
Mathematisches Forschungsinstitut Oberwolfach

Report No. 39/2016

DOI: 10.4171/OWR/2016/39

Multiscale Interactions in Geophysical Fluids

Organised by
Rupert Klein, Berlin

Shafer Smith, New York

Jacques Vanneste, Edinburgh

14 August – 20 August 2016

Abstract. The dynamics of the atmosphere and ocean involves a broad
range of spatial and temporal scales, many of which emerge through com-
plex nonlinear mechanisms from forcings at very different scales. This poses
major challenges for the numerical prediction of the weather, ocean state
and climate: many processes have scales that are too small to be resolved
yet they play an essential role in determining large-scale features. This work-
shop examined how modern mathematical methods – ranging from multiscale
asymptotics to adaptive numerical methods and stochastic modelling – can
be applied to represent the large-scale impact of these small-scale processes
and improve both deterministic and probabilistic predictions.
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Introduction by the Organisers

One of the most striking features of the dynamics of both the atmosphere and the
ocean is the crucial role played by a range of small-scale, high-frequency phenom-
ena in determining the large-scale flow. Examples of this abound, from the role of
gravity waves on the middle-atmospheric circulation and the driving of jets by tur-
bulent motion, to the impact of small-scale mixing on the deep ocean. This poses
major challenges for atmospheric and oceanic predictions, of course, since these
are based on numerical models that necessarily have limited spatial and temporal
resolutions.
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Advanced mathematical methods have an important part to play in addressing
these challenges: a range of mathematical techniques, including multiscale asymp-
totics, adaptive numerics, dimensionality reduction, and stochastic and data-
driven models, can be brought to bear on the problems. Their effective use depends
on close interactions between mathematicians and atmosphere and ocean scien-
tists. The workshop aimed at stimulating these interactions, by bringing together
researchers from across applied mathematics and geophysical fluid dynamics to
discuss key mathematical challenges arising from recent developments in atmo-
sphere and ocean dynamics. It was well attended, with 45 participants from 10
countries representing weather centres as well as universities.

The workshop was structured around 7 thematic sessions, each consisting of 3
lectures that combined review material with descriptions of recent results. The first
session highlighted the complexity of geophysical flows, with lectures by Nikurashin
on the impact of small-scale topography on ocean flow, by Pauluis on the effect of
moisture on the meridional circulation of the atmosphere, and by Muller on the
self-organisation of atmospheric convection. Sessions 2 and 3 were dedicated to a
range of multiscale methods applied to internal waves in the atmosphere (Achatz)
and in the ocean (Young), to convection in planetary atmospheres (Julien), to
the Julian–Madden oscillation (Stechmann), and to stochastic parameterisations
(Gottwald, Grooms). Session 4 discussed rigorous results, with Doering on en-
strophy dissipation, Bresch on the compressible Navier–Stokes equations, and Titi
on data assimilation. Numerical methods are of course key to much of atmo-
sphere and ocean modelling. They were represented at the workshop in session 5,
with Korn and Smolakiewicz’s lectures on state-of-the art numerical models based
on unstructured grids, and Wingate’s lecture on methods that best exploit dis-
tributed computer architectures. Session 6 centred on data-driven modelling, with
discussions of systematic approaches to the classification of multi-scale time series
with inherent non-stationarity due to latent or unobserved scales and variables
(Horenko), of stochastic parameterizations of sub-gridscale turbulence motivated
by high-resolution simulations (Zanna), and of turbulent fluctuations in stably
stratified boundary layers (Vercauteren). Probabilistic techniques are increasingly
applied to geophysical fluids. This was reflected in the last lecture session with
contributions by Bouchet on large-deviation techniques, by Kuksin on weak tur-
bulence, and by Holm on variational stochastic models.

All the lectures involved a good degree of audience participation, with ques-
tions and clarifications making it possible to fully engage the multidisciplinary
audience. They were complemented by a successful poster session, which gave
the opportunity to ten researchers to present their recent results, and by many
informal discussions. The workshop enabled participants to share ideas and work
collaboratively on what emerged as the most promising avenues for the applica-
tions of modern mathematical methods to geophysical fluid dynamics.

The organizers would like to thank the MFO staff for their outstanding support
prior to and during the meeting.
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Abstracts

Routes to unbalanced motions at rough topography in the Southern

Ocean

Maxim Nikurashin

The ocean circulation is forced at large, O(100) km, scales primarily by winds
at the surface and dissipated at small, O(1) cm, scales by molecular viscosity in
the turbulent boundary layers and ocean interior [5, 6]. The wind power input
into the ocean is dominated by the Southern Hemisphere westerly winds aligned
with the Antarctic Circumpolar Current (ACC) in the Southern Ocean [7]. The
ACC is unstable to baroclinic instability which efficiently converts wind energy
into mesoscale eddies. While mesoscale eddies dominate global kinetic energy of
the ocean [6], the mechanisms of the transfer of their energy further down to the
dissipation scale and the distribution of the energy dissipation in the ocean remain
poorly understood.

Mesoscale eddies are nearly geostrophic and thus are characterised by inverse
energy cascade, i.e. they tend to transfer energy toward larger scales [8]. A num-
ber of processes have been proposed to explain the transfer of the mesoscale eddy
energy to smaller-scale unbalanced motions which then can take the energy down
to the dissipation scales. Ocean western boundaries have been shown to be sites
of elevated eddy-energy loss [10], where eddies generate internal Kelvin waves and
hydraulically controlled motions [9]. In the Southern Ocean, where lateral bound-
aries are absent, geostrophic eddies have been suggested to dissipate primarily
through interaction with the bottom boundary. Dissipation in the turbulent bot-
tom boundary layer is believed to be a significant energy sink for oceanic flows
including mesoscale eddies [11, 12]. Flows over rough small-scale topography can
generate internal gravity waves that radiate energy away from topography into the
ocean interior [13, 14]. Near the surface, frontal and mixed layer instabilities gen-
erate submesoscale eddies and have been suggested as possible routes for mesoscale
eddy-energy dissipation [15, 16]. While these processes can extract energy from
geostrophic flows, their efficiency and contribution to eddy energy dissipation and
turbulence and mixing in the ocean interior are largely unclear.

In this study, realistic internal wave-permitting simulations of one of the hot
spots of eddy activity in the Southern Ocean, the Macquarie Ridge region, are
used to investigate the energy dissipation of the ACC fronts and eddies. The sim-
ulations are initialized and forced at open boundaries by the outputs from the
Southern Ocean State Estimation (SOSE) and carried out for several years for a
range of resolutions from the eddy-resolving, about 10 km, down to the submeso-
scale resolving and internal wave-permitting, about 800m, horizontal resolution.
The total mechanical energy budget, including inflow and outflow of kinetic energy
across the boundaries, surface wind power input and energy dissipation by bottom
drag and interior viscous friction, is diagnosed and closed within a few percent of
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the wind power input. The distribution of the viscous energy dissipation through-
out the ocean and the relative contribution of the surface and deep ocean processes
to the energy dissipation is quantified and discussed. The results show that the
energy input is dominated by the wind work at the surface and the energy sink
is dominated by the viscous friction acting on resolved small-scale motions in the
flow. Bulk of the energy dissipation takes place in the deep ocean catalysed by
rough small-scale topography.

Some fraction of the energy extracted from mesoscale eddies is radiated into the
ocean interior in the form of internal waves, while the rest is dissipated close to
topography. Energy radiated into the ocean interior can sustain turbulent mixing
and hence impact global ocean circulation and climate. The linear theory used
to estimate energy conversion into internal waves is formally valid in a limit of
subcritical topography, or small topographic steepness parameter, i.e. when the
characteristic topographic slope is smaller than the internal wave slope [e.g. 2,
3]. However, most of topography in the Southern Ocean varies from subcritical to
critical, i.e. when the steepness parameter is of O(1) and smaller [4]. In the limit of
critical topography, when the linear theory is formally invalid, the predictions for
the energy conversion into lee waves are corrected empirically based on the results
from idealized two-dimensional (2D) numerical simulations [e.g. 13] and laboratory
experiments [e.g. 1]. The idealized 2D simulations and laboratory experiments
show that when the steepness parameter exceeds the critical value of 0.7 the energy
conversion saturates. The saturation occurs because a certain fraction of the mean
flow gets blocked by topography and thus does not lift isopycnals and generate
internal waves.

To understand the partitioning between the radiating and non-radiating flow
response to topography, in this study we test a hypothesis that 2D numerical sim-
ulations do not capture properly the finite amplitude topography effects on the
generation of internal waves. In particular, the 2D simulations cannot represent
the nonlinear flow splitting effect when the mean flow is split by a topographic
obstacle and goes around rather that over it. The flow component going around
an obstacle does not displace isopycnals in the vertical and hence does not gen-
erate internal gravity waves. We use a suite of 2D and three-dimensional (3D)
numerical simulations to quantify the finite amplitude topography effects for re-
alistic, multi-scale abyssal hill topography and flow characteristics observed in
the Southern Ocean. The results show that the internal wave generation at the
three-dimensional, finite bottom topography is suppressed compared to the two-
dimensional case. The energy conversion saturates when the steepness parameter
exceeds the critical value of 0.4, a value smaller than in 2D flows. The suppression
is primarily associated with nonlinear flow splitting effect which reduce the am-
plitude of the internal waves radiated from topography and the associated wave
breaking and turbulence away from topography.

In summary, the results of the realistic, high-resolution simulations of the Mac-
quarie Ridge region of the Southern Ocean and simulations of turbulent flows at
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rough topography show that rough small-scale bottom topography is very effi-
cient at generation of small-scale motions and hence at the conversion of balanced
mesoscale eddy energy to unbalanced internal waves and non-propagating motions
near topography.
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Meridional circulation on moist isentropes

Olivier Pauluis

(joint work with Olivier Pauluis)

Isentropic analysis was originally introduced by [1] in the early development of
dynamical meteorology. It relies on analyzing atmospheric motions on surface of
constant potential temperature. In doing so, one takes advantage of the quasi-
conservation of potential temperature to track parcel trajectories on time scales
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longer that the eddy turnover. The equations of motion can be rewritten in isen-
tropic coordinates [see e.g. 2], and used to diagnose the interactions between eddy
and the mean meridional circulation.

Potential temperature is however not conserved in presence phase transition.
This can be circumvented by using the equivalent potential temperature, which
includes the effet of latent heat and is conserved for all reversible adiabatic motions,
including phase transition. Recent studies [3, 4] have shown that the meridional
circulation averaged on moist isentropes - defined as surfaces of constant equivalent
potential temperature - differ substantially from the circulation on dry isentropes.
In particular, the mass transport on moist isentropes is about twice as large in
the midlatitudes than the mass transport on dry isentropes. This additional mass
transport can be directly traced to the poleward flow of warm moist subtropical
air that supplied energy and moisture to the midlatitudes stormtracks.

A mathematical challenge in using θe lies in that the topology of surface of
constant θe is highly complex. In particular, the coordinate transformation from
eulerian coordinates (x, y, z, t) to isentropic coordinates (x, y, θe, t) is often non-
invertible due to the fact that the equivalent temperature profile in the atmosphere
is often non-monotonic. In this talk, I introduce a weak formulation of the coor-
dinate transformation, which makes it possible to express conservation laws in
an arbitrary coordinate system. This formulation is applied assess the mass and
momentum transport in the midlatitude stormtracks [5].
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Self-Aggregation of atmospheric convection in idealized simulations

Caroline Muller

(joint work with Sandrine Bony)

This project aims at improving our understanding of atmospheric deep convection
and its spatial organization. Organized convection, for instance, squall lines or
tropical cyclones, with their associated clouds, strong precipitation and winds,
can cause severe material damage and can be deadly. The organization of clouds
is ubiquitous in the tropics, but is not well understood. One particular type of
convective organization in cloud-resolving simulations in idealized settings that has
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received attention recently is the self-aggregation of convection [1, 8, 2, 3] (Fig. 1),
taking the form of cloud clusters, or tropical cyclones in the presence of rotation.

Figure 1. Clouds (white surfaces) and near-surface water vapor
mixing ratio (first atmospheric level at 37.5 m in colors) at the
end of a simulation in which the convection self-aggregates into a
single convective region. Adapted from [7]

The processes leading to self-aggregation in idealized simulations may play an
important role in cyclogenesis [5], but the conditions that favor self-aggregation
are still unclear. We use high-resolution cloud-resolving simulations to investigate
in detail the physical process responsible for the aggregation, and how aggregation
couples to a large-scale circulation. We find that various feedbacks can lead to
aggregation: interactive longwave cooling from low-level clouds; interactive long-
wave cooling from high clouds and clear sky; and a moisture-memory feedback in
humid conditions, i.e. when the evaporative-driven downdrafts below deep clouds
are weak. Aggregation is accompanied by large changes in the large-scale thermo-
dynamic and radiative properties [7].

It has been recently suggested that the self-aggregated state could be the
preferred stable equilibrium of tropical convection under warm sea-surface tem-
peratures [4, 6]. With changing climate, the tropics could switch to this self-
aggregated state. Given the large changes in large-scale properties accompanying
self-aggregation, this has important implications for climate sensitivity.
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Mesoscale and Sub-Mesoscale Wave Dynamics Throughout all

Atmospheric Layers

Ulrich Achatz

Various aspects of research on the dynamics of small-scale waves in the atmosphere
have been reported:

(1) The interaction between locally monochromatic finite-amplitude mesoscale
waves, their nonlinearly induced higher harmonics, and a synoptic-scale flow has
been reconsidered, both in the tropospheric regime of weak stratification and in
the stratospheric regime of moderately strong stratification. A review of the basic
assumptions of quasi-geostrophic theory on an f -plane yields all synoptic scales in
terms of a minimal number of natural variables, i.e. two out of the speed of sound,
gravitational acceleration and Coriolis parameter. The wave scaling has been de-
fined so that all spatial and temporal scales are shorter by one order in the Rossby
number, and by assuming their buoyancy field to be close to static instability.
WKB theory is applied, with the Rossby number as scale separation parameter,
combined with a systematic Rossby-number expansion of all fields. Classic results
for synoptic-scale-flow balances and inertia-gravity wave (IGW) dynamics have
been recovered. These are supplemented by explicit expressions for the interac-
tion between mesoscale geostrophic modes (GM), a possibly somewhat overlooked
agent of horizontal coupling in the atmosphere, and the synoptic-scale flow. It
has been shown that IGW higher harmonics are slaved to the basic IGW, and
that their amplitude is one order of magnitude smaller than the basic-wave ampli-
tude. GM higher harmonics are not that weak and they are in intense nonlinear
interaction between themselves and the basic GM. Compressible dynamics plays
a significant role in the stratospheric stratification regime, where anelastic theory
would yield insufficient results. Supplementing classic derivations, it is moreover
shown that in the absence of mesoscale waves quasi-geostrophic theory holds also
in the stratospheric stratification regime. For details see [1].

(2) The comparative relevance in gravity-wave (GW) drag of direct GW-mean-
flow interactions and turbulent wave breakdown have been investigated [2]. Of
equal interest have been how well Wentzel-Kramer-Brillouin (WKB) theory can
capture direct wave-mean-flow interactions, that are excluded by applying the
steady-state approximation. WKB has been implemented in a very efficient La-
grangian ray-tracing approach that considers wave-action density in phase-space,
thereby avoiding numerical instabilities due to caustics. It has been supplemented
by a simple wave-breaking scheme based on a static-instability saturation crite-
rion. Idealized test cases of horizontally homogeneous GW packets have been
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considered where wave-resolving Large-Eddy Simulations (LES) provide the refer-
ence. In all of theses cases the WKB simulations including direct GW-mean-flow
interactions reproduce the LES data, to a good accuracy, already without wave-
breaking scheme. The latter provides a next-order correction that is useful for
fully capturing the total-energy balance between wave and mean flow. Moreover,
a steady-state WKB implementation, as used in present GW parameterizations,
and where turbulence provides, by the non-interaction paradigm, the only pos-
sibility to affect the mean flow, is much less able to yield reliable results. The
GW energy is damped too strongly and induces an oversimplified mean flow. This
argues for WKB approaches to GW parameterization that take wave transience
into account.

(3) An on-line GW parameterization has been implemented in a linear but
global model that incorporates their horizontal propagation, the effects of tran-
sients and of horizontal background gradients on GW dynamics [3]. The GW
parameterization is based on a ray-tracer model with a spectral formulation that
is safe against numerical instabilities due to caustics. The global model integrates
the linearized primitive equations to obtain solar tides (STs), with a seasonally
dependent reference climatology, forced by a climatological daily cycle of the tro-
pospheric and stratospheric heating, and the (instantaneous) GW momentum and
buoyancy flux convergences resulting from the ray-tracer. Under a more con-
ventional “single-column” approximation, where GWs only propagate vertically
and do not respond to horizontal gradients of the resolved flow, GW impacts are
shown to be significantly changed in comparison with “full” experiments, lead-
ing to significant differences in ST amplitudes and phases, pointing at a sensitive
issue of GW parameterizations in general. In the “full” experiment, significant
semi-diurnal STs arise even if the tidal model is only forced by diurnal heating
rates. This indicates that an important part of the tidal signal is forced directly
by GWs via their momentum and buoyancy deposition. In general the effect of
horizontal GW propagation and the GW response to horizontal large-scale-flow
gradients is rather observed in non-migrating than in migrating tidal components.
This shows that lateral-propagation effects of GWs, presently neglected in GW
parameterizations, are important in the mesosphere and higher.

(4) Work is in progress on the efficient description of sub-mesoscale GWs in
models resolving mesoscale flow. AWKB theory has been developed that describes
this situation. Numerical simulations seem to well reproduce the generation of a
mesoscale GWs by a submesoscale GW packet. This might eventually be relevant
for subgrid-scale parameterizations in numerical weather prediction.
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Scattering of the Internal Tide by Balanced Flow

William R. Young

(joint work with Gregory L. Wagner and Gwenaël Ferrando)

Starting from the hydrostatic Boussinesq equations we derive a phase-averaged
asymptotic equation describing the propagation of inertia-gravity waves through
three-dimensional quasi-geostrophic flow with non-uniform background density
stratification. The derivation uses a multiple-scale asymptotic method based on
the assumption that the wave field has a single well-defined frequency σ. In the
oceanographic problem motivating this development, σ is the frequency of the
semi-diurnal lunar tide. The asymptotic development neglects nonlinear wave-
wave interactions, and makes no restriction on the relative spatial scale between
waves and quasi-geostrophic flow.

The leading order pressure is represented as

(1) p0 = f0
(
ψ +Ae−iσt +A∗eiσt

)
,

where f0 is the local Coriolis frequency and ψ(x, y, z, t) is the quasigeostrophic
stream function of the balanced flow. The complex field A(x, y, z, t) encodes the
slow evolution of the internal tide. An unconventional asymptotic expansion re-
sults in the phase-averaged evolution equation

EAt + J(ψ,EA) + J(ψx, Ax) + J(ψy, Ay)− f2

0

2σ2 J(Dψ,A)

+ i f0
2σ

{
∇· (Dψ∇A) + 2J(ψx, Ay)− 2J(ψy, Ax)

}

+ i
f2

0

2σ
σ2

−f2

0

f2

0

{
DA+ ∂z (ζ DA)− D (ζ Az)

}
= 0 .(2)

In (2), ∇ is the horizontal gradient, ζ = f0ψz/N
2 is the vertical displacement of

buoyancy surfaces by the balanced flow and D and E are second-order differential
operators defined as

(3) D = ∂2x + ∂2y − σ2 − f2
0

f2
0

∂z
f2
0

N2
∂z ,

and

(4) E =
σ2 − f2

0

4σ2

[
∂2x + ∂2y +

3σ2 + f2
0

f2
0

∂z
f2
0

N2
∂z

]
.

Comparison of numerical solutions of the hydrostatic Boussinesq equations with
solutions of (2) show that (2) is accurate provided that the wave frequency σ is
not close to the Coriolis frequency f0 and that the quasi-geostrophic flow is not
too vigorous — see figure 1. Specifically the approximation requires that

(5)
U

f0L

σ2

σ2 − f2
0

≪ 1 .
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Figure 1. Scattering of a plane wave by two-dimensional turbu-
lence with maximum vorticity 0.14f0 and root-mean-square vor-
ticity 0.024f0. The top 3 panels show the initial turbulent vor-
ticity, speed, and the periodogram of vorticity. The bottom 12
panels show the evolution of an initially horizontal plane wave
scattered by the turbulent fields at top: the first row shows speed
in the linearized hydrostatic Boussinesq system; the second row
shows speed in the hydrostatic wave equation (2); and the third
row shows the Fourier components of A in (2). Time is in inertial
periods.

Above U/f0L is the Rossby number of the balanced flow. The comparison in
figure 1 shows close agreement between solutions of the Boussinesq equations and
(2).



2240 Oberwolfach Report 39/2016

Multiscale Methods in Strongly Anisotropic Geophysical Systems

Keith Julien

Fluid flows in planetary and stellar interiors can be broadly characterized as rapidly
rotating, and turbulent (and when appropriate constrained by strong magnetic
forces). In non-dimensional parameter space such flows reside in the low Rossby
number, large Reynolds number limit. Direct numerical simulations (DNS) of
the complete set of governing equations are now routine practice for fluid turbu-
lence, but remain limited to parameter values that are quite distant from natural
systems owing to the massive requirements for numerically resolving disparate
spatiotemporal scales. Improvements in computing power through Moore’s laws
will produce minimal advances with present-day models. Moreover, the paucity
of observational data limit the development and verification of strategies that
parameterizes small-scale turbulent motions in hope of providing some computa-
tional relief. It is therefore clear that advances must occur through new model
development and associated simulations utilizing extreme parameter values in an
asymptotic manner. The stiff character of the governing equations, while an im-
pediment to DNS, provides a possible path forward for simplifying, or reducing,
the governing equations with the use of multiscale asymptotics [1, 2]. Balanced
flows, in which two or more forces in the momentum equations are in balance, are
particularly suitable for asymptotic analysis given the subdominance of inertial ac-
celerations. Indeed, reduced models based on the geostrophic balance, in which the
Coriolis and pressure gradient forces balance, have formed the backbone for the-
oretical and numerical investigations on the large-scale stably-stratified dynamics
of the Earth’s atmosphere and oceans for over 60 years [3, 4]. Recently, advances
have illustrated how such an approach can be extended to convectively unstable
environments appropriate for planetary and stellar interiors. The methodology
parallels classical quasigeostrophic theory but is generalized to flows with spatial
anisotropies that are columnar rather than pancake-like.

The result of asymptotic modeling approach is the non-hydrostatic quasi-geo-
strophic (NH-QG) equations [5]. The system bears all the hall-marks of classical
QG: point-wise geostrophic balance; nonlinear flow advection that is dominant in
planes perpendicular to the rotation axis and a linear vortex-stretching force that
drives vortical motions. However, central differences also exists. Strong vertical
motions occur that are comparable in magnitude to horizontal motions, as a result
vertical motions are no longer diagnostic but must be evolved prognostically. It
is also found that unlike classical QG (which filters all inertial wave-motions) the
model retains slow inertial (columnar) waves as a consequence of the weakly strat-
ified environment. These waves propagate predominantly in horizontal directions
whilst wave-energy propagated by the group velocity is transmitted predominantly
in the vertical direction. Columnar anisotropy also captures dissipative effect in
the horizontal directions that enables the tracking of fluid motions from laminar
through to the turbulent regime. Dissipation in the vertical direction remains sub-
dominant and without any further corrections the model automatically enforces
any horizontal boundary to be impenetrable stress-free.
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The goal of the present investigation is quantitatively evaluate the reduced NH-
QG model in the setting of rotating Rayleigh-B’enard convection in plane layer
[6, 7]. The fidelity of the model, obtained by an asymptotic reduction of the
Navier-Stokes equations, is explored for the first time by comparisons of simula-
tions against the findings of direct numerical simulations (DNS) and laboratory
experiments of rotationally constrained convection. Comparisons focus on flow
morphology and transitions and global heat transport as a function of thermal
forcing. Excellent agreement is found for the case of stress-free boundary con-
ditions for maximal values of the rotation rate attainable in experiments and
DNS, as measured by Ekman number E ≈ 10−7. In the more realistic labora-
tory setting of no-slip boundaries large discrepancies between the NH-QG model
and companion laboratory and DNS studies. Ekman pumping is found to be the
source of this discrepancy. Results from numerical simulations of three-dimensional
rotating Rayleigh-Bénard convection are discussed using an updated asymptotic
quasi-geostrophic model that incorporates the effects of no-slip boundaries through
(i) parameterized Ekman pumping boundary conditions, and (ii) a thermal wind
boundary layer that regularizes the enhanced thermal fluctuations induced by
pumping. For E ≈ 10−7, excellent agreement is achieved for fluids with Prandtl
number Pr = 1 and good qualitative agreement is achieved for Pr > 1. Similar to
studies with stress-free boundaries, four spatially distinct flow morphologies exists,
each in geostrophic balance. Despite the presence of frictional drag at the upper
and lower boundaries, a strong non-local inverse cascade of barotropic (i.e., depth-
independent) kinetic energy persists in the final regime of geostrophic turbulence
and is dominant at large scales. For mixed no-slip/stress-free and no-slip/no-slip
boundaries, Ekman friction is found to attenuate the efficiency of the upscale en-
ergy transport and, unlike the case of stress-free boundaries, rapidly saturates
the barotropic kinetic energy. For no-slip/no-slip boundaries, Ekman friction is
strong enough to prevent the development of a coherent dipole vortex conden-
sate. Instead vortex pairs are found to form intermittently before being destroyed
frictionally. For all combinations of boundary conditions, a Nastrom-Gage type
spectrum of kinetic energy is found where the power law exponent changes from
≈ −3 to ≈ −5/3, i.e. from steep to shallow, as the spectral wavenumber increases.
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Multiscale asymptotics for the Madden-Julian oscillation and

tropical-extratropical interactions

Samuel N. Stechmann

The results of two papers are presented.
First [1], a new model is derived and analyzed for tropical-extratropical inter-

actions involving the Madden-Julian oscillation (MJO). The model combines (i)
the tropical dynamics of the MJO and equatorial baroclinic waves and (ii) the
dynamics of barotropic Rossby waves with significant extratropical structure, and
the combined system has a conserved energy. The method of multiscale asymp-
totics is applied to systematically derive a system of ordinary differential equations
(ODEs) for three-wave resonant interactions. Two novel features are (i) a degen-
erate auxiliary problem with overdetermined equations due to a compatibility con-
dition (meridional geostrophic balance) and (ii) cubic self-interaction terms that
are not typically found in three-wave resonance ODEs. Several examples illustrate
applications to MJO initiation and termination, including cases of (i) the MJO,
equatorial baroclinic Rossby waves, and barotropic Rossby waves interacting, and
(ii) the MJO, baroclinic Kelvin waves, and barotropic Rossby waves interacting.
Resonance with the Kelvin wave is not possible here if only dry variables are con-
sidered, but it occurs in the moist model here through interactions with water
vapor and convective activity.

Second [2], two kinds of additional interactions are illustrated in the model: (i)
MJO initiation through extraction of energy from barotropic Rossby waves and
(ii) MJO termination via energy transfer to extratropical Rossby waves. A new
feature, in comparison to previous simplified models, is that here these waves in-
teract directly in the presence of a climatological mean flow given by the Walker
circulation. The simplified models are systems of ordinary differential equations
(ODEs) for the amplitudes of barotropic Rossby waves and the MJO, and they are
systematically derived from the MJO skeleton model by using multiscale asymp-
totics. The simplified ODEs allow for rapid investigation of a wide range of model
parameters, such as initial conditions and wind shear. Zonally uniform wind shear
is shown to have only a minor effect on these interactions here, in contrast to
the important role of the zonally varying wind shear associated with the Walker
circulation. The models illustrate some realistic features of tropical-extratropical
interactions on intraseasonal to seasonal time scales. A key aspect of the models
here is that the water vapor and convective activities are interactive components
of the model, rather than specified external heating sources.
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Beyond the limit of infinite time-scale separation: Edgeworth

approximations and homogenisation

Georg A. Gottwald

(joint work with Jeroen Wouters)

Homogenization has been widely used in stochastic model reduction of slow-fast
systems, including geophysical and climate systems [4]. From a modelling perspec-
tive, current challenges in homogenization include how to deal with the situation
when the slow variables couple back into the fast dynamics. Furthermore, the
theory relies on an infinite time scale separation [5, 2, 3]. In this talk we present
results for the realistic case of finite time scale separation. In particular, we employ
Edgeworth expansions [1] as finite size corrections to the central limit theorem and
show improved performance of the reduced stochastic models in numerical simu-
lations.

The Edgeworth expansion is a finite size correction of the central limit theorem.
We show how the Edgeworth expansion improves the estimation of the empirical
density of finite Birkhoff sums of variables generated by an AR1 process as well
as for hyperbolic chaotic deterministic maps.

We then introduce a stochastic surrogate process the parameters of which are
tuned to match the higher-order finite size corrections required by the Edgeworth
expansion. We compare reduced model statistics of our Edgeworth reduced system
with those employing solely the central limit theorem (or homogenisation). The
improvement is remarkable, in particular for the skewness.

Finally, we study a multi-scale triad system. The system is of the form of
geophysical fluid dynamic equations with quadratic energy conserving nonlinear-
ities such as in the barotropic vorticity equation. We replace the fast stochastic
part of the equations with a surrogate process where the parameters are chosen
to match the Edgeworth statistics of the triad system which can be analytically
computed. The improvement of the first moments is notable when compared to
classical homogenisation. The results have been shown to be closely related to the
recent approach by Wouters et al [6] which uses response theory to match the sta-
tistics rather than the Edgeworth expansion. Therein, however, a free parameter
appeared which is fixed by the Edgeworth expansion.

This is joint work with Jeroen Wouters.
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A Gaussian-product stochastic Gent-McWilliams parameterization

Ian Grooms

Computational ocean models play a crucial role in modern oceanography, simul-
taneously encoding and extending our understanding, and supporting policy de-
cisions on everything from fisheries to long-term climate change. Global ocean
models (hereinafter OGCMs, ocean general circulation models) are an important
class of ocean models, and one of the foremost obstacles to developing accurate
GCMs is the inability to completely resolve mesoscale eddy dynamics (10–100
km horizontal scales). Mesoscale eddies are the most energetic ocean feature, and
play a large role in air-sea interaction and in low frequency variability of the ocean.
Representation of the effects of these unresolved eddies in global ocean models is
crucial for obtaining accurate simulations.

The primary impact of unresolved dynamics in non-eddy-resolving GCMs is
the transport of tracers and momentum. In regions where mesoscale eddy dy-
namics are completely unrepresented, the primary subgrid-scale transport is of
tracers, and in regions where the eddy dynamics are partially represented but
incompletely resolved the primary subgrid-scale transport is of momentum. In
regions where eddies are completely unresolved (which in some models includes
the entire global ocean), the dominant parameterization paradigm is the Gent-
McWilliams framework (GM: [6, 7]) which essentially codifies the well-established
properties of mesoscale eddies to transport tracers along isopycnals and to reduce
potential energy by flattening isopycnals. (Mesoscale eddies also mix tracers along
isopycnal directions; this effect is parameterized separately from GM.) The GM pa-
rameterization drains potential energy; though it leads to reasonable mean states,
GM-parameterized models lack realistic variability. Ensemble methods for state es-
timation, forecasting, and uncertainty quantification use non-eddy-resolving mod-
els because of computational expense, and lack sufficient variability to perform
correctly.



Multiscale Interactions in Geophysical Fluids 2245

Mesoscale eddy dynamics are turbulent, and the eddies produce chaotic time
series of tracer fluxes even when averaged over the scale of the computational
grid of a coarse OGCM. The fact that the real fluxes are chaotic implies that a
realistic parameterization should be stochastic. Very little work has been done
to develop stochastic parameterizations for coarse, non-eddy-permitting models.
Brankart[2] developed a stochastic parameterization associated with the joint ef-
fect of eddy variability and the nonlinear equation of state of seawater, and Grooms
et al.[4] applied a multiscale stochastic approach to a non-eddy-permitting quasi-
geostrophic (QG) model. The only other approach (known to the author) is the
generic approach of Buizza et al.[5], where the coefficients in existing deterministic
parameterizations are multiplied by random fields; this approach has come to be
known as “stochastically perturbed physics tendencies” (here SPPT), and has been
applied in non-eddy-permitting ocean models with mixed results by Andrejczuk
et al.[1] and Brankart et al.[3].

The goal of the present investigation is to develop a stochastic parameteriza-
tion for tracer transport in non-eddy-permitting cases that is based around the
widespread and (relatively) successful GM framework. Distilled to its essence,
the parameterization involves the development of Gaussian random field models
for subgrid-scale variables (eddy velocity and density anomalies), then the con-
struction of a stochastic subgrid-scale density flux by multiplying these Gaussian
random fields. Our parameterization is also temporally smooth so that, though sto-
chastic, it is still compatible with the smoothness assumptions associated with the
time-discretizations used in numerical ocean models. This stochastic flux is then
placed in the GM framework to produce a stochastic quasi-Stokes eddy-induced
velocity field.

A preliminary version of the stochastic GM parameterization is developed where
the structure of the random fields is significantly simplified: the vertical structure
is parameterized; the spatial correlations are stationary and isotropic; and the
spatio-temporal covariance is separable. The formulation has the advantage that
the mean flux, conditioned on the resolved variables, can be made equal to any
of the many existing formulations of the GM parameterization. Several stochastic
parameterizations based on the approach of Buizza et al.[5] are also developed for
comparison.

The stochastic parameterizations are tested in a double-gyre scenario, forced
by wind stress and a temperature-restoring boundary condition at the surface
(an inhomogeneous Neumann condition on velocity, and inhomogeneous Robin
condition on temperature). The Gaussian-product parameterization has marked
qualitative differences in comparison with the deterministic and Buizza et al.[5]
parameterizations. The overturning circulation is much stronger, the net kinetic
energy is much higher, the local temperature variability is greater, etc.

An eddy-resolving simulation was not available for comparison, so it is not clear
whether the increased variability is realistic. As an a priori test of the stochas-
tic parameterization, coarse-grained flux statistics were computed from doubly-
periodic QG simulations of mesoscale eddies. The observed statistics are very
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close to the Gaussian-product distribution, except in cases where the eddy scales
are smaller than the averaging scale (even in those cases the flux distributions were
very non-Gaussian). Thus, the Gaussian-product stochastic parameterization are
at least known to be more consistent with observed fluxes than the Buizza et al.[5]
parameterizations.

In the future we plan to make the Gaussian random field models more real-
istic, though this will require careful selection or development of strategies for
sampling non-stationary, inhomogeneous Gaussian random fields. We also plan to
incorporate the effects of averaging into the parameterization, since the observed
flux distribution is not product-normal when the eddy scales are smaller than the
coarse grid scale. An eddy-resolving simulation is being spun up for comparison,
and we hope to test whether the new parameterization leads to improvements in
ensemble data assimilation.
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Applications of optimization and optimal control to some fundamental

problems in mathematical fluid dynamics

Charles Doering

Optimization and optimal dynamical control are used to investigate the accuracy
of analytical estimates for solutions of some basic nonlinear partial differential
equations of mathematical hydrodynamics. Even though many mathematical es-
timates are demonstrably sharp, the result of a sequence of applications of such
estimates need not be sharp leaving uncertainty in the ultimate result of the analy-
sis. We examine the classical analysis bounding enstrophy [1, 2] and palinstrophy
[3] amplification in Burgers’ and the Navier-Stokes equations and discover that
the best known instantaneous growth rates estimates are indeed sharp. But inte-
grating the estimates in time does not always produce sharp estimates in which
case optimal control techniques must be brought to bear to determine the actual
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extreme behavior of the nonlinear dynamics. The question of 3D Navier-Stokes
regularity remains unanswered although work is in progress to apply these tools
to the challenge [4].
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Compressible Navier-Stokes Equations with Density Dependent

Viscosities

Didier Bresch

P. Gent published in 1993 an article in J. Atmos. Sci. where he discussed energet-
ically consistent viscous shallow-water equations proposing the following version

∂th+ div(hu) = 0,

∂t(hu) + div(hu⊗ u)− 2ν div(hD(u)) + h∇h = 0

with D(u) = (∇u +∇tu)/2 and where h denotes the height and u the horizontal
mean velocity. Note that a similar system has been mathematically justified from
incompressible Navier-Stokes equations with free surface in [6].

A two-velocities Hydrodynamic. It is interesting to note that such version,
proposed by P. Gent, is energetically consistent namely provides the relation

1

2

d

dt

∫

Ω

(h|u|2 + h2) + 2

∫

Ω

h|D(u)|2 = 0

but also presents a two-velocities hydrodynamic formulation. To see that, it suffices
to take the gradient of the mass equation: it reads

∂t(∇h) + div(∇h⊗ u) + div(h∇tu) = 0

which may be written under the form

∂t(h∇ log h) + div(h∇ log h⊗ u) + div(h∇tu) = 0.

Thus U = u+ 2ν∇ log h satisfies the equation

∂t(hU) + div(hU ⊗ u)− 2ν div(hA(U)) + h∇h = 0

where
A(U) = (∇U −∇tU)/2.

Taking the scalar product of this equation with U and integrating in space, we get

1

2

d

dt

∫

Ω

(h|U |2 + h2) + 2

∫

Ω

h|A(U)|2 + ν

∫

Ω

|2∇h|2 = 0.
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It may be seen as a nonlinear hypocoercivity property for the compressible Navier-
Stokes equations due to the density dependency of the viscosity. This case has
attracted a lot of attention since the discovering by D.B. and B. Desjardins of
this new entropy (called now BD entropy) which provides new a priori estimates
on the gradient of the density. The reader is referred to [4] for a chapter on the
subject. Recently, Bresch Desjardins and Zatorska showed that the system can be
reformulated through an augmented system (via the so-called kappa entropy). It
explains how the additional control on the density is linked to a hidden bi-fluid
structure of the system.

Using a parameter κ ∈ (0, 1), we can mix the energy estimates and the estimate
given above to write a kind of two-velocities hydrodynamic estimate (a κ-entropy
as called in [5]):

1

2

d

dt

∫

Ω

((1− κ)h|u|2 + κh|U |2 + h2)

+2

∫

Ω

(1− κ)h|D(u)|2 + 2

∫

Ω

κh|A(U)|2 + κν

∫

Ω

|2∇h|2 = 0.

Note that

(1− κ)h|u|2 + κh|U |2 = h(|u+ 2κν∇ log h|2 + κ(1− κ)|2ν∇ log h|2)

and therefore we can write the system satisfied by

(h, V,W ) = (h, u+ 2κν∇ log h, 2
√
κ(1− κ)ν∇ log h)

which reads

∂th+ div(hu) = 0,

∂t(hV ) + div(hV ⊗ u) + h∇h = νdiv(2h(1− κ)D(V ))

+νdiv(2κA(V ))− νdiv(2
√
κ(1− κ)h∇W )

∂t(hW ) + div(hW ⊗ u) = νdiv(2κh∇W )

−νdiv(2
√
κ(1− κ)h∇tV )

It is interesting to note that the bi-fluid structure observed by D. B. with B.
Desjardins and E. Zatorska is included in a mono-fluid system. This has to be
compared to the discussions by H. Brenner in [1], [2]: See [10] for the mathematical
study of Brenner’s systems.

Note that similar formulations may be obtained for a more general PDEs than
the viscous shallow-water system namely it may be obtained for the compressible
Navier-Stokes system

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− 2ν div(µ(ρ)D(u)) −∇(λ(ρ)divu) +∇p(ρ) = 0

if µ and λ are related to the following algebraic relation

λ(ρ) = 2(µ′(ρ)ρ− µ(ρ)).
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The interested reader is referred to [3] for more details. Actually no physical
explanation exists regarding the relation between λ and µ but it is really interesting
to see that such constraint may also appear in the Euler-Korteweg system.

Euler-Korteweg: A two-velocities hydrodynamic? This has been obersverd
recently in [8]. Let us start with the energy for Euler-Korteweg namely

∫

Ω

1

2
ρ|u|2 + ρe(ρ) + κ(ρ)|∇ρ|2

with a density ρ satisfying the mass equation

∂tρ+ div(ρu) = 0.

Then the associated Euler-Lagrange equation reads

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = divK

with

K =
(
ρdiv(K(ρ∇ρ) + 1

2
(K(ρ)− ρK ′(ρ)|∇ρ|2

)
Id−K(ρ)∇ρ⊗∇ρ.

It suffices to observed that an augmented system may be written namely the
following system satisfied by (ρ, u, w) = (ρ, u,∇ϕ(ρ)) with √

ρϕ′(ρ) =
√
K(ρ):

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = div(F (ρ)∇tw) +∇((F ′(ρ)ρ− F (ρ))divw),

∂t(ρw) + div(ρw ⊗ u) = −div(F (ρ)∇tu)−∇((F ′(ρ)ρ− F (ρ))divu)

where F ′(ρ) =
√
K(ρ)ρ. Note the skew-symetric matrix in terms of (u,w) of the

right-hand side in the augmented momentum equations. Such formulation may be
written if we use the following relation

2ρ∇(
√
K(ρ)∆(

∫ ρ

0

√
K(ρ) ds)) = div(F (ρ)∇∇ϕ(ρ)) +∇((F ′(ρ)ρ− F (ρ))∆ϕ(ρ))

observed in [8] and which generalizes the Böhm identity. It is interesting to note
that the right-hand side may be written as

2div(µ(ρ)∇w) +∇(λ(ρ)divw)

with λ(ρ) = 2(µ′(ρ)ρ− µ(ρ)) with µ(ρ) = F (ρ)/2.

Mathematics and numerical purposes related to these observations?

Note that the augmented formulation allows to introduce a beautiful notion of
relative entropy related to the bi-fluid structure. It is then possible to use the
relative entropy method to show several results, as the weak-strong uniqueness,
the convergence to a dissipative solution of compressible or incompressible Eu-
ler (Euler-Korteweg) equations,and the convergence of the viscous shallow water
equations to the inviscid shallow water equations in the vanishing viscosity limit.
The interested reader is referred to [7] and [9]. It is also important to note that
several global existence of weak solutions for compressible systems with density
dependent viscosities has been obtained since the discovering ot the structure by
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D. Bresch and B. Desjardins: the final version concerning the viscous shallow wa-
ter introduced at the beginning is due to A. Vasseur and C. Yu published in [13]
and J. Li and Z.P. Xin in [12]. Note that a result with the algebraic constraint
between λ(ρ) and µ(ρ) will be the subject of a forthcoming paper by D.B. and
A. Vasseur and C. Yu. It is also interesting to note that the augmented system
for the Euler-Korteweg system allows the authors in [8] to construct a numerical
scheme with entropy stability property under a hyperbolic CFL condition in the
multi-dimensional setting.
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Data assimilation algorithm for viscous geophysical models

Edriss Titi

It’s well-known that the long time behavior of dissipative dynamical system is de-
termined by finitely many parameters, such as determining Fourier-modes, nodal
values, etc. We take advantage of this observation to design a data assimilation
algorithm for recovering the exact reference solution for various viscous geophysi-
cal models by employing coarse spatial mesh measurements of the corresponding
solution. In particular, we also know the Charney conjecture for the 3D viscous
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Planetary Geophysical mode paradigm which states that one can recover the ve-
locity field and the temperature by employing coarse spatial mesh measurements
of the temperature alone.

Numerical Methods for ocean General Circulation Models on

Untructured Grids

Peter Korn

The relatively brief history of Numerical Ocean Modeling begins with the appear-
ance of Kirk Bryans seminal 1969 paper [1]. This paper formed the nucleus from
which then the family of Bryan-Cox-Semtner models emerged. We briefly review
the history of ocean modelling on structured grids1 that has dominated ocean
modelling, before we continue with the description of more recent attempts by
several modelling initiatives to formulate ocean dynamics on unstructured grids.
Unstructured grid ocean models aim for a better representation of the geometry
of the ocean basins and opening new perspectives for local grid refinement. These
modelling approaches have to developed novel discretization methods for which
computational efficiency is an essential design criterion. We focus on a ubiquitous
problem of unstructured grid modelling with low-order methods, namely the im-
balance of the degrees of freedom of scalar and vector variables. We focus on the
triangular C-grid2 that appears to be an attractive choice for global ocean mod-
elling but whose utility for the representation of global ocean dynamics has been
fundamentally contested. This is due to a computational mode that appears as
noise in the divergence of the horizontal velocity field (see [4], [2]), which deterio-
rates the vertical velocity to an extend that renders the triangular C-grid useless
for global ocean dynamics. So far the answers to the triangular C-grid dilemma
consisted in either abandoning the triangular cell geometry or the C-staggering.
We describe a new discretization of the ocean equations [3] that provides means for
controlling the divergence noise on the triangular C-grid in a way that is compat-
ible with the conservation laws, and thereby restores the utility of the triangular
C-grid for global ocean modelling. The discretization approach that we are de-
veloping here integrates ideas from several discretization methods such as Finite
Elements, Finite Volumes and Mimetic Finite Differences. These methods are
integrated through the concept of admissible reconstructions. Admissible recon-
structions are used to establish a weighted weak form of the ocean equations and
this gives us on one hand access to the conservation properties and on the other
hand a compatible filter of the spurious mode.

1The notation when a grid is called structured or unstructured is different in different mod-
elling communities. Here we follow the established terminology in atmosphere and ocean sciences.

2Geophysical fluid dynamics uses Arakawas terminology and refers to a staggering with scalars
at cell centers and normal velocity components at cell edges as C-grid, while in computational
fluid dynamics this is also known as Marker-and-Cell approach due to Harlow and Welch and in
the Finite Element literature this is related to the Raviart-Thomas element.
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After having stated the full set of discrete ocean equations of an incompressible
Boussinesq fluid with a free surface we provide proofs of the conservation properties
for volume, tracer content, tracer variance and for the conservation of total energy.
Numerical experiments confirm the ability of the new discretization to suppress the
computational mode of the triangular C-grid. A global eddy resolving simulation
demonstrates that the model is ables to reproduce basic features of the global
ocean circulation and shows an eddy field that compares well to observational
data.

We extend our discretization approach to key ocean subgrid scale closures such
as the mesoscale eddy parametrization of Gent-McWilliams and the isoneutral
diffusion. A theoretical analysis proves that our new discretization of these subgrid
scale operators retains crucial physical properties of the continues operators such
as the invariance of the density field with respect to the isoneutral diffusion or
preservation of the tracer variance by the discrete Gent-McWilliams operator.

We conclude with an outlook on ongoing and future work. This comprises the
suggestion of new grids that better capture the equator-to-poleward change of the
Rossby radius and the attempt to formulate new transport schemes that reduces
the spurious numerical induced mixing. We also aim for a numerical analysis of
the new discretization that provides convergence results or error estimates for the
ocean equations or geophysically relevant subsets of these equations.
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The role of near-resonance in time-parallel numerical methods

Beth A. Wingate

(joint work with Adam Peddle, Terry Haut)

Due to power constraints required for creating silicon based computer processors
there is an oncoming shift in type of computer architectures. Processor speedups
once enjoyed by the scientific community are being replaced by imposed hundreds-
of-millions degrees of parallelism, three orders of magnitude more than achieved
by today’s highest-performing petascale applications[8]. Porting alone is not ex-
pected to be successful because the strong-scaling limit, based on parallelization in
the spatial dimensions only, is nearly saturated. More specifically, “strong-scaling
limit” means that today’s methods which rely on spatial domain-decomposition
(parallelization-in-space), are close to being optimised for their parallel perfor-
mance: for a fixed number of grid points if you increase the number of processors,
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you spend too much time communicating between the domains and thus time-to-
solution increases. If you add more grid points so that you can add more processors,
the mathematics of the problem requires you to take a smaller time step, which
also increases the time-to-solution, sometimes beyond its scientific usability. The
fundamental issue standing in the way of going beyond the strong-scaling limit is
embedded in the mathematical structure of the underlying PDEs that govern the
physics many of which share the following mathematical form:

(1)
∂u

∂t
+

1

ǫ
L(u) +N(u,u) = D(u), u (0) = u0,

where the linear operator L has pure imaginary eigenvalues, the nonlinear term
N(u,u) is of polynomial type, the operator D encodes a form of dissipation,
and ǫ is a small non-dimensional parameter. For notational simplicity, we let
u (t) denote the spatial (vector-valued) function u (t, ·) = (u1 (t, ·) , u2 (t, ·) , . . .).
The operator ǫ−1L results in time oscillations on an order O (ǫ) time scale, and
generally necessitates small time steps if standard explicit numerical integrators
are used. Even implicit integrators need to use small time steps if accuracy is
required.

To take advantage of new degrees of parallelism available with new heteroge-
neous computer architectures, examining the role of the time domain is essential
and therefore considering long time limits of the governing equations in the de-
velopment of numerical discretizations is important. A great deal of progress has
been made on understanding time-parallelism with dissipative stiffness, where slow
singular limits are known to exist, and early work on the subject can be found in
Gander et al.[3] and Dal et al.[1]. With oscillatory stiffness, classical ideas of view-
ing Eq (1) as a fast singular limit as ǫ→ ∞ have not been as successful. In this talk
I introduce some time-parallel ideas that have unfolded in the numerical analysis
community over the last 50 years[4] and introduce a new HMM-type[2] parareal[6]
method, called Asymptotic Parallel in Time (APinT)[5], general enough for the
case when ǫ is finite. I show that under certain regularity constraints we can show
the method has superlinear convergence as ǫ → 0 and sketch the ideas behind a
new proof for superlinear convergence, one that relies on the role of near-resonances
inherent in the PDEs, for the case when ǫ is finite[7].
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Simulating all-scale atmospheric dynamics on unstructured meshes

Piotr K. Smolarkiewicz

(joint work with Joanna Szmelter, Feng Xiao)

Historically, atmospheric models across scales were dominated by finite-difference
(FD) and spectral-transform methods for spatial discretisation of their governing
PDEs. In particular, since the nineteen-sixties, finite-difference methods operating
on regular rectangular grids have prevailed in small and mesoscale models for re-
search of cloud processes and orographic flows, with terrain fitted grids mimicked
by continuous mappings and horizontal resolution refinement delegated to nested
grids. These techniques are still prevailing in computational studies from plane-
tary boundary layer to regional climate [3]. Meteorological interest in unstructured
meshing also dates back to the nineteen sixties, in the context of uniform horizon-
tal discretisation for global flows, stifled a decade later by the success of spectral
transforms. In the nineteen seventies spherical harmonics approach became the
method of choice for global simulations, and combined with two-time-level semi-
implicit semi-Lagrangian time stepping it became a marvel of numerical weather
prediction at hydrostatic resolutions. However, the progress of distributed com-
puting in the nineteen nineties revealed efficiency limits of the spherical harmonics,
and reinvigorated research into compact-stencil discretisations including the un-
structured meshing and related finite-volume (FV) integration methods.

Notwithstanding potential benefits of modelling atmospheric flows with un-
structured meshes and growing interest in their use, the unstructured-mesh atmo-
spheric models are still relatively new and have not yet achieved the recognition of
structured-grid models commonly used in research and operations. An important
specificity of the atmospheric dynamics is that it constitutes a relatively small per-
turbation about dominant hydrostatic geostrophic balance. Preserving this funda-
mental equilibrium, while accurately resolving the perturbations about it, condi-
tions the design of atmospheric models and subjects their numerical procedures to
intricate stability and accuracy requirements. This specificity of atmospheric flows
poses new challenges to anisotropic heterogeneous discretisation and flexible mesh
adaptivity, largely developed in the engineering community for neutrally stratified
non-rotating flows throughout a range of Mach number regimes.

Our recent work [3] consolidates a decade of systematic efforts on generalis-
ing proven nonoscillatory forward-in-time finite-difference (NFTFD) semi-implicit
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flux-form integrators of all-scale atmospheric PDEs [1] to a corresponding finite-
volume (NFTFV) approach for unstructured meshes.1 The system of generalised
all-scale nonhydrostatic PDEs governing evolution of density, ̺, potential tempera-
ture, θ, and flow velocity u in an idealised (dry, adiabatic and inviscid) atmosphere
can be compactly written as

∂G̺
∂t

+ ∇ · (G̺v) = 0,
∂G̺θ′
∂t

+∇ · (G̺vθ′) = −G̺
(
G̃Tu · ∇θa

)
,(1)

∂G̺u
∂t

+ ∇ · (G̺v ⊗ u) =

− G̺
(
ΘG̃∇ϕ+ gΥB

θ′

θb
+ f × (u−ΥCua)−M′(u,ua,ΥC)

)
.

The system (1) encloses the compressible Euler equations under gravity in a
rotating reference frame and their two reduced soundproof forms, the pseudo-
incompressible and anelastic equations. The distinction between the three forms
lies in definitions of the generalised density ̺ and pressure variable ϕ, together
with the corresponding dimensionless coefficients Θ, ΥB, and ΥC that depend on
various states of the potential temperature [3]. The subscripts b, 0 and a mark,
respectively, a horizontally homogeneous and hydrostatically balanced base state,
a constant reference value and the balanced ambient state. The primes denote
perturbations with respect to the ambient state—e.g., θ′ = θ − θa—and the per-
turbation pressure ϕ ∝ (T/θ)′ refers to the Exner function. The symbolism of
(1) assumes curvilinear coordinate representation, where G(x, t) is the square root
of the determinant of the metric tensor (viz. the Jacobian), while ∇ · (..) is the
scalar product of spatial partial derivatives with a vector, so d/dt = ∂/∂t+ v · ∇
takes the path velocity v = ẋ not necessarily equal to the velocity u. The G̃∇ϕ
symbolises the product of a known matrix of metric coefficients and the vector

of partial derivatives, whereas G̃T transforms u into v. The term M′(u,ua,ΥC)
symbolises perturbation of the metric forces [3].

Each of the five PDEs in (1) can be viewed as a generalised transport equation
for a scalar variable Ψ,

(2)
∂GΨ

∂t
+∇ · (VΨ) = GR ,

where vector field V (“advector”) as well as scalar fields G and R are assumed to
be known functions of time and space. A key element of our NFT integrators for
(1) is a second-order-accurate FT template for (2)

(3) Ψn+1

i
= Ai

(
Ψ̃,Vn+1/2, Gn, Gn+1

)
+ 0.5δtRn+1

i
:= Ψ̂i + 0.5δtRn+1

i
.

Here A is a shorthand for the NFT transport operator MPDATA [1, 2], Ψ̃ :=
Ψn + 0.5δtRn, i indexes position on the mesh, δt is a time interval between two

1One defining aspect of the NFT schemes is a forward-in-time (FT) two-time-level discreti-
sation of the governing conservation laws, relying on a general Lax-Wendroff concept (a.k.a. the
Cauchy-Kowalevski procedure) to admit higher-order accuracy in space and time [3].
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consecutive time levels n and n+1, and the Vn+1/2 is an O(δt2) estimate of V at
the intermediate time level. In (1) the mass continuity equation is homogeneous,
whereas the entropy and momentum equations have nontrivial rhs that generally
depend on all model variables. In the FT framework, the latter favours implicit
representations of the rhs forcings—as much for the computational stability as
for the solution accuracy. Thanks to the homogeneity, the mass continuity can
be integrated straightforwardly with (3), not only updating ̺ but also providing
cumulative mass fluxes to form advectors for θ′ and all components of u. Given a

colocated mesh and the explicit part of the solution (θ̂′, û) evaluated with (3), the
closed-form expression for the velocity update can be analytically derived [1, 2] as

(4) u = ˇ̌u−C∇ϕ, where ˇ̌u = L−1 ̂̂u , and C = L−10.5 δtΘ⋆G̃ .

In (4), ̂̂u is an algebraic modification of û produced by (3), L−1 and C denote
3 × 3 matrices of known coefficients, and indices |n+1

i
are discarded as there is

no ambiguity. Noting that θ′ is updated according to θ′ = θ̂′ − 0.5δt(G̃Tu ·
∇θa) upon the velocity update, the only lacking element to complete the solution
is the pressure perturbation, and this leads to elliptic boundary value problems
(BVPs) for ϕ, derivable by integrating the evolutionary form of the gas law with
a consistent semi-implicit NFT template [2, 3].

In [3] we demonstrated the performance of the outlined NFTFV integrators on
unstructured meshes across the range of scales from small-scale convective bound-
ary layers, through mesoscale orographic flows, to planetary weather systems (cf.
Fig. 1). These results attest to the success of the NFTFV approach in capital-
ising on the intrinsic strengths of the FV methodology combining the rigorous
conservativeness with the adaptability for arbitrary unstructured meshes and the
superior computational stability of the nonoscillatory semi-implicit solution pro-
cedure while solving for all scales under a single numerical framework.

Figure 1. Surface ki-
netic energy spectra at
day 9 of the baro-
clinic instability evolu-
tion on the globe, simu-
lated with various hori-
zontal resolutions (δh ≈
12.5, 30, 78 km). Ver-
tical lines indicate 4δh
intervals for each corre-
sponding resolution.
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Causality or correlation? Challenges in data-driven modeling of

multiscale geophysical systems

Illia Horenko

One of the challenges in analysis of geophysical systems is to learn about the
causality relations in the considered systems on a certain level of resolution -
and to distinguish between the true causality from simple statistical correlations.
Proper inference of such causality relations, besides giving an additional insight
into such processes, can allow improving the respective mathematical and com-
putational models. However, inferring such relations directly from geophysical
equations/models is hampered by the multiscale character of the underlying pro-
cesses and the presence of unresolved/sub-grid scales.

Implications of missing/unresolved scales for this problem will be discussed
and an overview of methods for data-driven causality inference will be given.
Recently-introduced data-driven multiscale causality inference framework for dis-
crete/Boolean data are be explained and illustrated on analysis of historical cli-
mate teleconnection series and on inference of their mutual influences on monthly
scale.[1]
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A Parametrization of Eddy-Mean Flow Interaction based on a

Rivlin-Ericksen Stress Tensor

Laure Zanna

(joint work with Luca Porta Mana, James Anstey, Tomos David, Thomas Bolton)

Ocean mesoscale eddies are turbulent processes which strongly affect the strength
and variability of large-scale ocean jets. Their horizontal scales, roughly 10 to 100
km, are too small to be adequately resolved in current ocean models. Represent-
ing eddy-mean flow processes in the current generation of ocean climate remains
challenging, especially quantifying the dependence of eddy effects on the underly-
ing dynamics of the resolved flow and external forcing. We present new ways to
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diagnose, analyse and parametrize turbulent eddy effects. The work is based on
the analysis of idealised and state of the art ocean models, fluid mechanics and
stochastic dynamics.

A physically consistent parametrization of eddies, or more precisely of Reynolds
stresses, should account for upgradient and downgradient momentum fluxes. It
should respect the quasi-geostrophic turbulence properties that there are net up-
scale transfers of energy and net downscale transfers of enstrophy, in accordance
with the turbulent eddies leading to the production of large-scale jets. The
parametrization should also depend on the variability present in the model, as it is
intended for use in eddy-permitting models. Our aim is to design a parametriza-
tion that incorporates these properties .

Our approach is based on assuming a general stress-deformation relation relying
on Rivlin-Ericksen fluid stress tensor series [1, 2]. We assume that turbulent
Reynolds stresses can be represented by

(1)
DA
Dt

+∇uTA+A∇u,

where A = 1

2

(
∇u+∇uT

)
is the rate of strain. The first term in eq. 1, DA

Dt , is
referred to as the memory term, while the last two terms are referred to as the
deformation, ∇uTA+A∇u.

Considering the deformation in a 2D or quasi-2D flow, we can show that the
parametrized tendency of turbulent stresses in the momentum equations can be
written as

∂u

∂t
= κ

[
(ζD)x − (ζD̃)y

]

∂v

∂t
= −κ

[
(ζD)y + (ζD̃)x

]

where ζ = vx − uy is the vorticity, D = uy + vx the shearing deformation and

D̃ = ux− vy the stretching deformation. The parameter κ, with dimension of m2,
is find to be spatially uniform and to scale with the coarse resolution grid box
size. The parametrization is shown to conserve vorticity and energy but also to
dissipate enstrophy [5]. The memory term, on the other hand, does not conserve
energy and can be interpreted as an energy backscatter, therefore re-introducing
lost energy from spurious dissipation [3].

A simplified version of the parametrization has been implemented in a baroclinic
quasi-geotrophic model [4]. The parametrization is shown to improve the eddy-
mean flow interaction, in a regime in which the largest eddies are resolved. This
regime corresponds to the eddy-permitting regime in ocean climate models. In
addition, using coarse-graining and conditional probability distribution functions,
we can enhance the effect of the parametrization by an introducing a stochastic
parametrization which depends on the flow and the forcing. The improvements
of the parametrized model versions are shown across a range of model diagnostics
and a route towards an implementation in primitive equation is proposed.
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Different regimes of interactions between scales of motion in the

stably stratified atmospheric boundary layer

Nikki Vercauteren

(joint work with Larry Mahrt, Rupert Klein)

Boundary-layer turbulence in stably stratified weak-wind conditions is typically
intermittent and generated partly by shear associated with propagating nontur-
bulent motions on the so-called submesoscales (corresponding roughly to scales
smaller than 2km). These non-turbulent motions can include ramp-cliff patterns,
waves or microfronts and are commonly denoted as submesomotions. The diversity
of submesomotions complicates the identification of specific physical mechanisms
that would potentially trigger intermittent turbulence. In this talk we approach
the question of generation of turbulence by submesomotions through statistical
clustering combined with in-depth analyses of the dynamical activity of different
scales of motions in several datasets of near-surface stable boundary layer turbu-
lence.

The data clustering methodology is a recent method based on a bounded vari-
ation, finite element method (FEM-BV) and is used here to characterize the in-
teraction between small-scale non-turbulent motions and turbulence. The cluster-
ing methodology achieves a multiscale representation of non-stationary turbulence
data by approximating them through an optimal sequence of locally stationary
multivariate autoregressive factor models (VARX) processes and some slow hidden
process switching between them [1]. The FEM-BV-VARX method is developed by
Prof. Illia Horenko at the Universita della Svizzera Italiana in Switzerland. We
used the FEM-BV-VARX method together with near-surface turbulence data col-
lected over a glacier to objectively separate periods with different influence of the
non-turbulent motions on the vertical velocity fluctuations. Regimes were thereby
identified, two of them weakly stable and two very stable turbulence states [2].
In each identified regime, we characterized the variability of turbulent momentum
fluxes using an extended multiresolution flux decomposition methodology. Trans-
port properties in each regime of near-surface SBL turbulence appear to differ.



2260 Oberwolfach Report 39/2016

Using the same methodology, we investigated the scales of motion responsible for
shear generation of turbulence [3].

In turbulence regimes identified in the glacier dataset as little influenced by
submesomotions, the multiresolution flux decomposition analysis highlighs tradi-
tional weakly stable turbulence behavior. In the regimes identified as having a
strong influence of submeso forcing, the results suggest a likely direct transfer of
energy from the submesoscale horizontal velocity fluctuations to turbulent verti-
cal velocity fluctuations. Those strongly stable regimes are further separated in
two clusters that show different dynamics of the scales of motions. Mainly in one
of them, the analysis suggests that a scale gap separates submesomotions from
turbulence, whereas flux variability is more continuous in scale in the other one
without a scale gap. In the latter, the turbulence is probably not in equilibrium
with the submesoscale motions because the lack of scale separation implies that
the turbulent adjustment time may not be short compared to the time scale of the
submesomotions.
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Large deviations in climate dynamics: the examples of abrupt climate

changes and extreme heat waves

Freddy Bouchet

For some aspects of climate dynamics, rare dynamical events may play a key role.
A first class of problems are extreme events that have huge impacts, for instance
extreme heat waves. A second class of problems are rare trajectories that suddenly
drive the complex dynamical system from one attractor to a completely different
one, for instance abrupt climate changes. In the recent past, new theoretical
and numerical tools have been developed in the statistical mechanics community,
in order to specifically study such rare events. Those approaches are based on
large deviation theory for complex dynamical systems. We will present some of
these tools and apply them to two paradigmatic examples in climate dynamics.
First, the disappearance of one of Jupiter’s jets during the period 1939-1940 is a
simple example of a drastic climate change related to internal variability. We will
demonstrate that quasi geostrophic turbulent models show this kind of ultra rare
transitions where turbulent jets suddenly appear or disappear on times scales of
tens of thousands times the typical dynamical time scale. We will explain how
theoretical and numerical approaches, related to large deviation theory, predict
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transition rates, transition paths, and allow to sample transitions in a way that
can not be achieved using direct numerical simulations. Second, we will study the
probability of extreme heat waves over Europe, in a comprehensive climate model.
We will demonstrate that large deviation algorithms allow to sample extremely
efficiently extreme heat waves. The thousands of sampled extreme heat waves
open the door to their dynamical studies, precursor and fluctuation paths, in
a way that can not be foreseen using conventional tools based on model direct
numerical simulations.

The Zakharov-L’vov stochastic model for the wave turbulence

Sergei B. Kuksin

The wave turbulence (WT) was developed in 1960’s to study short scales of small-
amplitude solutions for nonlinear PDEs under periodic boundary conditions with
long period. The theory applies to hamiltonian PDEs and their perturbations; in
particular – to quasi-geostrophic equations (see [6]) and to nonlinear Scrödinger
equations (NLS). We start with recalling basic concepts of the theory, using NLS
as an example.

1. Classical setting (see [2, 3]). Consider the NLS equation

∂

∂t
u+ i∆u− iν |u|2u = 0 , ∆ = (2π)−2

d∑

j=1

(∂2/∂x2j) , x ∈ T
d
L = R

d/(LZd) ,

where d ≥ 2, L ≥ 1 and ν ∈ (0, 1). DenoteH = L2(T
d
L;C). Then the NLS equation

is a hamiltonian system in H with two integrals of motion – the Hamiltonian and
the L2-norm. I will write solutions u as u(t, x) ∈ C or as u(t) ∈ H .
Let us pass to the slow time τ = νt and re-write the equation as

(1) u̇+ iν−1∆u − i |u|2u = 0 , u̇ = (∂/∂τ)u .

We will write the Fourier series for u(x) as

(2) u(x) = ◦
∑

s∈Z
d

L

vse
2πis·x, Z

d
L = L−1

Z
d .

Here ◦
∑

s = L−d
∑

s, so if f(x) is an integrable continuos function on Rd, then∫
Rd f dx ∼ ◦

∑
s∈Z

d

L

f(s) for L ≫ 1. The objective of the WT is to study solutions

of (1) when ν → 0, L→ ∞ and τ ≫ 1.

2. Zakharov-L’vov setting. When studying eq. (1), people from the WT commu-
nity often talk about “pumping the energy to low modes and dissipating it in high
modes”. To make this rigorous, Zakharov-L’vov [1] suggested to consider the NLS
equation, dumped by a (hyper)viscosity and driven by a random force:

(3) u̇+ iν−1∆u − iρ |u|2u = −(−∆+ 1)ru+ ◦
∑

s
bsβ̇se

2πis·x , r > 0 .
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Here ρ is an additional constant, needed later, {βs(τ), s ∈ Z
d
L} are standard inde-

pendent complex Wiener processes1, the constants bs > 0 fast decay when |s| → ∞
and are specified below. Solutions u(τ) of (3) are random processes in the space
H . Using in (2), (3) the interaction representation

vs = exp(iν−1τ |s|2) as , s ∈ Z
d
L ,

we write eq. (3) as

(4) ȧs = −γsas + bsβ̇s + iρ ◦
∑

s1
◦
∑

s2
δ123sas1as2 ās3e

iν−1τω , s ∈ Z
d
L .

Here γs = (1 + |s|2)r, ω = ω12
3s = |s1|2 + |s2|2 − |s3|2 − |s|2 and δ123s = 1 if

s1 + s2 = s3 + s and equals zero if otherwise. Note that in view of the factor
δ123s , in the double sum in (4) s3 is a function of s1, s2, s. If r ≥ r(d), where r(d)
is sufficiently big, then eq. (3) is well posed and mixing. So there is a measure
µν,L in the space H (called the stationary measure) such that for any “good”
functional F on H and any solution u(τ) ∈ H of (3) we have the convergence
E(F (u(τ)) →

∫
F (v)µν,L(dv) when τ → ∞, see in [4].

The energy spectrum of a solution u(τ) of eq. (3) is the function

Z
d
L ∋ s 7→ ns(τ) = nL,ν

s (τ) = L−d
E|vs(τ)|2 = L−d

E|as(τ)|2.
3. Discrete turbulence. In order to study the double limit ν → 0, L → ∞ it is
natural to examine first the limit ν → 0 (with L fixed), known as the limit of

discrete turbulence, see [3]. To do this consider the following effective equation:

(5) ȧs = −γsas + bsβ̇s + iρ ◦
∑

s1
◦
∑

s2
δ123sδ(ω)as1as2 ās3 , s ∈ Z

d
L ,

where δ(ω) is the delta-function of ω = ω12
3s (equal 1 if ω = 0 and equal 0 otherwise).

The following result is proven in [4]. See [7] for its informal description and for
discussion of its applications to other equations, including the quasi-geostrophic
equation (for the latter also see [6]):

Theorem 1. Eq. (5) is well posed and mixing. When L is fixed and ν → 0, then
i) solutions of (4) converge in distribution, on time intervals of order 1, to solutions
of (5) with the same initial data at τ = 0;
ii) the measure µν,L weakly converges to the unique stationary measure of eq. (5).

4. Balance of energy. We provide the space H with the norm ‖ · ‖, where

‖u‖2 = L−d

∫

T
d

L

|u|2 dx = L−d ◦
∑

s
|vs|2

is the “energy” per unit volume. It is assumed to be of order one, see [2, 3] (so
the energy spectrum function ns also is of order one). Denote B = L−d ◦∑sb

2
s.

Applying the Ito formula to a solution u of (3) we find that

(6) E‖u(τ)‖2 + 2E

∫ τ

0

‖(−∆+ 1)r/2u(s)‖2 ds = E‖u(0)‖2 + 2Bτ .

1i.e. βs = β1
s + iβ2

s , where {βj
s , s ∈ Zd

L, j = 1, 2} are standard independent real Wiener

processes.
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Since E‖u(τ)‖2 ∼ 1 when L → ∞, we are forced to assume that B = B(L) ∼ 1.

To achieve this, we take any positive continuous function b̃(x) on Rd, sufficiently
fast decaying at infinity, and set

bs = Ld/2b̃(s) , s ∈ Z
d
L .

Then B ∼
∫
b̃2 dx ∼ 1 as L→ ∞.

5. Heuristic result of [5]. Let us choose ρ = ǫL1/2, where ǫ is a constant of
dimension (length)−1/2. In [5], arguing on physical level of rigour, we proved the
following result, where it is used that since Zd

L converges to Rd as L → ∞, then
asymptotically the energy spectrum ns(τ) becomes a function of s ∈ Rd:

“Theorem” 2. Assume that |ǫ| is sufficiently small. Then under the iterated limit
first ν → 0, next L → ∞ the energy spectrum for eq. (3) with properly scaled
time, i.e. the function nL,ν

s (Lγτ) where γ is a suitable constant, converges to a
limiting function ns(τ), s ∈ Rd, satisfying the dump-driven wave kinetic equation

d

dτ
ns(τ) = −2γsns + b̃(s)2 + Cǫ

∫

Γs

fs(s1, s2, s3)

γs + γs1 + γs2 + γs3
ns1ns2ns3ns

×
( 1

ns
+

1

ns3

− 1

ns1

− 1

ns2

)
ds1ds2ds3 .

(7)

Here Γs = {(s1, s2, s3) ∈ R3d : s1 + s2 = s3 + s, |s1|2 + |s2|2 = |s3|2 + |s|2} and
the function fs is defined in terms of the geometry of the surface Γs.

Remark. It is also heuristically shown in [5] that the Zakharov ansatz (see [2, 3])
applies to eq. (7) and implies that its time-independent solutions ns are the
Kolmogorov-Zakharov energy spectra [2, 3].

6. How to make this rigorous? Unfortunately, we see no way to develop the
argument of [5] to a rigorous proof of Theorem 2. Instead, in a work in progress,
we establish the following result:

“Theorem” 3. Choose ρ = εν−1, where |ε| is sufficiently small. Then there exist
constants as1 , as2 ∈ (0, 1) such that under the limit

L→ ∞, ν → 0, L−as2 < ν < L−as1 ,

the energy spectrum for eq. (3) with properly scaled time nL,ν
s (Lγτ) converges to

a limiting function ns(τ), s ∈ Rd, satisfying equation (7).
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Variational principles for Stochastic fluid dynamics

Darryl Holm

We propose an approach to including stochastic process as “cylindrical noise” in
systems of evolutionary PDEs which derive from variational principles that are
invariant under a Lie group action. The main objective of the presentation is the
inclusion of stochastic processes in ideal fluid dynamics, in which case the varia-
tional principle is invariant under “particle relabelling” by smooth invertible maps.
Examples include Euler’s fluid equations for incompressible flows and also GFD
approximate equations for ocean and atmosphere circular flow. The approach is
via a stochastic extension of the Hamilton’s principle for fluid which imposes a
constraint of stochastic transport of advected quantities, as obtained from obser-
vations of tracers.

Details and examples for GFD may be found in: D.D. Holm, Variational prin-
ciples for stochastic fluid dynamics, [2015] Proc Roy Soc A, 471: 20140963.

Reporter: Jin-Han Xie
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