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Abstract. The workshop Geometry, organized by John Lott (Berkeley),
André Neves (London), Iskander Taimanov (Novosibirsk) and BurkhardWilk-
ing (Münster) was well attended with over 53 participants with broad geo-
graphic representation from all continents. Compared to previous meetings
there were for example quite a few young Brazilian postdocs at the meet-
ing. The emphasize on min-max problems and related fields was somewhat
increased.
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Introduction by the Organisers

The format of the meeting consisted of 18 one hour talks and four half hour after-
dinner talks. The after-dinner talks were given by PhD students and recent PhDs.
The schedule left lots of room for discussions in between talks.

Six of the talks were related to geometric flows. Gerhard Huisken investigated
the mean curvature flow with surgery in 3-dimensional manifolds. Carlo Sinestrari
reported on progress on convergence results of the volume preserving curvature
flow for hypersurfaces in Euclidean space. Ramiro Lafuente studied the Ricci flow
of homogeneous spaces resulting in a nearly fully understanding of the dynamical
properties of the ODE in the solvable case. Renato Bettiol presented some cal-
culations on the Ricci flow on 4-dimensional cohomogeneity one manifolds. Felix
Schulze explained some new existence results for Ricci flows coming out of singu-
lar spaces which has been a recurrent theme in previous workshops. Namely, he
considered as initial space a singular Riemannian manifold with isolated conical
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singularities. Finally, Robert Haslhofer explained how the mean curvature flow
with surgery can be used to show that the moduli space of 2-convex embedded
spheres in Euclidean space is connected.

Two talks generalized well-known results of Yau from the (smooth) Kähler
case to a more general setting. Song Sun discussed how one can generalize Yau’s
solution of the Calabi conjecture to certain singular Calabi Yau varieties. Ben
Weinkove discussed the complex Monge-Ampere equations of Hermitian, Gaudu-
chon and balanced metrics.

There were 4 talks involving min-max methods. Yevgeny Liokumovich pre-
sented an analogue of Weyl’s law for the spectrum of the Laplacian of Riemannian
manifolds. Therein the p-th eigenvalue of the Laplacian is replaced by the p-width
of the manifold, the volume of a minmal hypersurface obtained by a min-max
method applied to the p-th cohomology group of the space of (n − 1) cycles in
the underlying manifold. Rafael Montezuma used min-max methods to construct
minimal hypersurfaces in certain noncompact manifolds. Nicolau Sarquis Aiex
addressed the question whether for a manifold with an analytic metric of positive
Ricci curvature the space of embedded minimal hypersurfaces is non-compact.
Daniel Ketover explained how min-max methods can be used to explain the ex-
istence of a sequence of minimal surfaces in S3 converging to the double of the
clifford torus.

An important problem in constructing minimal hypersurfaces using min-max
methods is to establish and use index estimates, which three speakers addressed.
Alessandro Carlotto gave effective index estimates of minimal hypersurfaces via
Euclidean isometric embeddings. Ivaldo Nunes reported on stable constant mean
curvature surfaces with free boundary. He ruled a potentially exceptional case from
earlier work. Davi Maximo investigated the compactness properties of minimal
surfaces in Euclidean space with an a priori bound on the index. Roughly they are
the same as in the stable case except there are possibly finitely many exceptional
points were the convergence is weaker.

Compactness and convergence problems for a sequence of manifolds were at
the core of two other talks. Dorothea Jansen investigated collapsing sequences of
manifolds with lower Ricci curvature bound. Despite the fact that no form of a
fibration theorem is available she showed that the diameter of a typical fiber is well
defined up to some uniform factor. Shouhei Honda explained that for a converging
sequence of noncollapsed manifolds with bounded Ricci curvature, the spectrum
of the Hodge-Laplacian on 1-forms converges as well.

Low eigenvalues of the Laplace operator played an essential role in two talks.
Ursula Hamenstädt addressed the several questions in how the first eigenvalue of
a hyperbolic three-manifold relates to its volume and its Heegaard genus. Guo-
fang Wei proved optimal gap estimates between the first two eigenvalues of the
Laplacian for a convex domain of the sphere.

The remaining three talks were given by Kerin, Hingston and Wickramasekera.
Martin Kerin showed that each of the 28 oriented diffeomorphism classes of 7-
dimensional spheres admits a metric with nonnegative sectional curvature, which
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has previously only been known for those which are S3-bundles over S4. A crucial
step of the proof is to show that each exotic 7-sphere is the total space of a Seifert
S3-bundle over S4 endowed with an orbifold metric. Nancy Hingston reported
on various loop products with applications to bounds for the number of closed
geodesics. Neshan Wickramasekera presented a regularity and compactness theory
of CMC hypersurfaces in Riemannian manifolds.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Convergence results for volume preserving flows of convex
hypersurfaces

Carlo Sinestrari

In this talk we consider the evolution of a closed convex hypersurface in Euclidean
space whose speed is given by a power of the mean curvature, plus an additional
nonlocal term which keeps the enclosed volume constant. More precisely, let F0 :
M → Rn+1 be a smooth embedding of a closed n-dimensional manifold M, with
n ≥ 1, such that M0 := F0(M) is a convex hypersurface. For a given k ∈ (0,+∞),
we consider the family of immersions F : M× [0, T ) → Rn+1 which satisfies

(1)
∂F

∂t
(p, t) = [−Hk(p, t) + φ(t)]ν(p, t),

(2) F (p, 0) = F0(p).

Here H and ν denote the mean curvature and the outer normal vector of the
evolving hypersurface Mt = F (M, t), and the function φ is defined by

(3) φ(t) =
1

|Mt|

∫

Mt

Hkdµ.

This choice of φ is such that the volume of the domain enclosed by Mt remains
constant, and the above flow is called the volume-preserving flow by powers of the
mean curvature. In the literature, flows of the form (1) are more commonly studied
without the φ(t) term; we call this case the standard Hk-flow. Flows with speed
Hk are natural generalizations of the classical mean curvature flow, corresponding
to the case k = 1. The standard Hk-flow was first analyzed by Schulze [12, 13],
who later obtained a very interesting application of this evolution to isoperimetric
inequalities in Euclidean and Riemannian spaces [14].

A classical result by Huisken [8] asserts that every compact convex hypersurface
evolving by the standard mean curvature flow shrinks to a point in finite time and
becomes spherical under rescaling, a behaviour which is usually called convergence
“to a round point”. Since then, many authors have investigated whether the same
result holds for flows where the speed is given by a general symmetric, positively
homogeneous function of the principal curvatures. For volume preserving flows,
the corresponding expected result is that the evolution of a convex hypersurface
is defined for all times and converges to a sphere as t → ∞. Until now, these
properties have been proved for fairly general speeds provided the homogeneity
degree is 1, see [6] for the standard case and [11] for volume preserving flows.
For a general homogeneity, the behaviour is less understood. If the degree is
greater than one, the convergence to a round point of the standard flow has been
proved for a large class of speeds under more restrictive assumptions on the initial
hypersurface, see [5] and the references therein. Roughly speaking, one requires
that the principal curvatures λi satisfy a pinching condition of the form λi ≥ cH
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for a suitably large constant c > 0. Similar results have been proved also in the
volume preserving case, see [7]. For general convex initial data and k > 1, the
pinching of the curvatures can become worse under the flow, see Section 5 in [4],
so that the usual methods cannot be extended. Therefore, convergence results
are known only in the case of curves n = 1, or for some particular speeds in the
case n = 2 where other techniques have been discovered, see [1, 15]. If k < 1, the
convergence to a round point of the standard flow is even known to be false in some
cases, see e.g. [3]. For instance, if n = 1 and k = 1/3 then the flow has an affine-
invariance property, which implies in particular that ellipses are homothetically
shrinking solutions of the flow and do not become round with the evolution.

The result we present in this talk is the following, see [16].

Theorem. Let F0 : M → Rn+1 be a smooth embedding such that F0(M) is a
closed convex hypersurface with strictly positive principal curvatures. Then the
flow (1)-(2), with φ given by (3), has a smooth solution, which is defined for all
t ∈ [0,∞), is convex for all t, and converges smoothly to a sphere as t→ +∞.

Such a result is well known for the mean curvature flow k = 1, both standard
and volume preserving, see [8, 9]. By contrast, as recalled above, if k 6= 1 the
available theorems either require some additional curvature pinching assumption
on the initial value, or they only hold for dimension n ≤ 2. Let us describe
these results in more detail. In the case of the standard Hk-flow with k > 1 in
general dimension, Schulze [13] has proved convergence to a round point assuming
a suitable pinching condition on the initial data. An analogous result has been
obtained by the author and Cabezas Rivas [7] in the volume preserving case. In the
case n = 2, Schnürer and Schulze [13] have proved that if 1 ≤ k ≤ 5 then general
convex surfaces converge to a round point of the standard Hk-flow. We remark
that our theorem holds for any k > 0. This is not a contradiction with the above
recalled counterexample for the standard flow of curves; in fact, the invariance
under affine transformation if k = 1/3 is broken by the volume preserving term.

In contrast to the above quoted papers [7, 13], our result does not use any
pinching condition on the solution. The proof relies instead on the monotonicity
of the isoperimetric ratio of the region enclosed by the evolving hypersurface, which
is a peculiar property of the volume preserving flow compared to the standard one.
A crucial step in the proof is provided by a property of convex sets observed in
[2,10], stating that a bound on the isoperimetric ratio implies a bound on the ratio
between outer and inner radius. From this, we can obtain curvature bounds and
long time existence of the flow by standard arguments.

It is possible to generalize this result to volume preserving flows with speeds
given by fairly general functions Φ(H) of the mean curvature, with Φ increasing
(work in progress with M.C. Bertini). A future hope is to extend these techniques
to speed given by other curvature functions, or to apply these convergence results
to obtain isoperimetric inequalities.
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Geometric invariants of closed hyperbolic 3-manifolds

Ursula Hamenstädt

(joint work with Hyungryul Baik, Ilya Gekhtman)

The goal of the talk is to relate the smallest positive eigenvalue λ1(M) of the
Laplace operator of a closed hyperbolic 3-manifold M to the volume of M .

There are two classical bounds for λ1(M). A lower bound is due to Schoen and
states that

λ1(M) ≥ q1
vol(M)2

,

where q1 > 0 is a universal constant (in general, this constant depends on the
geometry and the dimension which are both fixed for the manifolds we discuss).

An upper bound is obtained from the Cheeger constant h(M) of M . This
Cheeger constant is minimal ratio of the area of ∂M0 over the volume of M0,
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where M0 ⊂M is a manifold with boundary ∂M0 and vol(M0) ≤ 1
2vol(M). Buser

showed that

λ1(M) ≤ q2(h(M) + h(M)2),

where as before, q2 > 0 is a universal constant.
A closed oriented 3-manifold can be glued from two handlebodies. Such a han-

dlebody of genus g ≥ 0 is the thickening of an embedded bouquet of g circles in
R3. Its boundary is a surface of genus g. Identifying the boundaries of two such
handlebodies with an orientation reversing diffeomorphism yields a closed oriented
3-manifold, and every closed oriented 3-manifold can be obtained in this way. The
largest Euler characteristic of the boundary of a handlebody involved in such a
decomposition is called the Heegaard Euler characteristic χH(M) ofM . Lackenby
proved that

h(M) ≤ 4π|χH(M)|
vol(M)

.

These results combined then show that for every g > 0 there exists a constant
q = q(g) > 0 with the following property. LetM be a closed hyperbolic 3-manifold
of Heegaard genus at most g; then

q−1

vol(M)2
≤ λ1(M) ≤ q

vol(M)
.

A closed 3-manifold M is a mapping torus if there is a closed surface S and a
diffeomorphism φ : S → S such that M = S × [0, 1]/ ∼ where (x, 1) ∼ (φ(x), 0).
If the genus of S equals g, then the Heegaard genus of M is at most 2g − 1.
Furthermore, Agol proved that any closed hyperbolic 3-manifold has a finite cover
which is a mapping torus. The following result [1,2] gives a sharp estimate for the
first eigenvalue of mapping tori.

Theorem. For every g ≥ 2 there exists a constant c(g) > 0 with the following
property.

(1) Let M be a hyperbolic mapping torus of genus g; then

λ1(M) ≤ c(g) log vol(M)

vol2
2g−2/(22g−2−1)

.

(2) There exists a sequence Mi of hyperbolic mapping tori of genus g with
vol(Mi) → ∞ and

λ1(Mi) ≥
c(g)−1

vol(Mi)2
2g−2/(22g−2−1)

.

The diffeomorphism type of a mapping torus of a surface of genus g only depends
on the isotopy class of the diffeomorphism which defines the mapping torus. Thus
mapping tori of genus g are classified up to diffeomorphism by elements of the
mapping class group Mod(S). As Mod(S) is a finitely generated group, we can use
random walks on Mod(S) to speak about random mapping tori. More precisely,
the random walk defines a sequence Pn of probability measures on Mod(S) and
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hence on mapping tori. We say that a property Q holds for a random mapping
torus if Pn{M has Q} → 1 (n→ ∞).

For random mapping tori, we can say more [1].

Theorem. There exists a number ĉ(g) > 0 such that for a random mapping torus
of genus g we have

λ1(M) ≤ ĉ(g)

vol(M)2
.
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Non-negative sectional curvature on exotic 7-spheres

Martin Kerin

(joint work with Sebastian Goette, Krishnan Shankar)

In 1956, Milnor discovered that there exist exotic spheres in dimension 7, that
is, manifolds which are homeomorphic, but not diffeomorphic, to the standard
sphere S7 [5]. He constructed examples of such manifolds as S3-bundles over S4,
and these have come to be known as the Milnor spheres.

Within a few years, it had been shown that there are, in fact, 28 distinct oriented
diffeomorphism types among manifolds homeomorphic to S7, that these form the
cyclic group Z28 under the connected-sum operation, and that the Milnor spheres
(which include S7) achieve 16 of these oriented diffeomorphism types (see [1,6,7]).
If one forgets the orientation, there are 15 diffeomorphism types in total, 11 of
which are achieved by the Milnor spheres.

In 1974, Gromoll and Meyer [3] found an example of an exotic Milnor sphere
which admits a metric of non-negative sectional curvature. Much later, in 2000,
Grove and Ziller [4] demonstrated that all Milnor spheres admit such a metric.
By modifying the construction of Grove and Ziller, we have shown that there is
a six-parameter family of 7-manifolds, the members of which are not constructed
as S3-bundles over S4 and can be equipped with a metric of non-negative sec-
tional curvature. It is not difficult to identify subfamilies comprising manifolds
homeomorphic to S7 and, as a consequence, we obtain the following result.

Theorem. All exotic 7-dimensional spheres admit a metric of non-negative sec-
tional curvature.

The major difficulty lies in identifying which diffeomorphism types have been
obtained and, in particular, verifying that the four non-Milnor exotic spheres oc-
cur. In order to do so, we have modified the methods used in [2] to compute the
Eells-Kuiper invariant [1] for each space.
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Min-max minimal hypersurfaces in noncompact manifolds

Rafael Montezuma

The main result mentioned in this talk is a theorem on existence of closed, em-
bedded, smooth minimal hypersurfaces in certain non-compact spaces.

Minimal surfaces, the extremizers of the area functional, are among the most
important topics in differential geometry. Euler and Lagrange were the first to
consider minimal surfaces, proving that if the graph of a C2 function u is minimal
in the Euclidean space, then u satisfies a second order elliptic quasilinear partial
differential equation. Later, Meusnier discovered a geometric characterization for
these surfaces, by the vanishing of the mean-curvature. These two points of view
explain why minimal surfaces are natural objects of study in geometric analysis.

Henceforth, many mathematicians contributed to the development of the theory
and applied its ideas to settle deep problems and establish beautiful results in
geometry. For instance, minimal surfaces have a strong link to problems involving
the scalar curvature of three-manifolds. The proof of the positive mass conjecture
in general relativity by Schoen and Yau [14] is one of the most important examples
of this connection. Some other important recent works using minimal surfaces are
the proof of the finite time extinction of the Ricci flow with surgeries starting at a
homotopy 3-sphere by Colding and Minicozzi [6] and [7], the proof of the Willmore
Conjecture and the existence of infinitely many closed minimal hypersurfaces in
closed manifolds with positive Ricci curvature by Marques and Neves [9] and [10].

The existence of minimal submanifolds with some specific properties plays a
fundamental role in the development of the theory. The most natural way to
produce minimal surfaces is by minimizing the area functional in a fixed class.
This idea was applied in many different settings.

In the topology of 3-manifolds, there are two important types of surfaces,
namely the Heegaard splittings and the incompressible surfaces. The latter can
occur as minimal surfaces produced by minimization processes, and for this reason,
are stable; i.e., the Morse index is equal to zero. It is also possible to apply vari-
ational methods to construct higher index minimal surfaces. There are two basic
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approaches: applying Morse theory to the energy functional on the space of maps
from a fixed surface, such as in the works of Sacks and Uhlenbeck, Micallef and
Moore and Fraser, or via a min-max argument for the area functional over classes
of sweepouts. In some cases, these methods can be applied to realize Heegaard
splittings as embedded minimal surfaces, see [13] and [5].

This min-max technique was inspired by the work of Birkhoff [4] on the existence
of simple closed geodesics in Riemannian 2-spheres, a question posed by Poincaré.

In higher dimensions, the original method was introduced in [2] and [12] between
the 1960’s and 1980’s. It has been used recently by Marques and Neves to answer
deep questions in geometry, see [9] and [10]. The method consists of applications
of variational techniques for the area functional. It is a powerful tool in the
production of unstable minimal surfaces in closed manifolds.

In this talk, we deal with a new min-max construction of minimal hypersurfaces
and apply the technique to obtain existence results in non-compact manifolds.

There is no immersed closed minimal surface in the Euclidean space R3. This
fact illustrates the existence of obstructions for a Riemannian manifold to admit
closed minimal hypersurfaces. In the Euclidean space, this obstruction can be seen
as a simple application of the maximum principle.

The main result in this talk is:

Theorem 1. Let (Nn, g) be a complete non-compact Riemannian manifold of
dimension n ≤ 7. Suppose:

• N contains a bounded open subset Ω, such that Ω is a manifold with smooth
and strictly mean-concave boundary, and

• N is thick at infinity.

Then, there exists a closed embedded minimal hypersurface Σn−1 ⊂ N . Moreover,
the obtained hypersurface intersects Ω.

The thickness assumption can be loosely phrased as follows: ”The decay of the
geometric objects at infinity is at most polynomial”. For instance, manifolds of
bounded geometry and manifolds with ends asymptotic to right cylinders are thick
at infinity.

In the recent paper [8], Collin, Hauswirth, Mazet and Rosenberg prove that
any complete non-compact hyperbolic three-dimensional manifold of finite volume
admits a closed embedded minimal surface. These manifolds have a different
behavior at infinity from those considered in Theorem 1.

The hypothesis involving the mean-concave bounded domain Ω comes from the
theory of closed geodesics in non-compact surfaces. In 1980, Bangert proved the
existence of infinitely many closed geodesics in a complete Riemannian surface M
of finite area and homeomorphic to either the plane, or the cylinder or the Möbius
band, see [3]. The first step in his argument is to prove that the finiteness of the
area implies the existence of locally convex neighborhoods of the ends of M .

To prove Theorem 1, we developed a min-max method that is adequate to
produce minimal hypersurfaces with intersecting properties. Let (Mn, g) be a
closed Riemannian manifold and Ω be an open subset ofM . Consider a homotopy
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class Π of one-parameter families of codimension-one submanifolds sweeping M
out. For each given sweepout S = {Σt}t∈[0,1] ∈ Π, we consider the number

L(S,Ω) = sup{Hn−1(Σt) : Σt intersects Ω},
where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure associated with
the Riemannian metric. Define the width of Π with respect to Ω to be

L(Π,Ω) = inf{L(S,Ω) : S ∈ Π}.
Then, we prove:

Theorem 2. Let (Mn, g) be a closed Riemannian manifold, n ≤ 7, and Π be a
non-trivial homotopy class of sweepouts. Suppose that M contains an open subset
Ω, such that Ω is a manifold with smooth and strictly mean-concave boundary.
There exists a stationary integral varifold Σ whose support is a smooth embedded
closed minimal hypersurface intersecting Ω and with ||Σ||(M) = L(Π,Ω).

The intersecting condition in Theorem 2 is optimal in the sense that it is possible
that the support of the minimal surface Σ is not entirely in Ω. We illustrate this
fact with an example of a mean-concave subset of the unit three-sphere S3 ⊂ R4

containing no great sphere. For each 0 < t < 1, consider the subset of S3 given by

Ω(t) = {(x, y, z, w) ∈ S3 : x2 + y2 > t2}.
It is not hard to see that no Ω(t) contains great spheres. Moreover, the boundary

of Ω(t) is a constant mean-curvature torus in S3. If 0 < t < 1/
√
2, the mean-

curvature vector of ∂Ω(t) points outside Ω(t). In this case, Ω = Ω(t) is a mean-
concave subset of S3 that contains no great sphere.
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Mean curvature flow with surgery in 3-manifolds

Gerhard Huisken

(joint work with Simon Brendle)

The lecture describes geometric aspects of joint work with Simon Brendle (Stan-
ford) on the motion of closed 2-dimensional hypersurfaces in a closed smooth
Riemannian 3-manifold in direction of the mean curvature vector. It is assumed
that the surfaces are embedded and have positive mean curvature.

We show that the flow has a solution that is smooth except at finitely many
surgery times and either becomes extinct in finite time or converges smoothly in
infinite time to a weakly stable minimal surface, which has genus no larger than
the initial surface.

Applications include asymptotically flat 3-manifolds, where initial surfaces taken
as large coordinate spheres lead to a complete sweep-out of the 3-manifold all the
way up to the outermost horizon.

Essential ingredients of the proof include a convexity estimate (joint with Sines-
trari 1999), a non-collapsing estimate by Brendle improving a previous estimate
by B. Andrews and an estimate on the self-improvement of shrinking necks. Fi-
nally, gradient estimates for the curvature by Ecker-Huisken, Haslhofer-Kleiner
are combined with a pseudo-locality result to control first and second derivatives
of curvature, preparing for the surgery construction.
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Loop Products and Closed Geodesics

Nancy Hingston

(joint work with Mark Goresky, Alexandru Oancea, Hans-Bert Rademacher,
Nathalie Wahl)

We report on recent results with Nathalie Wahl in string topology. However be-
cause this is a geometry meeting, most of the lecture will be devoted to geometric
motivation, the relationship between products and iteration of closed geodesics,
and the principle of Poincaré Duality in the free loop space.

A metric on a compact manifold M of dimension n > 2 gives rise to a length
function on the free loop space ΛM whose critical points are the closed geodesics on
M in the given metric. Morse theory gives a link between Hamiltonian dynamics
and the topology of loop spaces, between iteration of closed geodesics and the
algebraic structure given by the Chas-Sullivan product on the homology of ΛM .
Poincaré Duality reveals the existence of a related product on the cohomology of
ΛM . A number of known results on the existence of closed geodesics are naturally
expressed in terms of nilpotence of products. We use products to prove a resonance
result for the loop homology of spheres. There are interesting consequences for
the length spectrum, and related results in Floer and contact theory.

The best function for Morse theory on Λ = ΛM is not the length ℓ or the energy
E : Λ → R,

E(γ) =

∫
| ·γ|2dt,

but F =
√
E. (If γ ∈ Λ, F (γ) ≥ ℓ(γ) with equality if and only if γ is parameterized

proportional to arclength.) Let X ∈ H∗(ΛM) be a homology class. We define the
critical level of X as

cr(X) = inf{a ∈ R : X is supported on {γ ∈ Λ : F (γ) ≤ a}}.
This critical level is always the length of a closed geodesic on M ; Morse theory
gives a rough correspondence

Hk(ΛM) ≈ critical points of index k.

The main difficulty with using this correspondence to find closed geodesics on
M is that the iterates of a closed geodesic γ (indistinguishable from the point of
view of geometry) appear as different critical points in Λ, with different length
and different index. An algebraically minded geometer is led to the following
question: Is there an operation on homology that corresponds to iteration of critical
points? Matthias Schwarz long ago suggested a connection between products and
iteration.

The original loop product is the Pontryagin product

·PP : Hi(Ω)⊗Hj(Ω) → Hi+j(Ω)

induced from the concatenation product on the based loop space Ω = ΩM .
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The Chas-Sullivan product

·CS : Hi(Λ)⊗Hj(Λ) → Hi+j−n(Λ)

was introduced in 1999, with a more rigorous definition given by Cohen and Jones.
Current work with Nathalie Wahl includes a simpler definition.

The author and Mark Goresky used the principle of Poincaré duality to produce
”dual” products on cohomology

·GH : Hi(Ω)⊗Hj(Ω) → Hi+j+n−1(Ω)

·GH : Hi(Λ)⊗Hj(Λ) → Hi+j+n−1(Λ)

The principle of Poincaré duality on loop spaces does not have a rigorous statement
as yet, but the idea is that the loop spaces look roughly the same when the function
F is replaced by the upside-down function −F . The products on the free loop space
satisfy the dual fundamental inequalities

cr(X ·CS Y ) ≤ cr(X) + cr(Y ) if X,Y ∈ H∗(Λ)

cr(x ·GH y) ≥ cr(x) + cr(y) if x, y ∈ H∗(Λ)

and there are similar inequalities on Ω. (Note the change in direction of the
inequality!) It turns out that the homology products are nontrivial, and model the
local geometry in cases where the index growth is minimal, and the cohomology
products are nontrivial and model the local geometry in cases where the index
growth is maximal.

Application, joint work with Rademacher: Fix a metric (Riemannian or Finsler)
on Sn. Fix a coefficient field. The points (cr(X), deg(X)), where X ∈ H∗(Λ), lie
at a bounded distance from a line through the origin in the (ℓ, d) plane. The units
of the slope are ”conjugate points per unit length”. The proof uses both products.

Recent developments on string topology:
(joint with Alexandru Oancea) Chas-Sullivan-type products on path spaces.
(joint with Nathalie Wahl) lift of the homology coproduct; higher order products

and formulas involving the product and coproduct.

Open questions:

(1) Give a rigorous statement of the Poincaré duality principle for loop spaces.
(2) For the loop coproduct ∨ on H∗(ΛM): Show that, if X ∈ H∗(ΛM) has a

representative consisting of simple loops, then ∨X = 0.
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Singularities of Kähler-Einstein metrics

Song Sun

(joint work with Hans-Joachim Hein, University of Maryland)

I shall describe the main result through the following example. LetXf be a smooth
hypersurface in Pn+1 defined by a homogeneous polynomial of degree n+2. A well-
known theorem of Yau [7] asserts that there is a unique Ricci-flat Kähler metric
ωf in the Kähler class [ωFS |Xf

]. Now let f vary in the space of all degree n + 2

homogeneous polynomials, so that Xf becomes singular. Fix an f̃ such that Xf̃

has at worst nodal singularities. The latter are by definition isolated singularities
locally isomorphic to S := {z21 + · · ·+ z2n+1 = 0} ⊂ Cn+1, and these are the most
generic singularities. Suppose x1, · · · , xN are the singularities of such an Xf̃ . We
are interested in understanding the limits of the Ricci-flat metrics ωf as f tends

to f̃ . The following are known

(1) (Eyssidieux-Guedj-Zeriahi [4]): There is a unique Kähler current ωf̃ on Xf̃

in the class ωFS |Xf̃
, which is smooth and Ricci-flat on Xf̃ \ {x1, · · · , xN},

and has locally continuous potential near each xi;
(2) (Rong-Zhang [6]): As f tends to f̃ , (Xf , ωf) converges in the Gromov-

Hausdorff sense to the metric completion of (Xf̃ \ {x1, · · · , xN}, ωf̃ ), and
the latter space is topologically homeomorphic to Xf̃ . The last statement

uses [2].
(3) (Donaldson-Sun [3]): There is a unique tangent cone at each xi, which

is naturally an affine algebraic variety, and there is an algebro-geometric
description of this tangent cone in terms of filtrations of the local ring of
holomorphic functions at xi.

Now (1) provides a weak solution, (2) enables the use of the Riemannian con-
vergence theory and (3) builds connections with algebraic geometry. A folklore
question is to understand the precise behavior of the solution ωf̃ near each xi. This
can be regarded as studying the “regularity problem”, just like in many other geo-
metric analytic context. Our result achieves this by proving that the metric is
asymptotic to a model conical metric in a polynomial rate.

Theorem ([5]). There are a neighborhood U of the vertex in the Stenzel cone,

which is an explicit Ricci-flat Kähler cone metric ωS = i
2∂∂̄(

∑n+1
k=1 |zk|2)(n−1)/n

on S, a neighborhood Vi of xi, and a holomorphic equivalence Pi : U → Vi, C > 0,
d > 0 such that for all k ≥ 0,

|∇k
ωS

(P ∗ωf̃ − ωS)|ωS
≤ Crd−k,
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where r := (
∑n+1

k=1 |zk|2)(n−1)/2n is the distance function to the vertex on S.

When n = 2 this follows easily from a simple extension of Yau’s theorem. Indeed
it is well known that the metric near the singularities is of “orbifold” type and the
Stenzel cone is a flat cone in this case. When n ≥ 3 this is no longer the case since
the Stenzel cone is not flat. The above theorem provides the first known examples
of compact Ricci-flat metrics with isolated conical, but non-orbifold singularities.
A more general statement is true, but the proof of the special case above is not
much simpler.

This result also provides singular models for certain glueing construction. No-
tice the corresponding complete model, namely asymptotically conical Calabi-Yau
manifolds, has been well-studied, see for example [1].
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Immortal homogeneous Ricci flows

Ramiro Lafuente

(joint work with Christoph Böhm)

Consider an unnormalized Ricci flow solution (Mn, g(t)) which is immortal, that
is, it exists for all times t ∈ [0,∞) without encountering any singularities.

Question. What can be said about the asymptotic behavior of g(t) as t→ ∞?

Much progress to answer this question has been made in the case of closed
3-manifolds by Lott [6], Lott-Sesum [7], Bamler [1], among others. Under some
conditions it can be shown that the parabolic blow-downs gs(t) :=

1
sg(s · t) lifted

to the universal cover subconverge to an expanding homogeneous Ricci soliton, as
s→ ∞. The situation in higher dimensions seems to be much less understood.

In this talk we address the question in the case of homogeneous manifolds.
This seems to be a natural setting to be explored: on one hand, the Ricci flow
equation reduces to a nonlinear ODE, thus a better understanding of its dynamical
properties can be hoped. On the other hand, there are vast families of examples of
non-gradient expanding homogeneous Ricci solitons, which are especially relevant



1596 Oberwolfach Report 28/2016

for the long-time behavior of immortal solutions as depicted in the 3-dimensional
case. Our main result states that these self-similar solutions are indeed the only
possible limits.

Theorem ([2]). For any immortal homogeneous Ricci flow solution, any sequence
of blow-downs subconverges to an expanding homogeneous Ricci soliton, in the
sense of Riemannian groupoids.

In the presence of a uniform lower bound for the injectivity radius, the con-
vergence is in fact in the C∞ Cheeger-Gromov topology, that is, smooth up to
pull-back by diffeomorphisms. It is important to notice that a large family of
examples of immortal homogeneous Ricci flows is given by solutions starting at a
left-invariant metric on a solvable Lie group [4]. In this case, a stronger statement
holds: Ricci soliton metrics are global attractors among all left-invariant metrics
on a fixed solvable group.

Theorem ([2]). On a simply-connected solvable Lie group S admitting a left-
invariant Ricci soliton metric gsol, any scalar curvature normalized Ricci flow
solution starting at any other left-invariant metric on S converges to gsol in the
Cheeger-Gromov sense.

The improvement to Cheeger-Gromov convergence is possible due to a new
injectivity radius estimate for solvmanifolds. If moreover gsol is Einstein, then the
convergence takes place in the C∞ topology, without the need of pulling back by
diffeomorphisms. Since the Ricci flow preserves the isometry group, this yields
as an immediate consequence the fact that Einstein solvmanifolds have maximal
isometry group among all left-invariant metrics on the same solvable group, a
result recently obtained by Gordon and Jablonski [3] using different methods.

The proof of the above results has various essential ingredients. Our approach
consists in studying an ODE for Lie brackets, called the bracket flow, introduced
by Lauret in [5], whose solutions are in one-to-one correspondence with homoge-
neous Ricci flow solutions. An important point in this setting is that the same
homogeneous geometry may correspond to several different brackets, because there
might be different groups acting transitively by isometries on the same space. This
is reflected in the fact that along a Ricci flow solution, the algebraic data might
diverge while the geometry stays bounded – we call this algebraic collapsing. If
this is the case, the bracket flow then fails to reveal the true geometric limit of the
solution. To overcome this issue, we study the convergence of Killing fields along a
Cheeger-Gromov-convergent sequence of Riemannian manifolds. This allows us to
show that the dimension of the isometry group of a sequence which algebraically
collapses must be strictly bigger at the limit.

Once the algebraic collapsing is ruled out, the next step is to find a scale-
invariant quantity which is monotone along the flow, and constant precisely on
Ricci solitons – that is, a Lyapunov function. This is obtained by exploiting a close
link between the Ricci curvature of a homogeneous space and a certain moment
map associated with the representation of the real reductive group GLn(R) on the
vector space of skew-symmetric bilinear forms Λ2(Rn)∗ ⊗ Rn. It turns out that
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the tools developed by Geometric Invariant Theory to study such actions can be
adapted to this situation, providing the desired estimates for the Ricci curvature.

Finally, the uniqueness and global stability in the case of solvmanifolds follow
from studying the linearization of the flow at a homogeneous Ricci soliton. Cer-
tain uniqueness properties enjoyed by the above mentioned moment map are also
needed.

To conclude this note, let us mention that it would be very interesting to de-
termine if these methods can be applied to study the question of existence of
homogeneous Ricci solitons on a given homogeneous space. Indeed, all known
examples so far occur in solvable groups, and in fact no immortal homogeneous
Ricci flow solutions are known on simply-connected homogeneous space with a
non-trivial compact factor in its topology, for example among left-invariant met-
rics on a non-compact simple Lie group such as SL(3,R).
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Cohomogeneity one Ricci flow and nonnegative curvature

Renato G. Bettiol

(joint work with Anusha M. Krishnan)

We prove that S4, CP 2, S2 × S2 and CP 2#CP
2
have metrics with nonnegative

sectional curvature that immediately acquire negatively curved tangent planes
when evolved via Ricci flow [1]. By taking products with spheres, it follows that
Ricci flow does not preserve nonnegative sectional curvature on closed manifolds
of any dimension ≥ 4. The above are the first compact 4-dimensional examples
exhibiting such behavior, which was previously known for closed manifolds of
dimension at least 6 [4], and non-compact manifolds [10].

The metrics we consider were introduced by Grove and Ziller [6], and support
a large isometry group (acting with cohomogeneity one), which reduces the Ricci
flow equation to a PDE in only 2 variables, one for time and one for space. This
makes its analysis more accessible, and allows us to explicitly show that the first
variation of the sectional curvature of certain initially flat planes is negative.
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Analogous cohomogeneity one frameworks were previously employed by other
authors, e.g., to construct non-homogeneous Ricci solitons [5] and study the asymp-
totics of neckpinches without rotational symmetry [7]. It is our hope that the uni-
fying viewpoint of cohomogeneity one Ricci flow will be more systematically stud-
ied, mirroring the current study of homogeneous Ricci flow pioneered by Böhm,
Lafuente, Lauret, and others. In some sense, this would be the “next step” in a
symmetry program approach to understanding Ricci flow, and there is a wealth of
questions that naturally arise and remain to be answered, including:

(1) When do diagonal cohomogeneity one metrics remain diagonal?
(2) Which singularities may develop along cohomogeneity one Ricci flow?
(3) Understand the behavior of immortal cohomogeneity one Ricci flows, es-

pecially in relation with results on existence and non-existence of cohomo-
geneity one Einstein metrics and Ricci solitons [2,3,5], as well as cohomo-
geneity one manifolds whose principal orbits are homogeneous spaces that
do not admit homogeneous Einstein metrics.
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The space of min-max hypersurfaces for analytic metrics with Ric > 0

Nicolau Sarquis Aiex

In [4] F. C. Marques and A. Neves have shown the existence of infinitely many
embedded minimal hypersurfaces in a closed manifold with positive Ricci curva-
ture. Their result is divided in two cases: when ωp < ωp+1 for all p or the equality
case ωp = ωp+1, for some p.

In the first case the minimal hypersurfaces they obtain are geometrically dis-
tinct because they must have different areas. However, nothing is known about
their topological types, a priori they could all be the same surface with distinct em-
beddings. For example, in the 3-torus it is possible to find a sequence of embedded
2-tori with area tending to infinity.
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In the second case the hypersurfaces given by their proof actually have constant
area, so they could all be the same embedding under isometries. Take the round 3-
sphere as an example. As it is known, in this case ω1 = ω2, so their construction is
actually giving us the 3-parameter of S2 in the equator, all of which are isometric.

It would be interesting to know whether in the second case the minimal hy-
persurfaces in [4] are isometrically distinct. To answer this one could analyse
either how the index or the area changes along the space of minimal hypersur-
faces. It turns out that a bound on both the index and the area is sufficient to
have compactness, as it was proven by B. Sharp in [9]. With that in mind, a
non-compactness result would imply that either the index or the area of minimal
hypersurfaces must be unbounded.

We are interested in showing that the space of minimal hypersurfaces is non-
compact when the metric is analytic with positive Ricci curvature. The idea of
the proof is the following. First we show that if we have compactness then there
exists N > 0 so that ωp < ωp+N . Now the result follows as in [4] because we are
able to obtain an increasing subsequence of the width spectrum with the number
of parameters growing linearly.

The first step is based on the ideas of Lusternik-Schnirelmann category theory.
In their context they are able to obtain results on the topology of the critical set
whenever one has equality ωp = ωq. However, their method only works for smooth
functions in Banach manifolds so we need a careful adaptation to our setting. The
second step follows from the asymptotic behaviour of the width proved first by M.
Gromov (see [2]).
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Spectral convergence under bounded Ricci curvature

Shouhei Honda

Let n be a positive integer, let K be a positive real number, let Xi be a sequence
of n-dimensional compact Riemannian manifolds with

(1) |RicXi
| ≤ K,

and let X be the Gromov-Hausdorff limit compact metric space with dimH X = n,
where dimH is the Hausdorff dimension. It is known in [1] by Cheeger-Colding
that (Xi, H

n) measured Gromov-Hausdorff converge to (X,Hn), where Hn is the
n-dimensional Hausdorff measure.

A main result in [7] states that we have

(2) lim
i→∞

λH,1
m (Xi) = λH,1

m (X) <∞

for allm, where λH,1
m is the m-th eigenvalue of the Hodge Laplacian ∆H,1 = δd+dδ

acting on 1-forms, and the Hodge Laplacian ∆H,1 on X is as a metric measure
space (X,Hn) introduced in [4] by Gigli. Note that the statement of (2) includes
the discreteness and the unboundedness of the spectrum of ∆H,1 on X which are
also new. We call (2) the spectral convergence of ∆H,1 for short.

As a corollary of (2) we have the upper semicontinuity of the 1st Betti numbers:

lim sup
i→∞

b1(Xi) ≤ bhar1 (X) <∞,

where bhar1 (X) is the dimension of the space of harmonic 1-forms on X . Moreover
limi→∞ b1(Xi) = bhar1 (X) holds if and only if a uniform spectral gap of ∆H,1 exists,
i.e.

(3) lim inf
i→∞

νH,1(Xi) > 0,

where νH,1 is the first positive eigenvalue of ∆H,1. For bhar1 (X), note that the
finiteness is also new, that it coincides with the 1st Betti number as a metric
masure space introduced in [4]. However it is unknown whether it coincides with
the ordinary one b1(X). It is conjectured that (3) holds and that bhar1 (X) coincides
with b1(X), i.e.

(4) lim
i→∞

b1(Xi) = b1(X).

We now recall related Sormani-Wei’s work on the behavior of revised fundamen-
tal groups with respect to the Gromov-Hausdorff topology. They proved in [10]
that for a Gromov-Hausdorff noncollapsed convergent sequence of n-dimensional
compact Riemannian manifolds Mi with a uniform Ricci bound from below to an
n-dimensional compact metric space Y , we have

π1(Mi)/Fi ≃ π1(Y )

for all sufficiently large i, where Fi is a finite subgroup of π1(Mi) and π1(Y ) is the
revised fundamental group of Y which is introduced by them. In particular if Y is
semi-locally simply connected, then limi→∞ b1(Mi) = b1(Y ) holds. However, even
for X , it is unknown whether X is semi-locally simply connected. The difficulty



Geometrie 1601

is in the geometric structure of the singular set of the limit space. The conjecture
(4) means that Sormani-Wei’s geometric approach might be compatible with our
analytic approach.

We now turn to the spectral convergence. It is worth pointing out that for k ≥ 2
we can not expect the spectral convergence of the Hodge Laplacian ∆H,k acting
on k-forms even in the case when the sequence consists of Einstein manifolds.
Because the spectral convergence of ∆H,k implies the upper semicontinuity of the
k-th Betti numbers. However, Kobayashi-Todorov gave in [8] a Gromov-Hausdorff
noncollapsed convergent sequence of (real) 4-dimensional compact Ricci flat Kähler
manifolds to a 4-dimensional compact orbifold such that the second Betti numbers
are strictly decreasing. In this meaning, (2) might be sharp.

On the other hand, it is also proven in [7] that for the connection Laplacian
∆C,k = ∇∗∇ acting on k-forms, the spectral convergence holds for all k, i.e.

lim
i→∞

λC,k
m (Xi) = λC,k

m (X)

for all m, where λC,k
m is the m-th eigenvalue of ∆C,k.

These spectral convergence are generalization of the spectral convergence of
the Laplacian ∆ acting on functions proved by Cheeger-Colding in [2]. The main
difference is that the noncollapsed assumption is essential in the case of differential
forms. In fact, it is easy to check that for a collapsing 2-tori, S1(1) × S1(ǫi) →
S1(1) as ǫi → 0, although the spectral convergence of ∆ holds, but the spectral
convergence of ∆H,1 = ∆C,1 does not hold.

Finally we give a remark on curvature tensors on X . It is proven in [7] that the
Riemannian curvature tensor RX , the Ricci tensor RicX , and the scalar curvature
sX are well-defined on X in some weak sense. In particular we see that

∆H,1ω = ∆C,1ω +RicX(ω∗, ·)
on X and that the behavior of the scalar curvature with respect to the Gromov-
Hausdorff topology gives a positive answer to a question by Lott given in [9].
Note that from the regularity theory of X , it is known that we can not define the
curvature tensors in the ordinary way of Riemannian geometry.

The key technical tools in order to prove the results above are the regularity of
the regular set of X established in [1], the solution of the codimension 4-conjecture
and several estimates given in [3], and the Lp-convergence of tensor fields and their
properties given in [5, 6].

It seems to be an interesting open problem whether these observations (except
for curvature tensors) can be justified if we replace (1) by a weaker condition;

RicXi
≥ −K.
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Weyl’s law for widths of Riemannian manifolds

Yevgeny Liokumovich

(joint work with Fernando C. Marques, André Neves)

Let M be a compact Riemannian manifold of dimension n+1. The eigenvalues of
the Laplace-Beltrami transform ∆ onM have the following variational characteri-
zation. Let V =W 1,2(M)\{0} and consider the Rayleigh quotient E : V → [0,∞],

E(f) =
∫
M

|∇f |2
f2 dV . The functional E is homogeneous, E(af) = E(f), so it de-

scends to the quotient P = V/{lines in V} ≃ RP∞. Then

λp = inf
Pp⊂P

sup
f∈Pp

E(f),

where the infimum runs over all linear subspaces of P of dimension p.
Weyl’s law states that the eigenvalues {λp} have an asymptotic behaviour which

only depends on the volume of M :

lim
p→∞

λpp
− 2

n+1 = α(n)vol(M)−
2

n+1 ,

where α(n) = 4π2vol(B)−
2

n+1 and B is the unit disc in Rn+1.
Gromov ([3], [4, Section 8], [5, Section 5.2], [6]) proposed studying widths of

Riemannian manifolds as a non-linear analog of the spectral problem on M . The
definition of width is similar to the above min-max characterization of the eigen-
values, but with the space of cycles on M as the underlying space and the mass
as the energy. We will work with the spaces Zn(M ;Z2) of mod 2 flat n-cycles in
M and Zk,R(M,∂M ;Z2) of relative mod 2 flat cycles whenever M has boundary.

By the work of Almgren [1] there is a weak homotopy equivalence Zn(M ;Z2) ≃
Zk,R(M,∂M ;Z2) ≃ RP∞. We say that a family of cycles {zt} is a p-sweepout if
it represents a non-trivial element in Hp(Zk,R(M,∂M ;Z2);Z2).

The p-width ofM of dimension n, denoted by ωp(M), is defined as the infimum
over all real numbers w, such that there exists a p-sweepout {zt} with the mass
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of zt at most w. A well-written exposition of widths and their properties can
be found in the introduction of Guth’s paper [7]. The widths arise as volumes
of minimal hypersurfaces obtained via Almgren-Pitts min-max theory. Recently,
the analysis of widths has been used by Marques and Neves to prove existence of
infinitely many minimal hypersurfaces in manifolds with positive Ricci curvature
[11].

Gromov’s insightful idea is that using the cohomology structure of RP∞ many
properties of the spectrum of the Laplacian can be extended to widths.

In [2] and [9] upper bounds for widths of Riemannian manifolds were obtained
that depend on the conformal class of the manifold. These results were inspired by
Gromov’s analogy and the upper bounds obtained by Korevaar for the eigenvalues
of the Laplacian [8].

Gromov conjectured ([4, 8.4]) that the non-linear spectrum {ωp(M)} has as-
ymptotic behaviour similar to the Weyl’s law. The proof of this conjecture can be
found in [10].

Theorem (L, Marques, Neves, 2016). Let M be a compact Riemannian manifold
with (possibly empty) boundary. There exists a constant a(n), which depends only

on the dimension, such that limp→∞ ωp(M)p−
1

n+1 = a(n)vol(M)
n

n+1 .

We list some open questions, related to this result. The first question is to
compute the constants a(n). This is unknown even in the simplest case n = 1.
Potential candidates for the asymptotically optimal families of sweepouts include
nodal sets of eigenfunctions on the flat disc or the round sphere, or zero sets of
harmonic polynomials on the flat disc.

The second question is whether the argument for widths of Riemannian mani-
folds can be extended to higher codimension. Namely, is it true that for a compact
Riemannian manifold

lim
p→∞

ωk
p(M)p−

n+1−k
n+1 = a(n, k)vol(M)

k
n+1

for k < n? In the case of higher codimension, the cohomology ring of the space of
relative cycles is richer (see [7]) and so another question would be to understand
the asymptotic limit for the widths associated with Steenrod powers.

Finally, is it possible to use min-max argument for p-parameter families of cycles
to construct minimal surfaces, which become equidistributed in the manifold as
p → ∞, like nodal domains of eigenfunctions? (cf. Conjectures in Section 9 of
[11]).
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The moduli space of 2-convex embedded spheres

Robert Haslhofer

(joint work with Reto Buzano, Or Hershkovits)

To put things into context, let us start with a general discussion of the moduli
space of embedded n-spheres in Rn+1, i.e. the space

Mn = Emb(Sn,Rn+1)/Diff(Sn).

In 1959, Smale proved that the space of embedded circles in the plane is con-
tractible [3], i.e.

M1 ≃ ∗.
In particular, the assertion π0(M1) = 0 is equivalent to the smooth version of
the Jordan-Schoenflies theorem, and the assertion π1(M1) = 0 is equivalent to
Munkres’ theorem that Diff+(S

2) is path-connected [4].
Moving to n = 2, Smale conjectured that the space of embedded 2-spheres in

R3 is also contractible, i.e. that
M2 ≃ ∗.

In 1983, Hatcher proved the Smale conjecture [5]. The assertion π0(M2) = 0 is
equivalent to Alexander’s strong form of the three dimensional Schoenflies theorem
[6]. The assertion π1(M2) = 0 is equivalent to Cerf’s theorem that Diff+(S

3) is
path-connected [7], which had wide implications in differential topology.

For n ≥ 3 not a single homotopy group of Mn is known. Most importantly:

The naive guess that Mn ≃ ∗ for all n is completely false.

Indeed, if Mn were contractible for every n, then arguing as in [5] we could infer
that Dn := Diff(Dn+1 rel ∂Dn+1) ≃ ∗ for every n. However, it is known that Dn

has non-vanishing homotopy groups for every n ≥ 4. Even more strikingly, for
every n ≥ 6 there are infinitely many i such that πi(Dn) 6= 0 [8].

In the view of the topological complexity of Mn for general n, it is an inter-
esting question whether one can still derive some positive results on the space of
embedded n-spheres under some curvature conditions. Such results would show
that all the non-trivial topology of Mn is caused by embeddings of Sn that are
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geometrically very far away from the canonical one. Motivated by the topological
classification result from [9], we consider 2-convex embeddings, i.e. embeddings
such that the sum of the smallest two principle curvatures is positive. Clearly,
2-convexity is preserved under reparametrizations. We can thus consider the sub-
space

M2-conv
n ⊂ Mn

of 2-convex embedded n-spheres in Rn+1. We propose the following higher dimen-
sional Smale type conjecture.

Conjecture. The moduli space of 2-convex embedded n-spheres in Rn+1 is con-
tractible, for every dimension n, i.e.

M2-conv

n ≃ ∗.
We recently confirmed the π0-part of the conjecture:

Theorem (Buzano-Haslhofer-Hershkovits [1]). The moduli space of 2-convex em-
bedded n-spheres in Rn+1 is path-connected, for every dimension n, i.e.

π0(M2-conv

n ) = 0.

To the best of our knowledge, our theorem is the first topological result about a
moduli space of embedded spheres for any n ≥ 3 (except of course for the moduli
space of convex embedded spheres, which is easily seen to be contractible).

Our proof uses mean curvature flow with surgery. Surgery for 2-convex mean
curvature flow has been implemented first by Huisken-Sinestrari [9], and more
recently by Haslhofer-Kleiner [10] and Brendle-Huisken [2]. We use the approach
from [10]. Besides being comparably short, this approach has the advantage that
it works in every dimension and that it comes with the canonical neighborhood
theorem [10, Thm. 1.22], which is quite crucial for our topological application.

Given a two 2-convex embedded sphere M0 ⊂ R
n+1, we consider its mean

curvature flow with surgery {Mt}t∈[0,∞) as provided by the existence theorem from
[10, Thm. 1.21]. There are finitely many times where suitable necks are replaced
by standard caps and/or where connected components with specific geometry and
topology are discarded. The flow always becomes extinct in finite time T <∞.

We first analyze the discarded components. By the canonical neighborhood
theorem [10, Thm. 1.22] and the topological assumption on M0, each connected
component which gets discarded is either a convex sphere of controlled geometry or
a capped off chain of ε-necks. This information is enough to construct an explicit
path in M2-conv

n connecting any discarded component to a round sphere.
We then prove by backwards induction on the surgery times that at each time

every connected component is isotopic via 2-convex embeddings to what we call
a marble tree. Roughly speaking, a marble tree is a connected sum of spheres
(marbles) along admissible curves (strings), that does not contain any loop.

At the extinction time, by the above discussion, every connected component is
isotopic via 2-convex embeddings to a round sphere, i.e. a marble tree with just
a single marble and no strings. The key for the induction step is to glue together
the isotopies of the pieces. To this end, we prove the existence of a connected sum
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operation that preserves 2-convexity and embeddedness, and that is continuous
for families of suitable gluing configurations. Roughly speaking, the key for the
gluing is to choose the string radius rs much smaller than the trigger scale H−1

trig

associated to the flow with surgery, so that the different scales barely interact.
Finally, we prove by induction on the number of marbles that every marble tree

is isotopic via 2-convex embeddings to a round sphere.
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Regularity of stable codimension 1 constant-mean-curvature varifolds

Neshan Wickramasekera

(joint work with Costante Bellettini)

1. Introduction

The talk reported on the recent joint work [5] of Costante Bellettini and the au-
thor. The work considers codimension 1 integral n-varifolds V on an open subset
U ⊂ Rn+1 that have generalized mean curvature locally in Lp for some p > n
and, away from the singularities and with respect to a choice of orientation, are
stationary and stable with respect to the area functional (with multiplicity) for
ambient deformations that are “volume preserving.” The main result (Theorem 1
below) gives two structural conditions (hypotheses (a) and (b) of Theorem 1) on
such a varifold V that imply that its support, away from a closed set of Hausdorff
dimension at most n − 7, is locally either a single smoothly embedded constant-
mean-curvature (CMC) disk or precisely two smoothly embedded CMC disks inter-
secting tangentially, with the value of the scalar mean curvature the same constant
everywhere. Simple examples show that neither of the two structural conditions
can be dropped; see remarks (1) and (3) following Theorem 1. The work also
establishes compactness of locally uniformly area-bounded subsets of the set of
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codimension 1 integral varifolds on U satisfying these hypotheses with a uniform
bound on the mean curvature (Theorem 2 below).

There are two important features of the theorems with regard to the hypotheses:
the first is that each of the two structural hypotheses rules out or controls a type
of singularity that is formed when regular, embedded pieces of the varifold come
together regularly in a certain way. Beyond that, no hypothesis is made concerning
the singular set, which a priori could be very large. Indeed, there is no known
reason why the singular set must a priori even have zero n-dimensional measure.
The second feature, mentioned above also, is that in the presence of the structural
conditions, it suffices to verify the stationarity and stability hypotheses on the
regular part of the varifold; see hypotheses (c) and (d) of Theorem 1. Indeed, to
have a natural notion of enclosed volume (so that volume preserving deformations
make sense) without assuming the varifold is a boundary, one needs a choice of
unit normal which is facilitated if only the regular part is involved.

All structural and variational hypotheses are therefore, in principle, easily check-
able in an application. Moreover, the resulting theory is local, and allows for
higher multiplicity. It is of course applicable under global hypotheses such as
when the hypersurface is the multiplicity 1 varifold associated with the boundary
of a Caccioppoli set, in which case one of the structural conditions is automatically
satisfied. See Corollary 1.

This work generalizes the earlier work [9] establishing regularity and compact-
ness for stable minimal hypersurfaces. A motivating factor for the work [5] is its
potential applicability to the question of existence of a CMC hypersurface in a
compact Riemannian manifold with a prescribed value of the mean curvature. In
the case of zero mean curvature, the affirmative answer to this is a long known
theorem due to the combined work of Almgren, Pitts and Schoen–Simon, for which
an elegant new proof using the Allen–Cahn functional has recently been given by
Guaraco ([6]) based upon a result of Tonegawa and the author ([8]); the work
[9] plays a considerable role in this new approach via its use in [8]. For similar
applications to existence of CMC hypersurfaces with prescribed mean curvature,
it is of course necessary to extend the results of [5] to the Riemannian setting, but
this is expected to be a routine exercise in view of the local nature of the theory
and the robustness of the techniques used in [5].

2. variational hypotheses in the smooth setting

Since in Theorems 1 and 2 the variational hypotheses only concern the regular part
of the varifold, it is useful to first consider the classical (i.e. C2) setting, where V
corresponds to an embedded, oriented C2 hypersurfaceM ⊂ U with ∂M ∩U = ∅,
and with ν a continuous choice of unit normal on M . Write

A (M) = Hn (M),

vol (M) =
1

n+ 1

∫

M

x · ν(x) dHn(x).
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Note that vol (M) is the enclosed volume in caseM is the boundary of a bounded,
open set Ω ⊂ Rn+1 and ν is the outward pointing unit normal. Assume that
A (M) <∞ and vol (M) <∞.

Definition. M is stationary in U with respect to A(·) for vol(·) preserving
deformations if for each compact K ⊂ U and each smooth map ϕ : U × (−ǫ, ǫ) →
U , ǫ > 0, with (i) ϕt = ϕ(·, t) : U → U a diffeomorphism for each t ∈ (−ǫ, ǫ),
(ii) ϕ0 = identity, (iii) ϕt|U\K = identity|U\K for each t ∈ (−ǫ, ǫ) and (iv)

vol (ϕt(M ∩K)) = vol (M ∩K) for each t ∈ (−ǫ, ǫ), we have that d
dt

∣∣
t=0

A(ϕt(M∩
K)) = 0 .

Write HM for the mean curvature vector of M . Let λ ∈ R be a constant, and
let

Jλ(M) = A(M) + λ vol (M).

It is well-known, and is straightforward to verify, that the following statements
are equivalent (see e.g. [4]):

(a) M is CMC with HM · ν = λ.
(b) λ = 1

A(M)

∫
M
HM · ν dHn, and M is stationary in U with respect to A(·)

for vol(·) preserving deformations.
(c) M is stationary in U with respect to Jλ(·) for arbitrary deformations (i.e.

for ϕt as above but not necessarily with vol (ϕt(M∩K)) = vol (M∩K) ∀t).

Definition. An embedded CMC hypersurfaceM in U is stable if d2

dt2

∣∣∣
t=0

A(ϕt(M∩
K)) ≥ 0 for all compact K ⊂ U and all vol (·) preserving ϕt as in the definition
above. Stability of M is equivalent to the fact that

∫

M

|A|2ζ2 dHn ≤
∫

M

|∇ ζ|2 dHn

for each ζ ∈ C∞
c (M) with

∫
M
ζ dHn = 0, where A is the second fundamental form

of M (see [4]).

3. varifold setting and two special types of singularities

Now consider an integral n-varifold V = (M, θ) in U with generalized mean cur-
vature vector HV and associated weight measure ‖V ‖ (notation as in [7], except
for ‖V ‖ which is denoted µV in [7]). This means that M is an Hn measurable,
countably n-rectifiable subset of U , θ : M → N is a positive integer valued Hn

measurable function on M , ‖V ‖ = Hn⌊θ̃ where θ̃ = θ on M and θ̃ = 0 in U \M ,
HV ∈ L1

loc(‖V ‖) in U , and the formula
∫

M

divM X d‖V ‖ = −
∫

M

HV ·X d‖V ‖

holds for every X ∈ C∞
c (U ;Rn+1). Here divM X(x) =

∑n
j=1 τj ·Dτj X(x), where

{τ1, . . . , τn} is any orthonormal basis for the approximate tangent space TxM
and Dτ denotes the directional derivative in the direction τ . Note that when
V = (M, 1) with M an oriented C2 hypersurface, the validity of this formula with
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HV equal to the classical mean curvature vector of M follows from the divergence
theorem. In the varifold setting (where M is merely countably n-rectifiable), this
is the defining formula for the generalized mean curvature vector HV .

The basic goal of the work [5] is to find suitably general hypotheses that guar-
antee spt ‖V ‖ ∩ U is a CMC hypersurface of class C2 (and hence of class C∞ by
elliptic PDE regularity theory).

To have any hope of regularity of spt ‖V ‖ ∩ U , we need HV ∈ Lp
loc(‖V ‖) for

some p > n. Else spt ‖V ‖ ∩ U need not even be n-dimensional! (Ex: union of
suitable countably many concentric circles around rational points in R

2.) If on
the other hand HV ∈ Lp

loc (‖V ‖) in U for some p > n, then spt ‖V ‖ ∩ U is n-
rectifiable, Hn (((spt ‖V ‖ \M) ∪ (M \ spt ‖V ‖)) ∩ U) = 0 and the C1 embedded
part ΩV of spt ‖V ‖ ∩ U is a relatively open, dense subset of spt ‖V ‖ ∩ U. In fact

ΩV is of class C1,1−n
p if n < p < ∞. The condition HV ∈ Lp

loc (‖V ‖) also implies
(via the well-known approximate monotonicity formula for the area ratio) that the

area density Θ (‖V ‖, p) = limρ→0
‖V ‖(Bn+1

ρ (p))

ωnρn exists for every p ∈ U , and that

spt ‖V ‖ ∩ U = {p ∈ U : Θ (‖V ‖, p) ≥ 1}. Here ωn denotes the volume of the
unit ball in Rn, and Bn+1

ρ (p) is the open ball in Rn+1 with centre p and radius ρ.
These facts were all established in the landmark work of Allard ([1]) that extended
earlier fundamental work of Almgren ([2]).

Definition. For an integral n-varifold V as above, the singular set singV is de-
fined by sing V = (spt ‖V ‖\ΩV )∩U, where ΩV is the set of points p ∈ spt ‖V ‖∩U
near which spt ‖V ‖ is a C1 embedded hypersurface.

Note that a.e. regularity (i.e. the fact that Hn (sing V ) = 0) does not follow from
the assumption HV ∈ Lp

loc; a construction due to Brakke ([3]) gives an integral
2-varifold V in R3 with HV ∈ L∞ such that sing V has positive H2 measure.

Let us now introduce two special types of singularities that will play a key role
in the main theorems described subsequently.

Definition. A point p ∈ spt ‖V ‖∩U is a classical singularity if there are α ∈ (0, 1)
and σ > 0 such that spt ‖V ‖∩Bn+1

σ (p) is the union of three or more embedded C1,α

hypersurfaces-with-boundary having common boundary S containing p, meeting
pairwise only along S, and with at least two of the hypersurfaces-with-boundary
meeting transversely.

Let singC V be the set of classical singularities of V .

Definition. A point p ∈ spt ‖V ‖∩U is a touching singularity of V if p 6∈ singC V ∪
ΩV and there are σ > 0, an affine hyperplane L containing p, α ∈ (0, 1) and two
C1,α functions u1, u2 : L → L⊥ such that spt ‖V ‖ ∩ Bn+1

σ (p) = (graphu1 ∪
graphu2) ∩Bn+1

σ (p).

(Note that it follows from the definition that u1(p) = u2(p), Du1(p) = Du2(p).)
Let singT V be the set of touching singularities of V .
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4. main theorems

The first main theorem of [5] is the following:

Theorem 1 (CMC REGULARITY THEOREM). Let V be an integral n-
varifold on an open subset U ⊂ Rn+1, n ≥ 2, with HV ∈ Lp

loc(‖V ‖) for some p > n
and satisfying the following:
Structural Hypotheses:

(a) singC V = ∅;
(b) For each p ∈ singT V , there is ρ > 0 such that Hn ({y : Θ (‖V ‖, y) =

Θ (‖V ‖, p)} ∩Bn+1
ρ (p)) = 0;

Variational Hypotheses:

(c) stationarity: there is a continuous choice of unit normal ν on ΩV (= the
C1 embedded part of spt ‖V ‖) such that W ≡ V x(U \ sing V ) is stationary
in U \ singV with respect to the area functional A(W ) = ‖W‖(U \ sing V )
for ambient deformations that leave singV fixed and preserve vol (W ) =
1

n+1

∫
x · ν d‖W‖;

(d) stability: the C2 immersed part M of spt ‖V ‖ (which, by virtue of (c) and
the C2 assumption, contains ΩV and is a CMC hypersurface consisting lo-
cally of a single embedded disk or precisely two embedded disks intersecting
tangentially), taken with multiplicity 1, is stable with respect to area for
vol (·) preserving ambient deformations, or equivalently, the stability in-
equality

∫
M

|A|2ζ2 ≤
∫
M

|∇ ζ|2 holds for each ζ ∈ C∞
c (M) with

∫
M
ζ = 0.

Then there exists a closed set Σ ⊂ spt ‖V ‖ with dimH (Σ) ≤ n − 7 such that
spt ‖V ‖ \ Σ locally near each point is either an embedded C2 disk or the union
of precisely two embedded C2 disks intersecting tangentially; moreover, there is a
constant λ ∈ R such that HV = λν on spt ‖V ‖ \ Σ.
Remark. (1) Hypothesis (a) cannot be dropped. Consider e.g. a piece of two

intersecting unit spheres or cylinders.
(2) It suffices however to verify, in place of hypothesis (a), that there is a set

Z ⊂ spt ‖V ‖ (not required to be closed) with Hn−1 (Z) = 0 such that no
point of spt ‖V ‖ \ Z is a classical singularity. This fact follows directly
from the definition of classical singularity, since if a point p ∈ singC V ,
then there is an (n−1)-dimensional C1,α submanifold S containing p such
that every point of S is a classical singularity.

(3) If hypothesis (b) is dropped, then C2 regularity is false. To see this, con-
sider the example Γ×Rn−1, where Γ is the following 1-dimensional varifold
in a suitable open subset of R2:
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In this picture, each arc is a piece of a unit circle, and the numbers 1,
2 denote the multiplicity on an arc. The singular point is a touching
singularity (and not a classical singularity, since no pair of arcs meet
transversely). The only hypothesis not satisfied by this example is (b).
The support of the varifold depicted in this example is not the union of
two C2 graphs (it is however the union of a C2 graph and a C1,1 graph).

(4) The two hypotheses (a), (b) rule out/control two types of “regular” singular
structure of spt ‖V ‖. The theorem makes no hypothesis concerning (a
priori potentially large set of) singular points in a neighborhood of which
nothing is known about the nature of spt ‖V ‖. Moreover, the variational
hypotheses (c), (d) are made respectively on the C1 embedded part and the
C2 immersed part; no variational hypothesis is made across the entire (a
priori potentially large) singular set. These features, as well as the one
described in remark (2), are in principle very useful for the applications of
the theorem.

The following corollary follows directly from the theorem since under the hypothe-
ses of the corollary, De Giorgi’s rectifiability theorem implies that the structural
condition (b) is automatically satisfied.

Corollary 1. If V is the multiplicity 1 varifold associated with the boundary of a
Caccioppoli set, singC V = ∅, and if (c), (d) hold, then V satisfies the conclusions
of the theorem.

The second main theorem of [5] is the following compactness result:

Theorem 2 (CMC COMPACTNESS THEOREM). Let (Vj) be a sequence
of integral n-varifolds in open U ⊂ R

n+1, n ≥ 2, satisfying HVj
∈ L

pj

loc(‖Vj‖)
for some pj > n and (a)–(d) as in the above theorem with V = Vj. If
lim supj→∞ ‖Vj‖(K) < ∞ for each compact K ⊂ U and lim supj→∞ |HVj

| < ∞
(note that |HVj

| is constant for each j by the above theorem), then there is an
integral n-varifold V in U satisfying (a)–(d), and a subsequence {j′} such that
Vj′ → V as varifolds in U .

References

[1] W. K. Allard. On the first variation of a varifold. Ann. of Math. 95 (1972), 417–491.
[2] F. J. Almgren, Jr. The theory of varifolds. Mimeographed notes. Princeton (1965).
[3] K. Bakke. The motion of a surface by its mean curvature. Princeton University press,

Princeton (1978).
[4] J. Barbosa, M. do Carmo. Stability of hypersurfaces with constant mean curvature. Math

Z. 185 (1984), 339–353.

[5] C. Bellettini, N. Wickramasekera. Regularity and compactness for stable codimension 1
CMC varifolds. Manuscript in preparation.

[6] M. Guaraco. Min-max for phase transitions and the existence of embedded minimal hyper-
surfaces. arXiv, 2015.

[7] L. Simon. Lectures on Geometric Measure Theory. Centre for Mathematical Analysis, Aus-
tralian National University, Camberra. (1984).

[8] Y. Tonegawa, N. Wickramasekera. Stable phase interfaces in the van der Waals–Cahn–
Hilliard theory. J. reine ang. Mat. (2012), 191–210.



1612 Oberwolfach Report 28/2016

[9] N. Wickramasekera. A general regularity theory for stable codimension 1 integral varifolds.
Ann. of Math. 179 (2014), 843–1007.

Existence of Typical Scales for Manifolds with Lower Ricci Curvature
Bound

Dorothea Jansen

In 1991, Yamaguchi [6] proved that if a sequence of manifolds with uniform lower
Ricci curvature bound collapses to a compact manifold with bounded sectional
curvature, then these manifolds fibre over the limit manifold. In particular, the
collapse happens along the fibres and, after rescaling, the manifolds converge to a
product of a Euclidean and a compact space.

In 1992, Anderson [1] provided examples verifying that Yamaguchi’s fibration
theorem might fail if the manifolds only satisfy a lower Ricci curvature bound.
Nevertheless, we are able to prove the following result, which is part of the author’s
Ph.D. thesis.

Theorem. Let (Mi, pi)i∈N be a collapsing sequence of pointed complete connected
n-dimensional Riemannian manifolds which satisfy the uniform lower Ricci cur-
vature bound RicMi

≥ −(n− 1) and converge to a limit (X, p) of dimension k < n
in the measured Gromov-Hausdorff sense. Then for every ε ∈ (0, 1) there exist a
subset of good points G1(pi) ⊆ B1(pi) satisfying

vol(G1(pi)) ≥ (1− ε) · vol(B1(pi)),

a sequence λi → ∞ and a constant D > 0 such that the following holds: For any
choice of base points qi ∈ G1(pi) and every sublimit (Y, q) of (λiMi, qi)i∈N there is
a compact metric space K of dimension l ≤ n − k with 1

D ≤ diam(K) ≤ D such
that Y splits isometrically as a product

Y ∼= R
k ×K.

Moreover, for any base points qi, q
′
i ∈ G1(pi) such that, after passing to a sub-

sequence, both (λiMi, qi) → (Rk × K, ·) and (λiMi, q
′
i) → (Rk × K ′, ·) as before,

dim(K) = dim(K ′).

Essentially, this theorem states the following: For a set of good base points
of large volume and after rescaling, any sublimit of the rescaled manifolds splits
into a product of a Euclidean and a compact factor. The Euclidean dimension is
independent of choice of the base points whereas the compact space may depend
on the base points. However, all possible compact spaces satisfy the same diameter
bounds and their dimensions do not depend on the choice of base points but only
on the convergent subsequence in question.

Here, dimension is meant in the sense of Colding-Naber, cf. [4], i.e. dim(X) is
the unique natural number k such that for almost all points x ∈ X the tangent
cone at x is unique and isometric to Rk. Note that this dimension is at most the
Hausdorff dimension of X and that equality is still an open problem.
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In the special case of a sequence collapsing to a Euclidean space, the above
result was already shown by Kapovitch and Wilking [5]. The proof of our result
is in their spirit. Furthermore, we draw from the work of Cheeger-Colding [2, 3],
Colding-Naber [4] and Kapovitch-Wilking [5].
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On stable constant mean curvature with free boundary

Ivaldo Nunes

Let (Mn+1, g) be a compact Riemannian manifold with nonempty boundary. The
free boundary problem for constant mean curvature hypersurfaces consists of find-
ing critical points of the area functional among all compact hypersurfaces Σ ⊂M
with ∂Σ ⊂ ∂M which divides M into two subsets of prescribed volumes. Critical
points for this problem are constant mean curvature hypersurfaces Σ ⊂ M meet-
ing ∂M orthogonally along ∂Σ and they are known as constant mean curvature
hypersurfaces with free boundary. For more details, see [2] and references therein.

When a constant mean curvature hypersurface Σ ⊂M with free boundary has
nonnegative second variation of area for all preserving volume variations we call
it stable. In the case that Mn+1 is a closed ball B ⊂ Rn+1 we have the following
natural question:

Question. Are the totally umbilical ones the only immersed stable constant mean
curvature hypersurfaces with free boundary in B?

In [3], Ros and Vergasta gave the following partial answer for n = 2.

Theorem 1 (Ros and Vergasta). Let B ⊂ R3 be a closed ball. If Σ ⊂ B is
an immersed orientable compact stable constant mean curvature surface with free
boundary, then ∂Σ is embedded and the only possibilities are

(i) Σ is a totally geodesic disk;
(ii) Σ is a spherical cap;
(iii) Σ has genus 1 with at most two boundary components.
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In [2], we improve the above result by proving that the possibility (iii) does not
occur. More precisely, we prove:

Theorem 2. Let B ⊂ R3 be a closed ball. If Σ ⊂ B is an immersed orientable
compact stable constant mean curvature surface with free boundary, then Σ has
genus zero.

As a corollary of Theorems 1 and 2 we have that the answer of the question
above is yes, that is:

Corollary 1. The totally umbilical disks are the only immersed orientable compact
stable constant mean curvature surfaces with free boundary in a closed ball B ⊂ R3.

Remark. Corollary 1 can be regarded as the result analogous to Barbosa and do
Carmo’s theorem [1] for immersed closed stable CMC surfaces in the Euclidean
space. Since the latter holds for any dimension, we should expect the same for
stable CMC surfaces with free boundary.

In fact, Theorem 2 is a consequence of the following more general result.

Theorem 3. Let Ω ⊂ R3 be a smooth compact convex domain. Suppose that the
second fundamental form Π∂Ω of ∂Ω satisfies the pinching condition

(1) k h ≤ Π∂Ω ≤ (3/2) k h

for some constant k > 0, where h denotes the induced metric on ∂Ω . If Σ ⊂ Ω is
an immersed orientable compact stable CMC surface with free boundary, then Σ
has genus zero and ∂Σ has at most two connected components.

The following proposition is the key fact used to prove the theorem above. It
states that a stable constant mean curvature surface Σ with free boundary in a
convex domain Ω ⊂ R3 is always strongly stable (i.e. the second variation of area is
nonnegative among all variations of Σ fixing ∂Σ) for the fixed boundary problem.

Proposition 1. Let Ω ⊂ R3 be a compact convex domain. If Σ ⊂ Ω is an
immersed stable CMC surface with free boundary, then

(2) Q0(ϕ, ϕ) =

∫

Σ

|∇ϕ|2 − |A|2ϕ2 da ≥ 0

for all ϕ such that ϕ = 0 on ∂Σ.

Let us give an idea of the proof of Theorem 3. We first note by Proposition 1 that
the stability of Σ implies that the quadratic form given by the second variation of
area is nonnegative for all functions ϕ such that ϕ = 0 on ∂Σ regardless of whether
it satisfies

∫
Σ
ϕda = 0 or not. This fact allows us to apply a modified Hersch type

balancing argument which gives a better control on the genus of Σ. More precisely,
instead of attaching a conformal disk at any connected component of ∂Σ, as in [3],
in order to find a conformal map ψ = (ψ1, ψ2, ψ3) : Σ → S2 such that

∫
Σ
ψi da = 0,

for i = 1, 2, 3, and having Dirichlet energy less than 8π(1 + [(g + 1)/2]), where
g and [x] stands for the genus of Σ and the greatest integer less than or equal
to x, respectively, we use as test functions the coordinates of a conformal map
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ψ = (ψ1, ψ2, ψ3) : Σ → S
2
+ satisfying

∫
Σ ψi da = 0 for i = 1, 2, and having Dirichlet

energy less than or equal to 4π(g + r), where r denotes the number of connected
components of ∂Σ. The key point here is that, since ψ3 = 0 on ∂Σ, we are able to
use ψ3 as a test function because of Proposition 1.
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Ricci flow from metrics with isolated conical singularities

Felix Schulze

(joint work with Panagiotis Gianniotis)

We consider consider smooth solutions (M, g(t))t∈(0,T ) to Ricci flow

∂

∂t
g = −2Ric(g) ,

starting from a closed initial manifold with isolated conical singularities. More
precisely we consider the following class of initial manifolds:

Definition. We say that (Z, gZ) is a compact Riemannian manifold with isolated

conical singularities at {zi}Qi=0 ⊂ Z modelled on the cones (C(Xi), gc,i = dr2 +
r2gXi

), where (Xi, gXi
) are smooth compact Riemannian manifolds, if:

(1) Z \ {z0, . . . , zQ} is a smooth manifold and gZ is a smooth Riemannian
metric on Z.

(2) The metric completion (Z, dZ) of (Z\{z0, . . . , zQ}, gZ) is a compact metric
space.

(3) There exist maps φi : (0, r0]×Xi → Z \ {z0, . . . , zQ}, i = 0, . . . , Q, diffeo-
morphisms onto their image, such that

4∑

j=0

rj |(∇gc,i )j(φ∗i gZ − gc,i)|gc,i < kZ(r),

for some function kZ : (0, r0] → R
+ with limr→0 kZ(r) = 0.

The following is our main result.

Theorem. Let (Z, gZ) be a compact Riemannian manifold with isolated conical

singularities at {zi}Qi=0 ⊂ Z each modelled on a cone (C(Sn−1), gc,i = dr2 + r2gi)
and Riem(gi) ≥ 1.
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Then, there exists a smooth manifold M , a smooth Ricci flow (g(t))t∈(0,T ] on M
and a constant CRiem with the following properties.

(1) (M,dg(t)) → (Z, dZ) as t→ 0, in the Gromov-Hausdorff topology.
(2) There exists a map Ψ : Z \ {z0, . . . , zQ} → M , diffeomorphism onto its

image, such that Ψ∗g(t) converges to gZ , smoothly uniformly away from
zi, as t→ 0.

(3) maxM |Riem(g(t))|g(t) ≤ CRiem/t for t ∈ (0, T ].
(4) There is a continuous function rM on M with rM ≡ 0 on (ImΨ)c, such

that

max
M

2∑

j=0

rj+2
M |(∇g(t))jRiem(g(t))|g(t) ≤ CRiem,

for t ∈ (0, T ].
(5) Let tk ց 0 and pk ∈ (ImΨ)c ⊂ (M,dg(tk)). Suppose that pk → zi under

the Gromov-Hausdorff convergence, as k → ∞. Then

(M, t−1
k g(tkt), pk)t∈(0,t−1

k
T ] → (Ni, ge,i(t))t∈(0,+∞),

where (Ni, ge,i(t))t∈(0,+∞) is the Ricci flow induced by the unique expander
(Ni, gNi

, fi) with positive curvature operator that is asymptotic to the cone
(C(Xi), gc,i).

In [4–6], M. Simon shows that one can construct a Ricci flow from a space which can
be approximated by smooth 3-dimensional manifolds which are locally uniformly
non-collapsed and where the curvature operator is locally uniformly bounded from
below. This result has been applied by Lebedeva–Matveev–Petrunin–Shevchishin
[3] to show that 3-dimensional polyhedral manifolds with nonnegative curvature
in the sense of Alexandrov can be approximated by nonnegatively curved 3-
dimensional Riemannian manifolds. The local estimates by Simon have very
recently been extended by Cabezas-Rivas–Bamler–Lu–Wilking [7] to higher di-
mensions.

In our present work we desingularise the initial manifold (Z, gZ) by glueing in ex-
panding gradient solitons with positive curvature operator, each asymptotic to the
cone at the singular point, at a small scale s. These expanding gradient solitons
exist by work of Deruelle [1]. Localizing a recent stability result of Deruelle-Lamm
[2] for such expanding solitons, we show that there exists a solution from the desin-
gularized initial metric for a uniform time T > 0, independent of the glueing scale
s. The solution starting at (Z, gZ) is then obtained by letting s→ 0.
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Minimal surfaces with bounded index

Davi Maximo

(joint work with Otis Chodosh, Dan Ketover)

We provide a precise local picture of how a sequence of embedded minimal surfaces
with uniformly bounded index in a Riemannian manifold (M3, g) can degenerate.
Loosely speaking, our results show that embedded minimal surfaces with bounded
index behave qualitatively like embedded stable minimal surfaces, up to controlled
errors.

By the curvature estimates of Schoen [2], a sequence of stable (i.e., with zero
Morse index) minimal surfaces must have uniformly bounded second fundamental
form. Thus, modulo subsequence, they converge locally smoothly to a smooth
minimal lamination. If, however, the index along a sequence is merely assumed to
be uniformly bounded then second fundamental can blow up.

The main result presented is a precise picture of how that can happen. We
prove that there are functions m(I) and r(I) with the following property. Fix a
closed three-manifold (M3, g) and a natural number I ∈ N. Then, if Σj ⊂ (M, g)
is a sequence of closed embedded minimal surfaces with

Index(Σj) ≤ I,

then after passing to a subsequence, there is C > 0 and a finite set of points
Bj ⊂ Σj with cardinality |Bj| ≤ I so that the curvature of Σj is uniformly bounded
away from the set Bj , i.e.,

|IIΣj
|(x)min{1, dg(x,Bj)} ≤ C,

but not at Bj , i.e.,

lim inf
j→∞

min
p∈Bj

|IIΣj
|(p) = ∞.

Passing to a further subsequence, the points Bj converge to a set of points B∞
and the surfaces Σj converge locally smoothly, away from B∞, to some lamination
L ⊂ M \ B∞. The lamination has removable singularities, i.e., there is a smooth

lamination L̃ ⊂M so that L = L̃\B∞. Moreover, there exists ε0 > 0 smaller than
the injectivity radius of (M, g) so that B∞ is 4ε0-separated and for any ε ∈ (0, ε0],
taking j sufficiently large guarantees that
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(1) Writing Σ′
j for the components of Σj ∩ B2ε(B∞) containing at least one

point from Bj , no component of Σ′
j is a topological disk, so we call Σ′

j the
“neck components.” They have the following additional properties:
(a) The surface Σ′

j intersects ∂Bε(B∞) transversely in at most m(I) sim-
ple closed curves.

(b) Each component of Σ′
j is unstable.

(c) The genus of Σ′
j is bounded above by r(I).

(d) The area of Σ′
j is uniformly bounded, i.e.,

lim sup
j→∞

Areag(Σ
′
j) ≤ 2πm(I)ε2(1 + o(ε))

(2) Writing Σ′′
j for the components of Σj ∩B2ε(B∞) that do not contain any

points in Bj , each component of Σ′′
j is a topological disk, so we call Σ′′

j the
“disk components.” Moreover, we have the following additional properties
(a) The curvature of Σ′′

j is uniformly bounded, i.e.,

lim sup
j→∞

sup
x∈Σ′′

j

|IIΣj
|(x) <∞.

(b) Each component of Σ′′
j has area uniformly bounded above by 2πε2(1+

o(ε)).

As is clear from the proof, it would be possible to give explicit bounds for m(I)
and r(I), if one desired.

A key application of our result is a prescription for performing “surgery” on
a sequence of bounded index minimal surfaces so that their curvature remains
bounded, while only changing the topology and geometry in a controllable way:
There exist functions r̃(I) and m̃(I) with the following property. Fix a closed
three-manifold (M3, g) and suppose that Σj ⊂ (M3, g) is a sequence of closed
embedded minimal surfaces with

Index(Σj) ≤ I.

Then, after passing to a subsequence, there is a finite set of points B∞ ⊂M with
|B∞| ≤ I and ε0 > 0 smaller than the injectivity radius of (M, g) so B∞ is 4ε0-
separated, and so that for ε ∈ (0, ε0], if we take j sufficiently large then there exist

embedded surfaces Σ̃j ⊂ (M3, g) satisfying:

(1) The new surfaces Σ̃j agree with Σj outside of Bε(B∞).
(2) The components of Σj∩Bε(B∞) that do not intersect the spheres ∂Bε(B∞)

transversely and those that are topological disks appear in Σ̃j without any
change.

(3) The curvature of Σ̃j is uniformly bounded, i.e.

lim sup
j→∞

sup
x∈Σ̃j

|IIΣ̃j
|(x) <∞.

(4) Each component of Σ̃j∩Bε(B∞) which is not a component of Σj∩Bε(B∞)
is a topological disk of area at most 2πε2(1 + o(ε)).
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(5) The genus drops in controlled manner, i.e.,

genus(Σj)− r̃(I) ≤ genus(Σ̃j) ≤ genus(Σj).

(6) The number of connected components increases in a controlled manner,
i.e.,

|π0(Σj)| ≤ |π0(Σ̃j)| ≤ |π0(Σj)|+ m̃(I).

(7) While Σ̃j is not necessarily minimal, it is asymptotically minimal in the
sense that limj→∞ ‖HΣ̃j

‖L∞(Σ̃j)
= 0, where H denote the mean curvature.

The new surfaces Σ̃j converge locally smoothly to the smooth minimal lamina-

tion L̃ defined previously. Thus, modulo controlled errors, i.e., going from Σj to

Σ̃j , the sequence behaves just like a sequence of stable minimal surfaces. This al-
lows us to draw parallels between known theorems for stable minimal surfaces and
minimal surfaces with bounded index. We refer to [1] for this and other related
results - including some generalizations to dimensions 4,5,6,7.
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Complex Monge-Ampère equations on complex and almost complex
manifolds

Ben Weinkove

(joint work with Jianchun Chu, Gábor Székelyhidi, Valentino Tosatti)

Let (M,J) be a compact complex manifold of complex dimension n. We say
that a Riemannian metric g is Hermitian if g(JX, JY ) = g(X,Y ) for all vectors
X,Y . Associated to g is a 2-form ω defined by ω(X,Y ) := g(JX, Y ) (abusing
terminology, we will refer to ω as a metric). If ω is closed then g is Kähler.

Yau’s Theorem [20] states that one can prescribe the volume form of a Kähler
metric on a compact Kähler manifold. More precisely, let (M,J, ω) be a compact
Kähler manifold, and F ∈ C∞(M) with

∫
M
eFωn =

∫
M
ωn. Then there exists a

unique Kähler metric ω̃ ∈ [ω] ∈ H2(M ;R) solving

(1) ω̃n = eFωn.

By the ∂∂-Lemma one can write any Kähler metric ω̃ ∈ [ω] as ω̃ = ω+
√
−1∂∂u

for a smooth real-valued function u. Hence (1) can be written as the following
complex Monge-Ampère equation for u,

(2) (ω +
√
−1∂∂u)n = eFωn, ω +

√
−1∂∂u > 0,

and the solution is unique if we impose the normalization condition supM u = 0,
say.
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This talk concerns extensions of Yau’s Theorem to the case when the manifold is
not Kähler. There are many different ways to do this. We consider five questions,
and describe what is known so far in each case.

(1) Hermitian metrics. Does (2) admit a solution when ω is only Hermitian?

The answer to this is yes, at least up to a scaling factor. It was shown by Cherrier
[2] for n = 2 (and for n > 2 with some extra conditions) and in general by Tosatti
and the author [14] that one can find a unique pair (u, b) where u ∈ C∞(M) and
b ∈ R such that

(ω +
√
−1∂∂u)n = eF+bωn, ω +

√
−1∂∂u > 0, sup

M
u = 0.

(2) Gauduchon metrics. A metric ω is Gauduchon if

∂∂(ωn−1) = 0.

Every Hermitian metric is conformal to such a metric [7]. Suppose (M,J, ω) is
compact Gauduchon. In 1984 Gauduchon [8] asked the question: given F ∈
C∞(M), can we find a Gauduchon metric ω̃ solving

ω̃n = eFωn ?

This result was proved recently by Székelyhidi, Tosatti and the author [11] using
a certain Monge-Ampère equation related to (n − 1)-plurisubharmonic functions
(see also [6, 9, 10, 16, 17]).

(3) Balanced metrics. A metric ω is balanced if d(ωn−1) = 0. This is a stronger
condition than Gauduchon and such metrics do not always exist on complex man-
ifolds. Suppose (M,J, ω) is compact balanced. It was asked by Fu-Wang-Wu [6]:
given F ∈ C∞(M), can one find a balanced metric ω̃ solving

ω̃n = eFωn ?

This is still an open question. Some evidence for the conjecture is provided in
[16] where it was shown that if M also admits a Kähler metric ω0 then one can
find a balanced metric ω̃ with prescribed volume form (up to scaling) such that
ω̃n−1 = ωn−1 +

√
−1∂∂(uωn−2

0 ). It was shown in [11] that this also holds for ω0

Astheno-Kähler (in the sense of Jost-Yau), namely ∂∂ωn−2
0 = 0.

(4) Non-integrable almost complex structures - Gromov’s question. Let
(M,J, ω) be a compact symplectic manifold with a compatible almost complex
structure (also known as an almost-Kähler manifold). In the 1990’s Gromov asked
the following (see [4]): given F ∈ C∞(M) with

∫
M eFωn =

∫
M ωn does there exist

u ∈ C∞(M) solving

(ω + dJdu)n = eFωn, ω + (dJdu)(1,1) > 0 ?

It was shown by Delanöe [4] and Wang-Zhu [18] that the answer to this question
is in general no. However, in a recent work of Chu, Tosatti and the author [3] it was
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shown that the answer is yes if dJdu is replaced by (dJdu)(1,1), up to multiplying
by a scaling factor eb, as in (1).

(5) Non-integrable almost complex structures - Donaldson’s question.
Now let (M,J, ω) be a compact symplectic 4-manifold with a compatible almost
complex structure, and assume the topological condition b+2 (M) = 1. Donaldson
[5] asked: given F ∈ C∞(M) with

∫
M
eFω2 =

∫
M
ω2 does there exist a symplectic

form ω̃ ∈ [ω] with

(3) ω̃2 = eFω2 ?

This is still an open question. Some estimates were established in [13,19], giving
partial results in this direction. Buzano-Fino-Vezzoni [1] recently showed that on
the Kodaira-Thurston manifold, which is non-Kähler, one can solve (3) assuming
an S1 symmetry of the initial data. This improved an earlier result of Tosatti and
the author [15] where T 2 symmetry was used.

An affirmative answer to Donaldson’s conjecture (or more precisely, a slight
generalization of it) would imply Donaldson’s “tamed to compatible” conjecture
[5]. This states that if a symplectic 4-manifold has a symplectic form ω taming an
almost complex structure (i.e. ω(1,1) > 0), then it should admit a symplectic form
compatible with J . This conjecture has been proved by Taubes [12], by completely
different methods, under some additional conditions.
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Sharp Fundamental Gap Estimate on Convex Domains of Sphere

Guofang Wei

(joint work with Shoo Seto, Lili Wang)

Given a bounded smooth domain Ω in a Riemannian manifoldMn, the eigenvalues
of the Laplacian on Ω with respect to the Dirichlet and Neumann boundary con-
ditions are given by 0 < λ1 < λ2 ≤ λ3 · · · → ∞ and 0 = µ0 < µ1 ≤ µ2 · · · → ∞,
respectively. There are many works in estimating the eigenvalues, especially the
first eigenvalues. Estimating the gap between the first two eigenvalues, the funda-
mental (or mass) gap,

Γ(Ω) =

{
λ2 − λ1 > 0 Dirichlet boundary

µ1 > 0 Neumann boundary

of the Laplacian or more generally for Schrödinger operators is also very important
both in mathematics and physics. In this talk, we study the problem of obtaining
optimal upper and lower bounds of the gap.

For Neumann boundary condition, it is the same as estimating the first non-
trivial eigenvalue. In this case, for a convex domain in a Riemannian manifold
with Ricci curvature bounded from below, µ1 is greater than or equal to that of
a 1-dim model by Kröger [8] using Li-Yau type gradient estimate. Equality is
achieved when the dimension is 1. Later Andrews and Clutterbuck proved it using
modulus of continuity [3]. Sharp upper bound is obtained for bounded domains
in rank one symmetric spaces [1]. Here equality is achieved by geodesic balls.

For Dirichlet boundary condition, a sharp upper bound for λ2 − λ1 has been
obtained for domains in the space of constant sectional curvature in [5–7] in their
solution of the Payne-Polya-Weinberger conjecture. The optimal bound is achieved
by geodesic balls. For convex domains Ω ⊂ Rn with diameter D, it was indepen-
dently conjectured by van den Berg, Ashbaugh and Benguria, Yau in the 80’s that

the gap Γ(Ω) has the sharp lower bound of 3π2

D2 . The subject has a long history,
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see the excellent survey by Ashbaugh [4] for discussion of the fundamental gap
and history up to 2006. We only mention that in the influential paper, Singer,

Wong, Yau and Yau [12] showed that Γ(Ω) ≥ π2

4D2 . Yu and Zhong improved this

to π2

D2 . Only in 2011, the conjecture was completely solved by B. Andrews and
J. Clutterbuck in their celebrated work [2] by establishing a sharp log-concavity
estimate for the first eigenfunction, see also [10]. For convex domains on a sphere,

Lee and Wang [9] showed the gap is ≥ π2

D2 .
In this talk we give a sharp lower bound on the gap for convex domains on

sphere. One of our main result is the following.

Theorem. Let Ω ⊂ Sn be a strictly convex domain with diameter D, λi (i =
1, 2) be the first two eigenvalues of the Laplacian on Ω with Dirichlet boundary
condition. Then

(1) Γ(Ω) = λ2 − λ1 ≥ λ̄2(n,D)− λ̄1(n,D) if D ≤ π

2
,

where λ̄i(n,D) are the first two eigenvalues of the operator d2

ds2 − (n− 1) tan(s) d
ds

on [−D
2 ,

D
2 ] with Dirichlet boundary condition. Furthermore,

λ̄2(n,D)− λ̄1(n,D) ≥ 3
π2

D2
if D < π, n ≥ 3.

In fact we prove for D ∈ (0, π) that D2
(
λ̄2(n,D)− λ̄1(n,D)

)
is increasing in

D when n > 3, equals to constant 3π2 when n = 1 or 3, and is decreasing in D
when n = 2. For fixed D, we expect that the gap increases when the dimension
gets bigger.

Corollary. Let Ω ⊂ Sn be a strictly convex domain with diameter D ≤ π
2 , λi

(i = 1, 2) be the first two eigenvalues of the Laplacian on Ω with Dirichlet boundary

condition. Then λ2 − λ1 ≥ 3 π2

D2 when n ≥ 3.

Remark. This estimate is optimal. The same estimates are true for Schrödinger
operator of the form −∆+ V , where V ≥ 0 and convex.

The key to proving (1) is the following log-concavity of the first eigenfunction.

Theorem. Let Ω ⊂ Sn be a strictly convex domain with diameter D ≤ π
2 , φ1 > 0

be a first eigenfunction of the Laplacian on Ω with Dirichlet boundary condition.
Then for all x, y ∈ Ω, with x 6= y,

(2) 〈∇ logφ1(y), γ
′(d2 )〉 − 〈∇ logφ1(x), γ

′(− d
2 )〉 ≤ 2

(
log φ̄1

)′
(
d(x, y)

2

)
,

where γ is the unit normal minimizing geodesic with γ(− d
2 ) = x and γ(d2 ) = y, and

φ̄1 > 0 is a first eigenfunction of the operator d2

ds2 − (n− 1) tan(s) d
ds on [−D

2 ,
D
2 ]

with Dirichlet boundary condition with d = d(x, y). Dividing (2) by d(x, y) and
letting d(x, y) → 0, we have ∇2 log φ1 ≤ −λ̄1 gSn .

This improves early estimate of Lee and Wang [9] that ∇2 logφ1 ≤ 0.
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In the proof we work on spaces with constant sectional curvature. In particular,
our proof works for spheres and Euclidean spaces at the same time. Some of our
results hold also for negative constant curvature. For the log-concavity estimate,
the last step fails for negative curvature. In fact we have several more general
estimate, including parabolic version [11].

With the super log-concavity estimate, we have the following gap comparison.
First we introduce the 1-dimensional model space for the n-dimensional mani-

folds with constant sectional curvature K. Consider the operator

Ln,K,D(φ) = φ′′ − (n− 1) tnK(s)φ′

on [−D
2 ,

D
2 ] with Dirichlet boundary condition, where

tnK(s) =






√
K tan(

√
Ks), K > 0

0, K = 0

−
√
−K tanh(

√
−Ks) K < 0.

Denote λ̄1(n,D,K), λ̄2(n,D,K) its first and second eigenvalues and φ̄1 > 0 a first
eigenfunction.

Theorem. Let Ω be a bounded convex domain with diameter D in a Riemannian
manifold Mn with RicM ≥ (n − 1)K, φ1 a positive first eigenfunction of the
Laplacian on Ω with Dirichlet boundary condition. Assume φ1 satisfies the log-
concavity estimates

〈∇ logφ1(y), γ
′(d2 )〉 − 〈∇ logφ1(x), γ

′(− d
2 )〉 ≤ 2

(
log φ̄1

)′
(
d(x, y)

2

)
,

where γ is the unit normal minimizing geodesic with γ(− d
2 ) = x, γ(d2 ) = y, and

d = d(x, y). Then we have the gap comparison

λ2 − λ1 ≥ λ̄2(n,D,K)− λ̄1(n,D,K).

As another application of (2), we obtain the following estimate.

Proposition. Let Ω be a strictly convex domain with diameter D in Mn
K with

K ≥ 0, D < π
2
√
K

when K > 0. Then the first Dirichlet eigenvalues of the

Laplacian on Ω satisfy λ1 ≥ nπ2

D2 + n(n−1)
2 K.

References

[1] A. R. Aithal and G. Santhanam, Sharp upper bound for the first non-zero Neumann eigen-
value for bounded domains in rank-1 symmetric spaces, Trans. Amer. Math. Soc. 348 (1996),
3955–3965.

[2] B. Andrews and J. Clutterbuck, Proof of the fundamental gap conjecture, J. Amer. Math.
Soc., 24 (2011), 899–916.

[3] B. Andrews and J. Clutterbuck, Sharp modulus of continuity for parabolic equations on
manifolds and lower bounds for the first eigenvalue, Anal. PDE, 6 (2013), 1013–1024.

[4] M. S. Ashbaugh, The Fundamental Gap, http://www.aimath.org/WWN/loweigenvalues/
(2006).

[5] M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues
of Dirichlet Laplacians and extensions, Ann. of Math. (2) 135 (1992), 601–628.



Geometrie 1625

[6] , A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a
hemisphere of Sn, Trans. Amer. Math. Soc. 353 (2001), 1055–1087.

[7] R. D. Benguria and H. Linde, A second eigenvalue bound for the Dirichlet Laplacian in
hyperbolic space, Duke Math. J. 140 (2007), 245–279.
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Applications of min-max in topology and geometry

Daniel Ketover

The min-max theory developed by Almgren-Pitts ([A], [P]) and Simon-Smith [SS]
in the 80s produces from each non-trivial homotopy class in the space of surfaces
in a fixed 3-manifold a smooth embedded minimal surface. The main challenge
is to control the geometry and topology of the minimal surfaces that arise in this
way. A main difficulty is to rule out the min-max limit from having multiplicity as
the presence of multiplicity could mean that different homotopy classes produce
integer copies of the same minimal surface and do not actually produce new critical
points of the area functional.

Together with F.C. Marques and A. Neves we introduced the “catenoid esti-
mate” that allows us to rule out multiplicities in several situations. The point of
this estimate is that the unstable catenoid joining two very close parallel circles
in R3 exceeds the area of the two flat disks subquadratically in the separation
between the circles. Precisely, the catenoid estimate is as follows (where U(r, h)
denotes the unstable catenoid joining two parallel circles of radius r and separation
h):

Proposition (Catenoid estimate in R3 [KMN]). For r > 0 there exists h(r) > 0
so that if h < h(r) then

(1) |U(r, h)| ≤ 2πr2 +
4πh2

(− log h)
.

This estimate allows us to “open up necks” about an unstable minimal surface
in a three-manifold while keeping areas below twice that of the unstable minimal
surface. More precisely, if Σ is an unstable minimal surface, we can make a sweep-
out beginning at ∂Tǫ(Σ) and ending at a one-dimensional graph on Σ, with all
areas in the sweepout less than twice that of Σ. This observation allows us to
rule out multiplicity in many situations and can be thought of as a one-parameter
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version of the log-cutoff trick as we use logarithmically cut off parallel surfaces
rather than gluing in the catenoid explicitly.

One application that I explained is a min-max construction of “doublings of
minimal surfaces,” for instance the doubling of the Clifford torus first produced
by the gluing method of Kapouleas. We have the following

Theorem ([KMN]). For each g ≥ 2, there exists a closed embedded minimal
surface Σg resembling a doubled Clifford torus in S3. The area of Σg is strictly
less than 4π2 (twice the area of the Clifford torus C). Moreover Σg → 2C in
the sense of varifolds as g → ∞ and the genus of Σg also approaches infinity.
The surfaces Σg arise as min-max limits for a suitable equivariant saturation of
sweepouts of S3.

Another application of the catenoid estimate is to rule out that the width of
an orientable manifold with Ric > 0 is a non-orientable minimal surface with
multiplicity two. We have the following

Theorem ([KMN]). If M is a three-manifold with positive Ricci curvature, and
Γ a Heegaard surface realizing the Heegaard genus of M , then Γ is isotopic to
an embedded minimal surface Σ of index 1. Moreover, Σ is the min-max limit
obtained via Heegaard sweepouts of M determined by Γ.
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Effective index estimates via Euclidean isometric embeddings

Alessandro Carlotto

(joint work with Lucas Ambrozio, Ben Sharp)

Given a compact Riemannian manifold (Xn+1, g) of dimension at least three,
possibly with non-empty boundary, and considered the class

Λ := {compact minimal hypersurfaces in (Xn+1, g),

possibly with suitable boundary conditions}
there has been, in recent years, significant interest in establishing universal com-

parison theorems relating the Morse index with the topological invariants of an
element Mn in Λ. More concretely, one would like to prove algebraic inequalities
relating Ind(Mn) and the dimension of the real homology groups of Mn with
coefficients that only depend on the ambient manifold (Xn+1, g). A prototypical
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example is provided by the work of Savo [9], who was able to show that in the
round three-sphere S3 for a minimal surface of genus γ

Ind(M2) ≥ γ

2
+ 4

thereby providing a remarkable improvement of the well-known general bound by
Urbano [10] asserting that the index of non-equatorial minimal surfaces is at least
five, with equality attained only by Clifford tori. In fact, similar results in the case
of three-dimensional flat tori had been obtained by Ros [8], who pioneered the
study of the relations between the Dirichlet energy of a one-form and the average

value of the Jacobi form Q(·, ·) (namely: the quadratic form defining the second
variation of the area functional) evaluated on all the components of the form in
question along a suitable ambient frame (indeed a Euclidean frame

{
dx1, dx2, dx3

}

in the special setting he was dealing with).
Motivated by a conjecture of Schoen, presented in extended form in the ICM

lectures of F. Marques and A. Neves [6,7], in [1] we generalized the methods above
to handle the general case of an isometrically embedded compact Riemannian
manifold without boundary. Roughly speaking, we were able to prove that if
(Xn+1, g) is sufficiently positively curved with respect to the L2−norm of the
second fundamental form IIX of an isometric embedding (Xn+1, g) →֒ Rd then
the estimate

Ind(Mn) ≥ 2

d(d− 1)
b1(M

n)

holds true for all minimal hypersurfaces in Xn+1, where b1(M
n) denotes the first

Betti number of the closed hypersurface Mn. We refer the reader to Theorem
A in [1] for a precise statement, but we shall limit ourselves to state here that
the curvature condition in question is satisfied in many cases of geometric interest
like, for instance, all rank one symmetric spaces, product of spheres and suitably
pinched three-manifolds. What is peculiar of our approach is the fact that the
inequality we need to check is an open condition, so that our methods apply to
spaces that are neither symmetric nor rigid in any reasonable sense.

It turns out that these tools effectively apply also to the study of free boundary
minimal hypersurfaces in compact Riemannian manifolds with boundary, and in
fact provide new insights even in the case of smooth domains inside Euclidean
spaces. Sticking for the sake of simplicity to such setting, let us state our main
result.

Theorem. Let Ωn+1 be a smooth, compact domain of the (n + 1)-dimensional
Euclidean space, n ≥ 2 and let Mn be a compact, orientable, properly embedded
free boundary minimal hypersurface in Ωn+1.

(1) If Ωn+1 is strictly mean convex, then

index(Mn) ≥ 2

n(n+ 1)
dimH1(M

n, ∂Mn−1;R).
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(2) If Ωn+1 is strictly two-convex, then

index(Mn) ≥ 2

n(n+ 1)
max

{
dimH1(M

n, ∂Mn−1;R); dimHn−1(M
n, ∂Mn−1;R)

}
.

Now, in the basic case of surfaces inside three-dimensional mean convex domains
we derive the general inequality

index(M2) ≥ 1

3
(2γ + r − 1)

which, in turn, has the following remarkable corollaries:

• the examples constructed by Fraser and Schoen [5], which have genus
zero and an arbitrary number of boundary components, and the examples
constructed by Folha, Pacard and Zolotareva [3], which have genus one and
an arbitrarily large number of boundary components, have their Morse
indices growing linearly with the number of boundary components (in
particular, this ensures the existence of free boundary minimal surfaces of
arbitrarily large index in the unit ball);

• if Ω3 is strictly convex, then by [4] any sequence {M2
i } of compact, prop-

erly embedded free boundary minimal surfaces in Ω3 that has uniformly
bounded index has a subsequence converging smoothly and graphically to
a compact properly embedded free boundary minimal surface M2 in Ω3.

In general, the case n > 2 is more delicate, but we can still get various results
of geometric interest. For instance, it is still true that in a mean convex domain
index(Mn) ≥ 2(r− 1)/n(n+ 1) so that we immediately see that a free boundary,
stable minimal hypersurface must have only one boundary component.

The results for general ambient manifolds can be briefly summarized as follows:
assume that Ωn+1 is mean convex (resp. two-convex) and that for every non-zero
vector field X on Mn,

∫

M

[
trM (RmΩ(·, X, ·, X)) +RicΩ(N,N)|X |2

]
dµ

>

∫

M

[
(|IIΩ(·, X)|2 − |IIΩ(X,N)|2) + (|IIΩ(·, N)|2 − |IIΩ(N,N)2|)|X |2

]
dµ

(where RmΩ denotes the Riemann curvature tensor of Ωn+1, IIΩ denotes the
second fundamental form of Ωn+1 in Rd, II∂Ω denotes the second fundamental
form of ∂Ω in Ω, and N is a local unit normal vector field on Mn), then the
conclusion of (1) (resp. (2)) holds true for Mn with coefficient 2/d(d−1) in lieu of
2/n(n+ 1). Once again, the condition above can be checked pointwise for a wide
class of ambient spaces (the upper hemisphere being a basic example).
Our proofs strongly rely on the Euclidean isometric embedding for providing a
global, parallel frame {θ1, . . . , θd} so that, set uij := 〈N ∧ω♯, θi∧θj〉 and using the
Bochner identity combined with the Gauss equations one can single out curvature
criteria (only involving RmΩ and IIΩ, thus independent of the second fundamental
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form of Mn inside Ωn+1) which ensure
∑

i<j

Q(uij, uij) < 0

for all harmonic 1-forms, possibly subject to suitable boundary conditions in the
free boundary case (in fact, different boundary conditions will correspond to spaces
of forms that are isomorphic either to H1(M,∂M ;R) or to Hn−1(M,∂M ;R)). For
instance, when proving part (1) above in the Euclidean setting, such curvature
criterion is precisely just the strict mean convexity of the boundary of Ωn+1.

At that stage, one simply considers the map

Φ : H1
bc(M, g) → Rn(n+1)k/2

ω 7→
[∫

M 〈N ∧ ω♯, θi ∧ θj〉φqdµ
]
,

where φ1, . . . , φk are the eigenfunctions associated to negative eigenvalues for the
second variation of the area functional. If, by contradiction, the index inequality
were false, then this map would have a non-trivial kernel and hence we would have
for each 1 ≤ i < j ≤ d

0 > Q(uij , uij) ≥ λk+1

∫

M

u2ijdµ ≥ 0

which is impossible and thus completes the argument.
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SWITZERLAND

Prof. Dr. Xianzhe Dai

Department of Mathematics

University of California at

Santa Barbara

South Hall

Santa Barbara, CA 93106

UNITED STATES

Prof. Dr. Anand N. Dessai
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