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Abstract. The renormalization group was originally introduced as a multi-
scale approach to quantum field theory and the theory of critical phenomena,
explaining in particular the universality observed e.g. in critical exponents.
Since then it has become a hugely important tool in statistical mechanics,
condensed matter and high energy physics. More recently, renormalization
has also played a decisive role in mathematics as a method of proof, applicable
in quantum field theory, differential equations, probability, and other fields.
The workshop has focused on new developments along the lines of these two
traditions. Besides discussing methodical progress and current applications,
we have explored new challenges and problems that may in the future be
tackled with the help of the renormalization group.
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Introduction by the Organisers

The renormalization group has its origins in quantum field theory and statistical
mechanics. The idea is to implement scale transformations, possibly combined
with other operations such as averaging, on function spaces and operator algebras,
and hence on the action functionals and Hamiltonians that define classical or
quantum ensembles and dynamics on these spaces. In this way, the transition from
a microscopic to a macroscopic scale in systems with many degrees of freedom is
formulated in terms of a dynamical system. In the past half-century, this concept
has led to a uniform description of diverse physical phenomena, providing a natural
explanation why physical phenomena exhibit universal features. In the sequel, the
method has entered mathematics as a method of proof that has gradually been
applied to solve a great variety of problems in mathematical physics, but also in
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probability and partial differential equations. To provide a context, we first sketch
the roots and some important developments of the field. (We do not attempt
completeness, as this would require too much space.)

Renormalization in quantum field theory (QFT) started out in the 1950s as
perturbative renormalization, with the aim of getting well-defined (finite) results
at any fixed order in an expansion in a coupling parameter, usually organized in
terms of Feynman graphs. It was converted to a mathematical theory in the 1960s
and early 1970s, notably by Bogoliubov, Parasiuk, Hepp, and Zimmermann, cul-
minating in an inductive proof of finiteness to all orders of the Green functions
of physically important QFTs like quantum electrodynamics. Zimmermann’s fa-
mous forest formula provides an explicit solution to the recursion of perturbative
renormalization, which captures both the analytical and the combinatorial aspects
of the procedure in a concise way. In parallel, Epstein and Glaser developed the
viewpoint of renormalization as the definition of causal products of distributions.
The group of scaling transformations plays a role because the careful mathemat-
ical analysis requires introducing a renormalization scale, the variation of which
leads to the renormalization group. In the 1970s, ’t Hooft and Veltman proved
renormalizability of nonabelian gauge theory to first order in a loop expansion, us-
ing dimensional renormalization. Breitenlohner and Maison then established the
action principle and the BRST identities for this scheme to all orders, and Piguet
and Sibold treated supersymmetric theories in the 1980s.

Renormalization in statistical mechanics originated in the idea that at a critical
point of a statistical mechanical system, scale invariance should set in. Kadanoff
first introduced block-spin transformations in the 1960s. Wilson continued and
extended these ideas and developed the renormalization group as a combination
of averaging operations and scale transformations. Wilson’s RG phenomenology
of a flow of effective actions parametrized by length scale shifted the focus from
studying individual fixed models to considering a dynamical system on “the space
of all theories”. This new formulation of renormalization changed the concepts
and techniques used in theoretical physics completely, far beyond their original
application to critical phenomena. It also allowed to go beyond formal perturba-
tion expansions and to construct models of QFT and statistical mechanics in a
mathematical sense.

The renormalization group in the sense of Kadanoff and Wilson was devel-
oped into a mathematical theory in the 1980s in pioneering work by Gallavotti
and Nicolò, by Gawȩdzki and Kupiainen, by Feldman, Magnen, Rivasseau and
Sénéor, and by Ba laban. Beginning with these works, the method has led to
breakthroughs in mathematical results about quantum field theories and models
of statistical mechanics. Indeed, virtually all mathematical constructions of quan-
tum field theories in dimensions three or higher involve the RG, and the RG has
become a powerful method in the study of systems with infinitely many degrees of
freedom in general, and in the construction and analysis of non-Gaussian measures
on infinite-dimensional spaces.
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These two seemingly different strands of renormalization were joined in the
1970s and 1980s in the work of the above-mentioned people, and by Wegner,
Polchinski, and others. In particular, Polchinski used Wilson’s flow equation RG
to give a proof of perturbative renormalizability that bypasses most of the combi-
natorial complications of earlier works, and which has since been developed into
a powerful tool that has led to many new results, e.g. to a recent proof of per-
turbative renormalizability of the standard model of elementary particle physics
on curved spacetime. Brydges and Kennedy used Polchinski’s formulation to shed
new light on the forest formula, and to develop new tree expansions that have
become standard tools in constructive QFT. Brydges and Yau developed a setup
in which the decomposition in large and small fields is avoided.

Much further work has also been done in simplifying perturbative renormal-
ization, extending it to more general situations, and providing new mathematical
viewpoints. The conceptually very clear method of Epstein and Glaser was revived
by Scharf and collaborators, and then further developed using tools of microlocal
analysis by Radzikowski, and then by Brunetti and Fredenhagen and coworkers,
and by Hollands and Wald. Kreimer, and then Connes and Kreimer, provided a
Hopf-algebraic formulation of the graph operations implementing renormalization
in formal perturbation theory. Costello gave another variant of Wilson’s effective-
action approach to perturbative renormalization.

Last, but not least, starting with the work of Feldman and Trubowitz, as well
as Benfatto and Gallavotti, in the early 1990s, the renormalization group has led
to a host of new results in mathematical condensed-matter theory, in particular
laying rigorous foundations for Luttinger and Fermi liquid theory and numerous
new results about spin systems. Moreover, it has placed the proof of Bose-Einstein
condensation in the thermodynamic limit within reach.

The 2016 Oberwolfach workshop The Renormalization Group, the fourth of its
kind at Oberwolfach, organised by M. Disertori (Bonn), M. Salmhofer (Heidelberg)
and and W. De Roeck (Leuven), was attended by 43 participants, from universities
and research institutes mainly in Europe and North America, with backgrounds
ranging from theoretical physics over mathematical physics to pure mathematics.

The talks and discussions covered most of the broad range of topics exposed
above. There were talks on novel views and methods of perturbative renormal-
ization (Nguyen, Rejzner), on the operator product expansion (Hollands), on the
rigorous construction and analysis of models in classical and quantum statistical
mechanics and condensed-matter physics (Feldman, Lohmann, Giuliani, Porta,
Pizzo), on probabilistic applications (Brydges, Slade), on specific analysis tools
(Buchholz), on applications to nontrivial QFT models motivated by high-energy
physics and combinatorics (Abdesselam, Rivasseau), and spectral theory and quan-
tum dynamics (Sigal). Moreover, there were talks about topics that may become
interesting for renormalizers (Fröhlich, Gawedzki, Warzel).

The presentations of T. Nguyen and K. Rejzner concerned the Batalin-Vilkovisky
approach to the quantization and renormalization of theories with large symme-
try groups (e.g. theories with local gauge or diffeomorphism invariance). Rejzner
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used the causal perturbation theory approach of Epstein and Glaser in Lorentzian
signature, while Nguyen used Costello’s version of the effective action approach on
Riemannian spaces, with a standard heat kernel regularization, to derive results
about the absence of anomalies in nonlinear sigma models.

S. Hollands presented his work on the operator product expansion (OPE),
touching a number of different aspects, namely the convergence of the expan-
sion in Euclidian scalar field theory (in every fixed order in perturbation theory),
proven by an extension of Polchinski’s flow equation method together with Hol-
land and Kopper, the idea of regarding the OPE as the defining feature of a QFT,
and a novel construction of the Gross-Neveu model via a new recursion formula
for the OPE.

V. Rivasseau talked about renormalization of tensor field theory, which is related
to models of quantum gravity, and which poses interesting new features and aspects
of renormalization theory.

S. Buchholz, one of the PhD researchers at the workshop, outlined a novel ap-
proach to finite-range decompositions of covariances, an analytical tool that has
recently helped to simplify cluster expansions needed in renormalization. Among
other things, the finite-range decomposition allows to treat non-analytic pertur-
bations, which occur in applications to models for elasticity.

Several talks dealt with applications of the mathematical renormalization group.
We had two talks, by J. Feldman and M. Lohmann, on the program of control-
ling interacting bosons with spontaneous symmetry breaking. This program has
as its medium-term goal a proof of Bose-Einstein condensation in the thermody-
namic limit, which can be considered one of the most important currently open
problems in mathematical physics. G. Slade spoke about O(n) models with a long-
range kinetic term, engineered so that these models are slightly below the upper
critical dimension. By applying machinery from earlier work with Brydges and
Bauerschmidt, the critical point can be studied. I.M. Sigal described some new
results on open quantum systems consisting of baths coupled to small systems.
In particular, decoherence rates have been exhibited and contrasted with the rate
of thermalization in such models. This program relies on the use of the Fesh-
bach map spectral renormalization group. The talk by M. Porta dealt with the
universality of the Hall conductance. This universality is very well understood for
non-interacting electrons where it is a consequence of topology. Porta and cowork-
ers employed fermionic perturbation theory to extend this to interacting electrons,
as well. A. Giuliani presented an application of fermionic perturbation theory to
planar dimer models. These models are solvable in the close-packed limit, when
the interaction only includes a hard-core repulsion that prevents dimers from over-
lapping. The new results allow to treat more general dimer interactions. This gives
rise to a continuous family of critical models, with varying critical exponents. A.
Abdesselam considered field theory on the p-adic numbers, which can be viewed
as a model in which the hierarchical approximation to the renormalization group
becomes exact. In particular, one of the achievements in this framework is the
construction of a theory with anomalous power-law decay of correlations. The
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talk by A. Pizzo concerned the ground state of interacting bosons approaching
the mean field limit. A lot of work has been done on this problems in the past
decade. Pizzo’s approach is based on the Feshbach renormalization group and it
yields new results on that ground state, making precise the well-known Bogoliubov
approximation.

Finally, we had a few interesting talks that were not, at least not explicitly,
connected to the renormalization group: D. Brydges outlined an application of
the lace expansion to the n = 2 component φ4 theory in high dimensions, proving
that critical exponents are given by mean field theory. S. Warzel reported on work
on planar Ising models. While it has been known already since Onsager that 2-
dimensional models often can be analyzed in terms of free fermions, the presented
work has significantly extended and generalized this connection. R. Kotecký pre-
sented work on the transition from a metastable supercooled gas phase to the stable
liquid phase in the Widom-Rowlinson model. The talk of K. Gawedzki focused on
periodically driven non-interacting systems, thus bringing us to non-equilibrium
physics. Such periodically driven systems can be described by a Floquet operator,
which replaces the Bloch Hamiltonian. The topic addressed here was how to define
topological invariants for such systems, like, e.g. for topological insulators.

J. Fröhlich gave an overview of the ‘Gauge Theory of States of Matter’, devel-
oped by him and coworkers throughout the 90’s. This is a program that classifies
relevant effective field theories in condensed matter, thus predicting important
phenomena including topological insulators. The talk also touched on more recent
works, proposing models for dark matter and dark energy.

The schedule was set up so as to leave enough time for individual discussions
and collaboration. The feedback from the participants was positive, suggesting
to us that the meeting has been fruitful. The Oberwolfach atmosphere and the
perfect organization at the Forschungsinstitut, as well as the friendly and efficient
service by the staff were greatly appreciated.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

A Field With Anomalous Scaling Dimension via Rigorous Wilson
ǫ-expansion, or Some Steps Towards Rigorous 3D CFT

Abdelmalek Abdesselam

In this extended abstract I will report on the result obtained in [3] which is joint
work with Ajay Chandra and Gianluca Guadagni, and which fits in the program
outlined in [1] for the rigorous study of conformal field theory (CFT) in three
dimensions. The model considered in [3] is p-adic, i.e., a hierarchical toy model
for a scalar φ4 model with fractional Laplacian. In the d-dimensional Euclidean
setting, the corresponding functional integral has the form

∫
· · · e−S(φ) Dφ with

the action

S(φ) =
1

2
〈φ, (−∆)

α
2 φ〉L2 +

∫

Rd

{
gφ(x)4 + µφ(x)2

}
dx .

Of particular interest is the case with d = 3 and α = 3+ǫ
2 with ǫ positive and small

which allows a small ǫ expansion which is a version of the famous ǫ-expansion
developed by Kenneth Wilson. One has the existence of a nontrivial RG fixed
point at distance ∼ ǫ from the trivial or Gaussian fixed point [5]. The scale
invariant theory corresponding to this fixed point is believed to be a 3D CFT [6].
I will now introduce the p-adic toy version of this model. Let p be an integer> 1 (in

fact a prime number). Let Lk, k ∈ Z, be the set of boxes
∏d

i=1

[
aip

k, (ai + 1)pk
)

for a1, . . . , ad ∈ N. The cubes in Lk form a partition of the octant [0,∞)d. Then
T = ∪k∈ZLk naturally has the structure of a doubly infinite tree organized in
layers or generations Lk:

The picture is for d = 1, p = 2. Now forget about [0,∞)d and Rd. Define the
substitute for the continuum Qd

p := set of leafs at infinity “L−∞”. More precisely,
this is the set of upward paths in the tree.
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A point x ∈ Qd
p encoded by a sequence (bn)n∈Z, bn ∈ {0, 1, . . . , p − 1}d. Let

0 ∈ Qd
p correspond to sequence with all digits equal to zero. bn represents local

coordinates of a L−n−1 box inside a L−n box. Moreover, scaling is defined as
follows: if x = (bn)n∈Z then px = (bn−1)n∈Z, i.e., this is an upward shift.

Likewise p−1x is downward shift and so on for defining pkx, k ∈ Z. If x, y ∈ Qd
p,

define their distance as |x − y| := pk where k is the depth where the bifurcation
between the two paths occurs

Also, define |x| := |x−0|. Because of the strange notation |px| = p−1|x|. Closed
balls ∆ of radius pk correspond bijectively to points x ∈ Lk:
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The metric space structure on Qd
p defines a Borel σ-algebra on which lives a

natural analogue of the Lebesgue measure ddx which gives a volume pdk for a
closed ball of radius pk. To construct it, take the product of uniform probability
measures on ({0, 1, . . . , p− 1}d)N for B(0, 1) and similarly for other balls of radius
1, and then collate.

To any group G of offsprings for a site z ∈ Lk+1, associate a centered Gaussian
vector (ζx)x∈G with pd×pd covariance matrix with 1−p−d on diagonal and −p−d

everywhere else. These vectors are set to be independent for different groups or
layers. Note that

∑
x∈G ζx = 0 a.s. One can also define an ancestor function:

for k < k′, x ∈ Lk, let anck′(x) be the ancestor in Lk′ . Likewise, one can define
anck′ (x) for x ∈ Qd

p. The massless Gaussian field φ(x), x ∈ Qd
p with engineering

scaling dimension [φ] is

φ(x) =
∑

k∈Z

p−k[φ]ζanck(x) , 〈φ(x)φ(y)〉 =
c

|x− y|2[φ] .

This is only formal since φ is not defined pointwise. One needs a notion of random
distributions. f : Qd

p → R is called smooth if it is locally constant

S(Qd
p) := {smooth compactly supported functions} = ∪n∈NS−n,n(Qd

p)

where for t− ≤ t+, St−,t+(Qd
p) is the space of functions which are constant in closed

boxes of radius pt− and support in B(0, pt+). The topology is the one generated
by the set of all possible seminorms. The space of distributions is S′(Qd

p), namely,
the topological dual with the strong topology (here equal to the weak-∗ topology).
One has S(Qd

p) ≃ ⊕NR and thus S′(Qd
p) ≃ RN with the product topology. Since

S′(Qd
p) is a Polish space, probability theory on it is very nice! The following

classical tools or facts hold in this somewhat exotic-looking context:

• Prokhorov’s Theorem,
• Bochner’s Theorem,
• Levy’s Continuity Theorem,
• Uniform convergence of characteristic functions in a complex neighbor-

hood of the origin implies weak convergence of probability measures (using
moments or the Vitali-Porter Theorem).

• The analytic RG and dynamical systems methods introduced in [3] deliver
exactly that.

• S′(Qd
p) × S′(Qd

p) ≃ S′(Qd
p) so the same tools work for joint law of pair of

distributional random fields, e.g., (φ,N [φ2]).
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From now on we set d = 3, [φ] = 3−ǫ
4 , and L = pl for the RG step ratio. The

UV cut-off is r ∈ Z, r → −∞. It eliminates length scales less than Lr. The IR
cut-off is s ∈ Z, s → ∞. It encloses the sytem in a volume of linear size Ls. The
cut-off Gaussian measure µCr

is the law of

φr(x) =

∞∑

k=lr

p−k[φ]ζanck(x) .

Sample paths are functions that are locally constant at scale Lr. These Gaussian
measures are scaled copies of each other. If the law of φ(·) is µC0 , then the law of
L−r[φ]φ(Lr·) is µCr

. Introduce fixed parameters g, µ and cut-off dependent bare
couplings gr = L−(3−4[φ])rg and µr = L−(3−2[φ])rµ. Let Λs = B(0, Ls) define the
confining volume or IR cut-off. Let

Vr,s(φ) =

∫

Λs

{gr : φ4 :Cr
(x) + µr : φ2 :Cr

(x)}d3x

and define the probability measure

dνr,s(φ) =
1

Zr,s
e−Vr,s(φ)dµCr

(φ) .

Let φr,s be a random variable in S′(Q3
p) sampled according to νr,s and define the

square field Nr[φ
2
r,s] which is the deterministic S′(Q3

p)-valued function of φr,s given
by

Nr[φ2r,s](j) = Zr
2

∫

Q3
p

{Y2 : φ2r,s :Cr
(x) − Y0L

−2r[φ]} j(x) d3x

with Z2, Y0, Y2 parameters to be adjusted. Our main result concerns the limit law
of the pair (φr,s, Nr[φ

2
r,s]) in S′(Q3

p)×S′(Q3
p) when r → −∞, s→ ∞ regardless of

the order of limits. We will need the approximate fixed point coupling

ḡ∗ =
pǫ − 1

36Lǫ(1 − p−3)
.

Theorem 1. [3] ∃ρ, ∃L0, ∀L ≥ L0, ∃ǫ0 > 0, ∀ǫ(0, ǫ0], ∃[φ2] > 2[φ], ∃ functions

µ(g), Y0(g), Y2(g) on the interval (ḡ∗−ρǫ
3
2 , ḡ∗+ρǫ

3
2 ) such that if one sets µ = µ(g),

Y0 = Y0(g), Y2 = Y2(g) and Z2 = L−([φ2]−2[φ]) then the law of (φr,s, Nr[φ2r,s])

converges weakly and in the sense of moments to that of a pair (φ,N [φ2]) such
that:

(1) ∀k ∈ Z, (L−k[φ]φ(Lk·), L−k[φ2]N [φ2](Lk·)) d
= (φ,N [φ2]).

(2) 〈φ(1Z3
p
), φ(1Z3

p
), φ(1Z3

p
), φ(1Z3

p
)〉T < 0 i.e., φ is non-Gaussian. Here 1Z3

p
is

the indicator function of B(0, 1).
(3) 〈N [φ2](1Z3

p
), N [φ2](1Z3

p
)〉T = 1.

Mixed correlations satisfy in the sense of distributions

〈φ(L−kx1) · · ·φ(L−kxn)N [φ2](L−ky1) · · ·N [φ2](L−kym)〉

= L−(n[φ]+m[φ2])k〈φ(x1) · · ·φ(xn)N [φ2](y1) · · ·N [φ2](ym)〉 .
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For the p-adic model we also proved [φ2] − 2[φ] = 1
3 ǫ + o(ǫ) as expected in the

Euclidean model. This, 0.33 . . ., is not too far, if one sets ǫ = 1, from the 3D
short-range Ising model for which recent progress in conformal bootstrap gives
[φ2] − 2[φ] = 0.3763 . . . (Simmons-Duffin 2015). The law νφ×φ2 of (φ,N [φ2]) is
independent of g.

Theorem 2. [4] νφ×φ2 is fully scale invariant, i.e., invariant under the action of

pZ instead of just LZ. Moreover, µ(g) and [φ2] are independent of the RG step L.

The two-point functions are given as distributions by

〈φ(x)φ(y)〉 =
c1

|x− y|2[φ] , 〈N [φ2](x) N [φ2](y)〉 =
c2

|x− y|2[φ2]
.

Note that 3 − 2[φ2] = 3 − 1
3ǫ + o(ǫ) so the correlations are still L1,loc !

Theorem 3. (A.A., May 2015) Let ψi denote φ or N [φ2]. Then for every mixed
correlation ∃ smooth function 〈ψ1(z1) · · ·ψn(zn)〉 on (Q3

p)n\Diag which is locally
integrable (even on the big diagonal Diag) such that

〈ψ1(f1) · · ·ψn(fn)〉 =

∫

(Q3
p)

n\Diag

〈ψ1(z1) · · ·ψn(zn)〉f1(z1) · · · fn(zn) d3z1 · · · d3zn

for all test functions f1, . . . , fn ∈ S(Q3
p).

This local integrability is the starting point of the investigations in [2] which
allow one to define the square field N [φ2] as a deterministic Borel-measurable local
functional of the elementary field φ. As far as I know, the result in [3], albeit on a
hierarchical model, is the first mathematical justification of Wilson’s ǫ-expansion,
in the sense that it is the first construction of a field with anomalous power law
decay of correlations due to an nontrivial isolated RG fixed point.
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The lace expansion for the lattice |φ|4 model

David Brydges

(joint work with Tyler Helmuth, Mark Holmes)

We prove that the |φ|4 model with n = 0, 1, 2 component field φ on the lattice
Zd has a lace expansion that converges at the critical point for sufficiently weak
coupling in dimensions d ≥ 5. Here the n = 0 terminology only means that the
lattice Edwards model for weakly self-avoiding walk is included. These models are
defined below. This lace expansion generalises to allow short range ferromagnetic
couplings, but here we state formulas only for the nearest neighbour model. The
new result in our work is the construction of a lace expansion for the n = 2
component model. We are unable to extend our result to n > 2 because our
argument requires a form of the Griffiths-Hurst-Sherman correlation inequalities
for ferromagnetic lattice models, which are not known for n > 2.

We were inspired by recent work of Akira Sakai. He has constructed convergent
lace expansions for ferromagnetic Ising models [6] and the one component lattice
φ4 model [7] in sufficiently high dimensions. His construction for the φ4 model
relies on the Griffiths-Simon approximation of the φ4 model by the Ising model.
He proves that, if the strength g ≥ 0 of nonlinearity is sufficiently small, then
the critical φ4 two-point function 〈φ0φx〉 is asymptotically |x|2−d times a model-
dependent constant. His results hold for interactions that are ferromagnetic and
short-range. This sharpens and extends to short range ferromagnetic models the
infrared bounds proved in [4] for the more special class of reflection positive models
(nearest neighbour interactions).

The lace expansion has been primarily a tool for proving that models in high
dimensions are governed by mean field theory. We have not yet checked details for
our models, but the standard consequences of a convergent lace expansion include
the determination of the leading and sub-leading power law decay of the critical
two-point function, as in, for example, self-avoiding walk in high dimensions [5].
In this case, the sub-leading decay implies that the critical two-point function
of the scaling limit of critical self-avoiding walk is Euclidean invariant. While it
is expected that many lattice models have euclidean invariant critical two-point
functions it is usually difficult to prove that the scaling limit of a lattice correlation
is euclidean invariant.

The lace expansion first appeared in [1]. Subsequently other authors extended
it to a method for proving mean field behaviour in high dimensions for many
models including self-avoiding walk, percolation, oriented percolation and lattice
self-avoiding trees. For some percolation models it has even been possible to study
the incipient infinite cluster by lace expansions. These and other applications are
described in [8].

The lace expansion, when it exists, is a formula for the two-point function
G = G(a, b) of a statistical mechanical model on a lattice which we assume is Zd.
The arguments a, b are the two points in Zd. For translation invariant models
G(a, b) = G(0, b − a). In the models we consider, G is positive and depends on
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a real parameter ν with a critical value νc such that G(0, x) decays integrably iff

ν > νc. Therefore for ν > νc the Fourier transform Ĝ = Ĝ(k) of G(0, x) exists.

We show that there is a function Π̂ = Π̂(k) called the self-energy such that

(1) Ĝ = (−∆̂ + Π̂)−1,

where −∆̂ = −∆̂(k) is the Fourier transform
∑

x∼0(1 − eik·x) of the discrete
Laplacian. The lace expansion is a series

Π =
∑

i≥1

Π(i)

for Π such that

(1) Π(i)(a, b) is O(gi) where g > 0 is a coupling constant in the model: see
definitions below.

(2) Π(i)(a, b) is bounded in absolute value by an edge irreducible Feynman
diagram whose edges represent factors of G.

(3) If G(a, b) = O(|a− b|2−d), then Π(i)(a, b) = O(|a− b|3(2−d)+ǫ).

Property (3) is a consequence of the edge irreducibility in Property (2); the Feyn-
man diagram has three independent paths joining a to b. Let d ≥ 5 and let g
be sufficiently small and positive. Then, by a bootstrap argument like the one
that follows Lemma 2.1 in [10], the lace expansion Properties (2,3) together with
equation (1) imply that the infrared bound G(0, x) = O(|x|2−d) holds uniformly
for ν > νc. In the bootstrap argument the hypothesis d > 4 ensures that the
second moment

∑
b |Π(i)(0, x)x2| exists. This infrared bound extends to ν = νc for

the |φ|4 model with n = 0, 1, 2 components because these models have the second
order phase transition property that

∑
xG(0, x) diverges to infinity as ν ↓ νc.

The starting point for our lace expansion is continuous time simple random
walk s 7→ Xs on a finite subset Λ of Zd. The walk is killed at the boundary of Λ
and it is generated by the discrete Laplacian ∆. For ℓ ≥ 0 let

τx =

∫

[0,ℓ]

1{Xu=x}du, τ = (τx)x∈Λ

be the random time X spends at a site x ∈ Λ up to time ℓ. Given a deterministic
function Z : [0,∞)Λ → (0,∞), τ 7→ Zτ we define the Green’s function

(2) G(a, b) =

∫

[0,∞)

dℓ Ea

[
Zτ

Z0
1{Xℓ=b}

]
,

where a, b are sites in Λ and Ea is the expectation for X with X0 = a. Thus the
ratio of Z’s specifies a self-interaction of the walk X . For example when Zτ = Z0

this ratio is one and G(a, b) = (−∆)−1(a, b) is the Green’s function for the simple
random walk X . If instead we choose, for parameters g > 0 and ν ∈ R,

Zτ = e−
∑

(gτ2
x+ντx) = e−

∫∫

[0,ℓ]2
g1{Xs=Xt}

dsdte−νℓ,

then, in the infinite volume limit Λ ↑ Zd, we obtain the lattice Edwards model of
weakly self-avoiding walk. This model is conventionally called the n = 0 compo-
nent |φ|4 model for good reasons that are not relevant to the present discussion.
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The n component |φ|4 lattice model. For any integer n ≥ 1 and for x ∈ Zd let
x 7→ φx ∈ Rn be a function on Zd that vanishes for x not in Λ. Let dφ be Lebesgue
measure on the space RnΛ of all such functions. In terms of the set E of nearest
neighbour edges in Zd define the Dirichlet form

(∇φ,∇φ) =
∑

xy∈E

(φx − φy)2,

and the φ4 interaction

V (φ2x) = g(φ2x)2 + νφ2x.

The partition function for the φ4 model is

Z0 =

∫
e−

1
2 (∇φ,∇φ)e−

∑

x V (φ2
x) dφ

and the finite volume two-point function for the first component φ1x of the vector
φx is

〈φ1aφ1b〉 =
1

Z

∫
φ1aφ

1
b e

−1
2 (∇φ,∇φ) e−

∑

x V (φ2
x) dφ.

Define a deterministic function τ 7→ Zτ by

Zτ =

∫
e−

1
2 (∇φ,∇φ)e−

∑

x V (φ2
x+2τx) dφ.

With this choice, by the random walk representation [9], [2], [3],

G(a, b) ≡
∫

[0,∞)

dℓ Ea

[
Zτ

Z0
1{Xℓ=b}

]
= 〈φ1aφ1b〉.

To summarise: the infinite volume limit of the class of functions G(a, b) defined
by (2) includes the n = 0, 1, . . . component |φ|4 models. We define a candidate
expansion for all models of the form (2) where τ → Zτ is sufficiently regular, but
are only able to prove that this candidate expansion has Property (2) listed above
when n = 0, 1, 2.
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Finite range decompositions with improved regularity

Simon Buchholz

We consider random fields ϕ : Λ → Rm on a discrete lattice Λ ⊂ Zd. The energy
of a field configuration is of gradient type (massless) and given by the Hamiltonian

H(ϕ) =
∑

x∈Λ

d∑

i=1

1

2
|∇iϕ(x)|2 + V (∇iϕ(x))

where ∇iϕ(x) = ϕ(x + ei) − ϕ(x) denotes the discrete gradient and the potential
V is a perturbation of the quadratic potential. This type of model is called con-
tinuous Ising model and is well studied in mathematics and physics. In the case of
scalar fields (m = 1) it is an effective model for an interface between two phases
embedded in Rd+1 where the height at point x ∈ Rd is given by ϕ(x) ∈ R, i.e.,
the discrete interface is parametrised by the set {(x, ϕ(x)) ∈ Rd+1|x ∈ Λ}. When
m = d this corresponds to a model for a d-dimensional crystal with a nearest
neighbour interaction where ϕ(x) denotes the displacement of the atom at posi-
tion x. In equilibrium the behaviour of this system is given by the Gibbs measure
Z−1e−βH dλ. The analysis of this model is subtle because gradient Gaussian fields
exhibit long-ranged correlations which decay critically with |x−y|−d. If the entire
potential is strictly convex the model is well understood [13],[15], [12], [14]. In the
non-convex case there are some results in the high temperature regime [11] and
[10] but the low temperature case is mostly open.

In a recent work [2] strict convexity of the surface tension as a function of
the tilt is shown for small temperatures and small tilts. This work is uses a
renormalization group approach in the spirit of Brydges, Yau and Slade [6], [7],
[4]. The renormalisation group technique is a multi-scale analysis based on a finite-

range decomposition of a Gaussian field ξ =
∑N+1

k=1 ξk into independent Gaussian
fields which have increasing ranges. A suitable decomposition for elliptic, discrete
difference operators ∇∗A∇ has been constructed in [1] based on the decompositions
in [8] and [5] and with a new approach in [3]. Successive integrations with respect
to the fields ξk allows to gain control on the behaviour of functionals F (ξ) =

F (
∑N+1

k=1 ξk).
One difficulty in [2] is a loss of regularity of the renormalisation map that in-

tegrates out the Gaussian field ξk, i.e., the map that acts on a functional F via
F → RCk

k F = ECk
F (· + ξk) where the field ξk has covariance Ck. More precisely

the derivatives of RCk

k F with respect to the covariance Ck can a-priori only be esti-
mated by higher order norms of F . The estimates of these derivatives are needed
because one has to extract the correct renormalised Gaussian part (∇ϕ,A∇ϕ) such
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that the renormalisation group iteration converges to the Gaussian fixed point via
an implicit function theorem. The loss of regularity at this point causes several
technical difficulties, in particular the work [2] relies on chain rules and implicit
function theorems with loss of regularity. The goal of this work is to explain
how this loss of regularity can be avoided when the finite range decompositions is
suitably modified.

The loss of regularity may appear surprising because in principle the heat semi-
group is smoothing. However, the covariance Ck decay very fast in k which means
they are less and less smoothing (think about the δ-distribution which is the Gauss-
ian measure with vanishing covariance). Therefore a lower bound on the covari-
ances Ck is needed to control their smoothing behaviour. In [9] we construct a new
finite range decomposition based on the decomposition in [1] which in addition
satisfies strong lower bounds. The key idea is that lower bounds can be obtained
from linear combinations of the original decomposition. In a second step we con-
struct again using linear combinations another decomposition that is very regular
with respect to the parameter A. With this new decomposition and a localisa-
tion argument that exploits the structure of the functionals in the renormalisation
group approach the loss of regularity can be avoided.
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Complex Bosonic Many-body Models

Joel Feldman

(joint work with Tadeusz Balaban, Horst Knörrer, Eugene Trubowitz)

It is our long term goal to rigorously demonstrate symmetry breaking in a gas of
bosons hopping on a three dimensional lattice.

This program was initiated in [1, 2], where we expressed the positive temper-
ature partition function and thermodynamic correlation functions in a periodic
box (a discrete three–dimensional torus) as ‘temporal’ ultraviolet limits of four–
dimensional (coherent state) lattice functional integrals. By a lattice functional
integral we mean an integral with one (in this case complex) integration variable
for each point of the lattice. By a ‘temporal’ ultraviolet limit, we mean a limit
in which the lattice spacing in the inverse temperature direction (imaginary time
direction) is sent to zero while the lattice spacing in the three spatial directions is
held fixed.

In [3]1, by a complete large field/small field renormalization group analysis,
we expressed the temporal ultraviolet limit for the partition function, still in a
periodic box, as a four–dimensional lattice functional integral with the lattice
spacing in all four directions being of the order one, preparing the way for an
infrared renormalization group analysis of the thermodynamic limit.

The next stage of the program, which we have just completed, is contained in
[5, 6] and a number of supporting papers cited therein. In that stage we initiated
the infrared analysis by tracking, in the small field region, the evolution of the
effective interaction generated by the iteration of a renormalization group map
that is taylored to a parabolic covariance: in each renormalization group step
the spatial lattice directions expand by a factor L > 1, the inverse temperature
direction expands by a factor L2 and the running chemical potential grows by a
factor of about L2, while the running coupling constant decreases by a factor of
about L−1. Consequently, the effective potential, initially close to a paraboloid,
develops into a Mexican hat with a moderately large radius and a moderately
deep circular well of minima. [5, 6] ends after a finite number (of the order of the
magnitude of the logarithm of the coupling constant) of steps once the chemical
potential, which initially was of the order of the coupling constant, has grown to
a small ‘ǫ’ power of the coupling constant. Then the ‘Mexican hatness’ of the
effective potential is strong enough that we can no longer base our analysis on
expansions about zero field.

1See [4] for a more pedagogical introduction.
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In the next stage of the construction, we plan to continue the parabolic evolution
in the small field regime, but expanding around fields concentrated at the bottom
of the (Mexican hat shaped) potential well rather around zero (much as is done in
the Bogoliubov Ansatz) and track it through an additional finite number of steps
until the running chemical potential is sufficiently larger than one. At that point
we will turn to a renormalization group map with a scaling taylored to an elliptic
covariance, that expands both the temporal (inverse temperature) and spatial
lattice directions by the same factor L. It is expected that the elliptic evolution can
be controlled through infinitely many steps, all the way to the symmetry broken
fixed point. The system is superrenormalizable in the entire parabolic regime
because the running coupling constant is geometrically decreasing. However in
the elliptic regime, the system is only strictly renormalizable.

The final stage(s) of the program concern the control of the large field contri-
butions in both the parabolic and elliptic regimes.

The implementation of the (parabolic) renormalization group in [5, 6] proceeds
much as in [3], except that we are restricting our attention to the small field regime
and

• we use 1 + 3 dimensional block spin averages. In [3], we had used dec-
imation, which was suited to the effectively one dimensional problem of
evaluating the temporal ultraviolet limit.

• The stationary phase calculation that controls the oscillations is similar,
but technically more elaborate.

• The critical fields and background fields are now solutions to (weakly)
nonlinear systems of parabolic equations.

• The Stokes’ argument that allows us to shift the multi dimensional inte-
gration contour to the ‘reals’ and

• the evaluation of the fluctuation integrals is similar.
• However, there is an important new feature: the chemical potential has to

be renormalized.
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[4] T. Balaban and J. Feldman and H. Knörrer and E. Trubowitz, The Temporal Ultraviolet
Limit, in Quantum Theory from Small to Large Scales, Ecole de Physique des Houches,
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Physical Implications of the Chiral Anomaly – from Condensed
Matter Physics to Cosmology

Jürg Fröhlich

This lecture contains a survey of some special aspects of what I have called the
“Gauge Theory of States of Matter”, an approach towards a general classification
of states of matter based on analyzing effective actions (= generating functionals
of current Green functions). Effective action functionals can be used to describe
the response of states of macroscopically large systems of quantum-mechanical
matter to turning on various (real or virtual) external gauge fields. Exploiting
cluster properties of current Green functions, power counting (i.e., dimensional
analysis, using that conserved currents and the gauge fields they are coupled to
do not have anomalous dimensions), and gauge invariance, in particular anomaly
cancellation between bulk degrees of freedom and degrees of freedom localized near
the edge of such systems (“holography”), one is able to determine the general form
of effective action functionals of systems of condensed matter. This then yields a
general picture of possible phases of condensed matter and, in particular, of bulk-
and edge degrees of freedom and their properties.

Organization of the lecture:
Starting with an analysis of chiral edge currents in 2D electron gases exhibiting
the quantum Hall effect, I discuss the role of anomalous chiral edge currents and
of anomaly inflow in 2D insulators with explicitly broken parity and time-reversal
(2D incompressible electron gases in a homogeneous external magnetic field, see
[1] – [5], [6]1) and in time-reversal invariant 2D topological insulators with strong
spin-orbit interactions exhibiting edge spin-currents – as originally described in [6];
see also [7]. I derive the topological Chern-Simons theories that yield the correct
response equations for the 2D bulk of such materials. A short review of “abelian
Hall (electron) fluids” in terms of odd-integral lattices is offered, see [3, 4, 6] for
details, and an indication as to the nature of quasi-particle degrees of freedom (2-
component “Dirac fermions”) in time-reversal invariant 2D topological insulators
is given. (The theory of “non-abelian Hall fluids” is developed in [5].)

After an excursion into the theory of 3D topological insulators, including “ax-
ionic insulators” (see [7]), I end with a brief discussion of a model of Dark Matter
and Dark Energy involving an axion coupled to the instanton (Pontryagin) den-
sity of a gauge field. This is based on work in progress with S. Alexander and R.
Brandenberger. Somewhat related ideas have previously enabled my collaborators
and me to describe a mechanism that may give rise to the growth of tiny, but very

1I do not attempt to provide a survey of the relevant literature here, but give some hints
to papers I have been involved in writing that have been relevant in preparing my lecture – I
apologize for this shortcoming!
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homogeneous magnetic fields in the Universe extending over intergalactic scales;
see [9, 10]. The growth of magnetic fields is triggered by an instability exhibited
by axion electrodynamics. A related mechanism may guarantee that the “slow-
roll condition” is valid in our model of Dark Energy and Dark Matter. The ideas
in [9, 10] grew out of an attempt to identify higher-dimensional cousins of the
quantum Hall effect.
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Topological invariants for time reversal symmetric crystals

Krzysztof Gawȩdzki

The simplest models of topological crystals are described by self-adjoint Hamil-
tonians acting in the Hilbert space of vector-valued functions on a crystalline
d-dimensional lattice and commuting with the lattice translations. In the Bloch
picture that diagonalizes the translations by a discrete Fourier transform, such
Hamiltonians are described by smooth families H(k) of N×N Hermitian matrices
that are parameterized by k belonging to the Brillouin torus Td = Rd/(2πZd). We
shall be interested in the cases where d = 2, 3. The system of Bloch Hamiltonians
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H(k) describes an insulator if the Fermi energy ǫF separating the energy eigen-
states that are occupied at zero temperature from the unoccupied states of higher
energy is in the spectral gap of all H(k). In such a case, the eigenstates of H(k)
with energies lower than ǫF form a smooth vector bundle E over Td whose 1st

Chern numbers describe the simplest type of topological invariants for insulators
[1]. In the presence of time reversal symmetry, the Bloch Hamiltonians satisfy the
relation

H(k) = θH(−k)θ−1

for an antiunitary operator θ : CN → CN that squares to −I realizing the time
reversal. In this case, the eigenstates of H(k) and H(−k) come in “Kramers pairs”
related by θ, having the same energy. This property implies that the 1st Chern
number(s) of the bundle E vanish and, consequently, that E is a trivalizable vector
bundle (of even rank). Let (ei(k))2mi=1 be a trivialization of E composed of vectors
orthonormal for eack k. In [2], it was realized that for d = 2 there exists an
obstruction KM ∈ Z2 to choose a trivialization of E that is composed of Kramers
pairs, i.e. such that

e2i(−k) = θe2i−1(k).

The obstruction was defined in [3] by the multiplicative formula

(−1)KM =
∏

k=−k∈T2

√
detw(k)

pf w(k)

where w(k) is the “sewing matrix” with the entries wij(k) = 〈ei(−k)|θej(k)〉
and the square root

√
detw(k) is chosen smoothly over Td whereas the Pfaffi-

ans pf w(k) are defined only at k = −k where w(k) is antisymmetric.

I the talk, I discuss new expressions for the KM obstruction relating the latter
to the Wess-Zumino (WZ) action functional SWZ(φ) of maps φ : T2 → U(n) that
is defined modulo 2π by the prescription [4]

SWZ(φ) =

∫

B

φ̃∗χ

for φ̃ extending φ to an oriented 3-manifold B with ∂B = T2 and for χ being the
closed bi-invariant 3-form on the group U(N) with 3-periods in 2πZ. First, one
has

(−1)KM = exp[
√
−1SWZ(w)].

Second, if P (k) is the projector of the eigensubspace of H(k) with energies < ǫF
then

(−1)KM = exp[
1

2

√
−1SWZ(I − 2P )]

where, in the latter case, the extension φ̃ of φ = I − 2P has to be judiciously
chosen to assure that SWZ(I − 2P ) is defined modulo 4π. Both formulae may be
proven using the techniques of bundle gerbes [5] providing local expressions for
the WZ action SwZ(φ) that enable the localization of the right hand sides at the
contributions from k = −k.



1476 Oberwolfach Report 26/2016

The second formula suggests how to define a dynamical Z2-valued indices gen-
eralizing the Fu-Kane-Mele invariants to the case of two-dimensional crystalline
Floquet systems periodically dependent on time that gives rise to Bloch Hamilto-
nians

H(k, t) = H(k, t+ T ) = θH(−k,−t)θ−1.

Such generalization was obtained in [6, 7]. It extended the proposal of [8] to time
reversal symmetric Floquet systems.

Finally, I discuss in the talk the generalization of the above results to three-
dimensional crystalline systems with time reversal symmetry, both static and with
periodic time dependence [9, 10].
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properties of a topological index for periodically driven time-reversal invariant 2D crystals.
Nucl. Phys. B 896 (2015), 779-834

[8] M. S. Rudner, N. H. Lindner, E. Berg and M. Levin : Anomalous Edge States and the
Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems. Phys. Rev.
X 3 (2013), 031005
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Height fluctuations and universality relations in interacting dimer
models

Alessandro Giuliani

In this talk I discuss height fluctuations and convergence of the height function
to the massless Gaussian free field, for a class of interacting dimer models on
the two-dimensional square lattice. I report recent work in collaboration with V.
Mastropietro and F. Toninelli [5, 6, 7].

Two-dimensional (2D) dimer models have a long history, interconnected with
the one of the 2D Ising model. They are used as highly simplified models either
of liquids of anisotropic molecules, or of discrete random surfaces. The corre-
spondence between these two different descriptions is mediated by the well-known
correspondence between close-packed dimer configurations and the height function
(briefly reviewed below). As in the case of the Ising model, they are also studied as
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a playground for the theory of the critical point, for understanding the existence
and nature of the scaling limit, and for investigating its conformal covariance.

I restrict the attention to the case of close-packing: in other words, the allowed
dimer configurations that I consider are those where every vertex of the graph
is covered exactly once by a dimer (a dimer being a rigid rod connecting two
neighboring vertices), see fig.1. For definiteness, I restrict the discussion to the
square lattice, even though other regular bipartite lattices can be easily treated
by the same methods. The bipartite condition is important: we shall refer to the
sites of the two sublattices as to the even and odd sites.

Figure 1. An example of an admissible dimer configuration on
a finite portion of the 2D square lattice.

I distinguish between the standard, non-interacting, dimer model, and the so-
called interacting model. The non-interacting model consists of the statistical
mechanics model, where every admissible dimer configurationD is weighted evenly.
On the contrary, the interacting case is characterized by a non-trivial Gibbs weight
e−λWD on the space of allowed dimer configurations. The energy function WD is
a sum of local energies labelled by the plaquettes P of the square lattice, WD =∑

P wP (D), and wP (D) is an energy depending on the relative orientations of
the dimers in the vicinity of P . We require WD to be invariant under the basic
symmetries of the square lattice (reflections and discrete rotations). To be definite,
one can think wP (D) to be equal to −1, if P is occupied by two parallel dimers in
D, and zero otherwise, see fig.2. In this case, we shall write wP (D) = −NP (D).
The interacting model has been introduced as the classical limit of quantum dimer
models, which attracted a lot of attention in the last years, as (over-simplified)
toy models for high temperature superconductors [14].

With every dimer configuration, we associate a height function, defined on the
faces of the lattice, which is unique up to an overall additive constant. More
precisely, the height difference between two faces f and f ′ is defined as:

h(f ′) − h(f) =
∑

b∈Cf→f′

σb(1b − 1/4)

where: Cf→f ′ is a lattice path (connecting neighboring faces) going from f to f ′;
σb is a sign, equal to +1 or −1, depending on whether b is crossed by Cf→f ′ with an
even site on the right or left, respectively; !b is the characteristic function of having
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Figure 2. A dimer configuration D covering a finite portion of
the square lattice, and the plaquettes such that NP (D) = 1.

a dimer on b, i.e., 1b is equal to 1, if b is occupied by a dimer, and zero otherwise.
Note that the definition is well-posed, i.e., the right side is independent of the
choice of the lattice path. In other words, the sum in the right side, evaluated
along any closed path, is zero: this is a simple consequence of the close-packing
condition, as the reader can easily check (it is enough to prove it for an elementary
closed path encircling a vertex).

At close-packing, non-interacting dimers are exactly solvable [10]: the partition
function can be written as the Pfaffian of a complex adjacency matrix, known
as the Kasteleyn’s matrix, and the multi-point dimer correlations (i.e., the joint
probabilities of finding n dimers in prescribed locations) satisfy a suitable fermionic
Wick rule; more precisely, the n-point function can be written as the Pfaffian of
a suitable minor of the inverse Kasteleyn matrix. The explicit expression of these
correlations shows that their connected part decays to zero polynomially at large
distances: this algebraic decay of correlations is referred to by saying that the
close-packed model is critical.

Thanks to the closed formula for the multipoint dimer correlations, one can also
compute the variance of the height difference, as well as all its higher cumulants:
the computation shows that 〈(h(f) − h(f ′))2〉0 = 1

π2 log |f − f ′| + O(1), as |f −
f ′| → ∞ (here 〈·〉0 is the non-interacting dimer measure, in the thermodynamic
limit), while the higher order cumulants are uniformly bounded as |f − f ′| → ∞.
Recalling that a random variable is zero if and only if all the cumulant of order 3 or
higher are zero, we conclude that the height difference for non-interacting dimers
is asymptotically gaussian, in the limit of large distances. The logarithmic growth
of the variance reveals the underlying massless Gaussian free field (GFF) behavior
of the height function. Convergence of the height function to the massless GFF
and conformal covariance of the scaling limit has been proved in [3, 11, 12, 13].

Let us now consider the interacting case, which has been extensively studied
by approximate and numerical methods. In this case, the model is not exactly
solvable anymore: the Pfaffian structure breaks down and there are no closed
formulas, neither for the thermodynamic, nor for the correlation functions. In [4],
by constructive Renormalization Group (RG) mehods, it has been shown that, for
weak enough interaction, the system is still in a liquid phase, characterized by
polynomial decay of the correleation functions. However, the liquid is anomalous,
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in the sense that the dimer-dimer correlation is characterized by a modified critical
exponent, denoted by κ(λ), continuously depending on the interaction strength λ
and such that κ(0) = 1. For this reason, one may fear that the logarithmic
fluctuations of the height function may be changed into anomalous power law
fluctuations, which would be incompatible with a GFF of the interacting height
function. Quite remarkably, this is not the case, thanks to systematic cancellations
taking place at all orders in renormalized perturbation theory. In short, our main
result consists in a rigorous construction of all the multipoint dimer correlations
and an asymptotic computation of the height cumulants. We prove that the height
variance is renormalized by a non-trivial amplitude, which satisfies a universal
relation, relating it to the critical exponent κ(λ) of the dimer-dimer correlations.
More precisely, our main result can be summarized as follows. We denote by 〈·〉λ
the interacting Gibbs measure in the thermodynamic limit, whose existence is part
of our result.

Theorem 1. There exist: (i) a positive constant λ0 and a real analytic function
K(λ) on |λ| < λ0 satisfying A(0) = 1, (ii) positive constants Cn, with n ≥ 2, and
a bounded function R(x) satisfying |R(x)| ≤ C2, ∀x 6= 0, such that: if f 6= f ′, then

〈(h(f) − h(f ′))2〉λ =
K(λ)

π2
log |f − f ′| +R(f − f ′) .

Moreover, if n > 2, the n-th cumulant of (h(f) − h(f ′)) is bounded uniformly in
|f − f ′| as

|〈h(f) − h(f ′); · · · ;h(f) − h(f ′)︸ ︷︷ ︸
n times

〉λ| ≤ Cn .

As a corollary (of the proof of Theorem 1), we also obtain convergence of the
height function to the massless GFF, in the following sense.

Theorem 2. In order to fix the arbitrary additive constant in the definition of the
height, we set h(f0) = 0 at a given face f0 (playing the role of ‘central face’). For
every C∞, compactly supported, test function φ : R2 7→ R satisfying

∫
φ(x)dx = 0,

and ǫ > 0, define

hǫ(φ) = ǫ2
∑

η

hηφ(ǫη)

where the sum runs over the faces of Λ. Then, for every α ∈ R,

lim
ǫ→0

〈eiαhǫ(φ)〉λ = exp

(
α2K(λ)

4π2

∫
φ(x)φ(y) log |x− y| dx dy

)
.

Note that the right side of the last equation is the characteristic function of the
massless GFF on the plane X with covariance

〈X(x)X(y)〉 = Gλ(x− y) := −K(λ)

2π2
log |x− y|.

Its ‘stiffness’ K(λ) satisfies the following remarkable identity:

K(λ) = κ(λ)
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where κ(λ) is the critical exponent of the dimer-dimer correlation, see [5, Theorem
2]. This is one of the Haldane relations adapted to the present context [8, 9, 1, 2].

The proof of these claims is based on a rigorous RG construction of the interact-
ing dimer measure, on a systematic implementation of lattice Ward Identities and
on the path independence property of the height function. The RG construction is
performed on a fermionic reformulation of the model (which is possible, thanks to
the underlying Pfaffian structure of the non-interacting model) and uses multiscale
fermionic cluster expansion techniques. For the proof of Theorem 1 and 2, see [5].
The universality relation K = κ is proved in [7].
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The operator product expansion

Stefan Hollands

The operator product expansion (OPE) is not only a powerful approximation
method for correlation functions, but also conceptually important as a possible way
to encode the algebraic content of quantum field theories (QFTs). Informally, it
states that a correlation function containing composite operators can be expanded
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as [1], [2]
〈 N∏

i=1

OAi
(xi)(spectators)

〉
=

∑

C

CC
A1...AN

(x1, . . . , xN )

〈
OC(xN )(spectators)

〉
.

The objects OA(x) are the local operators of the theory, which are typically prod-
ucts of derivatives of “basic field(s)” at the point x. The Ai and C a multi-indices
labelling the various composite fields, and the “insertion points” xi ∈ Rd have
to be pairwise distinct. The OPE coefficients CC

A1...AN
(x1, . . . , xN ) are indepen-

dent of the “spectators”, which for instance can be other composite operators at
other points. The convergence properties of the OPE depend on the choice of
the spectators. In the early days, it was not in any case believed that the expan-
sion converges at all in the sense of a series, but only as an asymptotic series as
|xi − xN | → 0 for all i.

Recently, considerable progress in our understanding of the OPE has been made
in [4], [5], [6], [7]. One line of research has focussed on the gφ4-model in Euclidean,
d = 4-dimensional space. In this model, the composite fields OC are the monomials
in φ, ∂φ, ∂2φ, . . . , to which a dimension [C] can be assigned using standard “power
counting” rules. The correlation functions and OPE coefficients in this model can
be defined e.g. by the method of renormalization group flow equations in the form
of a renormalized perturbation series in powers of g or ~ (i.e. “loops”), see [3] for
a general exposition of this topic. In [4], [5], sharp bounds on the remainder in
the OPE–i.e., the left minus right side of the above equation–were obtained if the
sum over “C” is truncated for dimensions [C] > D, where D is large, and for the
case that the “spectators” are given by

(1) spectators =

n∏

i=1

∫
d4x φ(x)fi(x) .

Consider test functions fi such that the support of f̂1(p1) · · · f̂n(pn) contains only
configurations of 4-momenta p1, . . . , pn whose magnitude is less than some P , and
such that their distance to “exceptional”1 momentum configurations is at least
ǫ > 0. Under these conditions, one has:

Theorem: The remainder of the operator product expansion (for two operators),
carried out up to operators of dimension D = [A1] + [A2] + ∆, at order ~l (i.e. l
loops), is bounded by
∣∣∣remainder

∣∣∣
l−loops

≤ PN
√

[A1]![A2]!

(
KM sup(1,

P

M
)(n+2l+1)

)[A1]+[A2] ( P

inf(M, ǫ)

)3n ∏

i

sup |f̂i|

× 1√
∆!

(
KM |x1 − x2| sup(1,

P

M
)(n+2l+1)

)∆

P2l+n
2

(
log

P

inf(M, ǫ)

)
,

1By an exceptional configuration one means a set (p1, ..., pn) such that a strict subsum of
momenta vanishes. Singularities at such configurations are common in massless theories.
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where K is a constant depending on n, l, and Ps is a polynomial of degree s whose
coefficients depend on n, l. M is a “renormalization scale” in the massless theory
and equal to the mass otherwise.

The bound implies that the OPE convergences as D → ∞, and provides an
increasingly accurate approximation as |x1 − x2| → 0 for large but finite D. In
addition, the result gives a rather detailed, and physically plausible, picture of the
approximation properties of the OPE also in the following respects:

(1) We see that if P becomes large, then due to the factors of P∆(n+2l+1) in
the remainder, the OPE converges more slowly as D, hence ∆, goes to
infinity. This is physically plausible, because for large P the factorisation
phenomenon exhibited by the OPE sets in more slowly if the “state” gen-
erated by the smeared spectator fields from the “vacuum” contains more
“UV modes”.

(2) We see that if the quantity ǫ becomes small, then the bound on the re-
mainder is also larger due to the inverse powers of ǫ. This is also physically
plausible, because ǫ characterises how close the momenta in the support
of the spectator fields are to becoming “exceptional”.

The convergence of the series suggests to take the OPE coefficients as the defin-
ing structure of the QFT, in much the same way as the structure constants of
a finite dimensional algebra define it. In fact, as for ordinary algebras, one can
show [7] that there hold powerful associativity-type relations among the OPE co-
efficients. The simplest example of such a relation is

∑

D

CD
AB(x1, x2)CE

DC(x2, x3) = CD
ABC(x1, x2, x3) ,

where the sums are shown to converge as long as 0 < |x1 − x2| < |x2 − x3|.
Based on such relations, we showed in [6], [7] that there holds a differential

equation for the OPE coefficients as a function of the coupling g. This differential
equation reads as follows in the simplest case. Let V be the operator representing
the interaction of the model, i.e. V = −φ4 in the present theory. Then

∂gCC
AB(x1, x2) =

∫

y

{
CC
ABV (x1, x2, y) −

∑

[D]≤C

CD
AB(x1, x2)CV D(y, x2)

−
∑

[D]≤[A]

CD
V A(y, x1)CC

DB(x1, x2) −
∑

[D]≤[B]

CD
V B(y, x2)CC

AD(x1, x2)

}

This relation, together with a hierarchy of similar relations with more points {xi}
has two remarkable features:

(1) It only involves the OPE-coefficients, but no correlation functions.
(2) The integral over the “insertion point”, y, is shown to be absolutely con-

vergent, and in particular free of any of the seemingly unavoidable UV-
divergences in QFT.
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The last point is closely related to associativity (). Indeed, if the integration point
y gets dangerously close to one of the points x1, x2, i.e. the “UV-region”, then
associativity guarantees that the singular part of the first term in {. . . } is precisely
cancelled by one of the sums in the second line of {. . . }. Similarly, if y goes to
infinity, the first sum in {. . . } cancels precisely the divergent contributions in the
“IR region”.

The above identities were derived in the context of perturbation theory. How-
ever, one may attempt to use them directly to construct QFT models non-perturba-
tively. The gφ4-theory is not a good candidate in this respect since it is not
“asymptotically free”. This disadvantage is avoided e.g. in the two-dimensional
Gross-Neveu model describing a multiplet of Dirac fermions ψ in two spacetime
dimensions. Its classical Lagrange density is L = ψ̄(i∂/ −m)ψ − g(ψ̄ψ)2 , so that
the interaction is now V = −(ψ̄ψ)2. Our construction proceeds in several steps:

(1) We expand each OPE-coefficient CB
A1...An

(x1, . . . , xn; g) into an–a priori
only formal–power series in g. This is, of course, a realization of the
ordinary perturbative expansion. The differential equation () then turns
into a recursive formula: From the OPE coefficients at order g0 (free
theory) we can get those at order g1, and so fourth. Thus, to get started,
we only need the OPE coefficients of the underlying free theory, i.e. for
the free Lagrangian ψ̄(i∂/−m)ψ.

(2) By induction, we get bounds for the OPE coefficients at arbitrary order
gr from bounds on the OPE coefficients in the free theory (order g0).
To get sufficiently sharp bounds in the free theory, in particular bounds
that do not produce disastrous r-dependent combinatorial factors upon
induction and that reflect sufficiently well the behavior of the coefficients
in the points {xi} we use two main ideas: The first idea, which has many
antecedents in other works on fermionic theories, is to write the order
g0-coefficients as a Pfaffian of a certain matrix M :

(C0)BA1...An
(x1, . . . , xn) = Pf M({xi, Ai}) .

If we were to expand out the Pfaffian, we would get a large number of
terms leading to disastrous combinatorial factors. To get around this,
we use the trick of “Gram bounds” and of “finite range” decompositions
pioneered by Brydges, Baurschmidt and coworkers. Since our recursion
formula generates products of OPE coefficients organized by trees, we
actually need a Pfaffian representation and recursion formulas for those,
too.

(3) Combining the previous two steps, the aim is to obtain the following bound
for the OPE-coefficients at order gr:

∣∣∣(Cr)BA1...An
(x1, . . . , xn)

∣∣∣ ≤
(max
i6=j

|xi − xj |)[B]

∏
j(min

i6=j
|xi − xj |)[Aj ]

Kr logr(
L

δ
) .

Here, K is a constant not depending on r, and δ, L are UV- and IR- cutoffs
which are introduced into the y-integral () such that δ < |xi − xj | < L for



1484 Oberwolfach Report 26/2016

i 6= j. These cutoffs could be taken away, δ → 0, L→ ∞ at the level of the
OPE coefficients (Cr)BA1...An

at each order gr without any problems, since
the integral () is absolutely convergent but not in the upper bound. There
exists an alternative upper bound without cutoffs δ, L, but it contains a
bad combinatorial factor in r, which would spoil convergence of the series
in gr.

(4) The bound (3) would establish that the series for CB
A1...An

(x1, . . . , xn; g)

converges as long as, for fixed δ, L, we have g < [K log(L/δ)]−1 and as long
as δ < |xi−xj | < L for i 6= j. This is clearly not sufficient to establish the
non-perturbative existence of the OPE, as the convergence radius shrinks
to zero logarithmically as a function of the cutoffs. In order to deal with
this problem, another idea is needed which highlights the flexibility of
the OPE. The point is that, in a local quantum field theory, we have
the freedom to redefine the fields (“basis change”) as OA → ∑

B Z
B
A OB

where Z is an invertible matrix whose entries are non-zero only when
[B] ≤ [A]. The OPE-coefficients transform as tensors under such a change
of operator basis. The idea is now to absorb the divergence of the series
for the OPE coefficients as δ → 0, L → ∞ into such a field-redefinition.
Let δ = ℓ0e

−t, L = ℓ0e
Kt, where t is a scaling parameter. It is shown that

there exists a field redefinition Z(g, t) such that the OPE coefficients of
the redefined operators are equal to the original ones with δ, L replaced by
δ = ℓ0, L = ℓ0e

t (⇒ log(L/δ) = t) and g replaced by the running coupling
g(t, g) ∼ g/(1 − gβ2Kt) ∼ 1/(−β2Kt) where β2 < 0 is the usual 1-loop
beta function of the model. So, the running coupling becomes small as
t→ ∞ (asymptotic freedom), and our series for the OPE coefficient would
converge as as the cutoffs are removed.

This program is currently under investigation in collaboration with J Holland,
with major steps completed. Financial support of this research via ERC grant QC
& C 259562 is gratefully acknowledged.
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Metastability for the Widom-Rowlinson model

Roman Kotecký

(joint work with Frank den Hollander, Sabine Jansen, and Elena Pulvirenti)

The Widom-Rowlinson model is one of the few models of interacting particles in
the continuum for which a proof of a “liquid-gas” coexistence at a line of activities
zc(β) for large inverse temperatures has been provided. There is a multi-body
interaction among particles with the overall energy of a particle configuration pro-
portional to the minus area of the union of balls of equal diameter centred at
particle positions. An important feature of the model that facilitates its investi-
gation is the fact that it can be rewritten as a model of two species of particles
with mutual hard-core interaction.

In the reported work in progress, we consider a stochastic dynamics of the
Widom-Rowlinson model on a two-dimensional torus and discuss a transition from
a metastable “supercooled gas phase” to the stable “liquid phase”. In particular,
we present a proof of Arrhenius law with a nonstandard entropic correction.

We choose the parameters for which the liquid is the stable phase by considering
an activity above the coexistence line:

z = κzc(β) with κ ∈ (1,∞).

Starting now from a low density configuration corresponding to the gas phase, our
main object of interest is the random crossover time τ of the transition from a
low density gas phase to the stable high density liquid phase. The main claim
concerns the mean crossover time in the limit β → ∞.

In particular, we show that for every κ ∈ (1,∞) and a fixed sufficiently large
torus, asymptotically with β → ∞,

E(τ) = exp
[
β U(κ) − β1/3 S(κ) + o(β1/3)

]
.

Here, U(κ) and S(κ) are particular functions related to the critical droplet that
system needs to create to trigger the crossover.

Namely, U(κ) = Uκ(Rc) with Uκ(R) = πR2 − κπ(R− 2)2 being the asymptotic
value (with β → ∞) of the bulk free energy of “liquid” occupying a disk of diameter
R− 2. The function Uκ reaches its maximum U(κ) for R = Rc = 2κ

κ−1 .
The second term in the exponent corresponds to the surface free energy of the

critical droplet stemming from fluctuations of its boundary. The function S(κ) has
also an explicit expression. Namely, S(κ) = s

(
Rc(κ)

)
where s(Rc(κ)) ∈ (0,∞) is

the unique solution of the equation

(1) 4
√

3πC(κ)

∫ ∞

0

e−sα/2π e−C(κ)α3√
αdα = 1

with

(2) C(κ) =
1

48
Rc(κ)2(Rc(κ) − 2) =

κ2

6(κ− 1)3
.
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We link the fluctuations of the boundary of the critical droplet to a Brownian
bridge conditioned to have integral zero. The proofs rely on large and moderate de-
viation principles for the volume of the critical droplet, isoperimetric inequalities,
and capacity estimates.

On the gas of Bosons

Martin Lohmann

We consider a system of interacting Bosons on the d = 3 dimensional lattice
X = Z3/LZ3, where L is a large integer that will eventually taken to become
infinite in order to study the low energy phenomenology of the system. The
Hamiltonian operator defining the system is given by

H =
∑

x,x′∈X

ψ†(x)
(
− ∆x,x′ − µδx,x′

)
ψ(x′) + ψ†(x)ψ†(x′)v(x − x′)ψ(x)ψ(x′),

where ψ, ψ† are the conventional creation and annihilation operators on Fock space,
∆ is the discrete Laplacian, µ ∈ R is the chemical potential, and v is a two
body potential which we assume to be exponentially decaying and with uniformly
positive Fourier transform. The goal is to study the equilibrium thermodynamics
of this system by constructing the correlation functions

̺m(x;y) = lim
L→∞

Z−1Tr e−βH
m∏

l=1

ψ†(xl)ψ(yl)

Z = Tr e−βH

at large inverse temperature β. Of interest are the clustering properties of ̺m
because they are linked to the phase which the system is in. It is conjectured that,
for µ < µ∗(β), the system is in the gaseous phase, for µ = µ∗(β), it is at a critical
point, and for µ > µ∗(β), it is in the phase of Bose Einstein condensation. At
large β, the critical value µ∗ is believed to be given approximately by

µ∗(β) ≈ v̂(0)

∫

R3

dp

eβp2 − 1
.

The gaseous phase is characterized by exponential clustering of correlations, such
as ̺1(x, y) ∼ e−m|x−y| or

̺2(x1, x2, y1, y2) − ̺1(x1, y1)̺2(x2, y2)

− ̺1(x1, y2)̺1(x2, y1) ∼ e−mmaxz,z′∈{x1,x2,y1,y2} |z−z′|.

At the critical point, the correlations cluster with a power law |z − z′|−1. There
is no clustering in the Bose Einstein condensation phase: e.g. ̺1(x − y) ∼ ρ0 +
const |x− y|−2, with ρ0 > 0 the condensate density.

Establishing this picture is an important open problem. A well known partial
result is the bound |̺1(x, y)| ≤ const e−m|x−y| for µ < 0 and pointwise positive v
by Ginibre [1]. Scaling limits of the problem in the conjectural Bose Einstein phase
have received much attention, see [2] and references therein. In the formalism



The Renormalization Group 1487

used by these methods, it has been hard to explain the mechanism underlying
the condensation and fluctuations of the condensate. A convenient language to
describe this mechanism heuristically is through formal coherent state functional
integrals, which have been applied extensively in theoretical physics.

In a program by Balaban, Feldman, Knörrer and Trubowitz, a rigorous coherent
state integral representation, e.g. for Z,

Z = lim
p→∞

∫ ∏

x∈X
τ∈β

p
Z/βZ

dφ(x, τ)∗ ∧ φ(x, τ)

2πi
e−|φ(x,τ)|2e−φ(x,τ− 1

p
)∗e

β
p

(∆−µ)
φ(x,τ)χp(φ)

× exp
(
− β

p

∑

τ,x,x′

φ(x, τ − 1
p )∗φ(x′, τ − 1

p )∗v(x− x′)φ(x, τ)φ(x′ , τ)
)
,

for a small field characteristic function χp, has been derived and subsequently
analyzed for small v. See [3]. The temporal ultraviolet limit p→ ∞ of this family
of oscillatory integrals was constructed uniformly in β, L, up to integrating out
the variables φ(x, τ) for τ ∈ θZ/βZ for fixed, small enough θ. The result is given
in the form of a sum over “small field large field decompositions” of X .

The dominant “pure small field” term in this decomposition has since been
further investigated with a block spin renormalization group method for µ > µ∗(β),
assuming that additional natural small field conditions can be introduced at will
[4]. This is a formidable and laborious challenge, as will be the justification of
the new small field approximations. We propose to also study the phase µ ≤
µ∗(β) with the block spin renormalization group. The pure small field part of this
construction is technically much easier than in the µ > µ∗ case, and this allows
to focus on the large field aspect of the problem, which is technically extremely
involved and more complicated than the large field problems encountered in the
treatment of the conventional classical unbounded spin systems.

The first result in this direction was given in [5], where the case µ < µ∗ −
const v̂(0)

1
2−ε was investigated with a robust single scale cluster expansion, and

exponential clustering of all correlation functions was shown. The corresponding
large field problem has a very easy structure, somewhat unnatural in the framework
of the program as no stability problem arises. As the critical point µ∗ is further
approached, block spins have to be introduced and multi scale cluster expansions
should be used. If µ < µ∗ − const v̂(0)1+ε, the problem can be treated by a
two scale cluster expansions with very large choice of the scaling parameter M ∼
v̂(0)−

1
4+ǫ, ǫ < 1

4
d−2
d+2 , v̂(0) ≤ c(β). The second scale becomes massive after a single

mass renormalization. The large field problem is much more subtle in this case,
and in particular a careful treatment of the oscillatory nature of the integral seems
to be necessary. My analysis of this problem is unfinished at the moment. It would
be the first mathematical result on the Bose gas at positive chemical potential.

As µ ր µ∗, more scales appear in the problem. The perturbation theory of
the critical point is known to be superrenormalizable, which gives hope that the
analysis of the inductive step in the multi scale induction of this construction can
be performed in the same way as in the two scale case described above. A full
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treatment of the subcritical phase and the critical point of the Boson system along
these lines is the long term goal of the research program outlined here.
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Batalin-Vilkovisky Quantization and the Renormalization Group

Timothy Nguyen

The Batalin-Vilkovisky (BV) approach to perturbation quantization was developed
by I. A. Batalin and G. A. Vilkvosky in the early 1980s as a general method
of quantizing theories possessing symmetries [1]. Only quite recently however,
have systematic and mathematically rigorous formulations of the BV approach
appeared, both in Euclidean signature [2] and in Lorenztian signature [5] [3].

In this talk, we give a schematic overview of the approach of K. Costello [2],
which combines a rigorous approach to regularization and renormalization together
with the cohomological aspects of the BV framework. We then apply this frame-
work to obtain results concerning the perturbative quantization of nonlinear sigma
models in two dimensions. In particular, we provide a mathematically rigorous
derivation of Friedan’s famous result that the one-loop renormalization group flow
for the nonlinear sigma model is the Ricci flow on the target:

(1) β(gij) = ~Ricij(g).

Of central importance in the BV framework is the quantum master equation

(2) {S, S} + ~∆S = 0.

Here, S is an extended action which consists of a classical action consisting of
ordinary fields and then additional terms involving ghosts and antifields that en-
capsulate the underlying classical symmetries of the system. The bracket {·, ·} is
an odd Poisson bracket coming from the (graded) sympletic manifold structure on
the space of all fields (ordinary plus ghost and antifields) and ∆ is the BV Lapla-
cian, which is essentially a divergence operator. The problem with (2) is two-fold.
First, the operator ∆, being a divergence operator in the infinite-dimensional set-
ting of quantum field theory, needs to be suitably interpreted. Second, since when
we quantize a theory, we have to supplement our action S with counterterms in
order to render quantities computed via the Feynman diagrammatic expansion
finite, we may violate symmetries and hence the equation (2).
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To address the first issue, we use a heat kernel regulator. This involves reg-
ulating the Green’s function for the kinetic operator ∆ of the theory (which we
assume to be Laplace-type) via

∆−1 −→
∫ L

ε

e−t∆dt.

Here, ε and L are short (ultraviolet) and long (infrared) distance regulators, re-
spectively. Renormalization involves adding ε-dependent local counterterms to
the action S in such a way that the ε → 0 limit of the Feynman diagramattic
expansion is well-defined. A priori, since these counterterms are only required to
render the theory finite, they need not satisfy any constraints due to symmetry
considerations.

The power of the BV approach, however, is that the manner in which the
symmetry is violated through renormalization can be expressed in cohomological
terms. Namely, there is a scale L quantum master equation (one involving the
renormalized interactions of the theory with a fixed infrared cutoff L, which we
regard as a scale), which may write schematically as follows:

QMEL = O[L],

Here, QMEL stands for a regulated version of (2) and O[L], if nonzero, is regarded
as an obstruction. Remarkably, it turns out that, order by order in the perturbative
parameter ~, we can perform a change of renormalization scheme that eliminates
the obstruction O[L] so long as we have control over the cohomology of of the
differential {S, ·} acting on the space of local functionals. The end result is that
we can ensure that symmetries are maintined at the quantum level, i.e., there are
no anomalies, if we can show that the appropriate cohomology groups induced
from {S, ·} vanish.

In [4], we apply this general framework to the study of nonlinear sigma models.
The symmetries we consider are twofold: (i) diffeomorphism covariance for general
Riemannian targets; (ii) a transitive group of isometries for homogeneous space
targets. By computing the appropriate cohomology groups associated to these
symmetries, we show that these symmetries are not anomalous when we quantize
(in case (ii) some additional technical assumptions are needed on the target). As an
application, by studying a suitable action of scaling on the space of quantizations,
we obtain a notion of the renormalization group in the BV formalism. In this way,
we are able to derive (1).
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Bose particles in a box. A convergent expansion of the ground state of
the Hamiltonian in the mean field limiting regime

Alessandro Pizzo

In this talk we have presented a novel multi-scale technique to study many-body
quantum systems where the total number of particles is kept fixed. The method
is based on Feshbach map and the scales are represented by occupation numbers
of particle states. In the talk, we have mainly considered a three-modes (includ-
ing the zero mode) Bogoliubov Hamiltonian for a sufficiently small ratio between
the kinetic energy and the Fourier component of the (positive type) potential cor-
responding to the two nonzero modes. For such a system, in the talk we have
reported on the following results: a) For any space dimension d ≥ 1 and in the
mean field limiting regime (i.e., at fixed box volume |Λ| and for a number of par-
ticles, N , sufficiently large) this method provides the construction of the ground
state and its expansion in terms of the bare operators. b) In the limit N → ∞ the
expansion is up to any desired precision. c) In space dimension d ≥ 3 the method
provides similar results for an arbitrarily large (finite) box and a large but fixed
particle density ρ, i.e., ρ is independent of the size of the box.

In this project we study the Hamiltonian describing a gas of (spinless) non-
relativistic Bose particles that, at zero temperature, are constrained to a d −
dimensional box of side L with d ≥ 1. The particles interact through a pair
potential with a coupling constant proportional to the inverse of the particle den-
sity ρ. The rigorous description of this system has many intriguing mathematical
aspects not completely clarified yet. In spite of remarkable contributions also in
recent years, some important problems are still open to date, in particular in con-
nection to the thermodynamic limit and the exact structure of the ground state
vector. In the related papers [Pi1], [Pi2], and [Pi3], the reader can find several
references concerning previous results on this topic.

Though the number of particles, N , is fixed we use the formalism of second
quantization that turns out to be very convenient to implement the technique.
The Hamiltonian corresponding to the pair potential φ(x− y) and to the coupling

constant 1
ρ = |Λ|

N =: λ > 0 is

(1) H :=

∫
1

2m
(∇a∗)(∇a)(x)dx +

λ

2

∫ ∫
a∗(x)a∗(y)φ(x − y)a(y)a(x)dxdy

where reference to the integration domain Λ := {x ∈ Rd | |xi| ≤ L
2 , i = 1, 2, . . . , d}

is omitted, periodic boundary conditions are assumed, and dx is Lebesgue measure
in d dimensions. Concerning units, we have set ~ equal to 1. Here, the operators
a∗(x) , a(x) are the usual operator-valued distributions on the bosonic Fock space

F := Γ
(
L2 (Λ,C; dx)

)

that satisfy the canonical commutation relations

[a#(x), a#(y)] = 0, [a(x), a∗(y)] = δ(x− y)1F ,
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with a# := a or a∗. In terms of the field modes they read

a(x) =
∑

j∈Zd

aje
ikj·x

|Λ| 12
, a∗(x) =

∑

j∈Zd

a∗j e
−ikj·x

|Λ| 12
,

where kj := 2π
L j, j = (j1, j2, . . . , jd), j1, j2, . . . , jd ∈ Z, and |Λ| = Ld, with CCR

(2) [a#j , a
#
j′ ] = 0, [aj, a

∗
j′ ] = δj , j′ .

The unique (up to a phase) vacuum vector of F is denoted by Ω (‖Ω‖ = 1).

Definition 1. The pair potential φ(x− y) is a bounded, real-valued function that
is periodic, i.e., φ(z) = φ(z+ jL) for j ∈ Zd, and satisfies the following conditions:

(1) φ(z) = 1
|Λ|

∑
j∈Zd φje

ikjz is an even function, in consequence φj = φ−j.

(2) φ(z) is of positive type, i.e., the Fourier components φj are nonnegative.
(3) The pair interaction has a fixed but arbitrarily large ultraviolet cutoff (i.e.,

the nonzero Fourier components φj form a finite set) with the requirements
below to be satisfied:

3.1) (Strong Interaction Potential Assumption) The ratio ǫj between the
kinetic energy of the modes ±j 6= 0 = (0, . . . , 0) and the corresponding
Fourier component φj(6= 0) of the potential is sufficiently small.
3.2) For all nonzero φj and some 1 > µ > 0 , θ > 0

(3)
φj
∆0

Nµ

N(N −Nµ)
<

1

2
,

1

Nµ
≤ O((

√
ǫj)

1+θ) ,

where ∆0 = min
{
k2j | j ∈ Zd \ {0}

}
and N is the number of particles in

the box.

The operator H is meant to be restricted to the subspace FN with exactly N
particles.

Motivations and features of the strategy
We know that, at fixed volume |Λ|, the expectation value of the number operator1∑

j∈Zd\{0} a
∗
j aj in the ground state of the Hamiltonian (1) remains bounded in

the mean field limit (i.e., λ = |Λ|
N and N → ∞); see the papers by Seiringer and

by Lewin et al. quoted in [Pi1]. Starting from this fact, one might think of a
multi-scale procedure leading to an effective Hamiltonian for spectral values in
a neighborhood of the ground state energy. An obvious candidate for such an
effective Hamiltonian is (a multiple of) the orthogonal projection onto the state
where all the particles are in the zero mode.

The Feshbach map is a very useful tool to construct effective Hamiltonians. We
recall that given the (separable) Hilbert space H, the projections P, P (P = P2,

P = P
2
) where P + P = 1H, and a closed operator K − z1 acting on H (z in

1The operator
∑

j∈Zd\{0} a
∗
j
aj counts the number of particles in the nonzero modes states.
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a subset of C) the Feshbach map associated with the couple P , P maps K − z1
to the operator F (K − z1) acting on PH where (formally)

(4) F (K − z1) := P(K − z1)P − PKP
1

P(K − z1)P
PKP .

The Feshbach map is “isospectral”, i.e., assuming that F (K−z1) is a well defined
closed operator on PH then: 1) F (K − z1) is bounded invertible if and only if
z is in the resolvent set of K; 2) z is an eigenvalue of K if and only if 0 is an
eigenvalue of F (K−z1). Moreover, the map provides an algorithm to reconstruct
the eigenspace corresponding to the eigenvalue z from the kernel of the operator
F (K − z1), and their dimensions coincide.

The use of the Feshbach map for the spectral analysis of quantum field theory
systems started with the seminal work by V. Bach, J. Fröhlich, and I.M. Sigal,
followed by refinements of the technique and variants; see the references in [Pi1].
In those papers, the use of the Feshbach map is in the spirit of the functional
integral renormalization group, and the projections (P, P) are directly related
to energy subspaces of the free Hamiltonian. However, as a mathematical tool the
Feshbach map enjoys an enormous flexibility due to the freedom in the choice of
the couple of projections P, P . The effectiveness of the choice depends on the
features of the Hamiltonian.

In the system that we study the total number of particles is conserved under
time evolution. The effective Hamiltonian that we want to construct suggests
to relate the Feshbach projections (P, P) to subspaces of states with definite

number of particles in the modes labeled by
{

2π
L j ; j ∈ Zd

}
. More precisely,

consider the eigenspace of
∑

j=±j∗
a∗j aj corresponding to the eigenvalue i, i.e.,

the subspace of states containing i particles in the modes associated with ± 2π
L j∗.

Observe that the interaction part of the second quantized Hamiltonian in (1) can
connect two eigenspaces corresponding to distinct eigenvalues, i and i′, only if
i− i′ = ±1,±2. The selection rules of the interaction Hamiltonian with respect to

the occupation numbers of the particle states associated with the modes
{

2π
L j ; j ∈

Zd
}

suggest to construct a flow of Feshbach maps associated with projections onto

such eigenspaces with decreasing eigenvalue i.

In fact, our method works for a potential φ with an ultraviolet cut-off and in the
strong interaction potential regime: by this we mean that the ratio between each
nonzero Fourier component of the potential, φj, and the corresponding kinetic
energy, k2j , must be sufficiently large. For a (positive definite) potential φ ∈
L1 such that

∫
φ(z)dz > 0, this is precisely the regime that is relevant in the

thermodynamic limit because at fixed j the ratio φj/(kj)
2 diverges like L2, being

kj := 2π
L j and L the side of the box.

In this talk, using a new multi-scale technique inspired by the Feshbach map we
have shown how to construct the ground state of a three-modes systems described
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by the Bogoliubov Hamiltonian

HBog
j∗

:=
∑

j∈Zd\{±j∗}
k2j a

∗
j aj +

∑

j=±j∗

(k2j + φj
a∗0a0
N

)a∗j aj + φj∗
a∗0a

∗
0aj∗a−j∗

N
(5)

+φj∗
a0a0a

∗
j∗
a∗−j∗

N

=:
∑

j∈Zd\{±j∗}
k2j a

∗
j aj + ĤBog

j∗
.(6)

Notice, that after implementing the volume integrations in (1) and keeping
only the terms that are quadratic in the operators a0, a∗0 one gets the complete
(particles number preserving) Bogoliubov Hamiltonian

(7) HBog =
1

2

∑

j∈Zd\{0}
ĤBog

j .

Consequently, HBog can be seen as a collection of three-modes systems. In fact,
the three-modes system analyzed in [Pi1] represents the main building block in
the construction of the ground state of the Bogoliubov Hamiltonian (see (7)) and
of the complete Hamiltonian (see (1)) in the mean field limiting regime, provided
the potential fulfills Definition 1; see [Pi2] and [Pi3], respectively.

For the three-modes system described by the Hamiltonian HBog
j∗

where ǫj∗ :=
k2
j∗

φj∗
is sufficiently small, we have considered the Feshbach flow associated with

the sequence of projections defined below. Without loss of generality, we can

suppose that HBog
j∗

is restricted to FN with N even. Then, for i even number,

0 ≤ i ≤ N − 2, we define P(i) := Q>i+1
j∗

, P(i) := Q
(i,i+1)
j∗

where:

• Q
(0,1)
j∗

:= the projection (in FN ) onto the subspace generated by vectors
with N − 0 = N or N − 1 particles in the modes j∗ and −j∗, i.e., the
operator a∗j∗aj∗ + a∗−j∗

a−j∗ has eigenvalues N and N − 1 when restricted

to Q
(0,1)
j∗

FN ,

• Q
(>1)
j∗

:= the projection onto the orthogonal complement of Q
(0,1)
j∗

FN in

FN ,

and, iteratively, up to i = N − 2

• Q
(i,i+1)
j∗

:= the projection onto the subspace of Q
(>i−1)
j∗

FN spanned by the
vectors with N − i or N − i− 1 particles in the modes j∗ and −j∗,

• Q
(>i+1)
j∗

:= the projection onto the orthogonal complement of

Q
(i,i+1)
j∗

Q
(>i−1)
j∗

FN in Q
(>i−1)
j∗

FN .

Hence, we can write

(8) Q
(>i+1)
j∗

+Q
(i,i+1)
j∗

= Q
(>i−1)
j∗

.
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As a final couple of Feshbach projections, we employ P(N) := |η〉〈η|, P(N) :=

Q
(>N−1)
j∗

− |η〉〈η|, where η := 1√
N !
a∗0 . . . a

∗
0Ω , i.e., η is the state where all the N

particles are in the zero-mode state.

The Feshbach flow is implemented starting from HBog
j∗

−z1 and using iteratively

the formula in (4) up to the final step i = N . The final Feshbach Hamiltonian is the
finite rank operator f(z)|η〉〈η|. In the range (−∞, zmax) of the spectral parameter
z where the flow can be implemented, we show that there exists a unique z∗
such that f(z∗) = 0. Then, z∗ is an eigenvalue (the ground state energy) of the

original Hamiltonian HBog
j∗

due to the isospectrality that holds at each step of
the Feshbach flow. Feshbach theory provides also an algorithm to reconstruct the

eigenvector of the original Hamiltonian HBog
j∗

associated with the eigenvalue z∗
from the eigenvector (η) with eigenvalue zero of the final Feshbach Hamiltonian
f(z∗)|η〉〈η|.

Statement of the results and role of the assumptions
In the following list of remarks we specify the results that are obtained in [Pi1] for
the three-modes Bogoliubov Hamiltonian, and the role of the Strong interaction
potential assumption together with Condition 3.2 in Definition 1.

(1) For the implementation of the Feshbach map up to the N − 2− th step we
shall require 1

N ≤ ǫνj∗ for some ν > 11
8 and ǫj∗ sufficiently small. The bound

1
N ≤ ǫνj∗ holds in the mean field limiting regime where the box is kept fixed
and the number of particles, N , can be arbitrarily large irrespective of the
box size. For space dimension d ≥ 3, at fixed particle density, the bound
1
N ≤ ǫνj∗ is fulfilled (for ν < 3

2 ) if the box is sufficiently large. For d = 1, 2,
if at fixed j∗ and φj∗ the box size tends to infinity the particle density ρ
must be suitably divergent to ensure the bound 1

N ≤ ǫνj∗ .

(2) For the last step of the Feshbach flow, Condition 3.2) in Definition 1 is also
necessary for the implementability up to values of the spectral parameter

z belonging to a neighborhood of the ground state energy of HBog
j∗

. This
condition is fulfilled for any dimension d in the mean field limiting regime.
At fixed particle density and for d ≥ 2, Condition 3.2) is fulfilled if L is
sufficiently large.

(3) The existence of the point z∗ such that f(z∗) = 0, i.e., the ground state

energy of HBog
j∗

, is established for any space dimension d ≥ 1 in the mean
field limiting regime.
With regard to a box of arbitrarily large side L(< ∞), the existence of
z∗ is achieved if ρ ≥ ρ0(L/L0)

3−d where ρ0 is sufficiently large and L0 =
1. Hence, for d ≥ 3 it is enough to require ρ be sufficiently large but
independent of L and the result holds for a finite box of arbitrarily large
(finite) volume |Λ|.

(4) In all cases where the existence of z∗ is proven we can construct the ground

state. We also show that in the mean field limiting regime |z∗ − EBog
j∗

| ≤



The Renormalization Group 1495

O( 1
Nβ ) for any 0 < β < 1 where EBog

j := −
[
k2j + φj −

√
(k2j )2 + 2φjk2j

]
.

Furthermore, in space dimension d = 3, for any scaling ρ = ρ0( L
L0

)δ with

δ > 0 the ground state energy of HBog
j∗

tends to EBog
j∗

as L → ∞. This
implies that in space dimension d ≥ 4 at fixed ρ the ground state energy

of HBog
j∗

tends to EBog
j∗

in the thermodynamic limit.

In the mean field limit (i.e., fixed box and N → ∞) we provide the ex-
pansion of the ground state vector in terms of the bare operators and the
vector η up to any desired precision.
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Hall transitions in the Haldane-Hubbard model

Marcello Porta

(joint work with Alessandro Giuliani, Ian Jauslin, Vieri Mastropietro)

1. Introduction

Two-dimensional condensed matter systems display remarkable transport proper-
ties. A paradigmatic example is the integer quantum Hall effect (IQHE): at low
temperatures, thin samples of insulating materials exposed to strong magnetic
fields display a quantized transverse conductivity. Let σ be the conductivity ma-
trix: σ11 = σ22 is the longitudinal conductivity, while σ12 = −σ21 is the transverse,
or Hall, conductivity. The conductivity matrix describes the linear response of the
system when exposed to a weak electric field E = (E1, E2): linear response theory
predicts that J = σE + o(E), where J is the current generated by the external
field. The integer quantum Hall effect is the following experimental observation:

(1) σ11 = σ22 = 0 , σ12 = −σ21 ∈ e2

h
Z .

The quantization of σ12 is measured with astonishing precision. Moreover, the
value of σ12 stays constant as long as the Fermi energy of the system is in a band
gap, or in a mobility gap. From a theoretical viewpoint, the IQHE is very well
understood in the absence of interactions, that is for independent particles [12,
2, 3, 1]. The picture is more complex in the presence of many-body interactions.
Preexisting arguments (e.g., [4]), and recent theorems [10], ensure quantization
under the assumption that the spectrum of the interacting system has a gap above
the ground state (incompressibility). This assumption is unproven in most of the
physically relevant cases.
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In a recent work [7] we proved the universality of the conductivity matrix for
general fermionic lattice models, in the presence of short-ranged interactions. We
do not make any assumption on the interacting spectrum. Instead, we assume
that the noninteracting theory has a gap, and that the many-body interaction is
weak. The result is that the conductivity matrix, as defined from Kubo formula, is
independent of weak many-body interactions. Thus, [7] proves the stability of the
IQHE against weak interactions. The proof is based on fermionic cluster expansion
techniques, and lattice Ward identities. The result of [7] is not uniform in the gap
of the noninteracting theory: the radius of convergence U0 shrinks to zero as the
gap vanishes. In particular, [7] does not allow to study the transitions between
different Hall phases, which require the spectral gap to close.

2. Hall transitions in the the Haldane-Hubbard model

The Haldane model is a graphene-like model, with a nontrivial topological phase
diagram. In the absence of interactions, this model has been introduced by Hal-
dane in [9]. It describes fermions on the honeycomb lattice; the Hamiltonian is

(2) H(0)
H = H(0)

g + H(0)
M + H(0)

φ ,

where: H(0)
g describes the hopping between nearest-neighbours (“non-interacting

graphene”); H(0)
M implements a staggered chemical potential ±M on the two tri-

angular sublattices; H(0)
φ introduces a next-to-nearest neighbour hopping, with an

alternating hopping parameter t2e
±iφ. The phases ±φ describe a magnetic field

with zero net flux through the hexagonal cell. The Haldane model is the simplest
example of a topological insulator, and it is the building brick for more complex
models (e.g., the Kane-Mele model). It has been experimentally realized in [11].

For a generic choice of parameters, the model is gapped. Interestingly, even
though the magnetic flux is zero, the Hall conductivity is nontrivial. Let m± =
M ± 3

√
3t2 sinφ; |m±| are the amplitudes of the gaps splitting the two conical

intersection of the energy bands of H(0)
g . The Hall conductivity, as given by Kubo

formula, is [9]:

(3) σ
(0)
12 =

e2

h

[
sgn(m−) − sgn(m+)

]
.

In [8] we applied rigorous renormalization group methods to study the topolog-
ical phase diagram of the interacting Haldane model, or Haldane-Hubbard model.
The Hamiltonian of the model is H(0) +UV , where V is the standard on-site Hub-
bard interaction. In the gapless regime, the scaling properties of the model are the
same of 2 + 1-dimensional Dirac fermions, with a quartic local interaction. A cru-
cial point is that the interaction is irrelevant in the RG sense, as in [5, 6]. Thus, the
ground state correlations can be constructed via convergent renormalized series,
and the scaling exponents are the same of the noninteracting theory. Nevertheless,
the interaction has nontrivial effects: it renormalizes the Fermi velocity, the wave
function and the effective masses of the quasi-particles.
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The result of [8] is a rigorous construction of the renormalized transition curves
of the Haldane-Hubbard model; see Fig. 1. The curves solve the equations mR,± =

Figure 1. In red (inner lines), the noninteracting transition
curves. In blue (outer lines), the renormalized transition curves
for small U > 0 (color online).

0, where mR,± = m± + F±(m+,m−;U), with F± = O(U) and F± = 0 if m+ =
m− = 0. The quantities |mR,±| play the role of renormalized masses for the quasi-
particles. We prove that, for U ∈ (−U0, U0) with U0 independent of m±, and by
suitably choosing µ (renormalized chemical potential):

(4)
[

lim
mR,ω→0+

− lim
mR,ω→0−

]
σ12 =

2e2

h
ω , ω = ± .

That is, the discontinuity of the interacting Hall conductivity at the renormalized
critical line is universal: it only depends on fundamental constants. Moreover, the
longitudinal conductivity on the critical line, σcr

11, is also universal:

(5) σcr
11 =

e2

h

π

4
,

which is half the value obtained for graphene [6]. Finally, in the special points
of the phase diagram mR,+ = mR,− = 0, σcr

11 is twice the value in Eq. (5): each
conical intersection in the energy bands contributes with the universal quantity
(e2/h)(π/4) to the total longitudinal conductivity. The results (4), (5) follow from
a combination of rigorous RG methods and lattice Ward identities.

Our results apply to clean interacting systems. It is a very important open
questions to understand quantization of charge transport for interacting disordered
systems: strong disorder is an essential feature to explain the existence of the
sharply quantized Hall plateaux.
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Renormalization on Lorentzian manifolds in pAQFT

Kasia Rejzner

1. Causal structure

Let M = (M, g) be a d-dimensional spacetime, i.e. a smooth d-dimensional man-
ifold with the metric g of signature (+,−, . . . ,−). We assume M to be oriented,
time-oriented and globally hyperbolic (i.e. it admits foliation with Cauchy hyper-
surfaces). To make this concept clear let me recall a few important definitions in
Lorentzian geometry.

Definition 1. Let γ : R ⊃ I → M be a smooth curve in M , for I an interval in
R and let γ̇ be the vector tangent to the curve. We say that γ is

• timelike, if g(γ̇, γ̇) > 0,
• spacelike, if g(γ̇, γ̇) < 0,
• lighlike (null), if g(γ̇, γ̇) = 0,
• causal, if g(γ̇, γ̇) ≥ 0.

The classification of curves defined above is referred to as the causal structure.
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Definition 2. Given the global timelike vector field u (the time orientation) on
M , a causal curve γ is called future-directed if g(u, γ̇) > 0 all along γ. It is
past-directed if g(u, γ̇) < 0.

Definition 3. A causal curve is future inextendible if there is no p ∈ M such
that:

∀U ⊂Mopen neighborhoods of p, ∃t′ s.t. γ(t) ∈ U ∀t > t′ .

Definition 4. A Cauchy hypersurface in M is a smooth subspace of M such
that every inextendible causal curve intersects it exactly once.

We construct quantum field theory models on globally hyperbolic manifolds us-
ing the local geometric data and applying the methods of microlocal analysis. The
latter allow us to control propagation of singularities. This way we can construct
correlation functions and time-ordered products of fields as well-defined distribu-
tions. In general we work with formal power series in ~ and the coupling constant
λ. However, it is believed that convergence in λ can be shown for some simple
models, e.g. sin-Gordon in the super-renormalizable regime.

2. Free scalar field

We define the (off-shell) configuration space to be E = C∞(M,R) and model
classical observables as smooth functionals on E . A functional F ∈ C∞(E ,C) is
called local if it can be expressed as

F (ϕ) =

∫

M

f(jk(ϕ)) ,

where f is a local, density-valued function on the jet bundle. The space of local
functionals is called Floc. We define the point-wise product of functionals as
F ·G(ϕ)

.
= F (ϕ)G(ϕ) and call the algebraic completion of Floc with respect to this

product, the space of multilocal functionals denoted by F . Localization properties
of functionals are characterized by the notion of spacetime support.

supp(F )
.
= {x ∈M |∀O ∋ x open, ∃ϕ, ψ ∈ E(M) s.t. ψ ⊂ O and F (ϕ+ψ) 6= F (ϕ)}

Regularity properties of a smooth functional are formulated in terms of the WF-
sets properties of its derivatives, since F (n)(ϕ) ∈ E ′(Mn,C). In particular, micro-
causal functionals, Fµc, are those for which

WF(F (n)(ϕ)) ⊂ Ξn ,

where

Ξn
.
= T ∗Mn \ {(x1, . . . , xn; k1, . . . kn)|(k1, . . . , kn) ∈ (V

n

+ ∪ V n

−)(x1,...,xn)} ,
where V +/V − is the future/past closed lightcone. Regular functionals are those
for which WF(F (n)(ϕ) is empty for all ϕ ∈ E , n ∈ N.

The equation of motion for the free field reads

Pϕ = 0 , P = −(� +m2) .
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It is crucial that P is a normally hyperbolic operator, so on a globally hyperbolic
spacetime it has retarded/advanced Green’s functions ∆R/∆A, respectively. The
causal propagator (the commutator function) is defined as ∆

.
= ∆R − ∆A. The

WF set of ∆ consists of pairs (x, k;x′,−k′), such that (x, k;x′, k′) belongs to the
same null geodesic strip (x and x′ lie on a null geodesic and k, k′ are the cotangent
vectors at these points). On globally hyperbolic spacetimes one can split ∆ as a
sum

(1)
i

2
∆ = ∆+ −H ,

in such a way that

(1) H is symmetric,
(2) ∆+ is positive, i.e.

〈
∆+, f ⊗ f

〉
> 0,

(3) ∆+ is a distributional bisolution for P and the WF set of ∆+ is contained
in the forward lightcone.

The last condition can be interpreted as the positivity of the energy condition and
on Minkowski spacetime would correspond to the split into positive and negative
frequency parts in the momentum space. The split (1) is not unique and different
choices can be labeled by different symmetric distributions H . Let Had denote
the collection of all such distributions. For each of them we can define the algebra
AH(M)

.
= (Fµc[[~]], ⋆H), where

F ⋆H G
.
=

∞∑

n=0

~n

n!

〈
F (n)(ϕ),∆⊗n

+ G(n)(ϕ)
〉
.

The algebra of Wick-ordered products of tree fields is defined as the family A(M) =
(AH(M))H∈Had, where elements are related by FH′ = αH′−HFH , with

αH
.
= e

~

2

〈

H, δ2

δϕ2

〉

,

and the product is

(F ⋆ G)H
.
= FH ⋆H GH .

Pick H ∈ Had. For F ∈ Floc we can define an element of A(M), denoted by :F :,
defined by the requirement that :F :H = F . The subspace of AH(M) generated
(as a vector space) by elements arising this way is called AH

loc(M).

3. Interaction

The method to introduce the interaction is motivated by the Dyson formula for
the interacting time-evolution operator

UI(t, s) = 1 +

∞∑

n=1

inλn

n!~n

∫

([s,t]×R3)n
T (:LI(x1): . . . :LI(xn):)d4x1 . . . d

4xn .
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In order to make this formula mathematically rigorous we introduce the formal
S-matrix as a formal map on AH

loc(M) defined by

S(λ :V :)
.
= e

iλ
~

:V :

T ≡
∞∑

n=0

(
iλ

~

)n
1

n!
Tn(:V :⊗n) ,

where Tn is called the n-fold time-ordered product and it is initially well defined
only for arguments with non-coinciding supports and is then extended to arbitrary
local functionals by renormalization. For non-coinciding supports we have the
explicit formula

Tn(F1, . . . , Fn)
.
= m ◦ e~

∑

i<j

〈

∆F, δ
δϕiδϕj

〉

,

where m is the point-wise multiplication operator and ∆F .
= i

2

(
∆A + ∆R

)
+H is

the Feynman propagator associated to H . The renormalization problem is now to
extend the time-ordered products to arbitrary arguments. Following [EG73], we
require these to satisfy the properties:

(1) Causal factorization: Tn(F1, ..., Fn) = Tn(F1, ..., Fk)⋆HTn(Fk+1, ..., Fn),
if the supports of F1, ..., Fk are not earlier than the supports of Fk+1, ..., Fn.

(2) T0 = 1, T1 = id
(3) Unitarity, Covariance, etc.

For the complete list of axioms see [BDF09, HW01]. It was shown there, following
the original proof of [EG73], that a family of maps Tn fulfilling the appropriate ax-
ioms exists and that the non-uniqueness is governed by the Stückelberg-Petermann
renormalization group R, defined as follows. Elements of R are formal diffeomor-
phisms Z of Aloc(M) such that

(1) Z(0) = 0,
(2) Z(1)(0) = id,
(3) Z = id + O(~),
(4) Z(F +G+K) = Z(F +G) + Z(G+K) − Z(G), if suppF ∩ suppK = ∅.

The main theorem of renormalization states that if S and S ′ are two possible
definitions of S-matrices (with time-ordered products satisfying the appropriate
axioms), then there exists an element Z ∈ R such that

S ′ = S ◦ Z .
Also the converse is true, i.e. if Z ∈ R and S is a well defined S-matrix with the
properties stated before, then so is S ◦ Z.

4. Gauge theories and effective quantum gravity

The framework discussed above can be generalized to treat gauge theories and
effective quantum gravity [Hol08, FR12, BFR13]. In both cases, there is a local
action of a Lie algebra g on the configuration space E that leaves the space of
solutions to the equations of motion invariant. Then one has to replace E with
the graded manifold E .

= E ⊕ g[1] and F with Oml(E), the space of multilocal
functions on this manifold. Next, we consider the space of multilocal polivector
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fields, i.e. the space of functions on T ∗[−1]E , the odd cotangent bundle of E .
We denote this space by BV. This is the underlying algebra of the BV complex.
It is a bi-graded algebra, where one of the gradings (call it #pg) comes from
the underlying manifold E , and the other grading, the antifield number #af, is
essentially the degree of polivector fields. The grading of the BV complex is given
as #gh = #pg − #af.

The BV differential is then a sum of two differentials s = δ + γ, where the ho-
mology of δ characterises the space of functionals on the solutions to the equations
of motion and the cohomology of γ characterises the space of invariants under the
action of g. The BV differential can be expanded in powers of fields. The lin-
ear #af = 0 term is denoted by s0. The gauge invariance of the S-matrix is the
condition that

(2) s0(S(:V :)) = 0 .

This condition is called quantum master equation (QME) and can be rewritten as

(3)
1

2
{S0 + λV, S0 + λV } − i~△ (λV ) = 0 ,

where {., .} is the Schouten bracket on the space of polivector fields, S0 is the free
action, V is the interaction term and △(λV ) is the renormalized BV Laplacian,
identified with the anomaly term. Solving QME amounts to finding higher order
(in ~) corrections to V such that (3) can be satisfied. This re-definition of the
interaction term amounts to acting on V with some Z ∈ R, so according to the
main theorem of renormalization, this is equivalent to redefining the time-ordered
products, so that the new S-matrix satisfies the condition (2).
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Constructive Matrix and Tensor Field Theory

Vincent Rivasseau

The tensor track is a program to explore (Euclidean) random fields which are
tensors of general rank d. They include as special cases vector (rank 1) and matrix
(rank 2) models. Tensor models were introduced as promising candidates for an
ab initio quantization of gravity. Indeed they are combinatorial objects which do
not refer to any background metric, nor even to any background topology. These
tensors were initially introduced as symmetric in their indices, a feature which for
a long time prevented to investigate rigorously their behavior. In particular in
contrast with the famous ’t Hooft 1/N expansion for random matrix models, there
was until recently no way to probe the large N limit of these symmetric random
tensors at rank d > 2.

The modern reformulation by R. Gurau and collaborators unlocked the theory
by considering un-symmetrized random tensors. Slightly counterintuitively, these
objects have in fact a larger symmetry than symmetric tensors, and this larger
symmetry allowed to probe their large N limit through 1/N expansions of a new
type. Invariants under this symmetry are exactly d-regular edge-colored graphs.

Random tensor models can be further divided into fully invariant models, in
which both propagator and interaction are invariant, and tensor field theories
(hereafter TFT) in which the interaction is invariant but the propagator is not.
This propagator can also incorporate a further gauge invariance to make contact
with group field theory, in which case we call the model a tensor group field theory
(TGFT).

The first-half of the talk focused on the motivations for random tensors, which
come from random geometry and quantum gravity. The tensor model action is
known to be a natural discretization of the Einstein-Hilbert action and can be
considered as an equilateral form of Regge calculus. The recent associated field
theories have added renormalization, asymptotic freedom and exploration of the
infrared flow to this older picture.

The second part of the talk focused on another important aspect of the new
theories, namely their constructive analysis. In the relatively simple case of models
with a quartic interaction, Borel summability of the free energy has been proven for
super-renormalizable models on the “stable side” of the coupling constant. The
main tool is the so-called multi-scale loop vertex expansion. Although the talk
could not enter in that detail, the simpler loop vertex expansion was presented in
some detail. It is a constructive technique which bypasses the more traditional
cluster expansions and does not require any discretization of space-time by regular
lattices, hence it is particularly suited to the study of matrix and tensor models,
or of field theories in curved background.

The world of tensor models and tensor field theories is extremely vast, as tensor
interactions encode infinitely many triangulations of any piecewise linear manifold
with boundaries, and in particular distinguish in four dimensions not only topology,
but also smooth structure. They also generalize non-commutative field theories
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on Moyal space. Their exploration which has been very active during the last five
years, is currently continuing to burgeon in many fascinating directions.

On Decoherence, Thermalization and RG

I. M. Sigal

(joint work with Marco Merkli and Gennady Berman)

Decoherence. In this talk, we present an attempt on a conceptual treatment of the
theory of quantum decoherence for a class of general, non-solvable, microscopic
models.

Earlier results : explicitly solvable (non-demolition) models and non-rigorous re-
sults for the 2nd order + Markov approximation (Lindblad evolution).

Some of the literature including experimental works: DiVincenzo, Palma, Suomi-
nen, Ekert, Leggett, Chakravarty, Dorsey, Fisher, Garg, Zwerger, Unruh, Zurek,
Altepeter, Hadley, Wendelken, Berglund, Kwiat, Ao, Rammer, Berman, Kamenev,
Tsifrinovich, Berman, G.P., Bishop, A.R., Borgonovi, F., Dalvit, Duan, Guo, Fe-
dorov, Fedichkin, Paz, Roncaglia, Sorensen, Cirac, Zoller, Utsunomiya, Master,
Yamamoto, Schlosshauer.

For a connection to the problem of irreversibility and to the theory of measure-
ment, see recent papers by Jürg Fröhlich et al, which can be found on arXiv.

Model A quantum system interacting with the environment (“reservoir”). The
reservoir is taken to be an infinitely extended gas of massless excitations (e.g.
photons or phonons) at positive temperature and positive density, i.e. in the
thermodynamic limit.

This is a classical model which can be found in the book of A. Messiah on
Quantum Mechanics or in books on the solid state physics. Relevant references
for us are Caldeira - Leggett and Feynman-Vernon. The former used this model
to describe the macroscopic tunnelling in superconductors (Josephson junctions).
Model. Consider a quantum system interacting with the “reservoir”, with the state
space H = HS ⊗HR and the Hamiltonian

H = HS ⊗ 1lR + 1lS ⊗HR + λV,

where HS and HR are the Hamiltonians of S and R and λV is an interaction
between them, with a coupling constant λ ∈ R.

In our model, HR is the bosonic Fock space, F , with the creation/annihilation
operators, a∗(k) and a(k), HR is given by

HR =

∫

R3

a∗(k)|k|a(k)d3k

and

V = G⊗ ϕ(g).
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where G is a sa operator on HS, g2
∫ (

1 + |k|−1
)
‖Gj(k)‖2 dk ≪ 1 and

ϕ(g) =

∫
(a∗(k)g(k) + a(k)g(k))d3k.

Here a∗(k) and a(k) are bosonic creation/annihilation operators on HR.
Reduced Density Matrix. The state, Rt, of the total system at time t (we think
of it as a density matrix though we deal with positive densities) satisfies the von
Neumann equation

i∂tRt = [H,Rt].

The reduced density matrix (of the system S) at time t is then formally obtained
by tracing out the reservoir degrees of freedom

ρt = TrRRt.

Thermalization and Decoherence. From now on we assume dim HS <∞.
Jaksic - Pillet, Bach - Fröhlich - IMS : If initially the system is close to a state

in which the reservoir is near equilibrium,

ρt −→ ρ(β, λ), with ρ(β, λ) := TrRR(β, λ),

where R(β, λ) is the equilibrium state (Gibbs state) of the total system at temper-
ature T = 1/β. In particular,

(1) [ρt]m,n → [ρ(β, λ)]m,n, as t→ ∞.

For the energy basis, and for m = n, this is the thermalization, and for m 6= n, the
decoherence.
Thermalization and Decoherence. Generally, [ρ(β, λ)]m,n = O(λ) 6= 0, for m 6= n.
Neglecting it, we arrive at the standard notion of decoherence:

[ρt]m,n → 0, as t→ ∞, ∀m 6= n,

in a ’prefered’ basis (usually, the energy basis, also called the computational basis
for a quantum register, i.e. the basis of eigenvectors of the system Hamiltonian
HS).

In this case, the limiting density matrix is a non-coherent mixture of the pure
states,

∑
n pnPn. where Pn is the orthogonal projection onto the n−th eigenfunc-

tion of HS.
Observables and Decoherence. Let {ϕj}j≥1 be an orthonormal basis of HS diag-
onalizing HS. The matrix elements [ρt]m,n := 〈ϕm, ρtϕn〉 of the reduced density
matrix ρt can be written as

[ρt]m,n = 〈Pn,m〉t , where Pn,m = |ϕn〉〈ϕm|,
and 〈A〉t is the average of a system observable A,

〈A〉t := TrS+R(Rt(A⊗ 1lR)) = TrS(ρtA).

Thus to understand the decoherence and thermalization it suffices to understand
behavior of the expectations 〈A〉t.
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Relaxation of Observables. The above result can be reformulated as: for any sys-
tem observable A,

〈A〉t →〈A〉thermal , as t→∞,

where

〈A〉thermal = TrS(ρ(β, λ)A),

with

ρ(β, λ) := TrRR(β, λ).

(Recall that R(β, λ) is the equilibrium state (Gibbs state) of the total system at
temperature T = 1/β.)

Convergence of Observables. Our first main result is the following
Thm 1. ∃ complex energies ε, lying in the strip {z ∈ C | 0 ≤ Im z < π

β }, s.t.

for any t ≥ 0

(2) 〈A〉t − 〈A〉thermal =
∑

ε6=0

eitεRε(A) +O
(
λ2 e−αt

)
,

where Rε(A) are linear functionals of A and (for a special class of couplings)

α <
1

2
max

ε
{Im ε} +

2π

β
.

Im ε ≡ Im ε
(s)
m,n > 0 encode properties of the irreversibility of the reduced

dynamics of S (decay of expectations).
Resonances. Now, we formulate our second result:

Thm 2. The complex numbers ε are the resonances of a certain explicitly given
operator L and ‘bifurcate’ from the eigenvalues

em,n = em − en ∈ spec(LS) = spec(HS) − spec(HS)

of the system’s Liouville operator LS : A→[HS, A]:

ε ≡ ε(s)m,n = em,n + λ2δ(s)m,n +O(λ4),

where δ
(s)
m,n are the eigenvalues of a matrix Λm,n, called a level-shift operator, acting

on the eigenspace of LS corresponding to em,n.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
We define the thermalization and decoherence times as

[τT ]−1 := min
m

Im εm,m(λ), [τD]−1 := min
m 6=n

Im εm,n(λ).
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Two-dimensional systems (qubits). Consider a two-dimensional system (qubit),
with state space (of pure states) HS = C2, and the system and interaction Hamil-
tonians are given by

HS =

[
E1 0
0 E2

]
, V =

[
a c
c b

]
⊗ ϕ(g),

where ϕ(g) =
∫
ϕ(x)g(x) is the Bose field operator.

c = 0 corresponds to a non-demolition (energy conserving) interaction (v com-
mutes with the Hamiltonian HS and consequently energy-exchange processes are
suppressed).

The property c 6= 0 is necessary for thermalization.
Decoherence of qubits. Let ∆ = E2−E1 > 0 be the energy gap of the qubit. Then

[τT ]−1 = λ2π2|c|2ξ(∆),

[τD]−1 =
1

2
λ2π2

[
|c|2ξ(∆) + (b − a)2ξ(0)

]
,

modulo O(λ4) and with (g(k) = coupling function)

ξ(η) = 4 coth

(
βη

2

)
|g(η)|2η2.

Exactly solvable models (non-demolition interactions, i.e. c = 0): Palma, Suomi-
nen, Ekert, Shao, Ge, Cheng, Mozyrsky, Privman, and others.
Approach.

• Reformulate the problem in terms of the dynamics

Rt ⇐⇒ Ψt = eiLtΨ,

generated by a Liouville operator L, on the Hilbert space

H⊗H;

• Connect the decoherence to the resonances of L;

• To compute the resonance energies and life-times use the spectral renor-
malization group of Bach-Fröhlich-IMS.

The resonances of L are defined as the complex eigenvalues of a non-self-adjoint
deformation, Lθ, θ ∈ C+, of L:

the resonances of L = the eigenvalues of Lθ.
These complex eigenvalues are independend of the deformation parameter θ, as

well as on the method of deformation (the ‘vector field’).



1508 Oberwolfach Report 26/2016

Critical exponents for long-range O(n) models

Gordon Slade

This talk reports on work which will appear in [11]. It concerns the critical be-
haviour of O(n) models (n ≥ 0) on Zd, with long-range coupling that decays with
distance r as r−(d+α), with α ∈ (0, 2).

For n ≥ 1, we study a long-range n-component |ϕ|4 lattice spin model. This
is defined as the infinite-volume limit of a classical continuous unbounded n-
component spin field on a discrete d-dimensional torus Λ, as follows. Let (−∆Λ)α/2

be the fractional Laplacian on Λ. This is a periodic version of the discrete frac-

tional Laplacian on Zd, whose matrix elements decay as −(−∆Zd)
α/2
0x ≍ |x|−(d+α)

(for large |x|). Given g > 0 and ν ∈ R, we define a function V : (Rn)Λ → R by

(1) V (ϕ) =
∑

x∈Λ

(
1
4g|ϕx|4 + 1

2ν|ϕx|2 + 1
2ϕx · ((−∆Λ)α/2ϕ)x

)
.

We are interested in ν < 0, and in particular in the limit ν ↓ νc, where νc = νc(g;n)
is the critical value for the appearance of long-range order (divergence of the
susceptibility) in the infinite-volume limit Λ ↑ Zd. The partition function is defined
by

(2) Zg,ν,Λ =

∫

(Rn)Λ
e−V (ϕ)dϕ,

where dϕ is the Lebesgue measure on (Rn)Λ. The expectation of a random variable
F : (Rn)Λ → R is

(3) 〈F 〉g,ν,Λ =
1

Zg,ν,Λ

∫

(Rn)Λ
F (ϕ)e−V (ϕ)dϕ.

For n = 0, we study the weakly self-avoiding walk via an exact representation as
a supersymmetric version of the |ϕ|4 model [5]. These models have upper critical
dimension dc = 2α for all n ≥ 0.

For d = 1, 2, 3 and small ǫ > 0, we choose α = 1
2 (d + ǫ), so d = dc − ǫ is

below the upper critical dimension. For small ǫ and small g, we prove existence
of and compute the values of the critical exponent γ for the susceptibility (n ≥ 0)
and the critical exponent αH for the specific heat (n ≥ 1), to order ǫ. For the
susceptibility, γ = 1 + n+2

n+8
ǫ
α +O(ǫ2), and a similar result is proved for the specific

heat. Expansion in ǫ for such long-range models was first carried out in the physics
literature in 1972, by Fisher, Ma and Nickel [8].

Our proof adapts and applies a rigorous renormalisation group method devel-
oped in previous papers with Bauerschmidt and Brydges for the nearest-neighbour
models in the critical dimension d = 4. The large-field problem is solved via an
application of the main result of [7], and parts of the analysis of [3, 4] are adapted
and applied. We use the finite-range decomposition of the fractional Laplacian
introduced in [9], and our treatment of the stable manifold theorem is inspired by
ideas in [6, 10] (see also [1, 2] for related work).
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The proof is based on the construction of a non-Gaussian renormalisation group
fixed point. Several aspects of the method used for the nearest-neighbour model
in dimension d = 4 simplify significantly below the upper critical dimension, and
new ideas with potential future application are introduced.
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Random Currents and Fermionic Correlation Functions in Planar
Ising models

Simone Warzel

(joint work with Michael Aizenman and Hugo Duminil-Copin)

Our purpose is to present a new perspective on the Pfaffian nature of correlation
functions for systems of Ising spins on general planar graphs G = (V (G), E(G)),
i.e.

HG(σ) := −
∑

(x,y)∈E(G)

Jx,yσxσy

with couplings (Jx,y)(x,y)∈E(G) of arbitrary sign and strength between neighboring
spins σ : V (G) 7→ {−1, 1}. The corresponding Gibbs equilibrium state at inverse
temperature β ≥ 0 is the probability measure such that

〈f〉G,β :=

∑
σ∈{±1}V (G) f(σ)e−βH(σ)

Z(G, β)
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for any f : {−1, 1}V (G) −→ C. Above, Z(G, β) :=
∑

σ∈{±1}V (G) e−βHG(σ) is

the partition function. For any such system, at any temperature, the correlation
functions for spins located along the boundaries of a finite domain are given by
Pfaffians (Pf) of the corresponding boundary-to-boundary two point function, i.e.
satisfy a fermionic version of Wick’s rule:

Theorem 1 ([3]). Fix a planar graph G, arbitrary couplings J , and β ≥ 0. Then,
for any cyclicly ordered 2n-tuple (x1, . . . , x2n) of sites on the boundary of a fixed
face of G, we have

(1) 〈σx1 · · ·σx2n〉G,β = Pf
([

〈σxi
σxj

〉G,β

]
1≤i<j≤2n

)
.

The observation that fermionic structures emerge within the classical 2D Ising
model was made soon after Onsager’s exact solution [18]. The point was initially
made by Kaufman [16] and was further elaborated by Schultz-Mattis-Lieb [20] and
Kadanoff [13, 14] through analysis involving the transfer matrix, and many works
derived since then (cf. [17, 4] and references therein). Hints of this fermionic
structure can also be seen in the successful reductions of the 2D Ising model’s par-
tition function to Pfaffians, by Hurst and Green [12], Kasteleyn [15] and Fisher [9]
(see also [5] and references therein.) Unlike some previous results of this kind, our
method of proof does not require the graph to have the shift invariance which is
typically assumed in transfer matrix calculations.

Next it is shown in [3] that the fermionic structure of boundary spin functions
(1) can be extended to correlation functions of operators suitably defined through-
out the bulk. For that, the spins are paired with disorder variables. The resulting
order-disorder operators correspond to Kaufman spinors, whose properties were
further discussed in [13]. These order-disorder operators were later used to prove
the conformal invariance of the model [7].

The fermionic relations are derived in [3] using the random current represen-
tation of Ising models [11, 1] and topological arguments involving planarity. Cu-
riously, the derivation of the fermionic rules for planar model employs identities
which have previously been used to prove that in high dimensions the scaling limits
of critical correlations of ferromagnetic models obey the bosonic Wick rule [1].

The results apply to planar models at all temperatures. However, at that level
of generality they do not extend to non-planar interactions, e.g. two dimensional
models with pair interactions reaching beyond the range of nearest neighbors.
For such extensions, we present a conjecture that planar-type Pfaffian relations
emerge at and above the critical points. The conjecture is motivated, within the
correlations functions’ random current representation, by the generally credible
picture of fractality of the models (in the spirit of the extension of the RSW theory
to Ising model [8, 6], and the fractality criteria of [2]). Since energy correlation
functions are a special case of order-disorder correlations, this approach might also
offer an alternative to existing proofs of the emergent fermionic structure of energy
correlations of certain non-planar models at criticality [10, 19, 21].
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[6] D. Chelkak, H. Duminil-Copin, and C. Hongler. Crossing probabilities in topological rectan-
gles for the critical planar Fortuin-Kasteleyn-Ising model. arXiv:1312.7785, 2013.

[7] D. Chelkak, and S. Smirnov. Universality in the 2D Ising model and conformal invariance
of fermionic observables. Invent. Math. 189 (2012), no. 3, 515–580.

[8] H. Duminil-Copin, C. Hongler, and P. Nolin. Connection probabilities and RSW-type bounds
for the two-dimensional FK Ising model. Comm. Pure Appl. Math., 64(9):1165–1198, 2011.

[9] M.E. Fisher. On the dimer solution of planar Ising models. J. Math. Phys., 7(10):1776–1781,
1966.

[10] A. Giuliani, R. L. Greenblatt, V. Mastropietro. The scaling limit of the energy correlations
in non integrable Ising models. J. Math. Phys. 53: 095214 (2012).

[11] R. B. Griffiths, C. A. Hurst, and S. Sherman. Concavity of magnetization of an Ising ferro-
magnet in a positive external field. J. Math. Phys., 11:790–795, 1970.

[12] C.A. Hurst, H.S. Green. New solution of the Ising problem for a rectangular lattice. J. Chem.
Phys, 33 (1960), no. 4, 1059–1062.

[13] L. P. Kadanoff. Spin-spin correlation in the two-dimensional Ising model. Nuovo Cimento,
44:276–305, 1966.

[14] L.P. Kadanoff and H. Ceva. Determination of an operator algebra for the two-dimensional
Ising model. Phys Rev. B, 3:3918–3939, 1971.

[15] P. W. Kasteleyn. Dimer statistics and phase transitions. J. Math. Phys., 4 (1963) 287–293.
[16] B. Kaufman. Crystal statistics. II. partition function evaluated by spinor analysis. Phys.

Rev., 76:1232–1243, 1949.
[17] B.M. McCoy and T.T. Wu. The two-dimensional Ising model. Harvard University Press,

Cambridge, MA, 1973.
[18] L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition.

Phys. Rev. (2), 65:117–149, 1944.
[19] H. Pinson and T. Spencer. Universality and the two dimensional Ising model. Unpublished

preprint.
[20] T.D. Schultz, D. Mattis, and E.H. Lieb. Two-dimensional Ising model as a soluble problem

of many fermions. Rev. Mod. Phys, 36:856, 1964.
[21] T. Spencer. A mathematical approach to universality in two dimen- sions. Physica A Sta-

tistical Mechanics and its Applications 279, 250–259 (2000).

Reporter: Timothy Nguyen



1512 Oberwolfach Report 26/2016

Participants

Prof. Dr. Abdelmalek Abdesselam

Department of Mathematics
University of Virginia
Kerchof Hall
P.O. Box 40 01 37
Charlottesville, VA 22904-4137
UNITED STATES

Prof. Dr. Stefan Adams

Mathematics Institute
University of Warwick
Zeeman Building
Coventry CV4 7AL
UNITED KINGDOM

Dr. Roland Bauerschmidt

Department of Mathematics
Harvard University
Science Center
One Oxford Street
Cambridge MA 02138-2901
UNITED STATES

Dr. Alexander Bols

Institute for Theoretical Physics
Katholieke Universiteit Leuven
Celestijnenlaan 200d - box 2415
3001 Leuven
BELGIUM

Prof. Dr. David C. Brydges

Department of Mathematics
University of British Columbia
121-1984 Mathematics Road
Vancouver BC V6T 1Z2
CANADA

Simon Buchholz

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Serena Cenatiempo

Gran Sasso Science Institute
(GSSI)
Viale Francesco Crispi, 7
67100 L’Aquila (AQ)
ITALY

Dr. Ajay Chandra

Mathematics Institute
University of Warwick
Gibbet Hill Road
Coventry CV4 7AL
UNITED KINGDOM

Dr. Nicholas J. Crawford

Department of Mathematics
Technion
Israel Institute of Technology
Haifa 32000
ISRAEL

Prof. Dr. Wojciech de Roeck

Institute for Theoretical Physics
Katholieke Universiteit Leuven
Celestijnenlaan 200d - box 2415
3001 Leuven
BELGIUM

Prof. Dr. Jonathan Dimock

Department of Mathematics
State University of New York
323 Mathematics Building
Buffalo NY 14260-2900
UNITED STATES

Prof. Dr. Margherita Disertori

Institut für Angewandte Mathematik
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY



The Renormalization Group 1513

Prof. Dr. Laszlo Erdös

IST Austria
Am Campus 1
3400 Klosterneuburg
AUSTRIA

Prof. Dr. Joel Feldman

Department of Mathematics
University of British Columbia
1984 Mathematics Road
Vancouver B.C. V6T 1Z2
CANADA

Prof. Dr. Jürg M. Fröhlich
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Zülpicher Strasse 77
50937 Köln
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