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Introduction by the Organisers

There was a wide spectrum of topics discussed at this year’s workshop on “Nonlin-
ear Evolution Problems” that, however, all can be grouped into the main themes
of geometric evolution equations or dispersive equations, including nonlinear wave
and Schrödinger equations. Altogether there were 21 talks, presented by interna-
tional specialists from Australia, Canada, Germany, Great Britain, Italy, France,
Switzerland, and the United States. There was a large percentage of female par-
ticipants in our meeting; five of our speakers were women. Moreover, a number of
speakers were only a few years past their Ph.D.

Each morning, three 45-minute lectures were delivered, and on average two in
the afternoon, thus leaving ample time for in-depth discussion among the partici-
pants of our meeting. This of course meant to make difficult choices; in particular,
when different groups of people at our conference had studied and solved the same
problem, it was not always easy to decide whom to give the chance to present their
work. The final format of our meeting, however, seems to have satisfied everyone
present. As a novel feature, moreover, we had asked a group of three specialists
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in the study of turbulence to organize an afternoon session, starting with an expo-
sition of the theory of energy cascades and weak turbulence and leading to some
more advanced recent results. Also this seems to have been a great success.

In geometric evolution equations, the prominent themes were the Ricci flow,
highlighted by Haslhofer’s talk on his very recent work with Naber on a definition of
weak Ricci flows, harmonic map heat flow, 4-dimensional Yang Mills flow, and the
mean curvature flow and their variants, where Rupflin presented the long-sought
after global existence result in her work with Topping on Teichmüller harmonic
map flow, and where Waldron’s talk gave promise that the long-standing problem
of global smooth existence for the Yang Mills flow on 4-manifolds might soon be
resolved.

The talks by Krieger on stable blow-up in critical nonlinear wave equations and
by Dalibard–Roux on the Prandtl equation for boundary layers in fluids confirmed
our belief that the many different nonlinear evolution problems discussed at our
meetings have many subtle features in common and are amenable to similar tech-
niques. Indeed, in both their work the modulation method of Merle–Raphaël is
used that had also been employed by Raphaël–Schweyer in their work on precise
blow-up rates and stable blow-up regimes for the 2-dimensional harmonic map
heat flow, once again underscoring the importance of a meeting joining these com-
munities.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

A priori estimates for a fully nonlinear flow of two-convex

hypersurfaces

Gerhard Huisken

(joint work with Simon Brendle)

We consider F0 :Mn → (Nn+1, ḡ), a smooth, closed and embedded hypersurface in
a smooth Riemannian manifold without boundary, where n ≥ 3. It is well-known
that in case the hypersurface is convex and the ambient manifold has non-negative
sectional curvature the hypersurface can be smoothly contracted to a point by
using the harmonic mean curvature flow [1]. We say that the hypersurface is 2-
convex if the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of the second fundamental form
satisfy λ1 + λ2 > 0. We then consider the second order, fully non-linear evolution
system d

dtF = −Gν, where ν is the (outer) unit normal to the hypersurface and the
normal velocity G is the harmonic mean of the 2-sums of the principal curvatures:

G =
(∑

i<j

1

λi + λj

)−1

.

This flow has a smooth solution at least for short time in this class and has the
property that 2-convexity can be controlled from below provided that the ambient
curvature tensor satisfies R̄ikik + R̄jkjk ≥ 0 in any orthonormal frame. This
distinguishes the flow in a crucial way from mean curvature flow, where 2-convexity
is only preserved in locally symmetric spaces.

The lecture shows how crucial estimates needed for the surgery approach of
Huisken-Sinestrari [6] established for mean curvature flow in the Euclidean case
can be replaced by new estimates in this fully non-linear case. When combined
with the mean curvature flow result for embedded mean-convex hypersurfaces in
3-manifolds in [4] the following result is established for all n ≥ 2:

Theorem[5] LetM0 = ∂Ω0 be a closed, embedded, 2-convex hypersurface of dimen-
sion n ≥ 2 in a compact Riemannian manifold. Given any T > 0, there exists a
surgically modified flow with velocity G which starts from M0 and is defined on the
time interval [0, T ). Moreover, if the ambient manifold satisfies R̄ikik + R̄jkjk ≥ 0
at each point in Ω0, then the flow becomes extinct in finite time.

Only in the case n = 2 the long-time behavior is clarified even without any
curvature condition on the ambient manifold, see [4]. It remains an open problem,
how the fully nonlinear flow behaves for large times in the general case.

References
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Horizontal curves of metrics and applications to geometric flows

Melanie Rupflin

(joint work with Peter M. Topping)

On a surfaceM there are three basic ways to evolve a metric; by conformal change,
by pull-back with diffeomorphisms and by horizontal curves, moving orthogonally
to the first two types of evolution. In this talk we discussed the fine convergence
properties of horizontal curves and their role in the analysis of finite time singu-
larities of Teichmüller harmonic map flow.

A horizontal curve (g(t))t∈[0,T ) on a closed oriented surface M of genus γ ≥ 2
can be characterised as a curve of hyperbolic metrics so that at each time ∂tg(t)
is given as real part of a holomorphic quadratic differential Ψ(t).

It is well understood that the only way a general sequence gi of hyperbolic
metrics can degenerate is by collapsing simple closed geodesics and stretching
out the surrounding “collars” to become infinitely long and thin as i → ∞, and
that the Deligne-Mumford compactness theorem allows to obtain a hyperbolic
punctured limiting surface after passing to a subsequence and pulling-back by
diffeomorphisms. For applications of horizontal curves to the study of geometric
flows this information is far from sufficient; not only would one expect the whole
curve of metrics to converge without having to pull-back by diffeomorphisms but
additionally one would like to know where the metric will have essentially settled
down to its limit by time t < T as opposed to regions where the metric still has
to do an infinite amount of stretching on [t, T ).

The results obtained in the joint work [3] with Peter Topping allow us to describe

these different regions in terms of the length L(t) =
´ T

t ‖∂tg‖ of the restriction of
g to [t, T ) and give a quantitative version of having smooth local convergence to
a limit h away from the pinching set F := {p ∈ M : lim inftրT injg(t)(p) = 0},
which we can furthermore characterise as

F =
⋂

t<T

{p ∈M : injg(t)(p) ≤ (KL(t))2},

for any K ≥ K0 = K0(γ). Roughly speaking, we obtain that if δ(t) converges to
zero more slowly than L(t)2 as t ր T then the metric g(t) will have essentially
settled down to its limit h on δ(t0)-thick(M, g(t)) by time t0. To be more precise,
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given any δ > 0 and t0 sufficiently close to T so that (2K0L(t0))2 < δ, we obtain
Ck bounds on ∂tg which allow us to prove that for any s, t ∈ [t0, T )

‖g(t)− h‖Ck(δ-thick(M,g(s)),g(s)) ≤ Cδ−
1
2L(t),

where C depends only on k and the genus of M . We refer to [3, Theorem 1.2] for
a more detailed result.

As an application of the theory of horizontal curves we discussed finite time
singularities of Teichmüller harmonic map flow, which is a natural gradient flow
of the Dirichlet energy that evolves both a map u from M to some closed target
(N, gN ) and a hyperbolic metric g on M so as to reduce the energy of the map as
quickly as possible. Previous joint work with P. Topping, see [1] and the reference
therein, shows that if the flow admits a global solution then it decomposes the
given initial map into a union of branched minimal immersions and curves.

The only thing that can stop the flow from existing for all times is a finite-time
degeneration of the metric component. In [2] we find a canonical way of flowing
beyond such a singular time, thus allowing us to obtain global weak solutions for
arbitrary initial data, and analyse the fine structure of such singularities in order
to prove a “no-loss-of-topology” result.

A key ingredient in this analysis are the estimate on horizontal curves described
above as they imply that outside the regions where the metric has essentially set-
tled down to its limit, and where consequently the behaviour of the map component
is similar to the one of the classical harmonic map flow, the metric is sufficiently
collapsed so that the maps can be viewed as almost harmonic maps from longer
and longer (euclidian) cylinders. As a consequence, we cannot loose “unstructured”
energy down degenerating collars and can account for all the “lost topology” in
terms of curves and “bubbles”, i.e. maps ω : S2 → N which are harmonic and
thus (possibly branched) minimal immersions themselves.

The upshot of these and our previous results is

Any smooth map is decomposed by the Teichmüller harmonic map
flow into a finite collection of branched minimal immersion from
closed Riemann surfaces and can be reconstructed from these min-
imal immersions together with connecting curves.

References
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Weak solutions for the Ricci flow

Robert Haslhofer

(joint work with Aaron Naber)

We introduce a new class of estimates for the Ricci flow, and use them both to
characterize solutions of the Ricci flow and to provide a notion of weak solutions
for the Ricci flow in the nonsmooth setting.

As a motivation, let us first explain the much easier task of characterizing super-
solutions of the Ricci flow. Let (M, gt)t∈I be a one-parameter family of Riemannian
manifolds. We consider the heat equation (∂t −∆gt)w = 0 on our evolving mani-
folds (M, gt)t∈I . For every s, T ∈ I with s ≤ T and every smooth function u with
compact support, we write PsTu for the solution at time T with initial condition
u at time s, i.e. (PsT u)(x) =

´

M
u(y)H(x, T | y, s)dVs(y), where H(x, T | y, s) is

the heat kernel with pole at (y, s). We write dν(x,T )(y, s) = H(x, T | y, s)dVs(y).
Proposition ([1]). The following are equivalent:

(1) ∂tgt ≥ −2Rcgt
(2) |∇PsTu| ≤ PsT |∇u|
(3) |∇PsTu|2 ≤ PsT |∇u|2
(4)

´

M
u2 log u2 dν ≤ 4(T − s)

´

M
|∇u|2dν

(5)
´

M
(u− ū)2 dν ≤ 2(T − s)

´

M
|∇u|2dν.

In essence, the proposition follows easily from the parabolic Bochner-formula

(∂t −∆)|∇u|2 = 2〈∇u,∇(∂t −∆)u〉 − 2|∇2u|2 − (∂tg + 2Rc)(∇u,∇u).
To characterize solutions of the Ricci flow, and not just supersolutions, we

prove infinite-dimensional generalizations of the above estimates. Let (M, gt)t∈I
be a smooth family of Riemannian manifolds. Let M = M × I be its space-time
with the usual space-time connection, i.e. ∇tY = ∂tY + 1

2∂tgt(Y, ·)♯gt . For each
(x, T ) ∈ M, we consider the based path space P(x,T )M consisting of all space-time
curves of the form {γτ = (xτ , T − τ)}τ∈[0,T ], where {xτ}τ∈[0,T ] is a continuous
curve in M with x0 = x. Let Γ(x,T ) be the Wiener measure of Brownian motion
on our evolving family of manifolds based at (x, T ), i.e. the probability measure
uniquely characterized by the following property. If eσ1,...,σk

: P(x,T )M → Mk,
γ 7→ (xσ1 , . . . , xσk

), is the evaluation map at 0 ≤ σ1 ≤ . . . ≤ σk ≤ T then

eσ1,...,σk∗dΓ(x,T )(y1, . . . , yk) = dν(x,T )(y1, s1) · · · dν(yk−1,sk−1)(yk, sk),

where si = T − σi. Path space can be equipped with two natural notions of

gradient, the τ -parallel gradient ∇‖
τ and the Malliavin gradient ∇H. We have

|∇‖F |(γ) = sup{DV F (γ) |Vσ = 1{σ≥τ}P
−1
σ v0 , v0 ∈ TxM , |v0| = 1},

and

|∇HF |(γ) = sup{DV F (γ) |Vσ = P−1
σ vσ , v ∈ H1([0, T ], TxM) , v0 = 0},

where Pσ : (Txσ
M, gT−σ) → (TxM, gT ) denotes stochastic parallel transport.
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Our main theorem characterizes solutions of the Ricci flow in terms of certain
sharp estimates on path space.

Theorem ([1]). The following are equivalent:

(1) ∂tgt = −2Rcgt
(2) |∇x

´

PTM FdΓ(x,T )| ≤
´

PT M |∇‖F | dΓ(x,T )

(3)
´

PTM
d[F•]τ
dτ dΓ(x,T ) ≤ 2

´

PTM |∇‖
τF |2 dΓ(x,T )

(4)
´

PTM(F 2)τ2 log (F 2)τ2 − (F 2)τ1 log (F 2)τ1dΓ(x,T )

≤ 4
´

PT M〈F,Lτ1,τ2F 〉dΓ(x,T )

(5)
´

PTM(F τ2 − F τ1)2 dΓ(x,T ) ≤ 2
´

PT M〈F,Lτ1,τ2F 〉 dΓ(x,T )

Here, F τ denotes the martingale induced by F ∈ L2(PTM,Γ(x,T )), and Lτ1,τ2
denotes the [τ1, τ2]-part of the Ornstein-Uhlenbeck operator L = ∇H∗∇H. The es-
timates from the theorem are infinite-dimensional generalizations of the estimates
from the proposition. In the very special case of 1-point test functions, i.e. test
functions of the form F (γ) = u(γ(t1)) for some u : M → R, our infinite dimen-
sional estimates reduce to the finite-dimensional estimates from the proposition.
Of course, there are many more test functions on path space, and this is one of the
reasons why our infinite-dimensional estimates are strong enough to characterize
solutions of the Ricci flow, and not just supersolutions.

Finally, let us briefly indicate how the above characterization of solutions of
the Ricci flow can be used to provide a notion of weak solutions for the Ricci flow
[2]. We consider 1-parameter Hausdorff semigroups of metric-measure spaces M
equipped with a linear heat flow. We call M a weak solution of the Ricci flow if
and only if the infinite dimensional gradient estimate

∣∣∣∇x

ˆ

PT M
F dΓ(x,T )

∣∣∣ ≤
ˆ

PT M

∣∣∇‖F
∣∣ dΓ(x,T )

holds. In particular, our solutions are super-solutions in the sense of Sturm [5].
We establish various geometric and analytic estimates for our weak solutions. In
particular, one of our applications concerns a question of Perelman about limits of
Ricci flows with surgery [4]. Namely, the metric completion of the space-time of
Kleiner-Lott [3], which they obtained as a limit of Ricci flows with surgery where
the neck radius is sent to zero, is a weak solution in our sense.
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Harmonic Ricci Flow on surfaces

Reto Buzano

(joint work with Melanie Rupflin)

Let g(t) be a family of smooth Riemannian metrics on an n-dimensional closed
manifold M . Moreover, given a smooth closed Riemannian manifold (N, gN ) of
arbitrary dimension, let φ(t) be a family of smooth maps from M to N . Then
(g(t), φ(t)) is called a solution of the volume preserving Harmonic Ricci Flow (or
Ricci Flow coupled with Harmonic Map Heat Flow), if it satisfies

(1)




∂tg = −2Ricg + 2α dφ⊗ dφ+

2

n
g

 

M

(
Rg − α|dφ|2g

)
dµg =: T (g, φ),

∂tφ = τg(φ).

Here, Ricg and Rg denote the Ricci and scalar curvatures of (M, g), α is a (possibly
time-dependent) positive coupling constant, and τg(φ) = trg(∇dφ) is the tension
field of φ.

The Harmonic Ricci Flow was introduced in [4], with some special cases pre-
viously studied in [2, 3]. Some of the key properties of this flow are that on the
one hand, in special situations, it behaves less singular than the two flows consid-
ered separately, while on the other hand most of the Ricci Flow techniques carry
over almost directly to the coupled system. Therefore, this relatively new flow has
gained the attention of many authors recently, studying the flow usually in general
dimensions. In this talk, we consider the special case where the domain manifold
M is a surface of positive genus γ > 0, a situation in which much stronger results
can be obtained. In particular, we will explain that at a finite singular time of the
flow, both the map and the metric component must blow up simultaneously.

Theorem 1 (Theorem 1.2. of [1]). Let M be a closed surface and let (g, φ) be a
solution of (1) defined and smooth on a maximal time interval [0, T ) and with a
smooth coupling function α that is bounded away from zero. If T <∞, then

lim sup
tրT

max
x∈M

∣∣Kg(t)(x)
∣∣ = ∞ and lim sup

tրT
max
x∈M

1

2

∣∣dφ(x, t)
∣∣2
g(t)

= ∞,

where Kg denotes the Gauss curvature of (M, g).

If the coupling constant α is chosen large enough, such finite time singularities
cannot happen. We prove the following theorem.

Theorem 2 (Theorem 1.1. of [1]). Let α(t) ∈ [
¯
α, ᾱ] be a smooth coupling function,

where 0 <
¯
α ≤ ᾱ <∞ and

(2)
¯
α > 2max

{
K(τ) | τ ⊂ TpN two-plane, p ∈ N

}
.

Here, K(τ) denotes the sectional curvature of the target manifold (N, gN ) at a
point p in direction τ . Then every solution (g, φ) of (1) with a two-dimensional
domain manifold is defined and smooth for all times t ≥ 0.
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Theorem 2 follows directly from Theorem 1, as the assumption (2) prevents |dφ|2g
from blowing up. In fact, by the Bochner-formula, |dφ|2g is uniformly bounded (in
space and time) in terms of its initial value and ᾱ,

¯
α satisfying (2). Moreover,

in [4, Corollary 5.3], we showed that if the coupling constant α(t) is smooth and
bounded away from zero, then a concentration of |dφ|2g cannot happen as long as
the curvature of g(t) stays bounded. Thus in order to prove Theorem 1, we need
to show that in the case of a two-dimensional domain, the converse holds as well,
that is, it is not possible for the (Gauss) curvature Kg(t) of g(t) to blow up while

|dφ|2g remains bounded. In other words, both Theorems 1 and 2 are consequences
of the following main result, which is equivalent to Proposition 1.3. in [1].

Theorem 3 (Proposition 1.3. of [1]). Let (g, φ) be a solution of (1) and assume
that on an interval [0, T ), T <∞, we have

(3) sup
x∈M,t∈[0,T )

1

2

∣∣dφ(x, t)
∣∣2
g(t)

<∞.

Then both the curvature and the injectivity radius of g(t) are uniformly bounded,

sup
x∈M,t∈[0,T )

∣∣Kg(t)(x)
∣∣ <∞, and inf

t∈[0,T )
inj(M, g(t)) > 0,

and thus the solution (g, φ) of (1) can be extended smoothly past time T .

The main idea used to prove Theorem 3 is that one can always split a flow
of metrics on a surface into a conformal part, the pull-back by diffeomorphisms
and a horizontal movement. More precisely, there exist a family of smooth dif-
feomorphisms ft of M , a smooth function u(t) and a horizontal curve g0(t), such
that

(4) g(t) = f∗
t

(
e2u(t)g0(t)

)
.

We then first show that the evolution of the underlying conformal structure,
described by the horizontal curve g0(t), is well controlled and in particular that
the injectivity radius of g0(t) is a priori bounded away from zero on any given
time interval of finite length by the theory of Rupflin and Topping on Teichmüller
Harmonic Map Flow, see in particular [5, 6] and references therein.

Next, we analyse the evolution of the conformal factor u(t) following the ap-
proach of Struwe [7], i.e. by studying the Liouville energy

(5) EL(t) :=
1

2

ˆ

M

(∣∣du(t)
∣∣2
g0(t)

+ 2K̄u(t)
)
dµg0(t),

where K̄ is the average Gauss curvature of (M, g). The main differences to the
Ricci Flow case studied in [7] are that the background metric g0 is not fixed, but
an evolving horizontal curve, and that the evolution equation for u(t) contains
various extra terms stemming from the map component of the flow (1) as well as
the diffeomorphisms ft. Nevertheless, we can still derive bounds on the Liouville
energy in this more complicated situation and they in turn then yield estimates on
the H1-norm of u. In a further step, we also deriveH2-bounds on u with respect to
the evolving background metric g0(t), before setting up a bootstrapping scheme to
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obtain higher regularity estimates and conclude in particular the claimed curvature
and injectivity radius bounds for g(t).

Once uniform bounds on the curvature, the injectivity radius and the energy
density are known, a solution (g, φ) of (1) can always be smoothly extended by
standard arguments – compare with Section 6 of [4] where the corresponding result
was proven in detail for the non-renormalised Harmonic Ricci Flow in arbitrary
dimension.
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On stability properties of type II solutions

Joachim Krieger

The energy critical nonlinear wave equation

(1) (−∂tt +△)u = −u5

on R3+1, the standard Minkowski space of spatial dimension three, has recently
received a lot of attention, as it serves as a key model for other more geomet-
ric/physical field theories, such as energy critical Wave Maps or the critical Yang-
Mills equations. The problem (1) admits a rough dichotomy of its solutions into
two kinds, those of type I, and those of type II. The latter are characterised by the
the property that if J is the maximal time interval on which the Shatah-Struwe
energy class solution u is defined, then

sup
t∈J

∥∥∇t,xu(t, ·)
∥∥
L2

x

< +∞.

On the other hand, the solution is of type I if

sup
t∈J

∥∥∇t,xu(t, ·)
∥∥
L2

x

= +∞.

We note that the presence of these two essentially distinct types of dynamics is
linked to the fact that the conserved energy

E(u) =

ˆ

R3

[
1

2

∣∣∇t,xu
∣∣2 − 1

6
u6
]
dx
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is not positive definite. Other more geometric models, such as Wave Maps or
Yang-Mills, have positive definite preserved energy and hence all their solutions
are type II. This has motivated a strong interest recently in characterising all
type II solutions of (1). This has been approached in two ways: on the one
hand, a program led by Duyckaerts-Kenig-Merle [5]–[8] has aimed at giving an
abstract soliton resolution type result of all possible type II solutions. This has
been achieved in complete generality provided the solutions are restricted to the
radial class in [8], and without radiality but only along a sequence of times in [9].
Remarkably, in the radial case, all type II solutions can be described asymptotically
as superpositions of dynamically re-scaled ground state profiles

W (x) =
1

(
1 + |x|2

3

) 1
2

plus a more regular or scattering error term.
On the other hand, there has been a lot of interest in constructing explicit type

II solutions of various types, as in [21, 11, 19, 4], and understanding the stability
properties of these. In fact, for all type II solutions with exactly one bulk term
W and sufficiently small error, it was shown in [17] that such such solutions are
all unstable in that perturbations away from a co-dimension one Lipschitz hyper
surface lead either to solutions scattering to zero or solutions blowing up. In

particular, we have the following result (we use the notation Wλ(x) = λ
1
2W (λx)).

Theorem 1 (K.–Nakanishi–Schlag ’13). Let

(2) u(t, x) =Wλ(t)(x) + v(t, x)

be a type II blow up solution for (1), with limt→T λ(t) = +∞, and such that

sup
t∈I

∥∥∇t,xv(t, ·)
∥∥
L2

x

≤ δ ≪ 1

for some sufficiently small δ > 0, where as usual I denotes the maximal life span
of the Shatah-Struwe solution u. Also, assume that t0 ∈ I. Then there exists
a co-dimension one Lipschitz manifold Σ in a small neighbourhood of the data(
u(t0, ·), ut(t0, ·)

)
∈ Σ in the energy topology Ḣ1(R3)×L2(R3) and such that initial

data
(
u0, u1

)
∈ Σ result in a type II solution, while initial data

(
u0, u1

)
∈ Bδ \ Σ,

where Bδ ⊂ Ḣ1(R3)×L2(R3) is a sufficiently small ball centred at
(
u(t0, ·), ut(t0, ·)

)
,

either lead to blow up in finite time, or solutions scattering to zero, depending on
the “side of Σ” these data are chosen from.

In fact, the solutions “above” Σ which blow up can be seen to be type I in a
certain generalised sense, see [22].

Singular type II solutions as in (2) were constructed explicitly in [21, 19] with
λ(t) = t−1−ν , ν > 0 but otherwise arbitrary. The preceding theorem then natu-
rally suggests the question whether perturbations of such solutions along the hyper
surface Σ result in a similar type of blow up. Our main result, obtained in joint
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ongoing work with W. Schlag, is that this is in fact the case provided we impose
a co-dimension one condition on such perturbations along Σ:

Theorem 2 ([20]). There is ν0 > 0 sufficiently small, such that the following
holds: Let uν , 0 < ν < ν0 be one of the solutions constructed in [21, 19], on a
time slice (0, t0] × R3, with 0 < t0 ≪ 1 sufficiently small. Then there exists a co-
dimension one Lipschitz hyper surface Σ0 in a Hilbert space S which is essentially(
H

3
2+

rad(R
3) ∩ {φd}⊥

)
×
(
H

1
2+

rad(R
3) ∩ {φd}⊥

)
, and a positive δ1 ≪ 1, such that for

any (u0, u1, γ) ∈ Σ0 ∩Bδ1,S(0)× (−δ1, δ1) and suitable Lipschitz functions

γ1,2 : S ∩Bδ1,S(0)× (−δ1, δ1) −→ R,

the solution of (1) with data

u[t0] := uν [t0] +
(
u0, u1

)
+
(
γφd + γ1(u0, u1, γ)φd, γ2(u0, u1, γ)φd

)

∈
(
H1+
rad(R

3)×H0+
rad(R

3)
)
∩ Σ

exists on I = (0, t0] and can be written in the form

u(t, x) =Wλ(t) + v1(t, x), λ(t) = t−1−ν

with (v1, v1,t) ∈ H1+ ν
2 − ×H

ν
2− on each time slice t = t1 ∈ I, and furthermore

(
Eloc(v)

)
(t) :=

ˆ

|x|≤t

1

2

∣∣∇t,xv1
∣∣2 dx −→ 0

as t → 0. Thus for small enough ν > 0, the solutions constructed in [21, 19]
are stable under perturbations along a co-dimension two manifold in a suitable
topology.
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Asymptotic stability of solitons for the Zahkarov-Kuznetsov equation

Raphaël Côte

(joint work with Claudio Muñoz, Didier Pilod, and Gideon Simpson)

We consider the Zahkarov-Kuznetsov equation in dimension d ≥ 2

(ZK) ∂tu+ ∂x1

(
∆u + u2

)
= 0,

where u = u(x, t) is a real-valued function, x = (x1, x2) ∈ R × Rd−1 and t ∈ R.
(ZK) was introduced by Zakharov and Kuznetsov [5] to describe the propagation of
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ionic-acoustic waves in uniformly magnetized plasma in dimensions 2 and 3. (ZK)
was derived from the Euler-Poisson system with magnetic field in the long wave
limit was carried out by Lannes, Linares and Saut [6]; and from the Vlasov-Poisson
system in a combined cold ions and long wave limit, by Han-Kwan [4].

The Cauchy problem for (ZK) in Hs(Rd) has been extensively studied: let us
mention the currently optimal results for local well posedness in dimension 2, for
s > 1/2 by Grünrock and Herr [3], and by Molinet and Pilod [10] (solutions in
H1(R2) are global); and in dimension 3 for s > 1 by Ribaud and Vento [11].

We are interested in studying the flow of (ZK) around special travelling wave
solutions called solitons. They are solutions fo the form

Qc(x1 − ct, x2) with Qc(x) −→ 0
|x|→+∞

, c > 0

(the travelling speed must lie along the privileged direction x1 if one expects the
travelling wave to be in H1), where Qc(x) = c1/(p−1)Q(c1/2x) and Q > 0 satisfies

−∆Q+Q−Qp = 0.

A. de Bouard [1] proved that the L2-subcritical solitons are orbitally stable
(using concentrate compactness à la Cazenave-Lions). The main result of [2] is
the asymptotic stability of solitons of (ZK) in the case d = 2.

Theorem 1 (Asymptotic stability). Assume d = 2. Let c0 > 0. For any β > 0,
there exists ε0 > 0 such that if 0 < ε ≤ ε0 and u ∈ C(R, H1(R2)) is a solution of
(ZK) satisfying

‖u(0)−Qc0‖H1 6 ε,

then the following holds true.
There exist c+ > 0 with |c+ − c0| ≤ K0ε, for some positive constant K0 inde-

pendent of ε0, and ρ = (ρ1, ρ2) ∈ C1(R,R2) such that

u(·, t)−Qc+(· − ρ(t)) → 0 in H1(x1 > βt) as t → +∞,(1)

ρ(t) → (c+, 0) as t→ +∞.(2)

In fact, the convergence (1) can also be obtained in regions of the form

AS(t, θ) :=
{
(x1, x2) ∈ R

2 : x1 − βt+ (tan θ)x2 > 0
}
, where θ ∈ (−π

3 ,
π
3 ) .

The maximal angle π
3 , which appears in the crucial monotonicity formula (in phys-

ical space), also occurs in Fourier space: for example, when proving the following
Strichartz estimate – used in [10] to improve the well-posed results for ZK at low
regularity – ∥∥|K(D)| 18 e−t∂x1∆ϕ

∥∥
L4

xt

6 C‖ϕ‖L2 ,

where |K(D)| 18 is the Fourier multiplier associated to the symbol |K(k1, k2)|
1
8 =

|3k21 − k22 |
1
8 . Observe that the multiplier |K(k1, k2)| 18 cancels out along the cone

|k2| = tan(π3 )|k1|.
The above result follows the framework developed by Martel and Merle [7, 8] for

(gKdV), and which we extend to higher space dimension. The proof does neither
rely on the structure of the nonlinearity ∂x1(u

2) of (ZK) – which is not integrable
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– neither on the dimension d. Indeed, it could be extended to different d and p as
long as

• local well posedness holds in H1 (not available in dimension 3).
• a sign condition holds, namely that 〈L−1ΛQ,ΛQ〉L2 < 0. Here L = −∆+
1− pQp−1 is the linearized operator around Q, and ΛQ = d

dcQc
∣∣
c=1

is the
scaling operator.

The above sign spectral condition ensures a certain coercivity in a crucial Virial
identity: it has been numerically checked in dimension 2 for p < 2.1491 and in
dimension 3 for p < 1.8333. We however believe that the coercivity could be
obtained for a large class of p (observe nonetheless that (ZK) is L2 critical when
d = 3, so that solitons are expected to be unstable).

The tools developed for Theorem 1 also apply in the context of a sum of decou-
pled solitons: they allow to show stability and asymptotic stability of multisolitons
in the sense of (1) and (2).

Let us finally mention a few open problems. We would be interested in under-
standing the behavior in the whole space (i.e. convergence in H1(Rd) in (1)): this
would require improved dispersion estimates and revisit the theory of global well
posedness for small data. A second natural question regards the long time dynam-
ics of large solution in dimension 3. More precisely, we conjecture the existence
of finite-time blowup solution for 3D (ZK), as it is expected in the L2 critical
context. Also, (ZK) admits another nonlinear solution: the line soliton. Although
it does not lie in H1(Rd), this object is worth studying: this was initiated by
Mizumachi [9] for the Kadomtsev-Petviashvili II equation, another extension of
(KdV) in dimension 2.
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Global regularity and scattering for energy critical geometric wave

equations

Sung-Jin Oh

(joint work with Daniel Tataru)

This extended abstract describes the recent work of the author and D. Tataru on
the (4 + 1)-dimensional (massless) Maxwell–Klein–Gordon equation [4, 5, 6]. The
main result fits in the broader context of establishing large data global regularity
and scattering for geometric wave equations in the energy critical case, which has
seen tremendous progress recently [2, 18, 7, 8, 9].

Here, by the Maxwell–Klein–Gordon (MKG) equation, we mean the minimally
coupled system of an electromagnetic field, described by the Maxwell equation,
and a massless1 scalar field, described by the wave equation. More precisely, we
say that a pair (A, φ) of a real-valued 1-form A = Aα dx

α and a C-valued function
φ on R1+d is a solution to the MKG equation if2

(MKG)

{
∂µF [A]νµ = Im(φDνφ),

DµDµφ = 0,

where Dµ = ∂µ + iAµ and F [A]µν = ∂µAν − ∂νAµ. Observe that this equation is
invariant under the scaling (A, φ) 7→ (λ−1A, λ−1φ)(λ−1t, λ−1x) (λ > 0).

The initial value problem for (MKG) alone is not formally well-posed due to

gauge invariance, i.e., if (A, φ) is a solution to (MKG) then so is (Ã, φ̃) = (A −
dχ, eiχφ) for any real-valued function χ. To fix this issue, we impose3 in addition

to (MKG) the Coulomb gauge condition
∑4
j=1 ∂jAj = 0.

Of fundamental importance in the study of large data solutions is the conserved
energy for (MKG), which is a nonnegative quantity that takes the form

E{t}×Rd [A, φ] =

ˆ

{t}×Rd

1

2

∑

µ<ν

∣∣F [A]µν
∣∣2 + 1

2

∑

µ

|Dµφ|2 dx.

We consider the energy critical case d = 4, when the conserved energy is invariant
under the scaling of (MKG). In general, this is the borderline case in which

1Strictly speaking, from the point of view of terminology it would be more apt to take a
massive scalar field governed by the Klein–Gordon equation. The convention we use here is,
however, standard in the literature. Our interest in the massless case comes from the viewpoint
that (MKG) is a simpler model for the Yang–Mills equation, which is massless.

2We adopt the standard conventions of using the Minkowski metric m = diag(−1,+1, · · · ,+1)
to raise and lower indices, and summing up repeated upper and lower indices.

3Thanks to the linearity of the formula Ã = A− dχ, which holds since the gauge group U(1)
for (MKG) is abelian, this choice of gauge results in no loss of any generality; see [4, Section 3].
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finite time blow-up may be possible (e.g., wave maps into S2). We show that,
nevertheless, (MKG) is globally regular for any finite energy data. More precisely:

Theorem 1 ([4, 5, 6]). The initial value problem for (MKG) on R1+4 in the
Coulomb gauge is globally well-posed for any initial data with finite energy. More-
over, such solutions scatter as t→ ±∞.

For the precise statement, we refer to [6, Theorem 1.3].
We remark that, around the same time as our work, this conclusion was also

reached independently by Krieger–Lührmann [2]. Their method of proof is, how-
ever, different. While [2] uses the celebrated concentration compactness/rigidity
method of Kenig–Merle (first adapted for a geometric wave equation in [3]), our
work follows the scheme developed by Sterbenz–Tataru [7, 8], in which Theorem 1
is derived as a consequence of the following “bubbling” result:

Theorem 2. Let (A, φ) be a finite energy (well-posed) solution to (MKG) on R1+4

in the Coulomb gauge with maximal future lifespan [0, T+). Then either T+ = ∞
and the solution scatters as t → ∞, or there exists a sequence of translations and
rescalings of (A, φ) which converges strongly to a nontrivial finite energy station-
ary4 solution to (MKG) in H1

loc((−1, 1)× R4).

It can be shown that (MKG) on R1+4 does not admit any nontrivial stationary
solutions with finite energy [6, Section 7]; therefore, Theorem 2 implies Theorem 1.
A virtue of our approach is that, as in the case of wave maps [7, 8], it is naturally
adapted to establishing a threshold theorem (i.e., global well-posedness and scat-
tering for data with energy below every nontrivial static solution), whose proof
is currently an open problem for the energy critical Yang–Mills equation, which
resembles (MKG).

Due to space constraint, we will not attempt to present the proof in any detail.
For an extended summary of the proof, we refer the reader to [6, Sections 2 & 3].
Here, we will content ourselves with discussion of two key ingredients of the proof.

The first important ingredient is a monotonicity formula, or a Morawetz-type
estimate, for (MKG) that is analogous to an estimate of Grillakis for wave maps
[1] used by Sterbenz–Tataru [8]. Given an interval I, let CI be the truncated
cone {(t, x) : |x| ≤ t, t ∈ I}, and let ∂CI = {(t, x) : |x| = t, t ∈ I} be its lateral
boundary. For simplicity, we state a version of the monotonicity formula under
the assumption that the energy flux vanishes on ∂CI :

Proposition 3 ([6, Section 5]). Let (A, φ) be a solution to (MKG) on the cone CI
with I = [t1, t2], whose energy flux on ∂CI is zero. Then for some non-negative
density (X0)P0[A, φ](t, x), we have

ˆ

St2

(X0)P0 +

¨

CI

(
|ιXF |2 +

∣∣∣DXφ+
1

ρ
φ
∣∣∣
2
)

dt dx

ρ
=

ˆ

St1

(X0)P0

where ρ =

√
t2 − |x|2, X = xµ

ρ ∂µ and St = ({t} × R4) ∩ CI .

4We say that a solution (A,φ) to (MKG) is stationary if ιY F = 0 and DY φ = 0 for some
constant time-like vector field Y .
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To illustrate how this is used, let us consider the finite time blow up case. By [4,
Theorem 1.1] and finite speed of propagation, it suffices to restrict our attention
to the domain of influence of an energy concentration point, which we may assume
to be C(0,1] after applying symmetries of (MKG). In general, the energy flux on
C(0,t] monotonically decreases to zero as t → 0; for simplicity, let us assume that

it vanishes exactly on C(0,1]. It can be shown that lim supt→0+

´

St

(0)P0 ≤ CE,

where E is the conserved energy of (A, φ). By Proposition 3, we see that
¨

C(0,1]

(
|ιXF |2 +

∣∣∣DXφ+
1

ρ
φ
∣∣∣
2
)

dt dx

ρ
≤ CE <∞.

When restricted to a time-like cone {|x| ≤ γt} (0 < γ < 1), note that ρ = O(t) as
t→ 0+, which shows that the quantity in the parentheses vanish (in an integrated
sense) as t → 0. Ultimately, this decay is what allows us to conclude that the
bubbles extracted in Theorem 2 are stationary.

Another key ingredient of our proof is the following analogue of the theorem of
Sterbenz–Tataru for wave maps [7], which may be viewed as a refined continuation
criterion:

Theorem 4 ([5, Theorems 1.5, 1.6]). Let (A, φ) be a solution to (MKG) on I×R4

in the Coulomb gauge with energy E. There exists a function ǫ(E) > 0 such that
if

(1) sup
k∈Z

2−2k
∥∥Pk(∇t,xφ)

∥∥
L∞(I×R4)

≤ ǫ(E),

where (Pk)k∈Z are the usual dyadic Littlewood–Paley projections, then (A, φ) can
be continued past finite endpoints of I and scatters towards infinite endpoints of I.

The difficulty, and usefulness, of this theorem lies in the fact that (1) is quite
a weak condition; in particular, the energy E of the solution may be quite large.
Proof of Theorem 4 requires combination of many ideas, such as induction on
energy, paradifferential renormalization, function spaces, null structure of (MKG)
in the Coulomb gauge etc.
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Effective dynamics of nonlinear Schrödinger equations on large

domains

Zaher Hani

(joint work with T. Buckmaster, P. Germain, and J. Shatah)

The purpose of this note is to report on the work [1], where we consider the
nonlinear Schrödinger equation

(NLS)

{
−i∂tu+∆u = ±|u|pu set on (t, x) ∈ R× TnL

u(t = 0) = u0

Here p ≥ 2 is an even integer and TnL is the box [0, L]n with periodic boundary
conditions.

As is well-known, the long-time behavior of solutions for such equations is more
or less well-understand on the spatial domain Rn (at least for small localized
data); however the situation is markedly different on bounded domains. There,
a very rich set of dynamics can be observed even starting from very small data;
ranging from quasi-periodic solutions to solutions whose energy cascades between
characteristically different length scales. Our aim is to better understand the
question of long-time dynamics by deriving effective equations for it when L is
very large.

Time scale heuristics. The problem of describing the effective dynamics for a
nonlinear dispersive equation posed on a very large domain is quite fundamental
for mathematical and physical reasons. To explain this point, let us start with
a generic nonlinear dispersive equation posed on a large domain DL ⊂ Rn with
characteristic size L (for example DL = LD0 for some closed set D0 with smooth
boundary). Such an equation can be written as

(1) Lu = Np+1(u) + h.o.t. x ∈ DL
where L is the linear dispersive part of the equation, and we have written the
nonlinearity as a sum of term of degree p+1 with p > 0, and another higher order
term (h.o.t.) that vanishes to higher order as u→ 0.

The question that we ask is whether we can describe the effective dynamics of
this equation when L is very large. This is relevant for instance in studying water
waves in the ocean. As a first guess, one might think that the effective dynamics
is given by the same equation (1) posed on Euclidean space Rn. We call this the
Euclidean approximation, but it is only relevant on certain time scales for which
the solution does not feel the difference between DL and Rn. To understand the
range of validity of the Euclidean approximation one needs to compare two time
scales:
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• The nonlinear times scale Tnl: before which the nonlinearity has negligible
effect. It is not hard to see that for initial data of size ǫ and a nonlinearity
of degree p+ 1, the nonlinear time scale is Tnl ∼ ǫ−p.

• The Euclidean time scale TE which is the time it takes the solution to feel
the effect of the boundary. Assuming that at the linear level, wave packets
at frequency scale ∼ 1 move at speed ∼ 1, then one can heuristically argue
that a scale-1 wave packet localized in the interior of DL would take time
O(L) to feel the effect of the boundary. Therefore TE ∼ L.

Comparing those two time scales, one obtains that the Euclidean approximation
is only relevant in the regime when Tnl ≤ TE (equivalently L > ǫ−p) and over time
scales . L. Therefore, the natural question becomes

Question: What happens after the Euclidean approximation breaks? Can we
still describe the effective dynamics for very large L?

Rough statement of the results. Answering the above question necessitates
specifying the boundary conditions for the problem (1). At a linear level, this tells
us how a wave packet is reflected once it reaches the boundary. In [1], we give
a positive answer to this question for the nonlinear Schrodinger equation on the
box TnL with periodic boundary conditions. Earlier results for n = 2 and p = 2
appeared in [2].

Roughly speaking, the results in [1] and [2] state that there exists another much
longer time scale (compared to Tnl and TE), which we call the resonant time scale
TR, where one can still describe the effective dynamics precisely by an equation
on Rn called the continuous resonant equation. Up to possible logarithmic factors

of L (only in dimension n = 2), TR ∼ L2

ǫ2 ≫ Tnl, TE .

Formal derivation of the effective equation. For simplicity of presentation,
we restrict to the case p = 2, and choose the defocusing + sign of the nonlinearity
in (NLS) (which has little role in what follows). We start with an ansatz u = ǫv to
emphasize the size of the initial data under consideration. The equation satisfied
by v is given by

−i∂tv +∆v = ǫ2|v|2v set on (t, x) ∈ R× TnL

We expand v(t, x) = 1
Ln

∑
K∈Z

n
L
v̂K(t)e(K · x), where K ∈ ZnL =

(
Z

L

)n
and e(α) =

e(2πiα), and the define aK(t) = e(−|K|2t)ûK(t). The equation satisfied by bK
reads

(2) −i∂taK =
ǫ2

L2n

∑

S(K)

aK1aK2aK3e(2πΩ(K)t),

where

S(K) = {(K1,K2,K3) ∈ (ZnL)
3 | K1 −K2 +K3 −K = 0}

Ω(K) = |K1|2 − |K2|2 + |K3|2 − |K|2.
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We now split the above right-hand side into resonant interactions (for which Ω = 0)
and nonresonant interactions:

(3) −i∂taK =
ǫ2

L2n

∑

S(K)
Ω(K)=0

aK1aK2aK3

︸ ︷︷ ︸
resonant interactions

+
ǫ2

L2n

∑

S(K)
Ω(K) 6=0

aK1aK2aK3e(Ω(K)t)

︸ ︷︷ ︸
nonresonant interactions

.

The expectation is now that

• If ǫ is small enough, the non-resonant interactions become dynamically ir-
relevant. This requires tools from the theory of dynamical systems, namely
normal forms, and it implies that the dynamics are well-approximated by
the resonant contributions only. Applying one normal forms transforma-
tion justifies this approximation under the restrictive condition ǫ < L−1−

(cf. [2]). In [1] we apply a large (but finite) number of normal forms
transformations in order to justify this resonant approximation under the
relatively mild condition ǫ < L−γ for any γ > 0. The upshot is that
effectively, the dynamics of aK(t) are given by

−i∂taK =
ǫ2

L2n
TL(a, a, a) where TL(a, a, a) =

∑

S(K)
Ω(K)=0

aK1aK2aK3

• If L is large enough, one can try to approximate the resonant sum above
by an integral in a matter similar to how Riemann sums are approximated
by integrals. However, the fact that the set R(K) is defined by nonlinear
restrictions on (K1,K2,K3) ∈ (ZnL)

3, leads to one of the deep problems in
analytic number theory. The main tool here is the Hardy-Littlewood circle
method, of which we rely on some relatively recent refinements (e.g. double
Kloosterman refinement) culminating in [3]. We shall not go into the
details of this here, but the end result is that there exists a normalization
factor Z(L), such that the resonant sum converges to an explicit integral
operator T as follows: If f is a sufficiently smooth and decaying

1

Z(L)
TL(f, f, f) L→∞−→ T (f, f, f) with Zn(L) =

{
1
ζ(2)L

2 logL if n = 2

ζ(n−1)
ζ(n) L2n−2 if n ≥ 3

where ζ(·) is the Riemann zeta function.

We show that these expectations are fulfilled for initially smooth and localized
data, and therefore, that the limiting dynamics of aK (up to rescaling time by a

factor L2n

Zn(L)ǫ2
) is given by the “Continuous Resonant” equation

(CR) −i∂tg(t, ξ) = T (g(t, ·), g(t, ·), g(t, ·)) (t, ξ) ξ ∈ R
n.

A more precise statement of the main result. We state the main result of
[1] for dimensions n ≥ 3. The statement for n = 2 is more technical to state here.



1540 Oberwolfach Report 27/2016

Theorem 1 (Buckmaster, Germain, H., Shatah ’16). Let n ≥ 3 and γ > 0
be arbitrary. Suppose that g(t, ξ) is a sufficiently “nice” solution1 of the (CR)
equation on an interval [0,M ] (M arbitrary). Suppose we start with an NLS
solution such that aK(0) = g0(K). If L is large enough, and if ǫ < L−γ, then

∥∥∥aK(t)− g
( t

TR
,K
)∥∥∥

L2∩L∞

= o(1)L→∞.

for all 0 ≤ t ≤MTR where TR = ζ(n)
ζ(n−1)

(
L2

ǫ2

)
.

Final remarks. The result when n = 2 was first proved in [2] under the restriction
ǫ < L−1−γ and where o(1) = (logL)−(1−γ). In contrast, the o(1) in the above
theorem is polynomially decaying in L. We improve on this logarithmic error
bound when n = 2 in [1], by identifying the logarithmically decaying correction
term which allows to make an approximation result with polynomially decaying
error term (in L).
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Onsager’s Conecture and Kolmogorov’s 1941 Theory

Tristan Buckmaster

(joint work with Camillo De Lellis, Philip Isett, Nader Masmoudi, László
Székelyhidi Jr., Vlad Vicol)

We consider the incompressible Euler equations on the 3-dimensional torus:

(1)

{
∂tv + v · ∇v +∇p = 0
div v = 0

,

where here v is a vector field representing the velocity of the fluid and p is the
pressure.

A fundamental feature of turbulent flow is that of dissipation of kinetic energy
[22, 19, 16], where given a solution to (1), its kinetic energy is defined to be

E(t) :=
1

2

ˆ

|v(x, t)|2 dx.

A simple calculation however yields the conservations of energy for any smooth
solution of (1). This formal calculation does not however hold for distributional
solutions to Euler as is demonstrated by the paradoxical solution of Scheffer (cf.

1(CR) is locally well-posed in appropriate spaces for any dimension, and is globally regular
for n = 2, 3, 4.
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[23, 8, 9]). In his famous note [22] on statistical hydrodynamics, Lars Onsager
conjectured the following dichotomy:

Conjecture 1 (Onsager’s conjecture).

(a) Any weak solution v belonging to the Hölder space Cθ for θ > 1
3 conserves

the energy.
(b) For any θ < 1

3 there exist weak solutions v ∈ Cθ which do not conserve
the energy.

Part (a) of this conjecture has since been resolved: it was first considered by
Eyink in [13] following Onsager’s original calculations and later proven by Con-
stantin, E and Titi in [7] (see also [12, 5]). Indeed in [7], Constantin, E and Titi
proved the following stronger result:

Theorem 1. For any ε > 0, every weak solution v ∈ C([0, T ];L2(T3)) of (1)

belonging to the space L3([0, T ];B
1
3+ε,∞
3 (T3)), conserves its total kinetic energy.

Part (b) however remains an open conjecture. The first constructions of non-
conservative 1

10−ε Hölder-continuous weak solutions appeared in work of De Lellis
and Székelyhidi Jr. [11], which itself was based on their earlier seminal work [10]
where continuous weak solutions were constructed. In the works of Buckmaster,
Isett, De Lellis and Székelyhidi Jr. [2, 17, 18, 4] a number of new ideas in order
improve the Hölder exponent to 1/5 − ε. Specifically, the following result was
proved:

Theorem 2. Assume e : [0, 1] → R is a strictly positive smooth function. Then

there exists a continuous vector field v ∈ C
1
5−ε(T3 × [0, 1]) which solves (1) in the

sense of distributions and is such that E(t) = e(t).

In view of Theorem 1, one could however speculate that the threshold for en-

ergy conservation should in fact be L3([0, T ];B
1
3+ε,∞
3 (T3)). Indeed such space fits

naturally in the context of Kolmogorov K41 theory [19, 21, 20, 16]. Kolmogorov
K41 theory predicts that for homogeneous, isotropic turbulence, the dissipation
rate is non-vanishing in the inviscid limit. In particular, let us define the structure
functions for homogeneous, isotropic turbulence by

Sp(ℓ) :=
〈∣∣v(x+ ℓ̂)− v(x)

∣∣p〉,

where 〈·〉 denotes an ensemble average and ℓ̂ is a spatial vector of length ℓ. Then
Kolmogorov’s famous four-fifths law can be stated as

(2) S3(ℓ) ∼ −4

5
εdℓ ,

where here εd denotes the mean energy dissipation per unit mass. More generally,
Kolmogorov’s scaling laws can be stated as

(3) Sp(ℓ) = Cpε
p
3

d ℓ
p
3 ,

for any positive integer p.
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A well known consequence of the above scaling law for the case p = 2 is the
Kolmogorov spectrum, also known as the 5

3 law, which postulates a scaling relation
on the energy spectrum of a turbulent flow (cf. [16, 15]). Written in terms of
Littlewood-Paley theory (cf. [6]) the 5

3 law can be written as

(4) E(λ) ∼ ε
2
3λ−

5
3

where E(κ) = 1
2
d
dκ 〈|u<κ|

2〉.
Since we are concerned with individual realizations and not statistical averages,

it is interesting to note that in the work [14], Eyink provides analytical evidence
that suggests at the inviscid limit the 4

5 law should hold with just local space-time
averaging and angular averaging over the direction of the separation vector. This
viewpoint has both numerical and experimental support [24]. We are naturally
lead to the following weak version of Onsager’s conjecture:

Conjecture 2 (Kolmogorov-Onsager conjecture). For any θ < 1
3 , there exists

weak solutions v ∈ C([0, 1];L2(T3)) to the Euler equations (1) belonging to the

Besov space L3([0, 1], Bθ,∞3 (T3)) which do not conserve their kinetic energy.

Building on the arguments of [2], in the work [1], the author proved the existence
of non-conservative 1

5 − ε Hölder-continuous weak solutions that are for almost

every time 1
3 − ε Hölder-continuous:

Theorem 3. There exists weak solutions v ∈ C
1
5−ε(T3 × [0, 1]) to (1) such that

for times t outside a set of Hausdorff dimension strictly less than 1 we have that
v(·, t) is Hölder C

1
3−ε continuous.

Introducing a complicated dynamical systems like argument as well as a com-
plementary bookkeeping scheme, in [3], Buckmaster, De Lellis and Székelyhidi Jr.
further pushed the ideas of [1] in order to prove the following theorem:

Theorem 4. There exists weak solutions v ∈ L1([0, 1], C
1
3−ε(T3)) ∩C(T3 × [0, 1])

to (1) that do no conserve kinetic energy.

In work in progress, Buckmaster, Nader Masmoudi and Vlad Vicol, are at-
tempting to introduce a number of new ideas with the aim of closing the gap on
Conjecture 2. In [3], sharper temporal cut-offs were introduced to successfully
trade time integrability for spatial regularity. In the new work, new ideas will
be introduced to trade spatial integrability for spatial regularity. The aim is to
construct weak non-conservative solutions with a Kolmogorov-like spectrum. In
particular, we aim at proving the following theorem:

Theorem 5. There exists weak solutions v ∈ L∞([0, 1];H
1
3−ε(T3)) to (1) that do

not conserve kinetic energy.

Curiously, the spaces L3([0, 1], Bθ,∞3 (T3)) of Conjecture 2 are interpolation
spaces of the spaces considered in Theorem 4 and Theorem 5
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Nonlinear echoes and Landau damping with insufficient regularity

Jacob Bedrossian

In this talk we discussed recent developments on Landau damping in the Vlasov-
Poisson equations. We focused on the recent proof [1], by the speaker, that Mouhot
and Villani’s theorem on Landau damping near equilibrium in Tx ×Rv [3] cannot
in general be extended to finite regularity. This is demonstrated by constructing
a sequence of homogeneous background distributions and arbitrarily small per-
turbations in Hs which deviate arbitrarily far from free transport for long times
(in a sense to be made precise). The density experiences a sequence of nonlinear
oscillations that damp at a rate which is arbitrarily slow compared to the predic-
tions of the linearized Vlasov equations. The nonlinear instability is due to the
repeated re-excitation of a resonance known as a plasma echo. The results hold for
a specific, small background distribution, but include both electrostatic and grav-
itational interactions. The recent results of Nader Masmoudi, Clement Mouhot,
and the speaker [2] were also briefly discussed to contrast the unconfined and con-
fined cases. In particular, we emphasized the importance that infinite regularity
plays in the confined case whereas the unconfined case in three dimensions does
not require infinite regularity.

If the distribution function F is written as F (t, x, v) = f0(v) + h(t, x, v), where
h is assumed to be a mean-zero fluctuation, then the Vlasov equations for h are

(1)





∂th+ v · ∇xh+ E(t, x) · ∇v

(
f0 + h

)
= 0,

E(t, x) := −(∇xW ∗x ρ)(t, x),
ρ(t, x) :=

´

R
h(t, x, v)dv,

h(t = 0, x, v) = hin(x, v).

The potential W describes the mean-field interaction between particles; we will
consider:

Ŵ (k) = ζ|k|−2
, k 6= 0,(2)

with ζ ∈ {−1,+1}; −1 corresponds to gravitational interactions in stellar me-
chanics and +1 corresponds to electrostatic interactions between electrons in a
quasi-neutral plasma (after making an electrostatic approximation and neglecting
collisions and ion acceleration).

Denote Tt as the free transport group:

h ◦ Tt = h(x+ tv, v).(3)

Then, the h = hin ◦ T−t solves the free transport equation

(4)

{
∂th+ v · ∇xh = 0
h(0, x, v) = hin(x, v).

By direct computation, one verifies that the Fourier transform satisfies

̂hin ◦ T−t(t, k, η) = ĥin(k, η + kt).
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In 1946, Landau observed, that the linearized Vlasov equations (with f0 Maxwell-
ian) with analytic initial data predicts the following for some λ, c > 0 provided
x ∈ Td:

‖eλ|∇| (h(t) ◦ Tt − h∞)‖L2 . ‖e(λ+c)|∇|(〈v〉dhin
)
‖L2e

− 1
2 ct.(5)

The decay of the electric field was experimentally confirmed in [4], and is now
known as Landau damping and is somewhat analogous to scattering in dispersive
equations. That all initial data which is small enough, in a suitable sense, exhibits
Landau damping for (x, v) ∈ Td × Rd was first proved by Mouhot and Villani [3],
provided one takes the initial data in Gevrey-ν for some ν close to 1. Moreover,
Mouhot and Villani predicted from nonlinear heuristics based on the so-called
plasma echoes that something may go wrong due to nonlinear effects if one tries
to take ν > 3. The results of [3] were later extended to cover the predicted range
of ν ∈ [1, 3) in [7]. Plasma echoes were discovered and isolated experimentally in
[5]; they are a kind of resonance associated with the so-called Orr mechanism. See
e.g. [6, 1] for more discussion and references.

Several works have explored the unusually stringent regularity requirement,
specifically, the results [8, 9, 10, 2]. However, are all in settings that either avoid, or
suppress in some way, the nonlinear echoes. In [1], we showed that in the original
setting studied by Mouhot and Villani [3], small perturbations h in (1), in general,
do not behave like the linearized Vlasov equations if the initial condition is only
assumed to be small in a Sobolev space. Hence, for long times, the linearization
is not valid even for arbitrarily small data and the results of [3, 2] do not extend
to finite regularity results on Tx × Rv.

Consider the following background density:

f0(v) =
4πδ

(1 + v2)
,

where 0 < δ ≪ 1 will be chosen small later. The full statement of the theorem is
then given as:

Theorem 1 (Nonlinear echoes in Sobolev spaces). Let R ≥ 1, p ∈ (0, 1) be

arbitrary, and suppose Ŵ (k) = ±|k|−1−γ0 with γ0 ≥ 1. There exists σ0(R) ≫ R
such that for all σ ≥ σ0, there is a constant ǫ0(R, σ) ≪ 1 such that for all ǫ ≤ ǫ0
and 0 < δ ≤ ǫp, there exists a real analytic hin with f0 + hin strictly positive and
hin satisfying the quantitative bound

‖〈v〉hin‖Hσ ≤ ǫ(6)

but such that at some finite time t⋆ = t⋆(ǫ, R) satisfying ǫt⋆ → ∞ as ǫ → 0, the
solution to (1) satisfies the following for all z ≥ 0:

‖h(t⋆) ◦ Tt⋆‖Hσ−R+z & tz⋆ ≫ ǫ−z,(7a)

‖E(t⋆)‖L2 & tR−σ
⋆ .(7b)

A sketch of the proof was also briefly discussed. The proof is based on finding
an approximate solution which exhibits the echo instability and then proving a
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kind of stability result to deduce that the true solution stays nearby. The latter
step is significantly more difficult though neither are non-trivial.
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[7] J. Bedrossian, N. Masmoudi, C. Mouhot, Landau damping: paraproducts and Gevrey regu-

larity. Ann. of Part. Diff. Eqns. To appear.
[8] E. Faou, F. Rousset, Landau damping in Sobolev spaces for the Vlasov-HMF model. Arch.

Rat. Mech. Anal., 219:2, (2016), 887–902.

[9] H. Dietert, Stability and bifurcation for the Kuramoto model. J. Math. Pures Appl., 105:4,
(2016), 451–489.

[10] B. Fernandez, D. Gérard-Varet, G. Giacomin, Landau damping in the Kuramoto model.
Ann. Institute Poincaré – Analysis nonlinéaire. To appear.

A mathematical proof of boundary layer separation

Anne-Laure Dalibard

(joint work with Nader Masmoudi)

The Prandtl equation was first derived by Ludwig Prandtl in 1904, in his presenta-
tion at the Third International Mathematics Congress in Heidelberg. The Prandtl
equation describes the motion of a fluid with small viscosity in the vicinity of a
solid wall, and is obtained by passing to the limit (formally) in the Navier-Stokes
system as the viscosity goes to zero, after an appropriate rescaling of the normal
variable. We refer the interested reader to [1, 2] for more detail. We are interested
here in a stationary version of this equation in which the exterior pressure gradient
has a positive sign, namely

(P)

uux + vuy − uyy = −1, x > 0, y > 0,

ux + vy = 0, x > 0, y > 0,

u|x=0 = u0, u|y=0 = 0, lim
y→∞

u(x, y) = uE(x),

with uE(x) =
√
2(x0 − x)+U0, for some x0 > 0, U0 > 0, and u0 ∈ C2,α

b (R) is such
that u0(0) = 0, u′0(0) > 0, limy→∞ u0(y) = uE(0) > 0. We assume furthermore
that u0 is increasing in y.

Under such assumptions, it is known since the works of Oleinik (see [1, Theorem
2.1.1]) that there exists x∗ > 0 such that equation (P) has a unique smooth positive
solution u in [0, x∗). Additionally, u(x, y) is increasing in y for all x ∈ [0, x∗).
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In the case of equation (P), i.e. with an adverse pressure gradient, it is com-
monly believed that x∗ < +∞: the solution cannot be extended beyond x∗ by the
means of Oleinik’s theorem. In that case, using the monotony assumption on u0,
it follows that

(1)
∂u

∂y
(x∗, 0) = 0.

In the physics literature (see for instance the seminal work of Goldstein [3], followed
by the one of Stewartson [4]), this condition is used as a characterization of the
“separation point”. The main goal of the present work is to rigorously prove the
existence of the separation point and to have a precise quantitative description of
the solution near the separation. The first computational works on this subject
go back to Goldstein [3] and Landau [5, Chapter 4, §40]. In particular, Goldstein
uses an asymptotic expansion in self-similar variables to compute the profile of the
singularity close to the separation point. These computations are later extended
by Stewartson [4]. However, these calculations are formal; furthermore, some of
the coefficients of the asymptotic expansion cannot be computed by either method.
Independently, Landau proposes another characterization of the separation point,
and gives an argument suggesting that ∂yu|y=0 ∼

√
x∗ − x close to the separation

point.
On the other hand, in the paper [2] Weinan E announces a result obtained

in collaboration with Luis Caffarelli. This result states, under some structural
assumption on the initial data, that the existence time x∗ of the solutions of (P)
in the sense of Oleinik is finite, and that the family uµ := 1√

µu(µ(x
∗ − x), µ1/4Y )

is compact in C(R2
+). Moreover, the author states two technical Lemmas playing

a key role in the proof. However, to the best of our knowledge, the complete proof
of this result was never published.

The goal of the present paper is to give a more quantitative version of the com-
pactness result announced by E and Caffarelli, and to retrieve rigorously Gold-
stein’s singularity. More specifically, we identify a class of initial data for which
separation occurs, in the sense that limx→x∗ ∂yu(x, 0) = 0 for some x∗ > 0 depend-
ing on u0, and we compute the cancellation rate of ∂yu|y=0 within this class.

Let us now be more precise about our result. If u is a solution of (P), we set
λ(x) := ∂yu(x, y = 0), b = −2λ′λ3, and we define an approximate solution in the
form

uapp(x, y) = λ(x) y +
y2

2
− a4bλ

−2y4 − a7b
2λ−5y7 for y ≤ λ(x)1/3.

Our assumptions on the initial data are as follows:

(H1) Monotony: u0 is increasing in y;
(H2) There exists c0 > 0 such that c−1

0 ≤ −∂4yu0(0) ≤ c0;
(H3) Boundedness of the second derivative: there exists constants C1, C2 > 0

such that

sup(−C1,−C2y
2)∂yyu0(y)− 1 ≤ 0;
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(H4) Small perturbation of the approximate solution: there exists a constant
C0 and a parameter η > 0 such that

E(u− uapp;x = 0) ≤ Cλη0

for some η > 0, where E(u;x) is some explicit weighted Sobolev norm.

Theorem 1. Assume that the hypotheses (H1)-(H4) on the initial data u0 are
satisfied. There exists η0 > 0 such that if η > η0, there exists δη > 0 such that if
λ0 < δη, the solution of (P) with u|x=0 = u0 has a separation point at x∗ = O(λ20).
Moreover, there exists a constant C > 0 such that

λ(x) ∼ C
√
x∗ − x.

The proof of Theorem 1 relies on two main ingredients. On the one hand, one
must build an approximate solution with good stability properties. On the other
hand, we prove error estimates, which rely very strongly on the structure of the
equation.

Concerning the first point, the choice of the approximate solution is inspired
from arguments developed for the study of singularities and blow-up phenomena
in the nonlinear Schrdinger equation. These arguments are explained formally in
the book by Catherine and Pierre-Louis Sulem [6], and were made rigorous by
Franck Merle and Pierre Raphaël for (see for instance [7]). The idea is to use
the scaling invariance of the equation to perform a change of variables using a
parameter depending intrinsically on the solution of the equation (in our case, the
parameter is λ(x)). We then construct approximate solutions thanks to a Taylor
expansion, and we choose the approximate solution with the least possible growth
at infinity; the latter condition is crucial in order to obtain stability.

In a second step, we use the transport-diffusion nature of the equation to prove
the stability of the approximate solutions constructed in the first step. We em-
phasize that the energy estimates derived here are new, to our knowledge, and
rely strongly on the structure of the equation. In order to control some nonlinear
terms, we also need L∞ estimates on the solution and its derivatives, which rely
on a careful use of the maximum principle. The error estimates obtained in this
way dictate the asymptotic law of the “modulation rate”, i.e. λx.

Eventually, we close the estimates thanks to a bootstrap argument, and trans-
late the stability result back in the original variables. The details of the proof will
be given in [8].
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Invariant measures and long time dynamics for periodic NLS

Andrea R. Nahmod

The purpose of this talk is to describe recent work in two directions. One di-
rection concerns almost sure global well posedness for periodic NLS and a new
probabilistic propagation of regularity result (joint with G. Staffilani). This work
is intimately connected to Bourgain’s approach and work in the mid 90’s to al-
most sure global well-posedness – for dispersive PDE – via the existence of an
associated invariant Gibbs measure (“stationary equilibrium state”). The other
direction aims at contributing to our understanding of the so called transfer of en-
ergy/energy cascades phenomena for periodic NLS. We describe recent work (joint
with Z. Hani, J. Mattingly, L. Rey-Bellet and G. Staffilani) where we construct a
unique invariant ergodic non-equilibrium measure associated to (a finite subset of)
the resonant NLS (“stationary non-equilibrium state”).

We first review the main ideas behind Bourgain’s work1 to invariant Gibbs
measures and almost sure global well-posedness for Hamiltonian dispersive PDE.
We then describe our probabilistic propagation regularity result which allow us
to close an important gap between the deterministic global well-posedness (gwp)
theory and the a.s gwp one proved by Bourgain for the defocusing cubic NLS on
T2 and for the focusing quintic NLS on T1. More precisely, we prove that the
cubic defocusing NLS is a.s gwp in Hs(T2), s > 0 and that the quintic focusing
NLS is a.s gwp in Hs(T), s > 1

2 . For example in 2D, deterministic methods yield
local well posedness for s > 0 (Bourgain) and gwp for s > 2/3 (De Silva-Pavlovic-
Staffilani-Tzirakis) via the so called I-method of almost conservation laws. Data
randomization and the invariance of the Gibbs measure yield a.s. gwp in H−ǫ

(Bourgain). Our result thus fill the gap a.s. for 0 < s ≤ 2/3. Our theorem is not
trivial since any Σ ⊂ Hs, s > 0, is such that for the Gibbs measure µ one has
µ(Σ) = 0.

For nonlinear dispersive and wave equations, proving the existence of large data
global in time flows, at a critical or supercritical regularity level, is a challenging
question which is not made any easier by assuming higher regularity of the initial
data. To prove global large data well-posedness results one has to start with
data at the regularity level of some conserved quantity such as, for example, the
mass (L2) or the Hamiltonian (H1). It is only after one has proved such global

1After the works of Lebowitz-Rose-Speer and of Zhidkov for Hamiltonian PDE and of Glimm-
Jaffe and others for the φ4 model.
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result, that smooth global solutions can be obtained by a standard preservation
of regularity argument based on differentiation of the equation. This is a purely
deterministic approach. The procedure we implement in our proof is not based
on differentiation of the equation as in the deterministic preservation of regularity
argument. Our key idea instead is to suitably decompose the data into a term
that is close to the support of the invariant measure in the rougher topology,
and a smoother remainder term to which now deterministic arguments can be
applied. Then, a non-deterministic perturbation argument is used to conclude.
The argument is rather general and we expect it is applicable to other problems
for which an almost sure global well-posedness is proved using an invariant Gibbs
measure (or an almost invariant measure weighted Wiener one).

On Rd scattering/asymptotic stability results, when available, tell us that there
cannot be any n forward / backward cascades. In other words, the energy (kinetic
or mass) while remaining conserved – does not move its concentration zones from
low to high frequencies or vice versa. On compact domains, asymptotic stability
results around equilibrium solutions (e.g. zero solution) are lost and out of equi-
librium dynamics are expected. The question is how to analytically describe this
expected out-of-equilibrium behavior. Bourgain proposed to study the growth of
higher Sobolev norms since its growth gives us a quantitative estimate for how
much of the support of |û|2 has transferred from the low to the high frequen-
cies while maintaining constant mass and energy (forward cascade). Bourgain’s
unbounded orbits/infinite cascade conjecture asks whether there exist global so-
lutions to the cubic NLS whose Hs(Td) norm (some s ≫ 1) grows indefinitely
in time: lim supt→∞ ‖u‖Hs = +∞? After work by Bourgain (’95–’97) and by
Kuksin (’97), further progress was made by by Colliander-Keel-Staffilani-Takaoka-
Tao [CKSTT], Hani, Gérard-Grellier and Guardia-Kaloshin (’10–’12). The conjec-
ture however remains a very difficult question. An intermediate problem between:
1) The existence of (equilibrium) invariant Gibbs measures and 2) Bourgain’s un-
bounded orbits conjecture/understanding of out-of-equilibrium dynamics for NLS
is the study of the existence and uniqueness of non-equilibrium invariant mea-
sures. The latter has an interest in its own right for example, in connection with
the theory of weak/wave turbulence. But even for stochastically forced systems,
proving the existence and uniqueness of non-equilibrium invariant measures is very
hard in the context of PDEs. On the other hand, we have recent developments in
understanding analogous questions for some ODE systems modeling heat transfer
in a chain of oscillators from the works of Eckmann, Pillet and Rey-Bellet (’99),
Rey-Bellet and Thomas (’00–02’) up to more recent progress by Hairer and Mat-
tingly (’07) for a finite collection of anharmonic oscillators with nearest neighbor
couplings (classical Hamiltonian system) put into contact with two heat baths at
different temperatures2. We try to use those developments in order to shed some
light on the non-equilibrium dynamics for (resonant) NLS. Our point of depar-
ture is the reduced toy model first derived by [CKSTT] where interactions in its
Hamiltonian H depend not just on relative distance like in anharmonic oscillator

2The interaction with heat baths is modeled by standard Langevin dynamics.
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but also on the momenta of each particle and that of its neighbors. We attach
the first and last modes c1 and cn to two heat baths at temperatures T1 and Tn
respectively.3 If T1 = Tn = T then we are at equilibrium and we can prove that
exp(−H/2T ) dc dc is an invariant Gibbs measure. Our interest then is in T1 < Tn.
The question becomes: does there exist a unique smooth ergodic nonequilibrium
invariant measure? One expects an initial distribution of system to converge to a
(stationary) nonequilibrium state in which energy/matter is flowing. In joint work
with Z. Hani, J. Mattingly, Luc Rey-Bellet and G. Staffilani, we consider the case
of n = 3 and study the existence of a unique ergodic non-equilibrium invariant
measure with estimates on the rate of convergence. The heart of the matter lies in
proving the existence part. To that effect we construct a continuous and piecewise
C2 Lyapunov function V with compact level sets, that penalizes the region where
the second mode is small as well as regions of high energies. Such construction
gives an upper bound on the hitting time of the good regionG (compact set) where
the dynamics spends most of time. The natural candidate is to use a coercive con-
served quantity of the original Hamiltonian system such as V = eM , where M is
the “energy”. Such function however does not work in the whole space: we need
to chop our phase space in several regions and solve suitable Poisson equations
for V with suitable boundary values satisfying certain ‘convexity’ conditions (cf.
Herzog-Mattingly). A delicate study of the behavior of the phases is fundamental.
Once existence is established, uniqueness and ergodicity of the invariant measure
follow from a controllability lemma for the deterministic system showing one can
access any region of phase space plus Stroock-Varadhan theorem.

On the long-term dynamics of water wave models

Alexandru D. Ionescu

(joint work with Y. Deng, B. Pausader, F. Pusateri)

The evolution of an inviscid perfect fluid that occupies a domain Ωt ⊂ Rn, for
n ≥ 2, at time t ∈ R, is described by the free boundary incompressible Euler
equations. If v and p denote the velocity and the pressure of the fluid (with
constant density equal to 1) at time t and position x ∈ Ωt, these equations are

(1) (∂t + v · ∇)v = −∇p− gen, ∇ · v = 0, x ∈ Ωt,

where g is the gravitational constant. The first equation in (1) is the conservation
of momentum equation, while the second is the incompressibility condition. The
free surface St := ∂Ωt moves with the normal component of the velocity according
to the kinematic boundary condition

(2) ∂t + v · ∇ is tangent to
⋃

t
St ⊂ R

n+1
x,t .

The pressure on the interface is given by

(3) p(x, t) = σκ(x, t), x ∈ St,

3Mechanism to stochastically add and dissipate energy from the system in a controlled way.
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where κ is the mean-curvature of St and σ ≥ 0 is the surface tension coefficient. At
liquid-air interfaces, the surface tension force results from the greater attraction
of water molecules to each other than to the molecules in the air.

In the case of irrotational flows, curl v = 0, one can reduce (1)-(3) to a system
on the boundary. Indeed, assume also that Ωt ⊂ Rn is the region below the graph
of a function h : Rn−1

x × It → R, that is

Ωt = {(x, y) ∈ R
n−1 × R : y ≤ h(x, t)} and St = {(x, y) : y = h(x, t)}.

Let Φ denote the velocity potential, ∇x,yΦ(x, y, t) = v(x, y, t), for (x, y) ∈ Ωt. If
φ(x, t) := Φ(x, h(x, t), t) is the restriction of Φ to the boundary St, the equations
of motion reduce to the following system for the unknowns h, φ : Rn−1

x × It → R:

(4)





∂th = G(h)φ,

∂tφ = −gh+ σ div

[ ∇h
(1 + |∇h|2)1/2

]
− 1

2
|∇φ|2 + (G(h)φ +∇h · ∇φ)2

2(1 + |∇h|2)
.

Here

G(h) :=

√
1 + |∇h|2N (h),

and N (h) is the Dirichlet-Neumann map associated to the domain Ωt. Roughly
speaking, one can think of G(h) as a first order, non-local, linear operator that
depends nonlinearly on the domain.

The main theorem we proved in [3, 4] concerns the gravity-capillary water waves
system, which corresponds to g > 0, σ > 0, in dimension n = 3. In this case h and
φ are real-valued functions defined on R2 × I.

To state our main theorem we need some more notation. The rotation vector-
field Ω := x1∂x2 − x2∂x1 commutes with the linearized system. For N ≥ 0 let HN

denote the standard Sobolev spaces on R2. More generally, for N,N ′ ≥ 0 and
b ∈ [−1/2, 1/2], b ≤ N , we define the norms

(5) ‖f‖
HN′,N

Ω

:=
∑

j≤N ′

‖Ωjf‖HN , ‖f‖ḢN,b :=
∥∥(|∇|N + |∇|b)f

∥∥
L2 .

Theorem 1 (Global Regularity). Assume that g, σ > 0, δ > 0 is sufficiently small,
and N0, N1, N3, N4 are sufficiently large (for example δ = 1/2000, N0 := 4170,
N1 := 2070, N3 := 30, N4 := 70). Assume that the data (h0, φ0) satisfies

‖U0‖HN0∩HN1,N3
Ω

+ sup
2m+|α|≤N1+N4

‖(1 + |x|)1−50δDαΩmU0‖L2 = ε0 ≤ ε0,

U0 := (g − σ∆)1/2h0 + i|∇|1/2φ0,
(6)

where ε0 is a sufficiently small constant. Then, there is a unique global solution
(h, φ) ∈ C

(
[0,∞) : HN0+1 × ḢN0+1/2,1/2

)
of the system (4), with (h(0), φ(0)) =

(h0, φ0). In addition

(1 + t)−δ
2‖U(t)‖

HN0∩HN1,N3
Ω

. ε0, (1 + t)5/6−3δ2‖U(t)‖L∞ . ε0,(7)

for any t ∈ [0,∞), where U := (g − σ∆)1/2h+ i|∇|1/2φ.
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In other words, small, smooth, localized, and irrotational data lead to global
solutions of the gravity-capillary water wave model.

Superficially, this theorem could look similar to other global regularity results
for water waves, such as those of [9] and [10]. However, the situation we consider
in [3, 4] is substantially more difficult, due to the combination of the following
factors:

• Strictly less than |t|−1 pointwise decay of solutions. In our case, the linear

dispersion relation is Λ(ξ) =
√
g|ξ|+ σ|ξ|3 and the best possible point-

wise decay, even for solutions of the linearized equation corresponding to
Schwartz initial data, is |t|−5/6.

• Large set of time resonances. In certain cases one can overcome the slow
pointwise decay using the method of normal forms of Shatah. The critical
ingredient needed is the absence of time resonances (or at least a suitable
“null structure” of the quadratic nonlinearity matching the set of time
resonances). Our system, however, has a full (codimension 1) set of time
resonances.

We remark that all the previous work on long term solutions of water waves
models was under the assumption that either g = 0 or σ = 0. This is not coinci-
dental: in these cases the combination of slow decay and full set of time resonances
described above was not present. More precisely, in all the previous global results
in 3 dimensions, [5, 13, 6] it was possible to prove 1/t pointwise decay of the nonlin-
ear solutions and combine this with high order energy estimates with slow growth.
On the other hand, in all the two-dimensional models [12, 9, 10, 1, 2, 7, 8, 11]
there were no significant time resonances for the quadratic terms, and normal
form analysis could be performed.

To address these issues, in these papers we use a combination of improved energy
estimates and Fourier analysis. The main components of our analysis are:

(1) The energy estimates, which are used to control high Sobolev norms and
weighted norms (corresponding to the rotation vector-field). They rely on
several new ingredients, most importantly on a strongly semilinear struc-
ture of the space-time integrals that control the increment of energy, and
on a restricted nondegeneracy condition of the time resonant hypersur-
faces. The strongly semilinear structure is due to an algebraic correlation
between the size of the multipliers of the space-time integrals and the
size of the modulation, and is related to the Hamiltonian structure of the
original system.

(2) The dispersive estimates, which lead to decay and rely on a partial boot-
strap argument in a suitable Z norm. We analyze carefully the Duhamel
formula, in particular the quadratic interactions related to the slowly de-
caying frequencies and to the set of space-time resonances. The choice of
the Z norm in this argument is very important; we use an atomic norm,
based on a space-frequency decomposition of the profile of the solution,
which depends in a significant way on the location and the shape of the
space-time resonant set, thus on the quadratic part of the nonlinearity.
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Conserved energies in completely integrable PDEs

Daniel Tataru

(joint work with Herbert Koch)

We first consider the (de)focusing cubic Nonlinear Schrödinger equation (NLS)

iut + uxx ± 2u|u|2 = 0, u(0) = u0,

and the complex (de)focusing modified Korteweg-de Vries equation (mKdV)

ut + uxxx ± 2(|u|2u)x = 0, u(0) = u0,

with real or complex solutions in one space dimension on the real line.
These are part of an infinite family of commuting Hamiltonian flows, where

each of the Hamiltonians can be viewed as conservation laws for each of the flows.
The symplectic form is

ω(u, v) = ℑ
ˆ

uv̄ dx
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and first several Hamiltonians are as follows:

H0 =

ˆ

|u|2 dx,

H1 =
1

i

ˆ

u∂xū dx,

H2 =

ˆ

|ux|2 + |u|4 dx,

H3 = i

ˆ

ux∂xux +
3

2
|u|2u∂xū dx,

H4 =

ˆ

|uxx|2 + 2||u|2x|2 + u2(ūx)
2 + (ūx)

2u2 +
3

2
|u|6 dx.

Both of these equations have Ḣ− 1
2 as a scale invariant critical Sobolev space. On

the other hand the (current) Sobolev local well-posedness threshold is s ≥ 0 for
NLS, respectively s ≥ 1

4 for mKdV. Then the following questions are natural:

• Is NLS locally well-posed for − 1
2 < s < 0? Is MKdV locally well-posed for

− 1
2 < s < 1

4?

• Assuming the data is in Hs for s > − 1
2 , are the H

s norms of the solutions
globally bounded in Hs?

In this work we address the second question above, leaving the first one open.
Better than proving uniform estimates, we are in fact constructing new conserva-
tion laws which are equivalent to the Hs norms of the solutions.

Before stating our main result some preliminary explanations are needed. Our
construction of the conserved energies is based on the scattering transform associ-
ated to these problems. This is defined in terms of the spectral problem for the
corresponding Lax operator

L = i

(
∂x −u
ū −∂x

)

Here one looks for Jost solutions for the ode
{ dψ1

dx = −iξψ1 + uψ2
dψ2

dx = iξψ2 + ūψ1

which have the form

ψl(ξ, x, t) =

(
e−iξx

0

)
+ o(1) as x→ −∞,

ψl(ξ, x, t) =

(
T−1(ξ)e−iξx

R(ξ)T−1(ξ)eiξx

)
+ o(1) as x→ ∞,

Here R(ξ) is called the reflection coefficient, and T (ξ) is the transmission coefficient.

Their time evolution along the NLS flow is given by Ṙ = iξ2R, Ṫ = 0. The map
u→ R can be roughly viewed as a nonlinear Fourier transform, which conjugates
the NLS/mKdV flows to the (Fourier transform of) the corresponding linear flows.
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The functions R and T are related by |R|2 + |T |2 = 1 in the defocusing case,
respectively |T |2 − |R|2 = 1 in the focusing case.

Our conserved energies are defined in terms of the transmission coefficient T ,
precisely |T |. This does not carry the full scattering information, but is conserved
along the flow. Further, unlike R, it admits a holomorphic (meromorphic in the
focusing case) extension to the upper half-space, defined via the same ode’s as
above. This is important as the reflexion coefficient R on the real line is not well
defined for merely L2 type data, but the transmission coefficient T in the upper
half-space is defined. Of course, any function of |T | is conserved long the flows;
the challenge is to relate well chosen functions of |T | to the Sobolev norms of u.

We further note that the poles of T in the upper half-space are associated to
NLS/mKdV solitons, and that the poles together with their residue information
are also included in the scattering transform.

Now we are ready to state our main result:

Theorem 1. For each s > − 1
2 and both for the focusing and defocusing case the

energy functionals Es are globally defined

Es : H
s → R

with the following properties:

(1) Es is conserved along the NLS and mKdV flow.
(2) If 1 ‖u‖L2+DU2 ≤ 1 then

∣∣Es(u)− ‖u‖2Hs

∣∣ . ‖u‖2L2+DU2‖u‖2Hs .

(3) The map
Hσ × (− 1

2 , σ] ∋ (u, s) → Es(u)

is analytic in u ∈ Hσ in the defocusing case. In the focusing case it is
analytic provided i

2 is not an eigenvalue for L, and it is continuous in
u ∈ Hσ in general. It is also continuous in s, and analytic in s for s < σ.

Also part of our result are the following trace formulas:

Theorem 2. For all u ∈ Hs the limit of ∓ log |T | (signs correspond to the defocus-
ing/focusing case) exists as a positive measure, and the following trace formulas
hold with absolute convergence in all sums and integrals. In the defocusing case
we have

Es =

ˆ

(1 + ξ2)s(−ℜ lnT (ξ/2)) dξ

= 4 sin(πs)

ˆ ∞

1

(τ2 − 1)s
[
ℜ lnT (iτ/2) +

1

2π

N∑

j=0

(−1)jH2jτ
−2j−1

]
dτ

+

N∑

j=0

(
s

j

)
H2j

1Here the space L2 +DU2 is a convenient proxy for the obvious but ill-behaved choice H−

1
2 .
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and in the focusing case

Es =

ˆ

(1 + ξ2)sℜ lnT (ξ/2) dξ + 2
∑

k

mkΞ(2zk)

= 4 sin(πs)

ˆ ∞

1

(τ2 − 1)s
[
−ℜ lnT (iτ/2) +

1

2π

N∑

j=0

(−1)jH2jτ
−2j−1

]
dτ

+
N∑

j=0

(
s

j

)
H2j

Here 2zk and mk denote the poles/multiplicities of T in the upper half-space and

Ξs(z) = ℑ
ˆ z

0

(1 + ζ2)s dζ.

As a last remark, our ideas easily carry over to the real KdV problem on the real
line; full results are included in the paper. Independent work of Killip-Visan-Zhang
is also devoted to the same question for the KdV problem.
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Critical Half-Wave Problems

Enno Lenzmann

We consider two critical evolution problems of half-wave type. As a first example,
we discuss the energy-critical half-wave maps equation given by

(1) ∂tu = u ∧ |∇|u, u : [0, T )× R → S
2.

Here ∧ denotes the cross product in R3, whereas |∇| ≡
√
−∆ stands for the square

root of the Laplacian on R; and S2 = {x ∈ R3 : x21 +x22+x23 = 1} denotes the unit
sphere in R3. Apart from its criticality and its physical relevance (e. g. integrable
spin chains), an interesting feature of (1) is that the problem has traveling solitary
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wave solutions of the form u(t, x) = uv(x − vt), where v ∈ R denotes a velocity
parameter and the profile uv : R → S2 satisfies

(2) −v∂xuv = uv ∧ |∇|uv.
As our main result in [1], we classify all solutions uv ∈ Ḣ

1
2 by showing that

uv ≡ const if |v| ≥ 1 holds, whereas uv is explicitly given by suitable finite non-
trivial Blaschke products when |v| < 1. Moreover, we prove that the energy of the
profiles uv, with |v| < 1, is given by the formula

(3) E(uv) =
1

2

ˆ

R

∣∣|∇| 12uv
∣∣2 dx = (1− v2)πd,

where d ∈ N is an integer that corresponds to a topological degree of the maps
uv : R → S2. The proof of our main results uses minimal surface theory and
complex analysis.

As a second critical half-wave problem, we discuss the cubic half-wave equation
on the real line given by

(4) i∂tψ = |∇|ψ − |ψ|2ψ, ψ : [0, T )× R → C.

In [2], we construct H
1
2 -small global-in-time solutions that exhibit transient tur-

bulent behavior in Hs with s > 1
2 . The proof is a tour-de-force argument using an

approximate two-soliton ansatz and closeness of this multi-soliton ansatz (in some
certain sense) to the dynamics of the cubic Szegö equation on the real line.
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Asymptotic behavior of the nonlinear Schrödinger equation with

harmonic trapping

Laurent Thomann

(joint work with Pierre Germain and Zaher Hani)

We consider the cubic nonlinear Schrödinger equation with harmonic trapping on
RD (1 ≤ D ≤ 5). In the case when all but one directions are trapped (a.k.a
“cigar-shaped” trap), following the approach of [4], we prove modified scattering
and construct modified wave operators for small initial and final data respectively.
The asymptotic behavior turns out to be a rather vigorous departure from linear
scattering and is dictated by the resonant system of the NLS equation with full
trapping on RD−1. In the physical dimension D = 3, this system turns out to be
exactly the (CR) equation derived and studied in [1, 2, 3]. The special dynamics
of the latter equation, combined with the above modified scattering results, allow
to justify and extend some physical approximations in the theory of Bose-Einstein
condensates in cigar-shaped traps.
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Our aim is to study the long-time behavior of the cubic nonlinear Schrödinger
equation with harmonic trapping given by

(1) (i∂t −∆RD +
D∑

j=1

ωjx
2
j)U = κ0|U |2U, (x1, . . . , xd) ∈ R

D,

with a particular emphasis on the anisotropic limit ω1 = 0 < ω2 = . . . = ωD.
Here ωj signifies the frequency of the harmonic trapping in the j−th direction and
κ0 6= 0.

The motivation for this study is two-fold: On the one hand, we aim at justi-
fying some approximations done in the physics literature that allow reducing the
dynamics of (1) in the highly anisotropic setting (a.k.a. cigar-shaped trap) to
that of the homogeneous (i.e. with no trapping) 1D cubic NLS equation. Such
approximations, often referred to as the “quasi-1D dynamics” [6], allow access
to the complete integrability theory of the 1D cubic NLS equation along with
its plethora of special solutions that give theoretical explanations of fundamental
phenomena in Bose-Einstein condensates. On the other hand, from a purely math-
ematical point of view, the analysis falls under the recent progress and interest in
understanding the asymptotic behavior of nonlinear dispersive equations in the
presence of a confinement. Such a confinement can come from the compactness
(or partial compactness) of the domain or via a trapping potential. In either case,
this leads to the complete or partial loss of dispersive decay of linear solutions, and
consequently complicating and diversifying the picture of long-time dynamics. In
this line, using tools developed for the study of long-time dynamics of nonlinear
Schrödinger equations on product spaces, we will be able to describe the asymp-
totic dynamics and show that they exhibit highly nonlinear behavior in striking
contrast to linear scattering. As a consequence of this description, we get the gen-
eral extension of the “quasi-1D approximation” mentioned above to cases when
higher and multiple energy levels of the harmonic trap are excited.

A Bose-Einstein condensate (BEC for short) is an aggregate of matter (Bosons)
which appears at very low temperature and which is due to the fact that all
particles are in the same quantum state. Their existence was predicted by Bose in
1924 for photons and by Einstein in 1925 for atoms, and they were experimentally
observed in 1995 by W. Ketterle, A. Cornell and C. Wieman who were awarded
a Nobel Prize shortly after, in 2001, for this achievement. This observation was
followed by a burst of activity in the theoretical and experimental study of BEC
which constitutes a rare manifestation of a quantum phenomenon which shows
through at a macroscopic level. For an nice introduction to this topic we refer to
the book [6] and to [7].

In the physical space R3, BEC can be realized by trapping particles using a
magnetic trap which is modelled in the mean-field theory by the harmonic po-
tential term in (1). The wave function U(t, x, y1, y2) of the particles in (1) (with
D = 3) can be interpreted as the probability density of finding particles at point
(x, y1, y2) ∈ R3 and time t ∈ R. The sign κ0 = +1 or −1 depends on whether the
Boson interaction is attractive (focusing case) or repulsive (defocusing).
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In the case when ω1 ≪ ω2 = ω3, the harmonic trap is often described as
“cigar-shaped”, and we will be interested in this case. This regime is of great im-
portance from the physical point of view as it allows for a “dimensional reduction”
in which the condensate is described by better-understood lower-dimensional dy-
namics. More precisely, a naturally adopted approximation of (1) is obtained by
going to the anisotropic limit and setting ω1 = 0 (which is justified for x not too
large) and non-dimensionalizing ω2 = ω3 = 1. Then, the resulting equation is

(2) (i∂t −∆R3 + y21 + y22)U = κ0|U |2U, (x, y1, y2) ∈ R
3.

In this context, (see for instance [8] or [6, paragraph 1.3.2]) physicists often
adopt an Ansatz of the form

(3) U(t, x, y) ∼ ψ(t, x)e2ite−|y|2/2; y = (y1, y2),

which leads them through a multiple time-scale expansion to the 1D-dynamics
obeyed by ψ(t, x). This dynamics is given by none other than the one dimensional
Schrödinger equation

(4)

{
(i∂t − ∂2x)ψ = κ0λ0|ψ|2ψ, (t, x) ∈ R× R,

ψ(0, x) = ϕ(x).

This equation is obtained by projecting the nonlinear term in the Ansatz equation

on the groundstate g0(y) = e−|y|2/2 of the harmonic oscillator −∆R2 + |y|2, thus
λ0 = ‖g0‖4L4(R2)/‖g0‖2L2(R2) = 1/2.

One consequence of our work is a justification of the approximation (3) for large
times, as well as the correct extension of that approximation when higher and/or
multiple energy levels of the quantum harmonic oscillator are excited. We give the
relevant result concerning the approximation (3) and refer to the next section for
more general and precise results. Denote by S(R) the set of the Schwartz functions,
then

Theorem 1. Let ϕ ∈ S(R) be small enough, and let ψ be the solution of (4).
Then there exists a solution U ∈ C

(
[0,+∞);L2(R× R2)

)
of (2) such that

∥∥U(t, x, y)− ψ(t, x)e2ite−
1
2 |y|

2∥∥
L2(R×R2)

−→ 0 as t −→ +∞.

Moreover, the function U can be chosen to be axisymmetric: U(t, x, y) = Ũ(t, x, |y|)
for some Ũ .

This shows that the 1D dynamics of (4) can be embedded in the 3D dynamics
of (2), a reduction, known as quasi 1D dynamics, which is at the basis of the
theoretical explanation of many fundamental phenomena in Bose-Einstein conden-
sates. Physicists arrive at it using some multiple time-scale approximations, and
use it afterwards to transfer information from the well-understood and completely
integrable dynamics of (4) to that of (1).
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in Bose-Einstein condensates. Springer (2008), 398 pp.
[7] M. Lewin, Limite de champ moyen et condensation de Bose-Einstein. Gazette des

Mathématiciens (2014). http://hal.archives-ouvertes.fr/hal-00916829.
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Ancient Solutions of geometric flows

Panagiota Daskalopoulos

We study ancient of eternal solutions to geometric flows such as the Mean Cur-
vature flow, the Ricci flow or the Yamabe flow. We establish uniqueness results
about these solutions under certain natural geometric assumptions such as curva-
ture bounds or non-collapsing conditions. We also construct new ancient solutions
from the gluing of one or more solitons. We present recent work and open research
directions.

Type-II singularities of two-convex immersed mean curvature flow

Theodora Bourni

(joint work with Mat Langford)

The main aim of this work is to show that any strictly mean convex translator
of dimension n ≥ 3 which admits a cylindrical estimate and a corresponding
gradient estimate is rotationally symmetric. As a consequence, we deduce that any
translating solution of the mean curvature flow which arises as a blow-up limit of a
two-convex mean curvature flow of compact immersed hypersurfaces of dimension
n ≥ 3 is rotationally symmetric. The proof is rather robust, and applies to a more
general class of translator equations. As a particular application, we prove an
analogous result for a class of flows of embedded hypersurfaces which includes the
flow of two-convex hypersurfaces by the two-harmonic mean curvature. In what
follows we give a more precise description of the presented results.
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We are interested in hypersurfaces X : Mn → Rn+1 satisfying the translator
equation

(T) ~H = T⊥

for some constant vector T ∈ Rn+1, where, given a local choice of unit normal field

ν, ~H = −Hν is the mean curvature vector of the immersion with respect to the
choice of mean curvature H = div ν, and ⊥ denotes the projection onto the normal
bundle. We call such immersions translators. Up to a time-dependent tangential
reparametrization, the family {X(·, t)}t∈R of immersions X(·, t) : Mn → Rn+1

defined by X(x, t) := X(x) + tT satisfies the mean curvature flow

(MCF) ∂tX(·, t) = ~H(·, t),
where ~H(·, t) is the mean curvature vector of X(·, t). We therefore also refer to
solutions of (T) as translating solutions of the mean curvature flow. It is well-
known that translating solutions arise as blow-up limits of the mean curvature
flow about type-II singularities [7, 11].

Probably the most well-known translator is the Grim Reaper curve Γ, which is
the graph of the function x 7→ − log cosx, x ∈ (−π/2, π/2). In dimensions n ≥ 2,
there exists a strictly convex, rotationally symmetric translator asymptotic to a
paraboloid, which is commonly referred to as the “bowl” [2, 6]. In a remarkable
study of convex ancient graphical solutions of the mean curvature flow, X.-J. Wang
showed that any strictly convex, entire translator in dimension two is rotationally
symmetric, and hence the bowl [15]. Moreover, in every dimension n ≥ 3, he
constructed strictly convex, entire examples without rotational symmetry.

In the setting of two-convex (that is, κ1 + κ2 > 0, where κ1 ≤ κ2 ≤ · · · ≤ κn
denote the principal curvatures) mean curvature flow in dimensions n ≥ 3, the far-
reaching theory of Huisken and Sinestrari [12, 11, 13] shows that regions of high
curvature are either uniformly convex and cover a whole connected component of
the surface, or else they contain regions which are very close, up to rescaling, to
cylindrical segments [−L,L]× Sn−1. This suggests that the translating blow-up
limits which arise at type-II singularities might be rotationally symmetric. We
note that this is true (in dimensions n ≥ 3) for two-convex self-shrinking solutions
which arise as blow-up limits of the mean curvature flow with type-I curvature
blow-up since the only possibilities are shrinking spheres Sn√−2nt

and cylinders

R× Sn−1√
−2(n−1)t

[10].

Recently, Haslhofer [8] proved that this is true in the embedded case (even in
dimension 2), his proof relying crucially on the non-collapsing theory of [4] and [9].
In fact, he shows that any strictly convex, uniformly two-convex translator which
is non-collapsing is necessarily rotationally symmetric. In the immersed setting,
we no longer have a non-collapsing property; however, by the work of Huisken
and Sinestrari [13], we have a cylindrical estimate and a corresponding gradient
estimate. Motivated by Haslhofer’s result and the Huisken–Sinestrari theory, we
prove the following.
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Theorem 1. Let X : Mn → Rn+1, n ≥ 3, be a mean convex translator and
C1 <∞ a constant such that the following hold:

(1) cylindrical estimate: |A|2 − 1
n−1H

2 < 0

(2) gradient estimate: |∇A|2 ≤ −C1

(
|A|2 − 1

n−1H
2
)
H2

where A is the second fundamental form of X. Then Mn is rotationally symmetric.

In fact (assuming T = en+1), we need only prove that the blow-down of Mn
t :=

Mn + ten+1 is the shrinking cylinder Sn−1√
2(n−1)(1−t)

× R, since this is enough to

deduce rotational symmetry of Mn by Haslhofer’s work in [8].
We remark that the cylindrical estimate implies uniform two-convexity, κ1 +

κ2 ≥ 1
2(n−1)H (see [14]). As a consequence, any type-II blow-up limit of a two-

convex mean curvature flow in dimensions n ≥ 3 is rotationally symmetric (even
when the mean curvature flow is only immersed).

Corollary 1. Suppose that X : Mn → Rn+1, n ≥ 3, is a translator which arises
as a proper blow-up limit of a two-convex mean curvature flow of immersed hyper-
surfaces. Then Mn is rotationally symmetric.

We note that Corollary 1 fails in dimension 2 without some additional assump-
tion, such as non-collapsing, to rule out the Grim plane R×Γ. This is in accordance
with the type-I case, where the non-embedded Abresch–Langer planes R×γk,l can
arise [1].

Apart from dealing with blow-up limits of type-II singularities of two-convex
mean curvature flows of immersed hypersurfaces, a further motivation for removing
the (two-sided) non-collapsing assumption in Haslhofer’s result was to study trans-
lating solutions of more general curvature flows, where (two-sided) non-collapsing
will in general not hold. Let F be given by F (x) = f(~κ(x)) for some smooth
function f : Γn ⊂ Rn → R of the principal curvatures ~κ := (κ1, . . . , κn) defined
with respect to some choice of unit normal field ν. Then we can consider solutions
X : Mn → Rn+1 of the fully non-linear translator equation

(FT) F = −〈ν, T 〉
for some T ∈ Rn+1. We will call the function f : Γn → R admissible if Γn is an
open, symmetric cone and f is smooth, symmetric, monotone increasing in each
variable and 1-homogeneous. These conditions on f are very natural: Indeed,
smoothness and symmetry are needed to ensure that F is smooth, monotonicity
ensures that (FT) is elliptic, and homogeneity ensures that F scales like curvature.

Just as for the mean curvature flow, the family {X(·, t)}t∈R of immersions
X(·, t) : Mn → Rn+1 defined by X(x, t) := X(x) + tT satisfies, up to a time-
dependent tangential reparametrization, the corresponding flow

(F) ∂tX(·, t) = −F (·, t)ν(·, t).
Moreover, if (F) admits an appropriate Harnack inequality (which is true under
very mild concavity assumptions for f [3]) then solutions of (FT) arise as blow-up
limits of positive speed solutions of (F) about type-II singularities in a completely
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analogous way to the case of mean convex mean curvature flow. If F also admits
a strong maximum principle for the Weingarten tensor (which also holds under
natural concavity conditions for f) then our proof of Theorem 1, with minor mod-
ification, applies to solutions of (FT). Similarly, we obtain a result corresponding
to Corollary 1 for solutions of (FT) that arise as blow-up limits of solutions of the
flow (F). We remark that the class of flows to which this corollary applies includes
the flow of two-convex hypersurfaces by the two-harmonic mean curvature,

F :=

(∑

i<j

1

κi + κj

)−1

,(1)

and, for n = 3, the flows of positive scalar curvature hypersurfaces by either the
square root of the scalar curvature or the ratio of scalar to mean curvature. This
corollary, however, does not include any convex speeds, because, as yet, it is not
known if they admit an appropriate gradient estimate (although an appropriate
cylindrical estimate was proved in [5]).
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Yang-Mills flow in dimension four

Alexandru Waldron

The Yang-Mills flow

∂tA = −D∗
AFA

is a basic evolution equation in differential geometry, moving a connection by the
negative L2 gradient of the Yang-Mills functional

ˆ

M

|FA|2 dV.

It gained success in Donaldson’s proof [2] of the Kobayashi-Hitchin correspondence
for stable bundles over compact Kähler surfaces, which subsequently became the
Donaldson-Uhlenbeck-Yau theorem.

Over a general compact Riemannian manifold, the flow is not understood well,
except to say that it behaves perfectly in low dimensions (n ≤ 3) and catastrophi-
cally in higher dimensions (n ≥ 5). In dimension four it is necessary for singular-
ities to form at infinite time, but was not known if they ever form within finite
time, and this question has been the focus of my research.

There is a well-known analogy between Yang-Mills and harmonic map flow, es-
pecially in the critical dimensions of n = 4 and n = 2, respectively. In either
setting, according to work of Struwe ([5], [6]), blowup is characterized by concen-
tration of energy on a finite set of points. Harmonic map flow in the equivariant
case was shown to blow up in finite time [1]; however it was found by Schlatter et.
al. [4] that equivariant Yang-Mills flow

∂tf(r, t) = ∂2rf +
1

r
∂rf − 2

r2
f(f − 1)(f − 2)

only blows up exponentially, at infinite time. This contrast was studied by Gro-
towski and Shatah [3], where the coefficient of the zeroth-order term, rather than
the particular structure of the nonlinearity, was identified as the distinguishing
factor.

In my thesis ([8], [9]) I tried to understand the contrast geometrically.

Theorem. If initially ‖F+
A ‖L2(M) < δ, a universal constant, then the Yang-Mills

flow exists for all time.

In the spirit of Eells-Sampson’s Theorem, the proof relies on a pointwise bound
(Bochner formula and Moser iteration) together with an integral bound (energy
inequality). In this case a split Bochner formula is used to bound the self-dual
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curvature F+, which allows a cutoff to be introduced in the energy inequality at
a finite price. For harmonic map flow, under the analogy

F+ → ∂̄u

the same statement is false even for equivariant data. This is because the norm of
the cutoff ‖∇ϕ‖L4 is scale-invariant in dimension four, but blows up in dimension
two; in other words, in dimension four, there is extra room for a singularity to
“decouple” from the bulk of the solution.

My thesis contains a variety of additional results on convergence at infinite time
and asymptotic stability, enabled by the same estimates. The main convergence
result is very similar to Topping’s thesis [7], although the conclusions are markedly
different. His result states that on S2, within a certain energy of the topological
minimum, infinite-time singularities are unique; whereas on S4 they simply do not
occur near the minimum energy.

Since proving the above Theorem more than three years ago, I have worked
to find the most general result along the same lines, and by now have done so
[10]. Rather than assuming separate control of F+ or F−, one considers the
stress-energy tensor

Sij =
〈
Fik, Fjk

〉
− 1

4
gij |F |2 = 2

〈
F+
ik , F

−
jk

〉
.

In the harmonic map context, this corresponds to the real part of the Hopf differ-
ential (and I thank Melanie Rupflin for reminding me of this after the lecture).

At length, having tried various methods to control Sij directly, without success,
I became convinced that the local energy inequality in my thesis should be replaced
by a more subtle identity

(1)
1

2

d

dt

ˆ

|F |2r2ϕdV +

ˆ

|D∗F |2r2ϕdV =

ˆ

X iXjSij∆ϕdV.

In lieu of the split Bochner formula, a Hodge decomposition can be applied to the
components of the full system

(∂t −∆)F = F#F

(∂t −∆)D∗F = F#D∗F.
(2)

Using (1) together with completely sharp parabolic estimates for (2), it is (just)
possible to control the blowup. The next step will be to analyze infinite-time sin-
gularities by adapting the strategy of Perelman’s canonical neighborhood theorem,
which requires several new elements.
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Ricci flow from spaces with isolated conical singularities

Panagiotis Gianniotis

(joint work with Felix Schulze)

The Ricci flow with rough initial conditions is an intensive field of research, moti-
vated in part from the need to use Ricci flow as a tool to study spaces with low
regularity, as well as from the problem of continuing the flow after a singularity
develops.

Existing work deals with situations where the singular space is the Gromov-
Hausdorff limit of a non-collapsed sequence of Riemannian manifolds with cur-
vature bounded below in dimensions 2 and 3, as in [10, 11], or situations where
the space in question is close, in the L∞ or Gromov-Hausdorff sense to a smooth
Riemannian manifold, as in [6, 9, 2].

In this work we investigate the existence of a smooth Ricci flow (M, g(t))t∈(0,T ]

starting from a compact Riemannian manifold (M, g0) with isolated conical singu-
larities. Such metrics are close to a cone (C(X), gc = dr2+r2gX) near the singular
point, where (X, gX) is a smooth compact Riemannian manifold. Recent progress
on the structure at infinity of shrinking Ricci solitons by Munteanu and Wang in
[7, 8], suggests that some singularities of the Ricci flow indeed have such conical
structure.

We obtain the following result:

Theorem 1 ([4]). Let (M, g0) have an isolated conical singularity at z0 modeled on
a cone (C(Sn−1), gc = dr2 + r2gSn−1), where gSn−1 is a metric on Sn−1 satisfying
Rm(gSn−1) ≥ 1. Then there exists a smooth Ricci flow (M, g(t))t∈(0,T ] with the
properties:

• |Rm(g(t))|g(t) ≤ C/t for t ∈ (0, T ].
• (M,dg(t)) → (M,dg0) as t ց 0, in the Gromov-Hausdorff topology.
• There is Ψ: M \ z0 →M , diffeomorphism onto its image, such that:

– Ψ∗g(t) → g0 in smoothly locally away from z0.
– For every q /∈ ImΨ and λk ց 0,

(M,λ−1
k g(λkt), q)t∈(0,λ−1

k
T ] → (N, h(t))t∈(0,+∞)



1568 Oberwolfach Report 27/2016

in the smooth Cheeger-Gromov topology, where (N, h(t))t∈(0,+∞) is
generated by the unique expanding gradient Ricci soliton asymptotic
to the cone (C(Sn−1), gc).

The result of course extends to deal with any number of isolated conical singu-
larities.

Recall that asymptotically conical expanding gradient Ricci solitons are triples
(N, gN , f), where (N, gN ) is a smooth, non-compact, complete Riemannian mani-
fold asymptotic to a cone (C(X), gc = dr2 + r2gX) at infinity, and f is a smooth
function satisfying

HessgN f = Ric(gN ) +
gN
2
.

Such metrics induce special solutions of the Ricci flow (N, h(t))t∈(0,+∞) that evolve
only under diffeomorphisms and scalings, and converge, as t ց 0, to the cone
(C(X), gc). In particular, asymptotically conical expanders are of our interest
because they are models of how to flow out of a conical singularity.

By the very interesting work of Deruelle [3], given any metric gSn−1 with
Rm(gSn−1) ≥ 1, other than the one with constant curvature one, there exists
a unique expander asymptotic to the cone (C(Sn−1), gc = dr2 + r2gSn−1) with
positive curvature operator.

The main idea behind the proof of Theorem 1 is to desingularize (M, g0) by
gluing, close to the singularity, large pieces of an expander from [3], and then
limit out the corresponding Ricci flows (M, gs(t))t∈(0,Ts], as sց 0. Note that the
standard existence theory for the Ricci flow only gives Ts ≥ Cs. Thus we would
like to exploit stability properties of the expander in order to estimate gs(t) in
the high curvature region, in combination with Perelman’s pseudolocality theorem
which controls the flow inside the almost conical region.

These stability properties take the form of Gaussian estimates for the Lich-
nerowicz heat kernel on an asymptotically conical expander with positive curvature
operator, obtained recently by Deruelle and Lamm in [2]. A consequence of these
estimates is the L∞ stability of such expanders and a key part of our argument is
to localize this L∞ stability result.

It is important to remark that the curvature assumption on the cone is used
only to apply the results from [2]. Moreover, our argument is applicable even for
gSn−1 that is close to a metric with Rm ≥ 1.

Finally, we mention that a similar scheme, but with different methods, was
employed by Neves, Ilmanen and Schulze in [5], and Begley and Moore in [1], to
approach analogous questions for the network flow and Lagrangian mean curvature
flow respectively.
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On uniqueness for the supercritical harmonic map heat flow

Pierre Germain

1. The set up

The harmonic map heat flow is a flow on maps u from Rd to a Riemannian manifold
M , given by the L2 gradient flow of the Dirichlet energy

E(u) =

ˆ

Rd

|∇u|2 dx.

In the particular case where the target manifold is the sphere Sm, the equation
reads

∂tu−∆u = |∇u|2u with u(t = 0) = u0.

We will consider the particular case where the target is the sphere Sd, under the
corotational assumption

u(t, x) =

(
cos(h(t, |x|))
sin(h(t, |x|) x|x|

)
,

where h(t, r) is a scalar function of a (spatial) scalar variable. The equation be-
comes

(1) ∂th− ∂2rh− d− 1

r
∂rh+

d− 1

2r2
sin(2h) = 0 with h(t = 0) = h0.
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2. The question of uniqueness

Local well-posedness can be proved for data in the Hölder space Cα, with α > 0,
or for small data in L∞ [4]

For finite energy data u0 ∈ H1, it is possible to buid up weak solutions [2] which
belong to the energy space L∞H1, and satisfy the monotonicity formula due to
Struwe.

However, these solutions are not unique as soon as the data is allowed to be
large in L∞: [3] builds up a weak solution which does not satisfy the monotonicity
formula, and therefore cannot agree with the above.

This leads to the natural question [7]: does the monotonicity formula suffice to
guarantee uniqueness?

3. Main result

We not state our main result, in joint work with T. Ghoul and H. Miura [6],
following an earlier work with M. Rupflin [5], in a slighlty simplified form.

Assume that h0 is a smooth, bounded function on [0,∞).

• For 3 ≤ d ≤ 6, if h0(0) is sufficiently close to π
2 , there exists two solu-

tions h to (1), which both satisfy the monotonicity formula. However,
uniqueness can be retrieved by considering solutions constructed through
the penalization method (Ginzburg-Landau).

• For d ≥ 7, weak solutions are always unique.

This result relies on the study of self-similar solutions of (1): solutions of the

form u(t, r) = ψ
(
r√
t

)
. They satisfy the equation

ψ′′ +

(
d− 1

ρ
+
ρ

2

)
ψ′ − d− 1

ρ2
sin(2ψ) = 0.

A very precise study of this ODE is required, followed by a nonlinear analysis to
prove nonlinear stability of these self-similar solutions.
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Auf der Morgenstelle 10
72076 Tübingen
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