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Abstract. The Oberwolfach conference “Topologie” is one of only a few
opportunities for researchers from many different areas in algebraic and geo-
metric topology to meet and exchange ideas. This year we emphasized two
topics of recent interest: representation stability and motivic homotopy the-
ory, with their respective applications to arithmetic, classical homotopy the-
ory as well as algebraic geometry. Double lectures on each topic where given
by Benson Farb and Dan Isaksen. The rest of the program spanned a wide
range of topics ranging from topological Hochschild homology to obstruction
theory of positive scalar curvature, via, to name a few, K–theory of C∗–
algebras, modular characteristic classes, Goodwillie calculus, 2-Segal spaces
and deformation quantization.

Mathematics Subject Classification (2010): 55-xx, 57-xx, 18Axx, 18Bxx.

Introduction by the Organisers

This topology conference in Oberwolfach was organized by an organizing commit-
tee consisting of Mark Behrens, Peter Teichner, Nathalie Wahl and Michael Weiss,
the first organizer being new on the team. About 50 mathematicians participated,
working in many different areas of algebraic and geometric topology.

The talks were of three types. There were 12 regular one-hour talks, 2 x 2 one-
hour talks by the keynote speakers Benson Farb and Dan Isaksen, and 5 half-hour
talks.

Farb gave two lectures on representation stability and its applications to arith-
metic, while Isaksen talked about motivic homotopy theory and its applications
to classical homotopy theory. Both series of lectures where complemented by
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follow-up talks by other speakers. The remaining talks of the conference covered a
variety of topics including stable homology of automorphisms of free groups with
twisted coefficients and unstable homology of general linear groups, cellular E2–
algebras and a motivic version of the E2–operad, 2–Segal spaces, the harmonic
compactification of moduli space, the Milnor number, derived induction theory,
K–theory and L–theory for C∗–algebras, deformation quantization, higher topo-
logical Hochschild homology and topological cyclic homology, Goodwillie calculus
for categories and secondary obstructions for positiv scalar curvature. Speakers
were instructed to give talks that could be appreciated by an audience of topolo-
gists of many different kinds, and they were generally very successful in doing so,
also for the shorter talks.

Keynote speaker Benson Farb gave in his first talk a very nice overview of the
state of the art of representation stability and the theory of FI–modules, a very
fruitful theory of Church-Farb-Ellenberg that allows to describe stable phenomena
in the homology of sequences of objects that earlier were thought of as having no
stability. He then devoted his second lecture on “point counting for topologists”,
explaining how the Grothendieck-Lefshetz formula gives a relationship between ho-
mological stability for varieties and asymptotic point counting in arithmetic. This
idea was the basis of the breakthrough work of Ellenberg-Venkatesh-Westerland
about the Cohen-Lenstra heuristics for function fields. These talks were comple-
mented by the talks of Jesse Wolfson and Craig Westerland. Wolfson introduced
the concept of “homological densities”, inspired by arithmetic, and described re-
sults and conjectures about those from his joint work with Farb and Wood. West-
erland gave an account of his joint work with Ellenberg and Tran, where they
deduce the asymptotic behaviour of the number of points in certain Hurwitz mod-
uli stack from asymptotic behaviour of the homology of the braid groups with
certain twisted coefficients.

Keynote speaker Dan Isaksen started by giving an overview lecture about mo-
tivic homotopy theory, explaining how it allows to apply homotopy-theoretic meth-
ods to the study of algebraic varieties, and for example better approach their al-
gebraic K–theory. This is the circle of ideas that lead to a proof by Voevodsky
of the Milnor and Bloch-Kato conjectures which relate the Milnor K-theory of a
field with étale cohomology. In his second lecture, Isaksen talked about his very
recent work where he uses motivic stable homotopy groups to get computations
of classical stable homotopy groups of spheres in a much larger range than so far
obtained. This was supplemented by the talks of Kirsten Wickelgren and Geoffroy
Horel. Wickelgren described her joint work with Kass, where they show that the
local degree around an isolated zero in motivic homotopy theory identifies with the
degree of a certain quadratic form. She then explained how this allowed to prove
new results about the behavior of singularities. Horel, in his talk, constructed a
lift of the E2–operad to the category of étale motives over Q.

We now describe the themes of the remaining regular one-hour talks.
Oscar Randal-Williams explained his technique for computing the homology of

the automorphisms of free groups with a certain type of twisted coefficients, in
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the stable range, a technique that can also be used to compute the homology with
twisted coefficients of certain mapping class groups. Alexander Kupers described
his join work with Galatius and Randal-Williams, in which they show that con-
sidering families of groups such as general linear groups, automorphisms of free
groups or mapping class groups of surfaces as E2–algebras, and studying their E2–
homology, gave new information about their ordinary homology. Thomas Nikolaus
gave an account of his joint work with Peter Scholze where they give a much sim-
pler construction of topological cyclic homology than what was previously known.
This theory was conceived by Bokstedt in the 80’s to approximate algebraic K–
theory of rings, and was used very successfully for this purpose in particular by
Hesselholt-Madsen. On a closely related theme, Birgit Richter gave an overview
lecture about topological Hochschild and higher Hochschild homology, explaining
its role in studying iterated K–theory, but also in distinguishing A∞ structures
or detecting ramification of extensions of ring spectra. Nick Rozenblyum gave
an operadic framework for studying deformation quantization, and explained how
factorization homology allows to quantize mapping spaces with source a manifold
by quantizing the target. Gijs Heuts described a “Goodwillie tower” of categories
approximating more and more the category of pointed spaces, starting from that
of spectra. He showed how this set-up yields a new point of view on the classical
equivalence between commutative and Lie algebras in rational homotopy theory,
and gives a telescope analogue of this equivalence. Finally, Rudolf Zeidler gave
obstructions to families of positive scalar curvature metrics using embedded sub-
manifolds of various codimensions.

The half-hour talks were given in an intense, but very enjoyable, morning ses-
sion on Wednesday by Daniela Egas, Akhil Mathew, Claudia Scheimbauer, Markus
Land and David Sprehn. Egas gave an account of her joint work with Boes on
the computation of the homology of the harmonic compactification of the moduli
space of Riemann surfaces. Mathew gave a version of Dress induction in equi-
variant stable homotopy theory (from his joint work with Naumann and Noel).
Scheimbauer talked about her joint work with Bergner, Osorno, Ozornova and
Rovelli, where they give in particular an equivalence between double categories
and 2–Segal sets, with nice examples coming from partial monoids. Land talked
about his joint work with Nikolaus, where they study the relationship (or some-
times lack of relationship!) between K–theory and L–theory. Finally, Sprehn told
us about his computation, together with Lahtinen, of non-trivial homology classes
in the homology of general linear groups over finite fields at the characteristic.
They find non-trivial classes in much lower degrees than previously known.

Once again the Oberwolfach staff, not least the kitchen staff, helped to make
this meeting pleasant and memorable. Our thanks go to the institute for creating
this atmosphere and making the conference possible.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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Foundation for supporting Agnès Beaudry and Emily Riehl in the “Simons Visiting
Professors” program at the MFO.



Topologie 2013

Workshop: Topologie

Table of Contents

Oscar Randal-Williams
Cohomology of Aut(Fn) with twisted coefficients . . . . . . . . . . . . . . . . . . . . . 2015

Alexander Kupers (joint with Søren Galatius, Oscar Randal-Williams)
Cellular E2-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2017

Benson Farb
Representation Stability: A survey of recent progress . . . . . . . . . . . . . . . . . 2018

Dan Isaksen
Motivic homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2019

Thomas Nikolaus (joint with Peter Scholze)
Cyclotomic Structures and Factorization Homology . . . . . . . . . . . . . . . . . . 2021

Nick Rozenblyum
Homotopical aspects of quantization and invariants of manifolds . . . . . . . 2023

Benson Farb
Point counting for topologists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2025

Dan Isaksen
Motivic stable homotopy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2026

Daniela Egas Santander (joint with Felix Boes)
Sullivan diagrams and π∗-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2027

Akhil Mathew (joint with Niko Naumann and Justin Noel)
Derived induction and restriction theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2030

Claudia Scheimbauer (joint with Julie Bergner, Angélica Osorno, Viktoriya
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Abstracts

Cohomology of Aut(Fn) with twisted coefficients

Oscar Randal-Williams

The stable (co)homology of Aut(Fn) (with constant coefficients) has been com-
puted by Galatius [1]. His argument exploits a model G1

n ≃ BAut(Fn) given by
the space of rank n graphs in R∞ equipped with a marked point. These form
morphism spaces of a graph cobordism category G, and on one hand the group
completion theorem and “parametrised surgery on graphs” relate G1

∞ with the
K-theory ΩB|G| of the symmetric monoidal category G. On the other hand, using
geometric arguments concerning spaces of non-compact graphs, Galatius identifies
this K-theory space with Q(S0), the free infinite loop space on a point; this is a
well-studied object in homotopy theory, and its homology is completely known.

Fixing a based space X , one may consider analogous spaces G1
n(X) of graphs

with a marked point which are additionally equipped with a based map to X . Us-
ing homological stability for Aut(Fn) with finite-degree twisted coefficients (which
we have recently established in joint work with Wahl [6]) and borrowing an argu-
ment of Cohen–Madsen [2] from the case of mapping class groups, one can establish
homological stability and the analogue of Galatius’ theorem in this case.

Theorem A. There is a map

G1
n(X) −→ Q0(X+)

which, if X is simply-connected, is an isomorphism on homology in degrees ∗ ≤
n−3
2 . (The map is induced by the Becker–Gottlieb transfer for the universal family

of graphs over G1
n(X).)

The relevance of Theorem A to the question of twisted coefficients for Aut(Fn)
is the fibration

map∗(∨
nS1, X) −→ G1

n(X) −→ G1
n ≃ BAut(Fn)

and its associated Serre spectral sequence

Ep,q
2 = Hp(Aut(Fn);H

q(map∗(∨
nS1, X)))⇒ Hp+q(G1

n(X)),

whose target may be identified with Hp+q(Q0(X+)) in a range of degrees by The-
orem A. Of course, the behaviour of this spectral sequence for any particular X
might be very complicated. However, by exploiting the functoriality of the spec-
tral sequence in the variable X , one can severely restrict its behaviour in many
situations.

In particular, choosing a Q-vector space V and setting X = K(V ∗, 2), one
obtains a spectral sequence of GL(V )-representations. Analysing the weight de-
composition on this spectral sequence induced by the action of Q× ≤ GL(V ) one
may show that it collapses rationally, and analysing the weight decomposition on
H∗(Q0(K(V ∗, 2)+);Q) = Sym∗(Sym∗>0(V [2])) allows one to compute the E2-page
completely. It them becomes a problem in representation theory to combine the
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information so obtained in a useful way, which eventually leads to the following,
where we write H := H1(Fn;Z) and HQ = H⊗Q, considered as Aut(Fn)-modules.

Theorem B. As a Q[Σq]-module we have

Hq(Aut(F∞);H⊗q
Q ) = Q{partitions of {1, 2, . . . , q}} ⊗Q−

and the cohomology in all other degrees vanishes.

The Schur–Weyl decomposition H⊗q
Q =

⊕
λ S

λ ⊗ Sλ(HQ) in terms of Schur

functors Sλ(−) shows that for a partition λ of q the dimension of the twisted
cohomology Hq(Aut(F∞);Sλ(HQ)) is the multiplicity of the Specht module Sλ in
the Σq-representation given by Q{partitions of {1, 2, . . . , q}} ⊗ Q−. This may be
calculated algorithmically by character theory.

The result of Theorem B can also be obtained by combining work of Djament
[3] and Vespa [7], who use techniques of functor homology. However the technique
we have described is quite general and can be used to obtained related results in
several directions. In one direction, one may study Out(Fn) by the same methods,
giving

Hq(Out(F∞);H⊗q
Q ) = Q{partitions of {1, 2, . . . , q} with no parts of size 1} ⊗Q−.

In another direction, one may obtain results about torsion in the twisted coho-
mology too. For example, if λ is a partition of q, and p > q is a prime number, then
one may still make sense of the Schur functor Sλ(−) on Z(p)-modules, and similar
techniques show that H∗(Aut(F∞);Sλ(H(p))) is a free H∗(Aut(F∞);Z(p))-module
(with module generators in degrees which may be deduced from Theorem B). In
particular, as all prime numbers are greater than 1 we find that H∗(Aut(F∞);H)
is a free H∗(Aut(F∞);Z)-module on a single generator in degree 1.

In a third direction, the general strategy we have employed may be attempted
whenever one has a “Madsen–Weiss theorem with maps to a background space”.
This is available in many situations, including mapping class groups of surfaces
and diffeomorphism groups of high-dimensional manifolds. In particular, one may
use this strategy to recover Looijenga’s calculation [4] of the stable cohomology
with twisted coefficients for mapping class groups of closed surfaces, and to obtain
new results for mapping class groups of surfaces with boundary.
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Cellular E2-algebras

Alexander Kupers

(joint work with Søren Galatius, Oscar Randal-Williams)

We report on work in progress on a new method for proving homological stability
results, based on the theory of cellular E2-algebras. Furthermore, we discuss
applications to two examples of E2-algebras:

⊔
g≥0BΓg,1, where Γg,1 denotes the

mapping class group of a genus g surface with one boundary component, and⊔
n≥0BGLn(R), where GLn(R) denotes the rank n general linear group over a

ring R.
These E2-algebra structures endow

⊕
g≥0H∗(BΓg,1) and

⊕
n≥0H∗(BGLn(R))

with the structure of an algebra. Ordinary homological stability results can be
phrased in terms of this algebra structure. There is a canonical generator σ in
H0(BΓ1,1) or H0(BGL1(R)), and multiplying with this class induces stabilization
maps H∗(BΓg,1) → H∗(BΓg+1,1) or H∗(BGLn(R)) → H∗(BGLn+1(R)). Homo-
logical stability is then equivalent to σ · − being an isomorphism in a range. Both⊕

g≥0H∗(BΓg,1) and
⊕

n≥0H∗(BGLn(R)), for R of finite stable rank, are known

to have homological stability (see e.g. [1] and [2]). A novel feature of our approach
is to not restrict attention to multiplication by just σ, but to consider the entire
E2-algebra structure. This allows us to improve on these homological stability
results.

To understand E2-algebras we approximate them by cellular E2-algebras. A
cellular E2-algebra is one obtained by iterated cell attachments in the category of
E2-algebras; just as any space is weakly homotopy equivalent to a cell-complex, any
E2-algebra is weakly equivalent to a cellular one. There exists a homology theory
which detects minimal E2-cell decompositions in favorable circumstances, e.g. for
E2-algebras in connective spectra. It is obtained by deriving the functor that
sends an augmented E2-algebra to its E2-indecomposables, and is hence closely
related to E2 versions of Quillen homology and cotangent complexes that have
been studied before.

Using a version of this homology theory for E2-algebras in N0-graded spectra,
where the grading keeps track of respectively g and n, we can formulate and prove
a vanishing line for E2-cells of Σ∞

+ (
⊔

g BΓg,1) and Σ∞
+ (
⊔

nBGLn(R)). Together
with computational input in low degrees, such a vanishing line can be used to
improve known homological stability results and to prove new “metastability”
results.

Here is an example of how these ideas allow one to improve known results: the
rational computations of the homology of BGLn(Z) as in [3] and our vanishing
line imply the following result.
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Theorem 1. The stabilization map H∗(BGLn(Z);Q) → H∗(BGLn+1(Z);Q) is
an isomorphism for ∗ < 5

6n.

The stability range of ∗ < 5
6n in this theorem is an improvement over the range

∗ < 1
2n that comes out of ordinary homological stability arguments as in [2]. We

remark it may be possible to assemble this theorem from results on the cohomology
of arithmetic groups (see [4] for an introduction to the literature on this subject).

As an example of a metastability result, we use computations of the homology
of BΓg,1 as in [5] to prove the following theorem:

Theorem 2. There is a class k ∈ H2(BΓ3,1;Q) dual to the MMM-class κ1, such
that multiplication by k induces a map

H∗(BΓg−2,1, BΓg−3,1;Q)→ H∗+2(BΓg+1,1, BΓg,1;Q)

which is an isomorphism for ∗ ≤ 3g−2
4 .

This result gives new information about the homology of mapping class groups
outside the stable range, and can be used to confirm a claim from a preprint of J.
Harer [6].
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Representation Stability: A survey of recent progress

Benson Farb

This talk was a survey of the theory of representation stability. This theory was
initiated in the papers [2] and [1]. A survey up to Spring 2014 is given in [3], but
progress in the area has exploded since that time.

Representation stability is a phenomenon whereby the structure of certain se-
quences Xn of spaces can be seen to stabilize when viewed through the lens of
representation theory. One view of this area is as a marriage of representation
theory and homological stability.

A key example is that of an FI-module. An FI-module V is a functor from the
category of finite sets and injections to k-modules, where k is a Noetherian ring.
An FI-module gives a sequence Vn of Sn-representations with many linear maps
between them. An FI-module is finitely generated if there is a finite subset of
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∐
Vi so that no proper sub-FI-module of V contains S. There are many examples

of finitely-generated FI-modules, a key example being Hi(PConfn(M);Q), the
ith cohomology of the space of ordered n-tuples of distinct points in a connected,
oriented manifoldM which is either compact or the interior of a compact manifold
with boundary.

There are many consequences of finite generation of an FI-module V , such as:

1. Representation stability: The sequence Vn is representation stable in the
sense of [2].

2. Polynomial characters: There exists a polynomial Q(X1, . . . , Xr) in the
cycle counting functions Xi on symmetric groups so that for all n ≥ D(i):

χHi(PConfn(M);Q)(σ) = Q(X1(σ), . . . , Xr(σ)) for all σ ∈ Sn.

where deg(Q) ≤ i if dimY > 1 and deg(Q) ≤ 2i if dimY = 1.
After introducing this concept, the rest of the talk was devoted to the recent

developments. These include the following:

(1) Applications to the modular representation theory of symmetric groups
Sn. (Harman, Nagpal).

(2) The idea of FI-groups. This gives new finiteness theorems in group theory.
(Church-Putman, Day-Putman).

(3) Arithmetic applications, including étale representation stability (Church-
Ellenberg-Farb, Farb-Wolfson, Chen, Gadish, Casto, Harman, . . .).

(4) Replacing FI with other categories (Sam-Snowden, Wilson, Gadish, and
many others).

(5) A huge homological development, for example resolutions of FI-modules,
FI-homology, depth, Castelnuevo-Mumford regularity, etc (Sam-Snowden,
Ramos, Church-Ellenberg, Nagpal, Gan, Li, and many others).

References

[1] T. Church, J. S. Ellenberg and B. Farb, FI-modules: a new approach to stability for Sn-
representations, Duke Math Journal, Vol. 164, No. 9 (2015), pp. 1833–1910.

[2] T. Church and B. Farb, Representation theory and homological stability, Advances in Math.,
Vol. 245 (2013), pp. 250–314.

[3] B. Farb, Representation Stability, Proc. of the ICM, Seoul, 2014.

Motivic homotopy theory

Dan Isaksen

Motivic homotopy theory is a homotopy theory of algebraic varieties [2]. Voevod-
sky used this framework to prove the Milnor Conjecture and Bloch-Kato Conjec-
ture, which state that the map

KM
∗ (F )/n→ H∗

ét(F ;µ
⊗∗
n )

from Milnor K-theory to étale cohomology is an isomorphism. In particular, Vo-
evodsky used “motivic Steenrod operations” to establish the conjectures [1].
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In order to construct unstable motivic homotopy theory, start with the category
of smooth varieties over a field F . Then adjoin formal colimits to obtain a category
of simplicial presheaves. Next, repair some desirable colimits. Namely, if {U, V }

is a Nisnevich cover of X , then the map U
∐

U∩V

V → X is declared to be a weak

equivalence. Finally, the projection maps X × A1 → X are declared to be weak
equivalences. The result of these steps is unstable motivic homotopy theory.

Motivic homotopy theory has two kinds of circles: S1,0 is the usual simplicial
circle, and S1,1 is the algebraic circle A1 − 0. Other spheres are formed by taking
appropriate smash products of these two circles.

Using the properties of motivic homotopy theory described above, one can show
that An − 0 is equivalent to the sphere S2n−1,n. Moreover, the quotient object
Pn/Pn−1 is equivalent to the sphere S2n,n.

In addition to the essential properties of unstable homotopy homotopy theory
given above, there is one additional essential property of the theory. Let U be
open in X . Then there is a cofiber sequence

U → X → Th(N),

where N is the normal bundle of X − U in X , and the Thom space Th(N) is
defined to be the total space of N modulo the complement of the zero section.

Stable motivic homotopy theory is obtained by stabilizing with respect to the
bigraded family of spheres. Then motivic spectra represent generalized cohomol-
ogy theories for algebraic varieties. For example, algebraicK-theory is represented
by a spectrum KGL. The algebraic cobordism spectrum MGL represents a co-
homology theory previously unknown to algebraic geometers. Finally, motivic
cohomology can be defined to be represented by the infinite symmetric powers of
motivic spheres.
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Cyclotomic Structures and Factorization Homology

Thomas Nikolaus

(joint work with Peter Scholze)

Let R be a ring, we want to compute algebraic K-theory groups K∗(R). This
turns out to be very hard, thus one tries to approximate those by more computable
invariants. One has the following square

K∗(R) // TC∗(R) //

��

CH−
∗ (R)

��
THH∗(R) // HH∗(R)

all of whose corners we explained in the talk. The Hochschild homology groups
HH∗(R) are given by the homology groups of the Hochschild chain complex which
is given by the cyclic Bar construction

HH(R) := colimn∈∆

(
· · ·

// //
//// R[0]⊗R[0]⊗R[0]

////// R[0]⊗R[0] // // R[0]
)

Here R[0] ∈ ChZ is considered as a chain complex concentrated in degree 0. The
topological Hochschild homology groups THH∗(R) are given similarly by the ho-
motopy groups of the topological Hochschild homology spectrum

THH(R) := colimn∈∆

(
· · ·

////
//// HR⊗HR⊗HR

////// HR⊗HR //// HR
)

where HR ∈ Sp is the Eilenberg-MacLane spectrum associated to R.
We explained how these constructions can be seen as instances of factorization

homology of S1:

HH(R) ≃

∫

S1

R[0] THH(R) ≃

∫

S1

HR

The circle group T acts on S1 by rotation and by functoriality of factorization
homology the Hochschild chain complex (as well as the topological Hochschild
homology spectrum) inherits an induced T-action. The negative cyclic homology
chain complex is defined as the homotopy fixed point chain complex for this action:

CH−(R) := HH(R)hT

For topological cyclic homology (which should really be called negative topological
cyclic homology) one has to take an additional structure besides the T-action
on THH(R) into account: the cyclotomic structure. For the formulation of the
cyclotomic structure we will use the notion of Tate spectrum XtG for a finite
G-action on a spectrum X .

Proposition 1. • For every spectrum X and every prime p there is a ‘di-
agonal’ map ∆ : X → (X ⊗ ...⊗X)tCp which is natural in X.
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• Let R be an En-ring spectrum and E
Cp
−−→M be a principal Cp-bundle over

a framed n-manifolds M . Then there is a map

∫

M

R→

(∫

E

R

)tCp

which is natural in M and for M = Rn given by the diagonal ∆ as above

It is a remarkable fact that the last proposition is not correct in the category
of chain complexes. That is the reason that one has to work in spectra to see the
cyclotomic structure. We explained how to prove this non-existence based on the
‘Frobenius’ of E∞-ring spectra. Using the p-fold self-covers of the circle we get the
following immediate corollary.

Corollary 2. For every ring spectrum R the spectrum THH(R) has the following
structure:

• An action by the circle group T
• For every prime p a T-equivariant map

ϕp : THH(R)→ THH(R)tCp

where the action on the target uses the identification T/Cp
∼= T.

This structure is what we call a cyclotomic structure. Given this structure
extra structure on THH we can give the following formula for topological cyclic
homology:

TC(R) := fib

(
THH(R)hT

∏
p can−ϕp

−−−−−−−→
∏

p

(
THH(R)tCp

)hT/Cp

)

Here can denotes the map induced on homotopy T/Cp-fixed points from the canon-
ical map THH(R)hCp → THH(R)tCp .

Theorem 3. This definition of topological cyclic homology is for a connective ring
spectrum R equivalent to the old one (as given by Bökstedt-Hsian-Madsen in the
p-completed case and Goodwillie in the integral case).

More generally we prove that the ∞-category of connective cyclotomic spectra
as defined this way is equivalent to the ∞-category underlying the classical de-
scription of cyclotomic spectra using genuine equivariant homotopy theory (in the
incarnation given by Blumberg-Mandell).

Our main result allows to give simpler descriptions and computations for a lot
of results in the area, in particular of the cyclotomic trace.
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Homotopical aspects of quantization and invariants of manifolds

Nick Rozenblyum

It has been observed that many moduli spaces of interest, such as the character
variety of a surface, have natural symplectic structures which play an important
role in the theory. A conceptual explanation for the appearance of these symplectic
structures is via the theory of shifted symplectic and Poisson structures in derived
algebraic geometry, developed in [3] and [2]. Roughly speaking, an n-shifted sym-
plectic structure on a derived stack Y is a closed 2-form of cohomological degree n,
which is non-degenerate. One subtlety in this setting is that the notion of closed
is defined up to coherent homotopy.

There are a number of important examples of shifted symplectic stacks. Any
variety with an algebraic symplectic structure is in particular a 0-shifted symplectic
stack. Another fundamental example is the stack BG for an algebraic group G,
which has a natural 2-shifted symplectic structure (upon choice of an Ad-invariant
symmetric bilinear form on the Lie algebra of G).

A key result in this theory, called the AKSZ construction, states that if X
is a compact oriented m-dimensional manifold (or an m-dimensional smooth and
proper Calabi-Yau variety) and Y is an n-shifted symplectic stack, then the derived
mapping stack Maps(X,Y ) has a natural (n − m)-shifted symplectic structure.
For instance, if X is an oriented surface and Y = BG, then one gets a (0-shifted)
symplectic structure on the derived enhancement of the character variety of X .
This gives an enhancement of the classical (as studied by Atiyah-Bott, Goldman-
Millson, and others) symplectic structure on the character variety of the surface.

Given a symplectic or Poisson manifold, an important question is to classify
possible quantizations. Classically, the problem of deformation quantization is
formulated as that of deforming the algebra of functions (which is a Poisson al-
gebra) to an associative algebra. For example, the character variety of a surface
admits a natural quantization, called the skein quantization, which plays an im-
portant role in the study of quantum invariants of 3-manifolds.

1. Pn and BDn operads and formality

In the context of shifted symplectic stacks, the algebra of functions on an n-shifted
symplectic (or Poisson) stack forms a homotopy coherent algebra over the Pn+1-
operad, which is the operad with a commutative multiplication and a Poisson
bracket of homological degree n. Following [1], we can formulate the problem of
deformation quantization in this homotopical setting using deformations of oper-
ads. In what follows, we will always work over a field k of characteristic zero. Now,
for n ≥ 0, the k-linear little n-disks operad En has a filtration such that the asso-
ciated graded is the operad Pn. For n ≥ 2, this is given by the Postnikov filtration.
We can apply the Rees construction to this filtration to obtain operads BDn over
k[[h]], which interpolate between Pn-algebras and En-algebras. The problem of
deformation quantization can then be formulated as deforming a Pn-algebra to a
BDn-algebra.
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In some sense, the most interesting case is n = 0; an E0-algebra is just a vector
space together with a vector, but a P0-algebra has a lot more structure. The BD0-
operad can be described explicitly as an operad over k[[h]] having a commutative
multiplication ·, a Poisson bracket { } of homological degree -1 and the additional
relation d(·) = h{ }.

A fundamental property of the En-operads is Dunn’s additivity theorem: the
Boardman-Vogt tensor product Em⊗BV En ≃ En+m; i.e. the (∞-)category of Em-
algebras in the category of En-algebras is equivalent to that of Em+n-algebras. We
prove that this equivalence is compatible with the above filtrations; namely,

Theorem 1. There is a natural (weak) equivalence of operads over k[[h]]

Em ⊗BV BDn ≃ BDm+n.

Quotienting by h, we obtain:

Theorem 2. There is a natural (weak) equivalence of operads over k

Em ⊗BV Pn ≃ Pm+n.

One immediate application of the above is the formality theorem for higher En.
Kontsevich and Tamarkin proved that the En-operads are formal for n ≥ 2, i.e.
that for n ≥ 2, BDn ≃ Pn ⊗ k[[h]]. Starting with this equivalence for n = 2, we
immediately obtain the corresponding equivalence for n > 2 by induction from the
above. In particular, upon choosing a formality isomorphism for n = 2, we obtain
natural formality isomorphisms for all n > 2 as well.

2. Manifold topology

To apply the above results to the topology of manifolds, we use factorization ho-
mology. Recall that given an En-algebra A and a (framed) n-dimensional manifold
M , we can form the factorization homology

∫
M A. Moreover, if A is a commuta-

tive algebra, then
∫
M
A is the algebra of functions on the (derived) mapping stack

Maps(M, Spec(A)).
Applying this fact to Pn and BDn-algebras, thought of as En ⊗BV P0 and

En ⊗BV BD0-algebras, respectively, we obtain the following enhancement of the
PTVV/AKSZ construction:

Theorem 3. Let M be an compact, oriented m-dimensional manifold and Y an
n-shifted Poisson stack. Then the (derived) mapping stack Maps(M,Y ) has a
natural (n−m)-shifted Poisson structure. Moreover, a quantization of Y gives a
quantization of the mapping stack Maps(M,Y ).

There are a number of interesting applications of this theorem and its variants.
These include:

• If X is a closed, oriented surface and Y = BG for G reductive (e.g. G =
SL2) the 2-shifted symplectic structure on BG gives a symplectic structure
on the character variety. The stack BG has a natural quantization given
by the quantum group, and by the above this gives a quantization of the
character variety. This quantization is exactly given by the skein algebra.



Topologie 2025

• A holomorphic variant of the above results gives the following. Let E be an
elliptic curve with a holomorphic volume form, and Y a smooth Calabi-Yau
variety. Then the mapping stack Maps(E, T ∗Y ) from E to the cotangent
bundle of Y is given by the shifted cotangent stack T ∗[−1]Maps(E, T ∗Y )
together with its (−1)-shifted symplectic structure. In this situation a
quantization of T ∗Y is given by the vertex algebra of chiral differential
operators on Y and a quantization of T ∗[−1]Maps(E, T ∗Y ) gives a differ-
ential form on Y . This differential form is exactly the Witten class of Y
associated to the elliptic curve E.
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Point counting for topologists

Benson Farb

In this talk I explained Weil’s dictionary between function fields over C and func-
tion fields over Fq. I explained the statement of the Weil conjectures, proved by
Dwork, Grothendieck and Deligne.

Let X be a scheme defined over Z. The Weil conjectures provide a fundamental
link between the topology of X(C) and the arithmetic of X(Fq). As first indi-
cated by work of Ellenberg-Venkatesh-Westerland [2], followed by Vakil-Wood [3],
Church-Ellenberg-Farb [1] and others, this correspondence should convert homo-
logical stability phenomena in topology to asymptotic point counts on the arith-
metic side. We summarize this in the following table, with the rows going from
least to most general.

Topology Arithmetic
H∗(X(C)) |X(Fq)|

homological stability of Xn asymptotics of |Xn(Fq)| as n→∞
representation stability asymptotics of arithmetic

statistics on Xn(Fq)

In this talk I concentrated on the examples PConfn(X) (resp. UConfn(X)) of
configurations of ordered (resp. unordered) n-tuples of points on a smooth variety
X .
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Motivic stable homotopy groups

Dan Isaksen

The computation of stable homotopy groups is one of the most fundamental prob-
lems in homotopy theory. At odd primes, the Adams-Novikov spectral sequence
is the most effective computational tool. At the prime 2, the relationship between
the Adams spectral sequence and the Adams-Novikov spectral sequence can be
leveraged to great effect, especially in the presence of C-motivic computations [1].

The first step is to identify the C-motivic cohomology of a point and the C-
motivic Steenrod algebra [2] [3]. The answer is that

M2 = H∗,∗(pt;F2) = F2[τ ],

and

AC
∗ = M2[τi, ξi]/τ

2
i = τξi.

The next step is to compute the Adams E2-page ExtA(M2,M2). This can be
done by hand to the 70-stem, or by computer to hundreds of stems.

The third step is to compute Adams differentials. Traditionally, this has been
done through a combination of techniques, including prior knowledge of the image
of J , prior knowledge of the spectrum tmf , and analysis of Toda brackets. This
has been carried out in great detail to the 61-stem, where this approach becomes
too cumbersome.

The element τ of M2 detects a stable homotopy element τ : S0,−1 → S0,0. The
cofiber Cτ of τ is a motivic spectrum with some surprisingly good properties. It
is an E∞-ring spectrum whose Adams-Novikov spectral sequence collapses. In
other words, the motivic homotopy groups π∗,∗Cτ are isomorphic to the E2-page
of the classical Adams-Novikov spectral sequence! Moreover, the Adams spectral
sequence converging to π∗,∗Cτ is equal to the algebraic Novikov spectral sequence
converging to the classical Adams-Novikov E2-page.

Guozhen Wang used a computer to determine the algebraic Novikov spectral
sequence in a large range. Thus, computer output tells us precisely the Adams
spectral sequence for Cτ . Naturality of the Adams spectral sequence applied to
the maps in the cofiber sequence

S0,−1 → S0,0 → Cτ → S1,−1

then determine a large number of Adams differentials for the motivic sphere spec-
trum.

From this perspective, computation of the first 60 stems becomes essentially
easy, in the sense that the computer does almost all of the work. After that point,
things start to get more difficult. So far, these difficulties are manageable. The
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computation has been extended to the 70 stem so far, with more to come. It
remains to be seen how much further the approach will work.
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Sullivan diagrams and π∗-stability

Daniela Egas Santander

(joint work with Felix Boes)

Let Sm
g,n denote the genus g oriented surface with n boundary components and

m punctures. We denote by Mm
g,n the moduli space of Sm

g,n and by Mod(Sm
g,n) its

corresponding mapping class group. When the surface has at least one boundary
component (i.e., n > 0) its moduli space is a model for the classifying space of the
mapping class group i.e.,

BMod(Sm
g,n) ≃M

m
g,n.

We study the homotopy type of the space of Sullivan diagrams, which is a space of
fat graphs that has the homotopy type of the Harmonic compactification of Moduli
space. Before stating our results, let us briefly describe the relation between
Sullivan diagrams and Moduli space.

In [1], Bödigheimer constructs a space Radp(S
m
g,n), for 1 ≤ p ≤ n, which is a

model for Mm
g,n. On the other hand, Godin uses the ideas of Penner, and Igusa to

construct a space of fat graphs which is also a model of Moduli Space [5, 6]. For
any 1 ≤ p < n, the space of fat graphs has a homotopy equivalent subspace, the
space of p-admissible fat graphs which we denote Fatadp (Sm

g,n). This subspace has a
natural quotient which is the space of p-Sullivan diagrams S Dp(S

m
g,n). This space

has a canonical CW-structure and its cellular complex is the chain complex of
p-Sullivan diagrams. There is a cellular homotopy equivalence between the spaces
S Dp(S

m
g,n) and Radp(S

m
g,n) [4]. We summarize this statements in diagram below.

Radp(S
m
g,n)Fat

ad
p (Sm

g,n)

Radp(S
m
g,n)S Dp(S

m
g,n)

Mm
g,n≃ ≃

≃

We give concrete computations on the homotopy type of S D1(S
m
g,n) and show

that these spaces exhibit π∗-stability with respect to the number of punctures,
boundaries and genus. More precisely, we denote by S D

m
g the space of 1-Sullivan

diagrams of the surface Sm
g,1 where all punctures are unlabeled and S̃ D

m

g to be
the space of 1 Sullivan diagrams of the surface Sm

g,1 where all punctures are labeled
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by the set {1, 2, . . . ,m}. Similarly, we denote by S Dg,m and S̃ Dg,m the space
of 1-Sullivan diagrams of the surface Sg,1+m where all boundary components are
unlabeled respectively labeled. Let S D(g,m) denote any of these spaces. We
show the following results:

Theorem (A). Let g ≥ 0 and m ≥ 1.

(i) The spaces S D(g,m) = S D
m
g , S̃ D

m

g , S Dg,m and S̃ Dg,m are highly
connected. More precisely,

π∗(S D(g,m)) = 0 for ∗ ≤ m− 2 .

(ii) This result is slightly improved in the unlabeled cases

π∗(S D
m
g ) = 0 and π∗(S Dg,m) = 0 for ∗ ≤ m′ .

where m′ is the largest even number smaller than m. Furthermore, in case
of genus zero the connectivity bound is sharp. More precisely, we have that

Hm′+1(S D
m
0 ;Z) = Z and Hm′+1(S D0,m;Z) = Z .

Recall that by glueing a genus one surface with two boundary components to
the unique boundary of Sg,1 we obtain maps

BMod(S1,1)→ BMod(S2,1)→ . . .BMod(Sg,1)→ BMod(Sg+1,1)→ . . .

In [7], Harer showed that these maps induce an isomorphisms in a range of dimen-
sion increasing with genus. We construct a map

Φ : S D(g,m) −→ S D(g + 1,m)

which extends the stabilization map on mapping class groups and show the fol-
lowing:

Theorem (B). Let g ≥ 0 and m > 2. The stabilization map Φ is (g +m− 2)-
connected. In the unlabeled cases this can be slightly improved in which case the
stabilization map is (g +m′ − 2)-connected, where m′ is the largest even number
smaller than m.

In the unparametrized, unlabeled case we can give further results for the case
m = 2.

Proposition (C). The fundamental group of S D1(S
2
g,1) is

π1(S D1(S
2
g,1)
∼=

{
Z g = 0

Z/2Z g > 0
.

The stabilization map Φ: π1(S D1(S
2
g,1))→ π1(S D1(S

2
g+1,1)) is the quotient map

Z→ Z/2Z for g = 0 and an isomorphism Z/2Z→ Z/2Z for g > 0. Furthermore,
the generators of these groups are in the image induced by the quotient map of
spaces

BMod(S2
g,1)→ S D1(S

2
g,1)

and they correspond to the diffeomorphism that exchanges the two punctures inside
a small disk which is contractible inside S2

g,1.
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The results above imply that, studying the homotopy type and in particular
the homology of Sullivan diagrams could give further insight into the unstable
homology of the Moduli space of surfaces. On the other hand, the study of the
homotopy type of Sullivan diagrams is also of interest in the field of string topology,
which studies algebraic structures on the homology of free loop spaces. Let LM be
the free loop space of a manifold M . In string topology one constructs operations

H∗(LM)⊗n1 −→ H∗(LM)⊗n2

parametrized over a certain space of operations and subject to certain compat-
ibility conditions such that they assemble into some sort of field theory. Our
chain complex of Sullivan diagrams corresponds to the one defined by Tradler and
Zeinalian in [10] and by Wahl and Westerland in [11] to study operations on the
Hochschild homology of algebras with a given structure. When restricted to the
case with no punctures i.e. m = 0 the space of Sullivan diagrams is homeomor-
phic the the underlying space of the Sullivan PROP described by Kaufmann in
[8]. Furthemore, Poirier and Rounds construct string operations using a space
of chord diagrams SD and they describe a quotient of this space SD/ ∼ through
which their operations factor. This quotient space is homeomorphic to S D [9]. In
a sequel [3], Drummond-Cole, Porier, and Rounds use yet another chain complex
of chord diagrams. Currently it is unclear the relation between their chain com-
plex and the one we study here. Finally in [2], Cohen and Godin construct string
operations using yet another space of chords diagrams. Although the concepts
are very closely related, these spaces are not homotopy equivalent nor are their
corresponding chain complexes quasi-isomorphic.
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Derived induction and restriction theory

Akhil Mathew

(joint work with Niko Naumann and Justin Noel)

Let M be a Mackey functor for the group G (always assumed finite). That is, one
has the following structure and properties:

(1) For every finite G-set T , an abelian group M(T ).
(2) For every map of finite G-sets f : T → T ′, homomorphisms of abelian

groups f∗ :M(T ′)→M(T ) and f∗ :M(T )→M(T ′).
(3) If T ≃ T1 ⊔ T2, M(T ) ≃M(T1)×M(T2).
(4) f∗, f

∗ are functorial for the morphism f and satisfy a natural base-change
relation.

Suppose that each M(T ) has the structure of a commutative ring such that f∗

is always a map of commutative rings and f∗ a map of M(T ′)-modules. Then M
is called a Green functor.

Green functors arise frequently in “nature.” For example, there is a Green
functor that sends the G-set G/H 7→ H∗(H ;Fp) and there is one that sends
G/H 7→ R(H) where R(H) is the representation ring of H .

Let F be a family of subgroups of G, i.e., a class of subgroups closed under
subconjugation. Let OF(G) be the category of all G-sets of the form G/H,H ∈ F.

Given a Mackey functor M , we have F-restriction and F-induction maps

φIndF : lim
−→

G/H∈OF(G)

M(G/H)→M(G/G), φRes
F :M(G/G)→ lim

←−
G/H∈OF(G)op

M(G/H).(1)

Theorem 1 (Dress). SupposeM is a Green functor and φInd
F

has image containing
the unit. Then φInd

F
and φRes

F
are isomorphisms.

In this project, we develop a “spectral” version of the Dress induction theorem
and describe various applications. Our main results are in [6, 5].

Definition 2 (Compare Barwick [2]). Let BurnG denote the effective Burnside
2-category of G. This is a (2, 1)-category such that:

(1) The objects are finite G-sets T .
(2) HomBurnG

(T, T ′) is given by the groupoid of spans of finite G-sets from T
to T ′. Composition is given by composition of spans.

A spectral Mackey functor is a functor M : BurnopG → Sp, where Sp denotes the
∞-category of spectra.

Theorem 3 (Guillou-May [4]). There is an equivalence of ∞-categories between
G-spectra and spectral Mackey functors.

Given a G-spectrum X , the associated spectral Mackey functor sends the G-set
G/H to the H-fixed point spectrum XH . We thus obtain derived induction and
restriction maps

ψInd
F : lim

−→
G/H∈OF(G)

XH → XG, ψRes
F : XG → lim

←−
G/H∈OF(G)op

XH .(2)
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Theorem 4 (Derived Dress induction). Let X be a G-ring spectrum. If ψInd
F

has
image containing the unit then ψInd

F
, ψRes

F
are homotopy equivalences.

Definition 5. A G-spectrum is F-nilpotent if it belongs to the smallest thick
⊗-ideal of the homotopy category of G-spectra generated by {G/H+}H∈F

.

One shows easily that ψInd
F
, ψRes

F
are equivalences for an F-nilpotentG-spectrum.

Our results show that a G-ring spectrum satisfies the condition of Theorem 4 if
and only if it is F-nilpotent.

Definition 6. The derived defect base of a G-spectrum is the (unique) smallest
family F for which it is F-nilpotent.

We have the following table (cf. [5]) of derived defect bases of some common
G-spectra. Given a spectrum E, we write E for the associated Borel-equivariant
G-spectrum.

G-spectrum Derived defect base
Hk, char(k) = p elementary abelian p-subgroups (Quillen, Carlson, Balmer)
KUG,KOG cyclic subgroups

MU abelian l-subgroups, all l
En abelian p-subgroups of rank ≤ n
S0 l-subgroups, all l
KR {(1)}

BP 〈n〉 abelian p-subgroups either rank ≤ n or elementary abelian

The conclusion of the above result for R = Hk for k a field of characteristic
p is a theorem of Quillen [8]. The statement in language equivalent to that of
F-nilpotence appears in work of Carlson [3] (also for HZ) and more recently of
Balmer [1].

Let X be a G-ring spectrum. If the Green functor πX
∗ is induced from F, then X

is F-nilpotent. The converse fails, but is in some sense not that far from holding.

Theorem 7 (Cf. [5]). Let X be a G-ring spectrum which is F-nilpotent.
Then the Green functor π−

∗ X [1/|G|] is induced from F. The natural map
π∗X

G → lim
←−G/H∈OF(G)op

π∗X
H has the following two properties:

(1) The kernel is nilpotent.
(2) Given x in the codomain, for appropriate N > 0, xN belongs to the image.

If X is p-local we can take N to be a power of p.

The above result follows from analyzing the spectral sequences associated to the
maps of (2), which are equivalences since X is F-nilpotent. The spectral sequences
collapse at a finite stage with a horizontal vanishing line, from which the result
can be deduced.

Theorem 8. Suppose X is a G-ring spectrum with multiplicative Thom isomor-
phisms for complex G-representations. Then X is F-induced if and only if for all
H ≤ G with H /∈ F, the kernel of π∗X

H →
∏

H′<H π∗X
H′

is nilpotent.

We also have the following result, which uses the nilpotence theorem of [7].
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Theorem 9. Suppose X is an E∞-algebra in G-spectra. Suppose that the Green
functor π−

∗ X ⊗ Q is F-nilpotent. Then for any prime p or height n, the G-ring
spectrum Lf

nX (where Lf
n denotes finitary Ln-localization) is F-nilpotent as well.

We note that this result applies to KUG, since rationally the representation
ring Green functor is induced from the cyclic groups (by Artin’s theorem). The
result provides a means of passing from the F-nilpotence of XQ (which is a purely
algebraic question) to the much harder F-nilpotence of Lf

nX (which may involve
torsion phenomena).
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2-Segal spaces and the Waldhausen construction

Claudia Scheimbauer

(joint work with Julie Bergner, Angélica Osorno, Viktoriya Ozornova, Martina
Rovelli)

The notion of (unital) 2-Segal objects in a model category or (∞, 1)-category
was introduced by Dyckerhoff and Kapranov in [1] and, independently, for the
(∞, 1)-category of spaces under the name of decomposition spaces, by Gálvez-
Carrillo, Kock, and Tonks [2]. It is a homotopical variant of a category which has
a multi-valued composition: a 2-Segal object is a simplicial object X• satisfying
conditions which are 2-dimensional generalizations of the usual Segal condition
and are parametrized by triangulations of regular n-gons for n ≥ 3. For example,
for the two triangulations
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0 1

23

T1

and

0 1

23

T2

of the square the following conditions are required: The triangulations T1 and T2

determine the two diagrams

X{0,1,3} X{1,2,3}

X{1,3}

d0 d1 and

X{0,1,2} X{0,2,3}

X{0,2}

d1 d2

which in turn give two maps

fT1 : X3 −→ X{0,1,3} ×
X{1,3}

X{1,2,3} and fT2 : X3 −→ X{0,1,2} ×
X{0,2}

X{0,2,3}.

The 2-Segal condition requires these maps to be weak equivalences. The 0-
simplices X0 should be thought of as the objects of the multivalued category,
X1 as the morphisms, and the span X1 ×X0 X1 ← X2 → X1 as the multivalued
composition. An extra condition called unitality ensures that every composition
with an identity morphism is (homotopically) unique.

Examples include Segal’s nerve of a partial (topological) monoid from [3] and
a 2-dimensional cobordism “category” with genus constraints from [6] requiring
that the genus of a morphism is ≤ g for some fixed g ∈ N.

Furthermore, both [1] and [2] showed that Waldhausen’s S•-construction from
[4] provides examples of 2-Segal spaces. In [5] we provide a generalization thereof
which proves to be exhaustive in the discrete setting. Let us briefly explain this
construction.

The abstract structure needed to define an S•-construction given by diagrams
of a certain shape are certain double categories. A double category is a category
internal to categories. It has a set of objects, two kinds of morphisms between
two objects which we suggestively call “horizontal” and “vertical” morphisms, and
2-morphisms (“squares”) which have horizontal source and target morphisms and
vertical source and target morphisms:

• •

• •

To define a simplicial object similarly to the one arising from the S•-construction
we need the double category to be “pointed”, i.e. there is an object 0 which is
initial for the horizontal category and terminal for the vertical category. For such
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a pointed double category D we let Sk(D) be the set of diagrams of the form

0 a00 a10 a20 · · · an0

0 a11 a21 · · · an1

0

0 ann

0

. . . ...

This gives a simplicial set whose face maps are given by deleting a row and column.
This simplicial set is 2-Segal if we started with a double category which is “stable”,
meaning that any 2-morphism is uniquely determined by its horizontal and vertical
sources, and also is uniquely determined by its horizontal and vertical targets. Note
that S0(D) = {0}. We call a 2-Segal set with this property “reduced”.

More generally, we can replace the condition that the double category should
be pointed by the data of an “augmentation”, which is a certain subset of objects.
Then we require the elements on the diagonal to be in the augmentation.

Finally, this generalized S•-construction leads to an equivalence, whose inverse
essentially is given by the décalages of the simplicial set.

Theorem (BOORS). (1) The generalized S•-construction is an equivalence
of categories between pointed, stable double categories and reduced unital
2-Segal sets.

(2) The generalized S•-construction is an equivalence of categories between
augmented, stable double categories and unital 2-Segal sets.

A generalization of the above theorem to more homotopical settings such as
2-Segal spaces is work in progress.
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On the relation between K- and L-theory for C
∗-algebras

Markus Land

(joint work with Thomas Nikolaus)

Given a C∗-algebra A one can consider the following two invariants. One the
one hand there are the classical topological K-theory groups K∗(A) and on the
other hand the algebraic L-theory groups L∗(A). To be specific I will mean pro-
jective and symmetric L-theory unless stated otherwise. L-theory has its origins
in surgery theory where (quadratic) L-groups arise as obstruction groups in the
famous surgery exact sequence. By work of Ranicki it is known that the surgery
obstruction map is closely related to the assembly map in L-theory which can be
written as

(LqZ)G∗ (EG)
FJ // Lq

∗(ZG)

where G is a discrete group and LqZ denotes quadratic L-theory of the integers.
The construction of this assembly map uses on the fact that the group-valued
L-theory functor lifts to a functor with values in spectra. The Farrell-Jones con-
jecture predicts that this map is an isomorphism for all groups G and all involutive
rings R (replacing Z).

There is a similar conjecture in topological K-theory, known as the Baum-
Connes conjecture. It predicts the assembly map

KOG
∗ (EG)

BC // KO∗(C
∗
r (G;R))

is an isomorphism for all (countable, discrete) groups G. The spaces EG and EG
are the classifying spaces for the family of finite and virtually cyclic subgroups and
C∗

r (G;R) denotes the real reduced group C∗-algebra, which is a completion of the
group ring RG. For a survey about these conjectures I recommend [3], where the
following commutative diagram was envisioned

KOG
∗ (EG)[

1
2 ]

BC[
1
2 ] //

∼=

��✤
✤
✤

KO(C∗
r (G;R))[

1
2 ]

∼=

��
LRG

∗ (EG)[
1
2 ]

FJ[
1
2 ] // L∗(RG)[ 12 ]

CC // L∗(C
∗
r (G;R))[

1
2 ]

LqZG
∗ (EG)[

1
2 ]

//

∼=

OO

Lq
∗(ZG)[ 12 ]

OO

(1)

It relies on the following theorem, see e.g. [5] and [4]
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Theorem 1. Let A be a complex C∗-algebra. Then there are natural isomor-
phisms

Kn(A) ∼= Ln(A) for all n ∈ Z.

If A is a C∗-algebra over R, then the same is true after inverting 2 and not before
inverting 2.

To obtain a commutative diagram as above, one needs more than a natural
isomorphism of K- and L-groups in order to ensure the dashed arrow to exist
rendering the diagram commutative. Precisely one needs the two functors KO[ 12 ]

and L[ 12 ] to be equivalent as functors from C∗-algebras to spectra.
It was already known that the isomorphism of K- and L-groups in the complex

case does not lift to an equivalence of spectra between KA and LA because of
their different 2-local behaviour, see [5] and [6].

In [1] we prove the following strengthening of this. We denote by KU = K(C)
the topological K-theory spectrum of the C∗-algebra C.

Theorem 2. [1, Theorem 6.1] Any map between the two spectra KU and LC
is null homotopic. In particular no map will induce an equivalence after inverting
2.

It turns out that if one is willing to work with connective covers or to invert
2, there are natural transformations between K- and L-theory. For this we will
work in the setup of ∞-categories as developed by Joyal and Lurie, see e.g. [2].
We thus consider K- and L-theory as functors NC∗Alg → Sp, between the nerve
of the category of separable C∗-algebras and the ∞-category Sp of spectra. Let
us denote by k and ℓ the composites

NC∗Alg
K

L
// Sp

τ≥0 // Sp≥0

given postcomposing K and L with the connective cover functor.
In [1] we prove the following theorems.

Theorem 3. [1, Theorem 3.8]
For every n ∈ Z there exists a natural transformation τ(n) : k → ℓ, unique up to
homotopy, characterized by the property that τ(n)C : π0(ku)→ π0(ℓC) is given by
multiplication by n. More precisely the map

π0
(
MapFun(NC∗Alg,Sp)(k, ℓ)

)
// Z

[η] // π0(ηC)

is a bijection. Moreover there exists an essentially unique lax symmetric monoidal
transformation τ . Its underlying transformation is τ(1).

Theorem 4. [1, Theorem 4.1] For all i ∈ {0, 1}, all k ≥ 0, and all A ∈ C∗Alg
there is an exact sequence

0 // π2k+i(kA)2k // π2k+i(kA)
τA // π2k+i(ℓA) // π2k+i(ℓA)

2k·π2k+i(ℓA)
// 0
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where the subscript 2k denotes the subgroup of elements of order 2k. In particular,
τA induces an isomorphism on π0 and π1.

Theorem 5. [1, Corollary 5.1, Theorem 5.1, and Theorem 5.6] The func-
tors K[ 12 ], L[

1
2 ] : NC

∗Alg→ Sp are equivalent as lax symmetric monoidal functors.

Also the two functors KO[ 12 ], L[
1
2 ] : R

∗Alg → Sp are equivalent as lax symmetric
monoidal functors. In particular the dashed arrow in diagram (1) exists rendering
the diagram commutative.

I want to end with two open problems. From the commutativity of diagram (1)
it follows that the map induced by the completion

L∗(RG)[ 12 ]
CC // L∗(C

∗
r (G;R))[

1
2 ]

is an isomorphism, provided the group G satisfies the Baum-Connes and Farrell-
Jones conjecture. We call this the completion conjecture in L-theory:

Conjecture 1. For every countable discrete group G, the map

L∗(RG)[ 12 ]
CC // L∗(C

∗
r (G;R))[

1
2 ]

is an isomorphism.

Notice that if the completion conjecture is valid, then the Baum-Connes conjec-
ture and the Farrell-Jones conjecture (for the ring R) are equivalent after inverting
2. It is worthwhile to point out that the corresponding completion conjecture with-
out inverting 2 is not true: a counterexample is given by free abelian groups (of
high enough rank).

The reason why we cannot produce an integral transformation ko→ ℓ on R∗Alg,
the category of real C∗-algebras, so far is because we do not know yet whether the
functor

L : NR∗Alg→ Sp

is KK-invariant, i.e. sends KK-equivalences to equivalences of spectra. If one
could prove that L-theory is C∗-stable this would be the case. Again this seems to
be a question about continuity of L-theory: Recall that C∗-stability for L-theory
asks whether the map

LA→ L(K⊗A)

is an equivalence. Using that
⋃
Mn(A) ⊆ K⊗A is dense and Morita invariance for

L-theory this reduces to the following general continuity question. Suppose that
there is ascending sequence A1 ⊆ A2 ⊆ . . . of sub-C∗-algebras of a C∗-algebra A
and suppose that the union of all Ai is dense in A.

Question 1. Under these assumptions, is the map

colim LAi → LA

an equivalence? Less general, is L-theory C∗-stable?
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Modular characteristic classes for representations over finite fields

David Sprehn

(joint work with Anssi Lahtinen)

We introduce a new system of modular characteristic classes for representations of
groups over finite fields, and use it to construct explicit non-trivial elements in the
modular cohomology of the general linear groups over finite fields. The cohomology
groups H∗(GLNFpr ; F) were computed by Quillen [9] in the case where F is a
field of characteristic different from p, but he remarked that determining them
in the modular case where the characteristic of F is p “seems to be a difficult
problem once N ≥ 3” [9, p. 578]. Indeed, the modular cohomology has since
resisted computation for four decades. Complete calculations exist only for N ≤
4 [1, 12, 11, 2]. Much attention has focused on the case where N is small compared
to p, e.g. [3, 4, 5, 10].

To our knowledge, when N > max{p, 4}, the only previously constructed
nonzero elements of H∗(GLNFpr ;Fp) are those due to Milgram and Priddy [8],
in the case r = 1. These reside in exponentially high degree: at least pN−2. On
the other hand, the cohomology is known to vanish in degrees less than N/2, by
the stability theorem of Maazen [7] together with Quillen’s observation [9] that
the stable limit is zero. This leaves a large degree gap where it was not known
whether the cohomology groups are nontrivial. We narrow this gap considerably
by providing nonzero classes in degrees linear in N . We obtain:

Theorem 1. Let N ≥ 2, and let n be the natural number satisfying

pn−1 < N ≤ pn.

Then
H∗(GLNFpr ;Fp)

has a nonzero element in degree r(2pn − 2pn−1 − 1). Moreover, it has is a non-
nilpotent element in degree 2r(pn − 1) if p is odd and in degree r(2n − 1) if
p = 2. �
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Notice that the degrees in the theorem grow linearly with N : if d is any of the
degrees mentioned in the theorem, then

r(N − 1) ≤ d < 2r(pN − 1).

In the case r = 1, we obtain stronger results, for instance:

Theorem 2. For all N ≥ 2,

H∗(GLNF2;F2)

has a non-nilpotent element of degree d for every d with at least ⌈log2N⌉ ones in
its binary expansion. �

Our characteristic classes are defined for representations of dimension N ≥ 2
over the finite field Fpr , and they are modular in the sense that they take values in
group cohomology with coefficients in a field F of characteristic p. Thus they are
interesting even for p-groups. The family of characteristic classes is parametrized
by the cohomology of GL2Fpr . We show that many classes in this family are
nonzero by finding representations ρ on which they are nontrivial. This produces
a family of nonzero cohomology classes on the general linear groups, namely the
“universal classes” obtained by applying the characteristic classes to the defining
representation of GLNFpr where N is the dimension of ρ.

The characteristic classes are defined in terms of a push–pull construction fea-
turing a transfer map. This construction was previously studied by the second
author in [10], where he proved that it yields an injective map

H∗(GL2Fpr ;Fp)→ H∗(GLNFpr ;Fp)

for 2 ≤ N ≤ p. The present work was inspired by computations of the first author
in string topology of classifying spaces [6] featuring similar push–pull constructions.

In addition to the groups GLNFpr , our characteristic classes can be used to
study other groups with interesting representations over finite fields. For example:

Theorem 3. For all n ≥ 1,

H∗(Aut(Fpn); Fp) and H∗(GLpnZ; Fp)

have a non-nilpotent element of degree 2d for every d with the following property:
the sum of the p-ary digits of d is equal to k(p− 1) for some k ≥ n. In particular,
there is a non-nilpotent element of degree 2pn − 2. (For p = 2, divide degrees by
2.) �

These classes live in the unstable range where the cohomology groups remain
poorly understood.

This work is accessible as a preprint at arxiv.org/abs/1607.01052
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Primary and secondary obstructions to positive scalar curvature via
submanifolds

Rudolf Zeidler

We study geometric situations, where index invariants on submanifolds are ob-
structions to existence and concordance of positive scalar curvature (psc) metrics
on ambient spin manifolds. The story begins with a recent result due to Hanke,
Pape and Schick which extends earlier work of Gromov and Lawson [2, Theorem
7.5]:

Theorem 1 (Hanke–Pape–Schick [3]). Let M be a closed connected spin manifold
and N ⊂ M a closed submanifold of codimension 2 with trivial normal bundle
such tha the induced maps Λ := π1(N)→ π1(M) =: Γ are injective, and π2(N)→
π2(M) surjective, respectively. If αΛ(N) 6= 0 ∈ KOm−2(C

∗
rΛ), then M does not

admit psc.

This features the Rosenberg index of spin manifolds which is an obstruction to
psc. However, the result does not directly show that the Rosenberg index of M is
non-vanishing, a point that remains to be clarified.

In the recent past, higher secondary index invariants such as the higher Rho-
invariant have found many applications distinguishing psc metrics up to bordism
or concordance, see for instance [4, 7, 6, 4, 5]. A conceptual way of understanding
these invariants is via the following result:

Theorem 2 (Piazza–Schick [4], Xie–Yu [7]). Consider Stolz’ sequence of bordism
groups of positive scalar curvature metrics. Then there is a commutative diagram
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mapping it to the analytic surgery sequence of Higson and Roe as follows:

Ωspin
∗+1(BΓ) Rspin

∗+1(BΓ) P spin
∗ (BΓ) Ωspin

∗ (BΓ) Rspin
∗ (BΓ)

KO∗+1(Γ) KO∗+1(C
∗
rΓ) SΓ∗ (EΓ) KO∗(Γ) KO∗(C

∗
rΓ)

[ ] αAPS ρ [ ] αAPS

∂ α

In particular: Let R+(M) denote the set of all metrics of psc on a closed spin
manifold Mm. Let Γ = π1(M). Then, given g ∈ R+(M), there is the Rho-
invariant ρΓ(g) ∈ SΓm(EΓ). Moreover, for g0, g1 ∈ R+(M), there is αΓ

diff(g0, g1) ∈
KOm+1(C

∗
rΓ) which satisfies ∂(αΓ

diff(g0, g1)) = ρΓ(g0)− ρ
Γ(g1). The index differ-

ence αΓ
diff(g0, g1) vanishes if g0 and g1 are concordant as psc metrics.

We have a secondary companion to Theorem 1 featuring the Rho-invariant:

Theorem 3 ([10, Theorem 4.1.3]). Let M be a closed spin manifold and N ⊆M
a closed submanifold of codimension 2 with trivial normal bundle. Fix a tubular
neighborhood t : N × Dε →֒ M . Suppose that the inclusion induces an injection
Λ := π1N →֒ π1M =: Γ and a surjection π2N ։ π2M . Let g0, g1 be psc metrics
on M such that t∗(gi) = gN,i ⊕ gD,i, where gD,i is cylindrical near the boundary
of the ε-disk Dε for i ∈ {0, 1}.

Then, if ρΛ(gN,0) 6= ρΛ(gN,1) ∈ SΛn−2(EΛ), the metrics g0 and g1 are not con-
cordant on M .

Similarly as in the primary result, the theorem does not show that the Rho-
invariants of the metrics on M are different.

We also have a primary and secondary obstruction theorem featuring submani-
folds of codimension 1. Here the picture is more complete and includes a commu-
tative diagram of the respective Higson–Roe sequences:

Theorem 4 ([10, Theorem 4.1.1], see also [9, Theorem 1.7]). Let M be a closed
spin manifold and Γ = π1M . Let N ⊂ M a closed submanifold of codimension 1
with trivializable normal bundle. Suppose that the inclusion induces an injection
π1N =: Λ →֒ Γ. Fix a tubular neighborhood ι : N × (−ε, ε) →֒ M . There exists a
commutative diagram,

SΓ∗ (M̃) K∗(M) K∗(C
∗
rΓ)

SΛ∗−1(Ñ) K∗−1(N) K∗−1(C
∗
rΛ),

τs τt τa

with the following properties:

(1) τt([M ]) = [N ],
(2) and as a direct consequence of the above τa(α

Γ(M)) = αΛ(N),
(3) τs(ρ

Γ(g̃)) = ρΛ(g̃N ) for all gM ∈ R+(M) with producture structure ι∗g =
gN ⊕ dt

2 on the tubular neighborhood of N ,
(4) τa(α

Γ
diff(g0, g1) = αΛ

diff(gN,0)(gN,1) for all g0, g1 ∈ R+(M) with product
structure ι∗gi = gN,i ⊕ dt

2, i = 0, 1, on the tubular neighborhood of N .
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In addition, we have results concerning submanifolds of higher codimensions in
special geometric situations like products or fiber bundles over certain aspherical
manifolds, see [9, Theorem 1.5].

Under stronger assumptions one can also deal with arbitrary submanifolds of
higher codimension due to work of Engel [1, Corollary 4.10]: Let M be a closed
spin manifold whose homotopy groups vanish in degrees d with 2 ≤ d ≤ q and let
N ⊂M be a connected submanifold with trivial normal bundle and of codimension
q. Suppose that π1(N)→ π1(M) be injective. In this situation, if we suppose that

π1(M) satifies the strong Novikov conjecture, then the higher Â-genera of N are
obstructions to psc on M .

In the talk, we also presented elements of the secondary index theory from [8, 10]
involving metrics of partially psc on non-compact complete spin manifolds. This
included the secondary partitioned manifold index theorem for metrics of partially
psc, see [8, Theorem 5.15] and [10, Theorem 2.4.6]. These techniques are required
in the proofs of Theorems 3 and 4 which were sketched during the talk.
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Galois descent and red shift in algebraic K-theory

Justin Noel

(joint work with Dustin Clausen, Akhil Mathew, Niko Naumann)

In this note we report on recent and upcoming work on some conjectures of Ausoni
and Rognes on the algebraic K-theory of commutative ring spectra (i.e., E∞-ring
spectra) [1]. Solutions to these conjectures would generalize certain key results
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about the algebraic K-theory of commutative rings. The far-reaching goal of
these and related conjectures of Rognes is to:

(1) Make the calculation of such algebraic K-theory groups more accessible
and

(2) to establish a relationship between algebraic K-theory and the chromatic
filtration in stable homotopy theory.

In particular, it would be desirable to have a generalization of the Quillen-
Lichtenbaum conjecture (proven by Voevodsky) in this setting. This conjecture
asserts that algebraic K-theory satisfies étale hyperdescent in sufficiently large
degrees. One can break this up into two intermediate claims: First, establish
that algebraic K-theory satisfies étale hyperdescent after a suitable Bousfield lo-
calization. Second, show that the localization map has coconnective fiber. As
part of the first claim, one expects that LTK(−) should satisfy Galois descent
for T ∈ {T (n),K(n), E(n)}n≥0. As a consequence of the second claim, one also
expects that, for a commutative ring spectrum R with K(n + i)∗R = 0 for all
i ≥ 1, K(n+ i)∗K(R) = 0 for all i ≥ 2. For discrete commutative rings these two
results are due to Thomason [11] and Mitchell [8] respectively.

In [3] we establish the following generalization of Thomason’s descent result:

Theorem 1. Let E → F be a finite G-Galois extension of commutative ring
spectra in the sense of Rognes [9]. Then the canonical maps:

LTK(E)→ LT (K(F )hG)→ (LTK(F ))hG

are equivalences for every T ∈ {T (n),K(n), E(n)}n≥0 (and every implicit prime
p) if and only if the transfer map K0(F )→ K0(E) is rationally surjective.

The stated condition can be checked in many cases of interest such as the G-
Galois extensions EhG

n → En, where G ( Gn is a finite subgroup of the extended
Morava stabilizer group.1 The condition also holds for any of the finite Galois
extensions of various incarnations of topological modular forms. Combining The-
orem 1 with known Nisnevich descent results imply Thomason’s étale descent
theorem. Unfortunately, our methods do not imply an analogous result about
hyperdescent.

In upcoming work, we also establish a new method for generalizing Mitchell’s
theorem to the algebraic K-theory of non-discrete rings. This is based on the
following result, which was inspired by the generalized character theory of Hopkins,
Kuhn, and Ravenel [4] as well as the results of [7]:

Theorem 2. Fix a prime p and a non-negative integer n. Let E be a commutative
ring spectrum and G = C×n

p . Suppose that the sum of the transfer maps :
⊕

H(G

E0(BH)→ E0(BG)

is a rational surjection. Then LT (n+i)E = LK(n+i)E ≃ ∗ for all i ≥ 0 (and at the
implicit prime p).

1This depends on joint work of the Lennart Meier, Niko Naumann, and the author.
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To obtain analogues of Mitchell’s theorem we apply the above result when
E = K(Z) (n = 2, p an arbitrary prime) and E = K(KU) (n = 3, p ∈ {2, 3, 5}).
To verify the hypothesis of Theorem 2, we prove an analogous statement for the
corresponding equivariant algebraic K-theory groups. For the K-theory of the
integers, the required hypothesis is a theorem of Swan [10]. We give a new proof
of Swan’s theorem that also applies to the K-theory of KU . For K(KU) our
results depend on a fundamental result of Borel [2], namely that the compact,
simply connected, exceptional Lie group E8 admits non-toral subgroups of the
form C×3

p precisely when p ∈ {2, 3, 5}.
The proofs of the local equivalences in Theorems 1 and 2 crucially depend on

the following result of the Mathew, Naumann, and the author used in the proof
of May’s nilpotence conjecture [5]:

Theorem 3. Let R be a commutative ring spectrum. Then LTR ≃ ∗ for all
T ∈ {T (n),K(n), E(n)}n≥0 (and every implicit prime p) if and only if π0R⊗Q = 0.

The proof of this result makes critical use of the E∞-ring structure on R and the
existence of certain power operations.

Using Theorem 3, the proof of Theorem 1 easily reduces to Thomason’s argu-
ment for rational Galois descent [11]. The proof of Theorem 2 easily reduces to
the case when E is a K(n+ i)-local En+i-algebra by using known calculations of
the E-cohomology of abelian groups as well as an elementary rank calculation.
To apply Theorem 2, we construct finite G-complexes with proper isotropy and
whose corresponding equivariant K-classes are equal to the unit up to a non-zero
multiple. In the case of K(KU), the calculation of the relevant K-class depends
on simplified description of the homotopy theory of KUE8-modules from [6].

References

[1] C. Ausoni and J. Rognes, The chromatic red-shift in algebraic K-theory, Enseign. Math.,
54 (2) (2008), 9–11.

[2] A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes,
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Coincidences of homological densities, predicted by arithmetic

Jesse Wolfson

(joint work with Benson Farb, Melanie Wood)

Let X be a connected, oriented smooth manifold. Fix m,n ≥ 1. Let ~d denote a

tuple of natural numbers (d1, . . . , dm) ∈ Nm with each di ≥ 1, and let |~d| :=
∑

i di.

Let Symd(X) := Xd/Sd be the dth symmetric product of X , more generally let

Sym
~d(X) :=

∏
i Sym

di(X). Consider the space Z
~d
n(X) ⊂ Sym

~d(X) of subsets

D ⊂ X of |~d| (not necessarily distinct) points in X such that:

(1) precisely di of the points in D are labeled with the “color” i, and
(2) no point of X is labelled with at least n labels of every color.

Such spaces of 0-cycles include several basic examples in topology and geometry.
For example:

• Zd
2(X) is the configuration space UConfd(X) of unordered d-tuples of dis-

tinct points in X .

• Z
d,d
1 (C) is the space Rat∗d(CP

1) of degree d, based rational maps f : CP1 →

CP1 with f(∞) = 1.

In ongoing work with Benson Farb and Melanie Wood, we study these spaces as
sites for the interplay between topology, algebraic geometry and number theory.
For the present talk, I will focus on topological analogues of classical density
theorems in analytic number theory, which form the main results of [1].

Theorem (in progress) 1 (Homological densities for spaces of 0-cycles).
Let X be a connected, oriented, smooth manifold. Assume that dimH∗(X ;Q) <
∞, for example X compact or is the interior of a compact manifold with boundary.

Fix m,n ≥ 1 and let ~d = (d1, . . . , dm). In what follows, let lim~d→∞ mean “as all
di →∞”, at any rates.

(1) If dimX is even, then

∑
~d∈Zm

≥0
χ(Z

~d
n(X))x|

~d|

∑
~d∈Zm

≥0
χ(Sym

~d(X))x|~d|
= (1 − xmn)χ(X),

which in particular only depends on χ(X) and mn.

(2) Suppose that the Leray spectral sequence for the inclusion map Z
~d
n(X) ⊂

Sym
~d(X) degenerates on the E2-page. This happens for example if dim(X)
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is odd or X is an open submanifold of Cn for some n. Then

lim
~d→∞

P
Z

~d
n(X)(t)

P
Sym

~d(X)
(t)
∈ Z[[t]]

exists in the t-adic topology on the ring Z[[t]] of formal power series, and
this limit depends only on the Betti numbers of X, on dim(X), and on
mn.

(3) If X is a smooth, complex-algebraic variety then

lim
~d→∞

HD
Z

~d
n(X)(u, v)

HD
Sym

~d(X)
(u, v)

exists in the adic topology on Z[[u, v]], and depends only on the product
mn, the mixed Hodge structure on H∗(X ;Q), and dimX.

The appearance of a ratios of homological invariants is a surprising aspect of the
theorem, and one for which we do not know a natural topological explanation. One
can check in a simple example that the ratio is indeed necessary. For X = C− 0,
mn = 2, we have

lim
d→∞

PZd
2(X)(t) = 1 + 2t+ 2t2 + . . .

lim
~d=(d1,d2)→∞

P
Z

~d
1 (X)

(t) = 1 + 3t+ 4t2 + 4t3 + . . .

so the numerators themselves are not equal. But, using that PSym∞(X)(t) = 1+ t,
the ratios are

1 + 2t+ 2t2 + . . .

1 + t
=

1

1− t
=

1 + 3t+ 4t2 + . . .

(1 + t)2
.

Roughly, we think of this ratio as measuring the limiting “density” of the space

Z
~d
n(X) inside the space Sym

~d(X). We also still have no explanation why these
ratios should coincide for different spaces of 0-cycles.

We view the theorem as a topological analogue of classical density results in
number theory, suggested by the “number field/function field” dictionary popu-
larized by Weil. Under this dictionary, a manifold X is the analogue of the ring of
integers O in a number field K, and collections of points in X correspond to ideals
in O. Since the late 1800s, it has been understood that, e.g. the limiting density
of the number of square free integers in the set of all integers equals the limiting
density of the set of pairs of coprime integers in the set of all pairs of integers, i.e.

lim
N→∞

#{n ≤ N | ∄ a s.t a2|n}

N
= lim

N→∞

#{m,n ≤ N | gcd(m,n) = 1}

N2

Replacing the integers with an arbitrary manifold, and the cardinality of a set
with the homology of a space, the dictionary predicts the case mn = 2 of Theorem
1, and similar arguments predict the other cases.

On the number field side, the limiting densities we consider are all special values
of Dedekind zeta functions of the respective number fields. From this perspective,
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it is natural to view the limiting homological densities as special values of a “topo-
logical zeta function” of the manifold X , i.e. one might define

ζX(mn)−1 := lim
~d→∞

P
Z

~d
n(X)(t)

P
Sym

~d(X)
(t)
∈ Z[[t]]

It is natural to ask whether this analogy can be pushed further.

Question 2. For a manifold X and ζX(mn) defined as above, does there exist an
analytic continuation of ζX(s) for non-integer values of s?

We deduce Theorem 1 by analyzing the Leray spectral sequence for the inclu-

sion Z
~d
n(X) → Sym

~d(X). Methods from algebraic combinatorics, specifically the
Björner–Wachs theory of EL-shellability, provide crucial ingredients of this analy-
sis. We find that the E2-page of this spectral sequence decomposes as a product
of two terms, one of which depends only on the cohomology of X and on mn, and

the other which is given by the cohomology of the symmetric product Sym
~d(X).

The homological densities of Theorem 1 amount to three different lenses through
which coincidences about the spaces themselves can be deduced from coincidences
of the E2-pages. Put another way, at our present understanding we are only able
to identify coincidences of homological densities that neglect the contribution of
the differentials in the spectral sequence.

Problem 3. Extract the “correction terms” from the differentials, and use these
to unify and refine the coincidences of Theorem 1.
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A1-Milnor number

Kirsten Wickelgren

(joint work with Jesse Leo Kass)

Let f : Rn → Rn be a C∞-function with an isolated zero at the origin. Recall that
the local degree deg0 f of f at zero is defined as

deg0 f = deg( ∂B(0, ǫ)
f/|f | // ∂B(0, 1) ) ∈ Z,

where ǫ > 0 is chosen sufficiently small. The Signature Formula of Eisenbud-
Levine/Khimshiashvili [1] [3] gives a formula for deg0 f as the signature of the
following real symmetric bilinear form. Define Q0(f) = R[[x1, . . . , xn]]/〈f1, . . . , fn〉
where fi denotes the ith coordinate projection of f . Let J = det( ∂fi

∂xj
). Choose a

R-linear function ϕ : Q0(f)→ R such that ϕ(J) > 0. Define

〈, 〉ϕ : Q0(f)×Q0(f)→ R

〈, 〉ϕ(g, h) = ϕ(gh).
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Theorem. (Eisenbud-Levine/Khimshiashvili Signature Formula)

deg0 f = signature 〈, 〉ϕ

The complex analogue of their theorem was proven earlier by Palamodov. When
f is analytic, and hence has a complexification f ⊗ C, Palamodov proved

Theorem. (Palamodov)

deg0 f ⊗ C = rank 〈, 〉ϕ.

For an arbitrary field k and a polynomial function f , let

Q0(f) = k[x1, . . . , xn]m0/〈f1, . . . , fn〉,

wherem0 = 〈x1, . . . , xn〉, and choose ϕ to be k-linear such that ϕ(J) = dimk Q0(f).
In positive characteristic, assume that dimk Q0(f) is finite and if this dimension
is divisible by the characteristic, J is replaced by a distinguished socle element E
with ϕ(E) = 1. The isomorphism class of 〈, 〉ϕ does not depend on the choice of
ϕ.

Eisenbud wrote an AMS Bulletin article about this work [2], and the article
ends with some questions. Question 3 [2, p. 763-764] is

I would propose that the degree of a finite polynomial map f :
kn → kn, where k is an arbitrary field of characteristic 0 be defined
to be the equivalence class of the quadratic form 〈, 〉ϕ on the local
ring of f at 0. . . . There is really no reason to stick to characteristic
0 for all this, . . . The question is, does this idea of degree have some
other interpretation (or usefulness), for example in cohomology
theory, as in the case of R or C

We answer this question “yes:” 〈, 〉ϕ is the local degree from Morel-Voevodsky’s
A1-homotopy theory [5], appearing before A1-homotopy theory itself.

Theorem 1. (Kass, W.)

degA
1

0 f = 〈, 〉ϕ

About the left hand side: Morel’s degree homomorphism in A1-homotopy theory
over a field k takes an endomorphism of a sphere to an element of the Grothendieck
Witt group GW(k) of k. This group is the group completion of the semi-ring
of isomorphism classes of non-degenerate symmetric bilinear forms over k. The
above equality is in GW(k). Morel’s construction is compatible with the Z-valued
topological degree: when we have an embedding k →֒ C, the topological degree

of the C-points of a map is the rank of the bilinear form degA
1

; the topological
degree of the R-points of a map is the signature. (Note the compatibility with the
Signature Formula, Palamodov’s Theorem and Theorem 1.)

Theorem 1 is proven by reducing to the étale case, where both sides are com-
puted to be equal. To do the reduction, both sides are shown to be unchanged
when f is modified by an n-tuple of polynomials in a sufficiently high power of the
maximal ideal. We modify f in this way to be able to extend it to an endomor-
phism G (satisfying certain conditions) of the sphere Pn/Pn−1 in A1-homotopy
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theory. We show that 〈, 〉ϕ has certain properties of a local degree, namely that
there is a global degree which is a sum of local degrees over points of G−1(x) with
x ∈ An = Pn − Pn−1, making this sum independent of x. We can now check the
equality of global degrees using an x so that G is étale at every point of G−1(x).
When there is no such rational x, we take an odd-degree field extension, which
induces an injection on GW.

As an application, we enrich Milnor’s equality between the local degree of the
gradient of a complex hypersurface singularity and the number of nodes into which
the singularity bifurcates [4]. Classically, this common integer is the Milnor num-
ber µ. We enrich this to an equality in GW(k). Specifically, let k be a field of
characteristic not 2, and let g ∈ k[x1, . . . , xn] define a hypersurface with an isolated
singularity at 0.

A node is a hypersurface singularity isomorphic to x21 + . . .+ x2n over ks where
ks denotes the separable closure of k. Over non-separably closed fields, nodes
contain arithmetic information. For example, the isomorphism type of the node
of x21 + ax22 = 0 depends on the value of a in k∗/(k∗)2. We encode some of this
information in a bilinear form. Let 〈a〉 denote the element of GW(k) represented
by the rank 1 bilinear form (x, y) 7→ axy for x,y in k. Define the arithmetic
type of x21 + ax22 = 0 to be 〈a〉 in GW(k). More generally, for g = 0 defining a
node at a rational point p, define the arithmetic type to be 〈H〉, where H is the

Hessian H = det( ∂fi
∂xj

(p)) evaluated at p. Using descent data, one also defines the

arithmetic type when x is not assumed to be rational. (When k is a finite field,
we explain the definition later.)

For general (a1, ..., an) ∈ An
k (k), the family

g(x1, . . . , xn) + a1x1 + · · ·+ anxn = t

over line with coordinate t contains only nodal fibers as singular fibers, and writing
these nodes as pi ∈ Xi, we have:

Theorem 2. (Kass, W.) Suppose grad g is finite and has only the origin as an
isolated zero. Then

(1) µA1

(g) =
∑

arithmetic type(pi) ∈ Xi

in GW(k), where

µA1

g = degA
1

0 grad g

and is called the A1-Milnor number.

Let us now analyze Theorem 2 in the special case where k = Fq is a finite
field of characteristic p 6= 2. Describing nodal fibers over a finite field is especially
tractable because the structure of a finite field is so simple. The stable isomorphism
class of a nondegenerate symmetric bilinear form is determined by its rank and
discriminant. Furthermore, the discriminant is an element of k∗/(k∗)2, which is a
2 element group that we write as

F∗
q/(F

∗
q)

2 = {1, uq} for some uq ∈ F∗
q .
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In particular, there are two possibilities for the arithmetic type of a node at the
origin:

the arithmetic type 〈1〉 of x2 + y2 and(2)

the arithmetic type 〈uq〉 of x
2 + uqy

2.(3)

However, not every collection of nodes {xi ∈ Xi} satisfying Equation (1) can be
realized as the singular fibers of a family. For the example, the equation f(x, y) =

y3 + x4 of the E6 singularity over k = F5 satisfies µA
1

(f) = 3 · H. We have
3·H = 6·〈1〉 in GW(F5), but there does not exist an (a, b) such that the associated
family has 6 fibers with arithmetic type 〈1〉 because A1

F5
(F5) only has 5 < 6

elements.
We describe the configurations of nodes occurring in families associated to the

singularities in Table 1 for some small finite fields. Table 1 should be read as
follows. The equation in the second column is the equation of an isolated plane
curve singularity, and over the algebraic closure, that singularity is isomorphic
to an ADE singularity, specifically the singularity with the name in the first col-
umn. The A1-Milnor number of the equation is given in the third column. The
discriminant, considered as an element of k∗/(k∗)2, is listed in the fourth col-
umn. The rank of A1-Milnor number is the integer appearing in the first column
(so e.g. for the D4 singularity, the rank is 4). In the table, H = 〈1,−1〉 is the class
of the standard hyperbolic space.

Table 1. Some singularities over k = Fq, q = pn for p > 5 with
A4 and otherwise p > 3

Name Equation A1-Milnor number Discriminant

A2 y2 + x3 H −1
A3 y2 + vx4, v ∈ k∗ 〈2 · v〉+H −2 · v
A4 y2 + x5 2 ·H 1
D4 x2y + xy2 〈−2, 2 · 3〉+H 3
E6 x4 + y3 3 ·H −1

Consider the possible nodal fibers of the family A2
k → A1

k defined by f(x, y) +
ax + by = t. Thus suppose that x0 ∈ Xt0 is a node of the fiber over the closed
point t0 ∈ A1

k. As was mentioned earlier, if x0 ∈ X0 has residue field equal to k,
then the arithmetic type is the value of the Hessian of f at x0.

In general, the definition of the arithmetic type is more subtle. Colloquially,
x0 ∈ Xt0 corresponds to a Galois orbit of nodes (over, say a large field extension),
and if the common arithmetic type of these nodes is α, then the arithmetic type
of x0 ∈ Xt0 is the Scharlau trace TrL/k(α).
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More formally, suppose first that k(t0) = k but k(x0)/k is a nontrivial extension,
say k(x0) = L. Then Xt0 ⊗k L has finitely many nodes mapping to x0, say
x̃1, . . . , x̃n ∈ Xt0 ⊗k L. Each of these nodes has residue field L, and a node’s
arithmetic type (over L) is computed as the class of a Hessian. Moreover, the x̃i’s
are transitively permuted by the Galois group Gal(L/k), so any two nodes have
the same type, say α ∈ GW(L). We then have

the arithmetic type of x0 ∈ Xt0 = TrL/k(α).

Here TrL/k : GW(L)→ GW(k) is the Scharlau trace.
The most general case is where k(t0) is a nontrivial extension, say L. In this

case, t0 corresponds to a Gal(L/k)-orbit of fibers X̃t̃1
, . . . , X̃t̃m

that are transitively

permuted by the Galois group. Each of the points t̃1, . . . , t̃m has residue field L,

so the arithmetic type of a node of X̃t̃i
is defined as in the previous paragraph.

Fixing one fiber, say X̃t̃1
, and defining α ∈ GW(L) to be the sum of the arithmetic

types of the nodes of X̃t̃1
that map to x0, we have

the arithmetic type of x0 ∈ Xt0 = TrL/k(α).

For given k = Fq, f(x, y) ∈ k[x, y], a, b ∈ k, the arithmetic types of the nodal
fibers of f(x, y) + ax + by = t can be computed using Gröbner basis techniques.
For example, consider the family x2y−xy2+2x+y = t over k = F17. The singular
fibers are the fibers over the points of the closed scheme defined by k[t]∩(f(x, y)+

ax + by − t, ∂f∂x + a, ∂f∂y + b). A Gröbner basis computation shows that this ideal

is generated by d(t) = t4 + 14, an irreducible polynomial. In L := k[r]/t4 + 14,
a second Gröbner basis computation shows that Xt1 has a node at the point
(4r3 +5r, 9r3). The value of the Hessian at this point is 4r2 = 1 in L∗/(L∗)2. We
conclude that the nodal fibers of the family consists of a Galois orbit of 4 fibers,
each with a single node of type 〈1〉 ∈ GW(L). Table 2 was generated by similar
computations.

The table should be read as follows. The first column describes a singularity
from Table 1. For a given singularity, the possible singular fibers of a family
f(x, y) + ax + by = t with only nodal fibers are listed in the second column.
The last column is the count of the (a, b)’s that define a family with singular fibers
as described by the corresponding entry in the second column. (E.g. for the A2

singularity over k = F5, there are 5 elements (a, b) ∈ A2
k(k) s.t. f(x, y)+ax+by = t

has 2 nodal fibers, each with a node of type 〈1〉.)
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Table 2. Possible singular fibers of a family

Singularity Nodal fibers Count

A2 with k = F5 1 orbit of 2 fibers of type 〈up2〉 10
2 fibers of type 〈up〉 5
2 fibers of type 〈1〉 5
Total 20

A2 with k = F7 1 orbit of 2 fibers of type 〈1〉 21
1 fiber of type 〈1〉, 1 fiber of type 〈up〉 21
Total 42

A3 with k = F5, 1 fiber of type 〈1〉, 1 orbit of 2 fibers of type 〈1〉 20
v = 1 Total 20

A3 with k = F5, 1 node of type 〈up〉, 1 orbit of 2 fibers of type 〈1〉 20
v = 2 Total 20

A3 with k = F7, 1 orbit of 3 fibers of type 〈up3〉 28
v = 1 3 nodes of type 〈up〉 14

Total 42

A3 with k = F7, 3 fibers of type 〈1〉 14
v = −1 1 orbit of 3 fibers of type 〈1〉 28

Total 42

A4 with k = F7 1 type 〈1〉 fiber, 1 type 〈up〉 fiber,
1 orbit of 2 type 〈1〉 fibers 21

2 orbits of 2 fibers of type 〈1〉 21
Total 42

D4 with k = F5 1 orbit of 4 fibers of type 〈1〉 12
1 orbit of 2 fibers of type 〈1〉, 2 fibers of type 〈1〉 2
2 fibers of type 〈up〉, 1 fiber of type TrF

p2
/Fp

(〈1〉) 6

1 orbit of 2 fibers of type 〈1〉, 1 fiber of type 〈1, 1〉 4
Total 24

E6 with k = F5 1 fiber of type TrF
p2

/Fp
(〈up〉),

2 orbits of 2 fibers of type 〈up2〉 4
2 fibers of type 〈1〉, 2 orbits of 2 fibers of type 〈1〉 4
2 fibers of type 〈up〉, 2 orbits of 2 fibers of type 〈1〉 4
3 orbits of 2 fibers of type 〈up2〉 4
Total 16
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Lie algebras and vn-periodic spaces

Gijs Heuts

The goal of this talk was to explain some results on vn-periodic unstable homotopy
theory analogous to Quillen’s results on rational homotopy.

Goodwillie towers of ∞-categories. Write S∗ for the (∞-)category of pointed
spaces. The Goodwillie tower of the identity functor [7] on S∗ gives, for each
pointed space X , a tower of spaces

...

��... P3X

��
P2X

��
X //

77♦♦♦♦♦♦♦♦♦♦♦♦♦

@@�������������������
P1X Ω∞Σ∞X,

which interpolates between the stable and unstable homotopy type of X . The
homotopy fiber of the map PnX → Pn−1X is usually denoted DnX and may be
expressed as follows:

DnX = Ω∞
(
(∂nid ∧X

∧n)hΣn

)
.

Here ∂nid is a spectrum carrying an action of the symmetric group Σn and is called
the n’th derivative of the identity functor. Ching [5] showed that the symmetric
sequence of derivatives ∂∗id has a natural operad structure; furthermore, this
operad is the cobar construction of the commutative cooperad and as such could
be considered as the (desuspension of) the Lie operad in the category of spectra.
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In particular, taking integral homology reproduces (a degree shift of) the ordinary
Lie operad in the category of abelian groups.

In [9] we constructed theGoodwillie tower of S∗, which is a tower of∞-categories
interpolating between S∗ and the ∞-category Sp of spectra:

...

��... P3S∗

��
P2S∗

��
S∗

Σ∞
3���������

@@���������

Σ∞
2♦♦♦♦♦♦

77♦♦♦♦♦

Σ∞ // P1S∗ Sp.

All functors in this diagram are left adjoints; we write Ω∞
n for the right adjoint of

Σ∞
n . Let us list the following properties:

(1) The identity functor idPnS∗ of PnS∗ is an n-excisive functor in the sense
of Goodwillie.

(2) The counit Σ∞
n Ω∞

n → idPnS∗ canonically factors through a natural trans-
formation Pn(Σ

∞
n Ω∞

n )→ idPnS∗ , which is an equivalence.
(3) The unit idS∗ → Ω∞

n Σ∞
n canonically factors through a natural transfor-

mation PnidS∗ → Ω∞
n Σ∞

n , which is an equivalence.

In fact, the construction of Goodwillie towers makes sense for a wide class of ∞-
categories C, namely those that are pointed (meaning they have a zero object) and
compactly generated. The analogous properties hold in this generality.

Before stating the result we need, recall the definition of Tate spectra: any
spectrum E with an action by a finite group G gives rise to a norm map

EhG
Nm
−−→ EhG,

whose cofiber is by definition the Tate spectrum EtG. The analogue of this map
in ordinary algebra is ‘summing over the group’; in detail, for an abelian groupM
with G-action, one considers the map [m] 7→

∑
g∈G gm. The following ‘degenera-

tion’ has a number of useful applications (see [9]):

Theorem. Let C be a pointed, compactly generated ∞-category such that all Tate
spectra are contractible in the ∞-category Sp(C) of spectra in C. Then for each
n ≥ 1 there is a canonical equivalence

PnC ≃ PnAlg∂∗idC
(Sp(C)),

compatible with the functors in the respective Goodwillie towers. Alg∂∗idC
(Sp(C))

denotes the ∞-category of algebras over the derivatives of the identity of C.
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Remark. The statement of the theorem just given is informal: we are assuming
an operad structure on ∂∗idC, which is not a given (although it is not a problem for
the examples we consider here). A more precise formulation in terms of coalgebras
is Corollary 2.23 of [9].

The examples of stable ∞-categories with vanishing Tate spectra we have in
mind are the following:

(1) The ∞-category SpQ of rational spectra. Vanishing of Tate spectra is a
straightforward consequence of the invertibility of the order of the group.

(2) The∞-category SpK(n) of K(n)-local spectra, with K(n) the n’th Morava
K-theory at some prime p. The vanishing of Tate spectra in this case is a
result of Greenlees and Sadofsky [8].

(3) The ∞-category SpT (n) of T (n)-local spectra, with T (n) the telescope of
a vn self-map on a p-local finite type n spectrum. The vanishing of Tate
spectra in this case is a result of Kuhn [12].

Using example (1) to apply the theorem above to the ∞-category of rational
pointed spaces one can reprove some of Quillen’s results, comparing rational ho-
motopy theory with the homotopy theories of differential graded Lie algebras or
commutative coalgebras over Q. Our focus will be on a certain ∞-category Vn

whose associated stable homotopy theory is (3). Example (2) can be treated in a
similar way.

The vn-periodic homotopy theory of spaces. Let Vn be a p-local finite space
of type n with a vn self-map v : ΣdVn → Vn. Then for any (p-local) pointed space
X we may define its v-periodic homotopy groups by

v−1π∗(X ;Vn) := π∗ lim−→
(Map∗(Vn, X)

v∗

−→ ΩdMap∗(Vn, X)→ · · · ).

In fact, the Bousfield-Kuhn functor [11] captures these groups in a way that is
independent of choices; it is a functor

Φ : S∗ → SpT (n)

satisfying π∗(Φ(X) ∧DVn) ≃ v
−1π∗(X ;Vn), with D denoting Spanier-Whitehead

dual. We say a map f of pointed spaces is a vn-periodic equivalence if Φ(f) is a
weak equivalence of spectra (or, equivalently, if v−1π∗(f ;Vn) is an isomorphism).

In [10] we will construct a subcategory Vn of S∗ together with a functor Mn :
S∗ → Vn, such that a map f of pointed spaces is a vn-periodic equivalence if and
only if Mn(f) is a weak equivalence. The functor Mn is not a localization, but
rather a composition of a colocalization with a localization. The details of its
construction rely heavily on the work of Bousfield [3, 4] and Dror Farjoun [6].

Proposition. The stabilization Sp(Vn) is equivalent to SpT (n) and under this
identification the derivatives of the identity ∂∗idVn

are equivalent to LT (n)∂∗idS∗ .

Our previous theorem then implies the following [10]:
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Theorem. There are canonical equivalences, natural in k ≥ 1, as follows:

PkVn ≃ PkAlg∂∗idS∗
(SpT (n)) ≃ PkcoAlg(SpT (n)).

Here coAlg(SpT (n)) denotes the ∞-category of commutative coalgebras in SpT (n).

Moreover, one deduces that under these identifications the composition

PkVn
Ω∞

k−−→ Vn
Φ
−→ SpT (n)

corresponds to the forgetful functor

PkAlg∂∗idS∗
(SpT (n))

Ω∞
k−−→ Alg∂∗idS∗

(SpT (n))
forget
−−−→ SpT (n)

and the ‘derived primitives’ functor

PkcoAlg(SpT (n))
Ω∞

k−−→ coAlg(SpT (n))
prim
−−−→ SpT (n)

respectively. The latter is a construction formally dual to the topological André-
Quillen homology of ring spectra, which is a form of ‘derived indecomposables’. A
sample application of this theorem uses a convergence result of Arone-Mahowald
[1] to identify Φ(Sq) with the derived primitives of the commutative coalgebra
LT (n)Σ

∞Sq, for any sphere Sq. After K(n)-localization this reproduces a recent
result of Behrens and Rezk [2].
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(Higher) Topological Hochschild homology – an overview

Birgit Richter

When topological Hochschild homology, THH, of rings and ring spectra was first
defined by Bökstedt in the mid 80’s [5], there was no symmetric monoidal category
of spectra developed, yet. Bökstedt used the diagram category of finite sets and
injections in order to give a model for THH. Since the mid 90’s there are other
models, for instance one that mimics the definition of the Hochschild complex,
one using a Tor-like definition and one using a suitable bar construction (see [13,
chapter IX]). It was shown that THH of a ring is isomorphic to MacLane homology
[19] and to stable K-theory [12]. The Dennis trace map tr : K∗(R) → HH∗(R)
factors over THH∗(R) and the latter is a better approximation to algebraic K-
theory than HH∗(R); it also serves as the input for the construction for topological
cyclic homology, TC(R), and this approximates K∗(R) very well in many cases.

Bökstedt calculated THH of the integers and of Fp [6]. His famous spectral
sequence was used for instance by McClure and Staffeldt to determine the mod p
homotopy groups of THH of the connective Adams summand [17]. We know THH

in many more examples, for instance for local fields [14], number rings [15], Z/pn

[7] and connective complex topological K-theory [3].
For a discrete R-algebra A (R commutative), the center of A over R can be

identified with the endomorphisms of A in the category of A-bimodules over R.
Topological Hochschild cohomology of an R-algebra spectrum A can be defined
as the derived spectrum of self-maps of A over the enveloping algebra A ∧LR Ao

and can hence be viewed as a derived center of A over R. Angeltveit showed that
this derived center depends on the chosen A∞-structure, for instance different
A∞-structure of Morava K-theory, Kn, over Morava E-theory, En, give different
THHEn

(Kn) [2].
Let A be a commutative R-algebra spectrum. Rognes defined in [20] when A is

unramified over R and showed that in this case the canonical map A→ THHR(A)
is a weak equivalence. We use this to show that the complexification map ko→ ku
is wildly ramified [11, Theorem 5.2]: THH ko

∗ (ku) is not equivalent to ku∗ and it
behaves like Hochschild homology of the Gaussian integers.

In the discrete case Weibel and Geller showed [22] that for an étale exten-
sion of commutative rings R → A Hochschild homology satisfies étale descent,
HH∗(A) ∼= A ⊗R HH∗(R), and if R → A is G-Galois for a finite group G this
implies HH∗(A)

G ∼= HH∗(R). Both properties do not carry over to ring spec-
tra: Akhil Mathew shows [16] that there is a Cp-Galois extension of commutative
ring spectra for which étale descent fails for THH. In joint work with Ausoni we
show that for the HQ-dual of the Hopf map η∗ : F (S2

+, HQ) → F (S3
+, HQ) the

S1 homotopy fixed points of THH (F (S3
+, HQ)) are not homotopy equivalent to

THH (F (S2
+, HQ)) although η∗ is an S1-Galois extension.

The category of commutative ring spectra is tensored over (pointed) simpli-
cial sets. For a commutative ring spectrum A the standard simplicial model of
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THH(A) can be directly identified with A⊗S1 where S1 = ∆1/∂∆1 is the standard
simplicial model of the 1-sphere.

For any pointed simplicial set X we call π∗(A⊗X) the X-homology of A. In the
discrete case this was defined by Pirashvili [18], but mentioned earlier for spheres
for instance by Anderson [1] in the context of iterated Eilenberg-Moore spectral
sequences. Basterra-McCarthy showed that topological André-Quillen homology
can be viewed as the stabilization of the A⊗ Sn’s [4].

Higher topological Hochschild homology of order n of A is Sn-homology of A

and denoted by THH
[n](A). another important special case is torus homology [8]:

if one considers n-fold iterated algebraic K-theory of A, Kn(A), then the iteration
of the trace map has A⊗ (S1)n as the target.

We know THH [n] in some cases for all n ≥ 1. For instance we show in [10, 3.6]
that

THH
[n]
∗ (HFp) ∼= Tor

THH
[n−1]
∗ (HFp))

∗,∗ (Fp,Fp), n ≥ 2.

These Tor-algebras were determined by Cartan [9] and can be explicitly written
down as graded commutative Fp-algebras. This result was also known to Basterra
and Mandell. We also show in [11] that for all primes

THH
[2]
∗ (HZ(p)) ∼= Z(p)[x1, x2, . . .]/p

nxn = 0, xpn = pxn+1, |x1| = 2p.

Schlichtkrull gives a general identification for X-homology of commutative Thom
spectra [21].

Ongoing work by Ausoni and Dundas makes progress on Rognes’ red-shift con-
jecture using torus homology. They show that the generator vn−1 of connective
Morava K-theory is not in the kernel of the unit map

k(n− 1)∗ → k(n− 1)∗K
n(HFp).

They prove this by showing that vn−1 is detected in k(n−1)∗(HFp⊗ (S1)n)h(S
1)n .

It turns out that π∗(HFp⊗(S
1)n) can be described by higher THH ofHFp because

in this case torus homology does not see the attaching maps in the CW structure
of the torus. In order to prove the red-shift conjecture for Fp they have to show
that all powers of vn−1 also survive.
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tion, Topology Appl. 121 (2002), no. 3, 551–566.

[5] M. Bökstedt, Topological Hochschild homology, preprint.
[6] M. Bökstedt, The topological Hochschild homology of Z and of Z/pZ, preprint.
[7] M. Brun, Topological Hochschild homology of Z/pn, J. Pure Appl. Algebra 148 (2000),

29–76.



Topologie 2059

[8] M. Brun, G. Carlsson, B. I. Dundas, Covering homology, Adv. Math. 225 (2010), no. 6,
3166–3213.
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Fox-Neuwirth cells, quantum shuffle algebras, and Malle’s conjecture
for function fields

Craig Westerland

(joint work with Jordan S. Ellenberg, TriThang Tran)

Malle conjectured in [1] an asymptotic formula for the growth of number fields with
specified Galois group. Specificially, for a fixed integer n and transitive subgroup
G ≤ Sn, one may define a function

NG(X) := #{K/Q of degree n with |∆K | ≤ X and Gal(K/Q) ∼= G}

where ∆K is the discriminant of the number field K. Conjecturally, NG(X) grows
asymptotically as a polynomial in X and log(X). Specifically, Malle asserts the
existence of constants a, b, and C with

NG(X) ∼ CXa(logX)b−1.
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The constants a and b are given in terms of properties of conjugacy classes in the
group G, their action via Sn, and the action of the absolute Galois group on G
via the cyclotomic character.

We can reformulate this conjecture in the function field setting by replacing
Q with Fq(t), the function field of A1(Fq). An extension K of Fq(t) corresponds
to a ramified covering Σ → A1(Fq). We may regard the (absolute value of the)
discriminant |∆K | as q

r, where r is the ramification index of the covering (i.e., the
number of branch points), since in the number field setting, a prime ramifies in an
extension if and only if it divides the discriminant. This suggests that we define

NG,q(X) := #{π : Σ→ A1(Fq) of degree n with qr ≤ X and Aut(Σ/A1) ∼= G}.

We should insist that the Σ being enumerated are geometrically connected, in order
to more directly connect to Malle’s original conjecture. If c ⊆ G is a conjugation-
invariant subset, we may define a more refined function N c

G,q(X) to be the cardi-
nality of the subset where all ramification has monodromy lying in c. Then Malle’s
conjecture in this setting amounts to the claim that

N c
G,q(X) ∼ CXa(logX)b−1.

where a, b, and C now depend upon both G and c.
In the function field setting, unlike the original arithmetic conjecture, there is

a scheme whose Fq points are enumerated by N c
G,q(X). Specifically, for a given r,

there is a Hurwitz moduli scheme Hnc
G,r which parameterizes geometrically con-

nected G-branched covers of A1 with precisely r branch points, with monodromy
in c. Then

N c
G,q(X) =

logq X∑

r=0

#Hnc
G,r(Fq),

and Malle’s conjecture amounts to the assertion that #Hnc
G,r(Fq) ∼ C

′qarrb−1. In
the case, for instance, that G = Sn, and c is the conjugacy class of transpositions,
a and b are both predicted to be 1. We give an asymptotic upper bound on the
growth of this quantity that is slightly larger than Malle’s:

Theorem 1 (Ellenberg-Tran-W.). If G = Sn, and c is the conjugacy class of
transpositions, there is a positive integer d (depending upon n) with the property
that

lim
r→∞

#Hnc
G,r(Fq)

qrrd
= 0.

This result holds for a larger class of (G, c), but for brevity, we leave out the
somewhat complicated condition which is required. Our main tool in proving this
result is the Grothendieck-Lefschetz fixed point theorem, allowing us to compute
the number of Fq points of a scheme in terms of the trace of Frobenius on its étale
cohomology. The main input to this machine is a computation of the rational
singular homology of the complex points of the scheme.

In the case at hand,

H∗(Hn
c
G,r(C),Q) = H∗(Br,Wr)
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can be described as the homology of the rth braid group Br with coefficients in a
rational representation Wr. Specifically, Wr is a summand of V ⊗r, where V = Qc
is the vector space generated by c, and the braid action on V ⊗r is built from V ’s
structure as a braided vector space. That is, there is an automorphism σ of V ⊗V
which obeys the braid equation on V ⊗3; this yields an action to Br on V ⊗r. For
any such V , we prove

Theorem 2 (Ellenberg-Tran-W.). There is an isomorphism

Hj(Br;V
⊗r) ∼= Extr−j,r

A(Vǫ)
(k, k).

Here Vǫ is V with its braiding altered by a sign, and A(Vǫ) is the quantum shuffle
algebra that it generates. This is a braided Hopf algebra whose coalgebra structure
is that of the tensor algebra on Vǫ, and whose multiplication mimics the classical
shuffle product, but is deformed by a lift of the set of shuffles to representatives in
the braid group. The proof relies heavily on Fox-Neuwirth’s cellular stratification
of the configuration space of points in the plane [2].

This reformulates the braid group homology as a computation in the homologi-
cal algebra of this braided Hopf algebra. For a class of examples, we develop tools
to ensure that the indicated Ext algebra grows at worst exponentially in j and
polynomially in r. These give the bounds needed for Theorem 1.
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A motivic little two-disks operad

Geoffroy Horel

The little 2-disks operad D is an operad in topological spaces whose n-th space has
the homotopy type of the space Confn(C) of ordered configurations of n points in
the complex plane. This space is the also the complex analytic space underlying
the scheme Confn:

Confn := Spec(Q[x1, . . . , xn][(xi − xj)
−1, i < j])

By Artin’s comparison theorem between étale and singular cohomology, we
obtain for any integer m an equivalence of E∞-algebras:

C∗
et(Confn ×Q Q̄,Z/m) ≃ C∗(Confn(C),Z/m)

The E∞-algebra on the left hand side has an action of the group Gal(Q̄/Q) which
can thus be transferred on the right hand side via the above equivalence.

It seems impossible to give an operad structure on the collection of algebraic
varieties {Confn, n ∈ Z≥0} that realizes the little 2-disks operad when one takes
the underlying analytic space. Nevertheless, we have the following theorem (cf.
[2]).
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Theorem 1. The action of Gal(Q̄/Q) on the E∞-algebras C∗(Confn(C),Z/m)
extends to an action of Gal(Q̄/Q) on the Hopf cooperad C∗(D,Z/m).

Let us recall the definition of the ∞-category of Hopf cooperads over a com-
mutative ring R. The ∞-category of E∞-algebras in chain complexes over R has
coproducts given by the tensor product ⊗R. It then follows that the opposite of
this ∞-category has products. We may therefore define the ∞-category of Hopf
cooperads over R as the category of operads in the ∞-category opposite to that
of E∞-algebras.

This theorem strongly suggests that the operad of little 2-disks comes from an
algebro-geometric object which is defined over Q. The main goal of this talk is
to show that this is the case for a certain explicit choice of interpretation of this
question.

We introduce the category DA(Q). This is the category of étale motives over
Spec(Q) with coefficients in Z. This is a symmetric monoidal stable ∞-category.
It can roughly be described as the category obtained from the derived category
of étale sheaves of abelian group over the category of smooth schemes over Q
by imposing A1-invariance and invertibility of the Tate motive. Given a smooth
scheme X over Q, we denote by M(X) its image in DA(Q).

There exists a symmetric monoidal left adjoint functor called the Betti realiza-
tion which takes values in DZ, the derived category of Z. For X a smooth scheme
over Q, the motive M(X) is sent to an object equivalent to C∗(X(C),Z) by the
Betti realization functor. The main result of this talk is the following theorem.

Theorem 2. There exists a Hopf cooperad D(n) in the category DA(Q) whose
Betti realization is weakly equivalent to C∗(D,Z) and such that for each n, we
have an equivalence between D(n) and M(Confn)

∨, the linear dual of M(Confn).

This theorem is proved by mean of a fracture square. It can be shown that any
object M in DA(Q) is obtained by gluing together the rationalizationM ⊗Q and

the profinite completion M̂ . Hence we are reduced to constructing D⊗Q and D̂.
By the Suslin rigidity theorem (cf. [3]), the category of étale motives with finite

coefficients can be identified with the category of chain complexes with an action

of the group Gal(Q̄/Q). Therefore, the construction of D̂ essentially follows from
Theorem 1

The category of étale motives with rational coefficients is more mysterious.
However, if we restrict to the full subcategory of mixed Tate motives, this can
be understood as the category of representations of a certain affine group scheme
called the motivic Galois group. Following ideas of Drinfel’d, Fresse proves in [1]
that there exists a model for C∗(D,Q) as a Hopf cooperad with an action of that
group. This gives us a Hopf cooperad in mixed Tate motives which we can in turn
see as a Hopf cooperad in the category of motives with rational coefficients.

Using the theory of weights and this motivic little two-disks operad, one can
prove the following theorem.
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Theorem 3. Let p be a prime number. The non-symmetric coooperad C∗(D,Fp)
is formal.

I conjecture that the same statement is true for the little n-disks operads when
n > 2. One strategy for proving this for n = 2m an even integer could be to
construct a motivic little 2m-disks operad by taking the m-fold Boardman-Vogt
tensor product of D with itself.

Such a formality result would have important consequences in the calculation
of the homology of the space of long knots in Rn with coefficients in a finite field
following the approach used by Sinha, Lambrechts, Turchin, Volić in the rational
case(cf. [4, 5]).
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