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Abstract. The Calculus of Variations is subject with a long and distin-
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Introduction by the Organisers

The workshop the Calculus of Variations featured 22 talks that presented re-
search on a variety of topics connected to variational problems, including minimal
or constant mean curvature surfaces, inequalities and symmetry, gradient and
other flows, among others. This research was motivated by questions in geometry,
analysis, statistical mechanics, data science, partial differential equations, and ma-
terials science, among other fields. The workshop was attended by 50 participants,
of whom 18 were graduate students or postdoctoral fellows. It was organised by
Simon Brendle (New York), Alessio Figalli (Zürich), Robert Jerrard (Toronto),
and Neshan Wickramasekera (Cambridge).

Among the major highlights of the meeting, Jean Dolbeault spoke about strik-
ing work on the sharp constants in the critical and sub-critical Caffarelli-Kohn-
Nirenberg inequalities. These results complete a long effort of many researchers to
characterize exactly when extremals are radially symmetric. Another high point
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of the conference was the talk of Guido de Phillippis on the singular structure of
Radon measures that belong to the kernel of a linear differential operator. This
work sheds a new light on classical results in geometric measure theory, such as
Alberti’s rank-1 theorem, and has various other important applications, including
a weak converse to Rademacher’s Theorem. Another striking work presented at
the conference was Aaron Naber’s result that establishes, in great generality, en-
ergy quantization and rectifiability of the defect measure associated to sequences
of Yang-Mills connections.

Surfaces of constant or vanishing mean curvature are a subject at the heart of
the calculus of variations, and were the focus of a number of talks. Brian White
discussed which sets can occur as curvature blow-up sets of sequences of embedded
minimal disks, thereby providing a partial converse to a deep theorem of Colding
and Minicozzi. Costante Bellettini presented a regularity and compactness theory
for stable constant-mean-curvature hypersurfaces that generalises earlier results for
stable minimal hypersurfaces; this new theory is formulated in the full generality
of codimension 1 integral varifolds and gives sharp regularity conclusions making
no hypothesis on the singular set beyond two necessary structural conditions. Otis
Chodosh reported on recent work on the uniqueness of large isoperimetric surfaces
in asymptotically flat 3-manifolds. Andrea Mondino discussed the existence of op-
timal shapes for the isoperimetric-isodiametric inequality; this involves minimizing
the product of surface area and radius subject to a volume constraint. Spencer
Becker-Kahn presented results on the asymptotic behavior of two-valued Lipschitz
minimal graphs of arbitrary dimension and codimension that are not assumed
to satisfy any stability condition. Eleonora Cinti discussed quantitative flatness
results and perimeter estimates for nonlocal minimal surfaces in low dimensions.

A number of talks addressed questions related to inequalities, sharp constants,
symmetry, and stability. Among the highlights on these topics are the talk by
Francesco Maggi which discussed sharp stability results for the euclidean concen-
tration inequality and droplet formation in statistical mechanics, and the talk
by Brian Krummel which discussed stability for Almgren’s isoperimetry principle,
giving sharp estimates on the Fraenkel asymmetry and Hausdorff distance between
the unit sphere in (n+1)-dimensional Euclidean space and a closed n-dimensional
hypersurface with mean curvature at most n.

The Calculus of Variations is intimately connected to the study of gradient
flows, and through them to other geometric evolution problems. Michael Struwe
spoke about a variety of results concerning a supercritical nonlinear heat equation
connected to long-standing problems in minmax theory. These included a novel
monotonicity formula, small data global well-posedness in an optimal space, and
some results about blow for large data. Yoshi Tonegawa presented recent work
that, in the case of hypersurfaces, substantially strengthens Brakke’s foundational
results on existence of weak solutions of the mean curvature flow for rough initial
data. John Lott described the construction of a singular Ricci flow, obtained as a
limit in a suitable sense of Ricci flow with surgeries on increasingly small scales,
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partially answering a question of Perelman. Peter Topping presented the elegant
proof of a new sharp L1 − L∞ smoothing estimate for Ricci flow on surfaces,
together with a parallel result for the logarithmic fast diffusion equation in 2
dimensions. Pei-Ken Hung presented new results about the asymptotic behavior
of inverse mean curvature flow in hyperbolic space. Maria Colombo spoke about
an extension of the DiPerna-Lions theory to the case of vector fields with fast
growth, which she uses to establish existence of weak solutions of the Vlasov-
Poisson equation for general inital data.

Striking new developments connected to various classical issues in the calculus
of variations were presented in several talks. Filippo Santambrogio discussed a Γ-
convergence result that establishes the validity of a new phase field approximation
to the Steiner problem in the plane, and hence of associated numerical algorithms.
Radu Ignat presented very refined results that derive a reduced free energy charac-
terizing the interaction of domain walls in a critically-scaled nonlocal variational
problem arising in micromagnetics. Susanna Terracini spoke about strong par-
tial regularity results for shape optimization problems involving a combination of
eigenvalues and a volume constraint.

Finally, connections between the calculus of variations and stochastic analysis
appeared in a couple of very interesting talks. Charles Smart described the con-
tinuum limit of an algorithm that involves “convex hull peeling” for random point
clouds. And in a very different direction, Robert Haslhofer presented deep results
on Ricci curvature and martingales, showing that bounded Ricci curvature may
be characterized in terms of a generalized Bochner formula on path space.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

An optimal local well-posedness result for the supercritical
Lane–Emden heat flow

Michael Struwe

(joint work with Simon Blatt)

Let Ω be a smoothly bounded domain in Rn, n ≥ 3, and let T > 0. Given initial
data u0, we consider the Lane-Emden heat flow

(1) ut −∆u = |u|p−2u on Ω× [0, T [, u = 0 on ∂Ω× [0, T [, u
∣

∣

t=0
= u0

for a given exponent p > 2∗ = 2n/(n− 2), that is, in the “supercritical” regime.
An important feature of equation (1) is the following scaling property. When-

ever u is a solution of (1) on Ω, then for any R > 0, any x0 ∈ Rn the function

(2) uR,x0
(x, t) = R−αu(R−1(x− x0), R

−2t), α = 2/(p− 2),

is a solution of (1) on the scaled domain ΩR,x0
:= {x ∈ Rn; R−1(x− x0) ∈ Ω}.

As observed by Matano-Merle [14, p. 1048], the initial value problem (1) may
be ill-posed for certain data u0 ∈ H1

0 ∩ Lp(Ω). However, in [4], Section 6.5, [5],
Remark 3.3, Simon Blatt and the author had shown that the Cauchy problem (1)
is globally well-posed for suitably small data u0 belonging to the Morrey space
H1,µ

0 ∩ Lp,µ(Ω), where µ = 2p
p−2 < n is the natural Morrey exponent compatible

with (2). Here, f ∈ Lp,λ(Ω) if

‖f‖p
Lp,λ(Ω)

:= sup
x0∈Rn, r>0

rλ−n

∫

Br(x0)∩Ω

|f |pdx < ∞,

where Br(x0) denotes the Euclidean ball of radius r > 0 centered at x0. Moreover,

we write f ∈ Lp,λ
0 (Ω) whenever f ∈ Lp,λ(Ω) satisfies

sup
x0∈Rn, 0<r<r0

rλ−n

∫

Br(x0)∩Ω

|f |pdx → 0 as r0 ↓ 0.

In recent joint work [6] with Simon Blatt we go one step further and show that
problem (1) even is well-posed for suitably small data u0 ∈ L2,λ(Ω) ⊃ Lp,µ(Ω),
where λ = 4

p−2 , thus considerably improving on the results of Brezis-Cazenave [7]

or Weissler [18] for initial data in Lq, q ≥ n(p− 2)/2. In fact, the following holds.

Theorem 1. Let Ω ⊂ Rn be a smoothly bounded domain, n ≥ 3. There exists a
constant ε0 > 0 such that for any function u0 ∈ L2,λ(Ω) satisfying ‖u0‖L2,λ < ε0
there is a unique global smooth solution u to (1) on Ω×]0,∞[.

The smallness condition can be somewhat relaxed.

Theorem 2. Let u0 ∈ L2,λ(Ω) and suppose there is a number R > 0 such that

sup
x0∈Rn, 0<r<R

rλ−n

∫

Br(x0)∩Ω

|u0|2dx ≤ ε20,
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where ε0 > 0 is as determined in Theorem 1. Then there exists a unique smooth
solution u to (1) on an interval ]0, T0[, where T0/R

2 = C(ε0/‖u0‖L2,λ) > 0.

In particular, for any u0 ∈ L2,λ
0 (Ω) there exists a unique smooth solution u to

(1) on some time interval ]0, T [, where T = T (u0) > 0.

Our results are similar to results of Taylor [17] who demonstrated local and
global well-posedness of the Cauchy problem for the equation

ut −∆u = DQ(u) on Ω× [0, T [,

for suitably small initial data u
∣

∣

t=0
= u0 in a Morrey space, where D is a linear

differential operator of first order and Q is a quadratic form in u as in the Navier-
Stokes system. However, similar to the work of Koch-Tataru [13] on the Navier-
Stokes system, in our treatment of (1) we are able to completely avoid the use of
pseudodifferential operators in favor of simple integration by parts and Banach’s
fixed-point theorem. By a different method, the analogue of Theorem 1 also for
unbounded domains was recently demonstrated by Souplet [15].

The study of the initial value problem for (1) for non-smooth initial data is
motivated by the question whether a solution u of (1) blowing up at some time
T < ∞ can be extended as a partially regular weak solution of (1) on a time interval
]0, T1[ for some T1 > T , still satisfying the monotonicity formula [5], Proposition
3.1, on ]0, T1[. In the notation of [5], for any x1 = 0 ∈ Ω and any 0 < T < t1 < T1

we choose (x1, t1) as center of scaling and define the scaled energy function

Hϕ(R) = Dϕ(R) + Fϕ
p (R) +

1

p− 2

(

d

dR

(

RFϕ
2 (R)

)

−Aϕ
2 (R)

)

as in (2.13) in [5], involving the scaled Dirichlet energy and the scaled L2- and
Lp-norms of u, respectively, with a smooth cut-off function ϕ and the heat kernel
as a natural weight, as in [16]. Given a sufficiently small number R > 0 we have
ϕ ≡ 1 on BR(0). Also choosing t1 = t+R2, upon integrating Hϕ(r) in 0 < r < R
we are then able to bound

Rλ−n

∫

ΩR(x1)

|u(T )|2 dx ≤ CFϕ
2 (R) ≤ C

with constants C > 0 independent of x1 and R > 0; that is, u(T ) ∈ L2,λ(Ω).
Hence, the regularity assumption u0 ∈ L2,λ(Ω) is necessary from this point of

view and cannot be weakened.
Our results in [6] also show that the condition u(T ) ∈ L2,λ(Ω) in general is

not sufficient for continuation and that a smallness condition as in Theorem 2 is
needed. To see this, recall that equation (1) may be interpreted as the negative
gradient flow of the energy

E(u) = EΩ(u) =

∫

Ω

(1

2
|∇u|2 − 1

p
|u|p

)

dx.

As observed by Ball [2], Theorem 3.2, sharpening an earlier result of Kaplan [12],
for data u0 with E(u0) < 0 the solution to (1) blows up in finite time.
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In a way similar to the proof of the ill-posedness result for the Lane-Emden flow
on Rn by Galaktionov-Vazquez [10], Theorem 10.4, we combine this observation
with the scaling property (2) of equation (1) to obtain data u0 ∈ L2,λ leading to
instantaneous complete blow-up. Clearly we may assume that 0 ∈ Ω.

Theorem 3. There is M > 0 such that for every initial data 0 ≤ u0 ∈ C0(Ω\{0})
satisfying

lim inf
x→0

(

u0(x)−M |x|−α
)

> 0, α = 2/(p− 2),

the Cauchy problem for (1) with data u0 only admits u ≡ ∞ as solution for t > 0.

Can one show that (at least for sufficiently small exponents p > 2∗) we may
chooseM = α(n−2−α) =: c∗, where u∗(x) := c∗|x|−α solves the time-independent
equation (1) on Rn? – Is it possible to show that a smooth solution u of (1) on
[0, T [ blowing up at time T > 0 with bounded energy |E(u(t))| ≤ C < ∞ for

0 < t < T always has a “trace” u(T ) ∈ Lp,λ
0 (Ω)?
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Flow of nonsmooth vector fields and the Vlasov-Poisson system

Maria Colombo

(joint work with Luigi Ambrosio, Alessio Figalli)

Given a vector field b : [0,∞) × Rd → Rd, we consider the ordinary differential
equation for the flow of b

(1)

{

∂tX(t, x) = b(t,X(t, x)) ∀t ∈ (0, T )

X(0, x) = x

where x ∈ Rd. We also introduce the related Cauchy problem for the continuity
equation, namely

(2)

{

∂tu(t, x) + div(b(t, x)u(t, x)) = 0

u(0, x) = u0(x)

where (t, x) ∈ (0,∞) × Rd, u ∈ R, recalling that the continuity equation is also
equivalent to the transport equation

∂tu(t, x) + b(t, x) · ∇u(t, x) = 0

in the case of divergence-free vector fields.
The theory of DiPerna-Lions, introduced in the seminal paper [10], provides

existence and uniqueness of a suitable flow under weak regularity assumptions on
b, for instance when b(t, ·) is Sobolev [10] or BV [1] and satisfies global bounds
on the divergence (see also [4] for an overview on the topic). More precisely, we
introduce the notion of flow introduced by DiPerna and Lions and later slightly
modified by Ambrosio (we follow the latter axiomatization): given a Borel vector
field b : [0,∞)× Rd → Rd, a Regular Lagrangian Flow X : [0,∞)×Rd → Rd is a
function such that

• for a.e. x, the curve X(·, x) is absolutely continuous and solves (1) for a.e.
t;

• there exists a constant C > 0 such that

(3)

∫

Rd

φ(X(t, x)) dx ≤ C

∫

Rd

φ(y) dy for all φ ∈ Cc(R
d) nonnegative.

The existence and uniqueness results of DiPerna and Lions for Sobolev vector
fields could be considered as a weak Cauchy-Lipschitz theory for ODE’s with
Lipschitz vector fields, with some remarkable differences. Indeed, the Cauchy-
Lipschitz theory is not only pointwise but also purely local, meaning that existence
and uniqueness for small intervals of time depend only on local regularity properties
of the vector fields b(t, x). On the other hand, not only the DiPerna-Lions theory
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is an almost everywhere theory (and this really seems to be unavoidable) but also
the existence results for the flow depend on global in space growth estimates on
|b|, the most typical one being

(4)
|b(t, x)|
1 + |x| ∈ L1

(

(0, T );L1(Rd)
)

+ L1
(

(0, T );L∞(Rd)
)

.

We fill this gap, by developing a local theory of flows for nonsmooth vector fields.
We assume that the vector field b satisfies the local integrability property b ∈
L1
loc([0,∞) × Rd), a local one-sided bound on the distributional divergence, and

the property that the continuity equation with velocity b is well-posed in the class
of nonnegative bounded and compactly supported functions. This last assumption
is fulfilled in many cases of interest, for instance for locally W 1,1 or BV vector
fields as well as some vector fields whose gradient is the singular integral of a finite
measure [10, 1, 7, 5] and it is known to be deeply linked to the uniqueness of the
flow. Under these three assumptions we prove in [2, Theorem 5.2] existence of a
unique maximal regular flow X(t, x), defined up to a maximal time TX(x) which is
positive Ld-a.e.. Here “regular” refers to a natural adaptation of (3); “maximal”
means that we cannot continuously extend X(·, x) after TX(x) in view of

(5) lim sup
t↑T

X
(x)

|X(t, x)| = ∞ for Ld-a.e. x ∈ {TX < ∞}.

Uniqueness of the maximal regular flow follows basically from the “probabilis-
tic” techniques developed in [1], which allow one to transfer uniqueness results at
the level of the continuity equation into uniqueness results at the level of the ODE.
Existence is obtained by approximation with smooth vector fields; the main new
difficulty here is that even if we truncate b by multiplying it by a C∞

c (Rd) cut-off
function, the resulting vector field has not divergence in L∞ (just L1, actually,
when |bt| /∈ L∞

loc(R
d)), hence the standard ideas are not applicable. Besides exis-

tence and uniqueness, the maximal regular flow X and its existence time enjoys
further properties, such as a natural semigroup property.

Existence and uniqueness of a maximal regular flow can be applied to de-
scribe the Lagrangian structure of weak solutions to the transport equations,
and in particular it has interesting consequences on kinetic equations such as
the Vlasov-Poisson system. It appears, for instance, in plasma physics to describe
the evolution of charged particles under their self-consistent electric field, and in
astrophysics to describe the motion of galaxy clusters under their gravitational
field. This equation describes the evolution of a nonnegative distribution function
f : (0,∞)× Rd × Rd → [0,∞) through the system

(6)























∂tft + v · ∇xft + Et · ∇vft = 0 in (0,∞)× Rd × Rd

ρt(x) =

∫

Rd

ft(x, v) dv in (0,∞)× R
d

Et(x) = σ cd

∫

Rd

ρt(y)
x− y

|x − y|d dy in (0,∞)× Rd.
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Here ft(x, v) stands for the density of particles having position x and velocity v at
time t, ρt(x) is the distribution of particles in the physical space, Et = σ∇(∆−1ρt)
is the force field, cd > 0 is a dimensional constant, and σ ∈ {±1}. The case σ = 1
corresponds to electrostatic forces between charged particles with the same sign
(repulsion) while σ = −1 corresponds to the gravitational case (attraction).

The Vlasov-Poisson system has a transport structure: the first equation in (6)
can be rewritten as

∂tft + divx,v(btft) = 0

for the divergence-free vector field bt(x, v) = (v, Et(x)). Hence, when the solutions
is sufficiently smooth, ft is transported along the characteristics of the vector field
bt(x, v) := (v, Et(x)). However, when dealing with weak or renormalized solutions
(in the sense of [9] or [3, Definition 2.1]), it is not clear whether such a vector
field defines a flow on the phase-space, and one loses the relation between the
Eulerian and Lagrangian picture. We show that the Lagrangian picture is still valid
even for weak/renormalized solutions ([3, Theorem 2.2]), and that the concepts of
renormalized and Lagrangian solutions are equivalent. As a consequence, we show
that, in the repulsive case with d ≤ 4, renormalized solutions with finite energy
are transported by a global flow (see [3, Corollary 2.3] and [6] for an analogous
statement in dimension d = 3). In particular, they preserve all the natural Casimir
invariants such as t →

∫

Rd ft log ft. A second consequence is the global existence
of renormalized/Lagrangian solutions under minimal assumptions on the initial
data (see [3, Theorem 2.6 and Corollary 2.7]), that extends the huge literature
on existence of classical and weak solutions (see [11, 12] for some established
contributions).
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Phase-field approximation of the Steiner problem.

Filippo Santambrogio

(joint work with Matthieu Bonnivard, Antoine Lemenant)

The Steiner Problem is a classical question (see, for instance, [7]) in graph opti-
mization: given points x0, x1, . . . , xN ∈ Rd, find a compact connected 1D set S
containing them, with minimal length:

min
{

H1(S) : S ⊃ {x0, x1, . . . , xN}, S compact and connected
}

.

We know that such an optimal set exists, that it is a finite union of segments, with
no cycles and with triple junctions at 120◦. Yet, the number of possible topological
configurations of this tree exploses with N and an exact search is formulated by
computer scientist (in a discrete setting on a network) as an NP-hard problem.

In the talk we propose a new approach, where this minimization problem is
approximated by a family of more standard minimization problem in the calculus
of variations (see [3, 8]). The same approach can also be adapted to other length-
penalized problems, such as the average distance problem (see [5]): here we look
again for a set S, but instead of imposing that it should contain some given points,
we only want it to be as close as possible to them, or to a given distribution of
points in a domain Ω. If this distribution is a density f , we solve

min

{

F (S) :=

∫

Ω

dist(x, S)f(x)dx + λH1(S) : S compact and connected

}

,

where λ > 0 gives a penalization on the length (which can be replaced by H1(S) ≤
L).

The starting point to approximate the above problems are two well-known Γ-
convergence results.

The celebrated result from [9] states that the functionals

Fε(u) =
1

ε

∫

Ω

W (u)dx+ ε

∫

Ω

|∇u|2dx

where W (0) = W (1) = 0 and W > 0 sur R \ {0, 1}, Γ−converge (see [4, 6]) to the
functional

F (u) =

{

cPer(A) if u = IA, IA ∈ BV

+∞ otherwise,

where Per is the perimeter in the BV sense and c = 2
∫ 1

0

√
W is a constant de-

pending on W . This result can be used, and has been used (for instance in [11]) to
produce efficient numerical methods for problems involving the perimeter. Phys-
ically, the role of u is to provide a smooth transition from the phase {u = 0} to
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the phase {u = 1}. This very same approach can be used to tackle the Steiner
problem in the very particular case where the problems xi lie on the boundary of
a convex set in R2. Indeed, in this case, using the information that the optimal
network has no loops, the problem becomes a partition problem where the goal is
to minimize the perimeter.

Yet, in the most general case, the approximation that we propose recalls more
the so-called Ambrosio-Tortorelli approximation for Mumford-Shah functional ra-
ther than the above Modica-Mortola approximation (also known as Allen-Cahn,
or Cahn-Hilliard). From [1], we know that

Fε(u, v) =
1

ε

∫

Ω

(1− v)2dx+ ε

∫

Ω

|∇v|2dx+

∫

Ω

v|∇u|2dx

Γ-converges to the functional

F (u, v) =

{

∫

Ω
|∇u|2dx+Hd−1(Ju) if u ∈ SBV and v = 1,

+∞ otherwise,

where Ju is the jump set of u. This result can be used to approximate the
Mumford-Shah problem (adding a penalization for data recovery, of the form
∫

Ω
|u− g|2, see [10]).
In [8] and [3] we studied a new strategy to approximate length-penalized prob-

lems. The novelty was to add a term taking care of the connexity constraint,
relying on the weighted geodesic distance dϕ, defined as

dϕ(x, y) := inf

{∫

γ

ϕ(x)dH1(x); γ curve in Ω connecting x and y

}

.

The distance dϕ can be treated numerically by the so-called fast-marching
method [12] and a recent improvement of this algorithm (see [2]) is able to com-
pute at the same time dϕ and its gradient with respect to ϕ, which is useful when
optimizing w.r.t. ϕ. We then consider

Fε(ϕ) :=
1

2ε

∫

Ω

(1− ϕ)2dx+
ε

2

∫

Ω

|∇ϕ|2 + 1

cε

N
∑

i=1

dϕ(xi, x1),

among all functions ϕ ∈ H1(Ω) such that ϕ = 1 on ∂Ω and ε ≤ ϕ ≤ 1 (here
cε is an arbitrary sequence of positive numbers tending to 0 with ε and, anyway,
the corresponding term only provides the connectedness constraint at the limit).
If, for ε > 0 we call ϕε a minimizer of Fε (or an almost-minimizer, as existence
of minimizers without adding extra penalization terms is a tricky question), we
consider dϕε( · , x1), which are Lip1 and converge, up to subsequences, to a certain
function d. Then the set K := {d = 0} is compact, connected and is a solution to
the Steiner Problem.
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A variant for the average distance problem also exists, which amounts to con-
sidering

Fε(v, ϕ) =

∫

Ω

|v|dx +
λ

2ε

∫

Ω

(1 − ϕ)2dx+
λε

2

∫

U

|∇ϕ|2dx

+
1√
ε

∫

Ω

dϕ(x, x0)d
∣

∣∇ · v + f
∣

∣(x) + |∇ · v|(Ω)

and allows to approximate (we omit details, see [3]) the problem

min

{

F (S) :=

∫

Ω

dist(x, S)f(x)dx+ λH
1(S) : S compact and connected, x0 ∈ S

}

.

References

[1] L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by
elliptic functionals via Γ-convergence, Comm. Pure Appl. Math. 43 (8): 999–1036, 1990.
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Stable constant mean curvature varifolds: regularity and compactness
theory in codimension one

Costante Bellettini

(joint work with Neshan Wickramasekera)

The talk reports on a recent joint work [1] by N. Wickramasekera and the au-
thor. The hypersurfaces under consideration are stable critical points of the area
functional under the constraint of fixed enclosed volume. These objects have been
widely studied in the smooth setting (and the criticality requirement is equivalent
to the well-known constant mean curvature condition). The scope of this work
is to provide a sharp regularity and compacness theory in a more general setting
(namely that of codimension 1 varifolds, as opposed to smooth hypersurfaces)
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under suitable (and easily checkable) structural conditions and imposing the vari-
ational assumptions in the mildest possible fashion. Such a theory is desirable in
order to have a suitable class of varifolds to employ in variational problems. Below
we are going to state the results precisely and comment shortly upon them.

1. Statements of the main results

We need to introduce two special types of singularities that play a key role in our
analysis and in the main theorems.

Definition (classical singularity). A point p ∈ spt‖V ‖ is a classical singularity of
V if there are α ∈ (0, 1) and σ > 0 such that spt‖V ‖∩Bn+1

σ (p) is the union of three
or more embedded C1,α hypersurfaces with boundary having common boundary S
(containing p), meeting pairwise only along S and such that at least two of the
hypersurfaces meet transversely at p.

Definition (two-fold touching singularity). A point p ∈ spt‖V ‖ is a two-fold
touching singularity of V (we will write p ∈ SingTV ) if there are σ > 0, an affine
hyperplane L through p and two C1,α functions u1, u2 : L → L⊥ such that

spt ‖V ‖ ∩Bn+1
σ (p) = (graphu1 ∪ graphu2) ∩Bn+1

σ (p).

with u1 ≤ u2, u1(p) = u2(p), Du1(p) = Du2(p) but u1 6≡ u2.

The structural assumptions in the main theorems only require a certain (nec-
essary) control on these two very special types of singularities: nothing else is
assumed on the singular set (in particular there is no smallness requirement on
the singular set of V ).

Theorem 1 (regularity for stable CMC integral varifolds). Let n ≥ 2 and
let V be an integral n-varifold in an open set U ⊂ Rn+1 that satisfies the following
assumptions.

(1) the generalized1 mean curvature ~H is in Lp(‖V ‖) for some p > n
(2) there are no classical singularities in V
(3) for every p ∈ SingTV there exists a neighbourhood Bn+1

ρ (p) such that

Hn
(

{Θ = Θ(p)} ∩Bn+1
ρ (p)

)

= 0

(4) for each orientable portion of the C1,α embedded part of sptV there exists a
choice of orientation such that the portion is critical for the area measure
under volume-preserving variations

(5) gen regV , i.e. the C2-immersed part of sptV , is stable for the area measure
under volume-preserving variations2

1This assumption, widely used thanks to Allard’s theorem, guarantees the validity of the
monotonicity formula for the mass ratio and the existence for every p ∈ spt‖V ‖ of the density

Θ(p) := limρ→0
‖V ‖(Bn+1

ρ (p))

ωnρn
.

2The fact that gen regV is a CMC C2-immersion (possibly with several connected compo-
nents) is not an assumption here, it is an immediate consequence of assumption 4. Only the
stability is an assumption.
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Then there exists a closed set Σ ⊂ spt‖V ‖ of Hausdorff dimension at most n − 7
such that spt‖V ‖ \ Σ locally near each point is either an embedded C2 disk or the
union of precisely two embedded C2 disks intersecting tangentially; moreover, there
is a constant λ ∈ R such that the mean curvature vector of V is λν on spt‖V ‖ \Σ
(here ν denotes a choice of normal on spt‖V ‖ \ Σ).

The above regularity result is completed by the following

Theorem 2 (compactness for stable CMC integral varifolds). Let {Vj}j∈N

be integral n-varifolds in the open set U ⊂ Rn+1, satisfying assumptions (1)-(5)
from Theorem 1 with V replaced by Vj and H replaced by HVj .

If lim supj→∞ ‖Vj‖(K) < ∞ for each compact K ⊂ U and if lim supj→∞ |HVj |
< ∞ (note that |HVj | is constant for each j by the above theorem), then there is
an integral n-varifold V in U satisfying (1)-(5) and a subsequence {j′} such that
Vj′ → V as varifolds in U .

2. Comments and remarks

Let us begin by explaining why the two structural assumptions are necessary.
Hypothesis (2) cannot be dropped, unless one aims for a weaker regularity

result. For example, consider two intersecting unit spheres crossing along a circle.
Assumption (3) is automatically satisfied in the case when the varifold under

consideration is the reduced boundary of a set with finite perimeter (this follows
from De Giorgi’s rectifiability theorem).

For general varifolds, if hypothesis (3) is dropped, then C2 regularity is false
and one could hope for C1,1 regularity. To see this, consider the 1-dimensional
example in the picture (this could be made two-dimensional in R

3 by taking the
cartesian product with an interval). In this picture, each arc is a piece of a unit
circle, and the numbers 1, 2 denote the multiplicity on an arc. The singular point
is a touching singularity (and not a classical singularity, since no pair of arcs meet
transversely). All other assumptions of Theorem 1 are satisfied but the regularity
here is C1,1.

Let us now shortly comment on the variational hypotheses (4), (5): they are
made respectively on the C1,α embedded part and on the C2 immersed part; no
variational hypothesis is made across the entire (a priori potentially large) singular
set. These features are in principle very useful for the applications of the theorem
to variational contexts.
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It is worthwile noting that Theorems 1 and 2 generalise the corresponding re-
sults established in [3] for codimension 1 integral varifolds V (with no classical
singularities) that are stationary and stable with respect to the area functional for
unconstrained ambient variations (i.e. minimal hypersurfaces); in this case, sta-
tionarity is equivalent to requiring HV = 0, and it follows from the Hopf boundary
point lemma that hypothesis (2) in Theorem 1 is redundant. In [3], stationarity
was assumed everywhere, while in [1] it is only assumed on the embedded part;
moreover in [1] one only needs to assume stability for volume preserving variations.
The impact of he regularity theory from [3] (and its adaption [4] to varifolds arising
as limiting interfaces of the Allen-Cahn functional) has had a strong impact on the
fundamental geometric question about the existence of a minimal hypersurface in
an arbitrary Riemannian manifold. The (affirmative) answer to this question was
known by the works of Almgren-Pitts and Schoen-Simon in the early 80’s and a
new proof has recently been provided in [2] exploiting the results of [3] and [4].
The hope is that the results in [1] will likewise play a fundamental role in the un-
resolved geometric question about the existence of a hypersurfaces with prescribed
constant mean curvature in an arbitrary Riemannian manifold.
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Ricci flow through singulariites

John Lott

(joint work with Bruce Kleiner)

Theorem 1. Any compact Riemannian 3-manifold is the initial time slice of a
Ricci flow through singularities.

The Ricci flow equation is dg
dt = −2Ric(g), where g(t) is a smooth 1-parameter

family of Riemannian metrics. Given a normalized initial Riemannian metric g0
on a compact 3-manifold M , the ensuing Ricci flow will generally encounter finite
time singularities. It has been a longstanding problem to continue the flow through
singularities. The proof of Theorem 1 goes by regularizing the Ricci flow, in order
to ameliorate the singularities, and then taking the regularization parameter to
zero. The regularized Ricci flow is the Hamilton-Perelman Ricci flow with surgery.
The regularization parameter is Perelman’s function δ : [0,∞) → (0,∞), which
determines the scale at which time-t surgeries are performed. Perelman showed
that there is a function δ with limt→∞ δ(t) = 0 so that the Ricci flow with surgery
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exists whenever δ ≤ δ. Perelman raised the question of whether there is a limit of
the Ricci flows with surgery, as one takes δ to zero [2]. Theorem 1 follows from
the following more precise statement [1].

Theorem 2. If δj : [0,∞) → (0,∞) is a sequence of decreasing functions with

δj ≤ δ, and limj→∞ δj(0) = 0, then after passing to a subsequence the ensuing
Ricci flows with surgery (with initial metric g0) converge to a Ricci flow through
singularities.

The proof of Theorem 2 is via a spacetime approach and a new compactness
result for possibly incomplete Riemannian manifolds. Given the Ricci flow with
surgery, with parameter δj and initial metric g0, we construct a spacetime Mj

with an adapted Riemannian metric Gj . Given R < ∞, if Rj denotes the spatial
scalar curvature of Mj then we show that after passing to a subsequence of j’s,
the sublevel sets {x ∈ Mj : R(x) ≤ R} converge. Theorem 2 then follows by
taking R to infinity and applying a diagonal argument.

The limit space M∞ is an example of a singular Ricci flow. We give the general
definition of singular Ricci flows and prove various properties of them, such as

(1) Volume evolution formula and L1-boundedness of the scalar curvature on
any time slab.

(2) Lp-boundedness of the scalar curvature on any time slice, for any p < 1.
(3) Countability of the number of static worldlines that do not extend back-

ward from a given time slice to the initial time slice.
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Quantitative flatness results and BV estimates for nonlocal minimal
surfaces

Eleonora Cinti

(joint work with Joaquim Serra, Enrico Valdinoci)

We establish quantitative properties for stable sets of a nonlocal perimeter func-
tional. Although our results hold for very general —possibly anisotropic and not
scaling invariant— functionals, for the sake of simplicity, we focuse on the case of
the fractional s-perimeter, which was introduced in [2].

We start by recalling its definition. Let s ∈ (0, 1). Given a bounded domain
Ω ⊂ Rn, we define the fractional s-perimeter of a measurable set E ⊂ Rn relative
to Ω as

Ps,Ω(E) := Ls(E ∩ Ω, CE ∩ Ω) + Ls(E ∩ Ω, CE \ Ω) + Ls(E \ Ω, CE ∩ Ω),
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where CE denotes the complement of E in R
n and the interaction Ls of two disjoint

measurable sets A,B is defined by

Ls(A,B) :=

∫

A

∫

B

dx dx̄

|x− x̄|n+s
.

Roughly speaking, this s-perimeter captures the interactions between a set E
and its complement. These interactions occur in the whole of the space and are
weighted by a (homogeneous and rotationally invariant) kernel with polynomial
decay.

Here, we present two types of results for stable sets of the fractional perimeter,
that is, sets for which the second variation of the fractional perimeter functional
is nonnegative:

• BV estimates (universal bounds for the classical perimeter) and sharp
energy estimates;

• quantitative flatness results.

The first result gives a uniform BV estimate for stable sets (see Theorem 1.1
in [5]).

Theorem 1. Let s ∈ (0, 1), R > 0 and E be a stable set in the ball B2R for
the nonlocal s-perimeter functional. Then, the classical perimeter of E in BR is
bounded by CRn−1, where C depends only on n and s.

Moreover, the s-perimeter of E in BR is bounded by CRn−s.

We observe that the estimate for the fractional perimeter of minimizers can be
easily proven using a comparison argument. Here the difficulty relies on the fact
that we are assuming stability and not minimality.

To better appreciate Theorem 1 let us compare it with the best known similar
results for classical minimal surfaces. A universal perimeter estimate for (local)
stable minimal surfaces is only known for the case of two-dimensional stable min-
imal surfaces that are simply connected and immersed in R3. Conversely, the
perimeter estimate in our Theorem 1 holds in every dimension and without topo-
logical constraints. In fact, an estimate exactly like ours can not hold for classical
stable minimal surfaces since a large number of parallel planes is always a classical
stable minimal surface with arbitrarily large perimeter in B1.

Having a universal bound for the classical perimeter of embedded minimal sur-
faces in every dimension n ≥ 4 would be a decisive step towards proving the follow-
ing well-known and long standing conjecture: The only stable embedded minimal
(hyper)surfaces in Rn are hyperplanes as long as the dimension of the ambient
space is less than or equal to 7. Indeed, it would open the door to use the mono-
tonicity formula to prove that blow-downs of stable surfaces are stable minimal
cones —which are completely classified. On the other hand, without a universal
perimeter bound, the sequence of blow-downs could have perimeters converging
to ∞. In the same direction, we believe that our result in Theorem 1 can be used
to reduce the classification of stable s-minimal surfaces in the whole Rn to the
classification of stable cones —although by now this classification of cones is only
known for n = 2 (or for n ≤ 7, but s sufficiently close to 1, see [7] and [4]).
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Since it is well-known [6, 3, 1] that the classical perimeter is the limit as s ↑ 1 of
the nonlocal s-perimeter (suitably renormalized), it is natural to ask whether our
results give some informations in the limit case s = 1. Unfortunately, our proof
relies strongly on the nonlocal character of the s-perimeter and the constant C
appearing in Theorem 1 blows up as s ↑ 1.

We next give our quantitative flatness estimate in dimension n = 2 for the case
of the s-perimeter (see Theorem 1.3 in [5]). It states that stable sets in a large
ball BR are close to being a halfplane in B1, with a quantitative control on the
measure of the symmetric difference that decays to 0 as R → ∞.

Theorem 2. Let the dimension of the ambient space be equal to 2. Let R ≥ 2
and E be a stable set in the ball BR for the s-perimeter.

Then, there exists a halflplane h such that |(E△h) ∩B1| ≤ CR−s/2.
Moreover, after a rotation, we have that E ∩ B1 is the graph of a measurable

function g : (−1, 1) → (−1, 1) with osc g ≤ CR−s/2 outside a “bad” set B ⊂ (−1, 1)
with measure CR−s/2.

The previous result provides a quantitative version of the classification result in
[7] which says that if E is a minimizer of the s-perimeter in any compact set of R2,
then it is necessarily a halfplane. Moreover, Theorem 2 extends this classification
result to the class of stable sets.

The proofs of our main results have, as starting point, a nontrivial refinement
of the variational argument introduced by Savin and one of the authors in [7, 8] to
prove that halfplanes are the only cones minimizing the s-fractional perimeter in
every compact set of R2. Namely, we consider perturbations ER,t of a minimizer
E which coincide with E outside BR and are translations E + tv of E in BR/2

—with “infinitesimal” t > 0. A first step in the proof is estimating how much
Ps,BR(ER,t) differs from Ps,BR(E) depending on R. By exploiting the nonlocality
of the perimeter functional, the previous control on Ps,BR(ER,t) − Ps,BR(E) is
translated into a control on the minimum between |ER,t \ E| and |E \ ER,t|. We
emphasize that we always use arbitrarily small perturbations of our set E. That
is why we can establish some results for stable sets.
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The limit shape of convex peeling

Charles K. Smart

(joint work with Jeff Calder)

Convex peeling provides a natural generalization of order statistics to higher di-
mensions. To be more precise, suppose X ⊆ Rd is finite define

K0 = hull(X) and Kn+1 = hull(X ∩ int(Kn)),

stopping when int(Kn) is empty. The descending chain of convex hulls

K0 ⊇ K1 ⊇ · · · ⊇ Kn

is called the convex peeling of X . The centroid of Kn is a natural choice for the
median of multidimensional data.

We are interested the convex peeling of a generic or random set X . An early
result along these lines is the following.

Theorem (Dalal [1]). If Xm ⊆ B1 consists of m points sampled uniformly at
random from the unit ball, then E[# of convex peels] ∼ m2/(d+2).

To sharpen this result, we define the height function

hm =
∑

k

1Kk
,

which is the sum of the indicator functions of the peels. When m is large, the
height function hm approximates the solution of a partial differential equation.
For example, we have the following scaling limit result.

Theorem. There is a constant αd > 0 such that, for all ε > 0,

lim
m→∞

P[sup |αdm
−2/(d+2)hm − h| > ε] = 0,

where h ∈ C(B̄1) is the unique semiconcave viscosity solution of
{

Dh · Adj(D2h)Du = 1 in B1

h = 0 on ∂B1.

In fact, we prove more, obtaining exponential tail bounds for point clouds sam-
pled from arbitrary continuous densities. Moreover, since

Dh · Adj(D2h)Du = |Dh|d+1κG,

where κG is the Gauss curvature of the super level sets of h, the convex peeling
can be interpreted as Gauss curvature flow.

To prove this theorem, we adapt the Martingale approach used by Armstrong
and Cardaliaguet [2] to homogenize forced mean curvature motion. This requires
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the identification of a natural scale-invariant problem and a way of localizing
the evolution. For the former, we consider peeling a Poission cloud inside an
infinite paraboloid. For the latter, we sharpen the original estimates of Dalal. The
Martingale argument implies homogenization of the scale-invariant problem. One
concludes the theorem by invoking the uniqueness of viscosity solutions via the
perturbed test function method.
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Sharp stability for the Euclidean concentration inequality and droplets
formation in statistical mechanics

Francesco Maggi

(joint work with Eric A. Carlen, Alessio Figalli, Connor Mooney)

The starting point of this study if the analysis of liquid-vapor phase transitions
in a model from statistical mechanics, based on the minimization of the Gates-
Penrose-Lebowitz (GPL) free energy

GPL(u) =
1

2

∫

TL

dx

∫

TL

J(|x− y|) |u(x)− u(y)|2 dy +

∫

TL

W (u) .

Here TL denotes a n-dimensional flat torus of side length L, J(r) is a bounded
decreasing interaction kernel with compact support on [0, 1] (L ≫ 1) such that
∫

Rn J(|x|) dx = 1, u : TL → (−1, 1) represents a particle-hole density, and W :
(−1, 1) → [0,∞) is an even, smooth, double-well potential, with W (±m0) = 0
and W ′′(m0) > 0 for some m0 ∈ (0, 1). We stress that the length scale L is large
compared to the length scale of the interaction kernel, which was set to unit by
requiring sptJ = [0, 1].

Given a volume fraction m ∈ (−1, 1), one minimizes GPL(u) under the con-
straint that L−n

∫

TL
u = m. Very much like in the case of the Cahn-Hilliard free

energy, the double-well favors two constant states (namely, u ≡ m0 and u ≡ −m0)
and the interaction energy penalizes variations. In particular, when m = ±m0

there is no doubt that the constant states are the unique minimizers. For other
volume fractions m we expect to see a competition between the two terms in the
energy, leading to transition profiles u between a m0-phase and a (−m0)-phase.

Because of this competition, in both models, one expects the formation of almost
spherical “droplets”, wheneverm ∈ (−m0,m0) and L is large enough. An heuristic
analysis shows that this should also happen when m → ±m0 as L → ∞, and
precisely for m = −m0 +K L−n/(n+1) with K larger than some critical K∗. This
kind of study for the Cahn-Hilliard model has been addressed, independently, in
[3, 4]. There are two significant differences between the Cahn-Hilliard and the
GPL models: first, since the interaction kernel J is not singular, minimizers of
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GPL possess no smoothness property, and second, because of the statistical origin
of the model, one is actually interested in understanding all near-minimizers of
GPL, as the most likely observed states of the system. On a deeper level, almost
sphericity of droplets is related to the Euclidean isoperimetric inequality in the
Cahn-Hilliard case, and to the Euclidean concentration inequality in the GPL
case. As explained below, a quantitative analysis of near-minimizers is definitely
subtler for Euclidean concentration than for Euclidean isoperimetry.

Why round droplets? Guessing that near-minimizing u are sharp transitions
between the constant densities m0 and −m0, concentrated along the boundary
of {u ≥ m0}, and with diam ({u ≥ m0}) way smaller than L, one should be
able to argue as if TL ≈ Rn. On the whole space, it makes sense to compare
u by its spherically symmetric decreasing rearrangement u∗, whose super-level
sets are balls with same volume as the corresponding super-level sets of u. This
equimensurability property guarantees that

∫

Rn g(u) =
∫

Rn g(u∗) for every g : R →
R, and thus, by combining the identity

GPL(u) =

∫

Rn

u2 −
∫

Rn

dx

∫

Rn

J(|x− y|)u(x)u(y) dy

(recall that
∫

Rn J(|x|) dx = 1) with the Riesz rearrangement inequality
∫

Rn

dx

∫

Rn

J(|x− y|)u(x)u(y) dy ≤
∫

Rn

dx

∫

Rn

J(|x − y|)u∗(x)u∗(y) dy

we deduce that GPL(u) ≥ GPL(u∗). In particular, if u is a minimizer or a
near-minimizer, so it is u∗. The quantitative analysis of radially decreasing near-
minimizers of the GPL model in the spherical droplet regime has been addressed in
[1, 2, 5]. The next step is thus understanding how far a generic near minimizer u is
from being almost spherical, i.e. how to control the distance of u from u∗ in terms
of GPL(u)− GPL(u∗). Considering the discussion of equality cases in the Riesz
rearrangement inequality can be addressed in terms of a discussion of equality
cases for the Euclidean concentration inequality, there are two main problems to
address:

(i) provide a stability estimate for the Euclidean concentration inequality;
(ii) exploit such an estimate to obtain a robust improvement of the Riesz

rearrangement inequality.

Both problems are addressed in the joint paper [6] with Eric Carlen, by exploit-
ing suitable geometric arguments. These results pave the a way to a quantitative
description of every near-minimizer of the GPL free energy in the droplet regime.

The paper [6] also indicate some interesting problems in the theory of geomet-
ric inequalities. For example, the arguments presented in [6] are not sufficient to
produce a sharp stability estimates for Euclidean concentration. From the math-
ematical viewpoint, this last problem is particularly interesting because it seems
out of reach for all the three different approaches developed in proving the closely
related sharp stability estimate for Euclidean isoperimetry [13, 10, 7]. A new ap-
proach is thus required, and this is the content of the joint paper [9] with Alessio
Figalli and Connor Mooney.
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Let us recall that the Euclidean concentration inequality states that if E is a
subset of Rn, E∗ is a ball with same volume as E, and Nr(E) = {x ∈ Rn :
dist(x,E) < r} denotes the r-neighborhood of E, then

(1) |Nr(E)| ≥ |Nr(E
∗)| , ∀r > 0 ,

with equality if and only if, up to a zero volume set, E is a ball. The main result
proved in [9] is the existence of c(n) > 0 such that whenever |E| = |B|, then there
exists x ∈ Rn with

(2) max
{

r,
1

r

}( |Nr(E)|
|Nr(E∗)| − 1

)

≥ c(n) |E∆(x +B)|2 , ∀r > 0 .

The factor max{r, r−1} is needed for the inequality to be true, as otherwise the
left-hand side of the inequality tends to 0 as r → 0+ or r → +∞. Notice also that
in the limit r → 0+, (2) implies the sharp quantitative isoperimetric inequality:
there exists c∗(n) > 0 such that whenever |E| = |B|, then there exists x ∈ R

n with

(3) P (E)− P (B) ≥ c∗(n) |E∆(x +B)|2 ,

provided P (E) denotes the perimeter of E (i.e., the (n− 1)-dimensional measure
of the boundary of E).

The approach to (3) developed in [13] is based on dimension induction through
the localization of the isoperimetric deficit P (E) − P (B) on hyperplane slices of
E. This kind of argument, clearly, does not combine smoothly with the nonlocal
nature of the operation of forming the Minkowski sum Nr(E) = E+Br. Although
one can use localization by slicing and dimension induction to obtain non-sharp
quantitative versions of the Brunn-Minkowski inequality, see [8], it seems quite
hard to optimize this approach to the extent of proving sharp inequalities. The
mass transportation approach to (3) developed in [10] can be used to prove (2)
in the special case that E is convex. This is already detailed in [10] and, with
a more direct argument, in [11]. Extending this analysis to the case when E is
non-convex seems hard because it would require, for example in the case r = 1 and
with T denoting the Brenier map between E and B, to control the distance of E
from its convex envelope in terms of the non-negative quantity |S(E)| − |N1(B)|,
where S = Id + T . Finally, the quite versatile approach to (3) proposed in [7] is
based on the regularity theory for local minimizers of the perimeter functional, an
ingredient that is completely missing when the functional under consideration is
the volume of the r-neighborhood of a set.

The proof of (2) given in [9] is based on two separate arguments, one degener-
ating as r becomes larger, the one valid only if r is large enough. Both arguments
move from a “regularization by viscosity” procedure based on taking an envelope
of E by balls of radius r contained in its complement. The estimate degenerating
for r large is obtained by combining the strong form of (2) obtained in [12] with
the reduction to this notion of r-convex envelope. In large r-regime, one shows by
a geometric construction that any set with |E| = |B| and r (|Nr(E)|/|Nr(B)| − 1)
small enough must have positive reach of order one in the sense of Federer. The
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proof is then completed by combining the Steiner-Federer formula for sets of pos-
itive reach with (3).
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Asymptotic behavior of the inverse mean curvature flows in the
hyperbolic spaces

Pei-Ken Hung

(joint work with Mu-Tao Wang)

The solution of the inverse mean curvature flow is a family of smooth maps
Ft : Σ

n−1 → Mn satisfying the evolution equation

∂Ft

∂t
=

ν

H
,

where H is the mean curvature and ν is the unit outer normal of Σt = Ft(Σ). Ge-
roch [2] introduced this parabolic flow and discovered that the Hawking mass of
a surface is monotone nondecreasing along the flow provided the scalar curvature
of M is nonnegative. Jang-Wald [5] observed that if there is a smooth solution
of the inverse mean curvature flow which starts from the horizon and exists for
all time, then the Penrose inequality follows the Geroch monotonicity. However,
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the last assumption is not always satisfied. In general the mean curvature H may
go to zero in finite time and the smooth flow doesn’t exist anymore. Neverthe-
less, Huisken and Ilmanen [3] developed the level set formulation of the inverse
mean curvature flow and proved the Geroch monotonicity holds under the weak
setting. As a result, they gave the first proof of the Riemannian Penrose inequality.

One of the ingredient of Huisken-Ilmanen’s proof is that when t is large, Σt will
be ”round” enough. This implies that the Hawking mass of surfaces are bounded
from above by the ADM mass of M . The corresponding asymptotic behavior
in the smooth setting was proved by Gerhardt [1] when the ambient manifold is
Rn. Precisely, he showed that suppose Σn−1

0 is a mean convex and star-shaped

hypersurface in R
n, then the solution of inverse mean curvature flow Σn−1

t exists
for all time, remains star-shaped. Furthermore, the rescaled metric exp(− 2t

n−1 )gt
converges smoothly to a round metric on Sn−1.

In the asymptotically hyperbolic setting, however, the limit of the rescaled met-
ric is not necessarily round. This phenomenon was first pointed out by Neves [6].
He gave examples in Anti-deSitter-Schwarzschild spaces.

Theorem (N). Let M3 be a Anti-deSitter-Schwarzschild manifold with positive
mass parameter. There exists a star-shaped mean convex closed surface Σ0 in M3

that has the following property. Let Σt be the inverse mean curvature flow of Σ0,
and |Σt| and gt be the area of Σt and the induced metric on Σt, respectively. As
t → ∞, |Σt|−1gt converges to a metric on S2 that is not of constant curvature.

Roughly speaking, he set the initial surface with Hawking mass larger than the
mass of the ambient manifold. The Geroch monotonicity preserves this inequality
and then the limiting metric would not be round. This observation rules out the
possibility of using the inverse mean curvature to prove Penrose inequality with
negative cosmological constant.

We are interested in the case of hyperbolic space H3. We construct examples
of inverse mean curvature flow in H

3 similar to ones given by Neves.

Theorem 1. There exists a star-shaped mean convex closed surface Σ0 in H3 that
has the following property. Let Σt be the inverse mean curvature flow of Σ0, and
|Σt| and gt be the area of Σt and the induced metric on Σt, respectively. As t → ∞,
|Σt|−1gt converges to a metric on S2 that is not of constant curvature.

We recall the Hawking mass of a closed embedded surface Σ in H3:

mH(Σ) =

√

|Σ|
16π

(

1− 1

16π

∫

Σ

(H2 − 4)dµ

)

.
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By the Gauss equation one can rewrite it as:

mH(Σ) = −
√

|Σ|
16π

1

8π

∫

Σ

|Å|2dµ,

where Å is the traceless part of the second fundamental form. In particular,
Hawking mass is always nonpositive. Furthermore, its limit along the inverse
mean curvature flow is always zero and gives no information of the limiting metric.
Therefore, we consider a modified quantity

m̃(Σ) = −|Σ|
∫

Σ

|Å|2dµ.

Denote by σ the standard metric on S2 and by D the covariant derivative with
respect to σ. If the rescaled metric |Σt|−1gt converges to e2fσ, the limit of m̃(Σt)
is given by

lim
t→∞

m̃(Σt) = −
∫

S2

e2fdµσ

∫

S2

|D̊2e−f |2σdµσ,

which is zero if and only if e2fσ is of constant curvature. The evolution equation
of m̃(Σt) is

d

dt
m̃(Σt) = |Σt|

∫

Σt

|∇H |2
H2

dµt,

which is still monotone but is not in favor of our proof. Fortunately, we can
estimate the growth rate of m̃(Σt) directly and then we are able to construct our
examples. We also remark that in higher dimensions, the naive generalization

Q(Σn−1) := |Σ|−n−5

n−1

∫

Σ

|Å|2dµ

plays the same role as m̃(Σ) and Theorem 1 holds for Hn, n ≥ 3.
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Helicoid-Like Minimal Surfaces

Brian White

Consider a simple closed curve Γn in the boundary of a solid cylinder B× I ⊂ R3

consisting of:

(1) a diameter at the top,
(2) a (non-parallel) diameter at the bottom,
(3) two helical curves, each winding around approximately n times.

What embedded minimal disks does Γn bound?
Of course this is the classical Plateau Problem for the curve Γn. I was led

to these particular curves in an effort to understand the Colding-Minicozzi the-
ory and, indeed, understanding the Plateau Problem for these curves has led to
interesting examples illustrating that theory.

Note that the curve Γn bounds a portion Hn of a helicoid (Figure 1). That
helicoidal surface Hn is the unique minimal disk with boundary Γn that has 180◦

symmetry about Z. For n large, Hn is not area minimizing, because

area(Hn) → ∞,

whereas the least area surface has area less than 1/2 the area of the boundary of
B× I.

(Indeed, for large n, a minimizing disk is a slight perturbation of one of the two
components of ∂(B × I) \ Γn. That is, it looks like a horizontal half disk at the
top, a ribbon (near (∂B) × I) winding from top to bottom, and a horizontal half
disk at the bottom.)

Thus Γn bounds at least 3 minimal disks: Hn and two area minimizing disks.
In fact, Γn bounds many embedded minimal disks:

Theorem. The curve Γn bounds disks of index 0, 1, 2, 3,. . . , index(Hn), and

index(Hn) ≥ n+O(1).

Thus the number of surfaces grows at least like 2n.

Conjecture. The number of minimal disks grows at least like 2n.

1. A surprising dichotomy

Consider a minimal embedded diskD with boundary Γn (where n is large.) I claim
that either D is very similar to a helicoid, or D is very different from a helicoid.

Here “similar to a helicoid” means “nearly horizontal away from Z”. Figure 1
illustrates that for large n, the helicoidal surface Hn is very nearly horizontal once
one moves a little away from the axis.

Definition. If M ⊂ R3, slope(M) denotes the sup of the slope of Tan(M,x) (with
respect to the horizontal) for x ∈ M .

Thus if M contains any point with a vertical tangent plane, then slope(M) = ∞
(even if much of M is nearly horizontal). If slope(M) ≤ ǫ, then all tangent planes
to M have slope at most ǫ.
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n=4 n=16
Figure 1

Theorem (Dichotomy Theorem, weak version). Let 0 < r < 1. Let Dn be a
minimal embedded disk with boundary Γn. After passing to a subsequence, either

slope(Dn \ Z(r)) → 0 (the “good”, or helicoidal, case)

or
slope(Dn \ Z(r)) → ∞ (the “bad”, or non-helicoidal, case).

Theorem (Dichotomy Theorem, Strong version). Let 0 < ǫ < r < 1. (One should
think of ǫ as very small and of r as very close to 1.) Let C < ∞. Suppose Dn is
a minimal embedded disk with boundary Γn. If

slope(Dn \ Z(r)) ≤ C < ∞,

then
slope(Dn \ Z(ǫ)) → 0.

Thus if one has even a little control (slopes bounded by C) near the boundary
of the cylinder B×R, then one gets extremely good control (slopes bounded by
ǫ) everywhere except in a small neighborhood of the axis.

2. Remarks

(1) In the Dichotomy Theorem, the curved portions of Γn need not be helices:
it is enough that

slope(Γn) → 0.

(2) The Dichotomy Theorem (for curves Γn as in (1)) becomes false if upper
and lower diameters are parallel.

(3) The Riemannian metric on B × I need not be Euclidean: we just need
the horizontal disks z = constant to be minimal and to be perpendicular
to Z. (In this case the hypothesis that the upper and lower diameters be
non-parallel should be replaced by the hypothesis that that the z-axis is
the only curve joining the upper and lower diameters that is perpendicular
to every slice z = constant.)
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3. Existence

For a general Riemannian metric as above, do good disks and bad disks exist (for
n large)? For bad disks, the answer is yes. For example, the area minimizing disk
is bad (since good disks have huge area). For good disks, the answer is also yes,
but it is much more subtle.

Theorem (Existence Theorem). Fix a small ǫ > 0. For all sufficiently large n,
there exist D with ∂D = Γn such that

slope(D \ Z(ǫ)) < ǫ.

Indeed, the number of such D (suitably counted) is odd.

Suitably counted means counted with an appropriate multiplicity; the situation
is analogous to the statement that every degree n polynomial has n complex roots,
if one counts roots suitably.

The proof of the existence theorem is by the continuity or degree-theoretic
method, as pioneered by Tomi and Tromba in minimal surface theory. In the
Euclidian case, the Existence Theorem is easy: Γn bounds the good surface Hn,
and all other minimal disks it bounds occur in pairs (by the 180◦ symmetry about
Z.) As we deform the metric from Euclidean to the metric we want, various bifur-
cations can happen. For example, two surfaces can come together and annihilate
each other. Note this does not change the mod 2 number of surfaces. In such a
pair annihilation, it is impossible for one of the surfaces to be good and the other
bad, since good and bad surfaces are far apart from each other by the Dichotomy
Theorem. Thus in fact the mod 2 number of good surfaces does not change during
the deformation.

4. Application to Colding-Minicozzi Theory

Let U be an open ball in R3 or, more generally, a open subset of a Riemannian
3 manifold such that is homeomorphic to a ball. Consider a foliation F of U by
properly embedded minimal disks.

(Examples of such foliations are easy to make. For example, consider any
solution f : D ⊂ R2 → R of the minimal surface equation, and let F be of the
graph of F together with the vertical translates of that graph.)

Let C be an orthogonal trajectory to the foliation. We may assume that C
intersects every leaf; otherwise replace F by the set of leaves that intersect C and
U by the union of those leaves.

Theorem (Examples Theorem). There exist minimal embedded disks Dn ⊂ Un

where U1 ⊂ U2 ⊂ . . . is an exhaustion of U by open subsets such that the curvatures
of the Dn blow up at every point p of C (i.e., for every p ∈ C, there are pn ∈ Dn

converging to C with |A(Dn, pn)| → ∞) and such that the Dn converge smoothly
in compact subset of U \ C to the foliation F .

This theorem is an easy consequence of the Existence Theorem. (If the leaves
of the foliation are flat disks in Euclidean R3, Meeks and Weber proved this by a
very different method.)
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Interaction energy of domain walls of logarithmically decaying tails in
a nonlocal variational model

Radu Ignat

(joint work with Roger Moser)

The model. For α ∈ (0, π), consider maps m = (m1,m2) : (−1, 1) → S1 with

(1) m1(−1) = m1(1) = cosα.

For ε > 0, consider the energy

Eε(m) = ε

∫ 1

−1

|m′|2 dx1 +

∫

R2
+

|∇u|2 dx,

where u : R2
+ → R is determined (up to a constant) by the boundary value problem

∆u = 0 in R
2
+,

u

x2
= −m′

1 on R× {0},

where m1 is extended by cosα outside of (−1, 1) and x = (x1, x2). The energy Eε

can be written as a strictly convex functional in m1:

Eε(m) = ε

∫ 1

−1

(m′
1)

2

1−m2
1

dx1 + ‖m1‖2Ḣ1/2(R)
.

This represents a simplified version of the free energy of a magnetisation vector
field m in a thin film of a ferromagnetic material (for more details on the model,
see e.g. [3]) and u is called the stray field potential.

Néel walls. We are interested in transition layers corresponding to rotations
between (cosα,± sinα) and (cosα,∓ sinα) on the unit circle S1. Such a transition
is called Néel wall and is typically a two-length scale object (a core and two
logarithmically decaying tails) with an energy Eε of order πγ2

±/| log ε| as ε → 0
(see [5]). Here, γ± = ±1− cosα stands for the height of the transition in m1 when
m1 passes through ±1.

We are particularly interested in the interaction of several transitions (see Fig-
ure 1). For fixed −1 < a1 < · · · < aN < 1 and dn ∈ {±1}, n = 1, . . . , N , set

M(a, d) =

{

m : (−1, 1) → S
1 with (1) and m1(an) = dn for 1 ≤ n ≤ N

}

.

Note that minimizers of Eε over M(a, d) exist and have a unique component m1

that is smooth away from the positions an, 1 ≤ n ≤ N .

Main result. We estimate the minimal energy Eε required for a profile inM(a, d).
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Figure 1. Several Néel walls of positions an, 1 ≤ n ≤ 4.

Theorem 1 (Ignat–Moser [4]). As ε → 0, we have

inf
M(a,d)

Eε = π
N
∑

n=1

γ2
n

log 1
δ

+
W (a, d)
(

log 1
δ

)2 + o

(

1
(

log 1
δ

)2

)

where δ = ε| log ε|, γn = dn − cosα and

W (a, d) =

N
∑

n=1

(

e(dn)− πγ2
n log(2− 2a2n)

)

−π

N
∑

n=1

∑

k 6=n

γkγn log

(

1 +
√

1− ρ(ak, an)

ρ(ak, an)

)

where e(±1) > 0 and ρ(ak, an) =
|ak−an|
1−akan

.

In analogy to the theory of Ginzburg-Landau vortices (see [1]), we call W (a, d)
the renormalised energy for the N walls placed at a = (a1, . . . aN ) with signs
d = (d1, . . . , dN ). As the theorem shows, W (a, d) represents the next-to-leading
order term in the expansion of infM(a,d)Eε in 1/| log δ|. This is an improvement
of the result in [2] giving only the first leading order term of Eε.

We now briefly discuss how the above expression comes about. Suppose that
for a given a ∈ AN , we study minimisers m of Eε in M(a, d). When ε is small,
we expect to have a typical Néel wall profile near each of the points a1, . . . , aN
with the prescribed signs d1, . . . , dN , and the full transition layer m is essentially a
superposition of all of these. We can think of a Néel wall as consisting of two parts:
a small core around an and two logarithmically decaying tails. In our situation,
the walls are confined in the relatively short interval (−1, 1) and each tail will
interact with the other walls and with the boundary as well. We can then account
for the full energy infM(a,d)Eε (at leading and next-to-leading order) as follows.

Core energy. The core of each wall requires a certain amount of energy, namely
e(±1)

(log 1
δ )

2 for a positive and a negative wall, respectively. The constants e(±1)

represent the rescaled energy of the core profile as ε → 0. This is the only term
where we have a contribution from the Dirichlet integral of m and it appears only
at next-to-leading order in the full energy. All the remaining terms below come
from the stray field energy alone.
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Tail energy. The two tails of the wall at an give rise to the energy
πγ2

n

log 1
δ

. This is

the leading order term of the full energy.

Tail-boundary interaction. Moving a wall relative to the boundary points ±1
will deform the tail profile, resulting in a change of the energy. This phenomenon

gives rise to the energy
πγ2

n log(2−2a2
n)

(log 1
δ )

2 for the wall at an. (The sign here is not a

mistake; it is the opposite of the sign of the corresponding expression in Theo-
rem 1.) This means that the tails are attracted by the boundary, in the sense that
the energy decreases if an approaches ±1.

Tail-tail interaction. There is an energy contribution coming from reinforcement
or cancellation between the stray fields generated by different walls. For the walls
at ak and an with k 6= n, this amounts to

πγkγn
(

log 1
δ

)2 log

(

1 +
√

1− ̺(ak, an)2

̺(ak, an)

)

.

(Again we have the opposite sign relative to the above theorem.) A conclusion is
that the tails of two walls attract each other if they have opposite signs and repel
each other if they have the same sign.

Tail-core interaction. Since the profile of a Néel wall decays only logarithmically,
it will change the turning angle of the neighbouring walls slightly. This has an
effect on the energy as well (at the next-to-leading order). Indeed, the tail of the
wall at ak and the core of the wall at an with k 6= n lead to a contribution of

− 2πγkγn
(

log 1
δ

)2 log

(

1 +
√

1− ̺(ak, an)2

̺(ak, an)

)

.

We also have an interaction between the two tails of a wall and its own core: if
k = n, then we obtain the energy −2πγ2

n log(2−2a2
n)

(log 1
δ )

2 . This is twice the size of the

terms from the tail-boundary interaction and tail-tail interaction, but with the
opposite signs, resulting in a net repulsion between walls of opposite signs and
a net attraction between walls of the same sign. Furthermore, we have a net
repulsion of the walls by the boundary.

Notwithstanding the term ‘energy’ used in this description, strictly speaking,
these are energy differences and therefore some of them may be negative. All
except one of these contributions occur similarly in the theory of Ginzburg-Landau
vortices. The core-tail interaction, on the other hand, is new and more delicate to
handle.
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Ricci curvature and martingales

Robert Haslhofer

(joint work with Aaron Naber)

The main goal of this talk, based on [1], is to explain how bounded Ricci curvature
can be understood by analyzing the evolution of martingales on path space, gen-
eralizing the well known and important principles of how lower bounds on Ricci
curvature can be understood by analyzing the heat flow.

To put things into context, let us recall that the starting point for most of the
analysis on spaces with Ricci curvature bounded below, say by a constant −κ, is
the classical Bochner inequality

(1) 1
2∆|∇u|2 ≥ 〈∇∆u,∇u〉+ |∇2u|2 − κ|∇u|2 .

Using the Bochner inequality it is a simply exercise to show that Ricci bounded
below by −κ is equivalent to several other geometric-analytic estimates, e.g. the
following sharp gradient estimate for the heat flow

(2) |∇Htu| ≤ e
κ
2
tHt|∇u| .

In contrast to the well developed theory of Ricci curvature bounded below, until
recently there was no characterization available at all for spaces with bounded
Ricci curvature. This characterization problem has been solved recently by Naber
[3]. The key insight was that to understand two-sided bounds for Ricci curvature,
and not just lower bounds, one should do analysis on path space PM , instead of
analysis on M . By definition, given a complete Riemannian manifold M , its path
space PM = C([0,∞),M) is the space of continuous curves in M . Path space
comes equipped with a family of natural probability measures, the Wiener measure
Γx of Brownian motion starting at x ∈ M . Path space also comes equipped with

a natural one parameter family of gradients, the t-parallel gradients ∇‖
t (t ≥ 0).

Using this framework, it was proved in [3] that the Ricci curvature ofM is bounded
by a constant κ if and only if the sharp gradient estimate

(3)

∣

∣

∣

∣

∇x

∫

PM

F dΓx

∣

∣

∣

∣

≤
∫

PM

(

|∇‖
0F |+

∫ ∞

0

κ

2
eκt/2|∇‖

tF | dt
)

dΓx

holds for all test functions F : PM → R. In the simplest case of one-point
test functions, i.e. functions of the form F (γ) = u(γ(t)) where u : M → R

and t is fixed, the infinite dimensional gradient estimate (3) reduces to the finite
dimensional gradient estimate (2). The gradient estimate (3) can be used to define
a weak notion of Ricci curvature for metric measure spaces.

While [3] gives a way to generalize certain estimates for lower Ricci curvature
on M to estimates for bounded Ricci curvature on PM , e.g. the finite dimensional
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gradient estimate (2) to the infinite dimensional gradient estimate (3), what hasn’t
been answered yet is the following question:

Is there any way to generalize the Bochner inequality (1) from M to PM?

This question has been the guiding principle for the present work. Given that
the Bochner formula is the starting point for most of the theory of lower Ricci,
such a generalization is clearly valuable for the theory of bounded Ricci curvature.

The first main point we wish to explain is that martingales on PM are the
correct generalization of the heat flow on M . Recall that a martingale on PxM is
a Σt-adapted integrable stochastic process Ft : PxM → R such that

(4) Ft1 = Ex[Ft2 |Σt1 ] (t1 ≤ t2).

Here, the right hand side denotes the conditional expectation value on PxM given
the σ-algebra Σt1 , of events which are observable until time t1. The simplest
examples of martingales on path space have the form

(5) Ft(γ) =

{

HT−tu(γ(t)), if t < T

u(γ(T )), if t ≥ T,

where u : M → R and T are fixed, and thus are indeed given by the (backwards)
heat flow on M .

We found that the correct generalization of the Bochner formula (1) on M is
given by a certain evolution equation for martingales on PM . To get there, we
start with by reformulating the martingale representation theorem and the Clark-
Ocone formula in the form

dFt = 〈∇‖
tFt, dWt〉 .(6)

Expressed this way, we can view the martingale equation as an evolution equation
on path space. We then proceed by computing various evolution equations for
associated quantities on path space. In particular, if Ft : PxM → R is a martingale

on path space, and s ∈ R is fixed, then its s-parallel gradient ∇‖
sFt : PxM → TxM

satisfies the stochastic equation

d∇‖
sFt = 〈∇‖

t∇‖
sFt, dWt〉+

1

2
Rict(∇‖

tFt) dt+∇‖
sFs δs(t)dt ,(7)

where 〈Rict(X), Y 〉 = Ric(P−1
t X,P−1

t Y ) and Pt = Pt(γ) : Tγ(t)M → TxM is
stochastic parallel transport. Combining this with the Ito formula we obtain

(8) d|∇‖
sFt|2 = 〈∇‖

t |∇‖
sFt|2, dWt〉
+ |∇‖

t∇‖
sFt|2dt+Rict

(

∇‖
tFt,∇‖

sFt

)

dt+ |∇‖
sFs|2δs(t)dt,

which is the correct generalization of the Bochner formula to path space.
We will now discuss four applications of our calculus on path space. First, it

yields a shorter proof of the characterizations from [3]. For illustration, if Ric = 0
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then by (7) the process t 7→ |∇‖
sFt| is a submartingale. Thus, by the very definition

of a submartingale we get

(9) |∇‖
sFt| ≤ Ex

[

|∇‖
sFT |

∣

∣Σt

]

(t ≤ T ).

Taking the limit T → ∞, and specializing to s = t = 0, this implies the κ = 0 case
of the infinite dimensional gradient estimate (3):

(10)

∣

∣

∣

∣

∇x

∫

PM

F dΓx

∣

∣

∣

∣

≤
∫

PM

|∇‖
0F | dΓx.

Other characterizations, and estimates for κ 6= 0, can be proven with similar ease.
Second, the gradient estimate (3) can be strengthened to the family of estimates

(11) |∇‖
sFt| ≤ E

[

|∇‖
sF |+ κ

2

∫ ∞

t

e
κ
2 (r−t)|∇‖

rF | dr
∣

∣

∣Σt

]

.

Third, we obtain new characterizations of bounded Ricci curvature. In partic-
ular, |Ric| ≤ κ is equivalent to the full Bochner inequality on path space

(12) d|∇‖
sFt|2 ≥ 〈∇‖

t |∇‖
sFt|2, dWt〉

+ |∇‖
t∇‖

sFt|2dt− κ|∇‖
tFt||∇‖

sFt| dt+ |∇‖
sFs|2δs(t)dt,

as well as the weak Bochner inequality on path space

(13) d|∇‖
sFt| ≥ 〈∇‖

t |∇‖
sFt|, dWt〉 − κ

2 |∇
‖
tFt| dt .

Forth, we obtain new Hessian estimates for martingales on the path space of
manifolds with bounded Ricci curvature, e.g.

(14)

∫

PM

|∇‖
sFs|2 dΓx +

∫ T

0

∫

PM

|∇‖
t∇‖

sFt|2 dΓx dt

≤ e
κ
2 (T−s)

∫

PM

(

|∇‖
sF |2 + κ

2

∫ T

s

e
κ
2 (t−s)|∇‖

tF |2 dt
)

dΓx .

Combined with Doob’s inequality this generalizes the classical L∞H1 ∩ L2H2

estimate for the heat flow on M .
The methods can also be adapted to the time-dependent setting, and thus also

provide a useful tool for the study of Ricci flow in the framework of [2].

References

[1] R. Haslhofer and A. Naber, Ricci curvature and martingales, in preparation.
[2] R. Haslhofer and A. Naber, Characterizations of the Ricci flow, JEMS (to appear).
[3] A. Naber, Characterizations of bounded Ricci curvature on smooth and nonsmooth spaces.



1980 Oberwolfach Report 34/2016

Symmetry by flow

Jean Dolbeault

(joint work with Maria J. Esteban, Michael Loss and Matteo Muratori)

With the norms ‖w‖Lq,γ (Rd) :=
(∫

Rd |w|q |x|−γ dx
)1/q

, let us consider the family of

Caffarelli-Kohn-Nirenberg inequalities introduced in [2] and given by

(1) ‖w‖L2p,γ(Rd) ≤ Cβ,γ,p ‖∇w‖ϑL2,β(Rd) ‖w‖
1−ϑ
Lp+1,γ(Rd)

in a suitable functional space Hp
β,γ(R

d) obtained by completion of smooth functions

with support in Rd\{0}, w.r.t. the norm given by ‖w‖2 := (p⋆−p) ‖w‖2Lp+1,γ(Rd)+

‖∇w‖2L2,β(Rd). Here Cβ,γ,p denotes the optimal constant, the parameters β, γ and p

are subject to the restrictions
(2)

d ≥ 2 , γ−2 < β <
d− 2

d
γ , γ ∈ (−∞, d) , p ∈ (1, p⋆] with p⋆ :=

d− γ

d− β − 2

and the exponent ϑ = (d−γ) (p−1)
p (d+β+2−2 γ−p (d−β−2)) is determined by the scaling invari-

ance.
Equality in (1) is achieved by Aubin-Talenti type functions

w⋆(x) =
(

1 + |x|2+β−γ
)−1/(p−1) ∀x ∈ R

d

if we know that symmetry holds, that is, if we know that the equality is achieved
among radial functions. However, depending on the parameters, to decide whether
a minimizer has the full symmetry or not can be difficult. To show that symmetry
is broken one can minimize the functional in the class of symmetric functions and
then check whether the value of the functional can be lowered by perturbing the
minimizer away from the symmetric situation. This is the method that has been
used to establish that symmetry breaking occurs in (1) if

(3) γ < 0 and βFS(γ) < β <
d− 2

d
γ

where

βFS(γ) := d− 2−
√

(γ − d)2 − 4 (d− 1) .

In the critical case p = p⋆, the method was implemented by F. Catrina and Z.-
Q. Wang in [3], and the sharp result has been obtained by V. Felli and M. Schneider
in [6]. The same condition was recently obtained in the subcritical case p <
p⋆, in [1]. Throughout this report, by critical we simply mean that ‖w‖L2p,γ(Rd)

scales like ‖∇w‖L2,β(Rd). One has to observe that proving symmetry breaking by

establishing the linear instability is a local method, which is based on a painful
but rather straightforward linearization around the special function w⋆.

A real difficulty occurs when the minimizer in the symmetric class is stable, i.e.,
all local perturbations that break the symmetry increase the energy: in our case,
non-radial perturbations. To establish the optimal symmetry range in (1), and
thus determine the sharp constant in the Caffarelli-Kohn-Nirenberg inequalities
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whenever the optimal functions are radially symmetric, a new method had to be
designed. What has been proved in [4] in the critical case p = p⋆, and extended
in [5] to the sub-critical case 1 < p < p⋆, is that the symmetry breaking range given
in (3) is optimal: symmetry holds in the complementary region of the admissible
parameters.

Theorem 1. [4, 5] Under Condition (2) assume that either γ ≥ 0 or β ≤ βFS(γ)
if γ < 0. Assume that d ≥ 2. Then all positive solutions in Hp

β,γ(R
d) to

(4) − div
(

|x|−β ∇w
)

= |x|−γ
(

w2p−1 − wp
)

in R
d \ {0} .

are radially symmetric and, up to a scaling and a multiplication by a constant,

equal to w⋆.

The main ideas of the proof can be summarized into a three steps scheme.

1) The first step is based on a change of variables which amounts to rephrase our
problem in a space of higher, artificial dimension n > d (here n is a dimension at
least from the point of view of the scaling properties), or to be precise to consider
a weight |x|n−d which is the same in all norms. With

α = 1 + β−γ
2 and n = 2 d−γ

β+2−γ ,

we claim that Inequality (1) can be rewritten for a function v(|x|α−1 x) = w(x) as

‖v‖L2p,d−n(Rd) ≤ Kα,n,p ‖Dαv‖ϑL2,d−n(Rd) ‖v‖
1−ϑ
Lp+1,d−n(Rd) ∀ v ∈ Hp

d−n,d−n(R
d) ,

with the notations s = |x|, ω = x
s and Dαv =

(

α ∂v
∂s ,

1
s ∇ωv

)

.

2) Let us consider the derivative of a generalized Rényi entropy power functional

G[u] :=
(
∫

Rd

um dµ

)σ−1 ∫

Rd

u |DαP|2 dµ

where σ = 2
d

1
1−m − 1. Here P is the pressure variable P := m

1−m um−1 while m

and p are related by p = 1
2m−1 . Next we consider the fast diffusion equation

(5)
∂u

∂t
= Lα um with Lα u = −D

∗
αDαu = α2

(

u′′ + n−1
s u′)+ 1

s2 ∆ω u

in the subcritical range 1 − 1/n < m < 1 and in the critical case m = 1 − 1/n.
The key computation is the proof that

− d

dt
G[u(t, ·)]

(∫

Rd

um dµ

)1−σ

≥ (1−m) (σ − 1)
∫

Rd u
m
∣

∣

∣Lα P−
∫
Rd

u |DαP|2 dµ∫
Rd

um dµ

∣

∣

∣

2

dµ

+2
∫

Rd

(

α4
(

1− 1
n

)

∣

∣

∣P
′′ − P

′

s − ∆ω P

α2 (n−1) s2

∣

∣

∣

2

+ 2α2

s2

∣

∣∇ωP
′ − ∇ωP

s

∣

∣

2
)

um dµ

+2
∫

Rd

(

(n− 2)
(

α2
FS − α2

)

|∇ωP|2 + c(n,m, d) |∇ωP|4
P2

)

um dµ =: H[u]
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for some numerical constant c(n,m, d) > 0. Hence if α ≤ αFS :=
√

(d− 1)/(n− 1),
the r.h.s. in H[u] vanishes if and only if P is an affine function of |x|2.
3) This method has a hidden difficulty. In the above computation, many inte-
grations by parts have to be performed, which require a sufficient decay of the
function u and of its derivatives as |x| → +∞ and also, because of the weight,
good properties as x → 0. So far, such properties are not known for a general
solution of (5). However, we may consider a positive solution to (4) and, up to the
above changes of variables, take the corresponding function u as an initial datum
for (5). On the one hand, since u is a critical point of G under mass constraint, we
know that d

dt G[u(t, ·)] = 0 at t = 0. On the other hand, because u solves an elliptic
PDE, it is possible to establish all regularity and decay estimates that are needed
to do the integrations by parts, hence H[u] = 0. In that way we conclude that w
is equal to w⋆ up to a scaling and a multiplication by a constant, if β ≤ βFS(γ).

Applying the flow at t = 0 to a critical point amounts to write the Euler-
Lagrange equation and test it with Lα um. In other words, what we write is

0 =

∫

Rd

dG[u] · Lα um dµ ≥ H[u] ≥ 0

where the last inequality holds because H[u] is the integral of a sum of squares
(with nonnegative constants in front of each term). If we undo the change of
variables, our method amounts to rewrite (4) as

(p− 1)2

p (p+ 1)
w1−3p div

(

|x|−β w2p ∇w1−p
)

+ |∇w1−p|2 + |x|−γ
(

c1 w
1−p − c2

)

= 0

for some constants c1, c2 and test it against |x|γ div
(

|x|−β ∇w1+p
)

.
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On the structure of A -free measures and applications.

Guido De Philippis

(joint work with Filip Rindler)

Let us consider the following problem: Let A be a k’th-order linear constant-
coefficient PDE operator acting on Rm-valued functions:

A u =
∑

|α|≤k

Aα∂
αu for all u ∈ C∞(Ω;Rm)

where Aα ∈ R
n×m are matrices and ∂α = ∂α1

1 . . . ∂αd

d , for every multindex α =
(α1, . . . , αd) ∈ Nd.

Question 1. Let µ ∈ M(Ω,Rm) be a R
m-valued Radon measure on an open set

Ω ⊂ Rd and let us assume that µ is A -free, i.e. that it soves the following system
of linear PDE in the sense of distribution:

(1) A µ =
∑

|α|≤k

Aα∂
αµ = 0 in D′(Ω;Rn).

What can be said about the singular part (w.r.t. Ld) of µ?

Besides its own theoretical interest, understanding the structure of singularities
of PDE constrained measures turns out to have several (sometimes surprising)
applications in the Calculus of Variations and in Geometric Measure Theory, which
we describe below.

In answering to Question 1 a prominent role is played by the wave cone associ-
ated with the differential operator A :

ΛA =
⋃

|ξ|=1

KerAk(ξ) ⊂ R
m with A

k(ξ) = (2πi)k
∑

|α|=k

Aαξ
α,

and we have set ξα = ξα1

1 · · · ξαd

d .
Roughly speaking, ΛA contains all the amplitudes along which the system (1)

is not elliptic. Indeed if we assume that A is homogeneous, A =
∑

|α|=k Aα∂
α,

then it is immediate to check that λ ∈ Rm belongs to ΛA if and only if there exists
a non zero ξ ∈ Rd \ {0} such that λh(x · ξ) is A -free for all h : R → R. In other
words “one dimensional” oscillations and concentrations are possible only if the
amplitudes belongs to the wave cone.

Since the singular part of a measure can be thought as containing “condensed”
concentrations, it is quite natural to conjecture that for |µ|s-almost everywhere
the polar vector dµ/d|µ| shall belong to ΛA . This is indeed the main result of [9]:

Theorem 1. Let Ω ⊂ Rd be an open set, let A be a k’th-order linear constant-
coefficient differential operator as above, and let µ ∈ M(Ω;Rm) be an A -free
Radon measure on Ω with values in R

m. Then,

dµ

d|µ| (x) ∈ ΛA for |µ|s-a.e. x ∈ Ω.
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As mentioned above Theorem 1 has some interesting applications in the Calcu-
lus of Variations and in Geometric Measure Theory. The first one is a new proof
of the celebrated Alberti’s rank-one Theorem for vector valued BV functions and
its extension to BD, the class of functions of bounded deformation. Let us recall
here that for a L1 function u,

u ∈ BV (Rd,Rℓ) ⇐⇒ Du is a Rℓ ⊗ Rd -valued Radon measure,

and

u ∈ BD(Rd) ⇐⇒ Eu := Du+ (Du)T is a Rd ⊗ Rd-valued Radon measure.

We note that BV (Rd,Rd) ⊂ BD(Rd) and that, due to the failure of Korn’s in-
equality [14], the inclusion is strict.

It was conjecture by Ambrosio and De Giorgi in [4] and proved by Alberti
in [1] that for a BV function the singular part (w.r.t. Ld) of Du has a rank-one
structure, namely

dDsu

d|Du| (x) = a(x)⊗ b(x) for |Dsu|-a.e. x.

The natural (and relevant for applications, see [10, 11]) generalisation of the above
property for BD-functions is the following:

Question 2. Is it true that for a function of bounded deformation u ∈ BD(Rd)

dEsu

d|Eu|(x) = a(x) ⊙ b(x) for |Esu|-a.e. x?

Here a⊙ b = a⊗ b+ b⊗ a.

Both Alberti’s rank one Theorem and a positive answer to Question 2 are simple
consequences of Theorem 1. We have indeed the following:

Theorem 2. Let Ω ⊂ Rd be an open set, then:

(i) For every u ∈ BV (Ω;Rℓ)

dDsu

d|Du| (x) = a(x)⊗ b(x) for |Dsu|-a.e. x.

(ii) For every u ∈ BD(Ω)

dEsu

d|Eu| (x) = a(x)⊙ b(x) for |Esu|-a.e. x.

Proof. Since µ = Du is curl-free,

0 = curl(µ) =
(

∂iµ
k
j − ∂jµ

k
i

)

i,j=1,...,d; k=1,...,ℓ
.

point (i) above follows from

Λcurl =
{

a⊗ ξ : a ∈ R
ℓ, ξ ∈ R

d \ {0}
}

.
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In the same way if µ = Eu, then it satisfies the Saint-Venant compatibility condi-
tions:

0 = curl curl(µ) :=

( d
∑

i=1

∂ikµ
j
i + ∂ijµ

k
i − ∂jkµ

i
i − ∂iiµ

k
j

)

j,k=1,...,d

.

It is now a direct computation to check that

Λcurl curl =
{

a⊙ ξ : a ∈ R
d, ξ ∈ R

d \ {0}
}

.

�

A quite surprising application of Theorem 1 concerns the study of the sharpness
of Rademacher’s Theorem. Let us recall that Rademacher’s Theorem asserts that
a Lipschitz function f ∈ Lip(Rd,Rℓ) is diffferentiable Ld-almost everywhere. A
natural question, which has attracted the attention of several researchers, is to
understand how sharp is this result. Namely:

Question 3 (Weak converse of Rademacher Theorem). Let ν ∈ M+(R
d) be a

positive Radon measure such that every Lipschitz function is differentiable ν-almost
everywhere. Is ν necessarily absolutely continuous with respect to the Lebesgue
measure?

We refer to [2, 3] for a detailed account on the history of this problem and of
the related problem concerning the strong converse of Rademacher Theroem.

The link between Question 3 and Question 1 is due to the beautiful work of
Alberti and Marchese, [3], see Theorem 1.1 and Corollary 6.5 there and [9, Lemma
3.1].

Lemma. Let ν ∈ M+(R
d) be a positive Radon measure, then the following are

equivalent

(i) Every Lipschitz function is differentiable ν-almost everywhere.
(ii) There exists d Rd-valued measures µ1, . . . , µd ∈ M(Rd;Rd) with measure

valued divergence div µi ∈ M(Rd;R), such that ν ≪ |µi| for 1 = 1, . . . , d
and

(2) span

{

dµ1

d|µ1|
(x), . . . ,

dµd

d|µd|
(x)

}

= R
d for ν a.e. x.

With the above Lemma at hand a positive answer to Question 3 follows straight-
forwardly from Theorem 1. Indeed let ν be a measure such that Lipschitz functions
are differentiable ν-almost everywhere an let µi the measures provided by Lemma .
Let us consider the matrix-valued measure

µ =







µ1

...
µd






∈ M(Rd;Rd ⊗ R

d).
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and note that divµ ∈ M(Rd;Rd), where div is the row-wise divergence operator.
Since, by direct computation,

Λdiv =
{

M ∈ R
d ⊗ R

d such that rankM ≤ d− 1
}

,

Theorem 1 implies that rank (dµ/d|µ|) ≤ d−1 for |µ|s-almost every point. Hence,
by (2), ν ⊥ |µ|s. On the other hand, since ν ≪ |µi| for all i = 1, . . . , d, νs ≪ |µ|s.
These two facts then implies that νs = 0 as desired.

Let us conclude by mentioning that the weak converse of Rademacher Theorem,
i.e. a positive answer to Question 3, has important implications concerning the
structure of Ambrosio–Kirchheim metric currents, [5], and the structure of the
so called Lipschitz differentability spaces, [7, 13]. In particular it allows to prove
the top-dimensional case of the flat chain conjecture proposed by Ambrosio and
Kirchheim in [5], see [9, Theorem 1.15] and [15], and to provide a positive answer
to a conjecture raised by Cheeger [7, Conjecture 4.63], see [6, 12, 13] and [8]. We
refer the reader to the above mentioned references for more details.
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On a isoperimetric-isodiametric inequality

Andrea Mondino

(joint work with Emanuele Spadaro)

One of the oldest questions of mathematics is the isoperimetric problem: What is
the largest amount of volume that can be enclosed by a given amount of area? A
related classical question is the isodiametric problem: What is the largest amount
of volume that can be enclosed by a domain having a fixed diameter?

In this seminar we present results contained in [5] where we address a mix of the
previous two questions, namely we investigate the following mixed isoperimetric-
isodiametric problem: What is the largest amount of volume that can be enclosed
by a domain having a fixed product of diameter and boundary area?

Of course, if we ask the three above questions in the Euclidean space, the an-
swer is given by the round balls of the suitable radius; but, of course, the situation
in non-flat geometries is much more subtle. We start by recalling classical mate-
rial on the isoperimetric problem which motivated our investigation on the mixed
isoperimetric-isodiametric one.

The solution of the isoperimetric problem in the Euclidean space Rn can be
summarized by the classical isoperimetric inequality
(1)

nω
1
n
n Vol(Ω)

n−1

n ≤ A(∂Ω) , for every Ω ⊂ R
n open subset with smooth boundary,

where Vol(Ω) is the n-dimensional Hausdorff measure of Ω (i.e. the “volume” of
Ω), A(∂Ω) is the (n− 1)-dimensional Hausdorff measure of ∂Ω (i.e. the “area” of
∂Ω), and ωn := Vol(Bn) is the volume of the unit ball in Rn. As it is well known,
the regularity assumption on Ω can be relaxed a lot (for instance (1) holds for
every set Ω of finite perimeter) but let us not enter in technicalities here since we
are just motivating our problem.

As anticipated above, we will not deal with the isoperimetric problem itself
but we will focus on a mixed isoperimetric-isodiametric problem. Let us start by
stating the Euclidean mixed isoperimetric-isodiametric inequality which will act
as model for this seminar. Given a bounded open subset Ω ⊂ Rn with smooth
boundary, by the divergence theorem in Rn, we have

(2) nVol(Ω) ≤ rad(Ω)A(∂Ω),

where rad(Ω) is the radius of the smallest ball of Rn containing Ω. It is easy so
see that inequality (2) is sharp and rigid ; indeed, equality occurs if and only if Ω
is a round ball in Rn.

In sharp contrast with the classical isoperimetric problem, where both problems
are still open in the general case, it is not difficult to show that the inequality (2)
holds in Cartan-Hadamard spaces (i.e. simply connected Riemannian manifolds
with non-positive sectional curvature) and on minimal submanifolds of Rn. Even
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if the validity of inequality (2) in such spaces is probably known to experts, we
included it as motivation and also because the equality case for minimal subman-
ifolds presents an interesting link with free-boundary minimal surfaces: equality
is attained in (2) if and only if the minimal submanifold is a free boundary min-
imal surface in a Euclidean ball. If on one hand the negative curvature gives a
stronger isoperimetric-isodiametric inequality, on the the other hand we show that
non-negative Ricci curvature forces metric balls to satisfy a weaker isoperimetric-
isodiametric inequality. The precise statement is the following comparison result.

Theorem 1. Let (Mn, g) be a complete (possibly non compact) Riemannian n-
manifold with non-negative Ricci curvature. Let Br ⊂ M be a metric ball of volume
V = Volg(Br), and denote with BR

n

(V ) the round ball in Rn having volume V .
Then
(3)

rad(Br) A(∂Br) = r A(∂Br) ≤ nVolg(Br) = radRn(BR
n

(V )) ARn(∂BR
n

(V )).

Moreover equality holds if and only if Br is isometric to a round ball in the Eu-
clidean space Rn.

Remark 1. Since by Bishop-Gromov volume comparison we know that if Ricg ≥
0 then for every metric ball Br(x0) ⊂ M it holds Volg(Br(x0)) ≤ ωnr

n =

VolRn(BR
n

r ), it follows that

rad(Br(x0)) ≥ radRn(BR
n

(V )),

where BR
n

(V ) is a Euclidean ball of volume V = Volg(Br(x0)). Therefore The-

orem 1 in particular implies that A(∂Br(x0)) ≤ ARn(∂BR
n

(V )), but is a strictly
stronger statement which at best of our knowledge is original. The aforemen-
tioned counterpart of Theorem 1 for the isoperimetric problem was proved instead
by Morgan-Johnson [3, Theorem 3.5] for compact manifolds and extended to non-
compact manifolds in [4, Proposition 3.2]. �

We then investigate the existence of optimal shapes in a general Riemannian
manifold (M, g). More precisely, given a measurable subset E ⊂ M we denote
with P(E) its perimeter and define its extrinsic radius as

rad(E) := inf {r > 0 : Volg(E \Br(z0)) = 0 for some z0 ∈ M} ,
where Br(z0) denotes the open metric ball with center z0 and radius r > 0. We
consider the following minimization problem: for every fixed V ∈ (0,Volg(M)),

(4) min
{

rad(E)P(E) : E ⊂ M, Volg(E) = V
}

,

and call the minimizers of (4) isoperimetric-isodiametric sets (or regions). To best
of our knowledge this is first time such a problem is considered in literature.
As it happens also for the isoperimetric problem, by using classical compactness
and lower semicontinuity results, it is not difficult to see that if the ambient man-
ifold is compact then for every volume there exists an isoperimetric-isodiametric
region but if the ambient space is non-compact the situation changes dramatically.
Indeed we show that in complete minimal submanifolds with planar ends (like
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the helicoid) and in asymptotically locally Euclidean Cartan-Hadamard manifolds
there exists no isoperimetric-isodiametric region of positive volume. On the other
hand, we show that in C0-locally asymptotically Euclidean manifolds with non neg-
ative Ricci curvature for every volume there exists an isoperimetric-isodiametric
region.

Finally we discuss the optimal regularity for isoperimetric-isodiametric regions
under suitable assumptions on regularity of the enclosing ball. We first observe
that outside of the contact region with the minimal enclosing ball B, such sets are
locally minimizers of the perimeter under volume constraint. Therefore by classical
results (see, for example, [2, Corollary 3.8]) in the interior of B the boundary of the
region is a smooth hypersurface outside a singular set of Hausdorff co-dimension
at least 8.

The rest of the seminar is devoted to prove the optimal regularity at the con-
tact region. We first show that isoperimetric-isodiametric regions are almost-
minimizers for the perimeter and therefore, by a result of Tamanini [6] their
boundaries are C1,1/2 regular. Then, by means of geometric comparisons and
sharp first variation arguments, we show that the mean curvature of the boundary
of an isoperimetric-isodiametric region is in L∞ with explicit estimates. Finally
we establish the optimal C1,1 regularity stated below.

Theorem 2. Let E ⊂ M be an isoperimetric-isodiametric set and x0 ∈ M be
such that Volg(E \ Brad(E)(x0)) = 0. Assume that B := Brad(E)(x0) has smooth

boundary. Then, there exists δ > 0 such that ∂E \Brad(E)−δ(x0) is C1,1 regular.

An essential ingredient in the proof of Theorem 2 is to show that the boundary
of E leaves the obstacle at most quadratically. Then the conclusion will follow by
combining Schauder estimates outside of the contact region with the general fact
that functions which leave the first order approximation quadratically are C1,1.
Although the techniques are inspired by the ones introduced in the study of the
classical obstacle problem (cf., for example, [1]), here we treat the geometric case
of the area functional in a Riemannian manifold with volume constraints and we
take several short-cuts thanks to some specifically geometric arguments, such as
the theory of almost minimizers.

Remark 2. We expect the C1,1 regularity to be optimal, because in general the
continuity of the second fundamental form of ∂E across the free boundary of ∂E
fails. This is indeed true for the simplest case of the classical obstacle problem.
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The isoperimetric problem for large volumes in asymptotically flat
3-manifolds

Otis Chodosh

(joint work with Michael Eichmair, Yuguang Shi, Haobin Yu)

A 3-manifold is asymptotically flat if for some compact set K,

M \K ∼= {x ∈ R
3 : |x| > 1} and gij = δij +O(|x|−τ )

for τ > 1
2 (along with derivatives). We also include the assumption that the scalar

curvature is integrable and that there are no closed minimal surfaces in (M, g)
other than ∂M (which is required to be minimal, if non-empty). Such (M, g)
arise naturally as study of initial data sets for the Einstein equations in general
relativity. Our main theorem is:

Theorem 1 ([3]). Assume that (M, g) is asymptotically flat and has non-negative
scalar curvature. If (M, g) is not isometric to flat Euclidean space R

3, then there
exists a unique isoperimetric region ΩV containing volume V for all V sufficiently
large.

Wemention also that Theorem 1 in the case that g is additionally C0-asymptotic
to the Schwarzschild metric, i.e.,

gij =

(

1 +
m

2|x|

)4

δij +O(|x|−2),

(but without the assumption that the scalar curvature is non-negative) was proven
by M. Eichmair and J. Metzger [4] building on an ingenious idea of H. Bray [1].
Moreover, G. Huisken has proposed a novel concept of isoperimetric mass, and
used mean curvature flow to prove sharp estimates for the isoperimetric defect for
large volumes in asymptotically flat three manifolds.

An interesting feature of Theorem 1 is the global nature of the isoperimetric
problem. Indeed, the theorem is false (in this generality) if “isoperimetric region”
is replaced by “volume preserving stable constant mean curvature surface” (see
Appendix A in [3] for references concerning the study of stable constant mean
curvature surfaces in asymptotically flat manifolds).

We mention here a related result (due to the author and M. Eichmair) of a
similarly global nature. A proof is included in [2].

Theorem 2. Suppose that (M, g) is asymptotically flat with non-negative scalar
curvature. If (M, g) contains a non-compact area-minimizing boundary, then (M, g)
is isometric to (R3, ḡ).
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This resolves a conjecture of R. Schoen. As in Theorem 1, this result is false if
“area-minimizing” is weakened to “stable.”
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Singularities of Minimal Two-Valued Graphs

Spencer T. Becker-Kahn

(joint work with Neshan Wickramasekera)

The problem of finding and studying critical points of the n-dimensional area
functional in an (n + k)-dimensional Riemannian manifold is an old and difficult
one. It subsumes, for example, the problem of understanding geodesics on a closed
surface and that of finding closed minimal hypersurfaces. It was with this problem
in mind that Almgren began to develop the theory of a class of objects which he
called integral varifolds. Two of the most important facts about integral varifolds
are a) The area functional is continuous (not just lower semicontinuous) with
respect to the (weak) convergence of varifolds. And b) There is a straightforward
compactness theorem for integral varifolds. This means for example that the
sequence obtained by taking a standard catenoid in R3 and shrinking by a factor
1/j converges in the sense of varifolds, as j → ∞, to a multiplicity two copy of a
single plane.

An integral varifold that is a critical point of the area functional is called a
stationary varifold. Almgren was able to prove the following theorem.

Theorem 1 (Almgren, Corollary 15.2 of [2]). Let M be a compact N -dimensional
Riemannian manifold. For every 1 ≤ n ≤ N − 1, there exists an n-dimensional
stationary integral varifold V in M .

Almgren’s result is unsatisfactory because stationary integral varifolds are very
weak objects that can potentially have bad singularities and it would appear to
be difficult to analyze the stationary varifold that this theorem gives you. (An
integral n-varifold V is a pair (M, θ) where M is a countably n-rectifiable set and
θ : M → Z≥0 is a locally Hn-integrable function called the multiplicity. We say V
is stationary in U if

∫

U

divTxM (Ψ(x)) θ(x)dHn(x) = 0

for all smooth, compactly supported vector fields Ψ : U → Rn+k).
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Among many other interesting questions that Almgren’s result raises, we have
the fundamental issue of regularity: Does a stationary varifold corresponded to
a smooth minimal submanifold Hn-almost everywhere? In complete generality,
little more is known than Allard’s theorem ([1]) which implies that the singular
set is closed and nowhere dense. This regularity result comes from a so-called ǫ-
regularity theorem which implies that on a stationary varifold, any point at which
there is a multiplicity 1 tangent plane is a regular point. What this shows is that
the obstruction to almost everywhere regularity is precisely the set of points at
which there is a higher multiplicity tangent plane. Roughly speaking, the work
discussed in this talk pertains to a program aimed at beginning to understand mul-
tiplicity two singular behaviour for stationary varifolds in arbitrary codimension
and without the assumption of stability or area-minimization.

We work in the class of Lipschitz two-valued graphs: To understand a two-
valued graph, one might think that “above each point in the domain, there are
exactly two points when counted with multiplicity”. A minimal two-valued graph
is a stationary integral varifold in Bn

2 (0)×Rk that is associated to the graph of a
two-valued Lipschitz function. While the assumption may appear to be restrictive,
I would emphasize that many of the most interesting and challenging types of
behaviour are still present. Consider the following three examples:

1) Let C = |P1| + |P2|, where P1, P2 are n-dimensional subspaces such that
dim(P1 ∩ P2) = n − 1. The varifold C is a minimal two-valued graph with
Hn−1(sing C) > 0, which shows that working in this class provides no free pass
on the size of the singular set.

2) Consider the irreducible holomorphic variety I := {(z, w) ∈ C × C : z2 =
w3} ⊂ R4, which is two-dimensional and has sing I = {0}. Such a variety is
area-minimizing (because it is ‘calibrated’) and so the associated varifold is indeed
stationary. This is a minimal C1,1/2 two-valued graph (of w 7→ ±w3/2) and has
a multiplicity two tangent plane at the origin, so working in this class does not
evade this type of branch point singularity.

3) Let η : S3 → S2 denote the Hopf map. The homogeneous degree one function

f : R4 → R3 given by f(x) =
√
5
2 |x|η

(

x
|x|

)

for x 6= 0 is a Lipschitz weak solution

to the minimal surface system on R4 with an isolated singularity at the origin.
So the varifold associated to graph f is a cone that is not made from planes or
half-planes like in the previous two examples. This shows that working just with
graphs does not preclude this kind of, shall we say, ‘exotic’ singular behaviour.

One can establish relatively straightforwardly that for a minimal two-valued
graph V , we have that sing V is the disjoint union B ∪ T ∪ E where

• At x0 ∈ B, there exists a multiplicity 2 tangent plane.
• dim T ≤ n − 1 and at x0 ∈ T , there exists transverse tangent cone made
from planes or half-planes.

• dim E ≤ n − 3 and at x0 ∈ E , every tangent cone is ‘exotic’ (not made
from planes or half-planes).
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The work of my thesis is a local analysis near points of T and the work-in-progress
that is a continued collaboration with my advisor Neshan Wickramasekera is a
local analysis near points of B. Some of the key results about the set T can be
summarized in the following brief statement (see the paper for much more detailed
statements):

Theorem 2 ([3]). At each point x0 ∈ T , there is a unique tangent cone Cx0
and

a neighbourhood of x0 in which sing V is contained in an m-dimensional C1,α

submanifold, where m ≤ n− 1.

Part of the significance of this work comes from the fact that in arbitrary codi-
mension - and in the purely stationary case - there are extremely few cases in
which any detailed analysis of the singular set has been possible (e.g. gaining pre-
cise asymptotics on approach to singularities, studying the geometry and structure
of the singular set or proving uniqueness of tangent cones). Historically, analyzing
any kind of branch-point singularities (even in the area-minimizing or stable cases)
has also been very hard, but we believe that it will be possible in this case:

Work in progress. At every point x0 ∈ B, the tangent cone is unique (and equal
to a multiplicity two plane).

One of the reasons that analyzing branch point singularities is hard is that they
are, by definition, singular points at which the tangent cone is regular and so on
some level the singular behavior is necessarily more subtle. We will draw from the
works of Wickramasekera on stable hypersurfaces ([7], [8], [9]) which in some sense
have established a philosophy that, in certain cases, enables a detailed analysis of
branch points via the so-called ‘blow-up’ method (the method centers around an
analysis of the linearization of the minimal surface operator and in essence goes
back to De Giorgi ([4]) although it is in [1] that it first appears in a more pertinent
form). The general analytic framework in both Wickramasekera’s work and in my
previous work is directly inspired by the work of Simon [5].

Finally, we mention one conjecture that all of this might be building towards:

Conjecture. dimH(B) ≤ n− 2.

Proving this would imply that dimH sing V ≤ n− 1. This would make minimal
two-valued graphs one of only a few classes in which an optimal dimension estimate
on the size of the singular set has been obtained. (It is worth noting that in [6],
Simon and Wickramasekera use primarily PDE-based arguments to show that the
branch set of a C1,α minimal two-valued graph is at most (n− 2)-dimensional).
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Isoperimetry with upper mean curvature bounds and sharp stability
estimates

Brian Krummel

(joint work with Francesco Maggi)

Motivated by capillarity-type problems, in our recent work of [7], we consider the
structure of hypersurfaces with almost constant mean curvature (almost CMC).
For a bounded, open subset Ω ⊂ Rn+1 with a smooth boundary, we define the
CMC deficit δcmc(Ω) by

δcmc(Ω) =

∥

∥

∥

∥

HΩ

H0
− 1

∥

∥

∥

∥

L∞(∂Ω)

where H0 =
nP (Ω)

(n+ 1) |Ω|

and where HΩ denotes the mean curvature of ∂Ω computed with respect to the
outward unit normal to Ω and P ( · ) denotes perimeter. Note that if ∂Ω is CMC,
then HΩ = H0. We say that ∂Ω is almost CMC if δcmc(Ω) is small.

Previous work by Ciraola and Maggi [3] showed that if ∂Ω is almost CMC,
H0 = n, and P (Ω) ≤ (L + τ)P (B1) for an integer L ≥ 1 and τ ∈ (0, 1), then ∂Ω
can be represented as a C1,α graph over a union of at most L tangent unit balls
away from spherical caps where the tangent balls touch and with estimates. How-
ever, the estimates of [3] were not optimal. Ciraolo and Vezzoni [5] showed that if
∂Ω is almost CMC, |Ω| = |B1|, and Ω satisfies an interior/exterior ball condition of
radius ρ > 0 at each point of ∂Ω, then hd(∂Ω, ∂B1(x0)) ≤ C(n, P (Ω), ρ) δcmc(Ω)
for some x0 ∈ Rn+1. This estimate is optimal. However, the interior/exterior
ball condition is too restrictive for the study of critical points of capillarity-type
energies since the uniform ball condition prevents bubbling phenomena; for in-
stance, consider the surface obtained by truncating and then smoothly completing
an unduloid with very thin necks. As a step towards obtaining sharp estimates
for almost CMC hypersurfaces close to a union of tangent unit balls, we will prove
sharp estimates for almost CMC hypersurfaces close to a single unit ball without
the interior/exterior ball condition.

Our approach involves an isoperimetric principle due to Almgren [1], which in
codimension one can be stated as follows:
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Almgren’s isoperimetric principle. If Ω ⊂ R
n+1 is a bounded, open subset

with a smooth boundary such that HΩ ≤ n at each point of ∂Ω, then P (Ω) ≥ P (B1)
with equality if and only if Ω is a unit ball.

This isoperimetric principle arises from Almgren’s proof of the sharp isoperimetric
inequality in codimension > 1 and can be stated more generally for weak notions of
submanifolds, namely rectifiable varifolds, in arbitrary codimension. In codimen-
sion one, mean curvature can be represented by a scalar quantity and we assume a
one-sided bound HΩ ≤ n with no lower bound on HΩ. Almgren’s proof of the isop-
ermetric principle yields the quantitative information that δ(Ω) = P (Ω) − P (B1)
is given by

δ(Ω) =

∫

∂A∩∂Ω

((

HΩ

n

)n

−KΩ

)

+

∫

∂A∩∂Ω

(

1−
(

HΩ

n

)n)

+Hn(∂Ω ∩ ∂A),

where A is the convex hull of Ω and each integrand is nonnegative. This naturally
leads to the question of whether one can use this quantitative information to
address stability for Almgren’s isoperimetric principle: If Ω ⊂ Rn+1 is a bounded,
open subset with a smooth boundary such that HΩ ≤ n on ∂Ω and δ(Ω) = P (Ω)−
P (B1) is small, must Ω be close to a unit ball? Can we obtain sharp estimates on
hd(∂Ω, ∂B1) and |Ω∆B1| in terms of δ(Ω)?

A key obstruction to stability for Almgren’s isoperimetric principle is that,
since we do not assume any lower bound on HΩ, Ω could have tiny holes, e.g.
Ω = B1 \ Bε, or thin tentacles protruding into Ω. As a result, we could have
hd(∂Ω, ∂B1) ≈ 1 despite δ(Ω) being small. In [7, Theorem 1.2], we remove the
holes and tentacles by using Almgren’s isoperimetric principle to show that the
total perimeter and volume of the holes is ≤ C(n) δ(Ω) and by replacing Ω with a
solution E to an obstacle problem, minimize P (E)+n |E| amongst E with Ω ⊆ E,
as the minimizer E satisfies −n ≤ HE ≤ n a.e. on ∂E and has total perimeter and
volume outside of Ω that is ≤ C(n) δ(Ω).

Now assuming that −n ≤ HΩ ≤ n on ∂Ω, one can argue using Allard regularity
that if δ(Ω) is sufficiently small then, up to translating, Ω = {(1+u(x))x : x ∈ Sn}
for some u ∈ C1(Sn) with ‖u‖C1 ≤ ε(n) small. Having shown this, we obtain the
following sharp stability estimates for Almgren’s isoperimetric inequality.

Theorem 1 (Theorem 1.1 of [7]). If Ω ⊆ Rn+1 is a bounded, open set with smooth
boundary such that H∂Ω ≤ n on ∂Ω and δ(Ω) ≤ δ0(n), then there exists x0 ∈ Rn+1

such that

|Ω∆B1(x0)|+ sup{s > 0 : Ω ⊆ B1+s(x0)} ≤ C(n) δ(Ω).

Observe that, by contrast, the isoperimetric inequality has a different stability
estimate, |Ω∆B1(x0)|2 ≤ C(n) δ(Ω).

Theorem 2 (Theorem 1.5 of [7]). If Ω ⊆ Rn+1 is a bounded, open set with
smooth boundary such that H∂Ω ≤ n on ∂Ω, ∂Ω = {(1 + u(x))x : x ∈ Sn} for



1996 Oberwolfach Report 34/2016

some u ∈ C1(Sn) with ‖u‖C1 ≤ ε(n), and
∫

∂Ω x dHn(x) = 0, then

hd(∂Ω, Sn) ≤











C(1) δ(Ω) ifn = 1

C(2) δ(Ω) log(C(2)/δ(Ω)) ifn = 2

C(n) δ(Ω)
1

n−1 ifn ≥ 3.

.

Moreover, there exists an example showing that this estimates is sharp.

The proofs of Theorems 1 and 2 use a series expansion argument based on [6],
which when combined with elliptic estimates and an interpolation inequality of
Fuglede [6, Lemma 1.4] yields the estimates in Theorems 1 and 2. The series
expansion argument additionally shows that the average of u dominates the other
Fourier coefficients of u so that

0 < c(n) δ(Ω) ≤
∫

Sn

u ≤ C(n) δ(Ω).

Since taking u to be constant corresponds to scaling the unit sphere, we interpret
this as meaning that we must scale the unit sphere outward while deforming it
into ∂Ω in order to preserve HΩ ≤ n. Note that, by contrast, for the isoperimetric
inequality one typically fixes the volume of Ω and consequently the average of u
is negligible, i.e.

∫

Sn
u = O(‖u‖2W 1,2).

We construct the example showing that the Hausdorff distance estimates in
Theorem 2 are sharp as follows. Rescale the unit sphere by 1 + t for t > 0 small.
Push the rescaled sphere in at the north pole to form a tentacle as a surface of
revolution. Up to radius r1 from the axis of symmetry for the tentacle, the profile
the tentacle will be a solution to an ordinary differential equation and the tentacle
roughly behaves like the graph of a fundamental solution for the Laplacian. We
cut this portion of the tentacle off at a radius r1 where its gradient relative to the
unit sphere equals a small constant µ > 0 and then cap off the tentacle with a
spherical cap.

Our approach also yields the following sharp estimates for almost CMC hyper-
surfaces close to a single tangent ball, see [7]. Let ∂Ω = {(1+u(x))x : x ∈ Sn} for
some u ∈ C1(Sn) with ‖u‖C1 small and

∫

∂Ω x dHn(x) = 0. If ‖HΩ − n‖L2(∂Ω) is
sufficiently small, then ‖u‖W 1,2 ≤ C(n) ‖HΩ−n‖L2(∂Ω). This result is of particular
interest since it may have applications to convergence to equilibrium in geomet-
ric flows, see for instance [4] for this kind of application of stability theorems to
Yamabe-type fast diffusion equations). If additionally

δ(p)cmc(Ω) = H−1
0 max

{

‖(H0 −HΩ)
+‖L∞(∂Ω), ‖(HΩ −H0)

+‖Lp(∂Ω)

}

is sufficiently small for p ≥ 2 when n = 2 and p > n/2 when n ≥ 3, then

hd(∂Ω, Sn) ≤ C(n, p) δ
(p)
cmc(Ω).
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Sharp local smoothing estimates for the Ricci flow on surfaces.

Peter M. Topping

(joint work with Hao Yin)

Consider the logarithmic fast diffusion equation

(1) ∂tu = ∆ log u

where u is a positive function on a two-dimensional domain. This equation has
an extensive literature when posed on the plane, and many beautiful results. The
logarithm makes the equation nonlinear, but in a very special way. The geometric
reason why this particular choice of equation is so natural comes from the fact that
it describes locally the Ricci flow on surfaces. In this two-dimensional situation, the
Ricci flow is a one parameter family of Riemannian metrics g(t) that is governed
by the nonlinear evolution equation

∂g

∂t
= −2Kg

where K is the Gauss curvature of g. In local isothermal coordinates x, y, we can
write g = u.(dx2 + dy2), and then u can be seen to satisfy the logarithmic fast
diffusion equation.

We are interested in posing the Ricci flow with very rough data. For smooth
initial data, there is an extensive literature, with the ultimate result that we have
existence of a unique instantaneously complete solution for completely arbitrary
(smooth) initial data, with that solution existing for a definite period of time,
normally for all time (see [1] and [3]). To make a Ricci flow with very general
(e.g. locally L1) initial data, there is an obvious strategy that is to approximate
the initial data by smooth initial data, each of which is then Ricci flowed with the
existing theory, and then to try to pass to a limit of the flows. To have any hope of
getting reasonable convergence of these smooth flows to the desired flow, we need
uniform Ck estimates at later times, and by standard parabolic theory, we can
obtain these if we are able to derive uniform L∞ estimates on log u, i.e uniform
estimates on u from above and below by positive numbers depending on the time
at which we demand an estimate, but independent of how good an approximation
of the initial data we have taken. Lower bounds on u are relatively easy to obtain
using the global theory in [1], but upper bounds are more tricky. Indeed, for L1
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initial data, we would normally ask for an L∞ estimate for u that is depending
only on the L1 norm of u and the times t. However, such estimates are known to
be impossible (see [4] and the references therein).

The purpose of my talk was to explain the following theorem that circumvents
the problem that we have just described. Intuitively, instead of taking L1 data and
a time t as input and giving out an upper bound in return (which is impossible,
as we have just mentioned) we essentially take the L1 data and the desired upper
bound as input and give in return the time t by which this upper bound is achieved.

Theorem 1 (joint with Hao Yin). Suppose u : B × [0, T ) → (0,∞) is a smooth
solution to the equation

(2) ∂tu = ∆ log u

on the unit ball B ⊂ R2, and suppose that u0 := u(0) ∈ L1(B). Then for all δ > 0
(however small) and for any k ≥ 0 and any time t ∈ [0, T ) satisfying

t ≥ ‖(u0 − k)+‖L1(B)

4π
(1 + δ), we have sup

B1/2

u(t) ≤ C(t+ k),

for some constant C < ∞ depending only on δ.

In the talk, we described a more geometric version of the theorem, and explained
the proof. A significant element here is that the estimate is purely local, and can
be used to study noncompact Ricci flows. However, a key ingredient in the proof is
derived from a paper addressing the closed case for arbitrary dimensional Kähler
Ricci flow, of Guedj and Zeriahi [2]. We also explained in the talk that a sharp
form of the classical Lp − L∞ smoothing estimate for p > 1 follows immediately
from our work. See [4] for further information and references.
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Regularity of the optimal sets for spectral functionals

Susanna Terracini

(joint work with Dario Mazzoleni and Bozhidar Velichkov)

We deal with shape optimization problems for eigenvalues of the Dirichlet Lapla-
cian, i.e.

(1) min
{

F
(

λ1(Ω), . . . , λk(Ω)
)

: Ω ⊂ R
d, |Ω| = 1

}

,
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where F : Rk → R is a given continuous cost function, increasing in each variable,
and λi(Ω), for i = 1, . . . , k, denotes the ith eigenvalue of the Dirichlet Laplacian
on Ω, (counted with the due multiplicity).

The optimization problems of the form (1) naturally arise in many physical
contexts as, for example, heat diffusion or wave propagation inside a domain Ω ⊂
Rd. Despite of their simple formulation, these problems turn out to be rather
challenging and their analysis usually relies on sophisticated variational techniques.
Even the question of the existence of a minimizer for problem (1) was answered
only recently in its whole generality (see [6] and [12]) in the class of quasi-open
sets1.

The regularity of the optimal sets or that of the corresponding eigenfunctions
turn out to be a rather complicated question, due to the min-max nature of the
spectral cost functionals, and was an open problem since the general Buttazzo-Dal
Maso existence theorem. The only complete result on the regularity of the free
boundary ∂Ω of the optimal set Ω concerns the minimizers of (1) for the easier
functional λ1 (under the additional constraint Ω ⊂ D, where D ⊂ Rd is a bounded
open set) and is due to Briançon and Lamboley ([2]) who proved that the free
boundary of the optimal sets is smooth.

The study of optimal partition problems for eigenvalues of the Dirichlet Lapla-
cian has provided better results for the regularity issue, for example in the recent
work [14]. On the other hand, the regularity issue for shape optimization problems
like (1) shows a strong link with the regularity of free boundary problems, which
was studied e.g. in [1, 15] and this approach turns out to be more fruitful. We are
concerned with a special case of problem (1), that is,

(2) min
{

λ1(Ω) + · · ·+ λk(Ω) : Ω ⊂ R
d, open , |Ω| = 1

}

,

which, as a simple scaling argument can show (see [9]), is equivalent to

(3) min
{

λ1(Ω) + · · ·+ λk(Ω) + Λ|Ω| : Ω ⊂ R
d open

}

,

where Λ > 0 is a Lagrange multiplier. Our results cn be easily extended to the
case of the sum of powers of the first k eigenvalues. This is of great interest also
from the point of view of applications to the Lieb-Thirring theory.

We summarize in the following theorem what is known for solutions of (3). The
results were proved in [5, 4, 12].

Theorem 1 (D. Bucur, D. Mazzoleni, A. Pratelli and B. Velichkov, 2015). There
exists an optimal set Ω∗ for problem (3) in the class of quasi-open sets. Every
optimal set has finite perimeter and bounded diameter (the boundedness constants
depends only on d, k). Finally every optimal set has the first k eigenfunctions
which can be extended in a Lipschitz continuous way in the whole Rd and hence
every optimal set is open.

1A quasi-open set is a level set {u > 0} of a Sobolev function u ∈ H1(Rd).
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Our aim is to achieve a better regularity for the boundary of optimal sets and
in order to carry out this work, we consider an equivalent problem in the “free-
boundary” setting:

(4) F0(W ) =

k
∑

i=1

∫

Rd

|∇wi|2 dx + Λ
∣

∣

{

w2
1 + · · ·+ w2

k > 0
}∣

∣ .

Then the vector of normalized eigenfunctions U = (u1, . . . , uk) on the optimal set
for (3) is a solution to the problem

(5) min

{

F0(W ) : W = (w1, . . . , wk) ∈ H1
0 (R

d,Rk),

∫

Rd

wiwj dx = δij

}

.

Our study of problem (5) can be seen as a vector-valued extension of the result
by Weiss [15]. In particular, we have to take care of sign-changing functions, which
is a main difference with respect to the classical works by Alt, Caffarelli and Weiss
and the major difficulty of our work.

Our main result is the following ([13]).

Theorem 2 (D. Mazzoleni, S. Terracini and B. Velichkov, 2016). Let Ω∗
k be

an optimal set for problem (3). Then Ω∗
k is connected and ∂Ω∗

k is the disjoint
union of Reg(∂Ω∗

k) ∪ Sing(∂Ω∗
k), such that Reg(∂Ω∗

k) is C1,α regular, while
dimH(Sing(∂Ω∗

k)) ≤ d− d∗.

The natural number d∗ ∈ [3, 7] is the smallest dimension at which minimizing
free boundaries admit singular cones, for more details we refer to [8, 15].

In order to prove Theorem 2 we need an auxiliary regularity result, which better
highlights the link with the free-boundary problem studied by Alt and Caffatelli [1].
We note that the extension to the vectorial case that we are able to prove still
requires one function to have a positive trace (and so to be positive itself).

Theorem 3 (D. Mazzoleni, S. Terracini and B. Velichkov, 2016). Let k ∈ N and
consider the problem

min
{

k
∑

i=1

∫

Rd

|∇ui|2 dx+ Λ| ∪k
i=1 {ui 6= 0} =: D|, ui ∈ H1(Rd),

ui = φi on ∂D, φi ∈ C0(∂D), φ1 > 0
}

.

(6)

Then every solution U = (u1, . . . , uk) has all the components which are Lipschitz
continuous in R

d and moreover the free-boundary ∂ ∪k
i=1 {ui 6= 0} is C1,α regular

up to a singular set which has Hausdorff dimension lower than d− d∗.

A major open problem is to prove Theorem 3 without the positivity hypothesis
on φ1 (and hence without a positive component u1).

The proof of our result we mostly use the free-boundary approach for this shape
optimization problem, suitably modifying many seminal ideas from [14, 1, 15]. To
this aim, se will exploit monotonicity formulas from which we can perform a blow-
up analysis. Another key point of our proof is the use of a “viscosity” approach,
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following mostly the result for a free boundary problem with only one positive
function by De Silva [7]. Moreover, we need to use the theory of NTA domains
in order to get, at the end, an optimality condition which involves only u1 on the
regular part of the free boundary, so that we can apply the classical results to get
C1,α regularity. Then the analysis of the dimension for the singular set follows as
in [15, Section 4] by standard arguments.
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Existence theorem on the mean curvature flow starting from closed
rectifiable set

Yoshihiro Tonegawa

(joint work with Lami Kim)

A family of n-dimensional surfaces {Γ(t)}t≥0 in Rn+1 is called the mean curvature
flow (abbreviated by MCF) if the velocity is equal to its mean curvature at each
point and time. Given a smooth surface Γ0, one can find a smoothly moving MCF
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starting from Γ0 until some singularities such as vanishing or pinching occur.
The presence of singularities necessitates a weak formulation of MCF, and there
have been intensive research dealing with this aspect in the last few decades.
Among such attempts, Brakke started a theory of MCF (“Brakke flow”) inclusive
of singularities in the framework of geometric measure theory in his seminal book
[1]. In particular, he developed a general existence theory of MCF: starting from
any integral varifold (with a minor technical restriction) of any codimension, he
showed that there exists a family of varifolds satisfying the motion law of MCF
in a weak sense and existing for all time. One major concern for the validity of
his existence theorem is that the proof does not guarantee the non-triviality of
the solution when Γ0 is not a smooth surface. In [3], we rectify this point of non-
triviality by introducing a few framework and also modifying Brakke’s original
argument. The main existence theorem of [3] may be stated roughly as follows.

Theorem 1. Suppose that Γ0 ⊂ Rn+1 is a closed countably n-rectifiable set whose
complement Rn+1 \ Γ0 equals ∪N

i=1E0,i, where E0,1, . . . , E0,N ⊂ Rn+1 are mutu-
ally disjoint non-empty open sets and N ≥ 2. Assume that the n-dimensional
Hausdorff measure of Γ0 is finite or grows at most exponentially near infinity.
Then, for each i = 1, . . . , N , there exists a family of open sets {Ei(t)}t≥0 with
Ei(0) = E0,i such that E1(t), . . . , EN (t) are mutually disjoint for each t ≥ 0 and
Γ(t) := ∪N

i=1∂Ei(t) coincides with the space-time support of a nontrivial Brakke
flow starting from Γ0. Each Ei(t) moves continuously in time with respect to the
Lebesgue measure.

We may regard each Ei(t) ⊂ R
n+1 as a region of “i-th grain” at time t, and

Γ(t) as the “grain boundaries” which move by the mean curvature in a generalized
sense. Some of Ei(t) shrink and vanish, and some may grow and may even occupy
the whole Rn+1 in finite time. Note that the continuity of Ei(t) guarantees that
Γ(t) 6= ∅ at least for a short initial time interval, and Γ(t) 6= ∅ unless Ei(t) = Rn+1

for some i.
Notion not stated clearly in Theorem 1 is that of Brakke flow, which is as

follows. For simplicity, assume Γ0 has a finite n-dimensional Hausdorff measure,
Hn(Γ0) < ∞.

Definition. A Brakke flow starting from Γ0 is a family of n-varifolds {Vt}t≥0

satisfying the following.

(1) V0 = |Γ0| =unit density varifold induced from Γ0.
(2) For L1 a.e. t ∈ R, Vt is an integral varifold with L2 generalized mean

curvature vector h(·, Vt).
(3) ‖Vt‖(Rn) is decreasing in t and

∫∞
0

∫

Rn+1 |h(·, Vt)|2 d‖Vt‖dt ≤ Hn(Γ0).

(4) For any 0 ≤ t1 < t2 < ∞ and φ ∈ C1
c (R

n+1 × R+;R+), we have

‖Vt‖(φ(·, t))
∣

∣

∣

t2

t=t1
≤
∫ t2

t1

∫

Rn+1

{∇φ(·, t)−φ(·, t)h(·, Vt)} · h(·, Vt)+
∂φ

∂t
(·, t) d‖Vt‖dt.

Here, ‖V ‖ is the weight measure of V .



Calculus of Variations 2003

The property (4) is a weak form of the motion law of MCF. The property (2)
allows a possibility of having a higher (≥ 2) multiplicity representing a “folding”
of surfaces (whether it happens or not is not clear). When the multiplicity stays
1 for a.e. t > 0, we say that the flow is a unit density flow. Almost everywhere
regularity of unit density flow for general Brakke flow has been studied originally by
Brakke and is recently completed by [2, 5, 4]. If the flow is a limit of smooth MCF,
White’s regurality theory [6] gives also the almost everywhere regularity. Theorem
1 includes as a part of theorem the existence of {Vt}t≥0 satisfying the Definition
1. We may then define a Radon measure µ on R

n+1 × R
+ by dµ = d‖Vt‖dt. The

claim of Theorem 1 is that {x ∈ Rn+1 : (x, t) ∈ sptµ} = Γ(t) for all t > 0.
The proof is divided roughly into two stages, one is a construction of time-

discrete approximate flows, and the other is the proof of a suitable compactness
theorem of varifolds suited for our purpose. In each time step of the construction,
there are two different kinds of motions, one is a locally area-minimizing Lipschitz
deformation and the other is a motion by smoothed mean curvature vector. There
are a number of estimates measuring the errors of approximations. For the second
stage, we prove an analogue of Allard’s compactness theorem of integral varifolds.
Here the difference is that we only have a control of smoothed mean curvature
vectors of converging integral varifolds, not the exact mean curvature vectors.
To supplement this point, we have a local area minimizing property in a small
length scale. There are roughly three different length scales, grid size for time
(very small), smoothing of mean curvature vectors (small) and area-minimizing
(not so small). These differing length scales play an important role throughout
the analysis.
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F.C.F.M.
Universidad de Chile
Casilla 170, Correo 3
Santiago
CHILE



Calculus of Variations 2005

Prof. Dr. Guido De Philippis

SISSA
Office 547
Via Bonomea, 265
34136 Trieste
ITALY

Prof. Dr. Jean Dolbeault

CEREMADE
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SWITZERLAND

Prof. Dr. Nicola Fusco

Dipartimento di Matematica e
Applicazioni
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