hydrodynamic limit grows evenly at speed

√
ǫ. Then,

Bertini and Giacomin look at the fluctuations around this hydrodynamic limit
and show that the random process

√
ǫ (S(tǫ−2, xǫ−1) − ǫ−3/2t) converges to the

solution of the KPZ equation, whose expression is given below (in Bertini and
Giacomin’s case, σ = 1/2).

Although our setting is similar to the one considered by Bertini and Giacomin,
our Dirichlet boundary condition induces a major difference: our process admits
a reversible probability measure, while this is not the case on the infinite lattice
Z. However, if one starts the interface “far” from equilibrium, then we are in an
irreversible setting up to the time needed by the interface to reach the station-
ary regime, and one would expect the fluctuations to be described by the KPZ
equation.

Bertini and Giacomin’s result suggests to rescale the height function by 1/(2N)α,
the space variable by (2N)2α and the time variable by (2N)4α. The space scaling
immediately forces one to take α ≤ 1/2 since, otherwise, the lattice {0, 1, . . . , 2N}
would be mapped onto a singleton in the limit. It happens that the geometry of
our model imposes a further constraint: Theorem 2 and Equation (1) show that
the interface reaches the stationary state in finite time in the time scale (2N)α+1;
therefore, as soon as 4α > α+1, Bertini and Giacomin’s scaling yields an interface
which is already at equilibrium in the limit N → ∞. Consequently, we have to
restrict α to (0, 1/3] for this scaling to be meaningful.

We set

hN (t, x) := γNS
(
t(2N)4α, N + x(2N)2α

)
− λN t ,

where λN ∼ 2σ2(2N)2α.

Theorem 3. Take α ≤ 1/3. As N → ∞, the sequence hN converges in distribu-
tion to the solution of the KPZ equation:

{
∂th = 1

2∂
2
xh− σ(∂xh)

2 + Ẇ , x ∈ R , t > 0 ,

h(0, x) = 0 .

The convergence holds on D
(
[0, T ), C(R)

)
where T = 1/(2σ) when α = 1/3, and

T = ∞ when α < 1/3.

The point which may be surprising in this theorem is that, at time T and in the
case α = 1/3, the fluctuations suddenly vanish. This is due to the fact that when
α = 1/3, the time scales of the hydrodynamical limit and of the KPZ fluctuations
coincide: since the hydrodynamical limit reaches its stationary state in finite time,
the irreversible (in nature) KPZ fluctuations suddenly vanish at this time.

Let us recall that the KPZ equation is a singular SPDE. While it was introduced
in the physics literature [8] by Kardar, Parisi and Zhang, a first rigorous definition
was given by Bertini and Giacomin [1] through the so-called Hopf-Cole transform.
There exists a more direct definition of this SPDE (restricted to a bounded domain)
due to Hairer [6, 7] via his theory of regularity structures. Let us also mention
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the notion of “energy solution” introduced by Gonçalves and Jara [4], for which
uniqueness has been proved by Gubinelli and Perkowski [5]. It provides a new
framework for characterising the solution to the KPZ equation but it requires
the equation to be taken under its stationary measure: this is not the case in
our setting. Hence, we adapt the proof of Bertini and Giacomin to establish our
theorem.
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process, Ann. Inst. H. Poincaré Probab. Statist., 25 (1989), pp. 1–38.
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Rough paths, Signatures and the modelling of functions on streams

Terry Lyons

Rough path theory is focused on capturing and making precise the interactions
between highly oscillatory and non-linear systems. The techniques draw particu-
larly on the analysis of LC Young and the geometric algebra of KT Chen. The
concepts and theorems, and the uniform estimates, have found widespread applica-
tion; the first applications gave simplified proofs of basic questions from the large
deviation theory and substantially extending Ito’s theory of SDEs; the recent ap-
plications contribute to (Graham) automated recognition of Chinese handwriting
and (Hairer) formulation of appropriate SPDEs to model randomly evolving inter-
faces. At the heart of the mathematics is the challenge of describing a smooth but
potentially highly oscillatory and vector valued path xt parsimoniously so as to ef-
fectively predict the response of a nonlinear system such as ∂yt = f(yt)∂xt, y0 = a.
The Signature is a homomorphism from the monoid of paths into the grouplike
elements of a closed tensor algebra. It provides a graduated summary of the path
x. Hambly and Lyons have shown that this non-commutative transform is faith-
ful for paths of bounded variation up to appropriate null modifications. Among
paths of bounded variation with given Signature there is always a unique shortest
representative. These graduated summaries or features of a path are at the heart
of the definition of a rough path; locally they remove the need to look at the fine
structure of the path. Taylor’s theorem explains how any smooth function can,
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locally, be expressed as a linear combination of certain special functions (monomi-
als based at that point). Coordinate iterated integrals form a more subtle algebra
of features that can describe a stream or path in an analogous way; they allow a
definition of rough path and a natural linear “basis” for functions on streams that
can be used for machine learning.

Linking modelled and paracontrolled distributions

Jörg Martin

(joint work with Nicolas Perkowski)

The recent years have seen remarkable new approaches for the solution of singu-
lar stochastic partial differential equations. The theory of regularity structures,
developed by Martin Hairer in [1], yields a general yet quite algebraic solution
theory. Another approach, developed by Massimiliano Gubinelli, Peter Imkeller
and Nicolas Perkowski in [2] relies on paracontrolled calculus to develop a more
lightweighted method to solve singular stochastic PDEs.

While Hairer’s regularity structures builds on a Taylor-like expansion of the
solution to stochastic PDEs, leading to the concept of a modelled distribution,
the paracontrolled approach uses an expansions in paraproducts which leads to
paracontrolled distributions. Despite the different spirit behind these expansions,
concrete examples such as 2d PAM [2] and the Φ4

3 model [3] suggest a link between
these notions. We show that this is no coincidence, in fact we show that there is
a one-to-one correspondence between modelled and paracontrolled distributions.

To this end we consider as in [1] a solution f to an SPDE rather as a jet F
in a regularity structure and rewrite the paraproduct expansion as a linear map
acting on F . As a consequence we are able to reformulate the paracontrolled re-
quirement in the language of regularity structures. We then show that a modelled
distribution F automatically satisfies this condition. However, it turns out that
an additional requirement on a paracontrolled distribution is needed to establish
a one-to-one correspondence. As an example recall that in the theory of regularity
structures polynomials in the jet F play a crucial rule. However, since the para-
product with polynomials vanishes the polynomial terms of F will not appear in
the paracontrolled description. We therefore have to introduce a second condi-
tion for paracontrolled distributions which, loosely speaking, fixes the polynomial
terms of F . It turns out that this is enough to close the circle and we see that
every paracontrolled distribution is modelled.

Beyond the intrinsic charm of this duality, it can be seen as a suggestion how
paracontrolled distributions with several paraproducts could be defined and we
currently try to apply it to extend the class of Schauder estimates for mod-
elled/paracontrolled distributions.
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An invariant measure for the Φ4

3
equation

Konstantin Matetski

(joint work with Martin Hairer)

A general framework for spatial discretisations of locally subcritical parabolic sto-
chastic PDEs whose solutions are provided by the theory of regularity structures
and which are functions in the time variable has been developed in [1]. A particu-
lar example of such equations is the dynamical Φ4

3 model on the torus T3 = (R/Z)3

which can be formally written as

(1) ∂tΦ = ∆Φ+∞Φ− Φ3 + ξ , Φ(0, ·) = Φ0(·) ,
where ∆ is the Laplace operator on T3, ξ is a space-time white noise and Φ0

is an initial value. The “infinite constant” ∞ refers to the limit of a diverging
renormalisation constant which should be added to the equation with a mollified
noise in order to have a non-trivial limit. Due to the low regularity of the driving
noise, the equation (1) is ill-posed, in the sense that a solution to the linearised
equation is a distribution in space whose third power is undefined. A notion of
solution to the Φ4

3 equation was provided in [2] using the theory of regularity
structures.

We consider spatial discretisations of the dynamical Φ4
3 model on the dyadic

grid T3
ε ⊂ T3 with the mesh size ε > 0 of the form

(2)
d

dt
Φε = ∆εΦε + CεΦε −

(
Φε

)3
+ ξε , Φε(0, ·) = Φε0(·) ,

where ∆ε is the nearest-neighbor approximation of the Laplacian ∆, Φε0 is some
periodic initial value and the discretisation of the noise ξ is given by

ξε(t, x) = ε−3〈ξ(t, ·),1|·−x|∞≤ε/2〉 , (t, x) ∈ R× T
3
ε ,

where | · |∞ is the supremum norm in R
3. We identify the discrete objects with

their piece-wise linear extensions off the grid. A result concerning the discrete
dynamical Φ4

3 model can be formulated as follows:

Theorem 1. In the described settings, let Φ0 ∈ Cη(R3) almost surely, for some
η > − 2

3 , let Φ be the unique maximal solution of (1) on a random time interval
[0, T⋆), and let Φε be the unique global solution of (2). If the initial data satisfies

lim
ε→0

‖Φ0 − Φε0‖Cη = 0

almost surely, then for every α < − 1
2 there is a sequence of renormalisation con-

stants Cε ∼ ε−1 in (2) and a sequence of stopping times Tε satisfying limε→0 Tε =
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T⋆ in probability such that, for every η̄ < η ∧ α, and for any δ > 0 small enough,
one has the limit in probability

lim
ε→0

‖Φ− Φε‖Cδ
η̄([0,Tε],Cα) = 0 ,

where η̄ is the blow-up at time t = 0.

Our main motivation to prove this convergence result goes back to the semi-
nal article [3], where the authors prove that lattice approximations µε to the Φ4

3

measure are tight as the mesh size ε goes to 0. These measures are given by

µε(Φ
ε) = e−Sε(Φ

ε)
∏

x∈T3
ε

dΦε(x)/Zε ,

where Φε is any function on T
3
ε, Zε is a normalisation factor, called “partition

function”, and the “action” Sε is defined by

(3) Sε(Φ
ε) =

ε

2

∑

x∼y

(
Φε(x)− Φε(y)

)2 − Cεε3

2

∑

x∈T3
ε

Φε(x)2 +
ε3

4

∑

x∈T3
ε

Φε(x)4 ,

with the first sum running over all the nearest neighbours on the grid, when
each pair x, y is counted twice. Since these measures are invariant for the finite
difference approximations (2), showing that these converge to (1) straightforwardly
implies that any accumulation point of µε is invariant for the solutions of (1).
These accumulation points are known to coincide with the Φ4

3 measure µ, see [4],
thus showing that µ is indeed invariant for (1), as one might expect. Heuristically,
the measure µ can be written as

µ(Φ) ∼ e−S(Φ)
∏

x∈T3

dΦ(x) ,

for every Φ ∈ D′(T3). In this case the “action” S is a limit of its finite difference
approximations (3), i.e. it is formally given by

S(Φ) =

∫

T3

(
1

2

(
∇Φ(x)

)2 − ∞
2
Φ(x)2 +

1

4
Φ(x)4

)
dx .

With this notation at hand, an important corollary of Theorem 1 is the following
result.

Corollary 2. In the described context, for µ-almost every initial condition Φ0,
the solution of (1) constructed in [2] is almost surely global in time. In particular,
this yields a reversible Markov process on Cα

(
T
3
)
, with α as in Theorem 1, for

which the Φ4
3 measure is invariant.

Since our framework is not designed specifically for the Φ4
3 equation, it lays the

foundations of a systematic approximation theory which can in principle be applied
to many other singular stochastic PDEs, e.g. stochastic Burgers-type equations,
the KPZ equation, or the continuous parabolic Anderson model.
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Enhanced Sanov theorem and large deviations for interacting particles

Mario Maurelli

(joint work with Jean-Dominique Deuschel, Peter K. Friz, Martin Slowik)

In this talk we analyze large deviations associated with an ensemble of weakly
interacting particles and their joint iterated integrals, in the limit of large number
of particles.

We consider the interacting particle system (of mean field type) on Rd

dX i,N =
1

N

N∑

j=1

b(X i,N , Xj,N)dt+ dW i, i = 1, . . .N,

X i,N
0 i.i.d. with law µ,

where W i are independent Brownian motions and b is a bounded regular drift.
For this system the asymptotic behaviour (for N large) of the random empirical
measure

1

N

N∑

i=1

δXi,N

is of interest and several classical results are available: law of large number ([10] for
example), large deviations ([4], [5], [6], [11] among others). Recently asymptotic
results were proven also in the context of rough interacting particles ([1], [3]).

Here we are interested in the behaviour not only of the particles X i,N but also

of the joint iterated integrals
∫ t
0
X i,N
r ◦ dXj,N

r , more precisely we consider the
enhanced empirical measure

1

N2

N∑

,ji=1

δS(Xi,N ,Xj,N )

where S(X i,N , Xj,N) ∼ (X i,N , Xj,N ,
∫ ·

0 X
i,N
r ◦ dXj,N

r ) is the (Stratonovich) rough

path lifting of (X i,N , Xj,N). Our main results (contained in [7]) are two large
deviation principles (LDP) for these enhanced empirical measures, in the limit
N → ∞: the first result (enhanced Sanov theorem) in the case of no interaction,
the second in the general case.

Compared to other large deviation results, the peculiarity of our result is pre-
cisely the study of the joint iterated integrals. As a corollary we get the convergence
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of the enhanced empirical measure (which seems not an easy consequence of any
law of large numbers). Another application may be in large deviation estimates
for SDEs driven by (X i,N)i=1,2, taking advantage of the continuity of the rough
integral. Moreover as a byproduct of our LDP we get a robust proof of classi-
cal large deviation principle for empirical measures (extending the proof in [4]),
although other short proofs are also available.

The proof of the enhanced Sanov theorem is obtained starting from classical
Sanov theorem (for the classical Brownian empirical measure) and applying the
extended contraction principle: Sanov theorem can be transferred to the enhanced
empirical measure, once we prove this is an “almost continuous” function of the
empirical measure. For this we need two ingredients, one coming from large devi-
ation one from rough paths: the Hoeffding decomposition ([9]) allows to split the
ensemble S(X i,N , Xj,N) into subgroups of independent variables, thus recovering
the key independence structure of Bi; the exponential convergence of piecewise
linear approximations to the Brownian rough path (in [8]) gives the needed ap-
proximation in the extended contraction principle.

The LDP in the general interacting case is obtained from the enhanced Sanov
theorem: we use Girsanov theorem and the mean field type of interaction to relate
the enhanced empirical measures in the interacting and non-interacting cases, then
we apply Varadhan lemma, where we take advantage of the continuity of the rough
integral. A technical difficulty arises in the more than linear growth of the rough
integral and is treated via special tools coming from [2].
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Long time dynamics of random data nonlinear dispersive equations

Andrea R. Nahmod

In this talk we convey the main ideas behind Bourgain’s approach in the nineties1

to invariant Gibbs measures and almost sure global well-posedness for Hamiltonian
dispersive PDE. We do not go over all details or precise definitions but rather give
the main flavors. The focus is on the nonlinear Schrödinger equation (NLS).

We then present some recent probabilistic well posedness results for the NLS
on Td (d = 3, 2, 1) (joint work with G. Staffilani). Here we describe two type
of results. One is the a.s local well posedness and long time well-posedness with
positive probability for the quintic NLS on T3 with random data below H1. The
other one is for the defocusing cubic NLS on T2 and the focusing quintic NLS on
T1. Here we explain a new probabilistic preservation of regularity argument which
allow us to close an important gap between the deterministic global well-posedness
(gwp) theory and the a.s gwp one proved by Bourgain via the invariance of their
associated Gibbs measures. We indicate along the way why the theory regularity
structures and of paracontrolled distributions is poised to play a fundamental role
in two challenging open problems. Namely proving the a.s. gwp of the quintic
NLS on T2 and of the cubic NLS on T3 with invariance of the associated Gibbs
measures.

We conclude describing work in progress on a nondeterministic approach to the
2D wave constant mean curvature equation (CMC) of Chanillo et al.. We address
only the first part of this program concerning the a.s local well-posedness below
the energy space H1 (joint with M. Czubak, D. Mendelson and G. Staffilani)2.
The latter result has interest in its own right. The geometry of the problem
induces a structure on the nonlinearity, known as a null form, which renormalizes
the quadratic derivative nonlinearity naturally removing the resonant interactions
needed for an improved a.s. lwp at a supercritical regime.

The nonlinear Schrodinger equation (NLS) is

(NLS)

{
i ut + ∆u = ±|u|p−1u,
u(0, x) = u0(x) ∈ Hs x ∈ Md,

where u : R×Md → C and Md = Rd, Td or any compact manifold with ∆ the
Laplace Beltrami. It has conservation of mass

∫
|u(t, x)|2dx and of Hamiltonian

H(u(t)) :=
1

2

∫
|∇u(t, x)|2 dx ± 1

p+ 1

∫
|u(t, x)|p+1dx

where the positive sign yields a defocusing equation (gives a global in time bound
for the H1 norm of u(t, x)) and the minus a focusing one (energy could be negative
and blow up may occur). The equation also enjoys time reversibility and on Rd we

have the following scaling: uλ(x, t) = λ−
2

p−1u
(
x
λ ,

t
λ2

)
, u0,λ = λ−

2
p−1u0(

x
λ) whence

the scale invariant problem corresponds to regularities sc = d
2 − 2

p−1 called the

1After the works of Lebowitz-Rose-Speer and of Zhidkov for Hamiltonian PDE and of Glimm-
Jaffe and others for the φ4 model.

2The long term program is joint with S. Chanillo as well.
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critical exponent. Regularities s > sc are called subcritical (scaling help us) while
s < sc supercritical (scaling is against us). The characteristic feature of dispersive
equations is the fact that different frequencies travel at different velocities. On Rd

dispersion implies decay of the solution as time evolves (while conserving mass and
Hamiltonian) and the Strichartz estimates yield local well-posedness in subcritical
and small data global well posedness in certain critical regimes (mass, energy).
Furthermore, in the last 15 years there has been lots of progress to prove large
data gwp and scattering for the defocusing NLS on Rd for energy (sc = 1) and
mass critical (sc = 0) problems.

On compact domains, wave packets have no escape from interacting indefinitely
with each other. Dispersion does not necessarily translate to decay. Dispersion is
weaker and in fact a limited number of Strichartz estimates survive. These were
proved by Bourgain (93’) for the square torus Td and the whole range recently
completed by Bourgain-Demeter (14’) for irrational tori as well. These are suf-
ficient for local well-posedness (lwp) at subcritical regimes s > sc and global in
H1 for sc < 1 but in general much less is known. For example, lwp for sc = 0
-say the cubic NLS on T

2 or the quintic NLS on T are unknown. We thus turn
to a nondeterministic approach to well-posedness. The starting point is the work
of Bourgain (94’-96’) who studied longtime dynamics of periodic NLS (d=1,2)3 in
the almost sure sense and capturing generic behavior of the flow. He proved for
example that the cubic NLS on T2 is gwp for a set of data of full Gibbs measure
and that the (Gibbs) measure is invariant under the flow. And a similar result for
the focusing cubic or quintic NLS on T (with suitable restriction of the mass). The
invariance of the Gibbs measure, just like the usual conserved quantities, controls
the growth in time of those solutions in its support and thus allows one to extend
the local in time solutions to global ones almost surely at a level of regularity
where there are no conservation laws. The approach via invariant measures has
challenges and limitations. In the particular case of the periodic NLS, we know
that there are no Gibbs measure for d ≥ 4 nor for -say- the defocusing quintic
NLS on T3. There are no Gibbs measures either for the focusing cubic NLS on T2

(Brydges-Slade). A major difference between Bourgain’s work in 1D and 2D was
the fact that while in 1D there was a deterministic local well-posedness in place on
Hs(T), s > 0 and hence on H1/2−(T) where the Gibbs measure lives, in 2D there
is no deterministic local well posedness theory at the level of H−ε(T2) which lies
in the supercritical regime. Bourgain’s point (96’) was then to prove probabilistic
local well posedness for typical elements in the support of the measure. That is,

almost a.s. for random data φω(x) =
∑

n∈Z2
gn(ω)√
1+|n|2

ein·x in H−ε(T2). Random-

ization does not improve regularity in terms of derivatives. The improvement is
with respect to Lp spaces a.s. which in turn, imply better estimates than the de-
terministic ones4 Bourgain’s strategy consists then in looking for solutions of the
form u = S(t)φω + w, use that the linear evolution of random data, S(t)φω has

3As well as other dispersive Hamiltonian PDE.
4as is well known from classical results of Rademacher, Kolmogorov, Paley and Zygmund

showing that random series enjoy better Lp bounds than deterministic ones.
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better Lp estimates a.s to show that w = u − S(t)φω solves a difference equation
iwt + ∆w = N (S(t)φω + w) that lives in a smoother space. A deterministic lwp
w in the smoother space is also needed. As a consequence Bourgain showed that
a.s. in ω the nonlinear part of the solution w = u− S(t)φω is smoother than the
linear part. Together with G. Staffilani we consider the quintic NLS on T3 with
random data φω ∈ Hγ(T3), γ < 1 and first establish a similar probabilistic local
well posedness. In 3D Wick ordering does not remove bad resonant frequencies
of the quintic nonlinearity which correspond to certain double pairs of frequencies
collapsing simultaneously. Instead, we use a gauge transformation to renormalize
the quintic nonlinearity to: N(v) := v|v|4 − 3v

(∫
T3 |v|4 dx

)
and this is the one we

estimate following Bourgain strategy as above. In case we do not have a Gibbs
measure, and the difference equation satisfies no conservation law. Thus extending
the local solutions to global ones a.s is a challenging problem. Nonetheless we are
able to prove large data long time existence with positive probability; i.e. that
there are some large infinite energy data evolving to solutions for long times5.

The second result we discuss also joint with Staffilani is a new probabilistic
propagation of regularity method which we apply to prove that the cubic defo-
cusing NLS is a.s gwp in Hs(T2), s > 0 and that the quintic focusing NLS is a.s
gwp in Hs(T), s > 1

2 . These results close an important gap between the a.s. gwp
of Bourgain and the known deterministic gwp. For example, in 2D, deterministic
methods yield lwp for s > 0 (Bourgain) and gwp for s > 2/3 (De Silva-Pavlovic-
Staffilani-Tzirakis) via the so called I-method of almost conservation laws. Data
randomization and the invariance of the Gibbs measure yield a.s. gwp in H−ǫ

(Bourgain) as described above. Our result thus fill the gap a.s. for 0 < s ≤ 2/3.
One should note that our set of initial data Σ ⊂ Hs, s > 0 is not seen by the Gibbs
measure so the result is not trivial. Large data gwp at a critical or supercritical
regularity level for NLS is a challenging question which is not made any easier by
assuming higher regularity of the initial data6. To prove large data gwp one has
to start with data at the regularity level of some conserved quantity such as, for
example, the mass (L2) or the Hamiltonian (H1). It is only after one has proved
such global result, that smooth global solutions can be obtained by a standard
preservation of regularity argument based on differentiation of the equation. This
is a purely deterministic approach. The procedure we implement in our proof is
not based on differentiation of the equation as in the deterministic preservation
of regularity argument. Our key idea instead is to suitably decompose the data
into a term that is close to the support of the invariant measure in the rougher
topology, and a smoother remainder term to which deterministic arguments can
be applied. Then, a nondeterministic perturbation argument is used to conclude.
We believe that this argument could be applied to other problems for which an
a.s. gwp is proved using an invariant or almost invariant measure.

5As T → ∞ the size of the set of initial data giving rise to solutions on the whole interval
[0, T ] shrinks to zero.

6The flow does not improve the regularity of the data so the solution is at each time t as
regular as the data.
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The first step in our nondeterministic study of the wave CMC concerns the non-
linear wave equation (NLW) in 2D: �u = 2ux ∧ uy which unlike general quadratic
derivative nonlinearity inherits a special structure from its geometric framework.
For general quadratic derivative nonlinearities deterministic lwp holds for regular-
ities s > 7

4 only (by Strichartz) even though the scaling of the problem is sc = 1.
This can be improved if there is structure in quadratic derivative nonlinearity. For
the one that concern us, to s > 5

4 and this is sharp in the Sobolev class. We consider

random data uω0 =
∑
n∈Z2

gn(ω)
|n|2 e

in·x ∈ H1−ǫ and establish a.s lwp. Let us denote

by W (t) the linear evolution. The key aspect of the null form structure ux ∧ uy
revels itself while estimating random-random interactions (W (t)uω0 )x∧(W (t)uω0 )y ,
for it provides the necessary independence in the large deviation estimates to

prove that outside a small set of omega’s
∣∣∣
∑
S(m,τ)

gn(ω)
|n|2

gk(ω)
|k|2 (n1k2 − n2k1)

∣∣∣
2

can

be bounded by
∑
S(m,τ)

1
|n|4

1
|k|4 (n1k2 − n2k1)

2 where S(m, τ) = {(n, k) / m =

n+ k τ = |n|+ |k|}. And this one we can control thanks to the strong decay and
favorable integer lattice counting estimates on Z2.

Regression on the Path Space

Hao Ni

In this talk, we bring the theory of rough paths to the study of non-parametric
statistics on streamed data. We discuss the problem of regression where the input
variable is a stream of information, and the dependent response is also (potentially)
a stream.

A certain graded feature set of a stream, known in the rough path literature
as the signature, has a universality that allows formally, linear regression to be
used to characterise the functional relationship between independent explanatory
variables and the conditional distribution of the dependent response.

This approach, via linear regression on the signature of the stream, is almost
totally general, and yet it still allows explicit computation. The grading allows
truncation of the feature set and so leads to an efficient local description for streams
(rough paths). In the statistical context this method offers potentially significant,
even transformational dimension reduction, which is demonstrated in the example
of learning the solution to unknown controlled differential equations.

By way of illustration, our approach is applied to stationary time series including
the familiar AR model and ARCH model. In the numerical examples we examined,
our predictions achieve similar accuracy to the Gaussian Process (GP) approach
with much lower computational cost especially when the sample size is large.

Lastly although our approach provides a systematic treatment of a general
regression problem on the paths space, sometimes it requires to use the signature
of a path up to very high degree to achieve certain fitting accuracy. It potentially
results in the overfitting issue due to high dimensionality of truncated signatures.
To overcome this difficulty, we propose a variant of the signature feature set of
data streams - so called dyadic path signature features, which is a collection of
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signatures of a path of lower degree over dyadic time partitions. It turns out
to be a more efficient features for a path over a long time interval in terms of
the dimensionality. We combine this feature set with deep learning to solve the
online Chinese character recognition, which outperforms the existing method and
significantly reduces test errors.

Hairer-Quastel universality with energy solutions

Nicolas Perkowski

(joint work with Massimiliano Gubinelli)

Consider the following stochastic PDE which models the fluctuations in random
interface growth:

(1) ∂tv = ∆v + ε1/2∂xF (v) + ∂xρ ∗ ξ
on [0,∞) × Tε with Tε = R/(ε−1Z), where ξ is a space-time white noise, ρ is a
smooth kernel, and F is an even polynomial. The nonlinearity ε1/2∂xF is a weak
asymmetry that breaks the time-reversibility of the linear system. The celebrated
Hairer–Quastel universality result [HQ15] states that there exist constants c1, c2 ∈
R such that the rescaled process ε−1/2vtε−2((x − c1ε

−1/2t)ε−1) converges to the
solution u of the stochastic Burgers equation

∂tu = ∆u+ c2∂xu
2 + ξ.

We give an alternative proof of this result using the notion of energy solutions
to the stochastic Burgers equation, which formulate it as a martingale problem
[GJ13a, GJ13b, GP15]. So consider the equation

(2) ∂tu
ε = ∆uε+ε−1∂xΠ

N
0 (F (ε1/2uε)−c1(F )ε1/2∂xuε)+∂xΠN0 ξ, uε0 = ΠN0 η,

on R+ × T (for T = T1), where ΠN0 denotes the projection on the Fourier modes
{−N, . . . , N} \ {0} for N = ε−1 and η is a space white noise, independent of ξ.
This is the equation we obtain for uε(t, x) = ε−1/2vtε−2((x − c1ε

−1/2t)ε−1) if v
solves (1) and ρ is the Fourier truncation operator. The only difference is that
now we also mollified the nonlinearity by applying the truncation operator to it
as well. In this way we can guarantee that the law of ΠN0 η is invariant under the
dynamics of uε, which will be important in what follow. If ϕ ∈ C∞(T) is a test
function, then (2) translates to

uεt (ϕ) = uε0(ϕ)+

∫ t

0

uεs(∆ϕ)ds−
∫ t

0

ε−1(F (ε1/2uεs)−c1(F )ε1/2uεs)(ΠN0 ∂xϕ)ds+Mϕ
t ,

whereMϕ is a martingale in the filtration generated by uε, with quadratic variation
d〈Mϕ〉t = 2‖∂xΠN0 ϕ‖2dt. Our strategy for proving the convergence of (uε) is now
as follows:

− Show the tightness of uε in C([0, T ],D′), where D′ denotes the distribu-
tions on T. For that purpose it suffices to show the tightness of uε(ϕ) in
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C([0, T ],R) for any ϕ ∈ C∞(T), which in turn follows once we get the
joint tightness of

(3)(
uε0(ϕ),

∫ ·

0

uεs(∆ϕ)ds,

∫ ·

0

ε−1
(
F
(
ε1/2uεs

)
− c1(F )ε

1/2uεs

)
(ΠN0 ∂xϕ)ds,M

ϕ

)
.

− Once we showed tightness of uε, verify that every limit point of uε is an
energy solution to stochastic Burgers equation.

− Use the uniqueness of energy solutions to conclude that (uε) converges
weakly to the solution of the stochastic Burgers equation.

The most difficult step is as usual to prove tightness. All of the terms in (3) are
very easy to control, except the nonlinear one. To bound it, we need to introduce a
new tool. One can show that under stationary initial conditions the time-reversed
process ûεt = uεT−t solves the equation

∂tû
ε = ∆ûε − ε−1ΠN0 ∂x(F (ε

1/2ûε)− c1(F )ε
1/2ûε) + ∂xΠ

N
0 ξ̂,

where ξ̂ is now a space-time white noise in the backward filtration. We write L ε
0

for the generator of the solution Xε to ∂tX
ε = ∆Xε + ∂xΠ

N
0 ξ, and define for

Ψ ∈ L2(µε), with µε denoting the law of ΠN0 η,

Eε(Ψ) :=
∑

0<|k|6N

k2|DkΨ|2,

where Dk is the directional derivative of Φ in the k-th Fourier monomial ek. If
Ψ ∈ dom (L ε

0 ), then we apply Itô’s formula to Ψ(uε) and to Ψ(ûε), and adding the
resulting expressions up we cancel exactly the contribution of the nonlinear term
and thus obtain the following lemma by applying the Burkholder-Davis-Gundy
inequality to the remaining forward and backward martingale terms.

Lemma 1 (Itô trick). For Ψ ∈ dom (L ε
0 ) and T > 0, p > 1 we have

E

[
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

L
ε
0 Ψ(uεs)ds

∣∣∣∣
p
]
. T p/2E[Eε(Ψ)p/2].

The Itô trick is a very powerful tool for controling additive functionals of uε,
provided that we can solve the Poisson equation L ε

0 Ψ = Φ for a given Φ. Here
it turns out to be very helpful that we only have to solve the Poisson equation in
L2(µε), where we have a lot of additional structure (µε is a Gaussian measure)
and in particular we can work with the chaos expansion. In our case we want to
control

E

[∣∣∣∣∣

∫ T

0

ε−1(F (ε1/2uεs)− c1(F )ε
1/2uεs)(Π

N
0 ∂xϕ)ds

∣∣∣∣∣

p]
.

Using the fact that if η denotes the coordinate map on C(T,R), then ε1/2η(x) is
a standard Gaussian under µε, we can explicitly derive the chaos expansion of the
integrand Gε:
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(4) Gε(η) =
∑

n>2

cn(F )ε
n/2

∑

k1,...,kn

ϕ̂(−k1 − · · · − kn)In(e−k1 ⊗ . . .⊗ e−kn),

where In is a multiple stochastic integral and cn(F ) = 1
k!E[F (U)Hk(U)], with

Hk being the k-th Hermite polynomial and U ∼ N (0, 1). Here we used that
ΠN0 ∂xϕ vanishes when tested against constants, and that the correction term
−c1(F )ε−1/2η(ΠN0 ∂xϕ) exactly cancels the first chaos contribution of
ε−1F (ε1/2η)(ΠN0 ∂xϕ). Solving the Poisson equation is now an easy exercise, be-
cause it turns out that

L
ε
0 In(fn) = In(∆fn),

where ∆ denotes the Laplacian on Tn. Using Fourier coordinates we can even
write down the solution explicitly. Moreover, all terms in (4) with n > 2 come
with a factor ε1/2, and therefore they vanish as we send ε→ 0. Consequently, we
only remain with the quadratic contribution and we see that the nonlinear term
is for small ε well approximated by

∫ T

0

c2(F )(u
ε
s)

2(ΠN0 ∂xϕ)ds.

This allows us to show the tightness of the nonlinear term, and finally we deduce
that (uε) is tight and any limit point u is a controlled process:

− the law of ut is the white noise µ for all t ∈ [0, T ];
− for any ϕ ∈ C∞(T) the process t 7→ 〈At, ϕ〉 has zero quadratic variation,

〈A0, ϕ〉 = 0 and

(5) 〈ut, ϕ〉 = 〈u0, ϕ〉+
∫ t

0

〈us,∆ϕ〉ds + 〈At, ϕ〉 − 〈Mt, ∂xϕ〉,

where (〈Mt, ∂xϕ〉)06t6T is a martingale with quadratic variation
[〈M,∂xϕ〉]t = 2t‖∂xϕ‖2L2(T);

− the reversed processes ût = uT−t, Ât = −(ÂT − AT−t) satisfy the same
equation in their own filtration.

Moreover, we get for any limit point u that

At(ϕ) = lim
M→∞

−
∫ t

0

〈(ΠM0 us)2, ∂xϕ〉ds.

As it turns out, there exists only one controlled process which satisfies the sto-
chastic Burgers equation in this martingale sense [GP15], and therefore our proof
of convergence is complete:

Theorem 2 ([GP16]). Let F be almost everywhere differentiable and assume that
F ′ has polynomial growth. Then the solution uε to (2) converges in distribution
to the unique equilibrium energy solution to

∂tu = ∆u+ c2(F )∂xu
2 + ξ,

where ξ is a space-time white noise with variance 2 and for U ∼ N (0, 1) and H2

the second Hermite polynomial we have c2(F ) = E[F (U)H2(U)]/2.



1380 Oberwolfach Report 24/2016

References
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Continuity of the Itô map on Nikolskii spaces

David J. Prömel

(joint work with Peter K. Friz)

Stochastic differential equations (SDEs) are central objects in stochastic analysis
since, in particular, they allow for modeling many real world phenomena as for
instance appearing in finance or physics. From an analytical point of view SDEs
are controlled ordinary differential equations (ODEs) which have random driving
signals. Assuming the driving signal is a continuous deterministic pathX : [0, T ] →
Rn, the dynamics of a controlled ODE is given by

(1) dYt = V (Yt) dXt, Y0 = y0, t ∈ [0, T ],

where y0 ∈ Rm and V : Rm → L(Rn,Rm) is some smooth enough vector field.
Here L(Rn,Rm) denotes the space of linear operators from Rn to Rm.

One of the original motivations of rough path theory is to provide a rigorous
mathematical meaning and the existence of a unique solution Y : [0, T ] → Rm to
the controlled ODE (1) with the additional aim to cover driving signals X which
are as irregular as sample paths of semi-martingales or Gaussian processes.

For this purpose the free nilpotent group of step N over R
n is denoted by

GN (Rn) and equipped with the Carnot-Caratheodory metric dcc. Roughly speak-
ing, Lyons [2, 3] introduced the space of weakly geometric p-rough paths, for
p ∈ [0,∞), which is the space Vp([0, T ], G⌊p⌋(Rn)) of continuous paths X with
values in G⌊p⌋(Rn) of finite p-variation, i.e.,

‖X‖p-var;[0,T ] :=

(
sup

P⊂[0,T ]

∑

[u,v]∈P

dcc(Xu, Xv)
p

) 1
p

<∞,

where the supremum is taken over all partitions P of the interval [0, T ]. Assuming
the driving signal X ∈ Vp([0, T ], G⌊p⌋(Rn)), Lyons first proved the existence of
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a unique solution Y to the equation (1) and furthermore established the local
Lipschitz continuity of the Itô map Φ, which is given by

Φ: Rm × Lipγ × Vp([0, T ], G⌊p⌋(Rn)) → Vp([0, T ];Rm)
via Φ(y0, V,X) := Y,

where Y denotes the solution to equation (1) given the input (y0, V,X).
Based on Lyons’ estimates, which more precisely used general control func-

tions, Friz [1] deduced the local Lipschitz continuity of the Itô map defined on
the space Cδ([0, T ], G⌊1/δ⌋(Rn)) of Hölder weakly geometric rough paths, i.e.,
X ∈ Cδ([0, T ], G⌊1/δ⌋(Rn)) if

‖X‖Cδ;[0,T ] := sup
u,v∈[0,T ], u<v

dcc(Xu, Xv)

|v − u|δ <∞, δ ∈ (0, 1].

The Hölder space and the p-variation space can be somehow seen as the two
extreme spaces on which the continuity of the Itô map can be restored. Especially,
one obviously has the following relation

Cδ([0, T ], G⌊1/δ⌋(Rn)) ⊂ V1/δ([0, T ], G⌊1/δ⌋(Rn))

for δ ∈ (0, 1] and it is well-known that there exist many classical functions spaces
“interpolating” between these two spaces. To unify the picture about the conti-
nuity of the Itô map, we investigate the continuity of the Itô map with respect
to (classical) Nikolskii distances. In the case of weakly geometric p-rough paths
for p ∈ (2, 3) a basically complete picture was very recently provided by [4] using
Besov spaces.

In order to obtain the continuity for general weakly geometric p-rough paths,
we introduce the Nikolskii regularity of a path X ∈ Vp([0, T ], G⌊p⌋(Rn)) in terms
of p-variation and define a “mixed Hölder-variation semi-norm” by

‖X‖Ñδ,p;[0,T ] :=

(
sup

P⊂[0,T ]

∑

[u,v]∈P

‖X‖p1
δ -var;[u,v]

|v − u|δp−1

) 1
p

, δ ∈ (0, 1], p ∈ (1,∞),

and the corresponding space is denoted by Ñ δ,p([0, T ];G⌊1/δ⌋(Rn)). This new
type of measuring regularity turns out to be an equivalent characterization of
classical Nikolskii spaces N δ,p([0, T ];G⌊1/δ⌋(Rn)) if δ ∈ (0, 1] and p ∈ (1,∞) with
δ > 1/p. Notice that the Nikolskii space N δ,p([0, T ];G⌊1/δ⌋(Rn)) corresponds to
the Besov space Bδp,∞([0, T ];G⌊1/δ⌋(Rn)). Furthermore, in contract to the classical
Nikolskii regularity, it provides an exact interpolation between the Hölder space
Cδ([0, T ];G⌊1/δ⌋(Rn)) and the p-variation space V1/δ([0, T ];G⌊1/δ⌋(Rn)) as we see
that

Cδ([0, T ];G⌊1/δ⌋(Rn)) = Ñ δ,∞([0, T ];G⌊1/δ⌋(Rn))

⊂ Ñ δ,p([0, T ];G⌊1/δ⌋(Rn))

⊂ Ñ δ,1/δ([0, T ];G⌊1/δ⌋(Rn)) = V1/δ([0, T ];G⌊1/δ⌋(Rn))
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for p ∈ (1/δ,∞). Based on this new characterization of Nikolskii spaces and Lyons’
sophisticated estimates, we deduce the locally Lipschitz continuity of the Itô map
in Nikolskii topology.

References
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Rough differential equations with unbounded drift

Sebastian Riedel

We consider a rough differential equation of the form

dy = b(y) dt+ σ(y) dxt; t ∈ [0, T ]

y0 = ξ ∈ R
m(1)

where x is a generic p-rough path (in the sense of T. Lyons), σ is the diffusion
coefficient and b is the drift term. In this talk, σ will be smooth and bounded with
bounded derivatives. Using the flow decomposition, we can show that (1) induces
a flow provided b is locally Lipschitz continuous and has at most linear growth.
Assuming only that b satisfies the classical one-sided growth condition

〈b(v), v〉 ≤ C1(1 + |v|2) for all v ∈ R
m(2)

and the additional condition
∣∣∣∣b(v)−

〈b(v), v〉v
|v|2

∣∣∣∣ ≤ C2(1 + |v|) for all v ∈ R
m \ {0}(3)

which bounds the growth of b at v in the orthogonal directions of v, we can show
that (1) still induces a semiflow. We further present an example by [Cox, Hutzen-
thaler, Jentzen; arXiv 2013] which shows that assuming only (2) is in general not
enough to guarantee non-explosion for equations of the form (1).
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SPDEs with Three Types of Multiplicative Noises

Hao Shen

(joint work with Ajay Chandra and Martin Hairer)

One of the important objects in the study of rough path theory is the stochastic
ODE: dX = G(X)dB where B is a driven signal such as a Brownian motion and G
is a smooth enough function. In this talk we consider the stochastic PDE analogue
of this problem

(1) ∂tu = ∆u+G(u)ζ

We consider three types of noises ζ

• Space-time white noise
• Mixing non-Gaussian noise
• Gaussian multiplicative chaos

The study of all these cases relies on the theory of regularity structures [1].
When ζ = ξ is space-time white noise, Eq.(1) has the notion of Itô solution.

[2] proved the following interesting result. Let ξε = ξ ∗ ϕε be a molification of ξ.
Then the solution uε to

∂tuε = ∂2xuε−CεG′(uε)G(uε)−c1G′(uε)
3G(uε)−c2G′′(uε)G

′(uε)G
2(uε)+G(uε) ξε

converges to the Itô solution of Eq.(1), where Cε ∼ ε−1 and c1, c2 are finite con-
stants.

Assume now that ζ is a random field with suitable regularity, integrability and
mixing condition, that is not necessarily Gaussian distributed. The rescaled field

ζε = ε−
3
2 ζ(ε−2t, ε−1x) converges to ξ by central limit theorem. With A.Chandra

[3] we showed that in order to obtain Itô solution as ε → 0, the above equation
with ξε replaced by ζε need the following extra correction terms

−O(ε− 1
2 )G′(uε)

2G(uε)−O(ε−
1
2 )G′′(uε)G

2(uε)− c3G
′′′(u)G3(u)

and modifications to values of c1, c2 are also necessary. The new constants arise
from the higher cumulants of ζ. Our method follows (and generalizes) that used
in [4] for the KPZ equation.

Finally, we consider the case that ζ = Ψ - a version of Gaussian multiplicative
chaos (GMC). More precisely, let Φε be the stationary solution to

∂tΦε =
1

2
∆Φε + ξε

where ξε is a mollified space-time white noise. Then Hairer and myself showed
that as ε → 0, the process cεe

iβΦε converges to a limiting process called Ψ in the

space C− β2

4π where cε ∼ ε−
β2

4π , which is a version of GMC. The motivation is to
study the sine-Gordon equation [5]

∂wε =
1

2
∆wε + cε sin(βwε) + ξε

Indeed, letting wε = Φε + uε, then uε satisfies an equation of the form (1) driven
by noise cεe

iβΦε . The larger β is, the more singular the noise Ψ is; so β plays
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the role of Hurst number in the study of the SDEs driven by fractional Brownian
motions. Hopefully this similarity would be of interest for both people working on
regularity structures and rough paths.
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Stochastic Analysis with Modelled Distributions

Josef Teichmann

(joint work with David J. Prömel)

We introduce Sobolev-Slobodeckij type norms on spaces of modelled distributions
in the framework of Martin Hairer’s regularity structures. We show directly that
on these spaces reconstruction is still possible and we prove furthermore that
those spaces are of martingale type 2 or UMD, which guarantees a rich stochastic
integration theory for stochastic processes with values therein.

There are two competing notions of integration along trajectories, which do not
satisfy the finite variation paradigm: stochastic integration theory and rough paths
theory (or its generalization, the theory of regularity structures). Stochastic inte-
gration theory relies on orthogonality of martingale increments and works for the
large set of all bounded predictable integrands. Stochastic Integration is proba-
bilistic in spirit, i.e. limits are in probability and to be understood almost surely.
By its very nature the stochastic integral is tailormade to express properly gains
and loss processes in Finance. Rough paths theory on the other hand is a pathwise
way to construct integration along rough trajetories in terms of local expansions
by iterated integrals up to appropriate orders of accuracy. The integral is not
limited to predictable integrands but subtle analytic properties have to be satis-
fied (leading to the notion of controlled rough paths). From several geometric,
analytic, or numerical viewpoints the rough paths approach with its continuity
properties provides valuable and fruitful insights.

In this talk we try to combine both approaches, i.e. the goal is to consider
SPDEs with time and spatial variables, where we allow for stochastic integration
with respect to time and where we apply the theory of regularity structures with
respect to space variables. In more technical terms: we aim to consider stochastic
processes with values in modelled distributions.

Modelled distributions are the spine of the theory of regularity structures
[Hai14]: they constitute a way to describe, by means of functions taking values in
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a graded vector space which satisfy certain graded estimates, generalized functions
of certain degrees of (ir-)regularity (which is hard-coded in the given graded vec-
tor space structure). So far modelled distributions come with Hölder type norms,
which is most natural from the point of view of the reconstruction theorem (see
Theorem 3.10 in [Hai14]). However, with stochastic analysis in mind, Sobolev-
Slobodeckij type norms are a more natural choice. It is the goal of this article to
show that reconstruction still works by a direct proof, which, of course, mimics
Martin Hairer’s original proof on the existence of the reconstruction operator.

The reconstruction operatorRmaps modelled distributions to generalized func-
tions in a linear and bounded way with additional continuous dependence on the
underlying model. The reconstruction operator can be considered as an abstract
integration operation, which, depending on the particular regularity structure. It
generalizes Young integration [You36], or controlled rough paths [Lyo98, Gub04],
etc. The main result of this article is a Fubini theorem, which asserts for bounded
modelled distribution valued predictable processes H and Brownian motion W
that the order of “integration” can be interchanged

〈
R
(
(H •W )

)
, ψ

〉
=

(〈
R(H), ψ

〉
•W

)

for every test function ψ. This Fubini theorem only makes sense if the space of
modelled distributions Dγ

p has, e.g., some martingale type 2 structure, such that
a rich stochastic integration theory is at hand. There are many approaches to
stochastic integration for Banach space valued processes, some of them involve
properties of the Banach space like martingale type 2 or UMD. It depends on the
purpose in mind, which property is actually needed, but for integrals with respect
to Brownian motion martingale type 2 or UMD is favorable, see, e.g. [Brz95].
We shall prove here that the space of modelled distributions Dγ

p (for p ≥ 2) are
of martingale type 2 or UMD, which suffices to define a rich stochastic integra-
tion theory as needed for the treatment of stochastic differential equations with
Brownian drivers like in the books of DaPrato-Peszat-Zabczyk [PZ07, DZ14].
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Parabolic Anderson model with rough dependence in space

Samy Tindel

(joint work with X. Chen, Y. Hu and D. Nualart)

This research proposal is concerned with the following stochastic heat equations
on R+ × R, formally written as:

(1)
∂u

∂t
=

1

2

∂2u

∂x2
+ u Ẇ , t ≥ 0, x ∈ R ,

In equation (1), Ẇ is a noise which is white in time and colored in space, and we

are interested in regimes where the spatial behavior of Ẇ is rougher than white
noise. More specifically, our noise can be seen as the formal space-time derivative
of a centered Gaussian process whose covariance is given by:

(2) E [W (s, x)W (t, y)] =
1

2

(
|x|2H + |y|2H − |x− y|2H

)
(s ∧ t),

where 1
4 < H < 1

2 . That is, W is a standard Brownian motion in time and a
fractional Brownian motion with Hurst parameter H in the space variable. Notice
that the spatial covariance of Ẇ , which is formally equal to H(2H−1)|x−y|2H−2,
is not locally integrable when H < 1

2 . Therefore the stochastic integration with
respect to W cannot be handled by classical theories (see e.g. [5, 7]). However,
we have recently been able (cf. [6]) to give a proper definition of equation (1) and
to solve it in a space of Hölder continuous processes (see also the recent work [1],
covering the linear case (1)). We shall take those results for granted.

Let us now highlight the fact that space-time asymptotics for stochastic heat
equations like (1) have attracted a lot of attention in the recent past. This line
of research stems from different motivations, and among them let us quote the
following: For a fixed t > 0, the large scale behavior of the function x 7→ u(t, x)

is dramatically influenced by the presence of the noise Ẇ in (1) (as opposed to
a deterministic equation with no noise). One way to quantify this assertion is to
analyze the asymptotic behavior of x 7→ u(t, x) as |x| → ∞. Results in this sense
include intermittency results, upper and lower bounds for MR ≡ sup|x|≤R u(t, x)

contained in [3], and culminate in the sharp results obtained in [2]. Roughly
speaking, in case of a white noise in time like in (2), those articles establish that
ln(MR) behaves like [ln(R)]ψ, for an exponent ψ which depends on the spatial

covariance structure of Ẇ . In particular if the spatial covariance of Ẇ is described
by the Riesz kernel |x|−α for α ∈ (0, 1), one gets ψ = 2

4−α . This interpolates

between a regular situation in space (α = 0 and ψ = 1/2) and the KPZ or white
noise setting (α = 1 and ψ = 2/3). In any case those results are in sharp contrast
with the deterministic case, for which x 7→ u(t, x) stays bounded.
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With these preliminaries in mind, the current contribution completes the space-
time asymptotics picture for the stochastic heat equation, covering very rough
situations like the ones described by (2). Namely, we get the following spatial
asymptotics:

Theorem 1. Let Ẇ be the noise given by the covariance (2). Let u be the unique

solution to equation (1) driven by Ẇ with initial condition u0 = 1, and consider
t > 0. Then:

(3) lim
R→∞

(logR)−
1

1+H log

(
max
|x|≤R

u(t, x)

)
= EH a.s.,

where EH is a variational constant which can be described precisely.

Notice that the exponent ψ ranges in the interval (2/3, 4/5) whenH ∈ (1/4, 1/2),
indicating a possible superdiffusive behavior of the corresponding directed poly-
mer.

Let us say a few words about our strategy in order to prove Theorem 1. It can
be roughly be divided in two main steps:

(i) Tail estimate for u(t, x). Let us fix t ∈ R+ and x ∈ R. Our first main objective
is to prove that for large a, we have

(4) P (log(u(t, x)) ≥ a) ≍ exp

(
− ĉH,t a

1+H

tH

)
,

where ĉH,t is determined by a variational problem. This stems, via some large
deviation arguments, from a sharp analysis of the high moments of u(t, x). Namely,
our main effort in order to get the tail behavior is to prove that for large m ∈ N,
we have:

(5) E [(u(t, x))
m
] ≃ exp

(
cHtm

1+ 1
H

)
,

with a variational expression for cH . Towards this aim, we resort to a Feynman-
Kac representation for the moments of u(t, x), which involves a kind of intersection
local time for a m-dimensional Brownian motion weighted by a singular potential.
We are thus able to relate the quantity E[(u(t, x))m] to a semi-group on L2(Rm),
and this semi-group admits a generator Am which can be expressed as the Laplace
operator on Rm perturbed by a singular distributional potential. Then we shall
get our asymptotic result (5) thanks to a careful spectral analysis of Am.

(ii) Spatial behavior. Once the tail of log(u(t, x)) has been sharply estimated,
we can complete the study of the asymptotic behavior in the following way: on
the interval [−M,M ] for large M , we are able to produce some random variables
X1, . . . , XN such that:

• N is of order 2M .
• X1, . . . , XN are i.i.d, and satisfy approximately (4).
• X1, . . . , XN are approximations of u(t, x1), . . . u(t, xN ) with some elements
x1, . . . , xN of [−M,M ].

• Fluctuations of u in small boxes around x1, . . . , xN are small.
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With this information in hand, the behavior ln(R)
1

1+H in Theorem 1 can be heuris-
tically understood as follows: for an additional parameter λ, we have

P

(
max
j≤N

log(Xj) ≤ λ[ln(R)]
1

1+H

)
=

[
1− P

(
log(Xj) ≥ λ[ln(R)]

1
1+H

)]N
,

and thanks to the tail estimate (4), we obtain:

P

(
max
j≤N

log(Xj) ≤ λ[log(R)]
1

1+H

)
≃

[
1− exp

(
−ĉH,tλ1+H log(R)

)]N
.

With some elementary calculus considerations, and playing with the extra param-
eter λ, one can now easily check that for large enough R:

P

(
max
j≤N

log(Xj) ≤ λ[log(R)]
1

1+H

)
≤ exp(−Rν),

with a positive ν. Otherwise stated, we obtain an exponentially small probability

of having log(Xj) of order less than [log(R)]
1

1+H . Using a Borel-Cantelli type
argument and the fact that fluctuations of u in small boxes around x1, . . . , xN are
small, we thus prove Theorem 1.

As already mentioned, the spatial covariance γ of the noise Ẇ driving equa-
tion (1) is a non positive distribution. With respect to smoother cases such as
the ones treated in [2], this induces some serious additional difficulties which can
be summarized as follows. First, the variational asymptotic results involving the
generator Am cannot be reduced to a one-dimensional situation due to the sin-
gularities of γ. We thus have to handle a family of optimization problems in
L2(Rm) for arbitrarily large m. Then, still in the part concerning the asymptotic
behavior of m 7→ E[u(t, x)], the upper bound obtained in [2] relied heavily on a
compactfication by folding argument for which the positivity of γ was essential.
This approach is no longer applicable here, and we have to replace it by a coarse
graining procedure. Finally, the localization procedure and the study of fluctu-
ations in the spatial behavior step of our proof, though similar in spirit to the
one in Conus et al. [4], is more involved in its implementation. More specifically,
in our case the moment estimates cannot be obtained by using sharp Burkholder
inequalities, because of the roughness of the noise. For this reason we use Wiener
chaos expansions and hypercontractivity, which are more suitable methods in our
context. The fluctuation estimates alluded to above are also obtained through
chaos expansions.
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On a non-zero sum stochastic differential game

Nizar Touzi

We consider a general formulation of the Principal-Agent problem from Contract
Theory, on a finite horizon. We show how to reduce this non-zero sum Stack-
elberg stochastic differential game to a stochastic control problem which may be
analyzed by the standard tools of control theory. In particular, Agent’s value func-
tion appears naturally as a controlled state variable for the Principal’s problem.
Our argument relies on the Backward Stochastic Differential Equations approach
to non-Markovian stochastic control, and more specifically, on the most recent
extensions to the second order case.

On the Eyring–Kramers law for renormalised SPDEs

Hendrik Weber

(joint work with Nils Berglund and Giacomo Di Gesù)

The derivation of precise asymptotics for the expected transition times of a gra-
dient diffusion driven by a small noise term

(1) dx(t) = −∇V (x(t))dt +
√
2εdw(t)

is a classical problem. It is by now well-known [7, 5, 6] that if τ denotes the
first hitting time of a neighbourhood of a local minimiser y of V for a diffusion x
started in another local minimiser x, then (under suitable assumptions on V ) the
Kramers-Eyring law

(2) E[τ ] =
2π

|λ0(z)|

√
| detD2V (z)|
detD2V (x)

e[V (z)−V (x)]/ε[1 +O(ε)] ,

holds. Here z denotes the (by assumption) unique saddle connecting x and y and
λ0(z) is the (by assumption) unique negative eigenvalue of D2V (z).

In this work we aimed to extend this result to an infinite dimensional system.
The Allen-Cahn equation

(3) ∂tφ(t, x) = ∆φ(t, x) − (φ(t, x)3 − φ(t, x)) +
√
2εξ(t, x) ,

driven by space time-white noise ξ constitutes a natural example. In the case where
the spatial variable x runs over a one-dimensional interval this equation determines
a reversible diffusion process and a Kramers-Eyring law similar to (2) has been
previously established to govern transitions between the stable configurations φ± =
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±1 [2, 1, 4]. In these results the HessianD2V has to be replaced by the linearisation
of the potential

(4) V (φ) =

∫ (1
2
|∂xφ|2 −

1

2
φ2 +

1

4
φ4

)
dx

around the minimiser φ− and the saddle φ0 = 0, i.e. the operators −∂2x + 2 and
−∂2x − 1. In the case where x runs over a two-dimensional domain two problems
appear: On the one hand, for spatial dimension ≥ 2 equation (3) is not well-posed
as it stands. In order to construct a well-defined and non-trivial solution to (3),
the equation has to be renormalised by adding an “infinite constant” into the
potential. On the level of an approximating Galerkin scheme this reads

(5) ∂tφN = ∆φN − (PNφ
3
N − 3εCNφN − φN ) +

√
2εξN ,

where CN diverges as N → ∞. On the other hand, the ratio of determinants of
operators for −∆+ 2 and −∆− 1 does not converge for d ≥ 2. Our main result
shows that the renormalisation procedure (i.e. the introduction of the infinite
constant CN ) also corrects for this divergence. We consider the approximations (5)
over a two-dimensional torus R2/LZ2 of size L < 2π and show that the Kramers-
Eyring formula

E[τB ] ≤
2π

|λ0|

√∏

k

|λk|
νk

exp
(νk − λk

|λk|
)
e[V (φ0)−V (φ−)]/ε

(
1 + o(ε)

)
(6)

for transitions between suitable neighbourhoods A,B of ϕ± holds uniformly in the
discretisation parameter N . Here νk and λk denote the eigenvalues of (−∆+ 2)

and (−∆−1). The extra factor exp
(
νk−λk

|λk|

)
is caused by the renormalisation and

precisely ensures that the product converges as N → ∞.
This talk was based on joint work [3] with N. Berglund and G. Di Gesù.
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Regularity structures and the φ4 equation

Hendrik Weber

This was an introductory talk summarising some aspects of the recent develop-
ments in the theory of singular stochastic PDE. This was set in the context of the
dynamic ϕ4

3 model which is given by the stochastic PDE

∂tϕ = ∆ϕ− ϕ3 + ξ,(1)

where ξ denotes a space-time white noise over R × R3. At least formally (1)
describes a Markov process which is reversible with respect to the Euclidean φ43
quantum field theory. The definition of solutions to (1) and a short time existence
and uniqueness theory were one of the first applications of Hairer’s celebrated
theory of regularity strucures [3]. Similar results were then obtained using the
notion of paracontrolled distributions [2, 1] as well as ideas from renormalisation
group theory [4]. Global-in-time solutions over the three-dimensional torus were
constructed in [5]

In this talk some of the aspects involved in the derivation of these results were
reviewed. It was shown in particular how manipulations on graphs can be used
to efficiently perform stochastic moment estimates involved in the construction of
solutions. Also the paracontrolled ansatz was explained an compared to Hairer’s
regularity structures.
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Large scale behaviour of phase coexistence models

Weijun Xu

(joint work with Martin Hairer and Hao Shen)

Consider microscopic phase coexistence models of the type

(1) ∂tu = ∆u− ǫV ′
θ (u) + η

in three spatial dimensions. Here, η is a space-time Gaussian random field with
smooth covariance and correlation length 1, and the potential (θ, u) 7→ Vθ(u) is a
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polynomial whose coefficients depend smoothly on the parameter θ. Let Ψ be the
stationary solution to the linearised equation

∂tΨ = ∆Ψ+ η,

and µ denote the stationary measure of Ψ. We further define the averaged potential
〈Vθ〉 by

〈Vθ〉(x) :=
∫

R

V (x+ y)µ(dy).

In the work [3], we obtained the following theorem.

Theorem 1. Suppose the average potential 〈Vθ〉 has a pitchfork bifurcation at the
original, and let P denote the heat kernel. Let A be the quantity given by

A =

∫
P (z)E

(
V ′
0(Ψ0)V

′′
0 (Ψz)

)
dz,

where the integration is taken over the space-time domain R × R3. Let u be the
microscopic process given by (1). If A = 0, then ∃c > 0 such that for θ =
−cǫ| log ǫ|+O(ǫ), the rescaled process

uǫ(t, x) := ǫ−
1
2u(t/ǫ2, x/ǫ)

converges to the solution of Φ4
3 equation. On the other hand, if A 6= 0, then ∃hǫ

and θ = c′ǫ
2
3 +O(ǫ

8
9 ) such that the process

uǫ(t, x) := ǫ−
5
12

(
u(t/ǫ

5
3 , x/ǫ

5
6 )− hǫ

)

converges to the solution of Φ3
3 equation.

The proof is based on the theory of regularity structures [1] as well as the recent
work on universality of KPZ equation [2]. In the subsequent work [4], we extend
the symmetric case (A = 0) to non-Gaussian noise η with suitable integrability
and mixing conditions (also symmetric noise). We expect to observe Φ3

3 in the
generic non-symmetric case.

The above result could be illustrated by the following figure. The light shaded
curve corresponds to the symmetric case (A = 0), and the black curve represents
the generic case (A 6= 0) when 〈V 〉 undergoes a pitchfork bifurcation. Here, the
field Φ is represented on the horizontal axis and the bifurcation parameter θ on the
vertical axis (with positive direction pointing downwards). We can see that the
asymmetry in the potential separates one local minimum from two other critical
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points in the pitchfork bifurcation, and forms a saddle point.

θ ≈ −ǫ| log ǫ| + O(ǫ)

θ = c∗ǫ
2
3 + O(ǫ

8
9 )

The intuitive explanation of why this is so is that 〈V 〉 is really only a 0-th order
approximation to the “real” effective potential felt by the system at large scales.
Since pitchfork bifurcations are structurally unstable, small generic perturbations
tend to turn them into a saddle-node bifurcation taking place very close to a local
minimum.
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The theory of rough paths via one-forms

Danyu Yang

(joint work with Terry Lyons)

We propose a one-form approach [10] to rough paths theory, and reduce the rough
integration to an inhomogeneous analogue of the classical Young integral [14]. The
approach is simple and can be used as an efficient tool to tackle problems in rough
paths theory. In [11], we provide an overview of the approach, and provide a
simple proof of the existence, uniqueness and stability of the solution to rough
differential equations.

The key idea is about exact one-forms. The integration of an exact one-form
along any continuous path is well-defined, and simply gives back the difference of
the values of the function at the end points of the path. For example, a constant

one-form c on a vector space is an exact one-form, and
∫ 1

0 cdy = c (y1 − y0) for
any continuous path y on [0, 1]. Then for a given continuous path y on [0, 1], it
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is possible to vary the constant one-form slowly with time to incorporate a large
family of integrable one-forms. The integral makes sense when the one-form and
the path satisfy a compensated regularity condition. For example, when the time-
varying constant one-form and the continuous path satisfy Young’s condition [14],
the integral is well-defined as Young integral. Rough paths can be viewed as paths
taking values in a group. By lifting polynomial one-forms to exact one-forms on
the group, we interpret rough integration as an analogue of Young integration: the
integration of a slowly-varying exact one-form against a continuous path.

In Young integration, when x is α-Hölder and y is β-Hölder for α+ β > 1, the
integral

∫
xdy is well-defined as the limit of Riemann sums. The idea of Young

integral is that

xs (yt − ys) = xs (yu − ys) + xu (yt − yu) +O
(
|t− s|α+β

)
for s < u < t.

Since α + β > 1, we can keep on inserting partition points, and get a consistent
integral in the limit. The following example shares the same spirit with our group-
valued integration. Suppose x is a continuous path taking values in a differentiable
manifold, and α is a continuous path taking values in exact one-forms on the
differentiable manifold i.e. for any time t, αt is an exact one-form. If∫

r∈[s,t]

αsdxr ≈
∫

r∈[s,u]

αsdxr +

∫

r∈[u,t]

αudxr for s < u < t,

then as in Young integration, we can keep on inserting partition points, and the
integral exists: ∫

r∈[0,1]

αrdxr := lim
|D|→0

∑

k,tk∈D

∫

r∈[tk,tk+1]

αtkdxr .

Suppose x is a continuous path with finite length. The lifting g of x is a path
on [0, T ] given by

gt = 1 +

n∑

l=1

xlt with x
l
t =

∫

0<u1<···<ul<t

dxu1 · · · dxul
.

Based on Chen [1], g takes values in the free nilpotent Lie group. Suppose p is a
polynomial one-form i.e. a polynomial taking values in continuous linear mappings.
Then it can be computed that

∫

r∈[s,t]

p (xr) dxr =

n∑

k=1

(
Dk−1p

)
(xs)x

k+1
s,t := P (gs, gs,t) .

where gs,t = g−1
s gt based on Chen’s identity. P is well-defined for any continuous

path g, and the value of P (gs, gs,t) only depends on the end points of g|[s,t]. In
fact P is the exact one-form induced by the polynomial function on the group

a 7→ P (1, a) ,

where 1 denotes the identity in the group. As a consequence, we can lift a poly-
nomial one-form, which is by no-means exact in the classical setting, to an exact
one-form on the free nilpotent Lie group. The integration of an exact one-form
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along any continuous path is well-defined. For a given continuous path, it is pos-
sible to vary an exact one-form slowly with time to incorporate a large family of
integrable one-forms.

Based on Stein [13] and Hairer [6], a Lipschitz one-form is a function taking
values in polynomial one-forms, with the Lipschitz degree describing the varying
speed of polynomials. The higher the Lipschitz degree, the slower the varying
speed of polynomials. Since we can lift polynomial one-forms to exact one-forms,
we can lift a Lipschitz one-form to a function taking values in exact one-forms.
When the Lipschitz degree is high, we can lift a Lipschitz one-form to a slowly-
varying exact one-form. Suppose α is a Lipschitz one-form with lifting β and x is
a continuous path of finite length with lifting g. Then we have the equality holds

∫

r∈[0,1]

α (xr) dxr =

∫

r∈[0,1]

β (gr) dgr.

The equality holds because we just rewrite the integral of p against x as the integral
of P against g, and the equality holds based on the comparison of local expansions.
The point of this rewriting is that, when x is not regular enough, the left hand
does not have a proper meaning but the right hand side has a meaning. The right
hand side is actually the rough integration.

Consider the exact one-forms derived from functions taking values in another
group. We call an exact one-form a cocyclic one-form when it is derived from a
polynomial function that takes values in another group. More specifically, we say
β is a cocyclic one-form on group G if

β (a, bc) = β (a, b)β (ab, c) , ∀a, b, c ∈ G.

Intuitively, if we start from point a and go in the direction of bc, it is equivalent
that we start from a go in the direction of b, and then we start from ab and go in
the direction of c. The polynomial function that induces β is given by

a 7→ β (1, a) .

For a given group-valued path, we can vary an exact one-form slowly with time,
and the integral still makes sense. Suppose g is a continuous path taking values in
the group G, and β is a slowly-varying cocyclic one-form. Suppose the generalized
Young condition holds:

βs (gs, gs,t) ≈ βs (gs, gs,u)βu (gu, gu,t) for s < u < t.

Then the integral exists as the limit
∫ 1

0

βu (gu) dgu = lim
|D|→0

βt0 (gt0 , gt0,t1) · · ·β
(
gtn−1 , gtn−1,tn

)
.

In particular, this integration generalizes the rough integration.
By viewing Lipschitz functions as slowly-varying polynomial functions and by

lifting polynomial one-forms to exact one-forms, we encapsulate the nonlinearity
of the integral to the structure of the group and to the exact one-forms on the
group so that the idea behind the generalized integral is clearer and bears a similar
form to the classical Young integral.
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On the renormalisation group in regularity structures

Lorenzo Zambotti

(joint work with Yvain Bruned and Martin Hairer)

I want to present a general construction of the renormalisation group in regularity
structures based on Hopf algebras of labelled rooted forests. This construction
allows to unify the renormalisation group and the structure group giving further
insight in the algebraic properties of regularity structures. This is based on joint
work with Yvain Bruned and Martin Hairer.

In four celebrated papers (1954, 1957, 1958, 1971) Kuo-Tsai Chen discovered
that the family of iterated integrals of a smooth path in Rd has a number of
algebraic properties.

Let s ≤ t and X : [s, t] → Rd a smooth path. Set

Xst(∅) := 1,

Xst(i1, . . . , in) :=

∫ t

s

Ẋ i1
r1∂r1

∫ r1

s

Ẋ i2
r2∂r2 · · ·

∫ rn−1

s

Ẋ in
rn∂rn,

with n ∈ N, ik ∈ {1, . . . , d}.
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Let V := Span{(i1, . . . , in), n ≥ 0} and V ∗ its dual. Then X is a function
(s, t) 7→ Xst ∈ V ∗: 〈Xst, τ〉 := Xst(τ).

If u ∈ [s, t] and X[s,t] := (Xr, r ∈ [s, t]) we write

(1) X[s,t] = X[s,u] ∗X[u,t],

the concatenation of X[s,u] and X[u,t]. We have

Xst(i1, . . . , in) =

=

n∑

k=0

∫ t

s

Ẋ i1
r1∂r1

∫ r1

s

Ẋ i2
r2∂r2 · · ·

∫ rn−1

s

Ẋ in
rn∂rn 1(rk+1≤u<rk)

=

n∑

k=0

Xut(i1, . . . , ik)Xsu(ik+1, . . . , in),

i.e. 〈Xst, τ〉 = 〈Xsu ⊗Xut,∆τ〉, ∀τ ∈ V

where ∆ : V → V ⊗ V is the deconcatenation coproduct

∆(i1, . . . , in) :=
n∑

k=0

(ik+1, . . . , in)⊗ (i1, . . . , ik).

By duality, ∆ defines a product on V ∗:

〈A ⋆ B, τ〉 := 〈A⊗B,∆τ〉.
With this notation, Xst = Xsu ⋆Xut, which is the analog of (1).

On V we have a product � (shuffle) and a coproduct ∆, which satisfy suitable
properties: V is endowed with the structure of a bialgebra.

X is a V ∗-valued function with the following properties:

• 〈Xst, τ〉 = 〈Xsu ⊗Xut,∆τ〉, ∀τ ∈ V , s ≤ u ≤ t.
• 〈Xst, τ1 � τ2〉 = 〈Xst, τ1〉〈Xst, τ2〉.

Terry Lyons defines a (weak) geometric rough path of regularity γ > 0 as a
V ∗-valued function X satisfying the above properties plus

• sups6=t[|〈Xst, (i1, . . . , in)〉|/|t− s|nγ ] < +∞, for all (i1, . . . , in) ∈ V .

(Notations from [Hairer-Kelly 2013]). Smooth paths are dense.
By the property 〈Xst, τ1� τ2〉 = 〈Xst, τ1〉〈Xst, τ2〉, X takes values in the char-

acters on the algebra (V,�).
It turns out that the set of characters is a group for the multiplication

〈A ⋆ B, τ〉 = 〈A⊗B,∆τ〉
with identity element 1∗(τ) := 1(τ=∅) and inverse

〈A−1, τ〉 = 〈A,Sτ〉
where S : V → V is the antipode map given in this case by

S(i1, . . . , in) = (−1)n(in, . . . , i1).

Then V is a Hopf algebra. In particular, setting Xt := X0,t

Xst = X−1
s ⋆Xt.
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Massimiliano Gubinelli had the idea of considering a general rough path as an
element of K∗, where K is a larger bialgebra than V .
K is the vector space generated by decorated forests. We define a product · given

by the disjoint union and a suitable deconcatenation coproduct ∆ : K → K ⊗K.
It turns out that K has an antipode and therefore

• K is a Hopf algebra
• the set of characters on K is a group

Hopf algebras and groups of characters based on trees and forests were already
known to play an important role in ODEs and numerical analysis since the work
of Cayley (1889), Butcher (1972) and Hairer-Wanner (1974).

Kreimer and Connes-Kreimer (1998) used the same space in QFT.
Therefore, Massimiliano defines a branched rough path of regularity γ > 0 as a

function X : [0, T ]2 → K∗ s.t.

• 〈Xst, τ〉 = 〈Xsu ⊗Xut,∆τ〉, ∀τ ∈ K.
• 〈Xst, τ1 · τ2〉 = 〈Xst, τ1〉〈Xst, τ2〉.
• sups6=t[|〈Xst, τ〉|/|t− s|γ|τ |] < +∞, for all τ ∈ K, where |τ | is the number
of nodes of the forest τ .

In particular
Xst = X−1

s ⋆Xt.

Notations and presentation follow here [Hairer-Kelly 2013].
Around 2010, Martin and Massimiliano, among others, try to generalise the

previous setting to (singular) stochastic PDEs like KPZ, PAM and Φ4.

(KPZ) ∂tu = ∆u+ (∇u)2 + ξ, (t, x) ∈ R× R,

(PAM) ∂tu = ∆u+ u ξ, (t, x) ∈ R× R
2,

(Φ4
3) ∂tu = ∆u− u3 + ξ, (t, x) ∈ R× R

3.

This needs two generalisations:

• The rough path must be parametrized by R
d with d ≥ 2

• 〈Xst, τ〉 can become a distribution, say, in t for fixed s, i.e. we want to
allow that sups6=t[|〈Xst, τ〉|/|t− s|ατ ] < +∞ with ατ ∈ R.

Two new theories are born: regularity structures and paraproducts.
In regularity structures, we have a linear space H of trees, which represent

distributions on Rd. This space should play the role of K, so that the rough path
X should be a H∗-valued distribution on Rd with good properties. More precisely,
we can think of X as a map H → S ′(Rd).

HoweverK∗ is an algebra with the ⋆ product, while we do not expect to multiply
all H∗-valued distributions. Therefore we do not expect H to have a coproduct.

Instead, we consider a Hopf algebra H+ and a right coaction ∆ : H → H⊗H+.
Then the character group G+ ⊂ H∗

+ of H+ acts on the right on H∗: G+ →
End(H∗,H∗), H∗ ∋ h 7→ hg ∈ H∗

hg(τ) := (h⊗ g)∆τ, τ ∈ H, (hg1)g2 = h(g1g2).

By duality, G+ acts on the left on H. G+ is the structure group.
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Then our rough path x 7→ Xx becomes here

R
d ∋ x 7→ (hx, gx) ∈ H∗ ×G+, G+ ⊂ H∗

+

and we write (recalling that Xxy = X−1
x ⋆Xy)

Πxτ(y) := (hy ⊗ gx)∆τ, Γxzτ = (id⊗ g−1
x gz)∆τ

where ∆ : H → H⊗H+ is a right coaction. Then the formulae

ΠzΓzxτ(y) = Πxτ(y), ΓxzΓzy = Γxy

are the natural generalisation to this setting of the Chen formula

Xxz ⋆Xzy = Xxy.

Note: the right coaction is equivalent to the left action of G+ on H and replaces
the coproduct on H.

The fact that now X = (h, g) can contain distributions has important con-
sequences: if we approximate with smooth Xε = (hε, gε), some quantity might
diverge in order for generalised functions to appear. We must modify Xε in order
to make it convergent.

But how? Well, the algebraic structure must be preserved. We need to under-
stand the morphisms of our structure. This is the Renormalisation step.

We need now a left action of another group G− on H∗ and on G+

G− → End(H∗,H∗), G− → Hom(G+, G+),

ℓ1(ℓ2h) = (ℓ1ℓ2)h, ℓ1(ℓ2g) = (ℓ1ℓ2)g ℓ(g1g2) = (ℓg1)(ℓg2).

where ℓ ∈ G−, g ∈ G+, h ∈ H∗.
Then the renormalised rough path is

Πℓxτ(y) := (ℓhy ⊗ ℓgx)∆τ, Γℓxzτ = (id⊗ (ℓgx)
−1ℓgz)∆τ.

Again we have

ΠℓzΓ
ℓ
zxτ(y) = Πℓxτ(y), ΓℓxzΓ

ℓ
zy = Γℓxy.

G− is the renormalisation group.
It would be nice if we had

Πℓxτ(y) = Πx(τℓ),

where H ∋ τ 7→ τℓ is the dual action of H∗ ∋ h 7→ ℓh, namely

ℓh(τ) := h(τℓ).

For this we need the compatibility condition

ℓ(hg) = (ℓh)(ℓg).

This is reminiscent of another formula

ℓ(g1g2) = (ℓg1)(ℓg2).

In fact, we can realise all the above actions and interactions with two operators
∆1, ∆2 on suitable space of decorated forests, satisfying
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• co-associativity

(id⊗∆i)∆i = (∆i ⊗ id)∆i, i = 1, 2,

which is responsible for

g1(g2τ) = (g1g2)τ, ℓ1(ℓ2h) = (ℓ1ℓ2)h, ℓ1(ℓ2g) = (ℓ1ℓ2)g,

• compatibility (for lack of a more precise term)

(id⊗∆2)∆1 = M(13)(2)(4)(∆1 ⊗∆1)∆2,

which is responsible for

ℓ(g1g2) = (ℓg1)(ℓg2), ℓ(hg) = (ℓh)(ℓg).

The theory of paraproducts has no G+ but H is there and the action of G− is
arguably the same.

Also in regularity structures, we can treat only globally defined distributions

Πτ(y) = hy(τ), Πℓτ(y) = ℓhy(τ) = hy(τℓ).

The above structure can be summarised in a left action of the semidirect product
G− ⋉G+ on H, where

(ℓ1, g1)(ℓ2, g2) = (ℓ1ℓ2, g1(ℓ1g2)).

Fully nonlinear SPDEs and RPDEs: Classical and viscosity solutions

Jianfeng Zhang

(joint work with Rainer Buckdahn, Christian Keller and Jin Ma)

This talk concerns the following fully nonlinear stochastic partial differential equa-
tions with initial condition u(0, x, ø) = u0(x):

du(t, x, ø) = f(t, x, ø, u, ∂xu, ∂
2
xxu)dt+ g(t, x, ø, u, ∂xu) ◦ dBt,(1)

where B is a standard Brownian motion, ◦ dBt is the Stratonovich integration, and
f is increasing in ∂2xxu. Such equation typically does not have classical solution.
The goal of this work is to establish the viscosity theory, and for that it is more
convenient to study the corresponding rough partial differential equations:

du(t, x, ø) = f(t, x, ø, u, ∂xu, ∂
2
xxu)dt+ g(t, x, ø, u, ∂xu) ◦ døt,(2)

where ø is viewed as a rough path and dø is the rough path integration corre-
sponding to Stratonovich integration.

Such problems were introduced by [8, 9], and two approaches were proposed.
The first one is to mollify the (rough) path ø and prove the solutions of the
approximating equations converge. The work [3] follows this approach. The other
approach is to transform the SPDE (or rough PDE) to a standard PDE with
random coefficients by using characteristics. We shall follow this approach, in
particular, we will define viscosity solutions via test functions. The recent work
[6] is also in this direction.
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In this talk, we first introduce the pathwise Ito calculus of [7], based on the
pathwise Taylor expansion of [1, 2]. This unifies the path derivatives of Dupire
[4] and the controlled rough paths of Gubinelli [5]. Next, assuming f and g are
smooth enough in the sense of [7], by using characteristic we show that (2) admits
a global classical solution when g is semilinear:

g = σ(, x, ø)∂xu+ g0(t, x, ø, u),(3)

and admits a local classical solution for general case.
To introduce viscosity solution, we assume g is still smooth but f may not

be. The test functions are smooth functions (again in the sense of [7]) whose
path derivative coincides with g. We show that the definition is equivalent to the
alternative definition defined through semi-jets, and is consistent with classical
solution. We establish the partial comparison principle (comparison between a
viscosity subsolution and a classical supersolution) and stability under mild con-
ditions. Finally, we show that full comparison principle: globally in the semilinear
case (3) and locally in general case.
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