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Introduction by the Organisers

The workshop Factorization Algebras and Functorial Field Theories, organized by
Owen Gwilliam (Bonn), Stephan Stolz (Notre Dame), Peter Teichner (Bonn), and
Mahmoud Zeinalian (New York) had 50 diverse international participants.

In recent years, the interplay between topology and theoretical physics — in
particular quantum field theory — has played a significant role in the work of
many researchers. This workshop brought together people from several fields so
that they could exchange their results and perspectives.

In the setting of physics, a d-dimensional quantum field theory (QFT) is typ-
ically obtained by quantization of a classical field theory. The data of a clas-
sical field theory is a space of fields F , usually the sections of a bundle over a
“space-time” manifold Σ, and an action functional S on F . Only the extrema of
the action S are physically allowed states, and they are solutions to the Euler-
Lagrange equations determined by S. By contrast, in the quantum theory, all
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fields are relevant and the physically important information is encoded by correla-
tion functions, which are obtained by integrating functions on F (or some suitable
subspace) against a probability-type measure governed by S. Unfortunately, this
functional integral rarely admits a mathematically rigorous formulation in existing
mathematics.

For example, for each simple Lie group G, there is a Chern-Simons theory
defined on oriented 3-dimensional manifolds whose space of fields F is the stack
of principal G-bundles with connections. The classical theory studies the stack
of flat G-bundles. As another example, given two Riemannian manifolds Σ and
X , there is a non-linear σ-model whose fields consist of the space of smooth maps
from Σ to X . The classical theory studies the space of harmonic maps. In the
last few decades, physicists have developed an array of recipes to calculate the
functional integrals that encode the quantization, but the challenge remains to
give mathematically rigorous constructions.

In the late 1980s, Atiyah, Segal, and others developed a novel axiomatic ap-
proach to QFT, as well as to conformal field theories and topological field theo-
ries, that suggested profound connections to topology and geometry. (Historically,
mathematics focused on QFT tended to hew closely to analysis and representa-
tion theory.) The quantum Chern- Simons theories, often known as Reshetikhin-
Turaev-Witten theories, provide a rich class of examples. However, many other
field theories arising in physics are difficult to write down in this axiomatic frame-
work. Recently, a relation to factorization algebras (see below) seems to indicate
that various physically relevant field theories can be expressed in terms of Atiyah-
Segal axioms.

Nonetheless, these axioms have led to interesting work in mathematics, partic-
ularly in connection with algebraic topology and higher categories. Originally, a
functorial field theory consisted of symmetric monoidal functors from a (geomet-
ric) bordism category to a symmetric monoidal category of a linear nature, such as
vector spaces with tensor product. Since then, various refinements and structures
have been added to make such functors better reflect the formal behavior of a field
theory from physics. A high point of research in the last decade was a classification
of topological field theories that are fully local — i.e. the bordism categories spec-
ify 1-dimensional bordisms between points, 2-dimensional bordisms between the
1-dimensional bordisms, and so on — by Jacob Lurie. (His proof of the Baez-Dolan
Cobordism Hypothesis applies to all dimensions. Lurie did the 2-dimensional case
with Hopkins, but it was also proved independently by Schommer-Pries.) This
result has spurred a lot of recent activity in higher categories and their connec-
tions with established topics like quantum groups. Another active direction of
research explores a suggestion of Segal that functorial field theories should provide
geometric cocycles for certain generalized cohomology theories, notably elliptic co-
homology theories. The development and extension of this idea by Stolz,Teichner,
and collaborators — particularly in the setting of super-Euclidean field theories
— pushes beyond topological field theory (which is the context for the Cobordism
Hypothesis).
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Recently, there has appeared a new approach to organizing mathematically
the data of a quantum field theory, via the notion of factorization algebras. The
idea originated in work on conformal field theory by Beilinson and Drinfeld, who
sought to find a structure living on an algebraic curve whose local behavior is
given by a vertex algebra. Francis, Gaitsgory, and Lurie recognized that an anal-
ogous structure appears in manifold topology, where the local structure on an
n-dimensional manifold is given by an En algebra, i.e. an algebra over the little n-
disks operad. They also explicated a relationship with functorial topological field
theory. Costello and Gwilliam then formulated a version of factorization algebras
well-suited to smooth manifolds and general QFTs. Indeed, they showed that a
rigorous version of quantization—using renormalization and Feynman diagrams—
naturally produces a factorization algebra of observables living on the space-time.
Many important examples of theories have been quantized in this formalism, in-
cluding topological field theories such as Chern-Simons theory, the B-model, and
Rozansky-Witten theory, and non-topological field theories such as Yang-Mills
theory and the curved βγ system. (Since these techniques are a formalization
of standard tools in physics, any QFT treated by diagrammatics should produce
a factorization algebra of observables.) In the topological cases, there is then a
functorial field theory determined by the factorization algebra, by work of Sche-
imbauer, and hence a direct connection between the action functional description
of a field theory and an Atiyah-Segal description.

Our workshop contained three connected lecture series, aimed at explaining the
key ideas and techniques involved in the formalism of Costello and Gwilliam. The
other lectures covered a broad range of issues related to mathematical approaches
to field theory, from other approaches to QFT, to appearances of factorization
algebras in homotopy theory and algebraic geometry and convex geometry, to the
treatment and application of defects in field theory.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Factorization algebras and (twisted) functorial field theories – the
topological case

Claudia Scheimbauer

(joint work with Damien Calaque, Theo Johnson-Freyd)

In recent years, quantum field theories have been studied by mathematicians us-
ing, among others, two approaches: functorial field theories and their variations
following [1, 13, 15] axiomatizing the state space and the partition function; and
the more recent approach via factorization algebras (cf. [4]) axiomatizing the struc-
ture of the observables of perturbative quantum field theories. In this talk, after
providing an introduction to both, we will explain how to relate these two concepts
in the case of topological field theories, see also [5, 6, 12].

factorization algebras functorial (twisted)
field theories

?

Unravelling the axiomatization by Atiyah, n-dimensional topological field theories
(nTFTs) are symmetric monoidal functors out of a suitable category of spacetimes,
called bordisms, which are n-dimensional topological manifolds, perhaps required
to be smooth, or equipped with some tangential structure such as an orientation or
a framing. In general, functorial field theories allow for spacetimes endowed with
more general types of geometries, such as a conformal or Euclidean structure,
encoded as a sheaf G on the site of n-dimensional manifolds valued in a suitable
target category, usually taken to be sets or, to allow for homotopical versions,
spaces. Passing to higher categories of cobordisms as defined in joint work with
Calaque in [5] leads to (fully) extended field theories which in the topological case
describe locality of the field theory: the Cobordism Hypothesis [10] shows that
fully extended nTFTs are fully determined by their value at a point.

However, important examples of quantum field theories may not fit into this
framework, as can already be seen in Segal’s weakly conformal field theories of
[13]. This leads to the generalization in form of twisted field theories as defined by
Stolz-Teichner in [14], which implement the idea that the partition function may
not be a number, but rather an element in some line or vector space. A twisted
n-dimensional field theory is an (op)lax natural transformation from the trivial
field theory (sending everything to the monoidal unit) to an n-dimensional field
theory called the twist. In the fully extended case, a definition requires a notion
of (op)lax natural transformations in the setting of higher categories, as was given
in joint work with Johnson-Freyd in [8].

The target of an (extended) nTFT should be taken to be a (delooping of) the
category of (dg) vector spaces (n)Vect. An example in the once-extended case
is the bicategory of Bimod of algebras, bimodules, and intertwiners. Examples
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of deloopings of Bimod as higher categories have been constructed in joint work
with Calaque [6] and Johnson-Freyd [8].

Factorization algebras should be thought of as multiplicative versions of co-
sheaves. As such they encode the structure of the observables of perturbative
quantum field theories, as we’ll see in the lecture series by Ryan Grady, Si Li, and
Brian Williams.

Definition. Let G be a geometry on n-dimensional manifolds. A G-factorization
algebra is a symmetric monoidal functor

F : Mfld
G,∐ −→ S⊗

satisfying descent for Weiss covers. Here, Mfld
G,∐ is a category of G-manifolds

and G-isometric embeddings.

If the target S naturally is a homotopical category, i.e. a symmetric monoidal
(∞, 1)-category, this definition should be modified to this setting. When consider-
ing a fixed n-dimensional manifold M , a factorization algebra on M does not see
any geometry:

Definition. A factorization algebra F on M is an algebra over the colored operad
with open sets in M as colors and

PreFactM (U1, . . . , Un;V ) =

{
{∗} if U1 ∐ . . . ∐ Un ⊆ V ;

∅ otherwise,

satisfying multiplicativity, i.e. F(U)⊗F(V )
≃−→ F(U ∐ V ), and descent for Weiss

covers.

We will see several examples and variations appearing throughout the talks
this week: conformal nets (Henriques), structures appearing in algebraic quantum
field theory (Rejzner), algebro-geometric versions (Cliff), and several topological
examples (Kapranov, Knudsen). Topological factorization algebras are obtained
from factorization homology [9, 2, 3, 7, 11]: the are defined locally and “glued
together” using the tangential structure of a manifold. The local data needed for
this procedure in the framed case is that of an En-algebra in S.

Factorization homology is the key ingredient in relating topological factoriza-
tion algebras and functorial topological field theories. The target of the latter
will be a symmetric monoidal Morita-(∞, n+ 1)-category Alg

ptd
n (S). Its objects

are En-algebras, morphisms from A to B are En−1-algebras which are (A,B)-
bimodules, 2-morphisms are bimodules of bimodules, ... and n-morphisms are
pointed bimodules of ... of bimodules. Its (n + 1)-morphisms are intertwiners,
but the non-invertible ones cannot be seen by the n-dimensional theory. This
(∞, n + 1)-category can be built using factorization algebras on Rn which sat-
isfy certain constructibility conditions to encode the objects and k-morphisms for
1 ≤ k ≤ n. We restrict to explaining the framed case. The main theorem of my
thesis [12], of which I will outline the proof in the talk, is the following:
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Theorem. (Calaque-S. [6]) Let S be a symmetric monoidal (∞, 1)-category which

is ⊗-sifted-cocomplete. Given any object in Alg
ptd
n (S), i.e. an En-algebra A in

S, the assignment sending a point to A extends to a fully extended framed n-
dimensional topological field theory

FHn(A) : Bord
fr
n −→ Alg

ptd
n (S).

Moreover, any fully extended framed nTFT with target Alg
ptd
n (S) arises this way.

The target is not a delooping ofVect since its bimodules are pointed. However,
forgetting the pointings yields a forgetful functor of (∞, n + 1)-categories U :

Alg
ptd
n (S) → Algn(S) and a twisted framed nTFT with twist T = U ◦ FHn(A),

Bord
fr
n Algn(S).

1

T

Corollary. Let S be a symmetric monoidal (∞, 1)-category which is ⊗-sifted-
cocomplete. Equivalent data are

(1) topological factorization algebras with target S
(2) twisted framed nTFTs with target Algn(S).

Remark. The implication (1) =⇒ (2) in the corollary is the fully extended topolog-
ical case of a theorem by Dwyer-Stolz-Teichner, which shows that G-factorization
algebras valued in the category of chain complexes S = Ch lead to twisted G-field
theories with target the bicategory of dg categories, bimodule categories, and inter-
twiners. We expect this construction to fully extend using similar methods.
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Conformal nets are factorization algebras

André Henriques

In this note, we prove that conformal nets of finite index [1, Def. 1.1 & Def. 3.1]
form an instance of the notion of a factorization algebra.

Let Mann be the category whose objects are n-dimensional manifolds and whose
morphisms are embeddings. We equip it with the symmetric monoidal structure
given by disjoint union. An open cover {Ui ⊂ M} of a manifold M is a Weiss
cover if for every finite subset S ⊂M , there exists an index i such that S ⊂ Ui [3,
Chapt. 6]. Let C be a symmetric monoidal category.

Definition ([3, Chapt. 6]). A C-valued factorization algebra is a symmetric mono-
idal functor F : Mann → C which is a co-sheaf with respect to Weiss covers.

Here, being a co-sheaf means that for every Weiss cover {Ui⊂M}, the natural map

colim




F (U1 ∩ U2)

F (U1 ∩ U3)

F (U2 ∩ U3)

F (U1 ∩ U4)

F (U2 ∩ U4)

...

F (U1)

F (U2)

F (U3)

F (U4)

...




−→ F (M)

is an isomorphism. For later notational convenience, we abbreviate the left hand
side as colim({F (Ui ∩ Uj)} →→ {F (Ui)}).

A multi-interval is an oriented 1-manifold which is diffeomorphic to a finite
disjoint union of copies of [0, 1]. Let INT be the category whose objects are
multi-intervals, and whose morphisms are orientation preserving embeddings. By
the split property ([1, Def. 1.1]), a conformal net can be viewed as a symmetric
monoidal functor A : INT → VN, where VN is the category of von Neumann al-
gebras equipped with the symmetric monoidal stucture given by spatial tensor
product.

We introduce the following slight modification of the notion of a Weiss cover:
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Definition. Let X be a topological space. A family of closed subsets {Vi ⊂ X} is
a Weiss c-cover if the interiors of the Vi form a Weiss cover of X.

The following is what we mean by “conformal nets are factorization algebras”:

Theorem 1. Let A : INT → VN be a conformal net of finite µ-index. Then A is
a co-sheaf with respect to Weiss c-covers.

Proof. Let {Ii ⊂ I} be a Weiss c-cover. We first note that, by the strong additivity
property of conformal nets (see [1, Def. 1.1]), the map

q : colim
(
{A(Ii ∩ Ij)} →→ {A(Ii)}

)
→ A(I)

has dense image. It is therefore surjective, as any morphism of von Neumann
algebras whose image is dense is automatically surjective. To show that q is
injective, pick a faithful representation

π : colim
(
{A(Ii ∩ Ij)} →→ {A(Ii)}

)
→ B(H)

and let ρi := π|A(Ii). By Lemma 1, this extends to an action ρ : A(I) → B(H).
As π is injective and π = ρ ◦ q, the map q is also injective. �

Lemma 1. Let H be a Hilbert space equipped with actions ρi : A(Ii) → B(H)
satisfying ρi|A(Ii∩Ij) = ρj |A(Ii∩Ij). Then those maps extend to an action of A(I).

Proof. We only treat here the case when I is connected, as it contains the most
important idea. The proof of [1, Lem. 1.9] can be adapted word-for-word to show
that for every interval J  I, the actions ofA(Ii∩J) extend (uniquely) to an action
of A(J). We may therefore assume, without loss of generality, that I = [0, 5], and
that that the Weiss c-cover contains [0, 2]∪ [3, 5] and [1, 4] as elements. Recall that
L2(−) is the unit for the operation ⊠ of Connes fusion. We have

H ∼= L2A([1, 4])⊠A([1,4]) H,

both as A([1, 4])-modules and as A([0, 2] ∪ [3, 5])-modules. By [2, Cor. 2.9], the
vacuum sector L2A([1, 4]) is isomorphic to

L2A([2, 3])⊠A([2,3]∪{2,3}[2,3])

(
L2A([1, 4])⊠A([1,2]∪[3,4]) L

2A([1, 4])
)

as an A([1, 4])-A([1, 4])-bimodule, where A([2, 3]∪{2,3} [2, 3]) is as in [2, Prop. 1.25].
Combining the above two facts, one gets

H ∼= L
2
A([1, 4])⊠A([1,4]) H

∼=
(

L
2
A([2, 3]) ⊠A([2,3]∪{2,3}[2,3])

(

L
2
A([1, 4])⊠A([1,2]∪[3,4]) L

2
A([1, 4])

)

)

⊠A([1,4]) H

∼= L
2
A([2, 3]) ⊠A([2,3]∪{2,3}[2,3])

(

L
2
A([1, 4]) ⊠A([1,2]∪[3,4]) L

2
A([1, 4]) ⊠A([1,4]) H

)

∼= L
2
A([2, 3]) ⊠A([2,3]∪{2,3}[2,3])

(

L
2
A([1, 4]) ⊠A([1,2]∪[3,4]) H

)

Using the isomorphism H ∼= L2A([0, 2]∪ [3, 5])⊠A([0,2]∪[3,5])H , and the existence
of a (non-canonical) isomorphism of A([0, 5])-A([0, 5])-bimodules

L2A([1, 4])⊠A([1,2]∪[3,4]) L
2A([0, 2] ∪ [3, 5])

∼= L2A([0, 2])⊠A([1,2])op L
2A([1, 4])⊠A([3,4]) L

2A([3, 5]) ∼= L2A([0, 5])
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(see [1, Cor. 1.33] and [2, Lem.A.4]), we get the following sequence of isomorphisms
of A([1, 4])- and A([0, 2] ∪ [3, 5])-modules:

H ∼= L2A([2, 3])⊠A([2,3]∪{2,3}[2,3])

(
L2A([1, 4])⊠A([1,2]∪[3,4]) H

)

∼= L2A([2, 3])⊠A([2,3]∪{2,3}[2,3])

(
L2A([1, 4])⊠A([1,2]∪[3,4])

L2A([0, 2] ∪ [3, 5])⊠A([0,2]∪[3,5]) H
)

∼= L2A([2, 3])⊠A([2,3]∪{2,3}[2,3])

(
L2A([0, 5])⊠A([0,2]∪[3,5]) H

)

To finish the proof, one notes that the actions of A([1, 4]) and A([0, 2] ∪ [3, 5]) on

L2A([2, 3])⊠A([2,3]∪{2,3}[2,3])

(
L2A([0, 5])⊠A([0,2]∪[3,5]) H

)

extend to an action of A([0, 5]), as they are both acting on L2A([0, 5]). The same
property therefore holds for H . �

We finish this note by a graphical rendering of the argument in the proof of
Lemma 1:

H
∼=

H
∼=

H
∼=

H
∼=

H
∼=

H
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Lecture Series: Observables in the effective BV-formalism; Talk 1:
Effective quantum field theory

Ryan Grady

In this talk we describe Costello’s mathematical formulation of the low-energy
effective field theory approach to perturbative quantum field theory (QFT). Phys-
ically, this approach was developed by Kadanoff, Polchinski, Wilson, and others.
A key theorem of Costello is a bijection between local functionals on fields and
(effective) pertubative QFTs.

The setting for field theory is an action S which is a function on a space of
fields

S : E → C.

Classical field theory studies the critical set of the function S. A sample compu-
tation in quantum field theory is computing the expectation of an observable, i.e.,
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another function O : E → C. The expectation of O is given (at least formally) by
a functional integral

〈O〉 =
∫

E

O(ϕ)e−S(ϕ)/~Dϕ.

This integral is often ill-defined, but, in good cases, it has a well defined expansion
in the limit ~ → 0. If E is finite dimensional and Dϕ is the Lebesgue measure,
then this ~ → 0 limit concentrates on a neighborhood of the critical set of S and
this procedure is the classical stationary phase approximation.

A key element in the definition of (effective) perturbative quantum field theory
is renormalization flow (called renormalization group flow in [1] and sometimes
exact renormalization group flow in the physics literature).

Let V be a finite dimensional vector space over R and Φ a non-degenerate
negative definite quadratic form Φ. Define P ∈ Sym2V to be the inverse to −Φ.
Let

O(V )
def
= S̃ym(V ∨),

so O(V ) is the ring of formal power series in a variable v ∈ V . Denote by
O

+(V )[[~]] ⊂ O(V )[[~]] the subspace of functionals which are at least cubic modulo
~. For a functional I ∈ O(V )[[~]], we write

I =
∑

i,k≥0

~iIi,k,

where Ii,k is homogeneous of degree k.
Given a triple (V, P, I) as above, we define the a new functional W (P, I) ∈

O
+(V )[[~]] as follows

W (P, I) =
∑

γ

~g(γ)
wγ(P, I)

|Aut(γ)| ,

where the sum is over connected (stable) graphs γ, and g(γ) is the genus of the
graph. The graph weight wγ(P, I) ∈ O(V ) is defined by contracting tensors with
the components of I placed on the vertices (a vertex of valency k and internal
degree i is labeled by Ii,k) and internal edges are labeled by P . The map

W (P,−) : O
+(V )[[~]] → O

+(V )[[~]]

is called the renormalization flow operator. The diagrammatic expansion appear-
ing in the definition ofW (P, I) can also be understand as an asymptotic series in ~
for an integral on U (assuming we’ve normalized the measure on U appropriately):

W (P, I)(a) = ~ log

∫

x∈U

e(Φ(x,x)+2I(x+a))/2~.

The integral appearing above doesn’t alway make sense in infinite dimensions,
however contraction of tensors does. Therefore, we can still define W (P, I) in the
case that V is replaced by a nuclear Fréchet space E (e.g., E is the space of sections
of a vector bundle E over a manifold M); we work with strong duals and use the
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completed projective tensor product. In particular, for any P ∈ Sym2 we have the
renormalization flow operator

W (P,−) : O
+(E)[[~]] → O

+(E)[[~]].
The Wilsonian yoga is that we have a collection of effective actions {S[Λ]} and

that they are related by renormalization flow.
Let us discuss this paradigm in the setting of scalar field theory on a compact

Riemannian manifold M . In this case, our fields are just the smooth functions
C∞(M). Let D be the (positive) Laplacian on M and m ∈ R>0, we assume our
effective action has the form

S[Λ](φ) = −1

2
〈φ, (D +m2)φ〉+ I[Λ](φ).

The functional I[Λ] (which is at least cubic modulo ~) is called the effective inter-
action. In this picture Λ corresponds to “energy” and let C∞(M)[Λ′,Λ) denote the
span of functions whose eigenvalues lie between Λ′ and Λ. The key requirement is
that the effective interactions satisfy the flow equation:

I[Λ′](a) = ~ log

∫

φ∈C∞(M)[Λ′,Λ)

e(−〈φ,(D+m2)φ〉+2I[Λ](φ+a))/2~.

If we define a cut off kernel P[Λ′,Λ) (we sum only over certain eigenvalues of the

operator (D +m2)), then we can rewrite the flow equation as

I[Λ′](a) =W (P[Λ′,Λ), I[Λ])(a).

For a number of reasons, we actually use a smooth cut-off based on the heat ker-

nel. For l ∈ R>0, let Kl be the kernel for the operator e−l(D+m2). Our propagator
with infrared cut-off L and ultraviolet cut-off ǫ (ǫ, L ∈ [0,∞]), is given by

P (ǫ, L) =

∫ L

l=ǫ

Kldl.

The operator W (P (ǫ, L),−) implements renormalization flow from length scale ǫ
to length scale L.

Lastly, we call a functional I ∈ O(C∞(M)) local if it is given by an integral of
some Lagrangian density.

Definition 1. A perturbative QFT, with fields C∞(M) and kinetic action
− 1

2 〈φ, (D+m2)φ〉, is given by a set of effective interactions I[L] ∈ O
+(C∞(M))[[~]]

for all L ∈ (0,∞], such that

(1) The flow equation is satisfied for all ǫ, L ∈ (0,∞]:

I[L] =W (P (ǫ, L), I[ǫ]).

(2) For each i, k, Ii,k[L] has a small L asymptotic expansion by local function-
als.

There is an extension of this definition to vector-bundle valued theories, i.e.,
where the space of fields is given by the space of sections of a vector bundle over
M .
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Theorem 1 (Costello). Fix a renormalization scheme. There is a bijection be-
tween the set of perturbative QFTs and the set of local action functions I ∈
O

+
loc

(C∞(M))[[~]].

A renormalization scheme is a way to extract the singular part of certain func-
tions of one variable; we won’t belabor this detail. The proof of the theorem
above is constructive. Given a local functional I, we can construct a series of
counterterms ICT(ǫ) which cancel certain ultraviolet divergences, so that the ef-
fective interaction is given by

I[L] = lim
ǫ→0

W (P (ǫ, L), I − ICT(ǫ)).

Conversely, if I[L] is a family of effective interactions, then a certain renormalized
limit as L→ 0 defines a local functional (the naive limit doesn’t exist and certain
counter terms must be subtracted).
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Lecture Series: Observables in the effective BV-formalism; Talk 2: A
rapid introduction to the BV-formalism

Brian Williams

The goal of classical field theory is to describe the critical locus of the action
functional. The classical BV-formalism is a description of a critical locus of such
an action functional in terms of homological algebra.

Suppose V is a finite dimensional vector space and that S : V → C is a quadratic
function. The critical locus of S is, by definition

Crit(S) := {v ∈ V | dS(v) = 0}
The exterior derivative dS is a linear function on the space V . That is, we can
view it as a linear map

(1) dS : V → V ∨ v 7→ (w 7→ dSv(w)).

The first step is to interpret (1) as a two-term complex with V in degree zero,
V ∨ in degree one, and with differential dS. I.e.

V
dS

// V ∨[−1].

The classical BV-complex is the space of algebraic functions on the differential
graded vector space above. Explicitly

O (V
dS

// V ∨[−1]) = (Sym (V ∨ ⊕ V [1]) , Q)

where Q is the induced differential. This complex satisfies H0 = O(Crit(S)), so it
is a derived replacement for the critical locus.
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For a more general S (at least quadratic) we can split it up as S = Sfree + I
where Sfree is quadratic and I is a functional with only cubic or higher terms. The
BV-complex is

(2) (Sym(V ∨ ⊕ V [1]), Q+ {I,−}) .
Again, one checks that H0 = O(Crit(S)). Note that this complex is equal to
functions on the graded vector space T ∗[−1]V = V ⊕ V ∨[−1] with some non-
trivial differential determined by S. The bracket {−,−} of degree −1 comes from
the pairing between V and V ∨ and has the structure of a (shifted) Poisson bracket.
This bracket is present on the space of polyvector fields on any manifold and is
known as the Schouten-Nijenhuis bracket.

We consider a generalization of the above constructions to infinite dimensional
vector spaces.

There are two things that we need to be careful of in this more general case:

(1) All vector spaces carry a topology. Functionals will mean functions on the
vector space that are continuous for this topology.

(2) All vector spaces will be spaces of sections of certain sheaves on a mani-
fold. The notion of locality discussed in Lecture 1 will be critical for the
definition of action functionals of classical field theories.

Example 1. Let M be a smooth manifold equipped with a Riemannian metric
g and consider the space of smooth functions on M , V = C∞(M). Define the
functional S on C∞(M) by

S(ϕ) =
1

2

∫

M

ϕDϕ

where D denotes the Laplacian on M times the volume form. I.e. we view it as
an operator

D : C∞(M) → Dens(M) , ϕ 7→ (∆gϕ)dvolg.

Clearly, S is a quadratic functional. Note that the functional S is local, i.e. it be-
longs to the subspace of local functionals S ∈ Oloc(C

∞(M)) ⊂ O(C∞(M)) defined
in Lecture 1.

Note that in infinite dimensions, the bracket {−,−} is only partially defined:
the bracket between arbitrary functionals is not well defined. When at least one
of the functionals is local then the bracket does make sense.

We are now ready to make a general definition of a classical field theory in our
formalism. Recall some of the structure from above:

(1) We want to study the critical locus of a functional on some (infinite di-
mensional) vector space of fields.

(2) The fields should exists locally on the manifold in which the field theory is
defined. That is, they should form a sheaf. Moreover, classical functionals
should respect this locality.

(3) The collection of functions on the space of fields should have a Poisson
bracket of degree 1.
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With this in mind we have the following definition from [2].

Definition 1. A free BV-theory on a manifold M consists of the following:

(1) A Z-graded vector bundle π : E →M of finite rank;
(2) A map

〈−,−〉 : E ⊗ E → DensM

of degree −1 that is graded antisymmetric and fiberwise nondegenerate.
(3) A square-zero differential operator Q : E → E of cohomological degree 1

that is skew self-adjoint for 〈−,−〉.
We assume that the complex (E(M), Q) is elliptic.

A general BV-theory is a free BV-theory together with a local functional I ∈
O+

loc(E) of degree zero that satisfies the classical master equation

QI +
1

2
{I, I} = 0.

Given this data we can define the analogous BV complex as in (2). We denote

ObsclE (M) := (Sym(E(M)∨), Q+ {I,−})
which we will also refer to as the global classical observables. Note that {I,−} is
well defined as I is local, and that the operator Q+ {I,−} squares to zero by the
classical master equation.

We now turn to the quantum BV-formalism: an approach to the path integral
in QFT. More precisely, the quantum BV-formalism is a tool to make sense of
expectation values of observables of a quantum field theory. If S : E → C is the
action functional, an observable O is a function on Crit(S). I.e., a measurement
of the physical system. It’s expectation value is

〈O〉 := 1

ZS

∫

ϕ∈E

O(ϕ)e−S(ϕ)/~Dϕ.

Here e−S(ϕ)/~Dϕ is thought of a probability measure on the space of fields. The
normalization ZS is the partition function of the quantum field theory and equals
〈1〉, the expectation of the unit observable. Just as in the classical approach to
the BV-formalism, there is a complex that encodes this approach to integration.

We will motivate the definition of the quantum BV-complex by means of a fi-
nite dimensional example. LetM be a closed, oriented, smooth, finite-dimensional
manifold of dimension n. Let µ ∈ Ωn

M be a top form, which we think of a probabil-
ity density on M . Normalize the image of µ in cohomology [µ] =

∫
M
µ ∈ Hn

dR(M)
to be 1. Note that Hn

dR(M) is one-dimensional in our case. Contraction with µ
defines an isomorphism of graded vector spaces

iµ : PV#(M)
∼=

// Ωn−#(M).

which we use to pull-back the de Rham differential to poly-vector fields which we
denote divµ. This operator on poly-vector fields is known as a divergence operator.
The complex (PV∗(M), divµ) is the simplest example of a quantum BV-complex.
The incarnation of integration in the BV-complex is simple:
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Proposition 1. Given a function f : M → R, the cohomology class [f ]BV in
H0(PV∗(M), divµ) satisfies

[f ]BV = 〈f〉µ[1]BV.

The goal is to equip the BV-complex for a general field theory (E , Q, 〈−,−〉, I)
on M

(O(E), Q + {I,−}) = (Sym(E∨), Q+ {I,−})
with a type of divergence operator that encodes integration. This is the BV-
Laplacian. In the case of a general field theory the naive definition of the BV-
laplacian above is ill-posed. The central idea in [2] is to use the effective approach
formulated in [1] to come up with a regularized version of quantum BV-complex.
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Higher enveloping algebras

Ben Knudsen

We discuss the following result.

Theorem. Let M be a manifold and k a field of characteristic zero. There is an
adjunction

Shvloc(M,AlgLie(Chk)) ⇄ Factlocnu (M,Chk)

between the ∞-category of locally constant sheaves of dg Lie algebras over k and
that of locally constant, nonunital factorization algebras valued in k-chain com-
plexes. Moreover, the value of the left adjoint UM of this adjunction is given by

UM (L) ≃ CE(Lc),

where (−)c denotes the functor of compactly supported sections and CE the ho-
mological Chevalley-Eilenberg complex.

In the case M = Rn, this result specializes to provide an adjunction between
dg Lie algebras and (nonunital) dg En-algebras. Such an adjunction is available
through the results of [4]; the advantage of our approach is the “Poincaré-Birkhoff-
Witt” description of the higher enveloping algebra in terms of the Chevalley-
Eilenberg complex. This description affords great computational opportunities,
some of which are explored in [2] and [6].

The idea of the proof, inspired by [1], is that factorization algebras may be
modeled as Lie algebras for an exotic monoidal structure. Specifically, we pass
among three models:

{
monoidal
model

}
≃

{
cocommutative

model

}
≃

{
Lie

model

}
.
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The first model views factorization algebras as symmetric monoidal functors out
of a certain partially ordered set of multi-Euclidean neighborhoods in M , which
carries the “partially defined” symmetric monoidal structure of disjoint union.
These symmetric monoidal functors are modeled by certain “factorizable” cocom-
mutative coalgebras using the theory of Day convolution of [5], providing the first
equivalence, and the second equivalence is given by Koszul duality, following [3].

References

[1] A. Beilinson and V. Drinfeld. Chiral Algebras. Mat. Zametiki 5 (1969), 227-231. American
Mathematical Society Colloquium Publications 51 (2004).

[2] G. Drummond-Cole and B. Knudsen. Betti numbers of configuration spaces of surfaces. In
preparation.

[3] J. Francis and D. Gaitsgory. Chiral Koszul duality. Sel. Math. (N.S.) 18 (2012) no. 1, 27-87.
[4] B. Fresse. Koszul duality of En-operads. Sel. (N.S.) 17 (2011), no. 2, 363-434.
[5] S. Glasman. Day convolution for ∞-categories. arXiv:1308.4940v3.
[6] B. Knudsen. Betti numbers and stability for configuration spaces via factorization homology.

arXiv:1405.6696.
[7] J. Lurie. Higher algebra. Version dated September 14, 2014. Manuscript available at

math.harvard.edu/∼lurie.

En-algebras associated to secondary polytopes

Mikhail Kapranov

(joint work with Yan Soibelman)

Factorization algebras are algebraic descriptions of field theories. It is known [1, 4]
that factorization algebras on the Rn are in equivalence with En-algebras, where
En is the chain operad of the little n-cubes operad of J.-P. May. Since the shifted
Lie operad is embedded into the homology operad of En, a En-algebra gives, in
particular, a (homotopy) Lie algebra (a Lie∞-algebra for short).

We construct a class of combinatorial examples of En-algebras corresponding
to secondary polytopes [2]. To each finite set of points A ⊂ Rn in general position
one associates the secondary polytope Σ(A) whose vertices correspond to regular
triangulations of the polytope Q = Conv(A) into simplices with vertices in A.
These polytopes have a remarkable factorization property: each face of Σ(A) is
itself a product of several secondary polytopes Σ(Ai). This factorization property
allows us to construct a En-algebra.

The corresponding Lie algebras have been introduced in [3]. In the case n = 1 we
obtain the fact (pointed out and used in [3]) that the corresponding Lie∞-algebras
come from A∞-algebras by an appropriate analog of the formula [a, b] = ab− ba.

The definition of a factorization algebra is, in its original form, not operadic:
factorization algebras are co-sheaves on the appropriate Grothendieck topology
associated to Rn which satisfy the property that certain open embeddings induce
quasi-isomorphisms. We use an analog of the Dwyer-Kan localization procedure for
operads to convert this definition into a more direct construction of the En-operad
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itself. This allows us to use the factorization properties of secondary polytopes to
construct En-algebras.
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Lecture Series: Observables in the effective BV-formalism; Talk 3:
Effective BV-quantization

Si Li

One intepretation of BV-quantization is a general approach to quantize gauge
theories. As we saw in the last lecture one of the difficulties in physical/geometric
applications of quantum gauge theories is the fact that the space of fields is infinite
dimensional.

One incarnation of this is the so-called ultra-violet divergence which was briefly
mentioned last time. Suppose (E , Q, 〈−,−〉) is a free classical BV-theory. The
(−1)-shifted symplectic pairing 〈−,−〉 induces a partially defined Poisson bracket
on O(E) = Sym(E(M)∨). It is partially defined because the dual E(M)∨ involves
distributional sections and one cannot multiply such elements. Moreover, the naive
definition of the BV-laplacian

∆|Sym=2 = {−,−}
is also ill-defined. In general, the naive definition of the BV-laplacian is by con-
traction with the element in Ē ⊗ Ē determined by the pairing.

The usual fix of this problem by physicists is the method of renormalization.
In this talk, we discuss a homotopic approach to the effective renormalization of
quantum gauge theories as developed by Kevin Costello in [1].

The basic idea is to use the homotopy equivalence between distributions and
smooth functions to regularize the BV quantization formalism into homotopic
families.

Suppose (E(M), Q) is an arbitrary elliptic complex on a manifold M . This
means that E(M) is the global sections of some Z-graded sheaf, Q is a differential
operator of degree +1 of square zero, and that the induced complex is elliptic.
For instance, any free BV-theory gives such an object. One can also consider the
induced complex (Ē(M), Q) where the bar denotes distributional sections.

A famous result of Atiyah-Bott [3] states that there is a homtopy equivalence
between the smooth sections and distributional sections

(E(M), Q) ≃ (Ē(M), Q).
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A lift of a distributional section to a smooth section is sometimes called a regular-
ization.

The pairing of a free BV-theory determines an element K0 ∈ Ē ⊗ Ē of degree
one. According to the above we can choose a regularization

Kr = K0 +QPr

where Kr ∈ E ⊗ E is smooth. In particular, contraction with Kr

∆r := ∂Kr
: O(E) → O(E)

is well-defined.
Suppose r, r′ are two regularizations

K0 = Kr +QPr = Kr′ +QPr′ .

Then, Kr −Kr′ = Q(P r′

r ) for some element P r′

r ∈ E ⊗ E of degree zero. Note that

P r′

r is smooth.

The main idea here is that P r′

r is an instance of the propogator from the effective

construction of local functionals. The operator e
~∂

Pr′
r intertwines the differential:

e
~∂

Pr′
r (Q+ ~∆r) = (Q+ ~∆r′)e

~∂
Pr′
r .

Using this, we can “homtopy transfer” the interaction I ∈ O(E) via
I[r] = e~P

r
0 eI/~.

This is precisely the expansion in terms of Feynman weights I[L] = W (PL
0 , I)

given in Lecture 1 in the case that the regularization is “length scale”. This type
of regularization is defined in terms of heat kernels as in [1].

Definition 1. ([2]) An effective BV-quantum field theory based on (E , Q, 〈−,−〉)
consists of the following data:

(1) For each regularization r we have a functional

I[r] ∈ O(E)[[~]].
Moreover, I[r] must be at least cubic.

(2) Given r, r′ then I[r] must be related by RG-flow

I[r] =W (P (r′, r), I[r′]).

(3) For each r, I[r] must satisfy the scale r quantum master equation

QI[r] + ~∆LI[r] +
1

2
{I[r], I[r]}r = 0.

(4) Locality axiom garaunteeing that in the limit as r → 0 the functionals I[r]
become local.

The limit of I[r] mod ~ exists and is local, which is denoted I ∈ Oloc(E).
Moreover, it determines a classical field theory for the same underlying free BV-
theory. Such a QFT is called a quantization of I.
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Given a QFT we can defined the following quantum BV-complex. For each
regularization r define

Obsq(M)[r] := (Sym(E(M)∨)[[~]], Q+ ~∆r + {I[r],−}r) .
It is called the complex of global observables associated to the regularization r.
Moreover, the homotopy P r′

r defines a homotopy equivalence

Obsq(M)[r] ≃ Obsq(M)[r′]

for any regularizations r, r′.
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Lecture Series: Observables in the effective BV-formalism, Talk 4:
Factorization algebras: examples and constructions

Ryan Grady

In this talk we presented some basics of factorization algebras as defined by Costello
and Gwilliam in [2]. Further, we explained some examples and constructions of
factorization algebras coming from sheaves of differential graded Lie algebras.

LetM be a manifold, a prefactorization algebra F onM , taking values in vector
spaces, is a rule that assigns to each open U ⊂M a vector space F(U) along with
the following maps and combatibilities.

(1) For each inclusion U ⊂ V , a linear map mU
V : F(U) → F(V );

(2) For each finite collection of pairwise disjoint open sets {Ui} with Ui ⊂ V ,

a linear map mU1,...,Un

V : F(U1)⊗ · · · ⊗ F(Un) → F(V );
(3) The maps satisfy the obvious compatibility condition, i.e., if Ui,1 ⊔ · · · ⊔

Ui,n ⊂ Vi and V1 ⊔ · · · ⊔ Vk ⊂W , then the following diagram commutes.

⊗k
i=1 ⊗ni

j=1 F(Uj) //

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

⊗k
i=1F(Vi)

yyss
ss
ss
ss
ss

F(W ) .

Note that F(∅) is necessarily a commutative algebra. A prefactorization algebra
F is unital if F(∅) is a unital commutative algebra.

A fundamental example is the factorization algebra on R determined by an
associative algebra A. In this example, each open interval (a, b) is assigned the
algebra A, the map induced by an inclusion (a, b) ⊂ (c, d) is the identity and the
map induced by including disjoint intervals is determined by the multiplication in
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A. That the compatibility condition (3) holds follows from the associativity of the
multiplication.

The preceding example is universal for prefactorization algebras on R which are
locally constant, i.e., the map induced by an inclusion of intervals is an isomor-
phism.

Proposition 1. Let F be a locally constant, unital prefactorization algebra on
R taking values in vector spaces. Then F(R) has the structure of an associative
algebra.

Alternatively, one can define prefactorization algebras on M valued in a mul-
ticategory C as functors F : DisjM → C, where DisjM is the multicategory with
objects the connected open subsets of M and morphisms corresponding to inclu-
sions of pairwise disjoint collections of opens into another open set. There is an
associated symmetric monoidal category SDisjM and for any symmetric monoidal
category C⊗, a prefactorization algebra valued in C⊗ is a symmetric monoidal
functor F : SDisjM → C.

Prefactorization algebras have a flavor similar to precosheaves. It is often useful
for objects to satisfy descent or a local-to-global property, e.g., cosheaves, and such
prefactorization algebras are called factorization algebras.

Definition 1. Let U be an open set. A collection of open sets U = {Ui} is a Weiss
cover of U if for any finite collection of points {x1, . . . , xk} in U , there is an open
set Ui ∈ U such that {x1, . . . , xk} ⊂ Ui.

TheWeiss covers define a Grothendieck topology on the category of open subsets
of a space M which is called the Weiss topology. A Weiss cover is a cover in the
traditional sense, but typically contains an enormous number of open sets. Given
a manifold M of dimension n, there are several ways to construct a Weiss cover of
M . For instance, the collection of all open sets in M diffeomorphic to a disjoint
union of finitely many copies of the open n-disk forms a Weiss cover.

Definition 2. A prefactorization algebra F on M is a factorization algebra if F
is a cosheaf with respect to the Weiss topology.

Generalizing the proposition of the previous section, factorization algebras (val-
ued in cochain complexes) on Rn resemble En algebras (algebras over the operad
of little n-disks). In fact, En algebras form a full subcategory of factorization al-
gebras on Rn: those that are locally constant, i.e., those for which an inclusion of
open discs induces a quasi-isomorphism. The following theorem of Lurie [4] makes
this claim precise (see also the work of Matsuoka [4]).

Theorem 1. There is an equivalence of (∞, 1)-categories between En algebras and
locally constant factorization algebras on Rn.

Let E be a vector bundle on M and let E denote the sheaf of sections. Sim-
ilarly, let Ec denote the cosheaf of compactly supported sections. It is easy to
verify that the symmetric algebra of a cosheaf is a prefactorization algebra, it
is more difficult to check the local-to-global (factorization) property. However,
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Costello and Gwilliam prove that both SymEc and the completed version ŜymEc
form factorization algebras on M .

The preceding construction can be bootstrapped to the case of Chevalley-
Eilenberg chains/cochains of a sheaf of differential graded Lie algebras. If L is
such a sheaf, we will denote Chevalley-Eilenberg chains by C∗(L) and cochains by
C∗(L).
Theorem 2. Let L be a local dg Lie algebra on M . Then for U ⊂M an open set,
the assignemnts

UL : U 7→ C∗(Lc(U)) and OL : U 7→ C∗(L(U))

define factorization algebras.

As a simple example, let g be an ordinary Lie algebra and consider the sheaf

of differential graded Lie algebras on R given by gR
def
= Ω∗

R
⊗ g, where Ω∗ denotes

differential forms. By the preceding theorem UgR is a factorization algebra on R
valued in complexes. Passing to cohomology, we obtain a locally constant factor-
ization algebra on R valued in vector spaces. Hence, by the proposition above
H∗(UgR) corresponds to an associative algebra; one can identify this algebra as
the universal enveloping algebra Ug.
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Cyclotomic Structures and Factoization Homology

Thomas Nikolaus

(joint work with Peter Scholze)

Let R be a ring, we want to compute algebraic K-theory groups. This turns out to
be very hard, thus one tries to approximate those by more computable invariants.
One has the following square

K∗(R) // TC∗(R) //

��

CH−
∗ (R)

��

THH∗(R) // HH∗(R)

all of whose corners we explained in the talk. The hochschild homology groups
HH∗(R) are given by the homology groups of the Hochschild chain complex which
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is given by the factorization homology

HH(R) :=

∫

S1

R[0] ∈ ChZ

where R[0] ∈ ChZ is considered as a chain complex concentrated in degree 0. The
topological Hochschild homology groups THH∗(R) are given by the homotopy
groups of the topological Hochschild homology spectrum

THH(R) :=

∫

S1

HR ∈ Sp

where HR ∈ Sp is the Eilenberg-MacLane spectrum associated to R.
By functoriality of factorization homology the Hochschild chain complex (as

well as the topological Hochschild homology spectrum) carries an action by the
circle group T. The negative cyclic homology chain complex is defined as the
homotopy fixed point chain complex for this action:

CH−(R) := HH(R)hT

For topological cyclic homology (which should really be called negative topological
cyclic homology) one has to take an additional structure besides the T-action
on THH(R) into account: the cyclotomic structure. For the formulation of the
cyclotomic structure we will use the notion of Tate spectrum XtG for a finite
G-action on a spectrum X .

Proposition 2. • For every spectrum X and every prime p there is ‘diag-
onal’ map ∆ : X → (X ⊗ ...⊗X)tCp which is natural in X.

• Let R be an En-ringspectrum and E
Cp−−→M be a principal Cp-bundle over

a framed n-manifolds M . Then there is a map

∫

M

R →
(∫

E

R

)tCp

which is natural in M and for M = Rn given by the diagonal ∆ as above

It is a remarkable fact that the last proposition is not correct in the category
of chain complexes. That is the reason that one has to work in spectra to see the
cyclotomic structure. Using the p-fold self-covers of the circle we get the following
immediate corollary.

Corollary 3. For every ring spectrum R the spectrum THH(R) has the following
structure:

• An action by the circle group T
• For every prime p an T-equivariant map

ϕp : THH(R) → THH(R)tCp

where the action on the target uses the identification T/Cp
∼= T.
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This structure is what we call a cyclotomic structure. Given this structure
extra structure on THH we can give the following formula for topological cyclic
homology where we assume for simplicty that everything is p-completed:

TC(R) := fib

(
THH(R)

hT can−ϕp−−−−−→
(
THH(R)

tCp

)hT/Cp

)

Here can denotes the map induced on homotopy T/Cp-fixed points from the canon-
ical map THH(R)hCp → THH(R)tCp .

Theorem 1. This definition of topological cyclic homology is for a connective ring
spectrum R equivalent to the old one (as given by Bökstedt-Hsian-Madsen).

More generally we prove that the ∞-category of connective cyclotomic spectra
as defined this way is equivalent to the ∞-category underlying the classical de-
scription of cyclotomic spectra using genuine equivariant homotopy theory (in the
incarnation given by Blumberg-Mandell).

Our main result allows to give simpler descriptions and computations for a lot
of results in the area, in particular of the cyclotomic trace.

BV algebras in causal QFT

Kasia Rejzner

In my talk I presented an axiomatic approach to perturbative QFT on Lorentzian
manifolds, called perturbative Algebraic Quantum Field Theory. In this framework
a model is constructed as a functor from an appropriate category of spacetimes to
the category of topological ∗-algebras. This functor has to satisfy some axioms,
the most important being causality. This approach gives a new perspective on BV
quantization, since it allows to obtain the quantum master equation intrinsically
in the Lorentzian setting, without invoking path integrals.

1. Causal structure

Let M = (M, g) be a d-dimensional spacetime, i.e. a smooth d-dimensional man-
ifold with the metric g of signature (+,−, . . . ,−). We assume M to be oriented,
time-oriented and globally hyperbolic (i.e. it admits foliation with Cauchy hyper-
surfaces). To make this concept clear let me recall a few important definitions in
Lorentzian geometry.

Definition 1. Let γ : R ⊃ I → M be a smooth curve in M , for I an interval in
R and let γ̇ be the vector tangent to the curve. We say that γ is

• timelike, if g(γ̇, γ̇) > 0,
• spacelike, if g(γ̇, γ̇) < 0,
• lighlike (null), if g(γ̇, γ̇) = 0,
• causal, if g(γ̇, γ̇) ≥ 0.

The classification of curves defined above is referred to as the causal structure.
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Definition 2. Given the global timelike vector field u (the time orientation) on
M , a causal curve γ is called future-directed if g(u, γ̇) > 0 all along γ. It is
past-directed if g(u, γ̇) < 0.

Definition 3. A causal curve is future inextendible if there is no p ∈ M such
that:

∀U ⊂Mopen neighborhoods of p, ∃t′ s.t. γ(t) ∈ U ∀t > t′ .

Definition 4. A Cauchy hypersurface in M is a smooth subspace of M such
that every inextendible causal curve intersects it exactly once.

Let Loc be the category where objects are connected, (time-)oriented globally
hyperbolic spacetimes of given dimension and morphisms are isometric embeddings
that preserve orientations and the causal structure. The latter means that for an
embedding to be a morphism of Loc, it cannot create new causal links. More
precisely, let χ : M → N , for any causal curve γ : [a, b] → N , if γ(a), γ(b) ∈ χ(M)
then for all t ∈]a, b[ we require: γ(t) ∈ χ(M).

We can extend Loc to a monoidal category Loc⊗ by allowing for objects that
are disjoint unions of objects in Loc. The relevant monoidal structure is the
disjoint union ⊔.

Let Alg be the category of nuclear, topological locally convex unital ∗-algebras
(i.e. algebras with the involution operation ∗), where morphisms are injective,
continuous and they preserve all the relevant algebraic structures. We can equip
Alg with a monoidal structure provided by the completed tensor product ⊗̂. The
resulting monoidal category is denoted by Alg⊗.

In a similar way, we define Vec to be the category of nuclear, topological locally
convex vector spaces, with injective morphisms and CAlg will be the category of
commutative, nuclear, topological locally convex unital ∗-algebras (i.e. algebras
with the involution operation ∗), where morphisms are also assumed to be injective.
For future reference, we will denote the forgetful functors from Alg and CAlg to
Vec by the same symbol v.

We are now ready to define what is meant by a locally covariant quantum field
theory in our setting.

Definition 5. A locally covariant quantum field theory (LCQFT) is a functor
A : Loc → Alg such that

(1) Einstein causality: for χi : Mi → M, χi ∈ hom(Loc), i = 1, 2, with
the property that χ1(M1) is spacelike to χ2(M2), we have

[Aχ1(A(M1)),Aχ2(A(M2))] = {0} ,
(2) Time-slice axiom: Let χ : M → N ∈ hom(Loc) be such that χ(M)

contains a neighborhood of a Cauchy surface Σ ⊂ N . Then Aχ is an
isomorphism.

Remark 1. The first requirement can be rephrased as the condition that A can
be extended to a symmetric monoidal functor from Loc⊗ to Alg⊗, as discussed
in [BFIR14].
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2. Constructing Models

In order to construct LCQFT models, one can use methods of perturbative al-
gebraic quantum field theory (pAQFT). For more details see [Rej16]. Here we
sketch out the main steps on the example of scalar field theory. The (off-shell)
configuration space in this case is E(M) = C∞(M,R). Consider C∞(E(M),C),
the space of smooth functionals on the configuration space.

Definition 6. Local functionals are smooth functionals such that for every ϕ ∈
E(M) there exists k ∈ N and f , a compactly supported function on the jet bundle,
such that

F (ϕ) =

∫

M

f(jk(ϕ))dµg ,

where jkx(ϕ) is the k-th jet of ϕ at point x and dµg(x)
.
=

√−gddx. The space of
local functionals is denoted by Floc(M).

Definition 7. We define the space F(M) of multilocal functionals as the algebraic
completion of Floc(M) under the point-wise product · defined by

(F ·G)(ϕ) .= F (ϕ)G(ϕ) .

The assignment of spaces of multilocal functionals to objects in Loc is functorial
and the corresponding functor from Loc to CAlg is denoted by F. We can think
of F(M) as the space of (off-shell) classical observables.

Now we want to perform the quantization. We start with the free theory A0

(with the non-commutative product ⋆), constructed by means of deformation quan-
tization from the classical theory of the free scalar field. The basic ingredient in
this construction is dS0, a 1-form on E(M) that gives the equations of motion

(1) dS0(ϕ) = 0 .

For the free scalar field we have dS0(ϕ) = −(� + m2)ϕ, where � is the wave
operator.

In order to define interacting fields, we need first to make sense of formal S-
matrices corresponding to possible local interactions (these are realized as local
functionals). To this end, we need to introduce the time-ordered product.

Definition 8. A time-ordered product is realized as a triple (AT , ξ, T ) where AT is
a functor from Loc to CAlg, ξ is a natural transformation ξ : v ◦AT

.−→ v ◦A and
T is a natural transformation from F to AT that provides the equivalence between
the time-ordered product ·T of AT and the classical product · of F, i.e.

F ·T G
.
= TM(T −1

M F · T −1
M G) ,

where F,G ∈ AT (M) and we require the following properties to hold: let ψi :
Mi → M, i = 1, 2,

(1) if ψ1(M1) ≺ ψ2(M2) then

ξM ◦mT ◦ (ATψ2 ⊗ ATψ1) = m⋆ ◦ (Aψ2 ◦ ξM2 ⊗ Aψ1 ◦ ξM1) ,
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(2) if ψ2(M2) ≺ ψ1(M1) then

ξM ◦mT ◦ (ATψ2 ⊗ ATψ1) = m⋆ ◦ (Aψ1 ◦ ξM1 ⊗ Aψ2 ◦ ξM2) ,

where mT /m⋆ is the multiplication with respect to the time-ordered/star product
and the relation “≺” means “not later than” i.e. there exists a Cauchy surface
in M that separates ψ1(M1) and ψ2(M2) and in the first case ψ1(M1) is in the
future of this surface and in the second case it’s in the past.

The above definition expresses the fact that the time-ordered product coincides
with the star product when the arguments are time-ordered. Note that it actually
fixes the time-ordered product of observables localized in disjoint regions. The
remaining freedom to define ·T for arguments localized in overlapping regions can
be further constrained by some additional requirements [BDF09], so that the con-
struction of the time-ordered product of n arguments is reduced to the extension
problem for distributions defined everywhere outside the thin diagonal of Mn.
This extension process is called Epstein-Glaser renormalization.

Using time-ordered products one can define the formal S-matrix corresponding
to an interaction V ∈ Floc(M). In the first step we identify TMV ∈ AT (M) as
the normal-ordered quantity, traditionally denoted by :V :. Next we define

S(λ :V :)
.
= ξM ◦ eiλ :V : /~

T ,

where λ is the coupling constant and eT denotes the exponential function where
the product is taken to be the time-ordered product ·T . The S-matrix defined in
this way is identified with an element of A(M)[[λ]]((~)).

The interacting quantum field corresponding to a classical observable F ∈
Floc(M) is then defined as

RλV (F )
.
=

(
ξM ◦ eiλ :V : /~

T

)⋆−1

⋆
(
ξM ◦

(
e
iλ :V : /~
T ·T :F :

))
,

where the first factor is the inverse with respect to the star product.

3. BV algebras

The BV formalism in physics becomes relevant when treating gauge theories. How-
ever, the basic mathematical structures appear already in the treatment of the
scalar field. In the first step of our construction we consider T ∗[−1]E(M), the
shifted cotangent bundle over E(M) and BV(M)

.
= Oml(T

∗[−1]E(M)), the space
of multilocal functionals on it (see [Rej16] for details). Since elements of BV(M)
can be identified with vector fields on E(M), we can equip this space with the
Schouten bracket, denoted by {., .}. We define a differential δS0 on BV(M) as in-
sertion of the 1-form dS0, i.e. δS0

.
= −ιdS0 . The 0-th cohomology of (BV(M), δS0)

characterizes the space of multilocal functionals on the space of solutions to (1).
In quantum theory we require that the formal S-matrix is invariant under δS0 ,

i.e. δS0(S(λ :V :)) = 0, which is equivalent to the condition, called the quantum
master equation (QME) that

1

2
{λV, λV }+ δS0λV − i~△ (λV ) = 0 ,
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where △ is the renormalized BV Laplacian [FR12]. The quantum BV operator is
defined by

ŝ
.
= R−1

λV ◦ δS0 ◦RλV

and, provided the QME holds, it can be expressed as

ŝ = δS0 + {., λV } − i~△ .
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Lecture Series: Observables in the effective BV-formalism; Talk 5:
The factorization algebra of observables

Brian Williams

We reach the main construction of this lecture series, which we will state as one
of the central theorems of [1]

Theorem 1. [1] Let M be a manifold. There is an assignment

Obsq : {QFTs onM} → {factorization algebras onM}
called the quantum observables.

There is a simpler construction at the classical level. Let us fix a classical
BV-theory (E , 〈−,−〉, I). We have defined the global observables via the classical
BV-complex

Obscl(M) := (Sym(E(M)∨), Q+ {I,−}) .
Since E is a sheaf of sections of some vector bundle, it makes sense to consider, for
each open U , the subcomplex

Obscl(U) := (Sym(E(U)∨), Q+ {I,−})
that we call the classical observable supported on U .

Proposition 1. The assignment U 7→ Obscl(U) defines a factorization algebra on
M .
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In fact, this is a corollary of the O-construction from the last talk, but we can
be explicit. If ⊔iUi → V is a disjoint union of open subsets inside of the open set
V then we have a map

E(V ) → E(⊔iUi) = ⊕iE(Ui)

because E is a sheaf. Taking the duals and noticing that Sym is a symmetric
monoidal functor we have a map

⊗iSym(E(Ui)
∨) → Sym(E(V )).

That is, a map ⊗iObscl(Ui) → Obscl(V ). One shows directly that this is a cochain
map and defines the factorization structure maps.

Now, suppose we have a quantum field theory on M . This is the data of
(E , Q, 〈−,−〉) together with a collection {I[r]} of effective functionals that satisfy
the RG-flow equation and the regularized quantum master equation. We have
constructed the global quantum observables Obsq(M). An element is a collection
of functionals {O[r]} where each O[r] ∈ Obsq(M)[r] that are related by RG-flow.

To define the factorization algebra, we first need to define what we mean by a
quantum observable {O[r]} to be supported on an open set U . The naive definition
used in the classical case does not work here: both the regularized BV-laplacian
∆r and the Poisson bracket {−,−}r increase the support of an element O[r] so
that the total differential

Q̂r := Q+ ~∆r + {I[r],−}
also increases support. For instance, if O[r] is in an element of subspace

Sym(E(U))[[~]] then Q̂rO[r] may not be.

Luckily, the magnitude in which Q̂r does increase support is controllable. One
says that a quantum observable {O[r]} is supported on U ⊂ M iff there exists a
closed subset K ⊂ U and a small enough regularization r such that

Supp O[r] ⊂ K.

A main technical result of [1] is that if we have such an observable supported on U

then Q̂r applied to it is still supported on U . Thus we have defined the subcomplex

Obsq(U) ⊂ Obsq(M)

of observables supported on U .
We now describe the structure maps of the factorization algebra. Focus on the

case U ⊔ U ′ →֒ V where U,U ′ are disjoint. We need to describe a map

Obsq(U)⊗ Obsq(U ′) → Obsq(V ).

Take quantum observables {O[r]} and {O[r′]} supported on U,U ′ respectively.
Viewing the functionals as elements of the symmetric algebra O(E)[[~]] we may
consider the product

O[r] · O[r′] ∈ O(E)[[~]].
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Theorem 2. The following limit

lim
r′→0

W r
r′(O[r] ·O[r′]) ∈ O(E)[[~]]

exists and will be denoted (O · O′)[r].

We can then define the factorization product () by

{O[r]} ⊗ {O′[r]} 7→ {(O · O′)[r]}.
It is straightforward to check that this is a cochain map and satisfies the associa-
tivity and commutativity properties necessary to define a prefactorization map. A
spectral sequence argument is needed to show that

Obsq : U 7→ Obsq(U)

actually is a factorization algebra.
The connection with the classical observables is the following.

Theorem 1. [1] Suppose {I[r]} is a quantization of the classical theory I ∈
Oloc(E). Then Obsq is a factorization algebra in C[[~]]-modules. Moreover, there
is an isomorphism

Obsq ⊗C[[~]] C ∼= Obscl

between the reduction of the factorization algebra of quantum observables modulo
~, and the factorization algebra of classical observables.
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Lecture Series: Observables in the effective BV-formalism; Talk 6:
Some examples of BV-quantization

Si Li

We discuss two nontrivial examples of quantum field theories in the effective BV-
formalism developed in [1]. Both of these examples involve quantum corrections
at all loops.

The first is a one-dimensional σ-model, describing topological quantum mechan-
ics discussed in [2]. The effective BV quantization is equivalent to the geometric
model of Fedesov’s Abelian connections on Weyl bundles. It leads to a simple
approach to deformation quantization and algebraic index theorem on symplectic
manifolds.

The second is a two-dimensional model describing chiral deformations of con-
formal field theories, which arises naturally from topological B-model on elliptic
curves. Much of this work can be found in [3]. The effective BV-quantization is
equivalent to integrability of infinitely many commuting chiral operators. The par-
tition function is equivalent to the higher genus GW invariants on elliptic curves,
which is an incidence of mirror symmetry.
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Factorisation structures on Hilbert schemes of points

Emily Cliff

Let X be a smooth projective surface over C, and let

HilbX =
⊔

n≥0

HilbnX

be the union of all Hilbert schemes of points in X .
Grojnowski [1] and Nakajima [2] proved that the Heisenberg Lie algebra mod-

elled on the lattice H•(X,Z) acts on the cohomology H•(HilbX), yielding a rep-
resentation isomorphic to the Fock space of central charge 1. It follows for formal
reasons, from the work of Frenkel, Lepowsky, and Meurmann [3], that H•(HilbX)
has a canonical structure of vertex algebra, and hence that it can be used to
construct a factorisation algebra, the Heisenberg factorisation algebra over any
smooth complex curve C.

I would like to understand the relationship between the geometry of the Hilbert
scheme and the resulting factorisation algebra over C. My strategy is to build a
factorisation space over C using the Hilbert scheme of points, which can then be
linearised in different ways to produce factorisation algebras. The hope is that one
such way yields the Heisenberg factorisation algebra.

In this talk, I defined the notion of a factorisation space, and showed as an
example how the Hilbert scheme of points of any smooth variety Y can be used to
produce a factorisation space over Y . This is an accessible example of factorisation
spaces over varieties of arbitrary dimension. On the other hand, it cannot be the
sought-after factorisation space, even in the case that Y = X is our projective
surface, because that should live over an arbitrary curve C, not over X .

In the last part of the talk I sketched the construction of a factorisation space
which does live over C. One key idea is to replace the Hilbert scheme of X by a

subscheme H̃ilbD×X of the Hilbert scheme of the formal threefold D ×X , where

X is our projective surface and D is a formal one-dimensional disc. This H̃ilbD×X

is the largest open subscheme equipped with a well-behaved map to HilbX , and
the fibres of this map are just affine spaces Cd for varying integers d. This allows
us to define a subspace of the factorisation space defined above for the variety
Y = C ×X ; pushing forward this factorisation space yields a factorisation space
over C, whose fibres are closely related to HilbX , as desired.

The next step in this project is of course to check whether this factorisation
space can be linearised to recover the Heisenberg factorisation algebra.
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Field theories with defects

Ingo Runkel

(joint work with Nils Carqueville)

Field theories with defects are field theories formulated on manifolds equipped with
a stratification into submanifolds. This additional decoration leads to a number
of interesting constructions, of which the orbifold construction is the focus of this
report. The idea behind field theory with defects and orbifolds is very general. In
the following, we outline the main ideas in somewhat vague terms, and indicate
their precise form for two-dimensional functorial field theory, where the details
have been worked out.

1. Topological defects

We would like to consider field theories which take as an input an oriented d-
dimensional manifold (possibly with extra geometric structure, like a metric, a
spin structure, . . . ), together with a stratification into oriented submanifolds. The
strata carry a label chosen according to their dimension. That is, as an additional
datum we fix sets

Dk , k = 0, . . . , d ,

and each connected component of a k-dimensional stratum is labelled by an el-
ement of Dk. This assignment of labels has to satisfy a consistency condition,
phrased in terms of an additional datum which dictates how strata with different
labels are allowed to meet. In codimension 1, this amounts to fixing two maps

s, t : Dd−1 → Dd ,

which specify that the top-dimensional strata on the two sides of a codimension 1
stratum with label x ∈ Dd−1 must be labelled by s(x) and t(x) (as decided by the
orientations of the d- and (d−1)-dimensional strata). In higher codimension, the
formulation becomes more technical, see [1, 2] for a discussion of codimension 2.
We refer to the elements of the sets Dk as defect conditions (though for elements
of Dd we will also use the term world-volume phases).

In functorial field theory, one collects the above manifolds with extra struc-
ture into a category of (collared, stratified) (d−1)-manifolds and stratified d-
dimensional bordisms,

Bordd−1,d(D) ,
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where D stands for the collection of sets (Dk)k=0,...,d and the maps describing the
compatibility conditions. A field theory with defects is then a symmetric monoidal
functor Z from Bordd−1,d(D) to an appropriate target category, e.g. some version
of topological vector spaces.

In the following we will restrict ourselves to a subclass of field theories with
defects. Namely we require that the d-dimensional field theory depends on the
stratification of the d-manifold only up to isotopy, i.e. it is constant on stratifica-
tions related by a diffeomorphisms in the connected component of the identity (rel
boundary). In the metric case, this diffeomorphism only transports the stratifi-
cation – it is neither required to be an isometry, nor does it transport the metric
itself. We will call defects with this property topological.

In functorial field theory, and depending on preference, one can describe field
theories with topological defects via an invariance condition on the functor or by
defining an equivalence relation on d-dimensional decorated bordisms. Here we
take the second point of view and arrive at a bordism category

Bordtopd−1,d(D) .

Quite generally, given a field theory with topological defects, one would expect
it to produce a category of topological defect conditions, that is, some version of
a d-category whose objects are the set Dd – the possible world-volume phases –
whose 1-morphisms are built from the codimension 1 defect conditions Dd−1, etc.

This has been made precise for d = 2, 3. One obtains a 2-category, respectively
a Gray category, with certain types of duals, see [1, 2].

2. Generalised orbifolds as state sum constructions

State sum constructions are a way to produce examples of d-dimensional topo-
logical field theories. One fixes label sets Dk, k = 0, . . . , d, and a rule to as-
sign a number WC,Λ to a simplicial complex C together with a labelling Λ of its
dimension-k-faces by elements from Dk, k = 0, . . . , d. There may be constraints
on which labellings are allowed, just as for the consistency requirement for defect
labellings above.

Given a d-manifold M , one chooses a simplicial decomposition C and computes
the number

Z(M,C) =
∑

allowed labellings Λ of C

WC,Λ .

If one can find an assignment (C,Λ) 7→ WC,Λ such that Z(M,C) is independent
of the choice of C, one has obtained an invariant for M .

Given a field theory (which may be metric-dependent) with topological defects,
one may now try to implement the following idea [3]:

Try to define a new field theory by carrying out a state sum con-
struction in terms of the topological defects of the given theory.

We refer to this idea as the generalised orbifold construction. Let us elaborate this
a little more. Firstly, instead of the sum over allowed labellings as in the state sum
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construction, it is much more convenient to think of the corresponding category
D of topological defect conditions as being completed with respect to sums, and
to consider sums of “elementary” defect conditions. One then needs to choose

• an object a ∈ D (the world-volume phase one wishes to orbifold),
• a 1-morphism A : a→ a (the orbifolding defect),
• various higher coherence morphisms depending on the precise type of cell-
decompositions one is working with.

One then defines the new field theory Zorb (initially without defects, though they
can be added) in terms of the given field theory Z on a d-manifold M as

Zorb(M) = Z(M+ labelled cell decomposition) ,

where the strata of the various dimensions are labelled by the above choices (and
there is no sum). The above data is subject to the condition that Z(M) must be
independent of the choice of cell decomposition.

This idea has been made precise in functorial field theory in dimension 2 [4, 5],
and is work in progress in dimension 3 [6]. The construction is such that the
original state sum construction arises as a generalised orbifold of the trivial theory.

For example, in dimension 2 the required data and the consistency conditions it
needs to satisfy can be phrased as “A needs to be a separable symmetric Frobenius
algebra object in the endomorphism category of a”, see [5] for details (and for the
explanation of the name “orbifold” by exhibiting orbifolding by a group symmetry
of a field theory as a special case).

One may ask if Zorb is in some sense equivalent to the restriction of Z to
d-manifolds with only a d-dimensional stratum, which is labelled by one fixed
world-volume phase x ∈ Dd. If not, one could try to “add” these orbifolds as new
world-volume phases to Dd.

Slightly less vaguely, supposing one succeeded in defining the d-category of
topological defect conditions D, one can try to construct its orbifold completion
Dorb whose objects would consist of an object a ∈ D together with a collection of
morphisms satisfying the conditions imposed by the orbifold construction.

This as been made concrete in dimension 2 [5, 8]. We prove that given a pivotal
idempotent complete bicategory D, one obtains a new such category Dorb, the
orbifold completion of D, with

• objects: (a,A), where a ∈ D and A a separable symmetric Frobenius
algebra object in D(a, a)

• 1-morphisms (a,A) → (b, B): B-A-bimodules in D(a, b)
• 2-morphisms: bimodule intertwiners

There is a natural full embedding D → Dorb, a 7→ (a, Ia), with Ia : a → a
the unit 1-morphism, and we show that this embedding furnishes an equivalence
Dorb → (Dorb)orb, justifying the name “completion”.

As pointed out by Thomas Nikolaus and Kevin Walker during the workshop,
this construction is similar to a higher analogue of an idempotent completion [7].
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Bott periodicity via quantum Hamiltonian reduction

Theo Johnson-Freyd

The famous Morita equivalence Cliff(8) ≃ R appears in many contexts, most
notably as a manifestation of the eight-fold Bott periodicity of KO. It can be
explained in many ways. The goal of this talk is to give yet another explanation,
this time in terms of (super) symplectic geometry.

Clifford algebras have a natural (super) symplectic interpretation. Let R0|n de-
note the “odd” manifold with coordinate ring C∞(R0|n) =

∧•
Rn = R[x1, . . . , xn],

where the coordinate functions are Grassmann variables, so that xixj = −xjxi
and x2i = 0. Odd manifolds admit a calculus of differential forms fully analogous
to the even case with one notable exception: since xi is odd, the one-form dxi
is even, and so dxi ∧ dxj = dxj ∧ dxi with no sign, and dx∧2

i 6= 0 (as it has no

reason to vanish). In particular, R0|n admits a positive definite symplectic form
ω = 1

2

∑
i dx

∧2
i . Since R0|n is a vector space and ω translation-invariant, (R0|n, ω)

admits a canonical quantization to its Weyl algebra, which in this case is nothing
but the Clifford algebra Cliff(n) = R〈x1, . . . , xn〉/(xixj + xjxi = 2δij).

Linear symplectic geometry can explain Morita equivalences. Suppose that
(M,ω) is a symplectic vector space with Weyl algebra Weyl(M) =

⊕
(M∗)⊗n/

([x, y] = {x, y}, x, y ∈ M∗). Given a linear Lagrangian L ⊆ M cut out by
linear equations L⊥ ⊆ M∗, the corresponding left Fock module is Fock(L) =
Weyl(M)/L⊥. By construction, the commutant of Weyl(M) in End(L) is R, and so
up to issues of functional analysis that are absent in the purely-odd case, Fock(L)
is a Morita trivialization of Weyl(M). This in particular “explains” the two-fold
Bott periodicty of KU. Indeed, the complex Clifford algebra Cliff(2) = Cliff(2)⊗C
is the canonical quantization of the holomorphic symplectic manifold C0|2 with
symplectic form 1

2 (dx
∧2 + dy∧2), which admits a holomorphic linear Lagrangian
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spanned by the lightlike vector x+ iy. Linear symplectic geometry does not, how-
ever, explain any nontrivial Morita equivalences of real Clifford algebras, because
the positive-definiteness of 1

2

∑
i dx

∧2
i prevents R0|n from admitting Lagrangian

sub-supermanifolds.
A Hamiltonian action of a connected and simply connected Lie group G on a

symplectic manifold M is determined by a comoment map µ : Lie(G) → C∞(M),
considered as a Lie algebra under the Poisson bracket. The corresponding ac-
tion is infinitesimally generated by the Hamiltonian vector fields {µ(g),−}, g ∈
Lie(G). The Hamiltonian reduction M//G is the space µ−1(0)/G with coordi-

nate ring
(
C∞(M)/(µ(Lie(G)))

)G
. Assuming the action of G on M is not too

singular, M//G is again a symplectic manifold and µ−1(0) is a Lagrangian cor-
respondence between M and M//G. The story of Hamiltonian reduction can
be quantized. A quantum Hamiltonian action of G on an associative algebra
A is determined by a map µ : Lie(G) → A, considered as a Lie algebra un-
der the commutator bracket; the corresponding action is infinitesimally gener-
ated by [µ(g),−], g ∈ Lie(G). The quantum Hamiltonian reduction A//G is the

ring
(
A/(µ(Lie(G)))

)G
= EndA

(
A/(µ(Lie(G)))

)
, where (µ(Lie(G))) now denotes

the left ideal generated by the image of µ. By construction, the cyclic module
A/(µ(Lie(G))) is a bimodule between A and A//G. If the action is “not too
singular,” A/(µ(Lie(G))) is a Morita equivalence.

When M = R0|n with its positive-definite symplectic form, there is a subgroup
of the full symplectomorphism group given by the linear symplectomorphisms
Sp(0|n) ∼= SO(n). (The “metaplectic group” for R0|n is Spin(n).) Thus repre-
sentations of compact groups provide linear symplectic actions on odd symplectic
manifolds, which are automatically Hamiltonian if the group is connected and
simply connected. It is natural to focus on linear symplectomorphisms, as they
canonically quantize. Linear actions never satisfy the Marsden–Weinstein condi-
tion — the classical moment map always has a quadratic singularity at the origin—
but the quantum action is “not too singular” as soon as the reduction Cliff(n)//G
is non-zero. The main results of the talk are the following calculations:

(1) Cliff(4)//Spin(3) ∼= H, the purely-even quaternion algebra, where Spin(3)
acts on R0|4 via the real spin representation.

(2) Cliff(7)//G2
∼= Cliff(−1), the Clifford algebra with one generator and

oppositive signature to that of Cliff(1), where the exceptional group G2

acts on R0|7 via its defining representation.
(3) Cliff(8)//Spin(7) ∼= R, where Spin(7) acts on R0|8 via the real spin repre-

sentation.

For comparison, the vector representation of Spin(n) on R0|n is always “too sin-
gular.” The calculations are explicit. For example, G2 ⊆ SO(7) is by definition
the stabilizer of the cubic function ǫ = x1x2x7 − x1x3x6 − x1x4x5 − x2x3x5 +
x2x4x6 + x3x4x7 + x5x6x7 on R0|7, and Spin(7) ⊆ SO(8) is the stabilizer of the
quartic ǫ(x8 + x1x2x3x4x5x6x7) ∈ Cliff(8).
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How does this story relate to twisted functorial field theories and factorization
algebras? My hope is that it can be used to explain the 576-fold periodicity of
TMF. There is a conjectural analogy due in part to Stolz and Teichner and in part
to Douglas and Henriques relating:

1-dim N = 1 SUSY QFT KO real Clifford algebras Cliff(8) ≃ R
2-dim N = 1 SUSY QFT TMF free fermion chiral CFTs Fer(576) ≃ R

The existence of such an analogy is conjectural, and also the lower right box is
conjectural. With luck, quantum Hamiltonian reduction could establish the Morita
equivalence conjectured in the lower right box. This would provide supporting
evidence for the table as a whole.

Extensions of Bordism Categories

Christopher Schommer-Pries

(joint work with Bruce Bartlet, Chris Douglas, Jamie Vicary)

The Reshetikhin-Turaev construction is a process which takes a modular tensor
category and produces a 3-dimensional topological quantum field theory. Except
that in most cases the topological field theory is not quite well defined for oriented
manifolds. Rather there is a projective anomaly. To resolve the projective ambi-
guity the cobordisms must be equipped with additional structure. For example,
for the RT construction authors have used p1-structures (also known as Atiyah
2-framings), bounding manifolds, and other structures. Each such structure gives
rise to a central extension of the mapping class group Γg

Z→ Γ̃g → Γg

of a surface fo genus g.
For large genus we have H2(Γg;Z) = Z, and this raises a question. Can every

extension class form the mapping class group be realized by an extension of the
bordism category? What is an extension of the bordism category and how can we
classify them?

In this talk I will describe a systematic approach to the theory of both central
and non-central extensions of symmetric monoidal categories and bicategories. I
will apply this in the case of the bordism category and describe the relationship
between these extensions and twisted field theories. I will end by sketching a
computation which shows that the fundamental central extension of the mapping
class group (corresponding to the generator of H2(Γg;Z) = Z) cannot be realized
as a central extension of the bordism category.
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From state sums to fully extended TQFTs via fields and local relations

Kevin Walker

Let k be a commutative ring (such as the complex numbers) and let Z(W ) be a
k-valued invariant of n+1-manifolds W . Assume that Z(W ) is computable via
a topologically invariant “state sum” – a sum, over all labelings of the cells of
some/any cell decomposition of W , of the product of local k-valued weights which
depend only on labeled cells in some bounded region. Then one can construct from
the data for the state sum a fully extended TQFT, with the original state sum
playing the role of the path integral. Furthermore, this TQFT is constructed using
the fields-and-local-relations approach, which is a more stringent requirement than
merely satisfying a fully extended version of the Atiyah-Segal axioms (i.e. fields-
and-local-relations implies A-S, but not vice versa).

From the A-S point of view, the target n+1-category for the above TQFT is [n-
categories, n-category bimodules, 2nd-order bimodules, ... ]. The result suggests
(perhaps only weakly) that this target n+1-category is universal in some sense.
Another way of looking at it is that A-S TQFTs which are not also field-and-local-
relations TQFTs are slightly strange, in that their n+1-dimensional part cannot
be computed via a state sum.

It is not hard to see that a state sum is equivalent to a tensor network, where
the tensors and edge vector spaces depend functorially on bounded diameter sub-
complexes of the cell decomposition of W . The first step in the proof is a coarse-
graining argument, which allows us to assume that the tensors depend only on the
combinatorial type of individual cells and their normal bundles.

We can now define a “field” on an n-manifoldM to be a cell decomposition ofM
together with a vector in the tensor product of the edge vector spaces associated to
edges (in the tensor network) which crossM . The local projections are constructed
out of the tensor network associated to a n+1-ball (with cell decomposition).
Proceeding in a similar manner in higher codimensions, we eventually construct
all of the data needed for the fields-and-local-relations machinery.

Relative Calabi-Yau structures on dg functors and shifted Lagrangian
structures on moduli of objects

Christopher Brav

(joint work with Tobias Dyckerhoff)

This is a report on a two-part project with Tobias Dyckerhoff, the first part of
which has appeared as ‘Relative Calabi-Yau structures’ at arxiv:1606.00619. We
work in the context of non-commutative algebraic geometry via dg categories, in
which a finite type dg category is considered to be the bounded derived category
of coherent sheaves on a putative finite dimensional non-commutative space and
various complexes associated to the Hochschild complex are considered to encode
information about differential forms on the non-commutative space. In particular,
there is a notion of Calabi-Yau structure of dimension d on a finite type dg category
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S, due to Ginzburg and Kontsevich, which is given by a class θ ∈ HC−
d (S) in

negative cyclic homology satisfying a non-degeneracy condition that requires a
certain induced map between the ‘inverse dualising complex’ and the ’diagonal
bimodule’ of the dg category be an equivalence. The two basic examples are the
dg category Loc(M) of local systems of chain complexes on a compact oriented
manifold M , where using a theorem of Goodwillie the choice of fundamental class
for M induces a non-degenerate class in negative cyclic homology of the category
of local systems, and the dg category Db

Coh(X) of bounded complexes of coherent
sheaves on a separated Gorenstein scheme of finite type with trivial canonical line
bundle ωX , where the choice of trivialisation OX ≃ ωX induces a non-degenerate
class in negative cyclic homology of the bounded derived category of coherent
sheaves.

Our first task was to formulate a relative notion of Calabi-Yau structure on
a dg functor S → T , which is given by a class θ ∈ HC−

d(T, S) satisfying a
non-degeneracy condition that requires certain induced maps of bimodules to be
equivalences. The two main examples are the induction of local systems from the
boundary to the whole manifold for a manifold with boundary equipped with a rel-
ative orientation and the push-forward of bounded complexes of coherent sheaves
along the inclusion of an anti-canonical divisor. A particular case is a relative
Calabi-Yau structure of dimension d on the zero functor 0 → T , which is equiva-
lent to an absolute Calabi-Yau structure of dimension d on T . (Recently Kontse-
vich has informed us that he and Vlassopoulos have arrived at the same definition
and same examples of relative Calabi-Yau structure, with applications to topolog-
ical field theory.) The main results of our paper ‘Relative Calabi-Yau structures’
are that cospans of dg functors equipped with relative Calabi-Yau structure can
be composed, generalising and abstracting the gluing of oriented manifolds along
common boundary components, and that the composition of cospans with relative
Calabi-Yau structure can be used to endow certain topological Fukaya categories
of surfaces with absolute Calabi-Yau structure.

In the second, forth-coming part of our project, we consider the derived moduli
spaceMT of finite dimensional modules for a dg category T , showing that a Calabi-
Yau structure of dimension d on T induces on MT a shifted symplectic form of
degree 2− d in the sense Pantev-Töen-Vaquié-Vezzosi, and similarly a dg functor
S → T with relative Calabi-Yau structure of dimension d such that S carries a
compatible absolute Calabi-Yau structure of dimension d−1 induces on the natural
restriction morphism MT → MS a Lagrangian structure. This construction of
shifted symplectic structures and shifted Lagrangian structures from data on dg
categories recovers and generalises many of the examples constructed by Pantev-
Töen-Vaquié-Vezzosi.
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On formality of IBL infinity structures

Kenji Fukaya

In this talk I explained an idea that the involutive bi Lie infinitey algebra on the
cyclic chain complex of the Fukaya category are supposed to be formal. (It means
that all the bracket and cobracket are trivial.)

First I explained the definition of involutive bi Lie algebra. An involutive bi Lie
infinity algebra is its infinity version. I next explained a result jointly obtained
with Cielibak and Latschev that on cyclic bar complex of cyclic DGA of finite
dimension we can define a structure of involutive bi Lie algebra.

I next explained its analogue of infinite dimension which is the de Rham com-
plex. Then studying bordered pseudoholomorphic curve gives the deformation of
the involutive bi Lie infiity algebra structure of cyclic Bar complex of de Rham
complex is obtained.

Finally I explained why this structure is expected to be trivial, especially in the
case when ‘open-closed map’ is an isomorphism.

Reporter: Daniel Brügmann
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