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Abstract. Several research areas are flourishing on the roots of the break-
throughs in conservation laws that took place in the last two decades. The
meeting played a key role in providing contacts among the different branches
that are currently developing. All the invitees shared the same common back-
ground that consists of the analytical and numerical techniques for nonlinear
hyperbolic balance laws. However, their fields of applications and their levels
of abstraction are very diverse.

The workshop was the unique opportunity to share ideas about analytical
issues like the fine-structure of singular solutions or the validity of entropy so-
lution concepts. It turned out that generalized hyperbolic techniques are able
to handle the challenges posed by new applications. The design of efficient

structure preserving methods turned out to be the major line of development
in numerical analysis.
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Introduction by the Organisers

The workshop Hyperbolic Techniques in Modelling, Analysis and Numerics, orga-
nized by Rinaldo M. Colombo (Brescia), Phillipe G. LeFloch (Paris) and Christian
Rohde (Stuttgart) welcomed 46 invitees from eight different countries. The group
of attendants included besides internationally renowned researchers doctoral stu-
dents and young postdocs. The program consisted of longer comprehensive lectures
but also of a small number of short presentations given by young researchers. The
general topic of the workshop circled around the mathematical theory of hyper-
bolic partial differential equations, in particular of balance laws, which has seen
an astonishing development in the last two decades. The progress in analysis and
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numerics was mainly driven by challenges from continuum mechanics, a prominent
role being played by shock waves in gas dynamics. Modeling through hyperbolic
partial differential equations has now become a cornerstone in many other branches
of science, for instance wherever nonlinear transport phenomena occur. Many new
models have been derived, which, in turn, pose completely new questions to the
mathematical theory and to the numerical analysis of hyperbolic equations. Given
this background, the meeting tried to exploit and foster all possible synergies. Ap-
parently, new joint cooperations can be tracked back to the interaction during the
workshop week.

An interesting new development in the field is the characterization of singularity
development and transport in different instances of nonlinear wave equations by
hyperbolic techniques. Alberto Bressan developped a program to describe the fine
structure of sets of generic singularities in a wide class of wave equations. Stefano
Bianchini presented new results on a detailed description of the entropy dissipa-
tion connected to the emergence of shock waves. Stefano Modena showed how
a Lagrangian approach can be used to achieve a deeper insight in the behaviour
and the structure of the solutions to hyperbolic conservation laws. Wave breaking
in the Hunter-Saxton system was the topic of Anders Nordli. The understanding
of the interaction of dispersive approximations and shock waves is far from be-
ing a settled problem. Michael Shearer reported on various phenomena related
to Korteweg- and Boussinesq-type equations. Sylvie Benzoni demonstrated how
modulation theory can help to understand discrete wave motion. Using variational
time discretization Michael Westdickenberg gave an existence proof for measure
valed solutions of the full Euler system including a characterization of the en-
tropy dissipation. Eitan Tadmor showed how to derive new BV -estimates for the
pressureless Euler equations in multiple space dimensions. The talk of Jan Giessel-
mann on relative entropies for Hamiltonian systems like Euler–Korteweg equations
fitted also in this context. Christian Klingenberg broached the issue of the effect
of different linearization levels in numerical schemes for multidimensional Euler
equations. Even linear wave equations with rough coefficients can pose major dif-
ficulties to numerical discretisation methods as was shown by Franziska Weber.
This applies even more for hyperbolic systems with uncertainty. Alina Chertock
proposed a splitting method for the efficient stochastic Galerkin discretization of
Euler systems. The challenges of low Mach number scenarios in astrophysical flows
have also been discussed by Christian Klingenberg.

The analytical study of singular limits and associated numerical questions on the
design of structure-preserving schemes for asymptotic regimes provided the joint
chord for another block of contributions. The study of the zero-viscosity limit,
i.e. the passage from a parabolic regularization towards a hyperbolic limit problem,
is a seminal topic in the field. Driven by the needs of applied sciences, a much wider
variety of asymptotic scenarios is analyzed currently. In this context, Andrea Corli
gave a presentation on the study of nonlinear diffusion approximations. Within
the workshop, Gianluca Crippa devoted his talk to the passage from non-local to
local hyperbolic balance laws. Numerical aspects of non-local evolution equations
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have been the topic of Elena Rossi. Graziano Guerra presented rigorous results for
the compressible-incompressible passage covering discontinuous solutions. On the
numerical side a novel class of asymptotic preserving finite-volume schemes that
deal efficiently with weakly compressible low Mach number flows has been advo-
cated by Mária Lukáčová-Medviďová. Manuel Torrilhon reviewed the analysis and
numerics for the whole hierarchy of moment systems for the Boltzmann equations.
The construction of new stable discretization schemes for moment equation was
the topic of the lecture given by Philippe Helluy. Konstantina Trivisa discussed
related model hierarchies to describe phenomena of collective self-organization.

As mentioned before, new applications have been always a driving force for the
field. Phase transition in compressible two-phase flows has been studied by Ferdi-
nand Thein generalizing the classical Riemann solver concept. Athanasios Tzavaras
showed how mixed type models can help to understand shear band instabilities.
The control of hyperbolic transport systems for population dynamics has been
discussed by Mauro Garavello. The study of in particular hyperbolic evolutions
on manifolds and networks is still an emerging research field. This has been ad-
dressed in the presentation of Raul Borsche on chemotactic movement on graphs
and the lecture of Helge Holden about a hyperbolic transport equation which al-
lows the numerical verification of the well-known Braess paradoxon in traffic flow.
Francesca Marcellini showed how hyperbolic Riemann solver techniques can be
used to understand the behavior of road traffic at junctions.
Finally the workshop was closed with an overview talk also given by Helge Holden
who summarized the state of the art in the field and proposed a number of new
challenges.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Alina Chertock in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

On modulated equations for Hamiltonian PDEs

Sylvie Benzoni-Gavage

(joint work with C. Mietka, L. Miguel Rodrigues)

The zero dispersion limit in dispersive perturbations of hyperbolic PDEs is a chal-
lenging topic, which is well understood only for the Korteweg-de Vries equation
[9, 10, 11, 12], and, to some extent, the cubic Schrödinger equation [8]. For more
general equations like the Euler–Korteweg (EK) system or even generalized KdV
equations (gKdV), a preliminary route consists in investigating modulated equa-
tions.

We have undertaken to explore this route for a general class of Hamiltonian
PDEs that contains EK and gKdV, the former itself containing the fluid for-
mulation of nonlinear Schrödinger equations (NLS) and various other models of
mathematical physics.

These Hamiltonian PDEs are of the form

(1) ∂tU = ∂x(B δH(U)) ,

where the unknown U is (possibly) vector-valued, B is a symmetric and nonsin-
gular matrix, and δH(U) denotes the variational derivative of an energy H =
H(U,Ux) depending on U and its spatial derivative Ux. In practice, we restrict
to a framework that is compatible with the examples mentioned here above, in
which U is either scalar-valued (e.g. for gKdV) or with values in R

2 (e.g. for EK),
and the energy H depends only on the first derivative of a single component of U,
in a quadratic manner.

Formally, the zero dispersion limit of the system (1) is obtained by substituting
the ‘standard’ energy E(U) := H(U, 0) for H(U,Ux), which yields the first order
system of conservation laws

(2) ∂tU = ∂x(B∇UE(U)) .

When linearized about a ‘stable’ constant state U0 this system admits harmonic
waves that propagate at a speed independent of their frequency, namely one of the
characteristic speeds. By contrast, linear waves associated with (1) are dispersive,
since the dispersion relation involves the differential operator δ2H(U0), which is
‘generically’ of second order, instead of the matrix ∇2

U
E(U0) for (2).

As far as nonlinear systems are concerned, the well-known shock waves prop-
agated by (2) are expected to have dispersive counterparts that are oscillatory,
unsteady solutions to (1). These dispersive patterns are referred to as dispersive
shocks, and have been an active field of research for the last decades, especially
from the physical point of view, see for instance [13].

Since the seminal work of Whitham in the late 1960s [14], modulated equations
have been viewed as governing the propagation of oscillatory wave trains, and
more precisely the evolution of averaged quantities associated with wave trains.
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In particular, dispersive shocks were first interpreted in the light of modulated
equations by Gurevich and Pitaevskii [7] in 1973. This was for KdV, and by
extension we speak of the Gurevich–Pitaevski problem for the determination of
dispersive shocks associated with any dispersive equation.

However, there has been some fuzziness in the terminology, in that the term
dispersive shock can be meant to describe either exact solutions to the original dis-
persive PDEs or some (supposedly) approximate solutions to these PDEs that are
actually associated with exact, rarefaction wave solutions to modulated equations.
The former are in most cases – meaning, apart from the KdV case, basically – far
from being known to exist. As regards the latter, their understanding has been
improved thanks to a breakthrough by El [4] and subsequent work by himself and
co-authors. See for instance the review paper by El and Hoefer [5] and references
therein. Nevertheless, there is not yet a rigorous proof of the existence of these
idealized dispersive shocks as rarefaction wave solutions to modulated equations
associated with dispersive PDEs that are not completely integrable.

We have been working on modulated equations associated with abstract systems
of the form (1) with the aim of filling this gap. So far, we have pointed out a simple
set of coordinates in which modulated equations are in closed form and that sheds
new light on the Gurevich–Pitaevskii problem.

To explain briefly how these modulated equations look like, let us recall that the
building blocks of modulated equations are periodic travelling wave solutions to
(1). If (1) has N equations, a periodic travelling wave is ‘generically’ parametrized
by (N + 2) parameters. A ‘slowly’ modulated wave train is a perturbation of a
periodic travelling wave obtained by letting parameters vary on large time scales
and large space scales. Modulated equations are partial differential equations
for the slowly varying parameters, obtained by averaging over a period of the
underlying wave.

In their basic form it is not obvious that modulated equations are in closed
form. It turns out that a suitable set of coordinates is given by

• the local wave number, denoted by k,
• the average value of the wave profile U, denoted by M,
• another scalar dependent variable that can be expressed in a simple man-
ner in terms of k, M, and the average value of the momentum, or Ben-
jamin’s impulse, along the wave.

To be more precise, this last variable reads

α :=
1

k
(〈Q(U)〉 − Q(M)) ,

where Q(U) := 1
2U

TB−1U is the momentum, and 〈Q(U)〉 denotes its aver-
age value along the wave. Introducing, in addition, the averaged energy H :=
〈H(U,Ux)〉, we have shown that it can be viewed as a function of (k, α,M), and
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that the modulated equations associated with (1) read

(3)







∂tk = ∂x(∂αH) ,
∂tα = ∂x(∂kH) ,
∂tM = ∂x(B∇MH) .

It is to be noted that this formulation was obtained in the special case of the Euler–
Korteweg system in Lagrangian coordinates by Gavrilyuk and Serre in [6] (also
see [1] for further explanations). The appealing form (3) of modulated equations
has a number of implications investigated in the forthcoming paper [2]. Also see
[3] for an earlier study of modulated equations associated with an abstract system
of the form (1).
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Concentration of entropy dissipation for L
∞-entropy solutions of

scalar conservation laws in one-space dimension

Stefano Bianchini

(joint work with Elio Marconi)

We consider the following problem: let u be a bounded entropy solution to the
scalar conservation law

(1) ut + f(u)x = 0, u ∈ [−M,M ], f : R→ R smooth,

with initial datum u0(x). Being an entropy solution, by definition for all convex
entropies η it holds in distributions

(2) η(u)t + q(u)x ≤ 0,

where q′(u) = f ′(u)η′(u) is the entropy flux. In particular the r.h.s. of (2) is a
negative locally bounded measure µη, with the additional property that µη(B) = 0
for all Borel sets B such that H1(B) = 0: this last property is a consequence of
being the divergence of an L∞ vector field.

For BV solutions, Volpert’s formula together with the definition of the entropy
flux q gives that

η(u)t + q(u)x

= η′(u)
(

Dcont
t u+ f ′(u)Dcont

x u
)

+
∑

i∈N

{

− γ̇i(t)
[

η(u(t, x+))− η(u(t, x−))
]

+
[

q(u(t, x+)) − q(u(t, x−))
]

}

gi(t)H1
xGraph(γi)

=
∑

i∈N

{

− γ̇i(t)
[

η(u(t, x+))− η(u(t, x−))
]

+
[

q(u(t, x+)) − q(u(t, x−))
]

}

gi(t)H1
xGraph(γi),

where

(1) Dcontu = (Dcont
t u,Dcont

x u) is the continuous part of the measure Du,
(2) u(t, x±) is the right/left limit of u(t) at the point x,
(3) the curves γi are such that

Djumpu =
∑

i

(

u(t, x+)− u(t, x−)
)

(

1
−γ̇i(t)

)

gi(t)H1
xGraph(γi).

In short we will say that the entropy dissipation is concentrated, meaning that
the measure µη is concentrated on a H1-rectifiable set J . A simple superposition
argument implies that J can be chosen to be independent on η.
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For general L∞-entropy solutions, in the case the flux is uniformly convex, the
solution is BV for all positive times due to Oleinik estimate [9]

Dxu(t) ≤
L1
ct
,

and then the above computation applies.
For more general flux functions, in [8] it has been proved that under the as-

sumption that f has finitely many inflection points (together with a regularity
assumption on the local behavior of f about an inflection point), then again the
entropy is concentrated: here the set J is the set where the characteristic speed
f ′(u(t, x)) jumps, which has been proved to be a BV function in [4]. However for
general flux f it can be shown that f ′ is not BV.

The main result is the following:

Theorem. If u is a bounded entropy solution of a scalar conservation law, then
the entropy dissipation is concentrated.

No assumptions on the flux function f have been made, i.e. it can have flat
parts of Cantor-like sets where f ′′ = 0. Such a statement is a corollary of a detailed
description of the regularity of bounded entropy solutions, description which is at
the core of this analysis.
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Kinetic and macroscopic models for chemotaxis on networks

Raul Borsche

We are interested in cell movement on networks. This can be described by differ-
ent models along the edges of the network, which are supplemented by coupling
conditions at the nodes. In this work we develop coupling conditions for different
chemotaxis models. The starting point is the description of cell movement along
the edges by a kinetic model. Since the equation is hyperbolic, it is sufficient
to focus on a single junction from which arbitrary networks can be constructed.
Consider for i ∈ {1, . . . , N}

∂tfi +
1

ǫ
v.∂xfi = −

λ

ǫ2

(

fi −
ρ

2

)

+
1

2ǫ
αv∂xmiρ

∂tmi −D(∂xx)mi = γρρi − γmmi ,

where ∂xm = ∂xm√
1+|∂xm|2

and ρ =
∫ 1

−1 f(t, x, v)dv. f(t, v, x) is the density of cells

at time t ∈ [0, T ], location x ∈ R
+ and with velocity v ∈ [−1, 1]. m(t, x) is

quantifying the chemoattractant emitted by the cells. At the boundary at x = 0
the values of f(t, 0, v) for v > 0 have to be prescribed. At a junction we determine
these values from the outgoing quantities f(t, 0, v) for v < 0 in the following way

f+ = Af− , v > 0,(1)

where f+ = f(t, 0, v) and f− = f(t, 0,−v).
From the kinetic model different macroscopic models can be derived [1]. In the

following we consider a model hierarchy as shown in figure 1.

kinetic

half moment Cattaneo

Keller-Segel

ǫ→ 0

ǫ→ 0 ǫ→ 0

Figure 1. Hierarchy of models describing chemotaxis.

The half moment model is obtained by integrating the kinetic equation with
respect to half spaces v > 0 and v < 0 and defining the macroscopic quantities

ρ− =

∫ 0

−1

f(v)dv , ρ+ =

∫ 1

0

f(v)dv , q− =

∫ 0

−1

vf(v)dv , q+ =

∫ 1

0

vf(v)dv .

This set of equations can be closed using the ansatz functions f(v) = a++vb+, v ≥
0, f(v) = a− + vb−, v ≤ 0 , which leads to a hyperbolic model system for four
unknowns. The corresponding coupling conditions are obtained by integrating (1)
for positive velocities, as well as their first moment.
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For the Cattaneo model consider the integral over the full velocity space with

ρ(x, t) =

∫ 1

−1

f(x, t, v)dv , q(x, t) =
1

ǫ

∫ 1

−1

vf(x, t, v)dv

and the linear closure ansatz f(x, t, v) = 1
2ρ(x, t) + ǫ 32vq(x, t). For the coupling

conditions the closure is inserted into (1) and integrated over positive velocities.
Thus the coupling conditions depend on the choice of the closure. The resulting
equations are of the same form as the coupling conditions proposed by [2].

Finally the Keller-Segel model is obtained by considering the limit ǫ→ 0 in the
above models. Also the coupling conditions converge in all three cases to those
conditions investigated in [4]. In numerical examples this convergence is analyzed
numerically on networks using asymptotic preserving schemes [3]. Properties like
the conservation of mass or positivity at the node persist from the kinetic level to
the Keller-Segel equation.

In a future work we plan to investigate models assuring positive values for the
densities and to extend this procedure to other phenomena on networks.
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Generic singularities of solutions to some nonlinear wave equations

Alberto Bressan

For a wide class of nonlinear hyperbolic PDEs, it is well known that solutions can
develop singularities within finite time.

In general, the structure of the set where the solution is not smooth can be
extremely complicated. However, at least in the case of one space dimension, it is
reasonable to expect that for generic initial data the solution develops singularities
only along a finite set of points or curves in t-x space. Here “generic” should be
understood in a topological sense, i.e., for all initial data in the intersection of
countably many open dense sets in the space Ck(IR), for a suitable k ≥ 1. Three
main settings will be considered here.

1) Hyperbolic systems of conservation laws:

ut + f(u)x = 0. (1)

For a scalar conservation law, Schaeffer [13] has shown that, for an open dense set
of initial data in C3, the solution contains finitely many shocks, on any bounded
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region of the t-x plane. This result has been extended in [9] to a particular class
of hyperbolic systems, where shock and rarefaction curves coincide. On the other
hand, for 3×3 system, the recent analysis in [8] shows that a wide class of solutions
can develop infinitely many jumps in finite time.

At the present time, the problem of generic regularity remains open for 2 × 2
systems of conservation laws, such as isentropic gas dynamics. Indeed, for such
systems one conjectures that, for a generic initial data in C3(IR, IR2), the solution
remains smooth outside a locally finite family of shock curves. We recall that, for
2× 2 systems, a detailed description of the formation of new shocks was provided
in [12].

2) The Burgers-Hilbert equation:

ut + (u2/2)x = H [u], (2)

where the right hand side contains the Hilbert transform of u. This equation was
derived in [1] as a model of nonlinear waves with constant frequency. For initial
data inH2(IR), the local existence and uniqueness of the solution to (2) was proved
in [11]. Global existence in the space L2(IR) was recently proved in [5]. However,
the uniqueness and continuous dependence of these general solutions remains an
open problem. Here the main difficulty stems from the fact that Burgers’ equation
generates a semigroup which is contractive in the space L1(IR), but only Hölder
continuous in L2(IR). On the other hand, the Hilbert transform is a linear isometry
in L2, but it is not continuous as a map from L1 into itself.

The detailed asymptotic structure of solutions of (2) near a shock has been
studied in [6]. At the present time it remains to understand how new shocks are
formed, and whether generic initial data yield solutions with finitely many shock
curves in the t-x plane.

3) Variational wave equations:

utt − c(u)(c(u)ux)x = 0. (3)

Here the wave speed c(·) is a smooth map, taking strictly positive values. As
shown in [7], this equation can be rewritten as a first order semilinear system, by
a suitable transformation of dependent and independent variables. This provides
a method to construct global solutions to (3), for any initial data

(u(0, ·), ut(0, ·)) = (u0, u1) ∈ H1(IR)× L2(IR).

Uniqueness of conservative solutions has recently been proved in [3].
For this equivalent semilinear system, smooth initial data yield globally smooth

solutions. All singularities in the solution to the original wave equation arise from
the change of variables.

The generic regularity of solutions to (3) is now well understood. Using Thom’s
transversality theorem and ideas from [10], it was shown in [2] that generic solu-
tions of this wave equation are smooth outside a locally finite number of curves
in the t-x plane. An asymptotic description of all types of singularities that can
occur in a generic solution is given in [4].
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An operator splitting based stochastic Galerkin method for nonlinear
systems of conservation laws with uncertainty

Alina Chertock

(joint work with Shi Jin, Alexander Kurganov)

We introduce a flux-splitting based stochastic Galerkin methods for nonlinear sys-
tems of hyperbolic conservation/ balance laws with random inputs. The method
uses a generalized polynomial chaos approximation in the stochastic Galerkin
framework (referred to as the gPC-SG method). It is well-known that such approx-
imations for nonlinear system of hyperbolic conservation laws do not necessarily
yield globally hyperbolic systems: the Jacobian may contain complex eigenvalues
and thus trigger instabilities and ill-posedness.

In this talk, we present a systematic way to overcome this difficulty. The main
idea is to split the underlying system of conservation laws into a linear hyperbolic
system, and a nonlinear degenerated hyperbolic system which can be solved suc-
cessively as scalar conservation laws with variable coefficients and source terms.
The gPC-SG method, when applied to each of these subsystems, result in glob-
ally hyperbolic systems. The performance of the new gPC-SG method will be
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illustrated on a number of numerical examples including the compressible Euler
equations [1] and the Saint-Venant system of shallow water equations [2].
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Semi-wavefronts in models of collective movements with
density-dependent diffusivity

Andrea Corli

(joint work with Lorenzo di Ruvo and Luisa Malaguti)

We consider the scalar parabolic equation

(1) ρt + f(ρ)x = (D(ρ)ρx)x + g(ρ), (x, t) ∈ R× [0,+∞),

where f ∈ C1[0, ρ], f(0) = 0, g ∈ C[0, ρ] and D ∈ C1[0, ρ], for some ρ > 0. On
the diffusivity we assume that D(ρ) > 0 for ρ ∈ (0, ρ), allowing however that D
can vanish at either 0 or ρ, or even at both points. About the forcing term g we
assume g(ρ) > 0 for ρ ∈ [0, ρ) but g(ρ) = 0.

The reaction-diffusion-convection equation (1), with D as above, models several
physical and biological phenomena; probably the most known of them is the fluid
flow through porous media. However, our main source of inspiration has been the
appearance of (1) with g = 0 in the framework of collective movements, namely,
traffic flows and crowd dynamics [2]. As far as regards model (1), the source term
g can be thought as modeling diffused entries [1].

We are concerned with traveling-wave solutions of (1), namely, special solutions
of (1) of the form ρ(x, t) = ϕ(x − ct). In this case the profile ϕ must satisfy the
ordinary differential equation

(2) (D(ϕ)ϕ ′)
′
+ (c− f ′(ϕ))ϕ ′ + g(ϕ) = 0.

Under the previous assumptions, one easily understands that we are faced to two
main difficulties: the degeneracy of the diffusivity and the fact that equation (1)
has only one equilibrium point. Indeed, we prove [3] that the latter excludes the
possibility of traveling waves defined in the whole of R.

In [3] we prove the existence of semi-wavefront solutions [5] for every wave speed
c. We also give precise results about the slopes of the profiles when they reach 0
and characterize their strict monotony through suitable assumptions on the source
term g. We fully discuss as well the singular case when D is no more differentiable
at 0 but Ḋ(0) = ±∞. Furthermore, in the case D(ρ) = 0 we also analyze the
possibility of sharp (i.e., non smooth) semi-wavefront solutions [4] and completely
characterize when this occurs.

The key remark we exploit in the proof is that every profile ϕ = ϕ(ξ) is strictly
monotone in the region where 0 ≤ ϕ(ξ) < ρ; hence, it is invertible there, with
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inverse function ξ = ξ(ϕ), ϕ ∈ [0, ρ). This allows us to reduce the second-order
equation (2) to a first-order equation by definining z(ϕ) := D(ϕ)ϕ ′ (ξ(ϕ)) , ϕ ∈
(0, ρ). Then z satisfies the singular equation [5, 6]

(3) ż(ϕ) = h(ϕ)− c− D(ϕ)g(ϕ)

z(ϕ)
, ϕ ∈ (0, ρ).

We look for solutions of (3) vanishing at ρ; among them, the possibility that they
also vanish at 0 (when also D does) provides informations about the slope of the
profile at 0.
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The nonlocal-to-local limit for conservation laws

Gianluca Crippa

(joint work with Maria Colombo, Laura V. Spinolo)

Nonlocal conservation laws appear in the modeling of a large number of phenom-
ena, for instance in the study of traffic problems. Given a convolution kernel ρε
we focus on the following Cauchy problem:

(1)

{

∂uuε + ∂x
(

(uε ∗ ρε)uε
)

= 0

uε(t = 0) = ū .

For any given ε > 0 the Cauchy problem (1) is well posed, see for instance [3]. In
fact, well posedness holds in much larger generality: instead of (1), it is possible to
consider multidimensional systems, general nonlinearities in the second term, and
measure solutions. However, for simplicity of exposition, we restrict our attention
to the case of (1).

In [1] the question of the behavior of the solution uε of (1) when ε ↓ 0 was raised.
Supported by some numerical experiments, the authors were led to conjecture that
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the unique solution uε of (1) converges to the unique entropic solution u of Burgers’
equation

(2)

{

∂tu+ ∂x(u
2) = 0

u(t = 0) = ū .

From an analytical point of view this question is very challenging. In terms of
a priori estimates, we easily see that (1) conserves the L1 norm uniformly with
respect to ε, while the L∞ norm and the BV norm may blow up when ε ↓ 0.
The uniform bound in L1 gives weak compactness of uε in the sense of measures.
However this is not sufficient in order to pass to the limit in the nonlinearity.

A first result regarding the convergence was provided in [4]: if the solution u
of (2) is sufficiently regular in [0, T [×R, and if the kernel ρε is even (i.e., ρε(−x) =
ρε(x) for all x), then uε converges to u in [0, T [×R.

In our work we investigate the question of the convergence in the case of non
smooth solutions. We construct the following three counterexamples to the con-
vergence of uε to u.

(a) If ρε is even and ū changes sign, then in general uε does not converge
weakly to u. To show this, we consider

ū =

{

1 for x < 0
−1 for x > 0.

We can check that uε remains odd for any t > 0. This implies that
(uε ∗ ρε)(0) = 0 at any time. It follows that the total “mass” of uε on
{x < 0} and on {x > 0} are conserved for all times, while the entropic
solution u “loses mass” on the zero-speed shock placed at x = 0. This is
incompatible with the weak convergence of uε to u.

(b) If ū is nonnegative and ρε is supported on {x < 0}, then in general uε
does not converge weakly to u. We can consider

ū =

{

1 for x < 0
0 for x > 0.

The entropic solution u of (2) consists of a shock with speed 1. On the
other hand, for any ε > 0, we can check that uε ≡ 0 on {x > 0} for any
t > 0. This is incompatible with the weak convergence of uε to u.

(c) If ū is nonnegative and ρε is even, then in general uε does not converge
strongly in L1+ν to u for any ν > 0. The argument is based on the
conservation in time, when ρε is even, of the quantity

(3)

∫

R

uε log uε dx

for any nonnegative solution uε of (1). Choosing

ū =







0 for x < 0
1 for 0 < x < 1
0 for x > 1,
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we deduce from (3) that
∫

uε log uε dx = 0 for any t > 0 and ε > 0. If
one had uε → u in L1+ν , it would follow that

∫

u logu dx = 0. However,
the entropic solution u of (2) consists of a rarefaction fan and an entropic
shock, so that

∫

u logu dx has to be strictly negative.

In addition, we study the nonlocal-to-local convergence in presence of viscosity
in both (1) and (2). In detail, for µ > 0 we consider

(4)

{

∂uuε,µ + ∂x
(

(uε,µ ∗ ρε)uε,µ
)

= µ∂xxuε,µ

uε,µ(t = 0) = ū

and

(5)

{

∂tuµ + ∂x(u
2
µ) = µ∂xxuµ

uµ(t = 0) = ū .

This is relevant both theoretically and in connection to the numerical experiments
in [1] (which may be influenced by the presence of numerical viscosity). Extending
a previous result in [2] (restricted to smooth solutions and specific to the viscous
Burgers’ equation) we show that the unique solution uε,µ of (4) converges to the
unique solution uµ of (5) strongly in L2, for any ū ∈ L2 ∩ L∞. This result does
not require assumptions neither on the sign of ū nor on the symmetry of ρε.

We can summarize our results in the following convergence scheme:

uε,µ
(A)−−−−→ uµ





y
(B)





y
(C)

uε
(D)−−−−→ u

Regarding the two vanishing viscosity convergences (B) and (C), we observe that
(C) is the classical result by Kružkov for scalar conservation laws, while (B) can
be easily proved by establishing uniform (in µ) L∞ estimates on the solution uε,µ
of (4) and observing that the convolution with ρε (with ε > 0 fixed) improves the
convergence as µ ↓ 0 from weak to strong in the term uε,µ ∗ ρε. Our results show
that the convergence in (A) holds, while in general the convergence in (D) does
not hold.
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Control problems for structured population dynamics

Mauro Garavello

(joint work with Rinaldo M. Colombo)

This note deals with control problems for a biological resource, breed in order to
make a profit. More precisely, assume there is a population of juveniles, whose
density is described by the function J = J(t, a), and whose evolution is described
by a renewable equation; see [1, 2, 3, 9, 10]. Here t is the time, while a denotes
the biological age. At a certain age ā > 0, the individuals of the J population are
selected either for reproduction purposes or directed to the market. The functions
S = S(t, a) and R = R(t, a) denote the densities, respectively, of the population
to be sold and of the population used for reproduction. The selling of the S
individuals happen at the ages ā1, . . . , āN , where N ∈ N \ {0} and ā < ā1 < · · · <
āN . Thus, the dynamics of the structured (J, S,R) population is described by the
following nonlocal system of renewal equations

(1)















































































∂tJ + ∂a J = dJ (t, a)J t ≥ 0, a ∈ [0, ā]
∂tS + ∂a S = dS(t, a)S t ≥ 0, a ≥ ā, a 6∈ {ā1, · · · , āN}
∂tR+ ∂aR = dR(t, a)R t ≥ 0, a ≥ ā
S(t, ā) = η J(t, ā) t ≥ 0
R(t, ā) = (1− η)J(t, ā) t ≥ 0

J(t, 0) =

∫ +∞

ā

w(α)R(t, α)dα t ≥ 0

S(t, āi+) = θi S(t, āi−) t ≥ 0 , i = 1, . . . , N

J(0, a) = Jo(a) a ∈ [0, ā]
S(0, a) = So(a) a ∈ [ā,+∞[
R(0, a) = Ro(a) a ∈ [ā,+∞[ ,

where dJ , dS , and dR are mortality functions, w = w(a) is a fertility function, and
Jo, So, and Ro are the initial conditions; see also [4, 5, 8]. For further structured
population models, we refer for instance to [3, 6, 7, 10]. Moreover, we consider
the maps η = η(t), and θi = θi(t) (i ∈ {1, . . . , N}) as control functions. Here η
is responsible for the selection of the individuals at the age ā, while 1 − θi is the
fraction of the S population which is sold at age āi. Note that the new juveniles
individuals depend on the R population in a nonlocal way.

The profit P of the biological resource is given by

(2) P(η, θ;T ) = I(η, θ;T )− C(η, θ;T ) ,

where T > 0 is the time horizon, while the income I and the cost C are defined as

(3) I(η, θ;T ) =
N
∑

i=1

∫ T

0

Pi (t, (1− θi(t)) S(t, āi−)) dt ,
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(4)

C(η, θ;T ) =
∫ T

0

∫ ā

0

CJ (t, a, J(t, a)) dadt+

∫ T

0

∫ +∞

ā

CS (t, a, S(t, a)) dadt

+

∫ T

0

∫ +∞

ā

CR (t, a, R(t, a)) dadt .

As regards the income I, each map Pi = Pi(t, s) is the price due to selling the
individuals at age āi. The maps Cu(t, a, w) in (4), for u ∈ {J, S,R}, are the cost
for maintaining the u population of age a at time t.

1. Main results

Fix T > 0, κ ∈ N \ {0}, and introduce the notation R
+ = [0,+∞[, IJ = [0, ā],

IS = IR = [ā,+∞[, IT = [0, T ]. Consider the following assumptions.

(A): For u = J, S,R, the mortality functions du satisfy

du ∈ (C1 ∩ L∞)(IT × Iu;R) and sup
t∈R+

ṽ (du(t, ·)) < +∞ ,

while the fertility function w belongs to C1
c ([ā,+∞[ ;R+).

(ID): Jo ∈ BV(IJ ;R
+), So ∈ (L1 ∩ BV)(IS ;R

+), Ro ∈ (L1 ∩ BV)(IR;R
+).

(P): P ∈ L∞
loc([0, ā] × R

+;R) and Pi ∈ L∞
loc(IT × R

+;R) for i = 1, . . . , N .
Moreover, the map j → P (a, j), respectively s→ Pi(t, s) for i = 1, . . . , N ,
is a polynomial of degree at most κ in j for all a ∈ [0, ā], respectively in s
for t ∈ R

+.
(C): Cu ∈ L1

loc(IT × Iu ×R;R) and the map v → Cu(t, a, v) is a polynomial
of degree at most κ in v, for u = J, S,R.

The following results gives the well posedness of (1) in L1.

Theorem 1.1 ([5, Theorem 2.1]). Assume (A) and (ID). For any η ∈
BV(IT ; [0, 1]) and θ ∈ BV(IT ; [0, 1]

N), system (1) admits a unique solution such
that, for every t ∈ IT , J(t, a) ≥ 0 for every a ∈ IJ , and S(t, a) ≥ 0, R(t, a) ≥ 0 for
every a ≥ ā. Moreover, there exists a function K ∈ C0(IT ;R

+), with K(0) = 0,
dependent only on gJ , gS, gR, dJ , dS, dR and w such that for all initial data
(J ′

o, S
′
o, R

′
o) and (J ′′

o , S
′′
o , R

′′
o ) and for all controls η′, η′′, θ′ and θ′′, the correspond-

ing solutions (J ′, S′, R′) and (J ′′, S′′, R′′) to (1) satisfy, for every t ∈ IT , the
stability estimate:

‖J ′(t)− J ′′(t)‖L1(IJ ;R)
+ ‖S′(t)− S′′(t)‖L1(IS ;R) + ‖R′(t)−R′′(t)‖L1(IR;R)

≤K(t)
(

‖J ′
o − J ′′

o ‖L1(IJ ;R)
+ ‖S′

o − S′′
o ‖L1(IS ;R) + ‖R′

o −R′′
o‖L1(IR;R)

)

+ tK(t)
(

‖J ′
o − J ′′

o ‖L∞(IJ ;R)
+ ‖S′

o − S′′
o ‖L∞(IS ;R) + ‖R′

o −R′′
o‖L∞(IR;R)

)

+K(t)
(

‖η′ − η′′‖L∞([0,t];R) + ‖θ′ − θ′′‖L∞([0,t];RN )

)

.

The next result explains the dependence of the solution to (1) with respect to
the controls.
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Theorem 1.2. Pose conditions (A), (ID). Let (J, S,R) be the solution to (1)
corresponding to the piecewise controls

(5) η(t) =

m
∑

k=1

ηk χ[k−1,k[
(t) , θi(t) =

m
∑

k=1

θki χ[k−1,k[
(t)

for m ∈ N \ {0}, i = 1, . . . , N , t ∈ [0, T ], T = m, where the control parameters ηk
and θki belong to the real interval [0, 1]. Then, for all t and a,

(1) the quantities J(t, a), R(t, a) and S(t, a) are multiaffine in ηk;
(2) the quantities J(t, a), R(t, a) do not depend on θki ;
(3) the quantity S(t, a) is multiaffine in θki .

The following result is a direct consequence of Theorem 1.2 and of assump-
tions (P) and (C).

Corollary 1.3. Pose conditions (A), (ID), (P) and (C). Choose controls η and
θi as in (5). Then, the net profit P, defined in (2), is polynomial in η and θi of
degree at most κ in each of the (scalar) variables η1, . . . , ηm, θ

k
1 , . . . , θ

k
N separately.

Moreover, globally, it is a polynomial of degree at most κm in η1, . . . , ηm and of
degree at most κmN in θk1 , . . . , θ

k
N .
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Relative Entropy for Hamiltonian Flows in Gas Dynamics

Jan Giesselmann

(joint work with Corrado Lattanzio, Athanasios E. Tzavaras)

We study systems of partial differential equations having the form

(1)

∂ρ

∂t
+ divx(ρu) = 0

∂u

∂t
+ (u · ∇x)u = −∇x

δE
δρ

(ρ)
x ∈ R

d , t > 0 ,

where ρ ≥ 0 is a density obeying the conservation of mass, u is a velocity and
m = ρu a momentum flux. The evolution of u results from a functional E(ρ) on
the density and δE

δρ denotes the generator of the directional derivative of that func-

tional. In case of irrotational flows the dynamics (1), indeed, have a Hamiltonian
structure, i.e. defining H(ρ, u) := E(ρ) +

∫

1
2ρ|u|2 dx equation (1) is equivalent to

∂

∂t

(

ρ
u

)

=

(

0 − divx
−∇x 0

)( δH
δρ
δH
δu

)

+

(

0
u× curlx u

)

.

In the non-irrotational case there is a discrepancy, but this discrepancy is com-
patible with conservation of energy. Solutions of (1) formally satisfy

d

dt

(∫

1
2ρ|u|

2 dx+ E(ρ)
)

= 0 .

Depending on the selection of the functional E(ρ) several models of interest fit
under this framework. These include the equations of isentropic gas dynamics for

E(ρ) =
∫

h(ρ) dx

with given energy density function h : [0,∞) → [0,∞); the Euler-Poisson system
(e.g. [6]) for

(2)

E(ρ) =
∫

(

h(ρ)− 1
2ρc
)

dx ,

where c is the solution of −∆xc+ βc = ρ − < ρ > ,

β ≥ 0 is a constant and < ρ > denotes the mean of ρ;

the system of quantum hydrodynamics (e.g. [1]) for

E(ρ) =
∫

h(ρ) +
1

2ρ
|∇xρ|2 dx;

and the Euler-Korteweg system (e.g. [5]), for

(3) E(ρ) =
∫

h(ρ) +
Cκ

2
|∇xρ|2 dx where Cκ > 0 is a constant.

Our goal is to use the formal structure (1) in order to obtain a relative entropy
identity. Depending on the choice of energy density h, most (but not all) of the
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problems above are generated by convex functionals. Thus, it is natural to use the
quadratic part of the Taylor expansion of the functional E(ρ),

(4) E(ρ|ρ̄) := E(ρ)− E(ρ̄)−
〈δE
δρ

(ρ̄), ρ− ρ̄
〉

,

for comparing two states ρ and ρ̄. This definition involves the directional derivative
of E(ρ) in the direction (ρ − ρ̄) and provides a functional which we call relative
potential energy. We combine it with the relative kinetic energy

(5) K(ρ,m|ρ̄, m̄) =

∫

ρ

2

∣

∣

∣

m

ρ
− m̄

ρ̄

∣

∣

∣

2

dx

as a measure for the distance between two solutions (ρ,m) and (ρ̄, m̄).
In order to obtain a useful relative entropy identity we need to assume existence

of a stress tensor (functional) S(ρ) satisfying

(6) − ρ∇x
δE
δρ

= ∇x · S .

Hypothesis (6) holds for all the above examples. It gives a meaning to the notion
of weak solution for (1) as it induces a conservative form.

Under this condition the structure (1) allows us to (formally) derive the follow-
ing relative energy identity for solutions (ρ,m), (ρ̄, m̄) of (1):

(7)

d

dt

(

E(ρ|ρ̄) +K(ρ,m|ρ̄, m̄)
)

=

∫

∇xū : S(ρ|ρ̄) dx−
∫

ρ∇xū : (u− ū)⊗ (u − ū) dx ,

where the relative stress functional is defined by

(8) S(ρ|ρ̄) := S(ρ)− S(ρ̄)−
〈δS

δρ
(ρ̄), ρ− ρ̄

〉

.

Formula (7) is similar to the well known relative entropy formulas first obtained
in the works of Dafermos [2, 3] and DiPerna [4] which have been used successfully
in many contexts. However, equation (7) has a different origin from all these
calculations: it is based on the abstract Hamiltonian flow structure (1) while the
latter are based on the thermodynamical structure induced by the Clausius-Duhem
inequality. This difference notwithstanding, formula (7) and the formulas obtained
in [3, 7] are similar in that they allow for a mechanical interpretation of the relative
mechanical stress and the relative convective stress.

While formula (7) seems quite simple the actual formulas in specific examples
are cumbersome. Moreover, (for pairs of weak solutions (ρ,m) and classical so-
lutions (ρ̄, m̄)) the derivation of (7) needs to be justified in specific models (e.g.
Euler-Korteweg) which is technically quite intricate. Details can be found in [8].
The framework described here can, in particular, be applied for obtaining weak-
strong uniqueness for the models under consideration as long as the potential
energy is strictly convex. We refer to [8] for the precise statements. In case of
the Euler-Korteweg model (3) we even obtain weak-strong uniqueness for certain
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non-convex energy densities h, since the gradient terms in the energy can be used
to compensate for the lack of convexity, see [9] for details.
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Uniqueness for a non–linear 1D compressible to incompressible limit
in the non smooth case

Graziano Guerra

(joint work with Rinaldo M. Colombo)

The compressible to incompressible limit is widely studied in the literature, see for
instance the review [9] and the references therein. The classical setting considers
regular solutions, whose existence is proved only for a finite time, to the compress-
ible equations. As the Mach number vanishes, these solutions are proved to con-
verge to the solutions to the incompressible system. Here we are concerned with the
isentropic 1D system of Euler equations and with its compressible to incompressible
limit. In particular we want to study this limit for non smooth solutions defined
for all times. In a 1D setting, an incompressible fluid behaves like a solid since its
speed is constant in space. In [3] the full 1D non–isentropic Euler equations in all
the real line are considered. The authors prove rigorously that the second order
coefficients of the asymptotic expansion of the solution in the (small) Mach num-
ber satisfy the linear acoustic system. Here we consider instead two compressible
immiscible fluids and let only one of the two become incompressible. More pre-
cisely we consider a 1D volume of a compressible inviscid fluid, say the liquid, that
fills the segment of a tube [a(t), b(t)] and is surrounded by another compressible
fluid, say the gas, filling the rest of the tube. We assume that the gas obeys a fixed
pressure law P (ρ), while for the liquid we assume a one parameter family of pres-

sure laws P κ (ρ) such that P
′

κ (ρ)→ +∞ as κ→ 0. The total mass of the liquid is
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fixed:
∫ b(t)

a(t)
ρ (t, x) dx = m. Since the two fluids are immiscible, Lagrangian coor-

dinates are a natural choice: z (t, x) =
∫ x

a(t)
ρ (t, ξ) dξ, τ = 1

ρ , P (τ) = P
(

1
τ

)

,

with τ being the specific volume. In these coordinates, the liquid occupies the
fixed region [0,m] and the interfaces at z = 0 and z = m become stationary in
time. For this problem it is also convenient to write the equations in terms of the
pressure, so we introduce the inverses of the pressure laws, now seen as functions of

the pressure: T (p) = P−1 (p) , Tκ(p) = P−1
κ (p) , T ′

κ (p)
κ→0−−−→ 0. The isentropic

Euler equations for the two interacting fluids in these new variables become:

(1)

{

∂tTκ (z, p)− ∂zv = 0

∂tv + ∂zp = 0 ,
Tκ (z, p) =

{

Tκ (p) for z ∈ ]0,m[

T (p) for z 6∈ ]0,m[ .

Given two functions (p, v) ∈ L1
(

R,R2
)

, introduce now the weighted total varia-

tion: TVκ (p, v) = TV (p,R) + TV (v,R \ ]0,m[) + 1
κ TV (v, ]0,m[) . The following

two theorems where proved in [8] with the assumption of a linear pressure in the
liquid region and in [5] without this linearity assumption.

Theorem 1.1. Given a positive constant c > 0, there exist δ,∆, L > 0 independent
of κ such that if TVκ (p

κ
o , v

κ
o ) < δ and pκo ≥ c hold, then the Cauchy problem for (1)

with (pκo , v
κ
o ) as initial data has an entropy solution (pκ, vκ) defined for all times

t ≥ 0.

Theorem 1.2. Given a positive constant c > 0, fix an initial data (po, vo) such
that TV (po) + TV (vo) ≤ δ, po ≥ c, vo(z) = ṽ for all z ∈]0,m[, then for any
κ ∈]0, 1[ there exists an entropic solution (pκo , v

κ
o ) to the Cauchy problem for (1)

with initial data (po, vo). Define the specific volume as τκ (t, z) = Tκ (z, pκ (t, z)),
then as κ→ 0, up to subsequences, we have the following convergence results.

τκ (t, ·)→ τ̄
vκ(t, ·)→ vl(t)

in L1 (]0,m[) ,

pκ(·, ·) ∗
⇀ pl(·, ·) in L∞ (]0,m[× R

+) ,

τκ (t, ·)→ τ∗(t, ·)
vκ(t, ·)→ v∗(t, ·)
pκ(t, ·)→ p∗(t, ·)

in L1 (R \ [0,m]) .

Moreover, the limits vl(t), (p∗, v∗) (t, z) are entropy solutions [1] to

(2)



















∂tT (p∗)− ∂zv∗ = 0

∂tv
∗ + ∂zp

∗ = 0
z 6∈ [0,m]

m d
dtvl(t) = p∗ (t, 0−)− p∗ (t,m+)

vl(t) = v∗ (t, 0−) = v∗(t,m+),











p∗(0, z) = po(z)

v∗(0, z) = vo(z)

vl(0) = ṽ.

The limit pressure is given by pl(t, z) =
(

1− z
m

)

p∗(t, 0−) + z
mp

∗(t,m+) a.e. t ≥
0, z ∈ [0,m] .

System (2) is a system of PDE and ODE coupled through the boundary val-
ues of the solutions to the PDE. The well posedness for this kind of systems
was proved in [1] while a characterization of their solutions in terms of tangent
vectors is given in [4]. This characterization is able to ensure the uniqueness of
the compressible to incompressible limit obtained in Theorem 1.2. To show this,
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we recall some definitions and results of [4] adapted to system (2). On the set
Y = R×

(

L1 ∩BV
) (

R \ [0,m],R2
)

introduce the metric

d ((vl,1, (p1, v1)) , (vl,2, (p2, v2))) = |vl,1 − vl,2|+ ‖(p1, v1)− (p2, v2)‖L1(R\[0,m],R2) .

For any uo = (vl,o, (po, vo)) ∈ Y with |vl,o|+TV (po, vo) sufficiently small, introduce
the Lipschitz curve leaving uo:

(3) F(h) (vl,o, (po, vo)) =
(

vl,o + h
(

pσ− − pσ+
)

, Sh (p̃, ṽ) |
R\[0,m]

)

, h ≥ 0.

Here pσ− is the unique value of the pressure such that the state (po, vo) (0−)
can be connected to (pσ−, vl,o) with a wave of the first family, while pσ+ is the
unique value of the pressure such that the state (pσ+, vl,o) can be connected to
(po, vo) (m+) with a wave of the second family. The existence and uniqueness
of these two states is ensured by [6, Lemma 4.1]. Sh is the Standard Riemann
Semigroup [2, Definition 9.1] on all the real line generated by ∂tT (p) − ∂zv = 0,
∂tv + ∂zp = 0. The initial data (p̃, ṽ) is given by (p̃, ṽ) (z) = (po, vo) (z) for
z ∈ R \ [0,m]; (p̃, ṽ) (z) = (pσ−, vl,o) for z ∈ [0,m/2[; (p̃, ṽ) (z) = (pσ+, vl,o)
for z ∈ [m/2,m]. With these definitions, [4, Theorem 3] applied to system (2)
becomes:

Theorem 1.3. There exists a positive δ, a set of initial data

X ⊃
{

u = (vl, (p, v)) ∈ R×
(

L1 ∩BV
) (

R \ [0,m],R2
)

: |vl|+TV (p, v) < δ
}

and a Lipschitz continuous local semigroup [4, Definition 2] S on X, such that

(i) ∀uo ∈ X, the map u(t) = Stuo is a solution to (2) with initial datum uo;

(ii) ∀uo ∈ X, the map h → Shuo is first order tangent to h → F(h)uo defined
in (3) at uo, in the sense that limh→0+

1
h d (Shuo,F(h)uo) = 0;

(iii) S is unique up to the domain;

(iv) any Lipschitz curve u : [0, T ] → X first order tangent to F at any point,
coincides with the semigroup trajectories: u(t) = Stu(0), ∀t ∈ [0, T ].

(v) Stuo is defined as long as it does not leave the domain X, in particular if
Stuo ∈ X for any uo ∈ X and any t ≥ 0, St is a global semigroup.

Using this last result, we are able to show that the compressible to incom-
pressible limit of Theorem 1.2 is unique. Indeed in [7] the following theorem is
proved.

Theorem 1.4. For any initial data uo = (vl,o, (po, vo)) ∈ X, the compressible to

incompressible limit u∗(t) = (vl(t), (p
∗, v∗) (t, ·)), satisfies limh→0

d(F(h)u∗(t),u∗(t+h))
h

= 0, and consequently it coincides with a trajectory of the semigroup in Theorem
1.3.

Since from Theorem 1.2 we know that (vl(t), (p
∗, v∗) (t)) is defined for all times

t ≥ 0, as a consequence we also have:

Corollary 1.5. The trajectories of the local semigroup of Theorem 1.3 are defined
for all times t ≥ 0, hence St is a global semigroup defined on X.
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Stability analysis of an implicit lattice Boltzmann scheme

Philippe Helluy

1. Introduction

Lattice kinetic models are essential in computational fluid dynamics. They are the
key ingredient of the Lattice Boltzmann Method (LBM). The idea is to construct
a kinetic interpretation of a hyperbolic system of conservation laws with a minimal
set of velocities. In this report we analyze the D1Q3 lattice kinetic model, which is
the simplest kinetic model representing the isothermal Euler equations. We show
that it is unstable but that it can be made stable if the transport step is solved
with an implicit scheme. The unknown of the D1Q3 model is a three-dimensional
distribution function f(x, t) ∈ R

3, where x ∈ R and t ∈ [0, T ] are respectively the
space and time variable. The distribution function satisfies transport equations
with a BGK relaxation source term [1]

(1) f i
t + vif

i
x =

1

ε
(M(f)i − f i), i = 1 . . . 3,

where we have noted partial derivatives with indices (ft = ∂tf for instance). The
kinetic velocity takes only three values

v = (−λ, 0, λ),
where λ is a positive real number. The fluid macroscopic variables are the density
ρ(x, t), the momentum q(x, t) and the momentum flux z(x, t). As usual the fluid
velocity is defined by

u = q/ρ.
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The macroscopic variables are recovered by computing discrete moments of f




ρ
q
z



 = P





f1

f2

f3



 , P =





1 1 1
−λ 0 λ
λ2 0 λ2



 .

The constant sound speed of the isothermal fluid is denoted by c > 0. The discrete
Maxwellian state M(f) is then given by

(2) M(f) =
1

λ2





ρu(u− λ)/2 + c2ρ/2
ρ(λ2 − u2 − c2)

ρu(u+ λ2)/2 + c2ρ/2





in such a way that

PM(f) =





ρ
q

ρu2 + c2ρ



 .

Multiplying the kinetic equation (1) by P we obtain

ρt + qx = 0,

qt + zx = 0,(3)

zt + λ2qx =
1

ε
(q2/ρ+ c2ρ− z).

When ε → 0, then formally f = M(f) and from (1) we see that ρ and u satisfy
the isothermal Euler equations

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + c2ρ) = 0.(4)

The model (1), (1) is thus a minimalistic abstract kinetic interpretation of the
isothermal Euler equation. It is also denoted as the “D1Q3” model in the lattice-
Boltzmann community [3]. It can be extended to higher dimensions. For instance,
in two or three dimensions it becomes the D2Q9 or D3Q27 models.

2. Numerical method and asymptotic expansion

A traditional method for solving numerically (1) is the first order Lie splitting
algorithm. For applying one time step of the splitting algorithm, we start from
a state that is close to equilibrium: f = M(f) + O(ε). We first apply the free
transport equation for a duration of ∆t

ft + v · fx = 0.

Then in a second stage of the same duration ∆t we apply the local BGK return
to equilibrium

ft =
1

ε
(M(f)− f).

In the case of the D1Q3model, this approach can lead to instabilities that are some-
times observed in LBM simulations [2]. Therefore, we replace the exact transport
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step by a first order implicit solver in time. Assuming high precision of the solver
in the x variable the effect of the implicit solver can be modeled by

(5)
f(x, t)− f(x, t−∆t)

∆t
+ vfx(x, t) = 0.

By a Taylor expansion, we find the equivalent equation of the implicit solver (5)

(6) ft + vfx −
∆t

2
v2fxx = O(∆t2).

In a second step, we solve the differential equation exactly

ft =
1

ε
(M(f)− f) = M − I

ε
f.

This is easy because during the relaxation step ρ, q, and thus M(f), are constant.
In the following, ε is a small parameter, but we assume that the vector field M

is restricted to a manifold of f ’s on which

(7)
M − I
ε

f = O(1).

In the literature this hypothesis is often formulated by saying that f remains close
to a Maxwellian state and that the initial data are “well-prepared”. Hypothe-
sis (7) is crucial because it will allow us to apply the Baker-Campbell-Hausdorf
(BCH) formula with the good ordering for estimating the equivalent equation of
the splitting algorithm. Let us also point out that we assume that (7) remains
true even if ε ∼ ∆t or ε ∼ ∆t2 for instance. For a more precise analysis of this
hypothesis, we refer to [4] (Section VI.3 pages 388–392).

In the Lie formalism, one time-step of the splitting scheme can be written

ϕ(τ) = exp(τ
M − I
ε

) exp(τ(−v∂x +
1

2
τv2∂xx)) +O(τ3).

Now we apply the BCH formula

exp(A) exp(B) = exp(A+B +
1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]]) + · · · ).

We obtain

ϕ(τ) = exp (τL) +O(τ3),

with

L = −v∂x +
1

2
τv2∂xx +

M − I
ε

+
1

2
τ

[

M − I
ε

,−v∂x
]

.

Therefore at second order in time, the equivalent equation of the scheme is

ft + vfx −
∆t

2
v2fxx −

1

2
∆t

[

M − I
ε

,−v∂x
]

f =
M(f)− f

ε
.

For expressing the Lie bracket in a more convenient way, we introduce the matrix

V =





−λ 0 0
0 0 0
0 0 λ



 .
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Then the Lie bracket becomes

[M − I,−v∂x] f = −V ∂xM(f) +M ′(f)V ∂xf

= (M ′V − VM ′)∂xf

Now we go back to variables (ρ, q, z). After some computations, we find that

P [M − I,−v∂x]P−1





ρ
q
z



 =





0 0 0
−c2 + u2 −2u 1

0 c2 − λ2 − u2 2u



 ∂x





ρ
q
z



 .

We obtain the equivalent equations solved by the splitting algorithm at order 2 in
∆t

ρt + qx −
∆t

2
zxx = 0,

qt + zx −
∆t

2
λ2qxx =

∆t

2ε

(

(u2 − c2)ρx − 2uqx + zx
)

,(8)

∂tz + λ2∂xq −
∆t

2
λ2zxx =

1

ε
(q2/ρ+ c2ρ− z) + ∆t

2ε

(

(c2 − λ2 − u2)qx + 2uzx
)

.

On this equation we will now assume that 1≫ ∆t > ε. We freeze ∆t and perform
a Chapman-Enskog expansion when ε→ 0. The second equation implies that when
ε→ 0

zx = (c2 − u2)ρx + 2uqx = (q2/ρ+ c2ρ)x +O(ε)

and is thus redundant with

z = q2/ρ+ c2ρ+O(ε).

The third equation in (8) gives

z = q2/ρ+ c2ρ− ε
(

∂tz + λ2∂xq
)

+
∆t

2

(

(c2 − λ2 − u2)qx + 2uzx
)

+O(ε∆t).

We need to rewrite the factor in ε:

∂tz + λ2∂xq,

with only spatial derivatives. At leading order we have

∂tz = ∂t
(

q2/ρ+ c2ρ
)

+O(ε+∆t)

=
2q

ρ
qt −

q2

ρ2
ρt + c2ρt +O(ε+∆t).

But qt = −zx +O(ε+∆t) and ρt = −qx +O(ε+∆t) thus

zt = −2uzx + u2qx − c2qx +O(ε+∆t).

Then

zt = −2u
(

2uqx + (c2 − u2)ρx
)

+ (u2 − c2)qx +O(ε+∆t).

Finally

zt + λ2qx =
(

−3u2 + λ2 − c2
)

qx − 2u
(

c2 − u2
)

ρx +O(ε+∆t).
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We then obtain the equivalent viscous equation of the splitting method

ρt + (ρu)x = κ
∆t

2
zxx,

(ρu)t +
(

ρu2 + c2ρ
)

x
= κ

∆t

2
λ2qxx +Dx,

with κ = 1 (effect of the implicit solver) or κ = 0 (exact transport solver) and

D = (ε+
∆t

2
)
((

λ2 − c2 − 3u2
)

qx + 2u
(

u2 − c2
)

ρx
)

.

3. Stability analysis

Now we want to analyze the entropy stability of the second order term when ε→ 0.
For this, we define

w =

(

ρ
q

)

, F (w) =

(

q
q2

ρ + c2ρ

)

,

A(w) =

(

κ(c2 − u2) 2κu
2u
(

u2 − c2
)

(1 + κ)λ2 − c2 − 3u2

)

,

and thus second order equivalent equations become

(9) wt + F (w)x =
∆t

2
(A(w)wx)x

An entropy of the Euler equations is

S(w) =
q2

2ρ
+ c2ρ ln ρ.

We know that with this choice there exists an entropy flux G(w) such that

S′F ′ = G′.

Multiplying (9) on the left by S′(w), integrating by part in x and neglecting
boundary terms, we obtain the entropy dissipation balance

d

dt

∫

x

S = −∆t

2

∫

x

wx · S′′(w)A(w)wx .

A sufficient condition for entropy dissipation is thus that E(w) = S′′(w)A(w) is a
positive matrix. The D1Q3 model is generally used for subsonic flows. When κ = 0
(no numerical viscosity) E(w) has always a negative eigenvalue and the scheme is

thus unstable. The negative eigenvalue has a minimal modulus if λ =
√
3c and is

then of order O(u6). It justifies the fact that the scheme can, however, be applied
in practice on relatively coarse meshes for low Mach number flows. When κ 6= 0
Taylors expansions in u give

ρ2 det(E(w)T + E(w)) = −4 c6 + 8λ2c4 +O
(

u2
)

,

ρTr(E(w)T + E(w)) = 2 c4 − 2 c2 + 4λ2 +O(u2).

If λ is large enough, the scheme is thus stable for low Mach flows.
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Burgers meets Braess

Helge Holden

(joint work with Rinaldo M. Colombo)

The talk is based on the recent paper [2] where we introduce a framework to study
the possible occurrence of the Braess paradox on a traffic network, where the flow
on each road is described using so-called traffic hydrodynamics [5, 6].

The Braess paradox was introduced by D. Braess in 1968 in [1], where he de-
scribed a simple network with traffic flow in which one had the paradoxical sit-
uation that the addition of a new road to the network, could make the travel
times worse for all. The paradox has been studied extensively, and turns up not
only in traffic flow, but also in mesoscopic electron systems, and in mechanical
springs. Real-world examples include Seoul, Stuttgart, and New York City. The
list of relevant literature is too vast to be included here; see [2] and the references
therein.

The modeling of dense traffic flow by a hydrodynamic approach where cars are
represented by their density, and the dynamics is described by the conservation of
the number of cars, was introduced by Lighthill and Whitham [5] and Richards [6]
in 1955–56. It has been studied extensively, and was extended to a network of
traffic in [4], see also [3].

Let us briefly describe the model we study. We consider unidirectional traffic
flow on a network of roads. The traffic dynamics on each road is given by ρt +
(ρ v(ρ))x = 0 where ρ is the density of vehicles and v = v(ρ) is the velocity, which
is considered to be a decreasing function of the density. The resulting flux function
f(ρ) = ρ v(ρ) is a concave function which satisfies f(0) = f(ρmax) = 0 where ρmax

denotes the maximum capacity of the road. There is a maximum of the flow at a
point ρm with ρm ∈ (0, ρmax). We only study stationary flow in the uncongested
phase, i.e., ρ ∈ (0, ρm). These assumptions vastly simplify the analysis.

Instead of giving the general formulation, we will here only present a simple
example. Consider the roads given on Figure 1. The network is given by two
routes, denoted α and β, connecting A and B. The route α consists of roads a and
b, the route β consists of roads c and d. Roads a and d are identical, and similarly
for roads b and c. The velocity of roads a and d is given by ln(1 + ρ)/ρ, while
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a

b

c d

A

B

Figure 1. Network consisting of two routes connecting A to B.

on roads b and c the velocity is constant, denoted V . All roads have unit length.
Let there be a constant inflow at A of cars given by φ. We need to determine
the fraction θ ∈ [0, 1] of cars that choose route α (which clearly implies that the
fraction 1− θ follows route β). The total travel times read

τα(θ) = τa(θ) + τb(θ) and τβ(1 − θ) = τa(1 − θ) + τb(1− θ) .
in obvious notation, and the mean travel time of the network equals

T (θ) = θτα(θ) + (1− θ)τβ(1− θ),
and the name of the game is to determine the minimum of T . The symmetry of
the problem clearly implies that the equilibrium, i.e., when the travel time along
α equals that of β, occurs when θ = 1/2, which is a global minimum as well as a
local Pareto optimum (i.e., no perturbation will reduce all travel times) and Nash
equilibrium (no driver would benefit for making any local change).

Now add a new road e of unit length, see Figure 2. We denote by γ the route

a

b

c d

e

A

B

Figure 2. A network consisting of three routes α, β, and γ con-
necting A to B.

connecting a, e, and d, and assume that the velocity along road c is given by
another constant v. Denote by θ1 and θ2 the fraction of cars taking routes α
and β, respectively. The fraction that uses route γ is 1 − (θ1 + θ2). Naturally
θ1, θ2, (θ1 + θ2) ∈ [0, 1]. Now the travel times read

τα(θ1, θ2) = τa(1− θ2) + τb(θ1),

τβ(θ1, θ2) = τb(θ2) + τa(1− θ1),
τγ(θ1, θ2) = τa(1− θ2) + τe(1− θ1 − θ2) + τa(1 − θ1),
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and the average total travel time

T (θ1, θ2) = θ1 τα(θ1, θ2) + θ2 τβ(θ1, θ2) + (1− θ1 − θ2) τγ(θ1, θ2) .
Then, one can show, see [2, Theorem 2.7], that provided

eφ − 1

φ
<

1

V
− 1

v
<

2

φ
(eφ − eφ/2),

the above network example will display the Braess paradox, that is, the addition
of road e will make travel times worse than in the case without road e. More
precisely, the point with θ1 = θ2 = 0 is the unique Nash point for the network
with five roads. At the same time the corresponding travel time τγ(0, 0) is worse
than the global optimal configuration for the network with four roads.

Clearly, the occurrence of the Braess paradox is unwanted, and a natural ques-
tion is to inquire if one can enforce a control on road e that removes the paradox.
We show in [2, Theorem 3.1] that by enforcing a suitable speed limit on road e,
the Braess paradox does not occur.
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Towards a numerical solver for the multi-dimensional Euler equations

Christian Klingenberg

(joint work with Wasilij Barsukow)

Our goal is to develop a numerical method for the two dimensional compressible
inviscid Euler equations. To that end we consider the linearized Euler equations:

vt +∇p = 0

pt +∇ · v = 0 .

The motivation for studying this is that for the multi-dimensional Euler equations
acoustics and advection are different. Here we begin by studying acoustics via the
linearized Euler equations.

To solve these equations we can represent the solution via a closed formula for
any given initial value problem. Note that these equations can be written as
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ptt −∆p = 0

vtt −∇∇ · v = 0 ,

in other words even though the pressure satisfies a wave equations the velocity
satisfies a more complicated equation. The closed form solution for v uses a Green’s
function and is more complicated than Kirchhoff’s or Hadamard’s formula.

This closed form solution can now be used to study the evolution of piecewise
constant initial data on a rectangular mesh in two space dimensions. This will en-
sure that there are no numerical artifacts in the evolution that falsify the solution.
So our two-dimensional algorithm consists of projecting the data to piecewise con-
stants on rectangles, followed by the exact evolution of this data for a sufficiently
small time step and finally projecting it back to piecewise constants. This leads to
a poor algorithm, whose poor quality can not be attributed to an approximation of
the evolution. The poor quality is seen by the smearing out of shocks that depend
on their orientation with respect to the grid and also that this algorithm lacks
the ability to solve low Mach number flow. Note that even for these linearized
equations it is possible to have a notion of a Mach number. As this number goes
to zero on obtains an incompressible equation.

We conclude that a two dimensional algorithm can not be based on reconstruct-
ing the data as piecewise discontinuous data. Our next step will be to base a new
algorithm on the reconstruction to piecewise continuous elements.

We acknowledge helpful discussions on this topic with Phil Roe.

Asymptotic preserving IMEX finite volume schemes for singular limits
of weakly compressible flows

Mária Lukáčová-Medviďová

(joint work with G. Bispen, L. Yelash)

In the case of weakly compressible flows the magnitude of flow velocity u is much
smaller than the sound speed c, which results in the so-called low Mach number

flows. Here the Mach number is a reference number defined asM = |u|
c . Such flows

arise in many applications, such as meteorology, combustion or astrophysics. Since
the resulting problem is stiff, it is a well-known fact that a naive discretization
would require that the spatial and the temporal steps, ∆x and ∆t, need to be
reduced simultaneously as the Mach numberM → 0. Clearly, this is non-affordable
computationally.

In our talk we have presented new IMEX finite volume schemes for the Euler
equations with the gravity source term that are based on the so-called acous-
tic/advection splitting strategy. More precisely, we split the whole nonlinear sys-
tem of the Euler equations into a stiff linear part governing fast acoustic and
gravity waves and a non-stiff nonlinear part that models slow nonlinear advection
effects, see also our recent papers [2, 3, 4, 11]. For time discretization we have
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used higher order globally stiffly accurate IMEX schemes and approximate stiff
linear operator implicitly and the non-stiff nonlinear operator explicitly, see, e.g.
ASR(2,2,2) [1]. Consequently, we can efficiently resolve slow nonlinear dynamics
due to advection effects.

Our main goal is to analyse the asymptotic preserving properties of these meth-
ods and show that a suitable splitting into the linear stiff subsystem for acous-
tic/gravity waves and the nonlinear non-stiff subsystem for the advection combined
with the IMEX FV discretization yields asymptotic preserving schemes. The con-
cept of the asymptotic preserving schemes has been firstly introduced by Jin et
al., see [8], [9] and the references therein: a numerical scheme is called asymptotic
preserving if it is uniformly consistent as a singular limit parameter, e.g. the Mach
number, approaches its limit. In particular, the scheme reduces to a consistent
approximation of the limit equation. In our recent paper [5] we have analysed
both the asymptotic consistency as well as asymptotic stability of our IMEX FV
schemes.

In particular, using the theory of circulant matrices we are able to investigate the
matrix properties of the resulting discrete system. We show that its inverse acts
as an orthogonal projection on null spaces of the corresponding discrete operators
appearing at the right hand side of the discrete system. Consequently, we obtain
that new solution at the time step tn+1 satisfy the expected asymptotic properties.
More precisely, they are of order O(M2). This leads to the consistency result:
Numerical solution yields a consistent approximation of the limiting incompressible

Euler equations in the singular limit as M → 0. Furthermore, using the energy
method and the equivalence of discrete norms we are also able to prove that the
numerical solution is uniformly stable with respect to M , if a fixed mesh is used.

We also refer to a recent work of Kaiser et al. [10], where asymptotic consistency of
the so-called RS IMEX schemes for the isentropic Euler equations has been stud-
ied. Note that RS IMEX schemes are strongly related to our IMEX FV schemes;
both IMEX methods use analogous splitting and may differ in the choice of a ref-
erence solution or an equilibrium solution. In [2, 3] we have analysed asymptotic
consistency and accuracy of the IMEX FV for the shallow water equations with
a bottom topography source term, which are mathematically equivalent to the
isentropic Euler equations used in [10].

In order to preserve equilibria of the underlying hyperbolic balance laws on the
discrete level a special treatment of zero-order source terms is required, which
yields the well-balanced schemes, see, e.g., [6], [7] and the references therein. Our
schemes are well-balanced as well. Indeed, they preserve a particular underlying
equilibrium by the construction, since time update is realized only for perturba-
tions of the underlying equilibrium state.

Our numerical experiments presented at the end of the talk clearly demonstrated
the uniform order of convergence with respect to M , as far as advective effects
are dominant. If acoustic waves are also present in the solution, the scheme is
convergent uniformly with respect toM , but the order of convergence is recovered
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only if the space discretization parameter is small enough to resolve fast acoustic
waves.
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A traffic model with phase transitions at a junction

Francesca Marcellini

(joint work with Mauro Garavello)

We consider the Phase Transition traffic model in [6], based on a non-smooth 2×2
system of conservation laws,

(1)

{

∂tρ+ ∂x (ρ v(ρ, w)) = 0
∂t(ρw) + ∂x (ρw v(ρ, w)) = 0

with v = min {Vmax, w ψ(ρ)} ,

where ρ is the traffic density, w = w(t, x) is the maximal speed of each driver,
ψ is a C2 function and Vmax is a uniform bound on the speed. This is a macro-
scopic description displaying 2 phases, the Free phase F and Congested phase C,
described by the sets

F = {(ρ, w) ∈ [0, R]× [w̌, ŵ] : v(ρ, ρw) = Vmax} ,
C = {(ρ, w) ∈ [0, R]× [w̌, ŵ] : v(ρ, ρw) = wψ(ρ)} ,

where R is the maximal traffic density. This model is an extension of the classical
Lighthill-Whitham [12] and Richards [14] model and it falls into the class of second
order traffic models introduced by Aw and Rascle in [1] and independently by
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Zhang in [15]. In 2002, Colombo proposed the first second order model with two
different phases in [4, 5]. See also the phase transition models in [2, 10, 13].

1. The Riemann Problem at a Junction

We propose a Riemann solver at a junction for the model in (1) which conserves
the number of cars and also the maximal speed w of each vehicle, see [8]. Note
that w is a peculiar characteristic of (1), being a specific feature of every single
driver.

We consider a junction with n incoming arcs I1, ..., In and m outgoing arcs
In+1, ..., In+m, where each incoming arc is given by Ii = ]−∞, 0] and each outgoing
arc is Ij = [0,+∞[, see [3, 7, 9, 11]. On each arc we consider the phase transition
model in (1) with the change of variable η = ρw; we get a system where the

conserved variables are ρ and η and the speed is v(ρ, η) = min
{

Vmax,
η
ρ ψ(ρ)

}

.

We consider the following Riemann problem

(2)































{

∂tρ+ ∂x (ρ v(ρ, η)) = 0
∂tη + ∂x (η v(ρ, η)) = 0

(ρ, η) ∈ Ii
{

∂tρ+ ∂x (ρ v(ρ, η)) = 0
∂tη + ∂x (η v(ρ, η)) = 0

(ρ, η) ∈ Ij
(ρi, ηi)(0, x) = (ρ̄i, η̄i)
(ρj , ηj)(0, x) = (ρ̄j , η̄j) ,

where (ρ̄i, η̄i) ∈ F ∪C are the initial data in each incoming arc Ii, i = 1, ..., n, and
(ρ̄j , η̄j) ∈ F ∪ C are the initial data in each outgoing arc Ij , j = 1, ...,m.

We define the concept of Riemann solver at a generic junction.

Definition 1.1. A Riemann solver at a junction is a function

RSJ :

n+m
∏

i=1

(F ∪ C) −→
n+m
∏

i=1

(F ∪ C)

((ρ1, η1), · · · , (ρn+m, ηn+m)) 7−→
(

(ρ∗1, η
∗
1), · · · , (ρ∗n+m, η

∗
n+m)

)

satisfying the following properties.

(1) The consistency condition holds, i.e.:

RSJ
(

(ρ∗1, η
∗
1), · · · , (ρ∗n+m, η

∗
n+m)

)

=
(

(ρ∗1, η
∗
1), · · · , (ρ∗n+m, η

∗
n+m)

)

.

(2) For every i ∈ {1, . . . , n}, the Riemann problem in (2) with initial data
(ρ, η)(0, x) = (ρi, ηi), with x < 0, is solved with waves with negative speed.

(3) For every i ∈ {n+1, . . . , n+m}, the Riemann problem in (2) with initial
data (ρ, η)(0, x) = (ρi, ηi), with x > 0, is solved with waves with positive
speed.

(4) The traffic distribution

A







ρ∗1 v(ρ
∗
1, η

∗
1)

...
ρ∗n v(ρ

∗
n, η

∗
n)






=







ρ∗n+1 v(ρ
∗
n+1, η

∗
n+1)

...
ρ∗n+m v(ρ∗n+m, η

∗
n+m)






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holds, where A = (αi,j)i=1,...,n; j=n+1,...,n+m, whose coefficients indicate

the percentage of traffic that passes from Ii to Ij, with
∑n+m

j=n+1 αij = 1.

(5) The mass conservation holds, i.e.
∑n

i=1 ρ
∗
i v (ρ

∗
i , η

∗
i ) =

∑n+m
i=n+1 ρ

∗
i v (ρ

∗
i , η

∗
i ).

(6) The distribution of the maximal speed holds, i.e.:

w∗
n+1 =

1
∑n

i=1 αi,n+1γ∗i
[α1,n+1γ

∗
1w

∗
1 + . . .+ αn,n+1γ

∗
nw

∗
n] ,

...

w∗
n+m =

1
∑n

i=1 αi,n+mγ∗i
[α1,n+mγ

∗
1w

∗
1 + . . .+ αn,n+mγ

∗
nw

∗
n] ,

where w∗
i =

η∗

i

ρ∗

i

and γ∗i = ρ∗i v (ρ
∗
i , η

∗
i ) for every i ∈ {1, . . . , n+m}.

For special junctions, the cases of 1×m and 2× 1 junctions, we prove that the
Riemann solver is well defined. The following result holds (see [8] for the proof).

Theorem 1.2. Under the assumptions

(H-1): R, w̌, ŵ, Vmax are positive constants, with w̌ < ŵ; w̌ and ŵ are the
minimum, respectively, maximum, of the maximal speeds of each vehicle;

(H-2): ψ ∈ C2 ([0, R]; [0, 1]) with ψ(0) = 1, ψ(R) = 0, ψ′(ρ) ≤ 0 and
d2

dρ2 (ρψ(ρ)) ≤ 0, for all ρ ∈ [0, R];

(H-3): w̌ > Vmax;
(H-4): the waves of the first family in C have negative speed,

the Riemann solver RSJ for the cases of 1 ×m and 2 × 1 junctions, constructed
as in [8, Section 4, Section 5], satisfies all the conditions of Definition 1.1 and
produces a solution to the Riemann problem (2).

Remark 1.3. We note that the distribution of the maximal speed in (6) of Defi-
nition 1.1 is given by

w∗
2 = . . . = w∗

1+m = w̄1 ,

in the case of 1×m junction and is given by

w3 =
γ1

γ1 + γ2
w̄1 +

γ2
γ1 + γ2

w̄2 ,

where γ1 = ρ1v(ρ1, η1) and γ2 = ρ2v(ρ2, η2), in the case of 2× 1 junction, see [8].

Acknowledgments. The author thanks Rinaldo M. Colombo for useful discus-
sions. The author was partial supported by the INdAM-GNAMPA 2016 project
“Balance Laws: Theory and Applications”.
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Lagrangian structure of BV solutions for hyperbolic systems of
conservation laws

Stefano Modena

(joint work with Stefano Bianchini)

One of the key observations in Fluid Dynamics is that the fluid flow can be de-
scribed from two different (and in some sense complementary) points of view: the
Lagrangian point of view (in which the trajectory in space-time of each single
fluid particle is tracked) and the Eulerian point of view (in which one looks at
fluid motion focusing on fixed locations in the space through which the fluid flows
as time passes). Such key observation has been successfully applied to the analysis
of some particular partial differential equations (among all, the transport equation
and the Euler equation), leading to important theoretical results. For instance, in
the linear transport equation

{

∂tv(t, x) + b(t, x) · ∇xv(t, x) = 0,

v(t, 0) = v̄(x),
(1)

where

v : [0,∞)× R
d → R, is the unknown,

b : [0,∞)× R
d → R

d is a given, incompressible vector field, divxb(t, x) = 0,
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the solution to (1) presents a strong connection with the Lagrangian flow x :
[0,∞)× R

d → R
d generated by the ODE

(2)







∂x

∂t
(t, y) = b(t, x(t, y)),

x(0, y) = y.

Indeed, under suitable regularity assumptions, it can be proved that the function
v(t, x) implicitly defined by

(3) v(t, x(t, y)) = v(0, y) = v̄(y)

provides the unique solution to the Cauchy problem (1).
In a joint work [2] in preparation with Stefano Bianchini (see also [7]) we show

that also the hyperbolic system of conservation laws in one space variable in its
most general form

(4)

{

∂tu+ ∂xF (u) = 0,

u(0, x) = ū(x),
u = u(t, x) ∈ R

N , t ≥ 0, x ∈ R, Tot.Var.(ū)≪ 1,

can be analyzed from a Lagrangian point of view. Here F : RN → R
N is a generic

smooth function, which is only assumed to be strictly hyperbolic, i.e. its differential
DF (u) has N distinct real eigenvalues in each point of its domain. No convexity
assumption on F is made. We also consider small initial data (Tot.Var.(ū)≪ 1),
because this is the setting where the well-posedness of the Cauchy problem (4) is
established (see for instance [1, 3, 5] and the references therein).

There are basically two different motivations for studying hyperbolic systems
of conservation laws from a Lagrangian point of view. On one side there is a
purely theoretical motivation: our theory provides a suitable extension in a more
general setting to two well known theories developed in the past years. In [6] Tai-
Ping Liu proposed a wave-tracing algorithm for tracing the trajectory in time of
each wavefront present in a Glimm approximate solution to (4). Our Lagrangian
approach provides the counterpart of Liu’s wave-tracing for an exact (and not
approximate) solution to (4). In [4] Constantine Dafermos introduced the notion
of generalized characteristics. His theory works when the flux F is genuinely non
linear; our approach is a generalization of Dafermos’ theory in the case when F is
only strictly hyperbolic, without any convexity assumption.

On the other side, there is a more applicative reason. We think that our La-
grangian approach can lead to a deeper understanding of the behavior and of the
structure of the solutions to (4). In particular we aim to use our Lagrangian ap-
proach to study the fine structure of the solution (its regularity, its behavior near
a point of “strong interaction”, the stability of the shocks and so on).

The introduction of the precise notion of Lagrangian representation for the
solution to the general system (4) is beyond the scope of this paper. For this
reason we prefer here to give such definition in the context of a single scalar
conservation law (i.e. N = 1). In such simplified setting, the definition reads as
follows.
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Definition 1.1. A Lagrangian representation of the solution of (4) in the case
N = 1 is a 3-tuple (W , x, ρ) where

W ⊆ R is an interval, called the set of waves or set of particles,

x : [0,∞)×W → R is the position function,

ρ : [0,∞)×W → [−1, 1] is the density function,

such that

(a) some regularity assumptions on x, ρ hold; more precisely
• the map t 7→ x(t, w) is Lipschitz for each fixed w; the map w 7→ x(t, w) is
increasing for each fixed t;
• the distributional derivative Dtρ of ρ with respect to the time is a finite
Radon measure;

(b) for a.e. wave w and a.e. time t, it holds ∂x
∂t (t, w) = λ(t, x(t, w)), where

λ(t, x) =

{

f ′(u(t, x)) if x 7→ u(t, x) is continuous at x,
f(u(t,x+))−f(u(t,x−))

u(t,x+)−u(t,x−) if u has a jump at x;

(c) for a.e. time t, it holds Dxu(t) = x(t)♯(ρ(t)L1).
The main theorem we prove in [2], [7] is the following.

Theorem 1.2. There exists (at least) one Lagrangian representation for the so-
lution to the general strictly hyperbolic system (4).

We would like to stress once again that, even if we gave above the definition of
Lagrangian representation only for a scalar conservation law, in [2], [7] we provide
the correct definition and prove Theorem 1.2 for a general system ofN conservation
laws.

Instead of presenting a sketch of the proof of Theorem 1.2, we prefer to conclude
this extended abstract trying to give an “interpretation” of Definition 1.1.

First of all there is a set of (infinitesimal) waves (or particles)W . Each particle
w ∈ W moves along a Lipschitz trajectory x(·, w), which satisfies a suitable ODE,
see Property (b) above. The monotonicity of w 7→ x(t, w) for fixed time t implies
that two different particles can have the same position at a given time, but they
can not cross each other. Finally Property (c) means that, at each fixed time t,
starting from x and ρ we are able to reconstruct the (distributional derivative of
the) solution u(t, ·), so that x and ρ are enough to determine u.

It is instructive to make a comparison with the analysis made at the beginning
about the transport equation (1). Exactly as in (1), also for the system of conser-
vation laws (4) we are able to construct a flow x(t, w), which satisfies the “correct”
ODE (compare Property (b) in Definition 1.1 with equation (2)) and along which
the initial datum is transported. However, differently from the transport equation
where the vector field b is incompressible, the system of conservation laws (4) is far
from satisfying any “incompressibility” property: this is clear even when one tries
to solve a scalar conservation law through the method of characteristics and sees
that two distinct characteristics can collide in a finite time. In our Lagrangian
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framework, this reflects on the fact that, as we have already pointed out, two
waves can have the same position at the same time (i.e. they can interact), and
such interactions can create or cancel waves. This is a well known behavior of
conservation laws and a main source of difficulties in their analysis. The map ρ
is exactly the tool we introduce in order to keep track of all these phenomena: in
our setting, equation (3) (where, roughly speaking, all the particles have the same
density) is substituted by Property (c) above, (where each particle is counted with
its density ρ(t, w)).
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On α-dissipative solutions of the two-component Hunter–Saxton
equation

Anders Nordli

(joint work with Katrin Grunert)

The two-component Hunter–Saxton system is a generalization of the Hunter–
Saxton equation, given by

ut(x, t) + u(x, t)ux(x, t) =
1

4

(∫ x

−∞

(ux(z, t)
2 + ρ(z, t)2) dz

−
∫ ∞

x

(ux(z, t)
2 + ρ(z, t)2) dz

)

,(1a)

ρt(x, t) + (u(x, t)ρ(x, t))x = 0.(1b)

Solutions of (1) experience wave breaking which means that ux tends pointwise
to −∞ in finite time while u stays continuous. At wave breaking the energy
density, ux(x, t)

2 + ρ(x, t)2, concentrates into a measure. What amount of the
concentrated energy to keep can be chosen freely, and hence there is no uniqueness
of weak solutions. To select a solution we let α be a Lipschitz continuous function,
α : R→ [0, 1), and choose to retain an (1−α)-fraction of the energy concentrated
at the point of wave breaking.
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The method of characteristics can be applied to obtain an equivalent system in
Lagrangian coordinates. The new system is given by

yt(ξ, t) = U(ξ, t),

Ut(ξ, t) =
1

2
V (ξ, t)− 1

4
lim
ξ→∞

V∞(ξ, t),

Ht(ξ, t) = 0,

rt(ξ, t) = 0,

where the definition of V determines which weak solution we get. The choice of α
gives

Vξ(ξ, t) =

{

Hξ(ξ, 0), if there has been no wave breaking,

(1− α(ȳ)Hξ(ξ, 0), if there was wavebreaking at ȳ.

Existence and uniqueness of solutions of the equivalent system can be shown by a
contraction argument. The solution of the equivalent system can be mapped back
to Eulerian coordinates to prove existence of α-dissipative weak solutions of (1).
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Non local mixed systems and IBVPs for balance laws

Elena Rossi

(joint work with Rinaldo M. Colombo, Veronika Schleper)

We couple a non local balance law with a parabolic equation, obtaining the fol-
lowing new class of mixed hyperbolic–parabolic systems:

(1)

{

∂tu+∇ · (u v(w)) = (αw − β)u
∂tw − µ∆w = (γ − δ u)w

The idea behind is to describe two competing populations, predators and prey,
characterised by their density, called respectively u and w: the first evolves ac-
cording to the balance law, the second diffuses according to the parabolic equation.
The source terms of this system, motivated by Lotka–Volterra equations, describe
the feeding.

The main feature of the mixed system (1) lies in the drift term v in the balance
law: v is chosen to be a non local function of the prey density w. This allows to
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model the fact that predators can feel the presence of prey also from far away. A
possible choice of the functional v is the following

(2) v(w) = κ
∇(w ∗ η)

√

1 + ‖∇(w ∗ η)‖2
,

where κ > 0 and η is a positive smooth mollifier. When v is chosen as in (2),
predators direct their movement towards the regions where the concentration of
prey is higher.

Solutions (u,w) to system (1) are sought in the space (L1∩L∞∩BV)(Rn;R)×
(L1 ∩L∞)(Rn;R), thus in a space different from that considered usually for para-
bolic equations. In [3] the basic well posedness results for the mixed system (1) are
proven: in particular [3, Theorem 2.2] ensures existence, uniqueness, continuous
dependence of the solution on the initial data, L1 and L∞ estimates.

The analytic structure suggests that a reliable numerical procedure should be
devised to study qualitatively the solutions to (1). In [6] we derive an algorithm
to numerically solve the coupled system: the parabolic part is approximated by
an explicit finite–difference method, while an ad hoc adaptation of Lax–Friedrichs
method with dimensional splitting is used for the hyperbolic part. Both source
terms are treated by operator splitting, using a second order Runge–Kutta method.

The convergence of the numerical algorithm is proven in [6, Theorem 4.1]: the
hyperbolic variable u converges strongly in L1, the parabolic one w converges
weakly* in L∞. The proof relies on a careful tuning between the integration
methods and it exploits strongly the non locality of the convective part in the
balance law.

The algorithm has been implemented in a series of Python scripts. Using them,
qualitative properties of the solutions are investigated. We observe the formation
of a discrete, quite regular pattern: while prey diffuse, predators accumulate on
the vertices of a regular lattice, see [3, Figure 3.3] and [6, Figure 5]. In [2, Section
2] we try to change some parameters of the system and see how this influences the
pattern.

The analytic study of system (1) is on all Rn. However, both numerical in-
tegrations and possible biological applications suggest that the boundary plays
a relevant role. It would then be interesting to study the mixed system (1) in
a bounded domain. As far as parabolic equations in bounded domain are con-
cerned, in the literature many results can be found. However, known results for
balance laws in bounded domains lack some estimates needed to deal with the
coupling. Therefore, in [4] the focus is shifted to the following Initial Boundary
Value Problem (IBVP) for a general balance law

(3)







∂tu+∇ · f(t, x, u) = F (t, x, u) (t, x) ∈ I× Ω
u(0, x) = uo(x) x ∈ Ω
u(t, ξ) = ub(t, ξ) (t, ξ) ∈ I× ∂Ω,

where Ω ⊆ R
n is a bounded domain and I = [0, T ].
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The key reference for the study of this IBVP is the fundamental paper [1]. How-
ever, there detailed estimates are given explicitly only in the case of homogeneous
boundary conditions, that is ub = 0. In [4] we go over this case, providing rigorous
hypotheses and estimates and paying particular attention to the regularity and
compatibility conditions. Then, we study also the general IBVP, with possibly
non homogeneous boundary condition, and prove its well posedness: in [4, The-
orem 2.7 and Theorem 4.3] we show the existence and uniqueness of an entropy
solution to (3), L∞ and TV estimates, and L1 Lipschitz continuity of the solution
as a function of time, of the initial datum and of the boundary datum. Parabolic,
hyperbolic and also elliptic techniques have been used to deal with (3).

What is now missing is the stability of the solution with respect to the flux and
the source. As far as the latter is concerned, it might result from a careful use
of the doubling of variables technique. However, the stability with respect to the
flux appears to be a challenging problem. A first step in this direction has been
made in [5]. Here, we consider the one dimensional IBVP for a conservation law
with flux f that does not depend explicitly on the space variable:

(4)







∂tu+ ∂xf(t, u) = 0 (t, x) ∈ R
+ × R

+

u(0, x) = uo(x) x ∈ R
+

u(t, 0) = ub(t) t ∈ R
+

Note that also the case of an unbounded domain, such as the half line, is now
included. We prove the existence of a solution, exploiting the wave front tracking
technique, and the stability of the solution with respect to the flux function.

This stability result is necessary to deal with the coupling of a balance law
with a parabolic equation. However, its extension to the multidimensional case,
but even to the one dimensional case with space dependent flux, is still an open
problem.
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Shock waves in the presence of dispersion

Michael Shearer

(joint work with Gennady El and Mark Hoefer)

Dispersive shock waves (DSW) of the KdV equation have a well-defined structure
[3] that includes a modulated periodic wave train, led by a solitary wave. This
structure is also seen in the modified KdV equation,

(1) ut + (u3)x = µuxxx,

in which the flux f(u) = u3 is non-convex [1]. Due to the non-convex (cubic) flux
in the modified equation, the sign of the dispersion coefficient, µ, is important and
there is a richer set of DSW for equation (1), including contact DSW (if µ < 0) and
kinks (if µ > 0). We investigate the structure of these waves using the approach
of Gurevich and Pitaevskii [3, 4] in which the analysis is simplified by the use of
Riemann invariants for the Whitham modulation equations.

It is also instructive to compare solutions of (1) with those of the modified
KdV-Burgers equation, which includes a diffusive term,

(2) ut + (u3)x = νuxx + µuxxx, ν > 0.

The structure of shock waves for (2) is quite different, and fits the classical con-
servation laws description of Lax and Oleinik if µ < 0. However, for µ > 0, there
are undercompressive shocks, which are diffusive equivalents of the kink solutions
of (1).

We are in the process of extending results to equations like the BBM equation, in
which the dispersion has an evolutionary quality. In this analysis, we discovered a
new phenomenon, that of stationary expansion shocks, for both the BBM equation,
and for the Boussinesq system of equations.

Stationary shock solutions u(x, t) = sgn(x)A of the BBM equation

(3) ut + uux = µuxxt,

are expansive if A > 0. When such a shock is approximated by a smooth initial
function u(x, 0) = u0(x) = tanh(x/ǫ) with 0 < ǫ << 1, and allowed to evolve
in time, we observe numerically that the smoothed discontinuity persists. The
magnitude decays like 1/t and a rarefaction wave develops. This structure is
explained in [2] using matched asymptotic expansions in which the stationary
shock is treated as an inner layer and the rarefaction is a simple wave attaching
to the constants ±A in the far field.

A similar surprising phenomenon is observed in stationary solutions of a version
of the Boussinesq equations of shallow water flow,

(4)
ht + (uh)x = 0

ut + uux + hx − 1
3uxxt = 0.

Smooth initial data approximating an expansion shock persists in time, weakening
to give way to a rarefaction wave only algebraically in time. This structure is
explained using the Riemann invariants, with the observation that one invariant is



Hyperbolic Techniques in Modelling, Analysis and Numerics 1731

close to constant throughout, while the other invariant satisfies the BBM equation
(3) to leading order.
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On the two-dimensional pressure-less equations

Eitan Tadmor

We prove the existence of weak solutions for the two-dimensional pressure-less
Euler equations. To this end we develop an L1 framework of dual solutions for
such equations. Their existence is realized as vanishing viscosity limits,

uǫt + uǫ · ∇xu
ǫ = ǫ∆uǫ.

The limit u := limǫ↓0 u
ǫ follows from new BV estimates,

‖uǫ(·, t)‖BV ≤ Const.‖u0(·)‖BV ,

derived by tracing the spectral gap of the velocity gradient matrix, ∇u = (∂xi
uj)

‖η(·, t)‖L1 ≤ ‖η0(·)‖L1 , η(·, t) := λ2(∇u)− λ1(∇u).
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Analytical results for isothermal & adiabatic two phase flow with
phase transition

Ferdinand Thein

(joint work with Maren Hantke)

We study compressible two phase flow governed by the Euler equations for a liquid
and a vapor phase and allow for phase transition. In the work by Hantke et al.
[1], existence and uniqueness results to the Riemann problem for the compressible
isothermal Euler equations were shown. They considered two phase flows for a
liquid and a vapor phase with and without phase transition. To close the system
two (specific) linear equations of state were chosen to relate density and pressure
inside the phases. In order to clearly distinguish their approach from other models
for two phase flows which are currently studied, we shortly summarize important
points of their model:

• one set of Euler equations for both phases and the two phase are distin-
guished by the equation of state
• the sharp interface between the phases is a non-classical shock
• the mass transfer across the interface is modeled via a kinetic relation
which is consistent with the second law of thermodynamics

Based on this several questions arise. The first one considers the equations of state
linking the pressure and the density. We want to generalize the result of [1] in the
spirit of [2] to arbitrary (yet thermodynamically consistent) equations of state.
The basic assumption for the equations of state is that they are suitable to solve
the single phase Riemann problem. For the isothermal Euler equations

∂ρ

∂t
+
∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
= 0.

(∗)

we have the following jump conditions at the interface, see [3],

0 = [[ρ(u − w)]],(1)

0 = ρ(u − w)[[u]] + [[p]](2)

and the entropy inequality for isothermal processes

0 ≤ z[[g + ekin]].(3)

We use the following notation

• ρ denotes the mass density, u the velocity
• w denotes the speed of the phase boundary
• z = −ρ(u− w) is the mass flux across the interface
• g is the Gibbs free energy and ekin the kinetic energy

To complete the system one additional equation is needed. The missing equation
is given by the kinetic relation and has to be chosen such that (3) is fulfilled. Hence
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we choose

z = τpV [[g + ekin]](4)

with pV being the pressure in the vapor phase and τ ∈ R a strictly positive
constant. Using standard thermodynamical properties of the Gibbs free energy and
some (sufficient) assumptions we can prove that there exists a unique solution of
the equations at the interface. Additionally we show that if the Riemann problem
has a solution this solution is also unique. Furthermore we have for the solution
that the phase boundary is subsonic and thus always lies between the two classical
waves.
The second question that the work in [1] raises is how this result extends in the
adiabatic (i.e. no heat flux) case. Therefore we consider the full system of Euler
equations

∂ρ

∂t
+
∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
= 0,

∂(E)

∂t
+
∂(u(E + p))

∂x
= 0,

E = ρ(e+
1

2
u2).

(∗∗)

Now we consider the following conditions at the interface (cf. [4])

0 = [[ρ(u− w)]],(5)

0 = ρ(u− w)[[u]] + [[p]],(6)

0 = ρ(u− w)[[e + p

ρ
+

1

2
(u − w)2]],(7)

0 ≤ ζPB = ρ(u− w)[[s]].(8)

Here s denotes the (specific) entropy. Now the kinetic relation is given by

z = −ρ(u− w) = −τpV [[s]].(9)

Here τ may depend on the Temperature and thus is in general not constant any-
more. In order to solve the problem we first discuss the phase boundary. Therefore
we prescribe the vapor phase on one side and show that there is a unique solution
for the liquid phase on the other side of the phase boundary. The same must be
done again for a prescribed liquid phase. In the case of evaporation, i.e. z > 0 we
can show that under certain assumptions the interface conditions (5) - (7) connect
two states uniquely if a solution exists. As in [1] we can only have subsonic solu-
tions in the liquid phase. Hence we have two classical acoustic waves (one in each
phase), a contact wave in the vapor phase and the phase boundary between the
contact wave and the acoustic wave in the liquid phase.
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Model reduction through tangent spaces in kinetic gas theory

Manuel Torrilhon

We consider a kinetic transport equation in the form

(1) ∂tf + ci∂xi
f = S (f)

for the probability density f : Ω×R
+×R

d → R, (x, t, c) 7→ f (x, t, c) with a spatial
domain Ω ⊂ Rd , d ∈ {1, 2, 3} and i = 1, ...d. In the kinetic theory of monatomic
gases the probability density describes the distribution of particle velocities such
that f (x, t, c) dcdx represents the number of particle in the phase space volume
element [x, x+dx]× [c, c+dc]. The operator S (f) may be given by the Boltzmann
collision integral or a kinetic model like the BGK-approximation. We assume
that there is an equilibrium given by the Maxwell distribution fM (c; ρ, v, θ), an
isotropic Gaussian with density ρ, velocty v, temperature θ and particle mass m
that satisfies S (fM ) = 0.

A model reduction approach aims at the replacement

(2) f (x, t, c) c ∈ R
d ←→ W (x, t) = {wα (x, t)}|α|=1,2,...N

that is, at (x, t) the description of the gas by a velocity distirbution function defined
on a 3-dimensional space is replaced by a finite set of field variables wa(x, t) where
α is a multiindex. This set may contain variables related to the fluid dynamic fields
density, velocity and temperature, but could also contain further internal variables
that describe the state of the gas. If we decide for such a reduced description
it is necessary to formulate a reconstruction or prolongation operator f (⋆) that
computes a distribution function from wa in the form

(3) f (x, t, c) = f (⋆) (W (x, t), c) .

The function f (⋆) is also called model or closure relation. To obtain evolution
equations for the variables W (x, t) we use a variational formulation of the kinetic
equation (1) with test functions ϕα

(4)

∫

Rd

ϕα (x, t, c)
(

∂tf
(⋆) (W (x, t), c) + ci∂xi

f (⋆) (W (x, t), c)
)

dc =

∫

Rd

ϕα (x, t, c)S
(

f (⋆) (W (x, t), c)
)

dc, |α| = 1, 2, ...N
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where for generality the test function can depend on space and time as well. The
general questions are now: What is a good model to choose for f (⋆)? Ideally,
it should contain Maxwellians, but also approximates more general distributions
with few parameters. What should be used as test functions ϕα? Ideally, these
contain the monomials 1, c, c2 such that the physical conservation laws are part of
the reduced equations. What can be said about the final evolution equations for
W (x, t)? Ideally, we expect symmetric hyperbolic balance laws with an entropy
as a natural nonlinear approximation for kinetic transport (1).

The model f (⋆) (W (x, t), c) can be interpreted as a manifold to which the evo-
lution of f is constraint due to the dimensional reduction. The tangent space of
this manifold is given by the gradients

(5) vβ (W (x, t) , c) =
∂f (⋆) (W (x, t) , c)

∂wβ

and the differential is df (⋆) =
∑N

β=1 vβ (W (x, t) , c) dwβ .With this the variational
formulation simplifies to a first order, quasi-linear system of partial differential
equations in the form

(6) A
(0)
αβ(W )∂twβ(x, t) +A

(i)
αβ(W )∂xi

wβ(x, t) = Pα(W ), |α| = 1, 2, ...N

with summation convention for β and coefficients (c0 = 1)

A
(i)
αβ(W ;x, t) =

∫

Rd

ciϕα(x, t, c)vβ(W, c)dc,(7)

Pα(W ;x, t) =

∫

Rd

ϕα(x, t, c)S(f
(⋆)(W, c))dc.(8)

With tangent space reduction the gradients are used as test functions ϕα(x, t, c) =

vα(W (x, t), c), so that the matrices A
(i)
αβ become symmetric and moreover A

(0)
αβ is

positive definite. Consequently, for any model the system is of Friedrichs type and
indeed symmetric hyperbolic. However, due to the nonlinearity of the matrices

A
(i)
αβ the system can not be written in balance law form with a flux function in

general. The existence of an entropy remains unclear and also the conservation
laws may not be part of the system.

For the linear model f (⋆) (W, c) =
∑N

α=1 wα (x, t)ϕα (c) with functions ϕα in-
dependent of physical space and time, the tangent space reduction leads to the
usual Galerkin formulation where ϕα(c) are test and ansatz functions. In this case

the matrices A
(i)
αβ become constant and the system can be written in balance form,

thus possesses an entropy which is equivalent to the L2-norm of W . However, the
linear model does not contain Maxwell distributions in a natural way and typically
requires large N to achieve accurate approximations.

A typical choice for a model that contains Maxwellians is the Hermite or Grad
expansion [2]

(9) f (⋆) (W, c) =

N
∑

α=1

wαψα ((c− v)/θ) fM (c; ρ, v, θ)
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with ψα chosen as d-variate polynomials and density, velocity and temperature are
considered part of the variable set W . Polynomials are also used as test functions
ϕα (W, c) = ψα ((c− v)/θ) such that the reduced equations (4) represent moment
equations including the conservation laws. Unfortunately, this model leads to a
complicated expression for the gradients vβ(W, c) and the system is not hyperbolic
in general. However, the gradient can be artificially projected onto the model space
by requiring

(10)
∂f (⋆)(W, c)

∂wβ

!
=

N
∑

γ=1

ψγ ((c− v)/θ)Tγβ(W ) fM (c; ρ, v, θ)

with a regular matrix Tγβ(W ). This approach yields system matrices of the form

(11) A
(i)
αβ(W ) =

∫

Rd

ciψα ((c− v)/θ)ψγ ((c− v)/θ) fM dc Tγβ(W )

which can be symmetrized by mutliplying with the transpose of Tγβ(W ) from the
left. Consequently, the system is hyperbolic and contains the conservation laws,
but as for the tangent space reduction it can not be written in balance law form
and does not possess an entropy in general. The various projection approaches in
[1] can be recast into the form (10).

In order to achieve a more tractable expression for the gradients vβ it is possible
to use

(12)
∂f (⋆)(W, c)

∂wβ

!
=

N
∑

γ=1

ψγ (c)Tγβ(W ) f (⋆)(W, c)

as an equation to determine the model f (⋆). For simplicity we can set Tγβ = δγβ

and find f (⋆)(W (x, t), c) = exp
(

∑N
α=1 wα (x, t)ψα (c)

)

for the model. Similar to

the Grad expansion polynomials are chosen for ψα(c), so that the model corre-
sponds to the well-known maximum-entropy distribution [4, 5]. Using test func-
tions ϕα(c) = ψα (c) the system matrices have the form

(13) A
(i)
αβ(W ) =

∫

Rd

ciϕα(c)ϕβ(c)f
(⋆)(W (x, t), c)dc

which yield a symmetric hyperbolic system. This system can be written in balance
law form and the Boltzmann entropy η (W ) =

∫

f (⋆)(W, c) log f (⋆)(W, c)dc is also
an entropy for the partial differential equation.

In [3] it was demonstrated that within the maximum-entropy approach the
mapping between the coefficients W and the evolved moments is ill-posed even
arbitrary close to a Maxwellian. As a result the approach yields a singular flux
function for the moment equations. We show in [7] that this singularity leads to
the existence of fast and small shock waves that allow to compute smooth shock
profiles without violating the characteristic condition of [6].
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On kinetic models for the collective self-organization of agents

Konstantina Trivisa

1. Mathematical modeling, wellposedness results, and investigation

of hydrodynamic limits for kinetic flocking models.

Models describing collective self-organization of biological agents are currently
receiving considerable attention. In this line of research we investigate a class of
such models. The novel idea in (cf. Karper, Mellet and Trivisa [9, 10]) is the
creation of a new model by combining the kinetic Cucker-Smale model with the
strong local alignment term {βdivv(f(u − v))} which is obtained as the singular
limit of a non-symmetric alignment term in [12]. That leads to a new kinetic
flocking model able to treat both long range interactions (Cucker-Smale model)
and short-range interactions (due to the strong local alignment term):

(1) ft + v · ∇xf + divv(fL|f |) + βdivv(f(u− v))) = 0 in R
d × R

d × (0, T )

where f := f(t, x, v) is the scalar unknown, d ≥ 1 is the spatial dimension, and
β ≥ 0 is a constant.
The first two terms describe the free transport of the individuals, and the last
two terms take into account the interactions between individuals, who try to align
with their neighbors. The alignment operator L and the average local velocity u
have the form

(2) L[f ] =

∫

Rd

∫

Rd

Kf(x, y)f(y, w)(w − v)dw dy , u(t, x) =

∫

Rd fv dv
∫

Rd f dv

where the kernel Kf may depend on f and may not be symmetric in x and
y. This model is endowed with some very desirable features: it has symmetry, it
preserves the total momentum and has the advantage that it captures both the



1738 Oberwolfach Report 30/2016

long ranged dynamics and short ranged dynamics. Thus it provides a correction
of some earlier models in the literature [1, 2, 12].

1.1. On strong local alignment in the kinetic Cucker-Smale model. In
this work [9] Trivisa et al. justify rigorously the model (1) by proving that “the

correction term” proposed in [12] {f rL̃r[f r]} as correction to the kinetic Cucker-
Smale model [1, 2] converges weakly to the strong local alignment term {f(u−v)}
when the radius of interaction goes to zero, f rL̃r[f r] ⇀ f(u − v) as r → 0. The
analysis relies on a new velocity averaging lemma, delicate estimates and a refined
covering lemma (cf. Lemma 2.5, [10]).

1.2. Existence of solutions to kinetic flocking models. This research estab-
lishes the global existence of weak solutions to a class of kinetic flocking equations.
The models under consideration include the kinetic Cucker-Smale equation [1, 2]
with possibly non-symmetric flocking potential, the Cucker-Smale equation with
additional strong local alignment, and a model proposed by Motsch and Tadmor
in [12] as correction to the Cucker-Smale model (cf. Ha and Tadmor [6]). The
investigation of Trivisa et al. [9] provides the first rigorous existence result for a
large class of kinetic flocking models. The main tools employed in the analysis are
a new velocity averaging lemma (cf. Lemma 2.6, [9]) and the Schauder fixed point
theorem.

1.3. Hydrodynamic limit of the kinetic Cucker-Smale flocking model.
The starting point is the model (1) considered by Trivisa et al. [9, 10] significantly
enhanced to include possible random effects, noise, and a confinement potential.
The objective of this work is the rigorous investigation of the singular limit cor-
responding to strong noise and strong local alignment. The proof relies on the
construction of a new relative entropy functional with suitable dissipation prop-
erties and the establishment of entropy inequalities which yield the appropriate
convergence results. The resulting limiting system (cf. Section 3, Theorem 3.1
[12]), is an Euler-type flocking system.
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Emergence of localizing solutions out of the competition of Hadamard
instability and viscosity in plasticity

Athanasios E. Tzavaras

(joint work with Theodoros Katsaounis, Min-Gi Lee, Julien Olivier)

Shear bands are narrow zones of intense shear observed during plastic deformations
of metals at high strain rates. As they often precede rupture their study has
attracted attention as a mechanism of material failure [1]. We aim to reveal the
onset of localization into shear bands using a simple model from viscoplasticity.
We consider the system of partial differential equations

γt = vx,

vt =
(

γ−mvnx
)

x
,

(1)

which describes shear motions of a viscoplastic material and in terms of classifica-
tion belongs to the class of hyperbolic-parabolic systems. γ is the plastic strain,
v is the velocity in the shearing direction, and m,n > 0 are material parameters.
The yield relation σ = γ−mγnt characterizes the viscoplastic nature of materials:
γ−m accounts for plastic (net) strain softening and γnt for strain-rate hardening.

For n = 0, the system (1) is elliptic in the t-direction and exhibits Hadamard
instability - the catastrophic growth of oscillations for the linearized initial value
problem - induced by the (net) strain-softening response. But when n > 0, the
viscosity competes against this ill-posedness. The combination of the destabilizing
effect of strain softening and the stabilizing effect of strain-rate hardening is con-
jectured to lead to localization of the strain in narrow zones called shear bands.
It is at the core of a destabilizing mechanism proposed for more general models in
the mechanics literature [5, 1] for the explanation of shear band formation.

To set the localization problem in the language of mathematical analysis, ob-
serve that (1) admits a class of solutions, that are valid for any values of the
parameters m and n and describe uniform shearing

vs(x) = x, γs(t) = t+ γ0, σs(t) = (t+ γ0)
−m.(2)

The issue then becomes to examine whether small perturbations of the uniform
shearing solutions develop nonuniformities that go astray or whether nonunifor-
mities get suppressed resulting into stable response. Due to their time-dependent
nature, the study of stability generally involves the behavior of non-autonomous
systems. In the regime n > m, both linearized and nonlinear analyses indicate that
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the uniform shearing solutions are stable. On the complementary region m > n,
an analysis of the linearized system of relative perturbations indicates instability of
the uniform shearing solutions. Such results can be easily explained in the special
case ϕ(γ) = 1

γ but retaining the dependence in n, by studying

vt =

(

vnx
γ

)

x

, γt = vx .(3)

This model has a special property: after considering a transformation to relative
perturbations and a rescaling of variables,

(4)

vx(x, t) =: u(x, t) = U(x, τ(t)) , γ(x, t) = γs(t) Γ(x, τ(t)) ,

σ(x, t) = σs(t)Σ(x, τ(t)) where τ(t) = log(1 +
t

γ0
) ,

the problem of stability of the time-dependent uniform shearing solution is trans-
formed into the problem of stability of the equilibrium (Ū , Γ̄) = (1, 1) for the
nonlinear but autonomous parabolic system

Uτ = Σxx =

(

Un

Γ

)

xx

, Γτ = U − Γ .(5)

The following heuristic argument leads to a conjecture regarding the effect of
rate sensitivity n on the dynamics: As time proceeds the second equation in (5),
which is of relaxation type, relaxes to the equilibrium manifold {U = Γ}. Accord-
ingly, the stability of (5) is determined by the equation describing the effective
equation

Uτ =
(

Un−1
)

xx
,

which is parabolic for n > 1 and backward parabolic for n < 1. This heuristic
argument suggests instability in the regime n < 1.

In [3] we study the dynamics of (5) and provide an analysis of linearized stability.
The linearized system around the equilibrium (1, 1) reads

(6)
Ũτ = nŨxx − Γ̃xx,

Γ̃τ = Ũ − Γ̃,

and its dynamics can be analyzed via Fourier analysis. A complete picture emerges:

(a) For n = 0, high-frequency modes grow exponentially fast and indicate
catastrophic growth and Hadamard instability.

(b) For 0 < n < 1, the modes still grow and are unstable but at a tame growth
rate; in this regime the behavior is that of Turing instability, familiar from
problems in morphogenesis.

(c) For n > 1 strain-rate dependence is strong and stabilizes the motion.

In [4], we study the subtle mechanism of shear band formation in the nonlinear
regime. We construct a class of self-similar solutions that exhibit localization in
the regime m > n. We exploit the invariance properties of the system (1) and seek
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(following [2]) self-similar solutions of the form

(7)
γ̄(t, x) = (t+ 1)aΓ̄((t+ 1)λx),

v̄(t, x) = (t+ 1)bV̄ ((t+ 1)λx) ,

where ξ = (t+1)λx is the similarity variable and λ > 0 is a parameter. The usual
form of self-similar solutions for parabolic problems are generated for values of
the parameter λ < 0 and capture the spreading effect associated with parabolic
behavior. By contrast, we insist here on λ > 0 and study the existence of solutions
focusing around the line x = 0 as time proceeds.

Parameters a and b are selected by

(8) aλ,m,n =
2− n

1 +m− n +
2λ

1 +m− n, bλ,m,n =
1−m

1 +m− n +
1−m+ n

1 +m− nλ

and (Γ̄, V̄ ) is constructed by solving the initial value problem for the singular
system of ordinary differential equations

aλ,m,nΓ̄ + λξΓ̄ξ = V̄ξ,

bλ,m,nV̄ + λξV̄ξ =
(

Γ̄−mV̄ n
ξ

)

ξ
,

(9)

Γ̄|ξ=0 = Γ̄(0) > 0 , V̄ |ξ=0 = Ū(0) > 0 ,(10)

where Γ̄(0) and Ū(0) are positive parameters.
The invariance properties of the system (9) allows to de-singularize (9) and

together with a nonlinear change of variables leads to reformulating the problem
into an autonomous system of three first-order equations

ṗ = p

( 1

λ

(

r −
2− n

1 +m− n

)

−

1−m+ n

1 +m− n
+1− q − λpr

)

,

q̇ = q

(

+1− q − λpr

)

+ b
λ,m,n

pr,(11)

nṙ = r
(

m− n

λ

(

r −
2− n

1 +m− n

)

+
1−m+ n

1 +m− n
−1 + q + λpr

)

.

The question of existence of a solution
(

V̄ , Γ̄) to (9) is reformulated to that of the
construction of a suitable heteroclinic orbit for (11). In [3], we considered a system
related to the case m = 1 and numerically constructed the heteroclinic orbit. In
[4], we exploit the geometric theory of nonlinear perturbations, we construct a nor-
mally hyperbolic invariant manifold, and analyze the dynamics on that manifold
to construct a suitable heteroclinic orbit. This provides a profile for the localiz-
ing solution of the form (7). As n is a small parameter, the system (11) admits
both fast and slow time scales. Problems with multiple time scales are habitually
found in multiple contexts, and one gets a clear geometric picture of the problem
by analyzing the geometric picture in the phase space via the geometric singular
perturbation theory. In [4] we present a novel application of the method to ana-
lyze the nonlinear competition of Hadamard instability with viscosity effected by
strain-rate hardening in dynamic plasticity.
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Convergence rates of finite difference schemes for the linear transport
and wave equation with rough coefficient

Franziska Weber

Propagation of acoustic waves in a heterogeneous medium plays an important role
in many applications, for instance in seismic imaging in geophysics and in the
exploration of hydrocarbons [1, 4]. This wave propagation can be modeled by the
linear wave equation:

1

c2(x)
∂2ttp(t, x)−∆p(t, x) = 0, (t, x) ∈ DT ,(1a)

p(0, x) = p0(x), x ∈ D,(1b)

∂tp(0, x) = p1(x), x ∈ D,(1c)

where DT := [0, T ]×D, D ⊂ R
d, augmented with boundary conditions. Here, p

is the acoustic pressure and the wave speed is determined by the coefficient c2 =
c2(x) > 0. The coefficient c encodes information about the material properties
of the medium. As an example, the coefficient c represents various geological
properties when seismic waves propagate in a rock formation.

Under the assumption that the coefficient c2 ∈ C0,α ∩ L∞(D) for some α > 0
and that it is uniformly positive and bounded on D, and that the initial data
p0 ∈ H1(D) and p1 ∈ L2(D), one can prove existence of a unique weak solu-
tion p ∈ C0([0, T ];H1(D)) with ∂tp ∈ C0([0, T ];L2(D)) following classical energy
arguments for linear partial differential equations. See for instance [11, Chapter
III, Thm. 8.1, 8.2]. A smoother coefficient c and more regular initial data p0, p1
result in a more regular solution [11]. Many numerical methods are available for
the approximation of the linear wave equation with inhomogeneous coefficient c,
see for example [3, 8, 10], but the error estimates are often based on the assump-
tion that the coefficient has sufficiently much regularity. Some exceptions are the
works [5, 7, 6]. However, this regularity assumption is not always realized in prac-
tice, since, as mentioned before, the coefficient represents properties of the possibly
very heterogeneous material in which the waves propagate. Moreover, the material
properties can often only be determined by measurements. Such measurements
are inherently uncertain. This uncertainty is modeled in a statistical manner by
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representing the material properties (such as rock permeability) as random fields.
In particular, log-normal random fields are heavily used to model porous and other
geophysically relevant media [4, 2]. Thus, the coefficient c is not smooth, not even
continuously differentiable, see Figure 1, on the left, for an illustration of the co-
efficient c where the rock permeability is modeled by a log-normal random field
(the figure represents a single realization of the field).

Closer inspection of the coefficients obtained in practice reveals that the ma-
terial coefficient c is at most a Hölder continuous function, that is, c ∈ C0,α for
some 0 < α < 1.

Figure 1. Left: A sample of a log-normally distributed random
coefficient c (α = 1/2). Right: Approximation of (2) by scheme
(3) at time T = 0 and T = 1, number of grid points Nx = 214,
γ = 1/2.

Given these facts, it makes sense to study (1) and its numerical approximation
under the assumption that the coefficient c is only Hölder continuous.

In the talk, we therefore discussed the numerical approximation of the simpler
model of the one dimensional transport equation

(2) ∂tu(t, x) + ∂x(a(x)u(t, x)) = 0, (t, x) ∈ [0, T ]×D,
for a ∈ C0,α(D) positive, by a simple upwind finite difference scheme,

(3)
un+1
j − unj

∆t
+
aju

n
j − aj−1u

n
j−1

∆x
= 0, 1 ≤ j ≤ Nx, 0 ≤ n ≤ NT ,

∆t, ∆x > 0 are the discretization parameters. This scheme is stable and it is
possible to show that the approximations are approximately Hölder continuous in
time. Using an adaption of Kružkov’s doubling of variables technique [9], one can
then show the following convergence rate of the scheme:

Theorem 1.1. Let a ∈ C0,α(D) strictly positive. Denote w := au, where u
is the solution of (2) and w∆x := a∆xu∆x, where u∆x is the piecewise constant
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interpolation of the solutions uj of (3) and a∆x the piecewise constant interpolation
of aj. Assume that the initial data w0 := au0 ∈ Lp(D) and is Hölder continuous
with exponent γ∞ ∈ (0, 1]. Then w∆x(t, ·) converges to w(t, ·) at (at least) the rate

(4) ‖(w − w∆x)(t, ·)‖Lp(D) ≤ C∆x(γ∞α)/(γ∞α+2−γ∞),

where C is a constant not depending on ∆x, and where p ∈ {1, 2}.

The details of the proof can be found in [12]. The techniques used to prove the
convergence rate can also be extended to prove a rate of convergence for a finite
difference scheme for the linear wave equation (1) in one space dimension. We note
that the rate (4) depends explicitly on the Hölder regularity of the initial data and
the coefficient a. Numerical experiments confirm that the rates of convergence are
indeed quite low. However, we have not found an example yet that shows that (4)
is sharp.
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A Variational Time Discretization for Compressible Euler Equations

Michael Westdickenberg

(joint work with Fabio Cavalletti, Marc Sedjro)

The compressible Euler equations model the dynamics of compressible fluids such
as gases. They form a system of hyperbolic conservation laws

(1)

∂t̺+∇ · (̺u) = 0

∂t(̺u) +∇ · (̺u⊗ u) +∇π = 0

∂tε+∇ ·
(

(ε+ π)u
)

= 0











in [0,∞)×Rd.

The unknowns (̺,u, ε) depend on time t ∈ [0,∞) and space x ∈ Rd and we assume
that suitable initial data (̺,u, ε)(t = 0, ·) =: (¯̺, ū, ε̄) is given. We will consider ̺
as a map from [0,∞) into the space of nonnegative, finite Borel measures, which
we denote by M+(R

d). The quantity ̺ is called the density and it represents the
distribution of mass in time and space. The first equation in (1) (the continuity
equation) expresses the local conservation of mass, where

(2) u(t, ·) ∈ L
2
(

Rd, ̺(t, ·)
)

for all t ∈ [0,∞)

is the Eulerian velocity field taking values on Rd. The second equation in (1) (the
momentum equation) expresses the local conservation of momentum m := ̺u.
The quantity ε is the total energy of the fluid and ε(t, ·) is a measure in M+(R

d).
The third equation in (1) expresses the local conservation of energy.

The quantity π in the momentum equation is the pressure. It is determined by
the thermodynamic properties of the fluid. Three cases are of interest:

• The pressure vanishes (the pressureless gas case). Then the total energy of
the fluid is simply the kinetic energy, and the third equation in (1) follows
formally from the first two, by the chain rule.
• The pressure is a function of the density ̺ only because the thermodynam-
ical entropy is constant throughout time and space (the isentropic case).
Again the conservation of total energy follows formally from the continuity
and the momentum equation.
• The pressure is a function of the density ̺ and total energy ε (the full Euler
case). In this case, there is again an additional conservation law since the
thermodynamical entropy formally satisfies a transport equation.

Even though system (1) formally conserves the total energy (being a Hamiltonian
system), there actually is a dissipation of energy due to the nonsmoothness of the
solutions: In the pressureless case, the modeling suggests a concentration of mass
(sticky particle dynamics) by which the kinetic energy decreases. In the cases with
pressure, solutions may form jump singularities along codimension-one manifolds,
which are called shocks. Again total energy is dissipated in the process.

We consider a variational time discretization for the system of conservation laws
(1) in the spirit of minimizing movements for curves of maximal slopes on metric
spaces. We recall that for certain (possibly degenerate) parabolic equations, such
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as the porous medium equations, the solutions are curves on the space of nonneg-
ative measures characterized by the requirement that at each time an energy (or
entropy) functional is decreased at maximal rate (which also characterizes gradi-
ent flows). This comes with a natural time discretization, where in each timestep
one tries to find the right balance between minimizing this energy functional and
keeping the step short. For the porous medium equation the update length is mea-
sured using the Wasserstein distance. For the variational time discretization of (1)
we proceed analogously: In each timestep we minimize the sum of the internal en-
ergy and of a new functional measuring the deviation of material point trajectories
from straight paths. This functional thus measures the work required to accelerate
material points. The minimization then boils down to maximizing the difference
between a change in internal energy and work done, which in formal analogy to
the fundamental laws of thermodynamics we interpret as maximizing the (suitably
defined) entropy production. Since the internal energy only depends on some neg-
ative power of the determinant of the deformation gradient, it does not suggest any
natural function space setting in which one can hope for compactness. To circum-
vent this problem, we minimize over the closed convex cone of monotone transport
maps, which in particular guarantees the non-interpenetration of matter. Notice
that for the porous medium equation, the relevant transport maps are cyclically
monotone because those are the maps that solve the optimal transport problem
that underlies the Wasserstein distance. In this case, the (cyclical) monotonicity
follows implicitly from the choice of metric, whereas for (1) we make monotonicity
an explicit constraint. This can be justified by the fact that in each timestep the
transport maps are perturbations of the identity map, which is monotone.

Since monotone maps enjoy very good properties (they are of bounded variation
locally, for example) one can prove the existence of a minimizer for each timestep.
By a suitable interpolation in time, we obtain a family of approximate solutions
to (1), parametrized by the timstep τ > 0. We establish that as τ → 0, these
approximate solutions converge (along a subsequence) to a measure-valued solution
of (1). One crucial ingredient to the proof is a characterization of the polar cone of
the cone of monotone maps: every element in the polar cone can be represented by
the distributional divergence of a matrix field taking values in symmetric positive
semidefinite matrices. This matrix field, which we call a stress tensor, therefore
has exactly the same structure as the matrix field ̺u ⊗ u + π1, which appears
in the momentum equation (1). The momentum can be shown to be Lipschitz
continuous with respect to a suitable Kantorovorich norm. We show that measure-
valued solutions obtained from this variational time discretization satisfy an energy
inequality pointwise: energy can only be dissipated at each point in space and time;
there is no spontaneous generation of energy. Energy dissipation is given explicitly
and conists of two parts: the first is related to the dissipation of energy along the
discontinuities of the solution (the shocks), the other one is related to small-scale
rotations, a dissipation mechanism particularly relevant to incompressible flows.
The energy dissipation also controls the residual of the momentum equation, as
measured in the Kantorovich (dual Lipschitz) norm.
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