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Introduction by the Organisers

Algebraic K-theory and motivic cohomology have developed together over the
last thirty years. Both of these theories rely on a mix of algebraic geometry and
homotopy theory for their construction and development, and both have had par-
ticularly fruitful applications to problems of algebraic geometry, number theory
and quadratic forms. The homotopy-theory aspect has been expanded significantly
in recent years with the development of motivic homotopy theory and triangulated
categories of motives, and K-theory has provided a guiding light for the develop-
ment of non-homotopy invariant theories.

The workshop program presented a varied series of lectures on the latest de-
velopments in the field. The 53 participants came mostly from Europe, but there
were large contingents from the USA and Japan, as well as additional participants
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from Argentina, Russia and India. The participants ranged from leading experts
in the field to younger researchers and also some graduate students. 19 one-hour
talks presented a wide range of the latest results on the theory and its applications,
reflecting a good mix of nationalities and age groups.

Here is a more detailed description of the talks.

Computations in K-theory and in the homology of linear groups. Hes-
selholt (with M. Larsen and A. Lindestrauss) constructed a reduced norm map for
p-adic K-theory of a division ring over a local field with residue field of charac-
teristic p > 0, using the cyclotomic trace map. Morrow extended known results
on mod pn-K-theory to the p-adic case and used this to prove continuity results,
infinitesimal versions of weak Lefschetz for the Chow groups and a p-adic version
of a conjecture of Kato-Saito. Wendt described his work giving a presentation of
the homology of GL3 of a elliptic curve and its relation to the construction of an
elliptic dilogarithm complex. Schlichting described a refinement of Suslin’s results
on the homology of GLn to the case of SLn and En.

Categorical constructions. Zakharevich described her approach to the study of
K0(V ar) via a categorical scissors congruence construction. Yamazaki presented a
framework (developed jointly with Kahn and Saito) for a triangulated category of
“motives with modulus”, which hopefully will give a good framework for studying
non-homotopy invariant phenomena, such as wild ramification. Déglise showed
how to construct a category of effective motives over a general base (joint with
Bondarko), which admits a reasonable t-structure. Ivorra gave a description of
the nearby cycles functor in terms of tubes in non-archimedean geometry. Panin
presented aspects of his work with Garkusha on a new description of the mo-
tivic stable homotopy category in terms of “framed correspondences” and drew an
analogy with Segal’s machine for constructing infinite loop spaces.

Theories for topological rings. Tamme presented his work (with Kerz and
Saito) describing the “generic fiber” of the comparison map from the K-theory of
a smooth proper scheme over a complete DVR its continuous K-theory in terms of
a K-theory of the associated rigid analytic space. Using the theory of bornological
algebras, Cortiñas showed how to define a theory of rigid cohomology in the non-
commutative setting, and gave a description of this in terms of cyclic homology (a
joint work with Cuntz, Meyer and Tamme).

Motives and algebraic cycles. Kohrita extended the classical theory of cycles
algebraically equivalent to zero and the notion of a universal regular homomor-
phism, for smooth projective varieties, to the case of smooth varieties and motivic
cohomology. He showed the existence of the universal regular homomorphism to a
semi-abelian variety for motivic cohomology in a certain range. Tabuada discussed
non-commutative versions of Grothendieck’s conjecture on the equality of numer-
ical and homological equivalence, and Voevodsky’s smash nilpotence conjecture.
He showed that the non-commutative and commutative conjectures are equivalent,
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gave applications to quadric fibrations and stacks, and showed that under certain
conditions, these conjectures are invariant under homological projective duality.

Ancona presented his work proving Grothendieck’s conjecture on the positive
definiteness of the intersection pairing in a number of new cases. Kahn showed
how to interpret the Griffiths group of a smooth projective threefold X (assuming
a Chow-Künneth decomposition) as the group of morphisms in the category of
motives modulo algebraic equivalence from the Lefschetz motive to the transcen-
dental part of h3(X). Vial discussed the question: is the field of definition of the
intermediate Jacobian (assuming this to be algebraic, or its algebraic part if it is
not) of a smooth projective complex variety X the same as the field of definition of
X , and showed that this is the case for J3

alg. In addition, he showed (with Achter

and Casalaina-Martin) that the associated Abel-Jacobi map is Galois equivariant.

Arithmetic. Schmidt (with Stix) considered a more general formulation of
Grothendieck’s section conjecture, involving the entire étale homotopy type rather
than just the fundamental group, and obtained a number of “anabelian” state-
ments for varieties that can be embedded as locally closed subschemes of a prod-
uct of hyperbolic curves. Zhao gave an extension of duality in local class field
theory to higher dimensional regular schemes in positive characteristic. Morin de-
scribed a unified framework and series of conjectures (developed with Flach) for
the zeta-values of arithmetic schemes.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Changlong Zhong in the “Simons Visiting Professors”
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Abstracts

K-theory of division algebras over local fields

Lars Hesselholt

(joint work with Michael Larsen and Ayelet Lindenstrauss)

Suppose that K is a complete discrete valuation field with finite residue field of
characteristic p and that D is a central division algebra over K of finite index d.
Thirty years ago, Suslin and Yufryakov [3] proved that for all prime numbers ℓ 6= p
and all positive integers j, there is an isomorphism of ℓ-adic K-groups

Kj(D,Zℓ) Kj(K,Zℓ)
NrdD/K

//

such that dNrdD/K is equal to the norm ND/K . We prove the following analogous
result for the p-adic K-groups [1].

Theorem. For every positive integer j, there is an isomorphism

Kj(D,Zp) Kj(K,Zp)
NrdD/K

//

with the property that dNrdD/K = ND/K .

By contrast with the norm ND/K homomorphism, we do not know that the
reduced norm isomorphism NrdD/K is induced by a map of K-theory spectra.
Therefore, we are not able to conclude that a reduced norm isomorphism between
the integral K-groups exists; for it is unknown if the p-primary torsion subgroups
of the integral K-groups are of bounded exponent.

To prove the ℓ-adic statement, Suslin-Yufryakov use Gabber-Suslin rigidity to
reduce the statement to one concerning the ℓ-adic K-groups of the respective
residue fields. The additional tool that makes it possible to now prove the p-adic
statement is the cyclotomic trace map of Bökstedt-Hsiang-Madsen from K-theory
to topological cyclic homology. We let S ⊂ K be the valuation ring, let A ⊂ D be
the maximal S-order, and consider the cyclotomic trace map

Kj(D,Zp) TCj(A |D; p,Zp)//

in the case of the exact category of perfect complexes of left A-modules with the
chain maps that become quasi-isomorphisms after extension of scalars to D as the
weak equivalences; compare [2, Section 1]. It is an isomorphism, for all positive
integers j, as is the cyclotomic trace map

Kj(K,Zp) TCj(S |K; p,Zp)//

The theorem is now proved by showing that, as a graded TC∗(S |K; p,Zp)-module,
TC∗(A |D; p,Zp) is free on a single generator in degree 0. We remark that said
generator is not in the image of the cyclotomic trace map and that, by comparison,
the graded K∗(K,Zp)-module K∗(D,Zp) is neither free nor finitely generated,
except in the trivial case d = 1.
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The annihilator of the Lefschetz motive

Inna Zakharevich

The Grothendieck ring of varieties is defined to be the free abelian group generated
by k-varieties, modulo the relation that for any closed immersion Y →֒ X , we
impose the relation that [X ] = [Y ] + [X\Y ]; the ring structure is defined by
[X ][Y ] = [X × Y ]. In 2014 two longstanding questions about the Grothendieck
ring of varieties were answered:

(1) If two varieties X and Y are piecewise isomorphic then they are equal in
the Grothendieck ring; does the converse hold?

(2) Is the class of the affine line a zero divisor?

Both questions were answered by Borisov, who constructed an element in the kernel
of multiplication by the affine line; coincidentally, the proof also constructed two
varieties whose classes in the Grothendieck ring are the same but which are not
piecewise isomorphic. In this talk we will investigate these questions further by
constructing a topological analog of the Grothendieck ring and analyzing its higher
homotopy groups. Using this extra structure we will sketch a proof that Borisov’s
coincidence is not a coincidence at all: that any element in the annihilator of the
Lefschetz motive can be represented by a difference of varieties which are equal in
the Grothendieck ring but not piecewise isomorphic.

We define an assembler in the following manner:
Let C be a Grothendieck site with an initial object. We denote the full subcat-

egory of noninitial objects by C◦. We say that a family of maps {Ai → A}i∈I is
a covering family if it generates a covering sieve in the topology; it is finite if I is
finite. A covering family is disjoint if for any two morphisms Ai → A and Aj → A,
the pullback Ai ×A Aj exists an is equal to the initial object.

An assembler is a small Grothendieck site C satisfying the following extra con-
ditions:

(I) C has an initial object ∅, and the empty family is a covering family of ∅.
(R) For any A, any two finite disjoint covering families of A have a common

refinement which is itself a finite disjoint covering family.
(M) All morphisms in C are monomorphisms.

An assembler encodes all of the formal information necessary to keep track
of how varieties decompose, while forgetting the particular geometric nature of
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varieties. The category of assemblers comes equipped with a functor K to spectra
such that for an assembler C,

π0K(C) ∼= free abelian group on objects of C
/
∼,

where the equivalence relation says that given a finite disjoint covering family
{Ai → A}ni=1, [A] =

∑n
i=1[Ai] [ZakB]. We write Ki(C) = πiK(C). Let Vk be

the assembler whose objects are varieties and whose morphisms are locally closed
embeddings, K0(Vk) is the Grothendieck ring of varieties.

In addition, K(C) preserves further information about the structure of the prob-
lem; for example, any element of K1(C) is given by an object X and two decom-
positions of X into the same set of pieces X1, . . . , Xn [ZakC]; in other words, an
element of K1(C) is represented by a piecewise automorphism of X . Thus K1(C)
keeps track of the different ways an object can be decomposed into the same finite
set of pieces in two different ways. These higher homotopy groups of K(C) thus
preserve a significant amount of data about scissors congruence which can be used
to analyze the problems in more detail.

Assemblers also retain sufficient combinatorial data to allow analysis of the
homotopy type of K(C); in particular, we have the following localization and
dévissage theorems:

Theorem 1 ([ZakB, Theorem C]). The functor K extends to a functor on sim-
plicial assemblers. For any morphism of simplicial assemblers g : C. → D. there
exists a simplicial assembler (D/g). and a morphism of assemblers D. → (D/g).
such that the sequence

K(C.)→g K(D.)→ K((D/g).)

is a cofiber sequence of spectra.

The set of varieties comes with a filtration by the dimension of the variety.
This induces a filtration on the Grothendieck ring K0(Vk); unfortunately, it is
difficult to learn anything directly about K0(Vk) from this filtration, since it is
prohibitively difficult to compute the associated graded of the filtration. However,
this filtration also gives a filtration on the assembler Vk and therefore a filtration
on the K-theory K(Vk). It is possible to prove the following localization theorem
on the assembler of varieties:

Theorem 2 ([ZakA, Theorem A]). Let V
(n)
k be the assembler of varieties of di-

mension at most n, and let ιn : V
(n−1)
k → V

(n)
k be the inclusion of assemblers.

Write Bn for the set of birational isomorphism classes of varieties of dimension
n. Then the cofiber of the map

K(ιn) : K(V
(n−1)
k )→ K(V

(n)
k )

is weakly equivalent to
∨

[X]∈Bn
Σ∞

+ BAut k(X).

This theorem computes the associated graded of the dimension filtration on
K(Vk). It produces a homologically-graded spectral sequence where the 0-th di-
agonal converges to the associated graded of the Grothendieck ring of varieties,
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starting from groups of the form Z[Bn]. The −1-st diagonal is 0; the 1-st diagonal
contains groups of the form

⊕

[X]∈Bn

(Aut k(X))ab ⊕ Z/2.

This spectral sequence is the connection between the näıve analysis from the be-
ginning of this section and the actual associated graded of the Grothendieck ring
of varieties.

The spectral sequence can also be used to analyze the annihilator of the Lef-
schetz motive L = [A1]. This kernel is important because many of the compu-
tational techniques that use the Grothendieck ring require it to be localized at
L. Thus any geometric information present in the annihilator of L is destroyed
and can’t be detected by these computational techniques. In [Bor], Borisov con-
structed an element [X ]− [Y ] in the annihilator of L, thus showing that this kernel
is nontrivial. Surprisingly enough, his proof also showed that X ×A1 and Y ×A1

are not birational, thus constructing an element in the kernel of ιn for some n.
Using assemblers we can show that this is not a coincidence:

Theorem 3 ([ZakA, Theorem D]). Suppose that α ∈ K0(Vk) is in the kernel of
multiplication by L, and write α = [X ]− [Y ] with X and Y of minimal dimension.
Then X × A1 and Y × A1 are not scissors congruent.

Thus any minimal representation of an element in the kernel of multiplication
by L gives an element in the kernel of ιn. The proof of this theorem relies heavily
on the higher homotopy groups of K(Vk), and thus illustrates the principle that
the spectrum K(Vk) contains useful information which is lost in the Grothendieck
ring K0(Vk).
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Algebraic part of motivic cohomology

Tohru Kohrita

For a smooth proper connected scheme X over an algebraically closed field k, the
subgroup Ar(X) of the Chow group CHr(X) consisting of cycles algebraically
equivalent to zero is called the algebraic part of CHr(X), and a group homomor-
phism φ from the algebraic part Ar(X) to the group of rational points of an abelian
variety A is called a regular homomorphism if for any connected smooth proper
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scheme T over k pointed at a rational point t0, and for any cycle Y ∈ CHr(T×X),
the composition

T (k)
wY−→ Ar(X)

φ
−→ A(k)

is induced by a scheme morphism T −→ A [Sam, Section 2.5]. Here, the map wY

sends t ∈ T (k) to Y (t)−Y (t0), where Y (t) stands for the image of the intersection
of cycles (t×X) ·Y ∈ CHdimT+r(T ×X) under the proper pushforward along the
projection T × X −→ X. A regular homomorphism φ : Ar(X) −→ A(k) is said
universal if, given any regular homomorphism φ′ : Ar(X) −→ A′(k), there is a
unique homomorphism of abelian varieties h : A −→ A′ such that h◦φ = φ′ holds.
It is classical that the universal regular homomorphism exists for r = 1 and dimX.
The case r = 1 is the theory of Picard varieties and the case r = dimX coincides
with that of Albanese varieties. The existence of universal regular homomorphism
for r = 2 is also known by Murre [Mur, Theorem A]. It would be worth noting
that one of the important ingredients of Murre’s proof is the theorem of Merkurjev
and Suslin [MS] on norm residue homomorphisms. We also know that universal
regular homomorphisms are isomorphisms if r = 1, and isomorphisms on torsion
if r = d ([Ro, Bl, Mi]) or r = 2 ([Mur]).

In this talk, we consider an analogue for arbitrary smooth (not necessarily
proper) schemes by replacing Chow groups with motivic cohomology with compact
supports. The classical definitions of algebraic part of Chow groups and regular
homomorphisms can readily be adapted by using Voevodsky’s tensor triangulated
category DM−

Nis(k) of motives over k (see [V] and [MVW]). The tensor structure

of DM−
Nis(k) is denoted by ⊗, and M(X) (resp., M c(X)) stands for the motive

(resp., motive with compact supports) of a scheme X over k.
Given a zero-cycle z on a smooth scheme T over k (or its image in H0(T,Z))

and Y ∈ HomDM−

Nis(k)
(M(T )⊗M c(X),Z(n)[m]), we write the composition

M c(X) ∼= Z⊗M c(X)
z⊗idMc(X)
−→ M(T )⊗M c(X)

Y
−→ Z(n)[m]

of morphisms in DM−
Nis(k) as Yt. Note that Yt is by definition an element of

Hm
c (X,Z(n)).

Definition 1. Let X be a smooth scheme over k. The algebraic part of the
motivic cohomology group with compact supports Hm

c (X,Z(n)) is defined as

H
m
c,alg(X,Z(n))

:=
⋃

T, smooth
connected

im{H0(T,Z)
0 ×Hom

DM
−

Nis(k)
(M(T )⊗M

c(X),Z(n)[m]) −→ H
m
c (X,Z(n))},

where the map sends a pair (z,Y) with

z ∈ H0(T,Z)
0 := ker{H0(T,Z)

str∗−→ H0(Spec k,Z)}

and
Y ∈ HomDM−

Nis(k)
(M(T )⊗M c(X),Z(n)[m])

to

Yz ∈ HomDM−

Nis(k)
(M c(X),Z(n)[m])

def
= Hm

c (X,Z(n)).
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Under the assumption of resolution of singularities, it can be shown that for any
smooth connected scheme of dimension d over k, the Suslin-Friedlander duality iso-
morphism ([V, Theorem 4.3.7]) induces an isomorphism between H2d

c,alg(X,Z(d))

and H0(X,Z)
0. If X is, in addition, proper and (m,n) = (2r, r) for some integer

r, then there is a canonical isomorphism H2r
c,alg(X,Z(r))

∼= Ar(X). The notion of
regular homomorphisms also naturally generalizes to this setting.

Definition 2. Let X be a smooth scheme over k and let S be a semi-abelian
variety over k. A group homomorphism φ : Hm

c,alg(X,Z(n)) −→ S(k) is called

regular if for any smooth connected scheme T over k pointed at t0 ∈ T (k) and
any Y ∈ HomDM−

Nis(k)
(M(T )⊗M c(X),Z(n)[m]), the composition

T (k)
wY−→ Hm

c,alg(X,Z(n))
φ
−→ S(k)

is induced by some scheme morphism T −→ S. Here, wY sends t ∈ T (k) to
Yt − Yt0 ∈ H

m
c,alg(X,Z(n)).

A regular homomorphism Φm,n
c,X : Hm

c,alg(X,Z(n)) −→ Algm.n
c,X (k) is said univer-

sal if for any regular homomorphism φ, there exists a unique homomorphism h of
semi-abelian varieties as indicated in the diagram

Hm
c,alg(X,Z(n))

Φm,n
c,X

//

∀φ
''P

P

P

P

P

P

P

P

P

P

P

P

Algm.n
c,X (k)

∃!h

��

S(k)

With this setup, we can prove the following.

Theorem 3 (Existence). Let X be a smooth connected scheme of dimension d over
an algebraically closed field k. Then, there exists a universal regular homomorphism

Φm,n
c,X : Hm

c,alg(X,Z(n)) −→ Algm,n
c,X (k)

if m ≤ n+ 2 or (m,n) = (2d, d).

Under the assumption of resolution of singularities, one can show that the
(Serre’s) Albanese map albX : H0(X,Z)

0 −→ AlbX(k) constructed in [SS, Ra]
agrees with our universal regular homomorphism for (m,n) = (2d, d) via the iso-
morphism H2d

c,alg(X,Z(d))
∼= H0(X,Z)

0 mentioned right after Definition 1.

For the case (m,n) = (2, 1), we may interpret the universal regular homo-
morphism for H2

c,alg(X,Z(1)) in terms of the relative Picard group of a smooth

compactification X̄ of X with a simple normal crossing boundary divisor Z. Below,
let us assume that Z is non-empty. Otherwise, it would be the classical proper
case, and one would also needs to take fppf sheafification in cosidering a Picard
functor below. Let Pic0

X̄,Z,red
be the reduction of the identity component of the

group scheme representing the functor that sends T ∈ Sch/k to the relative Picard
group Pic(T × X̄, T × Z) as in [B-VS]. We can show:
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Theorem 4. Assume resolution of singularities. If X is a smooth connected
scheme over k with a smooth compactification X̄ with a non-empty simple normal
crossing boundary divisor Z, then there is a canonical regular homomorphism

φ0 : H2
c,alg(X,Z(1)) −→ Pic0X̄,Z,red(k)

and it is universal. In particular, Pic0
X̄,Z,red

depends only on X. Also, φ0 is an

isomorphism.
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87 (2001), vi–104.

[Bl] Bloch, S., Torsion algebraic cycles and a theorem of Roitman. Compositio Math. 39
(1979), no. 1, 107–127.

[MVW] Mazza, C., Voevodsky, V., Weibel, C., Lectures on motivic cohomology, Clay Mathe-
matics Monographs. 2, American Mathematical Society, Providence, RI, 2006.

[MS] Merkurjev, A., Suslin, A., K-cohomology of Severi-Brauer varieties and norm residue
homomorphisms. Izvestiya Akad. Nauk. SSSR 46 (1982), English translation: Math
USSR Izvestiya 21 (1983), 307–340.

[Mi] Milne, J. S., Zero cycles on algebraic varieties in nonzezro characteristic: Rojtman’s
theorem. Compositio Math. 47 (1982), no. 3, 271–287.

[Mur] Murre, J. P., Application of algebraicK-theory to the theory of algebraic cycles, in: Proc.
Algebraic Geometry Sitges (Barcelona) 1983, Lecture Notes in Math. 1124, Springer-
Verlag, Berlin 1985, 216–261.

[Ra] Ramachandran, N., Duality of Albanese and Picard 1-motives. Available at:
http://arxiv.org/abs/math/9804042.

[Ro] Rojtman, A. A., The torsion of the group of 0-cycles modulo rational equivalence. Ann.
of Math. (2) 111 (1980), no. 3, 553–569.

[Sam] Samuel, P., Relations d’equivalence en géométrie algébrique. Proc. Internat. Congress
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Algebraic K-theory and motivic cohomology of formal schemes in
characteristic p

Matthew Morrow

The talk was a survey of the main results of the preprint [6].

1. Pro Geisser–Levine and Bloch–Kato–Gabber theorem

If A is any Fp-algebra, then we may consider the natural homomorphisms

Kn(A)/p
r ←− KM

n (A)/pr
dlog[·]
−→ WrΩ

n
A,log,

where WrΩ
n
A,log (also denoted by νnr (A) in the literature) is the subgroup of the

Hodge–Witt group WrΩ
n
A consisting of elements which can be written étale lo-

cally as sums of dlog forms, and the map dlog[·] is given by {a1, . . . , an} 7→
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dlog[a1] · · · dlog[an] as usual. If A is regular and local then both of these homo-
morphisms are known to be isomorphisms: this reduces, via Gersten sequences, to
the case that A is a field, in which case the leftwards isomorphism is due to Geisser
and Levine [3], who also proved that Kn(A) is p-torsion-free, and the rightwards
isomorphism is the Bloch–Kato–Gabber theorem (see [6, Thm. 5.1] for more de-
tails and references; also, to avoid issues caused by finite residue fields, we use
Kerz–Gabber’s improved Milnor K-theory throughout). Still assuming that A is
regular and local, it follows that Kn(A;Z/p

r) ∼= WrΩ
n
A,log, which satisfactorily

calculates the p-adic part of the algebraic K-theory of A.
The focus of the talk was the following analogous calculation for formal schemes:

Theorem 1. Let A be a regular local Fp-algebra, and I ⊆ A an ideal; assume that
A/I is both F-finite (i.e., finitely generated over its subring of pth-powers) and a
“generalised normal crossing divisor” (i.e., whenever Y1, . . . , YN are some of the
irreducible components of SpecA/I, then (

⋂
i Yi)red is regular).

Then the homomorphisms of pro abelian groups

{Kn(A/I
s)/pr}s ←− {K

M
n (A/Is)/pr}s

dlog[·]
−→ {WrΩ

n
A/Is,log}s

are surjective and have the same kernel, thereby inducing an isomorphism

{Kn(A/I
s)/pr}s

≃
−→ {WrΩ

n
A/Is,log}s.

Moreover, the pro abelian group {Kn(A/I
s)}s is p-torsion-free.

In other words, although the homomorphisms will not be isomorphisms for A/Is

for any fixed s > 1, the obstruction to having an isomorphism Kn(A/I
s;Z/pr) ∼=

WrΩ
n
A/Is,log is Mittag-Leffler zero as s→∞.

In the special case that I is principal and A/I is regular, Theorem 1 can be
improved: the stated homomorphisms of pro abelian groups are not merely sur-
jective but even isomorphisms. This is likely to be true without these additional
assumptions on I and A/I, but certainly necessary results on the p-torsion in
the Milnor K-theory of multivariable truncated polynomial algebras remain to be
established.

2. Applications

Theorem 1 leads to a number of applications concerning K-theory in the presence
of infinitesimal thickenings.

2.1. The continuity problem. The continuity problem in algebraic K-theory
asks whether the canonical map K(A) → holimsK(A/Is) is a weak equivalence
after pro-finite completion whenever A is an I-adically complete ring. If A is an
Fp-algebra then it is sufficient to work with the p-adic part of the K-theories, by
Gabber rigidity. The first application of Theorem 1 is an affirmative answer to
this question in certain cases:
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Theorem 2. With A and I as in Theorem 1, assume moreover that A is I-adically
complete. Then the canonical maps

Kn(A;Z/p
r) −→ πn holimsKn(A/I

s;Z/pr) −→ lim
←−
s

Kn(A/I
s;Z/pr)

are isomorphisms for all n ≥ 0, r ≥ 1.

In the case in which A/I is regular, this was proved earlier by Geisser and
Hesselholt [2].

2.2. The infinitesimal part of the weak Lefschetz conjecture for Chow
groups. Let X be a smooth, projective, d-dimensional variety over a perfect field
of characteristic p, and Y →֒ X a smooth ample divisor. Then the Lefschetz con-
jecture for Chow groups predicts that the restriction map CHn(X) → CHn(Y )
is an isomorphism rationally if 2n < d− 1. According to the philosophy of Bloch,
Esnault, and Kerz proposed in [1], such conjectures can be split into an algebri-
sation and an infinitesimal part by noting that the map may be rewritten (by the
Bloch–Quillen formula) asHi

Zar(X,Kn,X)→ Hi
Zar(Y,Kn,Y ), which factors through

lim
←−s

Hi
Zar(Ys,Kn,Ys), i.e., the “Chow group of the formal completion of X along

Y ”. The second application of Theorem 1 resolves the infinitesimal part of the
conjecture:

Theorem 3. The restriction map lim
←−s

Hi
Zar(Ys,Kn,Ys) → Hi

Zar(Y,Kn,Y ) is an

isomorphism rationally if 2n < d−1. In fact, whenever i+n < d−1 the restriction
map of pro abelian groups

{Hi
Zar(Ys,Kn,Ys)}s −→ {H

i
Zar(Y,Kn,Y )}s

has kernel and cokernel killed by a power of p.

2.3. Kato–Saito’s conjecture. Let X be a smooth, d-dimensional variety over a
perfect field of characteristic p. A standard consequence of Gersten’s conjecture (or
of the structure of Kn as a homotopy invariant presheaf with transfer) is that the
canonical maps Hi

Zar(X,Kn)→ Hi
Nis(X,Kn,Nis) are isomorphisms for all i, n ≥ 0,

and similarly for Milnor K-theory.
Now let Y →֒ X be a normal crossing divisor. Then it was conjectured by Kato

and Saito [5, pg. 256], as part of their higher dimensional class field theory, that
the analogous maps

lim
←−
s

Hi
Zar(X,K

M
n,(X,Ys)

) −→ lim
←−
s

Hi
Nis(X,K

M
n,(X,Ys),Nis)

would also be isomorphisms if the base field were finite and i = n = d. The

new theory of reciprocity sheaves [4] even predicts that Hi
Zar(X,K

M
n,(X,Ys)

)
≃
→

Hi
Nis(X,K

M
n,(X,Ys),Nis) for each fixed s ≥ 1.

The final application of Theorem 1 which we present here is a p-adic form of
Kato–Saito’s conjecture which is valid in all degrees but only established at this
time for Quillen K-theory:
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Theorem 4. With X,Y as immediately above, the canonical map of pro abelian
groups

{Hi
Zar(X,Kn,(X,Ys)/p

r)}s
≃
−→ {Hi

Nis(X,Kn,(X,Ys),Nis/p
r)}s

is an isomorphism for all i, n ≥ 0, r ≥ 1.
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Remarks on Grothendieck’s standard conjecture of type D and on
Voevodsky’s nilpotence conjecture

Gonçalo Tabuada

Let k be a base field of characteristic zero. Given a smooth projective k-scheme
X , let us denote by Z∗(X)Q the Q-vector space of algebraic cycles on X . Fol-
lowing Grothendieck [2] (see also Kleiman [5, 6]), the standard conjecture of type
D, denoted by D(X), asserts that Z∗(X)Q/∼hom = Z∗(X)Q/∼num, where the ho-
mological equivalence relation ∼hom is taken with respect to a classical Weil co-
homology theory. Following Voevodsky [17], the nilpotence conjecture, denoted
by V (X), asserts that Z∗(X)Q/∼nil = Z∗(X)Q/∼num, where ∼nil stands for the
smash-nilpotence equivalence relation introduced in loc. cit. By construction, we
have V (X)⇒ D(X). Thanks to the work of Lieberman [13], the conjecture D(X)
holds when dim(X) ≤ 4 or when X is an abelian variety. In the same vein, thanks
to the work of Kahn-Sebastian [3], Voevodsky [17], and Voisin [18], the conjec-
ture V (X) holds when dim(X) ≤ 2 or when X is an abelian 3-fold. Beyond the
aforementioned cases, the preceding conjectures remain wide open.

A differential graded (=dg) category A is a category enriched over complexes
of k-vector spaces; consult Keller’s ICM survey [4]. Every (dg) k-algebra A gives
naturally rise to a dg category with a single object. Another source of examples
is provided by schemes since the category of perfect complexes perf(X) of every
quasi-compact quasi-separated k-scheme X admits a canonical dg enhancement1

perfdg(X). Following Kontsevich [7, 8, 9], a dg category A is called smooth if it is
compact as a bimodule over itself and proper if

∑
n dimHnA(x, y) <∞ for every

1When X is quasi-projective this dg enhancement is unique; see Lunts-Orlov [14, Thm. 2.12].
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pair of objects (x, y). Examples include the dg categories perdg(X) associated to
smooth proper (quasi-compact quasi-separated) k-schemes X .

Given a smooth proper dg category A, let K0(A)Q be the Q-linearization of the
Grothendieck group of A. Following [1, 16], this Q-vector space comes equipped
with a smash-nilpotence equivalence relation ∼nil, with an homological equivalence
relation ∼hom, and also with a numerical equivalence relation ∼num. Motivated by
the original conjectures of Grothendieck and Voevodsky, we hence introduce the
following (noncommutative) conjectures:

Conjecture Dnc(A): We have K0(A)Q/∼hom = K0(A)Q/∼num.

Conjecture Vnc(A): We have K0(A)Q/∼nil = K0(A)Q/∼num.

Similarly to the commutative case, we have Vnc(A) ⇒ Dnc(A). Our first main
result, whose proof makes use of the recent theory of noncommutative motives
[15], is the following (consult [1, Thm. 1.1] and [16, Thm. 1.1]):

Theorem 1. Given a smooth projective k-scheme X, we have the equivalences of
conjectures D(X)⇔ Dnc(perfdg(X)) and V (X)⇔ Vnc(perfdg(X)).

Roughly speaking, Theorem 1 extends Grothendieck’s standard conjecture of
type D and Voevodsky’s nilpotence conjecture from the realm of schemes to the
broad setting of dg categories. This noncommutative viewpoint enables the proof
of the original conjectures of Grothendieck and Voevodsky in several (new) cases.
Here are some families of examples:

Quadric fibrations. Let S be a smooth projective k-scheme and q : Q → S a
flat quadric fibration of relative dimension d. Recall from Kuznetsov [11, §3] the
construction of the sheaf Cl0(q) of even Clifford algebras associated to q. Our
second main result is the following (consult [1, Thm. 1.2] and [16, Thm. 1.2]):

Theorem 2. We have the following equivalences of conjectures:

D(Q)⇔ Dnc(perfdg(S, Cl0(q))) +D(S) V (Q)⇔ Vnc(perfdg(S, Cl0(q))) + V (S) .

Moreover, when d is even, the discriminant divisor of q is smooth, and dim(S) ≤ 4,
resp. dim(S) ≤ 2, the conjecture D(Q), resp. V (Q), holds.

Homological projective duality. Let V be a finite dimensional k-vector space
and X a smooth projective k-scheme equipped with a map f : X → P(V ); we write
OX(1) for the line bundle f∗OP(V )(1). Assume that the triangulated category
perf(X) admits a Lefschetz decomposition 〈A0,A1(1), . . . ,Ai−1(i−1)〉 with respect
to OX(1) in the sense of Kuznetsov [12, Def. 4.1]. Following [12, Def. 6.1], let
Y → P(V ∗) be the HPD-dual2 of X . Given a generic linear subspace L ⊂ V ∗,
consider the linear sections XL := X ×P(V ) P(L

⊥) and YL := Y ×P(V ∗) P(L). Our
third main result is the following (consult [1, Thm. 1.12] and [16, Thm. 1.4]):

Theorem 3. Let X and Y be as above. Assume that the linear sections XL and
YL are smooth, that codim(XL) = dim(L) and codim(YL) = dim(L⊥), and that

2The HPD-dual Y of X is in general a noncommutative variety in the sense of [10, §2.4].
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the conjecture Dnc(A0,dg), resp. Vnc(A0,dg), holds
3. Under these assumptions, we

have the equivalence of conjectures D(XL)⇔ D(YL), resp. V (XL)⇔ V (YL).

Intuitively speaking, Theorem 3 shows that Grothendieck’s standard conjecture
of type D and Voevodsky’s nilpotence conjecture are invariant under homological
projective duality. All the assumptions of Theorem 3 are known to hold in the case
of linear duality, Veronese-Clifford duality, Grassmannian-Pfaffian duality, spinor
duality, Segre-determinantal duality, etc; consult Kuznetsov’s ICM survey [10] and
the references therein. In the particular case of the Veronese-Clifford duality, we
hence conclude, for example, that the intersection of up to five quadric hyper-
surfaces in an odd-dimensional ambient projective space satisfies Grothendieck’s
standard conjecture of typeD; consult [1, Thm. 1.4]. In the same vein, the intersec-
tion of up to three quadric hypersurfaces in an odd-dimensional ambient projective
space satisfies Voevodsky’s nilpotence conjecture; consult [16, Thm. 1.7].

Stacks. Theorem 1 allows us to easily extend the conjectures of Grothendieck and
Voevodsky from schemes to stacks. Concretely, given a smooth proper Deligne-
Mumford stack X , let D(X ) := Dnc(perfdg(X )) and V (X ) := Vnc(perfdg(X )).
These extended conjectures can be proved, for example, in the case of intersections
of bilinear divisors. Let W be a finite dimensional k-vector space, and X the
associated smooth proper Deligne-Mumford stack (P(W ) × P(W ))/µ2 equipped
with the map X → P(S2W ), ([w1], [w2]) 7→ [w1 ⊗ w2 + w2 ⊗ w1]. Given a generic
linear subspace L ⊂ S2W ∗, the linear section XL corresponds to the intersection
of the dim(L) bilinear divisors in X parametrized by L. Our fourth main result is
the following (consult [16, Thm. 1.10]):

Theorem 4. Assume that dim(W ) is odd and that dim(L) ≤ 5, resp. dim(L) ≤ 3.
Under these assumptions, the conjecture D(XL), resp. V (XL), holds.
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On the standard conjecture of Hodge type for abelian varieties

Giuseppe Ancona

The aim of this talk is to give some new (and very partial) results on a classical
conjecture on algebraic cycles, due to Grothendieck, called standard conjecture
of Hodge type. The text is divided in four sections. In the first two we recall
the conjecture and give the list of known results. In the last two we state our
contribution and give some ideas of its proof.

In what follows k is a base field and (X,L) is a polarized smooth, projective
and geometrically connected variety over k of dimension g. By algebraic cycle we
will mean an algebraic cycle with rational coefficients.

1. The Conjecture

Consider the algebraic cycles of codimension i whose cohomology class belongs
to the primitive cohomology H2i,prim

ℓ (X). Consider on these cycles the numerical
equivalence and let V i(X) be the quotient vector space1. For 2i ≤ g, we can define
a pairing

P : V i(X)× V i(X)→ Q

Z1, Z2 7→ (−1)i · deg(Z1 · Z2 · L
g−2i).

The standard conjecture of Hodge type predicts that this pairing is positive defi-
nite.

1A priori this space (as well as the conjecture) depends on ℓ. When X = A is an abelian
variety the independency of ℓ is known.
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1.1. Known cases. When Grothendieck formulated the conjecture he knew the
following three facts.

(1) The conjecture holds in characteristic zero, as a consequence of the Hodge
Index Theorem.

(2) The conjecture holds for surfaces, by Segre, Hodge et al.
(3) If we know the conjecture for a fiber of a family, then we know it for the

generic fiber, in particular the conjecture is reduced to the case when k is
finite.

To the author’s knowledge the only result in the literature which has been added
to this list since then is a theorem of Milne [1].

2. Milne’s work

Definition 1. Define Li(X) ⊂ V i(X) to be the subspace of cycles that can be
written as linear combinations of intersections of divisors. These cycles are called
Lefschetz classes. Define Ei(X) ⊂ V i(X) to be the subspace orthogonal to Li(X)
with respect to the pairing P . These cycles are called exotic classes.

Theorem 1. (Milne [1]) Let X = A be an abelian variety, then the pairing P
restricted to Li(A) is positive definite.

Thanks to Milne’s result, in order to fully prove the conjecture for abelian
varieties one is reduced to study the pairing P restricted to the space Ei(A).

3. Main result

Theorem 2. Suppose that k is finite and X = A is a simple, ordinary, polarized

abelian variety. Let K be the biggest totally real field inside End(A)Q and K̃ its

Galois closure over Q. If [K̃ : Q] is odd, then (for all integers i and n) the pairing
P restricted to the space Ei(An) is not negative definite.

Some comments on this statement.

• Because of 1.1(3), it is very natural to assume k finite.
• Ordinary abelian varieties form an open dense subset of the moduli space
of all abelian varieties (of given positive characteristic), so this is also a
mild hypothesis.

• Asking that [K̃ : Q] is odd is a very restrictive hypothesis. It implies in
particular that A is of odd dimension.
• It can happen that the space of exotic classes is reduced to zero (in which
case the result of Milne suffices for the conjecture). As soon as this space
is not reduced to zero our theorem produces a new class on which the
pairing P takes positive value.
• There are examples of abelian varieties satisfying our hypothesis and for
which there are (or there should be) some exotic classes. In a 1975 letter
to Masser, Serre gives an example of a nine dimensional ordinary abelian
variety with exotic classes and such that End(A)Q = Q(ζ19), which implies

K̃ = K = Q(ζ19) ∩ R and [K̃ : Q] = 9.
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4. On the strategy

4.1. Milne’s strategy. Suppose that our abelian variety A lifts to a complex

abelian variety Ã and all divisors also lift. Then Milne’s theorem clearly holds

because the intersection products one has to compute can be computed on Ã,
where one can use Hodge Index Theorem.

In general one cannot find such a Ã but (roughly speaking) for each divisor Di

on A one can find, by Honda-Tate, (Ãi, D̃i) over C lifting (A,Di). In order to put

the informations of each D̃i together Milne uses a Tannakian argument.

4.2. Some remarks. If one was able to lift also the exotic classes to C, Milne’s
argument would go through also in this case. For example, he shows that Hodge
conjecture for complex abelian varieties implies the standard conjecture of Hodge
type for abelian varieties. Unfortunately lifting exotic classes seems a problem out
of reach with the present technology.

Our starting point is a simple remark. Hodge Index Theorem is a cohomological
theorem which gives information on all classes of singular cohomology (and not
just algebraic ones). Then understanding how far an algebraic class in H2i

ℓ (A) is
rational (with respect to the rational structure given by the singular cohomology

of Ã) will give informations on the signature of P .

4.3. Our strategy. The idea is to compare two Q-quadratic forms, q1 given by
P on V i(A) and the q2 given by the analogous pairing on the singular cohomology

of Ã. Then one does the following steps.

(1) Compare q1 ⊗ Qp with q2 ⊗ Qp (for each p). When the prime is different
from the characteristic this will be rather formal. For p equal to the
characteristic we will use that A is ordinary.

(2) Compute q2 ⊗ R. This is done via the Hodge Index Theorem.
(3) Write the classical product formula on Hilbert symbols for q1 and q2.

Thanks to the previous steps all the terms in this product are known
except q1 ⊗ R.

(4) To deduce from the product formula that there is at least a vector on
which q1 is positive one will need the odd hypothesis of the theorem.
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On the Chow motive of a 3-fold

Bruno Kahn

Let X be a smooth projective 3-fold over a field k. Assuming the existence of a
Chow-Künneth decomposition for its Chow motive h(X)

h(X) =

6⊕

i=0

hi(X)

we decompose h3(X) further into two parts

h3(X) = t3(X)⊕ h1(J
2)(1)

where J2 is a certain (isogeny class of) abelian variety and t3(X) is the transcen-
dental part of h3(X). This is a higher-dimensional analogue of the transcendental
part of the motive of a surface studied in [2].

The hypothesis on X is satisfied when X is an abelian variety, a complete
intersection in projective space or the product of a curve and a surface.

Let Ab2 be the abelian variety constructed by Murre in [3]: it is the universal
abelian variety receiving a regular morphism from algebraically trivial cycles of
codimension 2 on X . There is a surjection Ab2 −→→ J2, which is an isomorphism
under the generalised Hodge or Tate conjecture for H3(X). (The latter are verified
when X is a product of 3 elliptic curves.)

The main result of the talk is an isomorphism

(1) Griff(X) ≃Malg(L, t3(X)).

Here Griff(X) is the group of numerically trivial cycles of codimension 2 on
X , modulo algebraic equivalence, Malg is the category of pure motives modulo
algebraic equivalence and L is the Lefschetz motive. (Since we work with Q
coefficients, the above isomorphism is to be taken up to isogeny.)

The Bloch-Beilinson–Murre conjectures on filtrations on Chow groups imply
that in fact

M(L, t3(X))
∼
−→Malg(L, t3(X))

whereM is the category of Chow motives. This would imply the following striking
fact: up to isogeny, the subgroup of CH2(X) consisting of cycles algebraically
equivalent to 0 is the image of an idempotent algebraic correspondence.

In the special case X = C ×S, where C is a curve and S is a surface, (1) yields
a surjection (up to isogeny)

T (Sk(C))/T (S) =M(h1(C), t2(S)) −→→Malg(h1(C), t2(S)) = Griff(C × S)

where T (S) is the Albanese kernel of S. This provides a relationship between the
Albanese kernel and the Griffiths group.

Let

S̃
π

//

f

��

S

D



Algebraic K-theory and Motivic Cohomology 1775

be a Lefschetz pencil, with generic fibre Γ. It seems that the methods of [1],
combined with the absolute irreducibility of the monodromy on the vanishing
cohomology ofH1(Γ) imply the following: if k is infinite but finitely generated over
its prime field, there is a thin subset T ⊂ D(k) such that 0 6= ι̃u ∈ Griff(Γu×S) for
u /∈ T , where Γu = f−1(u) and ι̃u is the class of the graph of the closed immersion
ιu : Γu →֒ S, modified by the Chow-Künneth projectors of Γu and S defining
h1(Γu) and t2(S).
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Anabelian geometry with étale homotopy types

Alexander Schmidt

(joint work with Jakob Stix)

Grothendieck’s anabelian philosophy [Gr83] predicts the existence of a class of
anabelian varieties X that are reconstructible from their étale fundamental group
πet
1 (X, x̄). All examples of anabelian varieties known so far are of type K(π, 1),

i.e., their higher étale homotopy groups vanish. For general varieties X , the ho-
motopy theoretic viewpoint suggests to ask the modified question, whether they
are reconstructible from their étale homotopy type Xet instead of only πet

1 (X, x̄).
For varieties X of type K(π, 1) this makes no difference since then Xet is weakly
equivalent to the classifying space Bπet

1 (X, x̄).

Recall that the étale topological type Xet of a scheme X is an object in pro-ss,
the pro-category of simplicial sets. Any geometric point x̄ of X defines a point
x̄et on Xet. If X is locally noetherian, the fundamental group π1(Xet, x̄et) is the
usual (in the sense of [SGA3] X §6) étale fundamental group πet

1 (X, x̄) and the
higher homotopy groups of Xet are the higher étale homotopy groups of X by
definition, cf. [AM69], [Fr82]. Isaksen [Is01] defined a model structure on pro-ss
and we denote the associated homotopy category by Ho(pro-ss). When considered
as an object of Ho(pro-ss), we refer to Xet as the étale homotopy type of X . For a
pro-simplicial set B, we denote the category of morphisms to B in Ho(pro-ss) by
Ho(pro-ss) ↓ B.

For the rest of this talk the letter k always denotes a finitely generated field
extension of Q.
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In the language of étale homotopy theory, the theorem of Mochizuki and Tam-
agawa on the anabelian geometry of hyperbolic curves [Mo99, Ta97] can be refor-
mulated as follows.

Theorem 1 ([SS15], Thm. 1.1). Let X and Y be smooth hyperbolic curves over k.
Then the natural map

Isomk(X,Y ) −→ IsomHo(pro-ss)↓ket
(Xet, Yet)

is bijective.

Theorem 2 below constitutes a first step towards a generalisation of Theorem 1
to higher dimensional varieties.

Theorem 2 ([SS15], Thm. 1.2). Let X and Y be smooth, geometrically connected
varieties over k which can be embedded as locally closed subschemes into a product
of hyperbolic curves over k. Then the natural map

(∗) Isomk(X,Y ) −→ IsomHo(pro-ss)↓ket
(Xet, Yet)

is a split injection with a functorial retraction

r : IsomHo(pro-ss)↓ket
(Xet, Yet) −→ Isomk(X,Y ).

We obtain the following weakly anabelian statement as a trivial corollary.

Corollary 3. Let X and Y be smooth, geometrically connected varieties over k
which can be embedded as locally closed subschemes into a product of hyperbolic
curves over k.

If Xet
∼= Yet in Ho(pro-ss) ↓ ket, then X and Y are isomorphic as k-varieties.

Remark 4. By [Is04], the functor X 7→ Xet from smooth k-schemes to Ho(pro-ss) ↓
ket factors through the A1-homotopy category of Morel and Voevodsky [MV99]. In
particular, it is not faithful. However, this does not affect Theorem 2 since the
schemes occurring there are A1-local.

In order to investigate whether the map (∗) of Theorem 2 is bijective, we may
(by Corollary 3) assume that X = Y and consider the kernel of the retraction r.
A first piece of information is provided by

Theorem 5 ([SS15], Thm. 1.9). Let X be a smooth, geometrically connected va-
riety over k which can be embedded as a locally closed subscheme into a product of
hyperbolic curves over k. Let γ be in the kernel of the retraction map of Theorem 2:

r : AutHo(pro-ss)↓ket
(Xet) −→ Autk(X).

Then the induced automorphism π1(γ) ∈ AutoutGalk
(πet

1 (X)) is class-preserving.

We get more information if X is a strongly hyperbolic Artin neighbourhood :

Definition 6. A strongly hyperbolic Artin neighbourhood is a smooth variety X
over k such that there exists a sequence of morphisms

X = Xn → Xn−1 → · · · → X1 → X0 = Spec(k)

such that for all i
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(i) the morphism Xi → Xi−1 is an elementary fibration into hyperbolic curves,
and

(ii) Xi admits an embedding into a product of hyperbolic curves.

Theorem 7 ([SS15], Thm. 6.2). Let X be a strongly hyperbolic Artin neighbour-
hood over k and let γ ∈ AutHo(pro-ss)↓ket

(Xet) be an automorphism with r(γ) = idX .

Then π1(γ) ∈ AutoutGalk
(πet

1 (X)) is the identity.

Since strongly hyperbolic Artin-neighbourhoods are of type K(π, 1), we can
deduce:

Corollary 8. Let X and Y be strongly hyperbolic Artin neighbourhoods over k.
Then the natural map

Isomk(X,Y ) −→ IsomHo(pro-ss)↓ket
(Xet, Yet) = Isomout

Galk

(
πet
1 (X), πet

1 (Y )
)

is bijective.

We remark that by different techniques Hoshi proves in [Ho14] §3 a statement
similar to Corollary 8 but restricted to dimension ≤ 4. Corollary 8 implies the
following statement predicted by Grothendieck in his letter to Faltings [Gr83]:

Corollary 9. Let X be a smooth, geometrically connected variety over k. Then
every point of X has a basis of Zariski-neighbourhoods consisting of anabelian
varieties, in the sense that k-isomorphisms between any two of these are in bijection
with outer Gk-isomorphisms of their respective étale fundamental groups.
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Motives with modulus

Takao Yamazaki

(joint work with Bruno Kahn, Shuji Saito)

We report our attempt [2] to generalize Voevodsky’s triangulated category DMeff
gm

of mixed motivs over a field [6] in such a way as to emcompass non-homotopy
invariant phenomena. Here a traditional notion of “modulus” plays a central role.
In the first section, we review how the concept of modulus was used in the theories
of generalized Jacobian and Albanese. In the second section, after a brief review
of Voevodsky’s DMeff

gm, we survey our generalization of DMeff
gm “with modulus”.

Throughout, we work over a perfect field k.

1. Modulus in the theory of generalized Jacobian and Albanese

1.1. Generalized Jacobian. Let C be a smooth proper curve over k, D an ef-
fective divisor on it, and x0 a (fixed) k-rational point on C \ |D|. The generalized
Jacobian J(C,D) of C with modulus D is a commutative algebraic group over k
that can be characterized by the universality explained in the next subsection [5].
Its group of k-rational points admits a description

J(C,D)(k) ∼= Div0(C \ |D|)/{div(f) | f ∈ k(C)×D},

where k(C)×D := {f ∈ k(C)× | f ≡ 1 mod D}. The following statemens hold.

• If D = 0, J(C,D) is the classical Jacobian of C (hence an abelian variety).
• If D is reduced, J(C,D) is semi-abelian. The converse holds too.

1.2. Universality. Let G be a commutative algebraic group over k and let f :
C \ |D| → G be a k-morphism. Given E =

∑
i nixi ∈ Div(C \ |D|), we write

f(E) :=
∑

iTrk(xi)/knif(xi) ∈ G(k). A divisor D′ such that |D′| ⊂ |D| is called

a modulus for f if f(div(g)) = 0 holds for any g ∈ k(C)×D′ . There exists the
minimum effective divisor Mod(f) that is a modulus for f . For example, one has
Mod(f) = 0 if f can be extended to a morphism C → G. Thus, if G is an abelian
variety, one always has Mod(f) = 0. Similarly, if G is semi-abelian, Mod(f) is
always reduced. If G is not semi-abelian, Mod(f) can be non-reduced in general.

Now we can state the universality. The generalized Jacobian J(C,D) comes
equipped with a k-morphism ι : C \ |D| → J(C,D) such that ι(x0) = 0 and
Mod(f) ≤ D. (On rational points, ι simply sends x to the class of x − x0.) Any
k-morphism f : C \ |D| → G with f(x0) = 0 and Mod(f) ≤ D uniquely factors as
f = g ◦ ι for some morphism g : J(C,D)→ G of commutative algebraic groups.

1.3. Generalized Albanese. In a series of papers published in 2008–2013 (see
[4] and references therein), Kato and Russell generalized this theory to higher
dimensional varieties. Indeed, everything stated in the previous subsection remains
true when C is replaced by any smooth projective variety, except that the definition
of Mod(f) should be replaced by a new, much more involved one. Note that for
semi-abelian varieties (corresponding to the case of reduced D) this is already
established in 1958 by Serre, and of course for abelian varieties (correspoinding to
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the case D = 0) it goes back further to the classical theory of Albanese varieties.
Nevertheless a generalization to non-reduced D has emerged only in 21st century.

2. Motives with modulus

2.1. Voevodsky’s motive and generalized Jacobian. Voevodsky’s definition
of DMeff

gm is, against expectations, rather simple. We first introduce a category
Cor of finite correspondences. It is an additive category having the same objects
as Sm (the category of smooth varieties) and finite correspondences as morphisms.

Then DMeff
gm is defined to be the pseudo-abelian envelope of the localization of the

homotopy category of bounded complexes Kb(Cor) by two relations arising from
Nisnevich Mayer-Vietoris and homotopy invariance. For each X ∈ Sm, there is
an object M(X) ∈ DMeff

gm called the motive of X . Let X,Y ∈ Sm and assume
that X is proper and equidimensional of dimension d. Then one has

HomDMeff
gm
(M(Y ),M(X)[−j]) ∼= CHd(X × Y, j).

This is one of the most important properties of Voevodsky’s category DMeff
gm.

A contravariant functor fromCor toAb that is a sheaf for Nisnevich topology is
called a Nisnevich sheaf with transfers. They form an abelian category NST. The
Yoneda functor induces a full faithful functor i : DMeff

gm → D(NST). A Nisnevich

sheaf with transfers F is said to be homotopy invariant if F (X) ∼= F (X × A1)

for any smooth variety X . For any K ∈ DMeff
gm, all homology sheaves of i(K)

are homotopy invariant. Now let us consider a smooth proper connected curve C
having a k-rational point, and a non-empty effective reduced divisor D on it. Then
one has i(M(C \ |D|)) ∼= (J(C,D) ⊕ Z)[0], where J(C,D) is identified with the
Nisnevich sheaf with transfers represented by it. Since a commutative algebraic
group (regarded as an object of NST) is homotopy invariant if and only if it is

semi-abelian, J(C,D) belongs to DMeff
gm if and only if D is reduced.

2.2. Motives with modulus. We construct our “modulus versions” of categories
Sm, Cor, DMeff

gm and NST, which are denoted by MSm, MCor, MDMeff
gm and

MNST. An object (X,D) of MSm is called a modulus pair and consists of a
locally integral k-variety X and an effective Cartier divisor D such that X \ |D| ∈
Sm. Starting from this category, we develop construction of categories MCor,
MDMeff

gm, MNST and of functors M : MSm → MDMeff
gm, i : MDMeff

gm →
D(MNST). Roughly speaking it is done by following Voevodsky’s strategy, but
largely different in details, for which we refer the readers to [2].

The functor ω : MSm → Sm, ω(X,D) = X \ |D| induces ωgm : MDMeff
gm →

DMeff
gm and ω! : D(MNST) → D(NST). They provide us with a very useful

relation of our categories with Voevodsky’s. They are also important ingredients
in the proof of the following result: Let X be a smooth proper and equidimensional
variety of dimension d, and let (Y,E) be any modulus pair. Then one has

HomMDMeff
gm
(M(Y,E),M(X, 0)[−j]) ∼= CHd(X × (Y \ |E|), j).
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It is an important open question to generalize this formula to the case of non-
trivial divisor on X . We expect it should be described by Binda-Saito’s higher
Chow group with modulus [1].

Now let us consider a smooth proper connected curve C having a k-rational
point, and a non-reduced effective divisorD on it. We expect that ω!i(M(C,D)) ∼=
(J(C,D) ⊕ Z)[0]. Unfortunately we are unable to prove this statement, but
an evidence is given in [3]. A more challenging open problem is to describe
i(M(C,D)) ∈ D(MNST) as a complex of MNST.
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Zeta-values of arithmetic schemes

Baptiste Morin

(joint work with Matthias Flach)

1. Philosophy

This talk is based on the preprint [2]. We conjecture that on the category of
arithmetic schemes (separated schemes of finite type over the integers), there exist
two cohomologies with compact support:

Weil-Arakelov cohomology with compact support: RΓar,c(−, A(n)) with values
in the bounded derived category Db(LCA) of the quasi-abelian category LCA of
locally compact abelian groups [5], for any A ∈ LCA of finite ranks and any n ∈ Z;

Weil-étale cohomology with compact support: RΓW,c(−,Z(n)) with values in the
bounded derived category Db(Ab) of abelian groups, for any n ∈ Z;

such that the following properties hold.

(1) RΓW,c(X ,Z(n)) is a perfect complex of abelian groups for any X , n.
(2) RΓar,c(X ,R(n)) is a perfect complex of R-vector spaces for any X , n.

(3) There is a fundamental class θ ∈ H1(Spec(Z),R(0)) such that

· · ·
∪θ
−→ Hi

ar,c(X ,R(n))
∪θ
−→ Hi+1

ar,c(X ,R(n))
∪θ
−→ · · ·

is an acyclic complex.
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(4) Weil-Arakelov cohomology is exact with respect to coefficients: for exam-
ple we have an exact triangle

RΓar,c(X ,Z(n))→ RΓar,c(X ,R(n))→ RΓar,c(X ,R/Z(n))→

(5) There is a natural transformation RΓar,c(−,Z(n))→ RΓW,c(−,Z(n)) such
that, for X/Z proper and regular, we have an exact triangle

RΓdR(XR/R)/F
n[−2]→ RΓar,c(X ,Z(n))→ RΓW,c(X ,Z(n))→

(6) For X/Z proper regular of pure dimension d, there is a perfect pairing of
locally compact abelian groups

Hi
ar(X , A(n))×H

2d+1−i
ar (X , AD(d− n))→ H2d+1

ar (X ,R/Z(d))→ R/Z

where AD := Hom(A,R/Z) is the Pontryagin dual, and a quasi-isomor-
phism of perfect complexes of abelian groups

RΓW (X ,Z(n))
∼
−→ RHom(RΓW (X ,Z(d− n)),Z[−2d− 1]).

(7) For X/Z proper regular, there is an isomorphism (induced by generalized
versions of (5) and (6))

RΓar,c(X ,R/Z(n)) ≃ RΓW,c(X ,Z(n)) ⊗
L R/Z.

(8) The vanishing order of the zeta function at s = n is given by

ords=nζ(X , s) =
∑

i∈Z

(−1)i · i · dimRH
i
ar,c(X ,R(n)).

(9) The special value ζ∗(X , n) at s = n is given up to sign by

λX,n(ζ
∗(X , n)−1 · c(X , n) · Z) = ∆(X/Z, n)

where ∆(X/Z, n) := (detZRΓW,c(X ,Z(n)))⊗Z (detZRΓdR(X/Z)/Fn), the
isomorphism λX ,n : R ≃ ∆(X/Z, n)⊗R is defined below and c(X , n) ∈ Q∗

is an explicit non-zero rational number, such that c(X , n) = 1 if n ≤ 0 and
c(X , n) = 1 if X has characteristic p.

The trivialization λX ,n is defined as follows. For C ∈ Db(LCA) of finite ranks
we consider its tangent complex T∞C := RHom(RHom(C,R/Z),R). Property (4)
above and the fact that T∞ is triangulated gives an exact triangle

T∞RΓar,c(X ,Z(n))→ T∞RΓar,c(X ,R(n))→ T∞RΓar,c(X ,R/Z(n))→

By properties (5), (2) and (7), this triangle can be identified with

RΓdR(XR/R)/F
n[−2]→ RΓar,c(X ,R(n))→ RΓW,c(X ,Z(n))R →

The map λX ,n is the following composition of isomorphisms:

λX ,n : R
∼
−→ detRRΓar,c(X ,R(n))

∼
−→ (detRRΓW,c(X ,Z(n))R)⊗R (detRRΓdR(XR/R)/F

n)
∼
−→ ∆(X/Z, n)R

where the first isomorphism is induced by the acyclic complex of Property (3) and
the second isomorphism is given by the last exact triangle above. Properties (1)-
(9) extend to arbitrary n ∈ Z the conjectural picture suggested by Lichtenbaum
in [6] for n = 0.



1782 Oberwolfach Report 31/2016

We now briefly explain a connexion with Deninger’s program [1]. Recall that
C. Deninger conjectured the existence of a cohomology theory X 7→ Hi

c(X , C) on
the category of arithmetic schemes, which takes values in ∞-dimensional C-vector
spaces with an endomorphism Θ, such that for X of dimension d, we have

ζ(X , s) =
i=2d∏

i=0

det∞

(
s−Θ

2π
| Hi

c(X , C)

)(−1)i+1

where det∞ is a zeta-regularized determinant. We expect a long exact sequence

· · · → Hi
ar,c(X ,C(n))→ Hi

c(X , C)
n−Θ
2π−→ Hi

c(X , C)→ Hi+1
ar,c(X ,C(n))→ · · ·

such that ∪θ : Hi
ar,c(X ,C(n))→ Hi+1

ar,c(X ,C(n)) coincides with the composite map

Hi
ar,c(X ,C(n))→ Ker(n−Θ) →֒ Hi

c(X , C)→ Coker(n−Θ)→ Hi+1
ar,c(X ,C(n)).

Moreover we expect semi-simplicity in the sense that Ker(n− Θ) →֒ Hi
c(X , C) →

Coker(n−Θ) is an isomorphism. This would explain the vanishing order conjecture
(8) and would identify λX ,n ⊗ C with an isomorphism

C
∼
−→

⊗

i

det
(−1)i

C [Hi
c(X , C)

n−Θ
2π−→ Hi

c(X , C)]
∼
−→ ∆(X/Z, n)C

where the first isomorphism is induced by semi-simplicity.

2. A conditional result

Let X/Z be a proper regular arithmetic scheme of pure dimension d. For n ≥ 0,
we denote by Z(n) := zn(−, 2n− ∗) Bloch’s cycle complex of sheaves on the étale
site Xet. For n < 0, we set Z(n) :=

⊕
p jp,!colimµ⊗n

pr [−1], where p runs over the

set of prime numbers and jp : X [1/p]→ X is the open immersion. We also denote

by Z(n) the extension of the motivic complex to the Artin-Verdier étale topos X et

defined in ([2] App. A). We set RΓdR(X/Z)/Fn := RΓ(XZar, LΩ
∗
X/Z/F

n) where

LΩ∗
X/Z denotes Illusie’s derived de Rham complex. We need the following

Conjecture AV(X , n). There is a perfect pairing of finite groups

Hi(X et,Z/m(n))×H2d+1−i(X et,Z/m(d− n))→ H2d+1(X et,Z/m(d))→ Q/Z.

Conjecture L(X , n). Hi(X et,Z(n)) is finitely generated for any i ≤ 2n+ 1.

Conjecture B(X , n). The pairing

Hi
c(X ,R(n)) ×H

2d−i(X ,R(d− n))→ H2d
c (X ,R(d))→ R

is a perfect pairing of finite dimensional R-vector spaces. Here Hi
c(X ,R(n)) de-

notes the cohomology of the mapping fiber of the regulator map.
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Theorem. Let X/Z be a proper regular scheme of pure dimension d and let n ∈ Z.
If X satisfies AV(X , n), L(X , n), L(X , d − n) and B(X , n) then there exist Weil-
Arakelov complexes RΓar,c(X , A(n)) and RΓar(X , A(n)) for A = Z,R,R/Z and

Weil-étale complexes RΓW,c(X ,Z(n)) and RΓW (X ,Z(n)), such that:

• Properties (1)–(7) hold.
• (8) is equivalent to Soulé’s conjecture [7].
• If X has characteristic p, then (9) is equivalent to the Milne-Lichtenbaum-
Geisser conjecture [4].
• If X is smooth proper over a number ring OF , then (9) is compatible with
the Bloch-Kato conjecture [3] for the L-function L(⊕ih

i(XF )(n)[−i], s).

In particular, (1)–(8) hold for X/Z proper regular of dimension ≤ 1. If F/Q
is an abelian number field, then (9) holds for X = Spec(OF ) and any n ∈ Z, and
one has c(X , n) = (n− 1)!−[F :Q] for n ≥ 1.
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Cyclic homology and rigid cohomology

Guillermo Cortiñas

(joint work with Joachim Cuntz, Ralf Meyer, Georg Tamme)

The problem of defining a cohomology theory with good properties for an alge-
braic variety over a field k of non-zero characteristic has a long history. In the
breakthrough paper [8] by Monsky and Washnitzer, such a theory for smooth
affine varieties was constructed as follows. Take a complete discrete valuation
ring V with uniformizer π and residue field k = V/πV (for example, V the Witt
ringW (k) if k is perfect). Let K be the fraction field of V . Choose a V -algebra R
which is a lift mod π of the coordinate ring of the variety and which is smooth
over V (such a lift exists by [4]). Monsky–Washnitzer then introduce the ‘weak’
or dagger-completion R† of R and define their cohomology as the de Rham co-
homology of R† ⊗V K. The construction of a weak completion has become a
basis for the definition of cohomology theories in this context ever since. The
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Monsky–Washnitzer theory has been generalized by Berthelot [1] to “rigid coho-
mology,” which represents a satisfactory cohomology theory for general varieties
and schemes over k.

With the advent of cyclic homology around 1980 it was immediately realized
that this represents a new approach to de Rham theory. Periodic cyclic homology
is defined for arbitrary non-commutative algebras over a field K of characteristic 0,
but when specialized to the coordinate ring of a smooth variety (say over C), it
reproduces de Rham theory, see [2],[5], [6]. More generally, it naturally gives
the infinitesimal cohomology, in the sense of Grothendieck, for an arbitrary affine
variety [5].

Our aim in this project is to develop a version of periodic cyclic theory that
reproduces Berthelot’s rigid cohomology for commutative algebras, but which is
defined also for non-commutative V -algebras. One starting point is the fact that
already in the classical case in characteristic 0 it was found that a natural frame-
work for periodic cyclic homology consists of bornological algebras, see [7]. One
of our first results shows that R† ⊗V K is a special case of a bornological I -adic
completion of R ⊗V K for an ideal I in R. We use Große-Klönne’s description of
Berthelot’s theory to show that in general such bornological I -adic completions
can be used very naturally to associate a complete bornological K -algebra B to
a given k -algebra A, where K is the quotient field of V , such that the de Rham
theory of B gives the rigid cohomology of A. However, to get the analogue of
infinitesimal cohomology, we must consider inverse systems representing an ‘infin-
itesimal neighbourhood’ of an embedding of B into a smooth algebra. This leads
to the use of pro-algebras. Accordingly, we have to use the periodic cyclic homol-
ogy theory developed in [3] for pro-algebras over K, in order to compare periodic
cyclic homology for an arbitrary affine variety over k to its rigid cohomology.

Our main result describes rigid cohomology in terms of cyclic homology, as fol-
lows. Given a commutative k -algebra A of finite type, write it as a quotient R/J ,
where R is a smooth (for example, free commutative) V -algebra. Then the rigid

cohomology of A is the periodic cyclic homology of the pro-algebra R̃∞ (this no-
tation here is preliminary) defined by the bornological Jm -adic completions of R.

We do this by comparing the cyclic homology of R̃∞ to its de Rham cohomology.

The de Rham cohomology of R̃∞ recovers the rigid cohomology of A. This de-
scription of H∗

rig(A) is in some sense analogous to Grothendieck’s definition of the
infinitesimal cohomology of a variety in characteristic 0. However, our definition
remains less natural than the description of infinitesimal cohomology via periodic
cyclic theory in characteristic 0. This suggests that we may not have the ultimate
result.
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On descending cohomology geometrically

Charles Vial

(joint work with Jeffrey Achter and Sebastian Casalaina-Martin)

Recall that, for a smooth complex projective variety X , the intermediate Jacobian
is a complex torus defined by

J2n+1(X) := Fn+1H2n+1(X,C)\H2n+1(X,C)/H2n+1(X,Z),

where F • denotes the Hodge filtration, and that there is an Abel–Jacobi map

Ker
(
CHn(X)→ H2n(X,Z)

)
−→ J2n+1(X).

A choice of polarization on X induces a polarization on the Hodge structure H :=
H2n+1(X,Z). In the case where H has Hodge level 1, i.e., H ⊗Z C = Hn+1,n ⊕
Hn,n+1, the well-known equivalence of categories between the category of polarized
Z-Hodge structures such that H ⊗Z C = H1,0⊕H0,1 and the category of polarized
complex abelian varieties shows that J2n+1(X) is in fact a complex abelian variety.
At Joe Harris’ 60-th birthday conference, Barry Mazur [5] posed the following :

Question 1. Let X be a smooth projective variety defined over a subfield K ⊆ C,
and let XC denote the base-change of X to the field of complex numbers. Assume
that H2n+1(X(C),Z) has Hodge level 1. Does the abelian variety J2n+1(XC) admit
a model over K ?

As pointed out by Mazur, this question can be traced back at least to [4], where
Deligne gave a positive answer to that question for complete intersectionsX of odd
dimension 2n+ 1 and of Hodge level 1, thereby establishing the Weil conjectures
for such X . (Of course, Deligne established the Weil conjectures in full generality
not long after.) Deligne proceeded with a proof using the universal family, which
consisted in using the irreducibility of the monodromy action on H2n+1(X(C),Q)
and on H2n+1(X(C),Z/ℓ) for all primes ℓ. It turns out that for such X , one can in
fact prove that H2n+1(X(C),Q) is supported in codimension n, or in other words
that H2n+1(X(C),Q) has geometric coniveau n. The geometric coniveau filtration



1786 Oberwolfach Report 31/2016

is defined by :

Nν Hi(X(C),Q) :=
∑

Z⊆X
closed, codim ≥ν

Ker
(
Hi(X(C),Q)→ Hi((X\Z)(C),Q)

)
.

Resolution of singularities and the formalism of Deligne’s mixed Hodge structures
show, in particular, that Nn H2n+1(X(C),Q) is a Hodge structure of Hodge level 1.
Note that the generalized Hodge conjecture predicts that Nn H2n+1(X(C),Q)
should be the largest sub-Hodge structure of H2n+1(X(C),Q) of Hodge level 1.
The Hodge structure Nn H2n+1(X(C),Q) can also be characterized in terms of the
Abel–Jacobi map. Define the algebraic intermediate Jacobian J2n+1

a (XC) to be the
complex torus that is the image of the Abel–Jacobi map restricted to algebraically
trivial cycles

AJ : An+1(XC)→ J2n+1(XC).

Then H1(J2n+1
a (XC),Q) is naturally isomorphic to Nn H2n+1(X(C),Q(n)) as Hodge

structures, and AJ is surjective if and only if H2n+1(X,Q) has geometric coniveau n.
One is thus led to ask the following alternative question :

Question 2. Given a smooth projective variety X defined over a subfield K ⊆
C, does the algebraic intermediate Jacobian J2n+1

a (XC) admit a model J over
K ? In terms of Galois representations, which was also a motivation for Mazur’s
question, do there exist an abelian variety J overK and an isomorphism of Galois-
representations Nn H2n+1

ét (XK̄ ,Qℓ(n)) ∼= H1
ét(JK̄ ,Qℓ) ?

In forthcoming work [2], we provide an affirmative answer to Question 2, and as
a corollary, give an alternate proof to Deligne’s theorem on complete intersections
of Hodge level 1.

However, two non-isomorphic abelian varieties over K may become isomorphic
after base-change of field. We therefore ask the more precise :

Question 3. Does J2n+1
a (XC) admit a distinguished model J over K, in the sense

that the Abel–Jacobi map

AJ : An+1(XC)→ J(C)

is Aut(C/K)-equivariant ?

The Picard scheme and the Albanese scheme classically give a positive answer
for codimension-1 cycles and for dimension-0 cycles, respectively. In [1], we use
Murre’s work [6] on algebraic representatives for codimension-2 cycles on smooth
projective varieties defined over algebraically closed fields to give a positive answer
for codimension-2 cycles :

Theorem. LetX be a smooth projective variety over a fieldK ⊆ C. The algebraic
intermediate Jacobian J3

a(XC) has a distinguished model J over K. Moreover,
there is a correspondence γ on J ×K X inducing for all primes ℓ a split injective
morphism of Galois-representations H1

ét(JK̄ ,Qℓ) →֒ H3
ét(XK̄ ,Qℓ(1)) with image

N1 H3
ét(XK̄ ,Qℓ(1)), and with splitting induced by a correspondence γ′ on X×K J .
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In categorical terms, we also establish that there exist an abelian variety J over
K such that JC ∼= J2n+1

a (XC) and a natural transformation of contravariant func-
tors, extending the Abel–Jacobi map AJ : An+1(XC) → J(C), from the functor,
defined on smooth integral schemes over K, T 7→ An+1(X ×K T ) to the functor
T 7→ J(T ). An important aspect of our proof, which we will come back to in
[3], consists in exhibiting suitable parameter spaces for algebraically trivial cycles.
Precisely, we prove and use the following :

Proposition. Let X be a smooth projective variety defined over a perfect field
K and consider an algebraically trivial cycle class α ∈ An+1(XK̄). Then there
exist an abelian variety A over K, a cycle class Z ∈ CHn+1(A×K X), and a pair
of K̄-points t0, t1 ∈ A(K̄), such that α = Zt1 − Zt0 . (Here, Zti denotes the Gysin
fiber of Z over ti pushed forward to XK̄ .)
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Étale duality for p-torsion sheaves on semistable schemes over Fq[[t]]

Yigeng Zhao

1. Motivation

Let K be a local field, i.e., a complete discrete valuation field of characteristic
p > 0, let OK be its ring of integers, let k be its residue field, and let νK be its
valuation. We fix a uniformizer π ∈ OK . Recall that in local class field theory, we
have the following theorem:

Theorem.(Artin-Schreier-Witt) There is a perfect pairing of topological groups,
that we call the Artin-Schreier-Witt symbol

Wn(K)/(1− F )Wn(K)×K×/(K×)p
n

−→ Z/pnZ(1)

(a, b) 7→ [a, b) := (b, L/K)(α)− α

where (1 − F )(α) = a, for some α ∈ Wn(K
sep), L = K(α), (b, L/K) is the norm

residue of b in L/K, and the topological structure on the first term is discrete, on
the second term is induced from K×.
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Moreover, on both Wn(K) and K×, we have filtrations:

filmWn(K) := {(an−1, . . . , a0) ∈Wn(K)|piνK(ai) ≥ m};

K× ⊃ O×
K =: U0

K ⊃ U
m
K := {x ∈ O×

K |x
∼= 1modπm}.

Theorem. ([1])With respect to the Artin-Schreier-Witt symbol (1), the orthogonal
complement of film−1H

1(K,Z/pnZ) is Um
K · (K

×)p
n

/(K×)p
n

, for any m ≥ 1.

We want to generalize those results to higher dimensional regular schemes.

2. Main results

Let X → Spec(Fq[[t]]) be a projective strictly semistable scheme of relative di-
mension d, and let i : Xs →֒ X be its special fiber. Let D be an effective Cartier
divisor on X such that Supp(D) has simple normal crossing, and let j : U →֒ X
be its open complement.

Definition. We define WnΩ
r
X|D,log ⊂ j∗WnΩ

r
U,log be the subsheaf étale locally

generated by the symbols d[x1]n
[x1]n

· · · d[xr]n
[xr]n

, where x1 ∈ 1 +OX(−D) and xi ∈ j∗OU

for all i.

If D1 ≥ D2, then WnΩ
r
X|D1,log

⊂ WnΩ
r
X|D1,log

. Under this order, we obtain a

pro-system “ lim
←−D

”WmΩr
X|D,log, where D runs over the subset of effective divisor

of X such that Supp(D) has simple normal crossing and is contained in X − U .
Our main theorem is:

Main Theorem.([4]) Let X → Spec(Fq[[t]]) be as above. Then there is a perfect
pairing of topological Z/pnZ-modules

Hi(U,WnΩ
r
U,log)×lim←−

D

Hd+2−i
Xs

(X,WnΩ
d+1−r
X|D,log)→ Hd+2

Xs
(X,WnΩ

d+1
X,log)

Tr
−→ Z/pnZ,

where the first term is endowed with the discrete topology, and the second term is
endowed with the profinite topology.

The trace morphism in the above theorem is given by the following purity

result and Moser-Sato trace map[2, 3] for νdn,Xs
:= Ker(⊕x∈X0

s
i∗xWnΩ

d
x,log

∂
−→

⊕x∈X1
s
i∗xWnΩ

d−1
x,log), where ∂ is the Kato residue map on logarithmic de Rham-

Witt sheaves.

Theorem(Purity). There is a canonical isomorphism

Gyslogi,n : νdn,Xs
[−1]

∼=−−−−−→ Ri!WnΩ
d+1
X,log

in D+(Xs,Z/p
nZ).

We denote this pairing in our Main Theorem as < ·, · >.
For any χ ∈ Hi(U,WnΩ

r
U,log), we define the higher Artin conductor

ar(χ) := min{D | < χ, · > factors through Hd+2−i
Xs

(X,WnΩ
d+1−r
X|D,log)},
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Then we define

FilDH
i(U,WnΩ

r
U,log) := {χ ∈ H

i(U,WnΩ
r
U,log)| ar(χ) ≤ D},

and

πab
1 (X,D)/pn := Hom(FilDH

1(U,Z/pnZ),Q/Z)

endowed with the usual profinite topology of the dual.
The quotient πab

1 (X,D)/pn classifies abelian étale coverings of U of degree pn

with ramification bounded by the divisor D.

3. Application

Let X = B = SpecFq[[t]], let D = Xs = (t) be the unique closed point. Then
U = Spec(Fq((t))). We denote mD := m(t) for any m ∈ N. Our Main Theorem
in this setting is:

Hi(K,WnΩ
r
K,log)× lim

←−
m

H2−i
Xs

(B,WnΩ
1−j
B|mD,log)→ Z/pnZ

is a perfect pairing of topological abelian groups.
In particular, if i = 1, j = 0. We are back to the Artin-Schreier-Witt symbol.

Proposition. For m ≥ 1, we have

FilmDH
1(K,Z/pnZ) = film−1H

1(K,Z/pnZ),

i.e., Our new filtration is same as the Brylinski-Kato filtration.
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K-theory for non-archimedean algebras and spaces

Georg Tamme

(joint work with Moritz Kerz, Shuji Saito)

LetK be a complete discretely valued field with ring of integersOK , uniformizer π,
and residue field k.

1. Motivation

Let X/OK be a smooth proper scheme. Denote by Xn := X ⊗OK OK/(π
n) the

infinitesimal thickenings of the special fibre Xk, by X := X⊗OKK the generic fibre
of X , and by Xrig its associated rigid analytic space. By definition, the continuous
K-theory of X is the pro-spectrum Kcont(X ) := {K(Xn)}n∈N ∈ Pro(Sp). The
study of the comparison map K(X ) → Kcont(X ) plays an important role in the
strategy to attack Grothendieck’s variational Hodge conjecture and its variants
proposed by Bloch, Esnault, and Kerz [1, 2]. Our goal here is to understand ‘the
generic fibre’ of this comparison map. More precisely, we want to construct a
version of K-theory for the rigid space Xrig which fits in a homotopy cartesian
square

K(X )

��

// Kcont(X )

��

K(X) // K-theory of Xrig.

2. Constructions

We first define a K-theory for affinoid algebras, and then globalize it to all rigid
spaces. Let A be an affinoid K-algebra. For an integer j define

A〈x〉πj := {
∑

i

aix
i ∈ A[[x]] | aiπ

ij → 0 for i→∞},

the algebra of power series with coefficients in A converging on a closed disk of
radius |π−j |. Set A〈∆n〉πj := A〈x0, . . . , xn〉πj/(x0 + · · · + xn − 1). For varying
n these assemble into a simplicial ring A〈∆•〉πj . For each j, the classifying space
of the simplicial group GL(A〈∆•〉πj ) is the infinite loop space of a connective
spectrum which we denote by KV (j)(A).

Remark. The homotopy groups of the spectrum KV (0)(A) are the K-groups of
the Banach algebra A defined by Karoubi-Villamayor [3].

For varying j we get a pro-spectrum KV an(A) := {KV (j)(A)}j∈N called an-
alytic KV -theory. In order to globalize to all rigid spaces, we need a descent
result for affinoid coverings. It turns out that one needs a non-connective variant
of analytic KV -theory to achieve this. We construct this using an analog of the
classical Bass construction, replacing (Laurent) polynomial rings by rings of con-
vergent power series A〈x〉1 and A〈x, x−1〉1. The resulting pro-spectrum KHan(A)
is called analytic KH-theory.



Algebraic K-theory and Motivic Cohomology 1791

3. Results

In this section we assume that the characteristic of k is 0.

Theorem 1. Let A0 be an algebra of topologically finite type over OK and assume
that A := A0 ⊗OK K is regular. Then there is a homotopy cartesian square

KB(A0) //

��

KB,cont(A0)

��

KB(A) // KHan(A)

in Pro(Sp+).

Here KB is the non-connective Bass K-theory introduced by Thomason-Tro-
baugh [5] and KB,cont is defined similarly as before. Pro(Sp+) is the category of
pro-objects of bounded above spectra. It is a localization of Pro(Sp).

Theorem 2. The functor KHan : (affinoid algebras)→ Pro(Sp+) satisfies descent
for affinoid coverings.

The second theorem allows us to extend analytic KH-theory to all rigid spaces.
Theorem 1 shows that the resulting theory fits in the desired homotopy cartesian
square.

The proofs of these results use pro-cdh descent [4], Weibel’s K-dimension con-
jecture, and resolution of singularities. This is where we need the characteristic 0
assumption.
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Homotopy t-structure and effectivity

Frédéric Déglise

(joint work with Mikhail Bondarko)

1. Introduction

In this talk, I have presented a work in collaboration with Mikhail Bondarko in
the context of relative motives.

Voevodsky’s theory of motivic complexes, over a perfect field, first comes as a
category of effective objects in which the Tate twist is non invertible for the tensor
product. On the other hand, it is equipped with a canonical t-structure called the
homotopy t-structure. This t-structure allows us to have a deeper understanding
of motivic complexes, in particular in the case of curves. The t-structure can
be extended to the non effective case, but then its properties are less strong; in
particular, geometric motives are not bounded for sure.

The work done in collaboration with Bondarko aims at extending the notion of
effectivity to the case of motives relative to an arbitrary base. Though candidates
for this notion already exist, they do not satisfy good functorial properties. We
define a notion of effective motives over an arbitrary base scheme S as a full
subcategory of the category motives over S. The definition allows us to control
the behaviour of these motives under the six operations constructed in the stable
case along the lines of Ayoub.

Then we are able to extend the definition of Voevodsky’s t-structure to these
effective motives, and obtain an extension of certain good properties proved by
Voevodsky over a field to the case of an arbitrary base. Besides, this new homotopy
t-structure shares good similar properties to that of perverse sheaves, extending
the work of Ayoub on the perverse homotopy t-structure (cf. [Ayo07]).

2. Effective motives and dimension functions

For a base scheme S (excellent noetherian finite dimensional scheme), we let
DM(S) be the triangulated category of mixed motives with rational coefficients
(cf. [CD12]) or, if S is an F-scheme for F a prime field of exponential characteristic
p, with Z[1/p]-coefficients (cf. [CD15]). We will use a special motive associated
with a separated S-scheme of finite type type f : X → S, called the Borel-Moore
motive of X/S:

MBM (X/S) := f!(1X),

where 1X is the constant motive over X .
Our main tool to define effective motives is that of a dimension function1 δ :

S → Z over the scheme S. Once such a dimension function is chosen, the definition
goes on as follows.

1see [ILO14, chap. 2], or [BD15, 1.1] for recall;
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Definition 1. (cf. [BD15, Def. 2.2.1]) We define the category of δ-effective
motives over S, denoted by DM δ−eff (S), as the localizing triangulated subcategory
of DM(S) generated by motives of the form M(X/S)(n) for any separated S-
scheme X of finite type and any integer n ≥ δ(X).2

Example 2. When S = Spec(k) is the spectrum of a perfect field, and δ = 0 is the
obvious dimension funtion, we get that DM δ−eff (k) is equivalent to Voevodsky’s
category of (unbounded) motivic complexes (cf. [BD15, Ex. 2.3.12]).

The category of δ-effective motives satisfies good functorial properties:

(1) Given a closed immersion i with complementary open immersion j, it is
stable under the functors i∗, i∗ = i!, j!, j

∗ = j!. In particular, the 2-
functor DM δ−eff satisfies the so-called localization property (cf. [BD15,
Cor. 2.2.10]).

(2) More generally, it is stable under the functor f! (resp. f
∗(d)) where f is

a separated morphism of finite type (resp. any morphism of finite type
whose dimension of fibers is bounded by d) (cf. [BD15, Cor. 2.2.6]).

3. The δ-homotopy t-structure in the effective case

The triangulated category DM(S), as well as DM δ−eff (S) defined above, is com-
pactly generated. It is well known that one can define t-structure on these type
of triangulated categories T by choosing homologically positive objects3, as a full
sub-category of T which is stable under direct sums, positive shift and exten-
sions (see [BD15, §1.1] for recall). After Keller and Vossieck, we will call such a
sub-category an aisle of T .

Definition 3. Let S be a scheme equipped with a dimension function δ.
One defines the δ-homotopy t-structure on DM δ−eff (S) as the unique one such

that the (homologically) positive objects are the smallest aisle containing motives
of the form: MBM (X/S)(δ(X)+n)[2δ(X)+n] for any separated S-scheme X and
any integer n ≥ 0.

Example 4. In the condition of the example in the previous section, the δ-
homotopy t-structure on DM δ−eff (k) coincides with Voevodsky’s homotopy t-
structure.

The δ-homotopy t-structure has good functorial properties; we refer the reader
to the introduction of [BD15] for details. We are able to prove these properties as
we can control the homology with respect to this t-structure by the following tool.

Definition 5. Let M be a δ-effective motive over S and i ∈ Z an integer. Given a
couple (x, n) where x ∈ S(E) is a point with values in a field E (finitely generated

2The notation δ(X), for any pro-étale S-scheme stands for the maximum of the integers
tr.deg.

(

κ(x)/κ(x)
)

where x runs over the points of X and s is the projection of X to S.
3Our conventions for t-structure will be homological;
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over S) and n ≤ 0 an integer, we define the δ-homology at (x, n) with coefficients
in M as follows:

Ĥi(M)(x, n) := lim
−→
X

[Hom
(
MBM (X/S)(δ(X)− n)[2δ(X)− n+ i],M

)
]

where X = Spec(A) runs over S-models of x.4 We look at Ĥi(M) as a functor on
the discrete category whose objects are the couples (x, n) as above.

Our main theorem is the following one.

Theorem 1. ([BD15, Th. 3.3.1]) Under the notations of the previous definition,
the following conditions on a δ-effective motive M over S are equivalent:

(i) M is positive (resp. negative) for the δ-homotopy t-structure;

(ii) for any integer i ≤ 0 (resp. i ≥ 0), Ĥδ
i (M) = 0.

In other words, Ĥδ
i behaves like the homology with respect to the δ-homotopy

t-structure. During the talk, we have drawn several consequences of this theorem.

(1) Functorial properties.– Let f : T → S is smooth of finite type (resp. proper
and with dimension of fibers bounded by d) then f ! : DM δ−eff (T ) →
DM δ−eff (S) is t-exact (resp. f∗ : DM δ−eff (S) → DM δ−eff (T ) has
homological amplitude [0, d]) for the δ-homotopy t-structure.

(2) Boundedness.– If S is regular and δ = −codimS , the constant motive 1S

in DM δ−eff (S) belongs to the heart of the δ-homotopy t-structure.5

(3) Link with perversity.– A δ-effective motive M over S is homologically pos-
itive (resp. negative) for the δ-homotopy t-structure if and only if the
following condition holds:

∀x ∈ S,Hδx
p (i!xM) = 0 when p ≤ δ(x) (resp. p ≥ δ(x)).

Here δx is the obvious dimension function induced by δ on the spectrum
of the residue field κ(x) of x in S, and we have put i!x = j∗i! for the

factorization Spec(κ(x))
j
−→ {x}

i
−→ S.

It is striking that the last property is the exact analog of the characterization of
the perverse t-structure as defined by Beilinson, Bernstein and Deligne.
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Homology of GL3 of elliptic curves

Matthias Wendt

In the talk, I reported some progress in the ongoing project of constructing the
elliptic dilogarithm complex using group homology. Here, elliptic dilogarithm com-
plex refers to a complex computing the weight-two parts of the K-theory of an el-
liptic curve. Such a complex has been described by Goncharov and Levin in their
work on Zagier’s conjecture for elliptic curves [1]. The overall goal of the project
is to identify this (essentially two-term) complex as a differential in a spectral se-
quence computing group homology of GL4(k[E]), similar to the group homology
approach to the motivic weight-two complex over fields due to Suslin and Dupont–
Sah. Hopefully, different realizations of the elliptic dilogarithm complex and the
resulting alternative presentations for the first and second K-groups of elliptic
curves can help to improve our understanding of K-theory of elliptic curves.

For the formulation of the results of the group homology computation, let k be
an arbitrary field, let E/k be an elliptic curve with fixed k-rational point P , and
set E = E \ {P}. The computations so far describe the homology of the group
GL3(k[E]), using its action on the Bruhat–Tits building B associated to GL3 and
the field k(E) equipped with the valuation vP associated to the k-rational point
P . The key result is the following computation of the action of GL3(k[E]) on the
building B.

Theorem 1. (1) The quotient GL3(k[E])\B has the homotopy type ΣF l3(k),
the suspension of the flag complex for the vector space k3. This is essen-
tially the union of the links of the two stable rank 3 bundles on E appearing
in the building.

(2) The subcomplex of cells with non-trivial stabilizer deformation-retracts
equivariantly to a graph of groups ΓE. The underlying graph of ΓE is
given by the following diagram of moduli spaces of vector bundles on E:

M2,1(E)←M2,0(E)→M3,0(E).

Here Mr,d(E) denotes the moduli space of vector bundles of rank r and

degree d on E. However, the (semi-)stable bundles V in M2,i actually

correspond to the rank 3 bundles V ⊕det−1 V on E. This becomes a graph
of groups by mapping vector bundles to their automorphism groups.

The basic proof steps are the following: first, the identification of orbits of
vertices with suitable vector bundles on the curve E is classical; this identifica-
tion moreover identifies the stabilizers of vertices as automorphism groups of the
corresponding bundles. Using Atiyah’s classification of vector bundles on ellip-
tic curves, explicit computations of the action of automorphism groups on the
links and explicit identification of the corresponding elementary transformations
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of vector bundles, one obtains a complete description of the quotient. The simpli-
fied description in the theorem then arises from an explicit deformation retraction
which moves unstable bundles towards semistable bundles.

From the isotropy spectral sequence for the action of GL3(k[E]) on B together
with classical stabilization results in group homology, we get an exact sequence,
where the morphism in brackets is the group homology version of the elliptic
dilogarithm complex:

H2(ΓE)→ K2(E)→
[
St3(k)/R

∂
−→ H1(ΓE)

]
→ K1(E)→ 0.

Here H1(ΓE) is the first homology group of the graph of groups (which is defined
via the cone of the inclusion map from edge groups into vertex groups). The
explicit identification of the graph ΓE allows to identify H1(ΓE) with the subspace

of JacE(k)⊗k
×
generated byQ⊗u whereQ is a point of degree≤ 3 and u ∈ k(Q)×.

This presentation is a lot smaller (in terms of number of generators) than the usual
presentation of K1(E) as Somekawa K-group.

The Steinberg representation St3(k) (which arises from the homology of the flag
complex F l3(k)) gives rise to a geometric interpretation of K2-classes as triangles
in P2. The relations R are not explicitly described for now; for this, computations
of the action of GL4(k[E]) on the associated building are necessary. Part of the
differential ∂ can be seen in this geometric description as mapping a side L of
the triangle to the vector bundle associated to the degree 3 divisor obtained by
intersecting the line L with the curve E ⊂ P2.

In future work, it remains to explicitly compute ∂ and R. Naturally, the expec-
tation would be that there is a morphism of complexes from the elliptic dilogarithm
complex described by Goncharov and Levin [1] to the complex above arising from
group homology. This morphism of complexes should induce the restriction map
Ki(E) → Ki(E) on homology. Note, however, that the above complex does in
fact provide integral computations, where Goncharov and Levin compute rational
K-theory.

Finally, as an interesting aside, the computation of the quotient GL3(k[E])\B
actually allows to completely determine the structure of H•(GL3(k[E]);Fℓ) (as
module over the ring of Chern classes Fℓ[c1, c2, c3]) when E is an elliptic curve
defined over the finite field k = Fq. When ℓ | q − 1, this provides new coun-
terexamples to a function field analogue of Quillen’s conjecture on cohomology
of arithmetic groups; the reason behind the counterexamples is essentially that
the non-contractibility of both the quotient GL3(k[E])\B as well as the graph
of vector bundles with non-trivial automorphisms implies the existence of many
cohomology classes which are torsion for the Chern class ring Fℓ[c1, c2, c3].

A preliminary version of Theorem 1 (without proofs) and further discussion
may be found in a note on the arXiv [2].
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Motives, nearby cycles and Milnor fibers

Florian Ivorra

(joint work with Joseph Ayoub and Julien Sebag)

In this talk, we give a survey of the main results of [4, 8] relating tubes in non-
archimedean geometry, nearby motivic sheaves and motivic nearby cycles in the
sense of Denef-Loeser.

Let k be a field of characteristic zero, R = k[[t]] be the ring of formal power series
and K = k((t)) be its fraction field. In this exposition, we restrict ourselves to the
stable homotopy category of schemes SH(k) introduced by Morel and Voevodsky
and its rigid analytic version RigSH(K) introduced by Ayoub.

1. Recollections on rigid motives

Let X be a smooth rigid variety over K. We denote by Mrig(X) the homological
motive associated with X and by

M∨
rig(X) := Hom(Mrig(X),1Spm(K))

its dual. Recall that, given a separated K-scheme of finite type X , there is an
associated rigid analytic K-variety Xan. The functor X 7→ Xan extends into a
triangulated functor

Rig∗ : SH(K)→ RigSH(K)

such that Rig∗(M(X)) = Mrig(X
an) where M(X) is the usual (algebraic) motive

of the K-scheme X .
Let QUSH(k) be the category of quasi-unipotent (algebraic) motives, i.e., the

full triangulated subcategory of SH(Gm,k) closed under infinite direct sums and
generated by the objects of the form SuspT (Q

gm
r (X, g) ⊗ 1) where X is a smooth

k-scheme, g ∈ O(X)×, r ∈ N× and Qgm
r (X, g) is the smooth Gm,k-scheme

Qgm
r (X, g) := Spec(OX [T, T−1, V ]/(V r − gT ))→ Spec(k[T, T−1]) = Gm,k.

In [3], Ayoub shows that the composition of the three functors

QUSH(k) →֒ SH(Gm,k)
t∗
→ SH(K)

Rig∗

−→ RigSH(K)

is an equivalence of categories. We fix a quasi-inverse to the above equivalence

R : RigSH(K)
∼
→ QUSH(k)

and are interested in the composition

1∗ ◦R : RigSH(K)→ SH(k)

where 1 : Spec(k)→ Gm,k is the unit section.
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2. Tubes and nearby motivic sheaves

Let f : X → Spec(R) be a separated finite type R-scheme and denote by Xη and
Xσ the generic and special fibers of X .

By t-adic completion, one obtains a separated formal R-scheme topologically
of finite type X → Spf(R) and we denote by Xη the generic fiber of X . The
rigid analytic variety Xη is an open analytic subvariety of the analytification Xan

η

of the algebraic generic fiber Xη. With a locally closed subset Z ⊂ Xσ, we may
associate its tube ]Z[ which is an open rigid analytic subvariety of Xη.

Assume that the rigid analytic variety Xη is smooth over K. One of the main
result of [4] is the following theorem that relates rigid motives of tubes with the
nearby motivic sheaf Ψf (1Xη ) introduced by Ayoub in [2].

Theorem 1 (see [4]). Denote by z : Z →֒ Xσ the inclusion. Then, there is a
canonical isomorphism

1∗ ◦R(M∨
rig(]Z[)) ≃ (fσ)∗z∗z

∗Ψf (1Xη )

in the category of motives SH(k).

Taking Z = Xσ, one gets that the cohomological motive M∨
rig(Xη) is related to

the nearby motivic sheaf by a canonical isomorphism

1∗ ◦R(M∨
rig(Xη)) ≃ (fσ)∗Ψf(1Xη )

in SH(k).
Our main theorem is a motivic analog of a theorem of Berkovich that we recall

now. Let K be the completion of an algebraic closure of the valued field K and
let k be its residue field. Set Z = Z ×k k and ]Z[ =]Z[×̂KK. In [5, 6], Berkovich
constructed a canonical isomorphism of étale cohomology groups

Hi
ét(]Z[,Qℓ) ≃ Hi

ét(Z,RΨf(Qℓ,Xη)|Z).

It is worth noting that Berkovich’s theorem holds over general non-archimedean
fields whereas, to state Theorem 1, we need to assume equal characteristic zero.
Indeed, this is required in [3] to ensure the existence of the equivalence R.

3. Relation with the work of Denef and Loeser

Let X be a semi-stable R-scheme. Denote by (Di)i∈I be the irreductible compo-
nents of its special fiber and set

DJ := ∩j∈Dj D◦
J := DJ \ ∪i/∈JDi

for a non-empty subset J ⊆ I.

Theorem 2 (see [4, 8]). Let X be a semi-stable R-scheme. For ∅ 6= J ⊂ I, let

ρJ : D̃◦
J → D◦

J be the étale finite cover defined as in [8, §3.1.3]. Then, one has the
formula

[Ψf (1Xη )] =
∑

∅6=J⊂I

(−1)|J|−1
[
MXσ ,c(D̃

◦
J ×k G

|J|−1
m,k )

]

in K0(SHct(Xσ)).
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Note that SHct(Xσ) is the full triangulated subcategory of SH(Xσ) formed
by the constructible motives. In [7], Denef and Loeser have introduced a notion
motivic nearby cycles which is an element ψf in the Grothendieck ring of the
special fiber MXσ and is defined in terms of the arc scheme as the limit of the
motivic zeta function associated with f .

Corollary 1 (see [4, 8]). Let X be a finite type R-scheme with smooth generic fiber
and denote by f : X → Spec(R) its structural morphism. We have the equality

[Ψf (1Xη )] = χXσ ,c(ψf )

in K0(SHct(Xσ)).

Here

χXσ,c : MXσ → K0(SHct(Xσ))

is the motivic Euler characteristic over the special fiber Xσ. A particular case of
Theorem 1 gives an isomorphism of motives

1∗ ◦R(M∨
rig(Fx)) ≃ x

∗Ψf (1Xη )

where Fx is the analytic Milnor fiber at x introduced by Nicaise-Sebag in [9].
From this and Corollary 1, we deduce the following formula

[1∗ ◦R(M∨
rig(Fx))] = χk,c(ψf,x)

where ψf,x := x∗ψf in Mk and χk,c : Mk → K0(SHct(k)) is the motivic Euler
characteristic over k. This formula expresses the fact that the motivic Milnor fiber
ψf,x of Denef-Loeser, at least as a class in the Grothendieck ring of constructible
motives, is determined by the rigid motive of the analytic Milnor fiber.
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A motivic version of Segal’s theorem

Ivan Panin

(joint work with G.Garkusha)

Using the machinery of framed sheaves developed by Voevodsky [Voe2] we state
and prove a motivic Segal’s theorem. It states particularly that for any infinite
perfect field k and any integer n > 0 a natural morphism

Hom(∆• ×−,Ω∞
P1Σ∞

T (T n))→ Ω∞
P1,motΣ

∞
T (T n)

of motivic spaces is a stalk-wise weak equivalence for the Nisnevich topology. Here
T n = An/(An−{0}) is the motivic (2n, n)-sphere, ΩP1 is the naive P1-loop-functor
and ΩP1,mot is the motivic P1-loop-functor. To prove this result a triangulated

category of framed motives SHfr
S1 (k) is introduced and studied.

We also construct a compactly generated triangulated category of framed bis-
pectra SHfr(k). Using an extension of the above theorem it is proved that
SHfr(k) reconstructs the Voevodsky category SH(k) in the case of an infinite
and perfect field.

As a topological application, it is proved that in the complex number case for any
integer n > 0 there is an equality in the ordinary homotopy category of simplicial
sets

Fr(∆•
C, T

n) = Ω∞
S1Σ∞

S1(S2n),

where S2n is the ordinary 2n-sphere.
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Euler class groups and the homology of elementary groups

Marco Schlichting

A ring R has many units if for every integer n ≥ 1, there are central elements
a1, ..., an ∈ R such that for all ∅ 6= I ⊂ {1, ..., n}, the partial sum aI =

∑
i∈I ai is a

unit in R. For instance, any infinite field, any commutative local ring with infinite
residue field, any (possibly non-commutative) algebra over a ring with many units
has many units. For a ring R, denote by En(R) the subgroup of GLn(R) generated
by the elementary matrices. For a commutative ring R and integer n ≥ 1, we let
SLn(R) denote the subgroup of GLn(R) consisting of matrices of determinant one
(for the definition of SL0; see below). For a discrete group G, we denote by Hn(G)

its integral homology groups, that is, TorZGn (Z,Z). Finally, denote by sr(R) ∈ N

the stable range of R. For instance, sr(R) = 1 for any commutative local ring,
sr(R) = 1 for any (possibly non-commutative) artinian ring, and sr(R) ≤ 1+dimR
when R is commutative noetherian.

Theorem 1 ([Sch]). Let R be ring with many units. Then

(1) Hi(EnR,En−1R) = 0, i ≤ n− sr(R)
(2) If R is commutative, then

Hi(SLnR,SLn−1R) = 0, i ≤ n− sr(R).

When R is a field of characteristic zero, Theorem 1 was previously proved by
Hutchinson and Tao [HT10]. The theorem implies a conjecture of Bass [Bas73].

Theorem 2 ([Sch]). Let R be a ring with many units. Then

πi(BGL
+
nR,BGL

+
n−1) = 0 i ≤ n− sr(R).

Bass actually conjectured Theorem 2 for commutative noetherian rings without
the hypothesis of ”many units”. However, in this general case, R = Z already
provides a counter example.

Let A be a commutative ring, let Z[A∗] be the group ring of the group of units
A∗ in A with standard Z-basis 〈a〉, a ∈ A∗, multiplication 〈a〉 · 〈b〉 = 〈ab〉, and
〈1〉 = 1. Let IA∗ = Ker(Z[A∗] → Z : 〈a〉 7→ 1) be the augmentation ideal, and let
[a] = 〈a〉 − 1 ∈ IA∗ .

Definition 3 ([Sch]). Let A be a commutative ring (with infinite residue fields).
We define the graded Z[A∗]-algebra

K̂MW
∗ (A) = TensZ[A∗] IA∗/ Steinberg

as the quotient of the tensor algebra of IA∗ over the group ring Z[A∗] modulo the
ideal generated by the Steinberg relations [a]⊗ [1− a] for a, 1− a ∈ A∗.

For instance,

K̂MW
0 (A) = Z[A∗], K̂MW

1 (A) = IA∗ , K̂MW
2 (A) = IA∗ ⊗A∗ IA∗/ Steinberg .

We prove in [Sch] that the group K̂MW
n (A) is isomorphic to the Morel-Hopkins

Milnor-Witt K-group KMW
n (A) when n ≥ 2 and A is a field or local ring with
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residue field 6= F2,F3. We have the following strengthening of Theorem 1. Here,
SL0A is defined to be the discrete set of units A∗ in A, so as to make the formula

Hi(SLnA) = Tor
Z[GLnA]
i (Z[A∗],Z) hold for all i, n.

Theorem 4 ([Sch]). Let A be a commutative local ring with infinite residue field.
Then there are isomorphisms of A∗-modules for all n ≥ 0

Hi(SLnA,SLn−1A;Z) ∼=

{
0 i < n

K̂MW
n (A) i = n.

This theorem is the SLn-analogue of a theorem of Nesterenko-Suslin [NS89]. A
version of the theorem was proved for fields of characteristic zero by Hutchinson-
Tao [HT10].

Let R be a noetherian ring with infinite residue fields, and let P be an oriented
projective R-module of rank n. We define the “Euler class” e(P ) of P as a certain
Zariski cohomology class

e(P ) ∈ Hn
Zar(R,K

MW
n )

where KMW
n denotes the Zariski sheaf associated with the presheaf A 7→ K̂MW

n (A).
Using the previous theorem, we can show the following.

Theorem 5 ([Sch]). Let R be a commutative noetherian ring of dimension n ≥ 2.
Assume that all residue fields of R are infinite. Let P be an oriented rank n
projective R-module. Then

P ∼= Q⊕R⇔ e(P ) = 0 ∈ Hn
Zar(R,K

MW
n ).

Using A1-homotopy theory, a version of this theorem was proved by Morel
[Mor12] for smooth algebras over infinite perfect fields.
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I. R. M. A. R.
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