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Abstract. The constant emergence of novel technologies result in novel data
generating devices and mechanisms that lead to a prevalence of highly com-
plex data. To analyze such data, novel statistical methodologies need to be
developed. This workshop addressed challenges that arise in the theoretical
analyses of procedures in which geometry, shape and topology play central
roles. The theoretical ideas involved here intersect deeply with a wide vari-
ety of fields, including mathematical statistics, probability theory, computa-
tional topology, and computational and differential geometry. The workshop
brought together scholars with different perspectives, with the goal of facili-
tating cross-pollination to spur the development of new ideas, new analytical
approaches, and new methods in geometric and shape statistics.
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Introduction by the Organisers

The half-workshop Statistics for Shape and Geometric Features, organized by Dragi
Anevski (Lund), Geurt Jongbloed (Delft), Christopher Genovese (Pittsburgh) and
Wolfgang Polonik (Davis), was held July, 3rd – July 9th, 2016. This meeting
was well attended by 26 participants with diverse geographic, demographic and
disciplinary representation. For several of the participants it was the first time
they attended an Oberwolfach Workshop, and they were deeply impressed by the
workshop and the immensely stimulating atmosphere at the Forschungsinstitut.

The workshop consisted of presentations of the participants and discussions be-
tween them, either in groups or individually. The presentations earlier in the weeks
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were intended to build a common platform for the participants, who came to the
workshop with different backgrounds. These presentations were addressing prin-
cipal component analysis for non-Euclidean data, inference for geometric objects,
inference under shape constraints (log-concavity), and topological data analysis,
respectively. Later in the week, the group discussed several emerging problems and
ideas, including estimation in graphs under monotonicity constraints, algorithmic
approaches for non-standard big data using the divide-and-conquer paradigm, and
the estimation of flow lines. Some presentations also addressed applications of
geometric/shape ideas to cutting-edge scientific problems, such as improving mi-
croscopy based image analysis, or the analysis of the filamentary structure of the
world wide web. The PhD students attending the workshop also had an opportu-
nity to present their dissertation research.

In summary, the workshop brought together scholars with related, but differ-
ent statistical backgrounds that included shape constrained inference, topological
data analysis, inference for geometric objects, and shape analysis. Corresponding
major statistical problem areas include clustering and mode finding, identification
and characterization of low-dimensional structures (e.g., embedded manifolds), as
well as asymptotic distribution theory for estimators under various shape con-
straints. Another interesting aspect of the workshop was provided by a second
half-workshop on Learning Theory and Approximation that was running in paral-
lel. There was a lively interaction between the participants of the two workshops
with complementary themes.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Jon A. Wellner in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Object Oriented Data Analysis

J. S. Marron

Object Oriented Data Analysis is the statistical analysis of populations of com-
plex objects. In the currently fashionable special case of Functional Data Analy-
sis, these data objects are curves, where standard Euclidean approaches, such as
principal components analysis, have been very successful. Challenges in modern
medical image analysis motivate the statistical analysis of populations of more
complex data objects which are elements of mildly non-Euclidean spaces, such as
manifolds (where an approximating tangent plane can be fit to allow the appli-
cation of standard methods), or of strongly non-Euclidean spaces, such as spaces
of tree-structured data objects. These new contexts for Object Oriented Data
Analysis create several potentially large new interfaces between mathematics and
statistics. For example, the former provides connection with the statistics on
manifolds theme of this meeting. The latter has a connection to topology, since
persistent homology has proven to provide a very useful approach. The notion of
Object Oriented Data Analysis also impacts data analysis, through providing a
useful terminology for interdisciplinary discussion of the many choices needed in
many modern complex data analyses.

Rates of convergence for robust geometric inference

Bertrand Michel

(joint work with Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Pascal Massart,
Alessandro Rinaldo, Larry Wasserman)

The last decades have seen an explosion in the amount of available data in almost
all domains of science, industry, economy and even everyday life. These data, often
coming as point clouds embedded in Euclidean spaces, usually lie close to some
lower dimensional geometric structures (e.g. manifold, stratified space,...) reflect-
ing properties of the system from which they have been generated. Inferring the
topological and geometric features of such multivariate data has recently attracted
a lot of interest in both statistical and computational topology communities.

Considering point cloud data as independent observations of some common
probability distribution P in Rd, many statistical methods have been proposed
to infer the geometric features of the support of P such as principal curves and
surfaces [14], multiscale geometric analysis [1], density-based approaches [13] or
support estimation, to name a few. Although they come with statistical guaran-
tees these methods usually do not provide geometric guarantees on the estimated
features.

On another hand, with the emergence of Topological Data Analysis (TDA) [5],
purely geometric methods have been proposed to infer the geometry of compact
subsets of Rd. These methods aims at recovering precise geometric information of
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a given shape – see, e.g. [10, 16, 7]. Although these methods come with strong
topological and geometric guarantees they usually rely on sampling assumptions
that do not apply in statistical settings. In particular, these methods can be very
sensitive to outliers. Indeed, they generally rely on the study of the sublevel sets
of distance functions to compact sets. In practice only a sample drawn on, or
close, to a geometric shape is known and thus only a distance to the data can be
computed. The sup norm between the distance to the data and the distance to the
underlying shape being exactly the Hausdorff distance between the data and the
shape, we see that the statistical analysis of standards TDA methods boils down
to the problem of support estimation in Hausdorff metric. This last problem has
been the subject of much study in statistics, see for instance [12, 11, 18]. Being
strongly dependent of the estimation of the support in Hausdorff metric, it is now
clear why standard TDA methods may be very sensitive to outliers.

To provide a more robust approach of TDA, a notion of distance function to a
measure (DTM) in Rd has been introduced by [8] as a robust alternative to the
classical distance to compact sets. Given a probability distribution P in Rd and
a real parameter 0 ≤ u ≤ 1, [8] generalize the notion of distance to the support of
P by the function

δP,u : x ∈ R
d 7→ inf{t > 0 ; P (B̄(x, t)) ≥ u}

where B̄(x, t) is the closed Euclidean ball of center x and radius t. For u = 0, this
function coincides with the usual distance function to the support of P . For higher
values of u, it is larger than the usual distance function since a portion of mass u
has to be included in the ball centered on x. To avoid issues due to discontinuities
of the map P → δP,u, the distance to measure (DTM) function with parameter
m ∈ [0, 1] and power r ≥ 1 is defined by

dP,m,r(x) : x ∈ Rd 7→
(

1

m

∫ m

0

δrP,u(x)du

)1/r

.

It was shown in [8] that the DTM shares many properties with classical distance
functions that make it well-adapted for geometric inference purposes. First, it
is stable with respect to perturbations of P in the Wasserstein metric . This
property implies that the DTM associated to close distributions in the Wasserstein
metric have close sublevel sets. Moreover, when r = 2, the function d2P,m,2 is
semiconcave ensuring strong regularity properties on the geometry of its sublevel
sets. Using these properties, [8] show that, under general assumptions, if P̃ is a
probability distribution approximating P , then the sublevel sets of dP̃ ,m,2 provide
a topologically correct approximation of the support of P . The introduction of
DTM has motivated further works and applications in various directions such
as topological data analysis [3], GPS traces analysis [6], density estimation [2],
deconvolution [4] or clustering [9] just to name a few. However no strong statistical
analysis of the DTM has not been proposed so far.

In practice, the measure P is usually only known through a finite set of ob-
servations Xn = {X1, . . . , Xn} sampled from P , raising the question of the ap-
proximation of the DTM. A natural idea to estimate the DTM from Xn is to
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plug the empirical measure Pn instead of P in the definition of the DTM. This
“plug-in strategy” corresponds to computing the distance to the empirical measure
(DTEM). It can be applied with other estimators of the measure P , for instance
in [4] it was proposed to plug a deconvolved measure into the DTM.

For m = k
n , the DTEM satisfies

drPn,k/n,r
(x) :=

1

k

k∑

j=1

‖x− Xn‖r(j) ,

where ‖x − Xn‖(j) denotes the distance between x and its j-th neighbor in
{X1, . . . , Xn}. This quantity can be easily computed in practice since it only
requires the distances between x and the sample points.

In this talk, I present recent results about the deviations and the rate of conver-
gence of ∆n,m,r(x) := drPn,m,r

(x)− drP,m,r(x). Our results rely on a local analysis

of the empirical process to compute tight deviation bounds of ∆n, k
n
,r(x). More

precisely, we use a sharp control of a supremum defined on the uniform empirical
process. Such local analysis has been successfully applied in the literature about
non asymptotic statistics, for instance [15] obtain fast rates of convergence in clas-
sification. We show that the rate of convergence of ∆n, k

n
,r(x) directly depends

on the regularity at zero of the quantile function of the push forward probability
measure of P by the function ‖x− ·‖r.

I in this talk, I will also present some results about the functional convergence
of ∆n, kn

n
,r(x).
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[8] F. Chazal, D. Cohen-Steiner and Q. Mérigot, Geometric inference for probability measures,
Foundations of Computational Mathematics 11(2011),733–751.

[9] F. Chazal, L. Guibas, S. Oudot and P. Skraba, Persistence-based clustering in riemannian
manifolds, Journal of the ACM 41(2013).

[10] F. Chazal and A. Lieutier, Smooth manifold reconstruction from noisy and non-uniform
approximation with guarantees, Computational Geometry 40(2008), 156–170.
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Inference for Geometric Features

Christopher R. Genovese

The geometric features of a function are often of, direct or indirect, interest as
the target of inference in many scientific problems. These features derived from
the “shape” of a function and the geometry of its graph. Examples include local
modes, ridges, level sets, conditional local modes, and a variety of derived com-
plexes (e.g., Morse-Smale). In this talk, I describe a theoretical framework and a
set of methods for infering the geometric features of densities (and other smooth
functions). This includes both computing estimators and practically useful confi-
dence sets for these features. I also show how these methods can be combined to
address some larger statistical problems, including clustering, regression, and high-
dimensional visualization. My collaborators in these lines of research (as reflected
in the a sequence of sixteen papers over the last seven years) are Larry Wasserman
(Carnegie Mellon), Isa Verdinelli (Carnegie Mellon, University of Rome), Marco
Perone Pacifico (University of Rome), and Yen-Chi Chen (University of Washing-
ton).

This work reflects a broader trend in the field. As data sets become larger,
higher dimensional, and more complex, there is increasing interest in making infer-
ences about complex or aggregate objects, such as trees, networks, fields, elements
of structured spaces, and discrete collections of smooth objects. Such objects
raise a number of practical and theoretical challenges, including quantifying ac-
curacy, deriving meaningful confidence sets, spatial matching, and visualization
of result. Moreover, as described here, some of these problems are statistically
hard in the sense that rates of convergence are logarithmic. Finally, complex and
high-dimensional data sets often interesting low-dimensional structure that can be
difficult to identify or (as a complex/aggregate object) difficult to estimate/learn.

A motivating example for the value of geometric features, especially for densities
derived from point-cloud data is the problem of estimating filamentary structures
in the distribution of mass across the universe. Cosmologists have discovered
that mass is not distributed uniformly but rather looks like a “cosmic web.” The
structure of this web (a dense network of ridges) has cosmological significance in
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that it is informative about conditions in the early universe. We also have shown
that the estimated object can shed light on several other astronomical problems.

To understand how difficult it is to estimate various features, I focus on the
simpler theoretical problem of estimating data drawn from a smooth (in the sense
of bounded reach) manifold with random scatter. I derive the minimax rates
of convergence for this problem, which varies strongly with noise model. Under
the realistic model of smooth (e.g., Gaussian) noise in the embedding space, this
problem is statistical hard in the sense described above.

What then to do if we are to avoid logarithmic rates? I discuss the idea of a
surrogate – an object that captures the essential features of the true object (e.g.,
the features most interesting for a particular problem) and can be estimated with a
polynomial rate of convergence. This necessarily entails some loss of information,
but the benefit is that we can make useful inferences about some aspects of the
true object.

I then describe a surrogate framework for estimating manifolds that becomes
a general approach to estimating ridges (loosely, the zeroes of a project gradient)
that are topologically and geometrically good surrogates for the underlying mani-
fold. Building on the Subspace Constrained Mean-Shift algorithm of Ozertem and
Erdogmus (2011), I develop an estimator for these ridge sets, which exhibits good
performance in Hausdorff distance. (Optimality of the resulting rates has not yet
been established as the rates do involve the dimension of the embedding space.)
I show a variety of simulated and real examples to illustrate this method. Note
that the method can be used not only to estimate the objects themselves but to
compute bootstrap confidence sets as well.

I then illustrate a new method built on this framework for finding and separating
ridges by dimension. I describe a ridge-based method for soft clustering in high
dimensions, a technique based on these ideas for modal regression, a method for
estimating the Morse-Smale complex of a smooth (Morse) function, and a method
for testing for density modes. I briefly show the results of a promising new method
for high-dimensional clustering that is still in development.

Inference for the mode of a log-concave density: a likelihood ratio test

and confidence intervals

Jon A. Wellner

(joint work with Charles Doss)

Wellner discussed a likelihood ratio test for the mode of a log-concave density.
The new test is based on comparison of the log-likelihoods corresponding to the
unconstrained maximum likelihood estimator of a log-concave density and the con-
strained maximum likelihood estimator where the constraint is that the mode of
the density is fixed, say at m. The constrained estimators have many proper-
ties in common with the unconstrained estimators discussed by Pal, Woodroofe,
and Meyer (2007), Dümbgen and Rufibach (2009), and Balabdaoui, Rufibach and
Wellner (2010), but they differ from the unconstrained estimator under the null
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hypothesis on n−1/5 neighborhoods of the mode m. Using joint limiting prop-
erties of the unconstrained and constrained estimators under the null hypothesis
(and strict curvature of log f = ϕ at the mode), we show that the likelihood ratio
statistic is asymptotically pivotal: that is, it converges in distribution to a limiting
distribution which is free of nuisance parameters, thus playing the role of the χ2

1

distribution in classical parametric statistical problems. By inverting this family
of tests we obtain new (likelihood ratio based) confidence intervals for the mode
of a log-concave density f . These new intervals do not depend on any smoothing
parameters. We study the new confidence intervals via Monte Carlo studies and
illustrate them with several real data sets. The new confidence intervals seem to
have several advantages over existing procedures.

This talk was based on joint work with Charles Doss.
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Nanostatistics

Axel Munk

(joint work with Timo Aspelmeier)

Conventional light microscopes have been used for centuries for the study of small
length scales down to about 250nm. Images from such a microscope are typically
blurred and noisy and the measurement error can often be well approximated by
Gaussian or Poisson noise which is due to local and temporal aggregation of photon
emitting fluorophores.

Recording, recovery and enhancement of such images has been the focus of a
multitude of deconvolution techniques in imaging during the past. However, con-
ventional microscopes have an intrinsic physical limit of resolution which remained
unchallenged for a century but which, with the advent of modern superresolution
fluorescence microscopy techniques, was broken for the first time in the 1990s.
These achievements have been awarded the Nobel Prize in Chemistry, 2014.

Since then, superresolution fluorescence microscopy has become an indispensible
tool for studying structure and dynamics of living organisms. Current experimen-
tal advances go to the physical limits of imaging where discrete quantum effects
are predominant. Consequently, superresolution fluorescence microscopy is inher-
ently of a non-Gaussian statistical nature and we argue that recent technological
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progress also challenges the Poisson assumption, which has been standing for a
long time.

Hence it becomes necessary to analyze and exploit the discrete physical mecha-
nisms of fluorescent molecules and light and their distributions in time and space
in order to achieve the highest resolution possible. In this talk we present an
overview of some physical principles underlying modern fluorescence microscopy
techniques from a statistical modeling and analysis perspective.

Several issues of our own work will be discussed in more detail. This in-
cludes variational multiscale methods for confocal and stimulated emission de-
pletion (STED) microscopy [2, 3, 4], drift correction for single marker switching
(SMS) microscopy [8] as well as sparse estimation and background removal for
superresolution by polarisation angle demodulation (SPoD) [5, 6, 7]. We illustrate
that such methods benefit from advances in large scale computing, e.g. from recent
tools from convex optimization. We argue that in the future, even higher resolu-
tions will require more detailed models delving into sub-Poissonian statistics. To
this end we develop a prototypical hidden Markov model for fluorophore dynamics
[1] and use it to address recent challenges in quantitative biology to count the
number of proteins at a certain spot. This task is tackled for STED microscopy
by a diffrent approach based on quantum antibunching [9].
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Asymptotics and optimal bandwidth selection for level set estimation

J.E. Chacón

(joint work with W. Polonik)

Given a function f : Rd → R and c ∈ (inf f, sup f), denote

L ≡ L(c) ≡ Lf (c) = {x ∈ R
d : f(x) ≥ c}

the (super)level set of f at level c. Level sets of density functions and regression
functions have many applications in Statistics. Here we particularly focus on
density level sets, which are useful for probability distribution representation [2, 5],
nonparametric clustering [4] and topological data analysis [1]. Further examples
of applications of level sets can be found in the introduction of [6].

As a first goal, the use of level sets for distribution representation is reviewed,
noting its pros and cons, and providing a new class of (density) regions for distri-
bution representation.

An alternative parametrization of density level sets is through its probability
content: for α ∈ (0, 1) use L(cα) with

cα = sup
{
c > 0: P

(
X ∈ L(c)

)
≥ 1− α for X ∼ f

}
.

In this form, density level sets are also known as highest density regions (HDRs).
It can be shown that, under regularity conditions, P

(
L(cα)

)
= 1−α so that L(cα)

can be interpreted as the most probable region containing at least 1−α probability
mass.

In the univariate case, highest density regions with α = 0.5 can be compared to
boxplots for distribution representation. Notice that, instead of most probable re-
gions, boxplots are concerned with central regions. Hence, for symmetric unimodal
distributions, HDRs and boxplots give the same distribution representation. For
bimodal distributions, however, they provide different answers: whereas boxplots
are in direct correspondence with the median and quartiles, HDRs are related to
the modes and their domains of attraction, that is, to the density derivative. In
the bivariate case, a similar comparison can be made between HDRs and bagplots
[7].

Nevertheless, since different distribution features frequently appear at different
values of the level cα, fixing α = 0.5 may fail to reveal the whole modal structure
of the probability distribution. To solve this issue, here we introduce a further
possibility for distribution representation: concave density regions (CDR). CDRs
are defined as the regions of the space where the density function is concave. When
the density is smooth enough, the boundary of a CDR is easily identified as the
set of points where the determinant of the Hessian matrix vanishes. The main
gain in using CDRs against HDRs is that all density clusters are visible in the
CDR representation, as the number of connected components of the CDR equals
the number of density modes. Also, CDRs do not depend on a level parameter.
This is both an advantage, because the level does not have to be chosen, and a
disadvantage, because the control of the probability content of CDRs is lost.
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A second, different goal related to density level set estimation is to pose an
open problem that highlights the fact that the current asymptotic results on the
topic are somehow incomplete. The usual plug-in-type strategy for estimating

L = {x ∈ Rd : f(x) ≥ c} is to use L̂h = {x ∈ Rd : f̂h(x) ≥ c}, where

f̂h(x) = (nhd)−1
n∑

i=1

K
(
(x−Xi)/h

)

is a kernel density estimator with bandwidth h.

A common way to evaluate the performance of L̂h as an estimator of L is to
use the loss function induced by the distance in µ-measure, for a given measure µ.

This is defined as dµ
(
L̂h, L

)
= µ

(
L̂h△L

)
, where A△B = (A\B) ∪ (B\A) denotes

the symmetric difference of any two sets A,B. Most used measures are those that
can be written as µg(A) =

∫
A gdλ with g(x) = |f(x) − c|p for some p ≥ 0 or

g(x) = f(x), with λ standing for the Lebesgue measure in Rd. The corresponding

risk function is the mean distance in measure MDM(h) = E
[
dµ
(
L̂h, L

)]
.

In a beautiful paper, [3] showed that it is possible to decompose MDM(h) =
I1(h) + I2(h), where I1(h) is a term related to the variance of the kernel density
estimator and I2(h) is a term related to the bias. Moreover, under some usual
smoothness conditions it is proved that there exists an explicit constant A ≡
A(f,K, c) such that (nhd)1/2I1(h) → A as n → ∞. If in addition nhd+4 → 0 is
assumed, then it can be shown that (nhd)1/2I2(h) → 0 as n→ ∞.

This additional condition on the bandwidth ensures that the squared bias is
asymptotically negligible as compared to the variance, but note that this is not
normally the case in practice when, for instance, optimal bandwidths are sought
for. We conjecture that, without the additional condition on the sequence of
bandwidths, there should be possible to find a constant B ≡ B(f,K, c) such that
h−2I2(h) → B as n → ∞. The explicit identification of this constant B would
allow to derive tools for asymptotically optimal bandwidth selection for density
level set estimation.
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Current status linear regression

Kim Hendrickx

(joint work with Piet Groeneboom)

Investigating the relationship between a response variable Y and one or more
explanatory variables is a key activity in statistics. Often encountered in regression
analysis however, are situations where a part of the data is not completely observed
due to some sort of censoring. We focus on modeling a linear relationship when the
response variable is subject to interval censoring type I, i.e. instead of observing
the response Y , one only observes whether or not Y ≤ T for some random censoring
variable T , independent of Y . This type of censoring is often referred to as the
current status model. Let (Xi, Ti,∆i), i = 1, . . . , n be independent and identically
distributed observations from (X,T,∆) = (X,T, 1{Y≤T}). We assume that Y is
modeled as

Y = β′
0X + ε,(1)

where β0 is a k-dimensional regression parameter and ε is an unobserved random
error, independent of (X,T ) with unknown distribution function F0. We assume
that the distribution of (X,T ) does not depend on (β0, F0) which implies that the
relevant part of the log likelihood for estimating (β0, F0) is given by,

ln(β, F ) =

n∑

i=1

[∆i logF (Ti − β′Xi) + (1−∆i) log{1− F (Ti − β′Xi)}]

=

∫
[δ logF (t− β′x) + (1− δ) log{1− F (t− β′x)}] dPn(t, x, δ),(2)

where Pn is the empirical distribution of the (Ti, Xi,∆i).
The profile maximum likelihood estimator (MLE) of β0 was proved to be con-

sistent by [Cosslett, 1983] but nothing seems to be known about its asymptotic
distribution, apart from its consistency and upper bounds for its rate of conver-
gence. Since the log likelihood as a function of β, obtained by maximizing the log
likelihood with respect to the distribution function F for fixed β and substituting
this maximizer back into the likelihood, is not a smooth function of β, it is unclear
whether the MLE of β0 is

√
n-consistent. [Murphy et al., 1999] derived an n1/3-

rate for the MLE under the condition that the support of the density of T − β′X
is strictly contained in the support of F0, for all β. For a derivation of the efficient
information ℓ̃2β0,F0

given by,

ℓ̃β,F (t, x, δ) = {E(X |T − β′X = t− β′x) − x} f(t− β′x)

·
{

δ

F (t− β′x)
− 1− δ

1− F (t− β′x)

}
,

we refer to [Cosslett, 1987] for the binary choice model, and to [Huang and Wellner,
1993] and [Murphy et al., 1999] for the current status regression model.
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Approaches to
√
n-consistent and efficient estimation of the regression param-

eters were considered by [Klein and Spady, 1993], [Murphy et al., 1999], [Li and
Zhang, 1998], [Shen, 2000] and [Cosslett, 2007] among others.

We define a truncated score function

ψ(ǫ)
n (β, F ) =

∫

F (t−β′x)∈[ǫ,1−ǫ]
[φ(t, x, δ){F (t − β′x)− δ}] dPn(t, x, δ),(3)

where ǫ ∈ (0, 1/2) is a truncation parameter and φ is some weight function. In
this research, we consider estimates of β0, obtained by solving the score equation

ψ(ǫ)
n (β, F̂ ) = 0,

for some estimate F̂ of F . Truncation is used to avoid theoretical and numerical
difficulties. If one starts with the efficient score equation or an estimate thereof, the
solution sometimes suggested in the literature, is to add a constant cn, tending to
zero as n→ ∞, to the factor F (t−β′x){1−F (t−β′x)} which inevitably will appear
in the denominator. This is done in, e.g. [Li and Zhang, 1998]; similar ideas
involving a sequence (cn) are used in [Klein and Spady, 1993] and [Cosslett, 2007].
Picking a suitable sequence is more tricky, though, than just using the simple
device in (3). It is perhaps somewhat remarkable that we can, instead of letting
ǫ ↓ 0, fix ǫ > 0 and still have consistency of our estimators; on the other hand,
the estimate proposed by [Murphy et al., 1999] is also identified via a subset of the
support of the distribution F0, since their assumptions imply that F0 stays strictly
away from 0 and 1 on the support of the density fT−βX (see above). The drawback
of this assumption is that we have no information about the whole distribution
F0.

We consider three different weight functions φ in (3). The first score function

yields a simple estimate of β0 based on the MLE F̂n,β for the distribution function
F in (2), without requiring any smoothing technique, i.e. we consider

ψ
(ǫ)
1,n(β) =

∫

F̂n,β(t−β′x)∈[ǫ,1−ǫ]
x
{
F̂n,β(t− β′x)− δ

}
dPn(t, x, δ),(4)

where F̂n,β is the MLE based on the order statistics of the values Ti − β′Xi, i =
1, . . . , n.

The second score function adds a smooth density estimate fn,h to the first score
function resulting in an efficient estimation algorithm for β0 involving the MLE
F̂n,β . This second score function is defined by,

ψ
(ǫ)
2,nh(β) =

∫

F̂n,β(t−β′x)∈[ǫ,1−ǫ]

xfnh,β(t− β′x)

F̂n,β(t− β′x){1− F̂n,β(t− β′x)}
· {F̂n,β(t− β′x)− δ} dPn(t, x, δ),(5)

where fnh,β is a density estimate defined by,

fnh,β(t− β′x) =

∫
Kh(t− β′x− w) dF̂n,β(w).
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with Kh being a second order kernel function with bandwidth h (see [Groeneboom
et al., 2010]).

The last approach uses a kernel estimate for the distribution function F and
therefore no longer involves the MLE F̂n,β . More precisely, we define the plug-in
estimate

(6) Fnh,β(t− β′x) =

∫
δKh(t− β′x− u+ β′y) dPn(u, y, δ)∫
Kh(t− β′x− u+ β′y) dGn(u, y)

,

whereGn is the empirical distribution function of the pairs (Ti, Xi). An asymptotic
representation of the partial derivatives w.r.t. βk (k = 1, . . . , d) of the profile log
likelihood, defined in (2), is then given by the third score function defined by,

ψ
(ǫ)
3,nh(β) =

∫

Fnh,β(t−β′x)∈[ǫ,1−ǫ]

∂βFnh,β(t− β′x)

Fnh,β(t− β′x){1− Fnh,β(t− β′x)}
· {Fnh,β(t− β′x)− δ} dPn(t, x, δ),(7)

The estimate based on the first score function (4) is proved to be a
√

n−consistent
but inefficient estimate of the regression parameter. Note that this estimate does
not involve any smoothing techniques in the expression of the score function (4)
and is only based on the piecewise constant MLE of F . In the second score function
(5) we incorporate an estimate of the density, based on the MLE, which results
in an extension of the first estimate that is an efficient estimate of the regression
parameter. The last estimate, based on the third score function (7), has the same
asymptotic distribution as the second estimate but does no longer involve the
MLE F̂n,β in its derivation. Both second and third estimates are

√
n-consistent

and asymptotically normal with an asymptotic variance that is arbitrarily (deter-
mined by the truncation device) close to the information lower bound.
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Nonparametric estimation of surface flow lines

Armin Schwartzman

(joint work with Alison Wu)

1. Problem setup

A flow line is an integral curve of the vector field defined by the gradient of a
scalar potential. Specifically, if F : RN → R is a differentiable scalar potential
with gradient ∇F , then a flow line x : R → R

N is a parametrized curve such that

(1)
dx(t)

dt
= −∇F [x(t)],

the negative sign simply specifying a flow from higher to lower potential. If the
potential is a topographical function representing elevation of the Earth’s surface
in a given geographical region, the flow line starting from a fixed initial location
approximates how water flows down from that location when pulled by gravity.

The motivation for this work is not the flow of water but that of ice. Mountain
glaciers flow down mountain valleys at high altitudes and their shapes often follow
water flow lines. Given the widely reported shrinking of mountain glaciers world-
wide [1, 2], there is interest in studying the length of a glacier along its flow line
in order to estimate its retreat, or advance, over time. A digital elevation model
(DEM) describing the surface of the Earth surrounding the location of a mountain
glacier may be obtained from Google Earth (Figure 1a).

a b

Figure 1. (a) DEM for Rhone Glacier in the Swiss Alps (eleva-
tion in meters). (b) Smoothed DEM using bivariate splines; solid
line is the estimated flow line by gradient descent starting from
the location marked by the circle.

The problem of finding flow lines of smooth surfaces has been well studied in
differential geometry [3]. This setting typically requires the surface to be smooth
and known over a fixed domain. Instead, DEMs are measured with error and
are digitally quantized to a fixed rounding precision, resulting in discontinuous
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step functions (Figure 1a). From this point of view, a feasible approach is to
first smooth the DEM by a suitable nonparametric estimator, e.g. using bivariate

splines. Then estimates of integral curves can be found numerically. If ∇̂F rep-
resents the estimated gradient, obtained by differencing of the smoothed surface,

and u = ∇̂F/|∇̂F | is the gradient field normalized to unit length, then a discrete
implementation of (1) yields the iterative solution

(2) x̂(k) = x̂(k − 1)− s · u[x̂(k)], k = 0, 1, . . .

from an initial location x̂(0), where s is a user-defined parameter (Figure 1b).
Because the regions analyzed may be large, containing in the order of 105 pix-

els, applying a smoothing operator to the entire DEM may be computationally
time consuming and difficult to scale when processing DEMs for many mountain
glaciers. For this reason, the goal is to devise a way to estimate the flow line
directly from the unsmoothed surface.

2. Gradient descent by local linear regression

The iterative procedure (2) is in essence a gradient descent algorithm, not unlike
gradient descent algorithms used to solve minimization problems [4], except that
its objective is to estimate a path, rather than just arrive at the minimum. As
such, it is a greedy algorithm that only depends on the data in the immediate
vicinity of the current flow line point x̂(k); effort spent to smooth the DEM far
from the flow line does not contribute to the local estimation of the flow line.

Based on this observation, the proposed idea is to smooth the DEM locally
at each iteration of the algorithm. For a fine enough pixel grid, a local linear
approximation may be sufficient. We call this gradient descent by local linear
regression. At each iteration k:

(1) A plane is fitted by weighted least squares to the observed data with
weights given by a kernel function centered the current flow line point
x̂(k).

(2) The gradient ∇F at x̂(k) is estimated as the gradient of the fitted plane.
(3) The flow line is updated via equation (2).

The algorithm above is closely related to two other algorithms known in statis-
tics and computer science. First, the linear fit in Step 1 above is a multivariate
version of the nonparametric estimation method of local linear regression [5, 6].
As in univariate local linear regression, a smooth solution with fast computation
can be obtained using a smooth kernel function with finite support, such as the
multivariate Epanechnikov kernel.

Second, the advance in the direction of the gradient is akin to the mean shift
algorithm for finding modes of multivariate probability densities [7, 8, 9]. At each
iteration, the mean shift algorithm moves in the direction of the density gradient,
converging to a local maximum of the density along the steepest ascent path. The
flow line algorithm can thus be seen as an extension of the mean shift algorithm
to regression surfaces instead of densities.
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3. Open questions

The gradient descent by local linear regression algorithm is fast and appears to
recover the true flow line in artificial simulations. However, the questions of con-
sistency and selection of the kernel bandwidth selection remain open.

Studies of consistency of the mean shift algorithm have focused on convergence
to the mode of the density, rather than the path taken to get there. Here, we
wish to show that the algorithm can consistently estimate the flow line as pixel
resolution increases, similar to [10]. A suitable definition of error between the
estimated curve x̂ and the true integral curve x is the L2 distance defined via

(3) d2(x̂,x) =

∫ 1

0

[x̂(t)− x(t)]
2
dt,

where both curves are parametrized so that both begin at t = 0, end at t = 1,
and traverse the length of the curve at a constant speed. This distance function
increases both with the departure of the curves from each other and with their
discrepancy in length.

The main difficulty in handling (3) is that the target integral curve cannot be
written explicitly but is only characterized by the fact that it satisfies (1). It also
makes difficult to devise data-dependent bandwidth selection procedures. In local
linear regression, the method of cross-validation is based on the ability to estimate
the error by comparing the estimated function to the observed values. Because
the integral curve is not directly observed but is only a functional of the observed
surface, it is unclear how to estimate the error (3) from the data in a way similar
to cross-validation.
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Divide and Conquer in Non-Standard Problems and the

Super-efficiency Phenomenon

Bodhisattva Sen

(joint work with Cecile Durot, Moulinath Banerjee)

We study how the divide and conquer principle - partition the available data
into subsamples, compute an estimate from each subsample and combine these
appropriately to form the final estimator - works in non-standard problems where
rates of convergence are typically slower than

√
n and limit distributions are non-

Gaussian, with a special emphasis on the least squares estimator of a monotone
regression function. We find that the pooled estimator, obtained by averaging
non-standard estimates across the mutually exclusive subsamples, outperforms
the non-standard estimator based on the entire sample in the sense of pointwise
inference. We also show that, under appropriate conditions, if the number of
subsamples is allowed to increase at appropriate rates, the pooled estimator is
asymptotically normally distributed with a variance that is empirically estimable
from the subsample-level estimates. Further, in the context of monotone function
estimation we show that this gain in pointwise endciency comes at a price - the
pooled estimator’s performance, in a uniform sense (maximal risk) over a class of
models worsens as the number of subsamples increases, leading to a version of the
super-endciency phenomenon. In the process, we develop analytical results for the
order of the bias in isotonic regression for the first time in the literature, which
are of independent interest.

Distributional Limits for Wasserstein Distance on Discrete Spaces

Max Sommerfeld

(joint work with Axel Munk)

The empirical Wasserstein distance between distributions is an attractive tool for
statistical applications but suffers from two major obstacles: First, inference is
hindered by the lack of distributional limits for spaces other than the real line.
Second, the computational cost is prohibitive even for moderately sized problems.
We argue that both obstacles can be overcome in the setting of finite spaces. To
this end, for probability measures supported on finitely many points, we derive
the asymptotic distribution of the Wasserstein distance of empirical distributions
as the optimal value of a linear program with random objective function. As a
consequence statistical inference for sample based Wasserstein distances becomes
doable in large generality. We introduce the concept of directional Hadamard dif-
ferentiability in this context. To approximate the limiting distribution, we discuss
bootstrapping schemes accounting for the non-linear derivative of the Wasserstein
distance and explore modifications that reduce the computational burden.

Nevertheless, when problem sizes become large, exact computation of the Wasser-
stein distance as well as the bootstrap become computationally infeasible. To
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facilitate inference (e.g. testing) in these situations, we lower bound the Wasser-
stein distance and stochastically upper bound the limiting distribution using tree
metrics and give efficient algorithms to compute these bounds.

Adaptation in log-concave density estimation

Richard J. Samworth

(joint work with Arlene Kyoung Hee Kim and Aditya Guntuboyina)

Shape constraints have recently found successful application in many different sta-
tistical problems, including convex regression [Seijo and Sen (2011)], generalised
additive models [Chen and Samworth (2016)], independent component analysis
[Samworth and Yuan (2012)] and many others. This has led to intensive efforts
to understand the theoretical properties of shape-constrained estimators. In some
cases, it is now known that they can achieve minimax optimal rates of convergence;
see, e.g., [Birgé (1987)] for the Grenander estimator, [Baraud and Birgé (2016)] for
ρ-estimators and [Han and Wellner (2016)] for convex regression estimators. How-
ever, the fact that these estimators are tuning-free raises the prospect that they
might adapt to certain data generating mechanisms in the sense of attaining a
faster rate of convergence than that predicted by the ‘worst-case’ minimax theory.

In this work we explore this adaptation phenomenon in the context of log-
concave density estimation. Say a density f on R is log-concave if f = eφ for some
concave φ : R → [−∞,∞). Write F for the set of all log-concave densities. Very

recently, [Kim and Samworth (2016)] proved that if X1, . . . , Xn
iid∼ f0 ∈ F , then

inf
f̃n

sup
f0∈F

Ef0d
2
H(f̃n, f0) ≍ n−4/5,

and the log-concave maximum likelihood estimator (MLE) f̂n based onX1, . . . , Xn

attains this minimax optimal rate. Here, the infimum is over all estimators f̃n of
f0, and d

2
H(f, g) :=

∫∞
−∞(f1/2− g1/2)2 denotes the squared Hellinger distance. Let

dTV(f, g) :=
1

2

∫ ∞

−∞
|f − g|, and d2KL(f, g) :=

∫ ∞

−∞
f log

f

g
,

denote the total variation distance and Kullback–Leibler divergence respectively,
and recall the standard inequalities d2TV(f, g) ≤ d2H(f, g) ≤ d2KL(f, g). We will also
be interested in another notion of divergence: by an application of Remark 2.3 of

[Dümbgen et al. (2011)] to the function x 7→ log f0(x)

f̂n(x)
,

d2KL(f̂n, f0) ≤
1

n

n∑

i=1

log
f̂n(Xi)

f0(Xi)
=: d2X(f̂n, f0).

If log f0 is composed of a relatively small number of affine pieces, then we might

expect f̂n to converge to f0 at an especially fast rate. To this end, for k ∈ N,
say f ∈ F belongs to Fk if log f is k-affine in the sense that there exist intervals
I1, . . . , Ik such that f is supported on I1 ∪ . . . ∪ Ik, and log f is affine on each Ij .
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1. Rates for densities that are close to log-affine on their support

Let T0 := {(s1, s2) ∈ R2 : s1 < s2} and

T := (R× T0)
⋃(

(0,∞)× {−∞}× R
) ⋃(

(−∞, 0)× R× {∞}
)
.

Now, for (α, s1, s2) ∈ T , let

fα,s1,s2(x) :=

{ 1
s2−s11{x∈[s1,s2]} if α = 0

α
eαs2−eαs1

eαx1{x∈[s1,s2]} if α 6= 0,

so F1 = {fα,s1,s2 : (α, s1, s2) ∈ T }. Define ρ : R → [0, 1] by

(1) ρ(x) :=

{
2x−2−e−x(x2−2)
2−e−x(x2+2x+2) for x 6= 0

2 for x = 0,

so ρ is continuous and increasing with ρ(x) ≤ max{ρ(2), ρ(x)} ≤ max(3, 2x).

Theorem 1. Let f0 be any density on R, let X1, . . . , Xn
iid∼ f0 for some n ≥ 5,

and let f̂n denote the corresponding log-concave MLE. Fix any fα,s1,s2 ∈ F1, write

κ∗ := α(s2 − s1), let dTV := dTV(fα,s1,s2 , f0) and let d
(n)
KS := ‖Fnα,s1,s2 − Fn0 ‖∞ +

‖(1−Fα,s1,s2)n−(1−F0)
n‖∞, where Fα,s1,s2 and F0 are the distribution functions

corresponding to fα,s1,s2 and f0 respectively. Then

Ef0dTV(f̂n, f0) ≤ inf
fα,s1,s2∈F1

{
cn
n1/2

+ (1 + cn)dTV + d
(n)
KS

}
,(2)

where cn = cn(fα,s1,s2) := min{2ρ(|κ∗|), 6 logn}.

If f0 = fα,s1,s2 ∈ F1, then dTV = d
(n)
KS = 0, so provided |κ∗| = |α|(s2−s1) is not

too large, the first term in the minimum in the definition of cn guarantees that f̂n
attains the parametric rate of convergence. In particular, if f0 ∈ F1 is a uniform
density on a compact interval, then we may take α = 0 = κ∗, and find that

Ef0dTV(f̂n, f0) ≤
4

n1/2
.

If f0 is any density such that inffα,s1,s2∈F1(dTV + d
(n)
KS ) = o(n−2/5 log−1 n), then

the rate provided by (2) is faster than that given by the worst-case minimax theory.
The proof of Theorem 1 is crucially based on the following analogue of the classical
Marshall’s inequality for decreasing density estimation [Marshall (1970)].

Lemma 1. Let n ≥ 2, let X1, . . . , Xn be real numbers that are not all equal, with

empirical distribution function Fn, and let f̂n denote the corresponding log-concave
MLE. Let X(1) := miniXi and X(n) := maxiXi. Let f0 be a density such that
f0(x) = eα0xh0(x) for x ∈ [X(1), X(n)], where α0 ∈ R and h0 : [X(1), X(n)] → R

is concave, and let κ := α0(X(n) −X(1)). Writing F0 and F̂n for the distribution

functions corresponding to f0 and f̂n respectively, we have

(3) ‖F̂n − F0‖∞ ≤ ρ(|κ|)‖Fn − F0‖∞.
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The original Marshall’s inequality applies to the integrated Grenander estimator
when F0 is concave; in that case, ρ(|κ|) can be replaced with 1. [Dümbgen et
al. (2007)] proved a similar result for the integrated version of the least squares
estimator of a convex density on [0,∞); there, a multiplicative constant 2 is needed.
When f0 is concave on the convex hull of the data, we can take α0 = 0 = κ, and
the multiplicative constant in Lemma 1 can also be taken to be 2.

2. Rates for densities whose logarithms are close to k-affine

Our main result on adaptation over Fk is the following sharp oracle inequality:

Theorem 2. There exists a universal constant C > 0 such that for every n ≥ 2
and every f0 ∈ F , we have

(4) Ef0d
2
KL(f̂n, f0) ≤ inf

k∈N

{
Ck

n
log5/4 n+ inf

fk∈Fk
d2KL(f0, fk)

}
.

A consequence of Theorem 2 is that if log f0 is close to k-affine for some k

in that inffk∈Fk d2KL(f0, fk) = O
(
k
n log5/4 n

)
, then f̂n converges to f0 at rate

O
(
k
n log5/4 n

)
, which is almost the parametric rate when k is small. In particular,

provided k = o(n1/5 log−5/4 n), the rate provided by Theorem 2 is faster than the
minimax rate over all log-concave densities of O(n−4/5).

Acknowledgements: This research is supported by an EPSRC Early Career
Fellowship and a grant from the Leverhulme Trust. The full paper is available as
[Kim, Guntuboyina and Samworth (2016)].

References
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[Dümbgen et al. (2011)] Dümbgen, L., Samworth, R. and Schuhmacher, D. (2011) Approxima-
tion by log-concave distributions with applications to regression. Ann. Statist., 39, 702–730.

[Han and Wellner (2016)] Han, Q. and Wellner, J. A. (2016) Multivariate convex regression:
global risk bounds and adaptation. http://arxiv.org/abs/1601.06844.

[Kim, Guntuboyina and Samworth (2016)] Kim, A. K. H., Guntuboyina, A. and Samworth, R.
J. (2016) Adaptation in log-concave density estimation. http://arxiv.org/abs/1609.00861.

[Kim and Samworth (2016)] Kim, A. K. H. and Samworth, R. J. (2016) Global rates of conver-
gence in log-concave density estimation. Ann. Statist., to appear.

[Marshall (1970)] Marshall, A. W. (1970) Discussion of Barlow and van Zwet’s paper. In Non-
parametric Techniques in Statistical Inference. Proceedings of the First International Sym-
posium on Nonparametric Techniques held at Indiana University, June, 1969 (M. L. Puri,
ed.) pp. 174–176. Cambridge University Press, Cambridge.

[Samworth and Yuan (2012)] Samworth, R. J. and Yuan, M. (2012) Independent component
analysis via nonparametric maximum likelihood estimation. Ann. Statist., 40, 2973–3002.



1844 Oberwolfach Report 32/2016

[Seijo and Sen (2011)] Seijo, E. and Sen, B. (2011) Nonparametric least squares estimation of a
multivariate convex regression. Ann. Statist., 39, 1633–1657.

Elastic Shape Analysis and Shape-Constrained Density Estimation

Anuj Srivastava

1. Shape Analysis Functions and Curves

This abstract has two goals: (1) provide an overview of the elastic framework for
analyzing shapes of Euclidean curves [1], and (2) an application of these ideas in
shape-constrained density estimation.

For shape analysis, we are given a collection of curves β1, . . . , βn : [0, 1] → Rd,
we want to be able to: (1) quantify pairwise differences in their shapes, (2) sum-
marize their shapes treating them as samples from a population, and (3) develop
efficient probability models to capture their shapes. The challenge comes from
the fact that shape is a property that is invariant to certain transformations –
rotation, translation, global scaling, and even parameterizations of curves. Addi-
tionally, shape analysis requires solving the difficult problem of registration – the
optimal matching of points across curves. Most current methods perform shape
analysis in two steps – first, they use some technique to register all the curves of
interest, and then, they perform shape analysis of these registered curves. The
problem with this approach is that registration part often unrelated to the shape
analysis part. Elastic shape analysis is unified comprehensive framework where
both registration and shape analysis are performed jointly.

If we use the standard Hilbert structure, resulting from the L2 norm, for aligning
and comparing curves, then then the solution has several limitations. To under-
stand this, let Γ be the group of all boundary-preserving diffeomorphisms from
[0, 1] to itself. Elements of Γ control registration of curves since for any t ∈ [0, 1],
the points βi(t) and βj(γ(t)) are considered registered. Let the objective function
for alignment be: infγ∈Γ

(
‖βi − βj ◦ γ‖2 + λR(γ)

)
, where R is a roughness penalty

on γ. Not only is this solution not symmetric in βi and βj , but, more importantly,
it is not a metric and, hence, cannot contribute in ensuing statistical analysis.

A better solution is to derive a distance dc that is invariant to the action of
Γ in the following way: dc(βi, βj) = dc(βi ◦ γ, βj ◦ γ) for all γ ∈ Γ. One such
distance can be obtained using a Riemannian elastic metric [2] that satisfies this
invariance property. Although the metric is invariant, it turns out to be too
complicated to use directly in practice. A way out comes from using a different
mathematical representation of functions, as follows. Let F denote the set of
absolutely continuous Rd-valued functions on [0, 1], and for any f ∈ F define its
square-root velocity function (SRVF) ([2]) to be

(1) q : [0, 1] → R
d, q(t) =

β̇(t)√
|β̇(t)|

.
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Figure 1. A geodesic path between a crown shape into a hand
shape. Right panel shows the optimal registration across curves.

In case of d = 1, this expression simplifies to sign(β̇(t))
√

|β̇(t)|. It can be shown

that if β is absolutely continuous, then q is square-integrable. In fact, the map-
ping β 7→ (β(0), q) is a bijection. The inverse map is given by: β(t) = β(0) +∫ t
0 |q(s)|q(s)ds. Furthermore, it can be shown that an elastic Riemannian metric

on F becomes the L2 metric under the change of variables from β to q [2]. Thus,
one can use the L2 norm between SRVFs to register and analyze shapes of curves.
Note that if the SRVF of an β ∈ F is q ∈ L2, then the SRVF of (β ◦ γ), for any

γ ∈ Γ, is given by (q, γ)(t) = q(γ(t))
√
γ̇(t).

To remove the scale variability, we assume that all curves are of unit length; this
implies that for the corresponding SRVF ‖q‖ = 1 or q ∈ S∞. To unify all curves
that have the same shape, one defines an equivalence relation with an equivalence
class given by: [q] = {O(q, γ)|γ ∈ Γ, O ∈ SO(d)} ⊂ S∞. Each equivalence class
represents a shape uniquely, and the set of such equivalence classes is defined to be
the shape space S = S∞/(SO(d) × Γ). With this setup, we can define the elastic
shape metric between any two curves β1 and β2 to be:

(2) ds([q1], [q2]) = inf
O∈SO(d),γ∈Γ

(
cos−1〈q1, O(q2, γ)〉

)
.

This distance is called the shape metric and provides a way for simultaneous regis-
tration of points across the two curves. Since ds is a proper metric, it can be used
for computing sample means, sample covariances, and even some kind of principal
component analysis of sample curves. Since this framework allows a simultaneous
registration of curves, while analyzing their shapes, it is labeled elastic. Fig. 1
shows an example of computing elastic geodesic between two similar, yet quite dif-
ferent shapes under this elastic metric. It also shows the optimal correspondence
between points across the curves.

2. Shape-Constrained Density Estimation

Now we outline an application of this framework on a topic that is more central to
the theme of this workshop – shape-constrained density estimation. This time let
F be the set of all non-negative, real-valued, absolutely-continuous functions on
[0, 1], and F0 ⊂ F be the set of probability density functions (pdfs). While the past
work in this area has sought to impose more generic constraints – unimodality,
log-concavity, etc, we wish to impose a much stronger shape constraint on the
estimated pdf. Furthermore, we wish to do it in a nonparametric way using elastic
shape analysis.



1846 Oberwolfach Report 32/2016

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f ∈ F0 {γi ∈ Γ} {(f ◦ γi)}

Figure 2. Examples of pdfs with the same shape.
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Figure 3. An example of shape-constrained density estimation.

The first task, therefore, is to specify the meaning of shape in this context. The
shape here will be specified by the counts and heights of peaks and valleys in a
function. Therefore, we will consider the time-warping of f as a shape-preserving
operation. That is, for any f ∈ F and γ ∈ Γ, the composition f ◦ γ is said to have
the same shape as f . (Note that (f ◦ γ) may not integrate to one, even if f ∈ F0,
but one can easily rescale it to make it an element of F0.) This equivalence relation
partitions F into equivalence classes that are orbits under Γ: [f ] = {(f ◦γ)|γ ∈ Γ}.
Fig. 2 shows examples elements of an equivalence class. Here we take a pdf f (left
panel) and apply a number of time-warps γis (middle panel) , and the show the
resulting (scaled to be pdfs) functions in the right panel. From our perspective,
they all have the same shape. Under this setting, let [f0] denote a shape class
of interest. Let f1 ∈ [f0] and let Xi ∼ f1 for i = 1, 2, . . . , n be independent
samples. Our goal is to estimate f1 given {Xi} and we pose a maximum-likelihood

estimator as: f̂s = argmaxf∈[f0]

∑n
i=1 log(f(Xi)). We approximate this solution

using f̂s = f0◦γ̂, where γ̂ = argminγ∈Γ‖q(h)k −(q0, γ)‖2. Here q(h)k , q0 are the SRVFs

of f̂
(h)
k (kernel estimate at a bandwidth h) and f0, respectively. The estimate f̂s

is found to be stable with respect to h when it is very small. Fig. 3 shows an
example of this density estimation using simulated data.
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Multiscale feature extraction with applications to classification

Wolfgang Polonik

(joint work with Gabriel Chandler)

1. Introduction

We present a method for feature extraction based on geometric information with
the goal of classification. Our method exhibits multiscale characteristics, and has
relations to various other methodology known from the literature, including the
shorth-plot (see [6]). First we present a brief outline of our proposed methodol-
ogy. For simplicity consider a binary classification problem, and suppose we have
available a training set (Xi, Yi), i = 1, . . . , n, with Yi ∈ {0, 1} indicating the class
label.

For each pair (Xi, Xj) in d-dimensional Euclidean space, we construct a real-
valued function q̂ij(α), 0 < α < 1, which is a quantile function of a certain depth
distribution (see below for details). For each given Xi, we then consider a pair

of functions (q̂
(s)
i (α), q

(d)
i (α)) that are formed by averaging q̂ij(α) over all j with

Yj = Yi (same label) and Yj 6= Yi (different label), respectively. As a result we
have n pairs of functions based on the training set on which we base classifica-
tion via an FDA methodology to be described below. The following figure shows
these functions for the wine data set available at the UC Irvine Machine Learning
Repository. One can see different features for functions in different classes (same
and between).

2. Constructions of the depth quantile functions q̂ij(α)

For a given pair of data (Xi, Xj) ∈ Rd × Rd consider the line ℓij = {s ∈ Rd : s =
γXi + (1 − γ)Xj, γ ∈ R} and the midpoint mij = 1

2 (Xi + Xj). For s ∈ ℓij and
α ∈ (0, π), let Cij(s) denote the cone with tip s and opening angle α containing

mij . Then d̂ij(s) is the Tukey depth of mij among all the data on ℓij obtained by
projecting all the Xj lying in Cij(s) onto ℓij . More precisely,

d̂ij(s) =
1

n
min

{∣∣{k : 〈Xk,
mij

‖mij‖ 〉 ≤ ‖mij‖
∣∣,
∣∣{k : 〈Xk,

mij

‖mij‖〉 ≥ ‖mij‖
∣∣
}
,

so that by our definition the maximum depth of a point is not 1
2 , but rather

⌊nij(s)
2 ⌋, where nij(s) is the (random) number of observations in Cij(s).
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Figure 1. Functions q̂
(s)
i (α) for and q̂

(d)
i (α) for Xi in class 1 and class

2 of wine data, respectively.

We now pick the tip s randomly according to a distribution G, independently of

the data. This leads to
(
n
2

)
random variables d̂ij(S), and q̂ij(α) are defined to be

the quantile functions of the distributions of these random variables. As described
above, for each given Xi these functions q̂ij(α) are then averaged over all j in
either the same class as Xi, or in a different class, respectively. The resulting pairs

of functions (q̂
(s)
i (α), q

(d)
i (α)) are then used for classification. For that we suggest

to use methods from functional data analysis, since they do not require to pre-
specify features in the functions. One possibility is to simply perform functional

PCA on the four classes of functions Q
(s)
k = {q̂(s)i (α), Yi = k}, k = 1, 2 and

Q
(d)
k = {q̂(d)i (α), Yi = k}, k = 1, 2 separately. Combining the scores for each i,

results in n vectors of dimension 2k, and these vectors are then used to train a
classifier (such as a kernel SVM), which then is used to classify newly incoming
unlabelled data. Other methods will be explored (see [4] and literature cited there).

3. Relations to other methods from the literature

Shorth plot. The shorth plot is proposed in [6] (see also [3]). It is a concentration
measure for one-dimensional functions, geared towards mode finding. For d = 1,
the function q̂ij(α) can be shown to be closely related to the shorth plot, but rather
than mode finding being the goal, our approach is targeting antimodes.

Local depth. Local depth has been considered in the literature, for instance, in
[1, 2, 5]. The approach considered in [5] is perhaps the one closest to our approach.
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Figure 2. First panel shows first two fPCA scores for the two groups
of functions, while second panel shows standard PCA scores for original
13-dimensional wine data. It can clearly be seen that the two methods
extract different types of information.

They are considering spatial depths of a data point Xj constrained to a ball of
size h with midpoint Xj . In other words, rather than using cones they are using
balls of varying size, and they are considering spatial depth rather than Tukey
depth of the projected data. However, there are several basic methodological
differences between our approach and [5]. Our approach is not based on depths
of the data points themselves, but on depths of the midpoint between two pairs
of points, and we consider, for each midpoint, a map to R2 rather than a map to
R. In fact, [5] only implicitly consider their local depths as a function in h. Out
approach provides a clearer heuristic understanding for the information contained
in the feature functions. Moreover, in contrast to balls, cones are not local, even
though we obtain some localization effect described below. Last, but not least,
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our methodology also offers an interpretation via a random set approach. On the
whole, all these aspects provide a deeper understanding of the methodology.

4. Some theoretical results

Suppose that X1, . . . , Xn form a random sample from F , and that both F and G
have positive Lebesgue densities. Let dij(s) and qij(α) be the theoretical counter-

parts to d̂ij(s) and q̂ij(α), respectively, meaning that in finding the Tukey depth,
the empirical distribution is replaced by the true distribution F . Note, however,
that both dij(s) and qij(α) are still random quantities, as they still depend on the
pair (Xi, Xj).

Theorem 3. As n→ ∞, we have
√

n

logn
max

1≤i,j≤n
sup
s∈ℓij

∣∣d̂ij(s)− dij(s)
∣∣ = OP (1).

Remark. It is worth mentioning that the rate of convergence in this theorem
does not depend on the dimension d. The reason for this is, that for each given
pair (Xi, Xj) (or for each given line ℓ), the class of cones used in the definition of
our (local) depths obtained by varying s, forms a nested class of sets as long as
the orientation of the cones does not change. Since for each line we only have two
different orientations, this results is a VC-class with index not depending on the
dimension.

For a pair (Xi, Yi), let Fij denote the (one-dimensional) distribution on the line
given by (Xi, Xj), obtained by (orthogonally) projecting all the mass of F onto
this line. With this notation we have the following result:

Lemma 2. For any pair (Xi, Xj), we have

(i) limα→1 qij(α) = min
(
Fij(mij), 1 − Fij(mij)

)
is the global Tukey depth of

mij for the distribution Fij ;

(ii) Localization: limα→0
qij(α)
αd → c

f(mij)
g(mij)

, where c > 0 is known, and g is the

known pdf of G.

As for the consistency of our depth quantile functions we have the following
result:

Theorem 4. Fix 1 ≤ 1 ≤ j ≤ n. Suppose that Hij(t) = G(dij(s) ≤ t|Xi, Xj) has

an inverse H−1
ij that is continuous on a closed interval ∆ ⊂ [0, 1]. Then we have

as n→ ∞ that

sup
δ∈∆

∣∣q̂ij(δ)− qij(δ)
∣∣ = oP (1).
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Smooth estimation of a monotone baseline hazard in the Cox model

Eni Musta

(joint work with Hendrik P. Lopuhaä)

The semi-parametric Cox regression model is a very popular method in survival
analysis that allows incorporation of covariates when studying lifetimes distribu-
tions in the presence of right censored data. Within the Cox model (see [2]), the
conditional hazard rate λ(x|z) for a subject with covariate vector z ∈ Rp, is related
to the corresponding covariate by

λ(x|z) = λ0(x) e
β′
0z, x ∈ R

+,

where λ0 represents the baseline hazard function, corresponding to a subject with
z = 0, and β0 ∈ Rp is the vector of the regression coefficients.

Let X1, . . . , Xn be an i.i.d. sample representing the survival times of n individ-
uals, which can be observed only on time intervals [0, Ci] for some i.i.d. censoring
times C1, . . . , Cn. The observations consists of i.i.d. triplets (T1,∆1, Z1), . . . ,
(Tn,∆n, Zn), where Ti = min(Xi, Ci) denotes the follow up time, ∆i = 1{Xi≤Ci}
is the censoring indicator, and Zi ∈ Rp is a time independent covariate vector.
Given the covariate vector Z, the event time X and the censoring time C are
assumed to be independent.

The regression coefficients β0 can be estimated by the maximum partial likeli-
hood estimator while leaving the baseline distribution unspecified (see e.g. [3], [13]).
The focus of this talk is the estimation of the baseline hazard λ0. Although the
most attractive property of this approach is that it does not assume any fixed
shape on the hazard curve, there are several cases when one would like to impose
order restrictions to better match the practical expectations (see e.g. [6] for an ex-
ample of a decreasing hazard in large clinical trial for patients with acute coronary
syndrome).

Estimation of the baseline hazard function under monotonicity constraints is
considered in [1] and [10]. Traditional isotonic estimators, such as the maximum
likelihood estimator and Grenander-type estimator, proposed by [10], are step
functions and exhibit a non normal limit distribution at rate n1/3. On the other
hand, a long stream of research (see for instance, [11], [8] or Chapter 8 in [7]) has
shown that, if one is willing to assume more regularity on the function of interest,
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smooth estimators are preferred to piecewise constant ones because they can be
used to achieve a faster rate of convergence to a Gaussian distribution and to es-
timate derivatives. In particular, kernel smoothing is a rather simple and broadly
used technique. However, depending on the order of smoothing isotonization, dif-
ferent estimators can be obtained. In [12], three smooth and monotone estimators
are introduced. Then naturally, the question arises whether these estimators ex-
hibit a Gaussian limit distribution at the usual rate n2/5. Our main interest is to
analyze the asymptotic behavior of such methods.

Asymptotic normality of the smoothed Grenander-type estimator in the ordi-
nary right censoring model without covariates can be easily established by using
a Kiefer-Wolfowitz type of result, recently derived in [5] (see [9]). Unfortunately,
the lack of a Kiefer-Wolfowitz result (or of an embedding into the Brownian mo-
tion) for the Breslow estimator, provides a strong limitation towards extending the
previous approach to the more general setting of the Cox model. Therefore, alter-
native techniques are needed. On the other hand, a different method for finding
the limit distribution of smoothed isotonic estimators, which is mainly based on
uniform L2-bounds for the distance between the non-smoothed estimator and the
true function, is developed in [7]. However, applying these techniques to the Cox
model is much more complicated because instead of the usual exponential bounds
for tail probabilities of the inverse process (which is the key step in proving the
L2-bounds) we are able to obtain only polynomial bounds as in Lemma 2 of [4].
Our main result is the following theorem.

Theorem. Suppose λ0 is strictly increasing and let the bandwidth be b = c n−1/5,
(c > 0). Then, under additional smoothness assumptions, for any x ∈ (0, τH),

n2/5
{
λ̃SGn (x) − λ0(x)

}
d−→ N(µ, σ2),

where

µ =
c2

2
λ′′0 (x)

∫
u2k(u) du and σ2 =

λ0(x)

cΦ0(x)

∫
k2(u) du.

and

Φ0(x) =

∫
eβ

′
0z 1{t≥x} dP(t, δ, z).

Once we have the asymptotic normality for the smoothed Grenander-type esti-
mator, following the same lines, we obtain the limit distribution of the smoothed
maximum likelihood estimator and the Grenander-type smooth estimator, which
turn out to be the same. Moreover, we show also that these three estimators are
also proved to be asymptotically equivalent. In addition, we also introduce the
maximum smoothed likelihood estimator and then rely on techniques developed
in [8]. As expected, this estimator exhibits the same variance as the previous ones
but with different asymptotic bias. However, in view of the theoretical results
there is no reason to prefer one method with respect to the others.

Finally, a small simulation study on pointwise confidence intervals shows that
the four estimators are comparable. We also noticed that confidence intervals
constructed using the asymptotic distribution are very much affected by the choice
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of the smoothing parameter and usually do not provide good coverage probabilities.
On the other hand, bootstrap confidence intervals seem to have a better behavior.
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Investigating the Cosmic Web with Persistent Homology

Jessi Cisewski

Data exhibiting complicated spatial structures are common in many areas of sci-
ence (e.g. cosmology, biology), but can be difficult to analyze. Persistent homology
offers a new way to represent, visualize, and interpret complex data by extract-
ing topological features, which can be used to infer properties of the underlying
structures.

Persistent homology can be thought of as finding different ordered holes in data
where dimension 0 holes are connected components, dimension 1 holes are loops,
dimension 2 holes are voids, and so on. The summary diagram is called a “per-
sistence diagram” – a barcode plot conveys the same information in a different
way. These topological summaries can be used as inputs in inference tasks (e.g.
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hypothesis tests). The randomness in the data due to measurement error or topo-
logical noise is transferred to randomness in these topological summaries, which
provides an infrastructure for inference. This allows for statistical comparisons
between spatially complex datasets.

During the talk, we focused on the problem of analyzing the large-scale struc-
ture (LSS) of the Universe, which is an intricate and spatially complex web of
matter. In order to understand the physics of the Universe, theoretical and com-
putational cosmologists develop large-scale simulations that allow for visualizing
and analyzing the LSS under varying physical assumptions. However, as noted
above, rigorous comparisons and inference on such complicated structures can be
problematic. Each point in the 3D dataset represents a galaxy or a cluster of galax-
ies, and persistence diagrams can be obtained summarizing the different ordered
holes in the data.

The topological summaries are interesting and informative descriptors of the
Universe on their own, but hypothesis tests using the persistence diagrams would
provide a way to make more rigorous comparisons of LSS under different theoretical
models. For example, in the received cosmological model dark matter is thought
to be cold; however, while the case is strong for cold dark matter (CDM) there
are some observational inconsistencies with this theory. Another possibility is that
dark matter is warm, or warm dark matter (WDM). It is of interest to see if a
CDM Universe and WDM Universe produce LSS that is topologically distinct.

We present several possible test statistics for two-sample hypothesis tests using
persistence diagrams, carryout a simulation study to investigate the suitableness
of the proposed test statistics using simulated data from a variation of the Voronoi
foam model, and finally we apply the proposed inference framework to WDM vs.
CDM cosmological simulation data.

On Estimation in Tournaments and Graphs under Monotonicity

Constraints

Sabyasachi Chatterjee

Abstract. We consider the problem of estimating the probability matrix govern-
ing a tournament or linkage in graphs. We assume that the probability matrix
satisfies natural monotonicity constraints after being permuted in both rows and
columns by the same latent permutation. The minimax rates of estimation for this
problem under a mean squared error loss turns out to be O(1/n) upto logarithmic
factors. This minimax rate is achieved by the overall least squares estimate which
is perhaps impractical to compute because of the need to optimize over the set
of all permutations. In this talk, we investigate in detail a simple two stage esti-
mator which is computationally tractable. We prove that the maximum squared
error risk of our estimator scales like O(1/

√
n) up to log factors. In addition,

we prove an automatic adaptation property of our estimator, meaning that the
risk of our estimator scales like O(1/n) upto log factors for several sub classes
of our parameter space which are of natural interest. These sub classes include
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probability matrices satisfying appropriate notions of smoothness, and subsume
the popular Bradley Terry Model in the tournament case and the β model and
Stochastic Block Models with monotonicity, in the graph case.

1. Introduction

In this talk we consider two statistical estimation problems. We begin by describing
the two set ups.

• Consider the situation of n teams playing in a league tournament where
each team plays every other team once. The results of the tournament
can be written as a data matrix y of zeroes and ones by setting yij = 1
for i < j if team i wins against team j, and 0 otherwise. Let θij be the
probability that team i wins against team j with θji = 1 − θij whenever
i 6= j. Set θii = 0 for all 1 ≤ i ≤ n as a matter of convention. The upper
triangular part of the data matrix y is modeled as

(1) yij ∼ Bern(θij), ∀1 ≤ i ≤ j ≤ n

where yij in the upper triangular part is jointly independent and Bern(p)
refers to the standard Bernoulli distibution with success probability p.
The lower triangular part of the data matrix is filled in an antisymmetric
manner; that is

(2) yij = 1− yji, ∀1 ≤ j < i ≤ n.

We are interested in the problem of estimating the parameter matrix of
probabilities θij under an assumption commonly made in the ranking liter-
ature known as Strong Stochastic Transitivity(SST) (see [4] and reference
therein). This assumption posits the existence of an ordering among the
teams which is unknown to the statistician. This ordering is then reflected
on the probabilities θij as follows. Let team j have a higher rank (better)
than team k. Then for any team i, the probability of team i defeating team
k would be no less than the probability of team i defeating team j, which
gives θij ≤ θik.

The estimation problem described above was formally introduced in [2]
and the model described above was termed as the Nonparametric Bradley
Terry Model. The terminology is apt because it generalizes the very
commonly used Bradley Terry model ubiquitous in the ranking literature
(see [1]). In this talk, we also refer to this model as the anti-symmetric
model, following the terminology set in [2].

• Consider now the situation of observing a random graph on n nodes with
no self loops. Let θij now be the probability of node i and node j being
linked. Again we set θii = 0 for all 1 ≤ i ≤ n as a matter of convention.
The random graph can be now encoded as an adjacency matrix y of zeroes
and ones. Again, the upper triangular part of the adjacency matrix is
modelled as

(3) yij ∼ Bern(θij) ∀ 1 ≤ i ≤ j ≤ n
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where yij in the upper triangular part is jointly independent. The lower
triangular part of the data matrix is now filled in a symmetric manner;
that is

(4) yij = yji ∀ 1 ≤ j < i ≤ n.

Inspired by the SST assumption in the ranking literature, here we assume
that that the vertices can be arranged in an order (unknown to the statis-
tician) of increasing tendency of getting linked to other vertices. This
assumption will again impose monotonicity constraints on the edge proba-
bilities θij . For example if node j is more ”active” or ”popular” than node k
then for any node i we must have θik ≤ θij . For an example where such an
assumption seems natural, consider a social network with n people labeled
{1, 2, · · · , n} where the ith person has a popularity parameter pi ∈ [0, 1].
The chance that person i and person j are friends is f(pi, pj), where f is
increasing in both co-ordinates to signify that increasing popularity leads
to more friendship ties. The function f also needs to be symmetric, as
the chance that i and j are friends is symmetric in (i, j). Indeed, in this
case there is (at least) one ordering which sorts the nodes of the network
in increasing order of popularity.

We pose and study the problem of estimating the edge probability ma-
trix θ in the above set up, and we refer to this model of random graphs
as the symmetric model, differentiating it from the antisymmetric (tour-
nament) case. Under our model assumptions, the problem of estimating
the edge probabilities is very closely related to the problem of estimat-
ing graphons in the spirit of [3] where we assume monotonicity (without
smoothness) of the graphon in both variables, instead of smoothness as-
sumptions made in [3].

In this talk we look at the two estimation problems in the antisymmetric and
the symmetric model in a unified way. In particular, the purpose of this talk is to
introduce and study the risk properties of a very natural two step estimator which
is described in subsection 1.2. The two step estimator has the same form in both
the models and the technique of analyzing the risk properties of the estimator in
both the models is the same.

1.1. Formal Setup of our problem. In this subsection we define two parameter
spaces; one for the antisymmetric model and one for the symmetric model. Let
us introduce some notation first. Denote Sn to be the set of all permutations
on n symbols. For any n × n matrix θ and any permutation π ∈ Sn we define
θ ◦ π to be the n × n matrix such that (θ ◦ π)ij = θπ(i),π(j). Let Π be the n × n
permutation matrix corresponding to the permutation π ∈ Sn. Then we can also
write θ ◦ π = ΠT θ Π.

Define the space of matrices

T = {θ ∈ [0, 1]n×n : θij ≤ θik ∀i < k < j; θji = 1− θij ∀ i 6= j; θii = 0 ∀i}.
(5)
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Any matrix in T when only looked at the upper triangular part above the diagonal
is non increasing in any row (as j grows) and non decreasing in any column (as
i grows). The lower triangular part is just 1 minus the upper triangular part
and the diagonals are zero. Basically T is the space of matrices which satisfy
the SST assumption with known ranking where the ranking is such that player
n is best, followed by player n − 1 and so on. Then our parameter space for the
antisymmetric model can be written as

(6) ΘT = {θ ◦ π : θ ∈ T , π ∈ Sn}.
Similarly, define the space of matrices

G = {θ ∈ R
n×n : θij ≤ θik ∀i < j < k; θji = θij ∀i 6= j; θii = 0 ∀i}.(7)

Any matrix in G when only looked at the upper triangular part above the diagonal
is non decreasing in both rows and columns. The lower triangular part is sym-
metrically filled, and the diagonals are zero. Again, G is the space of adjacency
matrices which are consistent with the monotonicity restrictions imposed by the
ordering where node n is most popular followed by node n − 1 and so on. Then
our parameter space for the symmetric model can be written as

(8) ΘG = {θ ◦ π : θ ∈ G, π ∈ Sn}.
For Θ = ΘT or ΘG we study the problem of estimating the underlying matrix

of probabilities θ. The loss function we consider is the mean Frobenius squared
metric defined for any two matrices θ and θ̃ as follows:

(9)
1

n2
‖θ̃ − θ‖2 :=

1

n2

n∑

i=1

n∑

j=1

(θij − θ̃ij)
2.

We will also use the notation ‖A‖ to denote the Frobenius norm of the matrix A.

1.2. The estimator. Our estimator consists of the following steps. The idea is to
first get an estimated ranking and then use this ranking to estimate the parameter
matrix.

(a) Sorting

Let ri =
∑n
j=1 yij be the ith row sum of the data matrix y. In the first

step we sort the vertices according to the row sums (r1, . . . , rn) of the data
matrix y and obtain a permutation σ̂ such that r(σ̂(1)) ≤ · · · ≤ r(σ̂(n)),
which could be thought of as an estimator of π−1. We call this step the
sorting step, which we use to construct a sorted data matrix y◦σ̂ defined as
(y◦ σ̂)ij = (yσ̂(i), yσ̂(j)). In case there are ties in the vector r = (r1, . . . , rn),
break the ties uniformly at random while obtaining the permutation σ̂.

(b) Projection

In the second step we project the sorted data matrix y ◦ σ̂ onto the
relevant parameter space. In the antisymmetric model, we project onto
the set T ∩ [0, p]n×n and in the symmetric model, we project onto the set
G ∩ [0, p]n×n. Both T and G are closed convex sets of matrices and hence
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there exists a unique projection onto them. Let the projection operator
be denoted by P in both cases.

We now unsort the projected and sorted data matrix P (y ◦ σ̂) by apply-
ing the permutation σ̂−1. Finally we divide the resulting matrix by p to

obtain our estimator. Thus our final estimator θ̂ for the parameter matrix
θ can be written as

θ̂ =
1

p

(
P (y ◦ σ̂) ◦ σ̂−1

)
.

Note that in the antisymmetric (tournament) model, the row sums of the data
matrix y correspond to the number of wins or victories for each player, and the
column sums of the data matrix correspond to the number of defeats for each
player. Hence our sorting step just sorts the teams according to the number of
victories (or equivalently the number of defeats, as sum of victory and defeat of
each player is n − 1). Similarly, in the symmetric (graph) model, the row sums
of the adjacency matrix y correspond to the empirical degrees of the nodes in the
graph. Therefore, our sorting step sorts the vertices according to the empirical
degrees. Our sorting step is thus perhaps the simplest way to get an idea about
the underlying latent ranking.

2. Main results

Having defined our estimator, we are now ready to state our main results.

Definition 1. Henceforth we will use the notation Θ in place of ΘT or ΘG . The
implication is that all results hold with Θ replaced by either of the two parameter
sets.

For any θ ∈ Θ define the row sums Ri(θ) :=
∑

j∈[n] θij for i ∈ [n]. Also define

the smoothness coefficient of θ by

Q(θ) :=
∑

i∈[n]

max
j:|Rj(θ)−Ri(θ)|≤2

√
2n logn

‖θi. − θj.‖2.

Theorem 5. There is a universal constant C < ∞ such that for all θ ∈ Θ we
have

1

n2
E‖θ̂ − θ‖2 ≤ C

[ (log n)2
n

+
Q(θ)

n2

]
.(10)

where C is some universal constant.

The strength of Theorem 5 is that it is adaptive in the parameter θ, and gives
tight asymptotic bounds for several sub-parameter spaces of interest. All our
results will be derived as corollaries of this theorem.

2.0.1. Worst case risk. As a first application of Theorem 5, we deduce the worst
case risk of our estimator.
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Corollary 1. There is a universal constant C < ∞ such that for all θ ∈ Θ we
have

1

n2
E‖θ̂ − θ‖2 ≤ C

√
logn

n
,(11)

where C is some universal constant.

Proof. To begin, fix i, j ∈ [n] such that |Ri(θ)−Rj(θ)| ≤ 4
√
n logn. Then we have

n∑

k∈[n]

[θik − θjk]
2 ≤

n∑

k∈[n]

|θik − θjk| = |Ri(θ)−Rj(θ)| ≤ 2
√
2n logn.

The above bound along with Theorem 5 completes the proof of the lemma. �

2.1. Adaptation. Our next theorem reveals automatic adaptation properties of
our estimator. Even though our estimator provably achieves O(1/

√
n) rate of

estimation globally, it does achieve improved rates of estimation for θ ∈ Θ for
subclasses of parameter space of interest.

2.1.1. Block matrices.

Definition 2. For k ∈ [n], let Θ(k) ⊆ Θ denote the subset of all k × k block
matrices with equal sized blocks.

Corollary 2. There exists a universal constant C <∞ such that

sup
θ∈Θ(k)

1

n2
E‖θ̂ − θ‖2 ≤ C

[min(k,
√
n) logn

n
+

(log n)2

n

]
.

for some universal constant C <∞.

2.1.2. Holder-continuous matrices.

Definition 3. For α,L > 0 let Θ(α,L) ⊂ Θ denote the subset of all Holder
continuous matrices in Θ with order α and Holder constant L, i.e. θ satisfies

|θi,j − θk,l| ≤ L
(∣∣∣ i− k

n

∣∣∣
α

+
∣∣∣ j − l

n

∣∣∣
α)

for all i, j, k, l ∈ [n].

Corollary 3. There exists a universal constant C <∞ such that

sup
θ∈Θ(α,L)

1

n2
E‖θ̂ − θ‖2 ≤ C

[
max(1, L)

logn

n
2α+1
2α+2

+
(logn)2

n

]

Even though the worst case risk over the class of Lipschitz matrices is Õ(n−5/4),
if we further assume that θ is lower Lipschitz as well, we get an improved MSE
of Õ(n1). More generally, the same holds for lower Holder continuous as well. To
make this precise we propose the following definition:

Definition 4. For α,L, L′ > 0 let Θ(α,L, L′) ⊂ Θ(α,L) denote the subset of all
lower Holder continuous matrices with lower Holder constant L′, i.e.

|θi,j − θk,l| ≥ L′
(∣∣∣ i− k

n

∣∣∣
α

+
∣∣∣ j − l

n

∣∣∣
α)
.
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Corollary 4. There exists a universal constant C <∞ such that

sup
θ∈Θ(α,L,L′)

E‖θ̂ − θ‖2 ≤ C
[( L
L′

)2 logn
n

+
(logn)2

n

]
.

2.1.3. Generalized Bradley Terry+Generalized β model.

Definition 5. Let ΘH,F,M ⊂ ΘH denote the subset of all tournament matrices
such that θi,j = F (wi−wj), where F is a symmetric distribution function on R (i.e.
F (x)+F (−x) = 1, ∀x) with a continuous strictly positive density function function,
and {wi}i∈[n] is a sequence of real numbers in [−M,M ]. This is the generalized

Bradley Terry model. In particular, setting F (x) = ex

1+ex and F (x) = Φ(x) (Φ(.)

is the normal distribution function) we get the usual Bradley Terry model and the
Thurstone model respectively.

Definition 6. Let ΘG,F,M ⊂ ΘG denote the subset of all tournament matrices
such that θi,j = F (wi + wj), where F is a distribution function on R with a
continuous strictly positive density function function, and {wi}i∈[n] is a sequence

of real numbers in [−M,M ]. In particular for the choice F (x) = ex

1+ex gives the
β model on networks, which has originated from Social Sciences and has been
studied in Statistics. The class ΘG,F,M generalizes the usual β model to allow for
a more general class of distribution functions.

Corollary 5. (a) There exists a universal constant C <∞ such that

sup
θ∈ΘH,F,M

E‖θ̂ − θ‖2 ≤ C
[( L
L′

)2 logn
n

+
(log n)2

n

]
,

where L := sup|x|≤2M f(x) and L′ := inf |x|≤2M f(x).

(b) There exists a universal constant C <∞ such that

sup
θ∈ΘG,F,M

E‖θ̂ − θ‖2 ≤ C
[( L
L′

)2 logn
n

+
(log n)2

n

]
,

where L := sup|x|≤2M f(x) and L′ := inf |x|≤2M f(x).
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Dimension Reduction

Stephan Huckemann

(joint work with Benjamin Eltzner)

For reduction of non-Euclidean data to a given dimension m one would ideally use
a large (parametric) family of subspaces of dimensionm. For a multiscale approach
one might even want to have (backward) nested families of such subspaces,

{µ} = p0 ⊂ p1 ⊂ . . . ⊂ pm = Q .(1)

For the sample space Q being a sphere, [9] proposed backward nested spheres
analysis giving a sequence of (small) subspheres each of codimension one in one
another. Often, the geometry of the sample space does not easily admit such a
high-dimensional procedure, for instance, if the sample space is a polysphere

Q = S
r1 × . . .× S

rk , rj ∈ N, j = 1, . . . , k, k ∈ N ,

as in [10]. Already for the classical torus T = S× S intrinsic PCA usually leads to
dense PCs which cannot be used for statistical purposes.

We propose to change the geometry in a data driven way into that of a sin-
gle stratified sphere which is identified with itself along some lower dimensional
subspheres. For T this would mean, cutting open along a circle, ideally far away
from data, collapsing each circular shore to a point while keeping these two points
identified according to the topology of T. This gives the geometry of a two-sphere
with north and south pole identified, say.

We argue – endorsed by improved data analysis, cf. [7] – that the geometry of
a sphere – possibly with stratifications – is even more suitable than the original
one of a polysphere, using composite principal nested sphere from [10], or using
tangent space PCA, i.e. a Euclidean geometry in tangent space. A special case is
given in case of tori (r1 = 1 = . . . = rk above), which leads to an improved data
analysis for RNA secondary structure (i.e. the geometry of RNA backbones, cf.
[8]).

In order to investigate asymptotic properties of sequences of subspaces as in
(1), where each sequence is viewed as a single descriptor of data or a population,
we introduce the more general setup of backward nested families of descriptors.

Definition 7. A separable topological space Q, called the data space, admits
backward nested families of descriptors (BNFDs) if

(i) there is a collection Pj (j = 0, . . . ,m) of topological separable spaces with
continuous maps dj : Pj × Pj → [0,∞) vanishing on the diagonal;

(ii) Pm = {Q};
(iii) every p ∈ Pj (j = 1, . . . ,m) is itself a topological space and gives rise to a

topological space ∅ 6= Sp ⊂ Pj−1 which comes with a continuous map

ρp : p× Sp → [0,∞) ;
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(iv) for every pair p ∈ Pj (j = 1, . . . ,m) and s ∈ Sp there is a measurable map
called projection

πp,s : p→ s .

For j ∈ {1, . . . ,m} and k ∈ {1, . . . , j} call a family

f = {pj, . . . , pj−k}, with pl−1 ∈ Spl , l = j − k + 1, . . . , j

a backwards nested family of descriptors (BNFD) from Pj to Pj−k. The space of
all BNFDs from Pj to Pj−k is given by

Tj,k =
{
f = {pj−l}kl=0 : pl−1 ∈ Spl , l = j − k + 1, . . . , j

}
⊆

k∏

l=0

Pj−l .

For k ∈ {1, . . . ,m}, given a BNFD f = {pm−l}kl=0 set

πf = πpm−k+1,pm−k ◦ . . . ◦ πpm,pm−1 : pm → pm−k

which projects along each descriptor. For another BNFD f ′ = {p′j−l}kl=0 ∈ Tj,k
set

dj(f, f ′) =

√√√√
k∑

l=0

dj(pj−l, p′
j−l)2 .

Definition 8 (Factoring Charts). If Tj,k and P j−k carry smooth manifold struc-

tures near f ′ = (p′j , . . . , p′j−k) ∈ Tj,k and p′j−k ∈ P j−k, respectively, with open

W ⊂ Tj,k, U ⊂ P j−k such that f ′ ∈ W , p′j−k ∈ U and local charts

ψ :W → R
dim(W ), f = (pj , . . . , pj−k) 7→ η = (θ, ξ), φ : U → R

dim(U), pj−k 7→ θ

we say that the chart ψ factors if with the projections

πP
j−k

: Tj,k → P j−k, f 7→ pj−k, πR
dim(U)

: Rdim(W ) → R
dim(U), (θ, ξ) 7→ θ

we have

φ ◦ πP j−k |W = πR
dim(U) |ψ(W ) ◦ ψ .

Within this setup we can define analogs of Fréchet means.

Definition 9. Random elements X1, . . . , Xn
i.i.d.∼ X on a data space Q admitting

BNFDs give rise to backward nested population and sample means (abbreviated as
BN means)

{Efj

: j = m, . . . , 0}, {Ef
j
n
n : j = m, . . . , 0}

recursively defined via fm = {Q} = fmn , i.e. pm = Q = pmn and

Ef
j−1

= argmin
s∈S

pj

E[ρpj (πfj ◦X, s)2], f j = {pk}mk=j

E
fj−1
n
n = argmin

s∈S
p
j
n

n∑

i=1

ρpjn(πfj
n
◦Xi, s)

2, f jn = {pkn}mk=j .
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where pj ∈ Ef
j

and pjn ∈ Ef
j
n is a measurable choice for j = 1, . . . ,m.

We say that a BNFD f = {pk}mk=0 gives unique BN population means if Ef
j

=
{pj} with f j = {pk}mk=j for all j = 0, . . . ,m.

Each of the Ef
j

and E
fj−1
n
n is also called a generalized Fréchet mean.

Under reasonable assumptions we show strong asymptotic consistency in the
sense of [2], which in our scenario translates to the following.

Theorem 6. Under assumptions specified in [6], {Ef
m
n
n , . . . , E

fk
n
n } converges a.s.

to {pm, . . . , pk} in the sense that ∃Ω′ ⊂ Ω measurable with P(Ω′) = 1 such that for
all j = k, . . . ,m, ǫ > 0 and ω ∈ Ω′, ∃N = N(ǫ, ω) with

∞⋃

r=n

E
fj
r
r ⊂ {p ∈ Pj : dj(p

j , p) ≤ ǫ} ∀n ≥ N, ω ∈ Ω′ .

Also under reasonable assumptions we show asymptotic normality for entire
sequences, and under factoring charts also for each single final element.

Theorem 7. In case of unique BN population means f ′k−1
with f ′j = {p′m−1

, . . . ,

p′j} and BN sample means {Ef
m−1
n
n , . . . , E

fk−1
n
n } due to a measurable selection pjn ∈

E
fj
n
n , f jn = {pm−1

n , . . . , pjn}, j = k − 1, . . . ,m − 1, under assumptions specified in
[6],

(i)
√
nHψ

(
ψ−1(fk−1

n )−ψ−1(f ′k−1
)
)
→ N (0, Bψ) with a suitable chart ψ and

matrices Hψ and Bψ
(ii) If additionally Hψ > 0 then fk−1

n satisfies a Gaussian
√
n-CLT with

√
n
(
ψ−1(fk−1

n )− ψ−1(f ′k−1
)
)
→ N (0,Σψ), Σψ = H−1

ψ BψH
−1
ψ .

(iii) If additionally the chart ψ factors then also pk−1
n satisfies a Gaussian

√
n-

CLT with
√
n
(
φ−1(pk−1

n )− φ−1(p′
k−1

)
)
→ N (0,Σφ), Σφ =

(
Σψik

)dim(Pk−1)

i,k=1

In particular, we show that the “reasonable” assumptions are fulfilled under
standard assumptions in the scenario of backward nested great and small spheres
as well in case of intrinsic means on first principal geodesic components on mani-
folds and non-manifold Kendall shape spaces. We point to open problems, as these
standard assumptions for manifolds and stratified spaces are still under general
investigation, e.g. [4, 3, 5, 1]. Specifically, non-Gaussianity and other asymptotic
rates may arise from phenomena of stickiness, possibly due to the stratification
(negative curvature), and of smeariness, possibly due to cut loci (positive curva-
ture).
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Constrained or unconstrained inference in long-range dependent

locally stationary processes?

Holger Dette

(joint work with Philip Preuß , Kemal Sen)

Many time series [like asset volatility or regional temperatures] exhibit a slow de-
cay in the sample autocorrelation function and simple stationary short-memory
models can not be used to analyze this type of data. However, it was pointed out
by several authors that the observation of “long memory” features in the sample
autocovariance function can be as well explained by non stationarity and that it is
of importance to distinguish between long-memory and non-stationarity [see [7],
[9] or [4] among many others].
[6] is the first reference investigating the existence of “long memory” if non-
stationarities appear in the time series. In this article a procedure to discrimi-
nate between a long-range dependent model and a process with a monotone mean
functional and weakly dependent innovations is derived. Later on, [5] developed
a method for distinguishing between long-memory and small trends. [8] tested
the null hypothesis of a constant long-memory parameter against a break in the
long-memory parameter. Furthermore, [3], [2] and [10] investigated CUSUM and
likelihood ratio tests to discriminate between the null hypothesis of no long-range
and weak dependence with one change point in the mean.

These procedures are only designed to discriminate between long-range depen-
dence and a very specific change in the first-order structure, like one structural
break and two stationary segments of the series. This is rather restrictive, and in
this talk we fill this gap and to develop present a test for the null hypothesis of no
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long-range dependence in a framework which is flexible enough to deal with dif-
ferent types of non-stationarity in both the first and second-order structure. Our
approach uses an estimate of a (possibly time varying) long-range dependence pa-
rameter, which is derived by a sequence of approximating tvFARIMA models with
a slightly enlarged parameter space. This statistic estimates a functional which
vanishes if and only if the null hypothesis of a short-memory locally stationary
process is satisfied. We prove consistency and asymptotic normality of a corre-
sponding test statistic under the null hypothesis of no long-range dependence. As
a consequence we obtain a nonparametric test, which is based on the quantiles of
the standard normal distribution and therefore very easy to implement.
The talk is based on [1] and the method utilizes some non-intuitive features of av-
erages of unconstrained estimators in models with a constrained parameter space.
In order to make these phenomena visible we provide in the second part of the talk
a heuristic motivation of our approach in the context of the classical nonparametric
regression model with repeated observations.
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Volume and Perimeter Estimation Using the Sample α-Shape or the

Sample α-Convex Hull

Ery Arias-Castro

(joint work with Beatriz Pateiro-López, Alberto Rodŕıguez-Casal)

The area of geometric and topological statistics aims at learning geometrical or
topological features of a distribution based on a sample from that distribution. Ex-
amples include estimating the number of connected components of the support [6],
the intrinsic dimensionality [27, 28] and the homology [29, 8, 38, 11, 34, 10, 20] of
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the support, the Cheeger constant [3, 35] of the support, the gradient lines [1, 14]
and ridges [12] and the decomposition into basin of attraction (Morse theory) [9,
13], the Minkowski content [16], etc.

The presentation was based on two recent papers [4, 2] that address the closely
related problems of volume and perimeter of the boundary of the support. In more
detail, we consider the model where we observe an IID sample X1, . . . , Xn ∈ Rd

from the density f . Based on the data, our aim is to estimate the support S =
supp(f).

Related work. Under this model, [23, 33, 19, 7] consider the case where convex S
is convex and study the plug-in estimator based on the convex hull of the sample,
both for the volume and the perimeter. Also under convexity, [5] derive the UMVU
(uniformly of minimum variance among unbiased estimators) under Poissonization.
[26, 22] consider the case where S is a boundary fragment

S = {(z1, . . . , zd) ∈ [0, 1]d : zd ≤ h(z1, . . . , zd−1)}
and estimate functionals of the form∫

S

ϕ(z)dz

ϕ ≡ 1 gives the volume of S. Minimax rates are obtained (upper and lower
bounds).

Another model considered in the literature is the following. Assume that f
is supported on [0, 1]d. One observes (Z1, Y1), . . . , (Zn, Yn), where Z1, . . . , Zn are
IID uniform in [0, 1]d (or a regular grid) and Yi|Zi ∼ Bern(p(Zi)) where p(z) :=
1
2 + anI{z ∈ S}. (an > 0 control the signal strength.) Under this other model,
[17, 31, 30] estimate the Minkowski content of the boundary ∂S. [24] estimate
the surface area of ∂S based on a Delaunay triangulation. [25] consider the case
where S is a boundary fragment (in dimension d = 2) and estimate functionals of
the form ∫ 1

0

ψ(t, h(t), h′(t))dt

ψ(a, b, c) =
√
1 + b2 gives the perimeter, i.e., the length of the curve {(t, h(t)) : t ∈

[0, 1]}. Minimax rates are obtained (upper and lower bounds).

Contribution. In [4, 2] we make some smoothness assumptions on the support.
Specifically, we assume that both S and Sc satisfy the r-rolling condition. This
is equivalent to assuming that ∂S has reach at least r, or that S and Sc are
r-convex [32, 21, 15, 36, 37].

For volume estimation, we use the plug-in estimate based on the α-convex hull of
the sample [32], followed by a bias correction. We analyze the resulting estimator
and find that it achieves the minimax rate for this problem (under the assumed
smoothness). The bias correction step is essential for this, confirming previous
findings in similar settings [26, 22].

For perimeter estimation (in d = 2), we use the α-shape the sample [18]. (We
could also use the boundary of the α-convex hull of the sample. In fact, the sets of
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points defining the α-convex hull and the α-shape coincide under mild assumptions
on the point cloud.) We analyze the resulting estimator. We speculate, based on
closely related work [25], that this estimator does not achieve the minimax rate
due to its bias. However, unlike [25] (who work in the context of a boundary
fragment model), we do not know how to correct the bias. This remains an open
problem for future research.
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[4] E. Arias-Castro and A. Rodŕıguez-Casal. On estimating the perimeter using the alpha-
shape. arXiv preprint arXiv:1507.00065, 2015. To appear in the Annales de l’Institut Henri
Poincaré.
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Structured Nonparametric Curve Estimation

Enno Mammen

In structured nonparametrics one considers nonparametric or semiparametric mod-
els with several nonparametric components: f1,...,fq, where one only is interested
in one component, f1 say. Thus one thinks of applications where one wants to
construct confidence bands or pointwise confidence sets for f1 or one wants to
test hypothesis on the component f1 but where the other components f2,...,fq are
nuissance nonparametric components that are of no specific interest.

A first class of examples is structured nonparametric regression where one ob-
serves i.i.d. Rq × R-valued random variables (X i, Y i) (i = 1, .., n) with

Y i = G[θ, f1, ..., fq](X
i) + εi
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for some f1,...,fq belonging to some specified function classes and for a finite-
dimensional parameter θ and with error variables εi that fulfill:

E[εi|X i] = 0.

Here we suppose that statistical inference focusses on one of the components f1,
..., or fq, but not primarily on the regression function G[θ, f1, ..., fq]. Perhaps,
the simplest example of structured nonparametric regression is the additive model
where

G[c, f1, ..., fq](x) = c+ f1(x1) + ...+ fq(xq).

Other examples in structured nonparametric regression include: additive models
with monotone component functions, additive models with increasing number of
additive components and sparsity, generalized additive models with unknown link
function G[f0, ..., fq](x) = f0(f1(x1) + ... + fq(xq)), varying coefficient models

G[fj,k : j ∈ {1, ..., d}, k ∈ Ij ](x) =
∑d

j=1 xj
∑
k∈Ij fj,k(xk), age-cohort-period

models: G[f1, f2, f3](x) = f1(x1)+ f2(x2)+ f3(x1 +x2), age-cohort-period models
with operational time: G[f1, f2, f3, f4](x) = f1(x1) + f2(f4(x1)x2) + f3(x1 + x2).

In structured nonparametric density estimation one observes i.i.d. Rq-valued
random variables X i (i = 1, .., n) with density

G[θ, f1, ..., fq](x)

for some f1,...,fq belonging to some specified function classes. A specification that
we will discuss below is the nonparametric chain ladder model where G[f1, f2](x) =
f1(x1)f2(x2)Ix1+x2≤1;x1,x2≥0.

In our talk we report on some ongoing research projects with Young Kyung Lee
(Seoul), Maŕıa Dolores Mart́ınez Miranda (Granada, London), Jens Perch Nielsen
(London), Byeong Park (Seoul) where we discussed the chain-ladder model and
some of its modifications. Furthermore, we we will state some asymptotic oracle
results for high-dimensional additive models that were obtained in a project with
Karl Gregory (Mannheim) and Martin Wahl (Berlin).

Estimates in the chain-ladder model can be based on kernel smoothing estimates
ĝ1 and ĝ2 with kernel K and bandwidths h1 and h2 of g1 and g2 where

g1(x) =

∫ 1−x

0

f(x, y)w(x, y) dy, g2(y) =

∫ 1−y

0

f(x, y)w(x, y) dx

with some weight function w(x, y) > 0. Our estimators ĉf , f̂1 and f̂2 of cf , f1 and

f2 are given as solutions of the equation F̂(ĉf , f̂1, f̂2) ≡ 0 under the constraint∫ 1

0 f̂1(u)du = 1 and
∫ 1

0 f̂2(v)dv = 1, with

F̂(c, r1, r2)(x, y) =

(
c r1(x)

1
ĝ1(x)

∫ 1−x
0

r2(v)w(x, v)dv − 1

c r2(y)
1

ĝ2(y)

∫ 1−y
0

r1(u)w(u, y)du − 1

)
.

Under regularity assumptions one gets the following result.
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Theorem 1 The following expansion holds for δ > 0

f̂1(x) = f1(x)−
1
nh1

∑n
i=1K

(
Xi−x
h1

)
w(Xi, Yi)− E

[
K
(
Xi−x
h1

)
w(Xi, Yi)

]

g1(x)

+h21b1(x) + oP (
1√
nh1

+ h21),

uniformly for δ ≤ x, y ≤ 1 − δ with b1, b2 given as solutions of a deterministic
linear integral equations.

The theorem can be used to develop asymptotic distribution theory for f̂1.
Extensions of the chain-ladder model in our project include varying time scales
(operational time) and seasonal effects.

In the last part of this note we report on our asymptotic oracle results for
high-dimensional additive models. We compare estimation of f1 in the additive
model

Y i = c+ f1(X
i
1) + ...+ fq(X

i
q) + εi

with estimation of f1 in the oracle model Zi = c+ f1(X
i
1) + εi. For identification

we assume that E[fj(X
i
j)] = 0. We will argue that f1 can be estimated in an

additive model asymptotically as well as f1 in the oracle model. This means that
not knowing f2,...,fq does not lead to a loss of statistical information on f1, at
least asymptotically up to first order. We now give a more precise formulation of
this asymptotic equivalence result. Suppose that a smoothing estimator

f̂oracle1 (x1) = SMOOTHXi
1→Zi(x1)

of f1 in the oracle model Zi = c + f1(X
i
1) + εi is given. We now ask: can we

construct an estimator f̂1(x1) of f1 in the additive model Y i = c+ f1(X
i
1) + ...+

fq(X
i
q) + εi with

‖f̂1 − f̂oracle1 ‖∞ = oP (δn),

where δn is the rate of convergence of f̂oracle1 to f1. The answer is: Yes!
For the case that the number q of functions is fixed, this has been shown in

Horowitz, Klemelä and Mammen (2006). For a sparse high-dimensional additive
model such a result has been achieved in Gregory, Mammen and Wahl (2016).
There it has been allowed that the number q of functions may grow with n, even
with q > n, but that the number s0 of nonzero functions may grow, but only with
s0 < n.

The basic idea of the construction in these papers is the observation that for a
nonparametric estimator f̃oracle1 with low bias and high variance (undersmoothing)
it holds that

f̂oracle1 (x1)(= SMOOTHXi
1→Zi(x1)) = SMOOTHXi

1→Z̃i(x1) + oP (δn),(1)

where Z̃i = f̃oracle1 (X i
1). This means that ”smoothing ≈ smoothing ◦ under-

smoothing”. This property holds for many smoothing estimators as kernel esti-
mators, smoothing splines, orthogonal series estimators, Pinsker estimator, ...
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Horowitz, Klemelä and Mammen (2006) and Gregory, Mammen and Wahl
(2016) state conditions under which it is possible to construct undersmoothing

estimators f̃1, ..., f̃q in the additive model such that:

Z̃i = f̃oracle1 (X i
1) = f̃1(X

i
1) + oP (δn).(2)

This implies for f̂1(x1) = SMOOTHXi
1→Ỹ i(x1) with Ỹ

i = f̃1(X
i
1) that:

f̂1(x1) = SMOOTHXi
1→Z̃i(x1) + oP (δn) = SMOOTHXi

1→Zi(x1) + oP (δn)(3)

= f̂oracle1 (x1) + oP (δn).

Here is the argument again: For one simple undersmoothing estimator f̃oracle1

in the oracle model one shows the existence of an estimator f̃1 with (2). Then one

gets for all estimators f̂oracle1 in the oracle model with (1) that (3) holds for the

choice for f̂1(x1) = SMOOTHXi
1→Ỹ i(x1) with Ỹ i = f̃1(X

i
1). This is the oracle

result for additive models with a fixed number of additive components and for
sparse high-dimensional additive model. It has to be studied to which extent the
oracle results of additive models carry over to other nonparametric models? The
practical implementation of the two-step procedure needs some further work where
also smoothing parameter selection has to be discussed.
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